Sample records for additional genetic events

  1. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  2. Genetic parameters of eventing horse competition in France

    PubMed Central

    Ricard, Anne; Chanu, Isabelle

    2001-01-01

    Genetic parameters of eventing horse competitions were estimated. About 13 000 horses, 30 000 annual results during 17 years and 110 000 starts in eventing competitions during 8 years were recorded. The measures of performance were logarithmic transformations of annual earnings, annual earnings per start, and annual earnings per place, and underlying variables responsible for ranks in each competition. Heritabilities were low (0.11/0.17 for annual results, 0.07 for ranks). Genetic correlations between criteria were high (greater than 0.90) except between ranks and earnings per place (0.58) or per start (0.67). Genetic correlations between ages (from 5 to 10 years old) were also high (more than 0.85) and allow selection on early performances. The genetic correlation between the results in different levels of competition (high/international and low/amateur) was near 1. Genetic correlations of eventing with other disciplines, which included partial aptitude needed for eventing, were very low for steeplechase races (0.18) and moderate with sport: jumping (0.45), dressage (0.58). The results suggest that selection on jumping performance will lead to some positive correlated response for eventing performance, but much more response could be obtained if a specific breeding objective and selection criteria were developed for eventing. PMID:11333833

  3. Life events and personality in late adolescence: genetic and environmental relations.

    PubMed

    Billig, J P; Hershberger, S L; Iacono, W G; McGue, M

    1996-11-01

    The relationship between life events and personality was investigated in the Minnesota Twin/Family Study, using 216 monozygotic and 114 dizygotic 17-year-old male twin pairs. Participants completed a life events interview designed for adolescents and the Multidimensional Personality Questionnaire. Life events were categorized into three types: life events to which all members of a family would be subject and those affecting an individual, which can be broadly construed as either nonindependent or independent. Univariate genetic model fitting indicated the presence of significant genetic effects (h2 = 49%) for nonindependent nonfamily life events but not for the other two types of life events. Bivariate genetic model fitting further confirmed that the significant phenotypic correlation between nonindependent life events and personality is in part genetically mediated. Specifically, the findings suggest that genetically influenced individual differences in constraint play a substantial role in life events whose occurrence is not independent of the individual's behavior.

  4. Plants with genetically modified events combined by conventional breeding: an assessment of the need for additional regulatory data.

    PubMed

    Pilacinski, W; Crawford, A; Downey, R; Harvey, B; Huber, S; Hunst, P; Lahman, L K; MacIntosh, S; Pohl, M; Rickard, C; Tagliani, L; Weber, N

    2011-01-01

    Crop varieties with multiple GM events combined by conventional breeding have become important in global agriculture. The regulatory requirements in different countries for such products vary considerably, placing an additional burden on regulatory agencies in countries where the submission of additional data is required and delaying the introduction of innovative products to meet agricultural needs. The process of conventional plant breeding has predictably provided safe food and feed products both historically and in the modern era of plant breeding. Thus, previously approved GM events that have been combined by conventional plant breeding and contain GM traits that are not likely to interact in a manner affecting safety should be considered to be as safe as their conventional counterparts. Such combined GM event crop varieties should require little, if any, additional regulatory data to meet regulatory requirements. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Genetic and environmental correlations between subjective wellbeing and experience of life events in adolescence.

    PubMed

    Wootton, Robyn E; Davis, Oliver S P; Mottershaw, Abigail L; Wang, R Adele H; Haworth, Claire M A

    2017-09-01

    Some life events appear heritable due to the genetic influence on related behaviours. Shared genetic influence between negative behaviours and negative life events has previously been established. This study investigated whether subjective wellbeing and positive life events were genetically associated. Participants in the Twins Early Development Study (aged 16.32 ± .68 years) completed subjective wellbeing and life events assessments via two separate studies (overlapping N for wellbeing and life events measures ranged from 3527 to 9350). We conducted bivariate twin models between both positive and negative life events with subjective wellbeing and related positive psychological traits including subjective happiness, life satisfaction, optimism, hopefulness and gratitude measured at 16 years. Results suggested that the heritability of life events can partially be explained by shared genetic influences with the wellbeing indicators. Wellbeing traits were positively genetically correlated with positive life events and negatively correlated with negative life events (except curiosity where there was no correlation). Those positive traits that drive behaviour (grit and ambition) showed the highest genetic correlation with life events, whereas the reflective trait gratitude was less correlated. This suggests that gene-environment correlations might explain the observed genetic association between life events and wellbeing. Inheriting propensity for positive traits might cause you to seek environments that lead to positive life events and avoid environments which make negative life events more likely.

  6. Discrete mixture modeling to address genetic heterogeneity in time-to-event regression

    PubMed Central

    Eng, Kevin H.; Hanlon, Bret M.

    2014-01-01

    Motivation: Time-to-event regression models are a critical tool for associating survival time outcomes with molecular data. Despite mounting evidence that genetic subgroups of the same clinical disease exist, little attention has been given to exploring how this heterogeneity affects time-to-event model building and how to accommodate it. Methods able to diagnose and model heterogeneity should be valuable additions to the biomarker discovery toolset. Results: We propose a mixture of survival functions that classifies subjects with similar relationships to a time-to-event response. This model incorporates multivariate regression and model selection and can be fit with an expectation maximization algorithm, we call Cox-assisted clustering. We illustrate a likely manifestation of genetic heterogeneity and demonstrate how it may affect survival models with little warning. An application to gene expression in ovarian cancer DNA repair pathways illustrates how the model may be used to learn new genetic subsets for risk stratification. We explore the implications of this model for censored observations and the effect on genomic predictors and diagnostic analysis. Availability and implementation: R implementation of CAC using standard packages is available at https://gist.github.com/programeng/8620b85146b14b6edf8f Data used in the analysis are publicly available. Contact: kevin.eng@roswellpark.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24532723

  7. Additive genetic risk from five serotonin system polymorphisms interacts with interpersonal stress to predict depression.

    PubMed

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B; Mineka, Susan; Zinbarg, Richard E; Adam, Emma K; Redei, Eva E; Hammen, Constance; Craske, Michelle G

    2015-11-01

    Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (G×E). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a G×E predicting depression, we created an additive multilocus profile score from 5 serotonin system polymorphisms (1 each in the genes HTR1A, HTR2A, HTR2C, and 2 in TPH2). Analyses focused on 2 forms of interpersonal stress as environmental risk factors. Using 5 years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (hazard ratio [HR] = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The G×E effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the G×E effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. (c) 2015 APA, all rights reserved).

  8. Additive Genetic Risk from Five Serotonin System Polymorphisms Interacts with Interpersonal Stress to Predict Depression

    PubMed Central

    Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Zinbarg, Richard E.; Adam, Emma K.; Redei, Eva E.; Hammen, Constance; Craske, Michelle G.

    2016-01-01

    Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (GxE). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a GxE predicting depression, we created an additive multilocus profile score from five serotonin system polymorphisms (one each in the genes HTR1A, HTR2A, HTR2C, and two in TPH2). Analyses focused on two forms of interpersonal stress as environmental risk factors. Using five years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (HR = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The GxE effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the GxE effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. PMID:26595467

  9. Genetic and life-history consequences of extreme climate events

    PubMed Central

    Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J.

    2017-01-01

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. PMID:28148745

  10. Genetic and life-history consequences of extreme climate events.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J

    2017-02-08

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. © 2017 The Author(s).

  11. Genetic consequences of sequential founder events by an island-colonizing bird.

    PubMed

    Clegg, Sonya M; Degnan, Sandie M; Kikkawa, Jiro; Moritz, Craig; Estoup, Arnaud; Owens, Ian P F

    2002-06-11

    The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.

  12. Genetic and Environmental Influences on Negative Life Events from Late Childhood to Adolescence

    ERIC Educational Resources Information Center

    Johnson, Daniel P.; Rhee, Soo Hyun; Whisman, Mark A.; Corley, Robin P.; Hewitt, John K.

    2013-01-01

    This multiwave longitudinal study tested two quantitative genetic developmental models to examine genetic and environmental influences on exposure to negative dependent and independent life events. Participants (N = 457 twin pairs) completed measures of life events annually from ages 9 to 16. The same genetic factors influenced exposure to…

  13. Calculating expected DNA remnants from ancient founding events in human population genetics

    PubMed Central

    Stacey, Andrew; Sheffield, Nathan C; Crandall, Keith A

    2008-01-01

    Background Recent advancements in sequencing and computational technologies have led to rapid generation and analysis of high quality genetic data. Such genetic data have achieved wide acceptance in studies of historic human population origins and admixture. However, in studies relating to small, recent admixture events, genetic factors such as historic population sizes, genetic drift, and mutation can have pronounced effects on data reliability and utility. To address these issues we conducted genetic simulations targeting influential genetic parameters in admixed populations. Results We performed a series of simulations, adjusting variable values to assess the affect of these genetic parameters on current human population studies and what these studies infer about past population structure. Final mean allele frequencies varied from 0.0005 to over 0.50, depending on the parameters. Conclusion The results of the simulations illustrate that, while genetic data may be sensitive and powerful in large genetic studies, caution must be used when applying genetic information to small, recent admixture events. For some parameter sets, genetic data will not be adequate to detect historic admixture. In such cases, studies should consider anthropologic, archeological, and linguistic data where possible. PMID:18928554

  14. Genetic and Non-Genetic Factors Affecting the Quality of Anticoagulation Control and Vascular Events in Atrial Fibrillation.

    PubMed

    Park, Yun Kyung; Lee, Mi Ji; Kim, Jae Ha; Lee, Jin Soo; Park, Rae Woong; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Kim, June Soo; Lee, Soo-Youn; Bang, Oh Young

    2017-06-01

    Warfarin has a narrow therapeutic window. We hypothesized that genetic factors related to warfarin metabolism (CYP2C9) and activity (VKORC1) would show stronger associations than modifiable factors with the quality of anticoagulation control and risks for thromboembolism and hemorrhage. In this retrospective cohort analysis, clinical and genetic data were collected from 380 patients with atrial fibrillation (AF) who were followed for an average observation period of 4 years. We evaluated the factors associated with time in therapeutic range (TTR, international normalized ratio [INR]: 2-3) and vascular events (either thromboembolic or hemorrhagic), including both genetic (CYP2C9 and VKORC1 genotype) and modifiable factors (anticoagulation service and warfarin dose assessment interval). The genotypic frequency of CYP2C9*3 (rs1057910) was 9.5% and that of VKORC1 1173C>T (rs9934438) was 16.3%. TTR showed dependence on VKORC1 polymorphism: TTR was higher in carriers of the VKORC1 1173C>T than of the VKORC1 TT genotype (61.7 ± 16.0% versus 56.7 ± 17.4%, P = .031). Multivariate testing showed that the VKORC1 genotype and anticoagulation service were independently related to labile INRs (TTR <65%). Vascular events were observed in 66 patients (18.4%) during the study period. A Cox proportional hazard model showed that the use of anticoagulation service and patients' characteristics, such as AF-thromboembolic risk (CHA 2 DS 2 -VASc score: Congestive heart failure, Hypertension, Age 75 years or older, Diabetes mellitus, previous Stroke or transient ischemic attack, Vascular disease, Age 65 to 74 years, female) and consequence (neurologic disability), but not genetic factors, were independently associated with vascular events. Both genetic factor (VKORC1 genotype) and clinical efforts (anticoagulation service) influenced the quality of anticoagulation control. However, clinical events were more strongly associated with patient characteristics and clinical

  15. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  16. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    PubMed Central

    2011-01-01

    Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to

  17. Genetic Risk, Coronary Heart Disease Events, and the Clinical Benefit of Statin Therapy

    PubMed Central

    Smith, JG; Chasman, DI; Caulfield, M; Devlin, JJ; Nordio, F; Hyde, C; Cannon, CP; Sacks, F; Poulter, N; Sever, P; Ridker, PM; Braunwald, E; Melander, O

    2015-01-01

    Background Genetic variants have been associated with the risk of coronary heart disease (CHD). We tested whether a composite of these variants could identify the risk of both incident as well as recurrent CHD events and distinguish individuals who derived greater clinical benefit from statin therapy. Methods A community-based cohort and four randomized controlled trials of both primary (JUPITER and ASCOT) and secondary (CARE and PROVE IT-TIMI 22) prevention with statin therapy totaling 48,421 individuals and 3,477 events were included in these analyses. We examined the association of a genetic risk score based on 27 genetic variants with incident or recurrent CHD, adjusting for established clinical predictors. We then investigated the relative and absolute risk reductions in CHD events with statin therapy stratified by genetic risk. Data from studies were combined using meta-analysis. Findings When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient of risk for incident or recurrent CHD was demonstrated with the multivariable-adjusted HRs (95% CI) for CHD for the intermediate and high genetic risk categories vs. low genetic risk category being 1.32 (1.20-1.46, P<0.0001) and 1.71 (1.54-1.91, P<0.0001), respectively. In terms of the benefit of statin therapy in the four randomized trials, there was a significant gradient of increasing relative risk reduction across the low, intermediate, and high genetic risk categories (13%, 29%, and 48%, P=0.0277). Similarly, greater absolute risk reductions were seen in those individuals in higher genetic risk categories (P=0.0101), resulting in an approximate three-fold gradient in the number needed to treat (NNT) in the primary prevention trials. Specifically, in the primary prevention trials, the NNT to prevent one MACE over 10 years for the low, intermediate, and high GRS individuals was 66, 42, and 25 in JUPITER and 57, 47, and 20

  18. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  19. The impact of recent events on human genetic diversity

    PubMed Central

    Jobling, Mark A.

    2012-01-01

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics. PMID:22312046

  20. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data

    PubMed Central

    Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk

    2015-01-01

    Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289

  1. Evaluation of non-additive genetic variation in feed-related traits of broiler chickens.

    PubMed

    Li, Y; Hawken, R; Sapp, R; George, A; Lehnert, S A; Henshall, J M; Reverter, A

    2017-03-01

    Genome-wide association mapping and genomic predictions of phenotype of individuals in livestock are predominately based on the detection and estimation of additive genetic effects. Non-additive genetic effects are largely ignored. Studies in animals, plants, and humans to assess the impact of non-additive genetic effects in genetic analyses have led to differing conclusions. In this paper, we examined the consequences of including non-additive genetic effects in genome-wide association mapping and genomic prediction of total genetic values in a commercial population of 5,658 broiler chickens genotyped for 45,176 single nucleotide polymorphism (SNP) markers. We employed mixed-model equations and restricted maximum likelihood to analyze 7 feed related traits (TRT1 - TRT7). Dominance variance accounted for a significant proportion of the total genetic variance in all 7 traits, ranging from 29.5% for TRT1 to 58.4% for TRT7. Using a 5-fold cross-validation schema, we found that in spite of the large dominance component, including the estimated dominance effects in the prediction of total genetic values did not improve the accuracy of the predictions for any of the phenotypes. We offer some possible explanations for this counter-intuitive result including the possible confounding of dominance deviations with common environmental effects such as hatch, different directional effects of SNP additive and dominance variations, and the gene-gene interactions' failure to contribute to the level of variance. © 2016 Poultry Science Association Inc.

  2. The contribution of additive genetic variation to personality variation: heritability of personality.

    PubMed

    Dochtermann, Ned A; Schwab, Tori; Sih, Andrew

    2015-01-07

    Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer.

    PubMed

    Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles

    2017-10-01

    The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.

  4. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Forest, Adriana R; Semeniuk, Christina A D; Heath, Daniel D; Pitcher, Trevor E

    2016-08-01

    Chinook salmon, Oncorhynchus tshawytscha, exhibit alternative reproductive tactics (ARTs) where males exist in two phenotypes: large "hooknose" males and smaller "jacks" that reach sexual maturity after only 1 year in seawater. The mechanisms that determine "jacking rate"-the rate at which males precociously sexually mature-are known to involve both genetics and differential growth rates, where individuals that become jacks exhibit higher growth earlier in life. The additive genetic components have been studied and it is known that jack sires produce significantly more jack offspring than hooknose sires, and vice versa. The current study was the first to investigate both additive and non-additive genetic components underlying jacking through the use of a full-factorial breeding design using all hooknose sires. The effect of dams and sires descendant from a marker-assisted broodstock program that identified "high performance" and "low performance" lines using growth- and survival-related gene markers was also studied. Finally, the relative growth of jack, hooknose, and female offspring was examined. No significant dam, sire, or interaction effects were observed in this study, and the maternal, additive, and non-additive components underlying jacking were small. Differences in jacking rates in this study were determined by dam performance line, where dams that originated from the low performance line produced significantly more jacks. Jack offspring in this study had a significantly larger body size than both hooknose males and females starting 1 year post-fertilization. This study provides novel information regarding the genetic architecture underlying ARTs in Chinook salmon that could have implications for the aquaculture industry, where jacks are not favoured due to their small body size and poor flesh quality.

  5. Geologic events coupled with Pleistocene climatic oscillations drove genetic variation of Omei treefrog (Rhacophorus omeimontis) in southern China.

    PubMed

    Li, Jun; Zhao, Mian; Wei, Shichao; Luo, Zhenhua; Wu, Hua

    2015-12-21

    Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. However, the relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. To investigate patterns of genetic variation and to test the hypotheses about the factors that shaped the distribution of this genetic variation in species of southern China, mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and nine microsatellite loci of the Omei tree frog (Rhacophorus omeimontis) were amplified in this study. The genetic diversity in the populations of R. omeimontis was high. The phylogenetic trees reconstructed from the mitochondrial DNA (mtDNA) haplotypes and the Bayesian genetic clustering analysis based on microsatellite data both revealed that all populations were divided into three lineages (SC, HG and YN). The two most recent splitting events among the lineages coincided with recent geological events (including the intense uplift of the Qinghai-Tibet Plateau, QTP and the subsequent movements of the Yun-Gui Plateau, YGP) and the Pleistocene glaciations. Significant expansion signals were not detected in mismatch analyses or neutrality tests. And the effective population size of each lineage was stable during the Pleistocene. Based on the results of this study, complex geological events (the recent dramatic uplift of the QTP and the subsequent movements of the YGP) and the Pleistocene glaciations were apparent drivers of the rapid divergence of the R. omeimontis lineages. Each diverged lineages survived in situ with limited gene exchanges, and the stable demographics of lineages indicate that the Pleistocene climatic oscillations were inconsequential for this species. The analysis of genetic variation in populations of R. omeimontis

  6. Event-based cluster synchronization of coupled genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  7. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  8. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events.

    PubMed

    Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria

    2006-10-01

    We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.

  9. Additive genetic variation and evolvability of a multivariate trait can be increased by epistatic gene action.

    PubMed

    Griswold, Cortland K

    2015-12-21

    Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Genetic associations with adverse events from anti-tumor necrosis factor therapy in inflammatory bowel disease patients.

    PubMed

    Lew, Daniel; Yoon, Soon Man; Yan, Xiaofei; Robbins, Lori; Haritunians, Talin; Liu, Zhenqiu; Li, Dalin; McGovern, Dermot Pb

    2017-10-28

    To study the type and frequency of adverse events associated with anti-tumor necrosis factor (TNF) therapy and evaluate for any serologic and genetic associations. This study was a retrospective review of patients attending the inflammatory bowel disease (IBD) centers at Cedars-Sinai IBD Center from 2005-2016. Adverse events were identified via chart review. IBD serologies were measured by ELISA. DNA samples were genotyped at Cedars-Sinai using Illumina Infinium Immunochipv1 array per manufacturer's protocol. SNPs underwent methodological review and were evaluated using several SNP statistic parameters to ensure optimal allele-calling. Standard and rigorous QC criteria were applied to the genetic data, which was generated using immunochip. Genetic association was assessed by logistic regression after correcting for population structure. Altogether we identified 1258 IBD subjects exposed to anti-TNF agents in whom Immunochip data were available. 269/1258 patients (21%) were found to have adverse events to an anti-TNF-α agent that required the therapy to be discontinued. 25% of women compared to 17% of men experienced an adverse event. All adverse events resolved after discontinuing the anti-TNF agent. In total: n = 66 (5%) infusion reactions; n = 49 (4%) allergic/serum sickness reactions; n = 19 (1.5%) lupus-like reactions, n = 52 (4%) rash, n = 18 (1.4%) infections. In Crohn's disease, IgA ASCA ( P = 0.04) and IgG-ASCA ( P = 0.02) levels were also lower in patients with any adverse events, and anti-I2 level in ulcerative colitis was significantly associated with infusion reactions ( P = 0.008). The logistic regression/human annotation and network analyses performed on the Immunochip data implicated the following five signaling pathways: JAK-STAT (Janus Kinase-signal transducer and activator of transcription), measles, IBD, cytokine-cytokine receptor interaction, and toxoplasmosis for any adverse event. Our study shows 1 in 5 IBD patients experience an adverse

  11. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    PubMed

    Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  12. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    PubMed

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  13. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  14. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  15. Plants with stacked genetically modified events: to assess or not to assess?

    PubMed

    Kok, Esther J; Pedersen, Jan; Onori, Roberta; Sowa, Slawomir; Schauzu, Marianna; De Schrijver, Adinda; Teeri, Teemu H

    2014-02-01

    The principles for the safety assessment of genetically modified (GM) organisms (GMOs) are harmonised worldwide to a large extent. There are, however, still differences between the European GMO regulations and the GMO regulations as they have been formulated in other parts of the world. One of these differences relates to the so-called 'stacked GM events', that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different aspects that currently form the rationale for the safety assessment of stacked GM events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. In search for genetic determinants of clinically meaningful differential cardiovascular event reduction by pravastatin in the PHArmacogenetic study of Statins in the Elderly at risk (PHASE)/PROSPER study.

    PubMed

    Postmus, Iris; Johnson, Paul C D; Trompet, Stella; de Craen, Anton J M; Slagboom, P Eline; Devlin, James J; Shiffman, Dov; Sacks, Frank M; Kearney, Patricia M; Stott, David J; Buckley, Brendan M; Sattar, Naveed; Ford, Ian; Westendorp, Rudi G J; Jukema, J Wouter

    2014-07-01

    Statin therapy is widely used in the prevention and treatment of cardiovascular events and is associated with significant risk reductions. However, there is considerable variation in response to statin therapy both in terms of LDL cholesterol reduction and clinical outcomes. It has been hypothesized that genetic variation contributes importantly to this individual drug response. We investigated the interaction between genetic variants and pravastatin or placebo therapy on the incidence of cardiovascular events by performing a genome-wide association study in the participants of the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease--PHArmacogenetic study of Statins in the Elderly at risk (PROSPER/PHASE) study (n = 5244). We did not observe genome-wide significant associations with a clinically meaningful differential cardiovascular event reduction by pravastatin therapy. In addition, SNPs with p-values lower than 1 × 10(-4) were assessed for replication in a case-only analysis within two randomized placebo controlled pravastatin trials, CARE (n = 711) and WOSCOPS (n = 522). rs7102569, on chromosome 11 near the ODZ4 gene, was replicated in the CARE study (p = 0.008), however the direction of effect was opposite. This SNP was not associated in WOSCOPS. In addition, none of the SNPs replicated significantly after correcting for multiple testing. We could not identify genetic variation that was significantly associated at genome-wide level with a clinically meaningful differential event reduction by pravastatin treatment in a large prospective study. We therefore assume that in daily practice the use of genetic characteristics to personalize pravastatin treatment to improve prevention of cardiovascular disease will be limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Additive Genetic Variability and the Bayesian Alphabet

    PubMed Central

    Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan

    2009-01-01

    The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397

  18. Efficient Improvement of Silage Additives by Using Genetic Algorithms

    PubMed Central

    Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.

    2000-01-01

    The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage

  19. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials.

    PubMed

    Mega, J L; Stitziel, N O; Smith, J G; Chasman, D I; Caulfield, M; Devlin, J J; Nordio, F; Hyde, C; Cannon, C P; Sacks, F; Poulter, N; Sever, P; Ridker, P M; Braunwald, E; Melander, O; Kathiresan, S; Sabatine, M S

    2015-06-06

    Genetic variants have been associated with the risk of coronary heart disease. In this study, we tested whether or not a composite of these variants could ascertain the risk of both incident and recurrent coronary heart disease events and identify those individuals who derive greater clinical benefit from statin therapy. A community-based cohort study (the Malmo Diet and Cancer Study) and four randomised controlled trials of both primary prevention (JUPITER and ASCOT) and secondary prevention (CARE and PROVE IT-TIMI 22) with statin therapy, comprising a total of 48,421 individuals and 3477 events, were included in these analyses. We studied the association of a genetic risk score based on 27 genetic variants with incident or recurrent coronary heart disease, adjusting for traditional clinical risk factors. We then investigated the relative and absolute risk reductions in coronary heart disease events with statin therapy stratified by genetic risk. We combined data from the different studies using a meta-analysis. When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient in risk for incident or recurrent coronary heart disease was shown. Compared with the low genetic risk category, the multivariable-adjusted hazard ratio for coronary heart disease for the intermediate genetic risk category was 1·34 (95% CI 1·22-1·47, p<0·0001) and that for the high genetic risk category was 1·72 (1·55-1·92, p<0·0001). In terms of the benefit of statin therapy in the four randomised trials, we noted a significant gradient (p=0·0277) of increasing relative risk reductions across the low (13%), intermediate (29%), and high (48%) genetic risk categories. Similarly, we noted greater absolute risk reductions in those individuals in higher genetic risk categories (p=0·0101), resulting in a roughly threefold decrease in the number needed to treat to prevent one coronary heart disease

  20. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  1. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    PubMed

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  2. FEMALE AND MALE GENETIC EFFECTS ON OFFSPRING PATERNITY: ADDITIVE GENETIC (CO)VARIANCES IN FEMALE EXTRA-PAIR REPRODUCTION AND MALE PATERNITY SUCCESS IN SONG SPARROWS (MELOSPIZA MELODIA)

    PubMed Central

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain

    2014-01-01

    Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. PMID:24724612

  3. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification.

    PubMed

    Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng

    2012-11-07

    Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  4. Embryological Development: Evolutionary History, Genetic Bias, and Cellular Environment Control the Flow of Developmental Events. Part I.

    ERIC Educational Resources Information Center

    Caplan, Arnold I.

    1981-01-01

    Describes development of the limb and various interactions necessary for the expression of its unique form and phenotypes to uncover the hierarchical controlling steps in the development process for the potential of avoiding abnormal events and manipulating what might be detrimental genetic events into a normal sequence. (Author/SK)

  5. Quantifying the extent to which index event biases influence large genetic association studies.

    PubMed

    Yaghootkar, Hanieh; Bancks, Michael P; Jones, Sam E; McDaid, Aaron; Beaumont, Robin; Donnelly, Louise; Wood, Andrew R; Campbell, Archie; Tyrrell, Jessica; Hocking, Lynne J; Tuke, Marcus A; Ruth, Katherine S; Pearson, Ewan R; Murray, Anna; Freathy, Rachel M; Munroe, Patricia B; Hayward, Caroline; Palmer, Colin; Weedon, Michael N; Pankow, James S; Frayling, Timothy M; Kutalik, Zoltán

    2017-03-01

    As genetic association studies increase in size to 100 000s of individuals, subtle biases may influence conclusions. One possible bias is 'index event bias' (IEB) that appears due to the stratification by, or enrichment for, disease status when testing associations between genetic variants and a disease-associated trait. We aimed to test the extent to which IEB influences some known trait associations in a range of study designs and provide a statistical framework for assessing future associations. Analyzing data from 113 203 non-diabetic UK Biobank participants, we observed three (near TCF7L2, CDKN2AB and CDKAL1) overestimated (body mass index (BMI) decreasing) and one (near MTNR1B) underestimated (BMI increasing) associations among 11 type 2 diabetes risk alleles (at P  <  0.05). IEB became even stronger when we tested a type 2 diabetes genetic risk score composed of these 11 variants (-0.010 standard deviations BMI per allele, P  =  5 × 10- 4), which was confirmed in four additional independent studies. Similar results emerged when examining the effect of blood pressure increasing alleles on BMI in normotensive UK Biobank samples. Furthermore, we demonstrated that, under realistic scenarios, common disease alleles would become associated at P <  5 × 10- 8 with disease-related traits through IEB alone, if disease prevalence in the sample differs appreciably from the background population prevalence. For example, some hypertension and type 2 diabetes alleles will be associated with BMI in sample sizes of  >500 000 if the prevalence of those diseases differs by >10% from the background population. In conclusion, IEB may result in false positive or negative genetic associations in very large studies stratified or strongly enriched for/against disease cases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana Aublet in French Guiana.

    PubMed

    Dutech, Cyril; Maggia, Laurent; Tardy, Christophe; Joly, Hélène I; Jarne, Philippe

    2003-12-01

    Drier periods from the late Pleistocene and early Holocene have been hypothesized to have caused the disappearance of various rainforest species over large geographical areas in South America and restricted the extant populations to mesic sites. Subsequent improvement in climatic conditions has been associated with recolonization. Changes in population size associated with these extinction-recolonization events should have affected genetic diversity within species. However, these historical hypotheses and their genetic consequences have rarely been tested in South America. Here, we examine the diversity of the chloroplast and nuclear genomes in a Neotropical rainforest tree species, Vouacapoua americana (Leguminosae, Caesalpinioideae) in French Guiana. The chloroplast diversity was analyzed using a polymerase chain reaction-restriction fragment length polymorphism method (six pairs of primers) in 29 populations distributed over most of French Guiana, and a subset of 17 populations was also analyzed at nine polymorphic microsatellite loci. To determine whether this species has experienced extinction-recolonization, we sampled populations in areas supposedly not or only slightly affected by climatic changes, where the populations would not have experienced frequent extinction, and in areas that appear to have been recently recolonized. In the putatively recolonized areas, we found patches of several thousands of hectares homogeneous for chloroplast variation that can be interpreted as the effect of recolonization processes from several geographical origins. In addition, we observed that, for both chloroplast and nuclear genomes, the populations in newly recolonized areas exhibited a significantly smaller allelic richness than others. Controlling for geographic distance, we also detected a significant correlation between chloroplast and nuclear population differentiation. This result indicates a cytonuclear disequilibrium that can be interpreted as a historical signal

  7. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  8. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Shin, Min-Ki; Moon, Gui-Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2017-07-01

    One novel standard reference plasmid, namely pUC-RICE5, was constructed as a positive control and calibrator for event-specific qualitative and quantitative detection of genetically modified (GM) rice (Bt63, Kemingdao1, Kefeng6, Kefeng8, and LLRice62). pUC-RICE5 contained fragments of a rice-specific endogenous reference gene (sucrose phosphate synthase) as well as the five GM rice events. An existing qualitative PCR assay approach was modified using pUC-RICE5 to create a quantitative method with limits of detection correlating to approximately 1-10 copies of rice haploid genomes. In this quantitative PCR assay, the square regression coefficients ranged from 0.993 to 1.000. The standard deviation and relative standard deviation values for repeatability ranged from 0.02 to 0.22 and 0.10% to 0.67%, respectively. The Ministry of Food and Drug Safety (Korea) validated the method and the results suggest it could be used routinely to identify five GM rice events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Female and male genetic effects on offspring paternity: additive genetic (co)variances in female extra-pair reproduction and male paternity success in song sparrows (Melospiza melodia).

    PubMed

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain

    2014-08-01

    Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  10. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  11. Shared additive genetic influences on DSM-IV criteria for alcohol dependence in subjects of European ancestry.

    PubMed

    Palmer, Rohan H C; McGeary, John E; Heath, Andrew C; Keller, Matthew C; Brick, Leslie A; Knopik, Valerie S

    2015-12-01

    Genetic studies of alcohol dependence (AD) have identified several candidate loci and genes, but most observed effects are small and difficult to reproduce. A plausible explanation for inconsistent findings may be a violation of the assumption that genetic factors contributing to each of the seven DSM-IV criteria point to a single underlying dimension of risk. Given that recent twin studies suggest that the genetic architecture of AD is complex and probably involves multiple discrete genetic factors, the current study employed common single nucleotide polymorphisms in two multivariate genetic models to examine the assumption that the genetic risk underlying DSM-IV AD is unitary. AD symptoms and genome-wide single nucleotide polymorphism (SNP) data from 2596 individuals of European descent from the Study of Addiction: Genetics and Environment were analyzed using genomic-relatedness-matrix restricted maximum likelihood. DSM-IV AD symptom covariance was described using two multivariate genetic factor models. Common SNPs explained 30% (standard error=0.136, P=0.012) of the variance in AD diagnosis. Additive genetic effects varied across AD symptoms. The common pathway model approach suggested that symptoms could be described by a single latent variable that had a SNP heritability of 31% (0.130, P=0.008). Similarly, the exploratory genetic factor model approach suggested that the genetic variance/covariance across symptoms could be represented by a single genetic factor that accounted for at least 60% of the genetic variance in any one symptom. Additive genetic effects on DSM-IV alcohol dependence criteria overlap. The assumption of common genetic effects across alcohol dependence symptoms appears to be a valid assumption. © 2015 Society for the Study of Addiction.

  12. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  13. Establishment and application of event-specific polymerase chain reaction methods for two genetically modified soybean events, A2704-12 and A5547-127.

    PubMed

    Li, Xiang; Pan, Liangwen; Li, Junyi; Zhang, Qigang; Zhang, Shuya; Lv, Rong; Yang, Litao

    2011-12-28

    For implementation of the issued regulations and labeling policies for genetically modified organism (GMO) supervision, the polymerase chain reaction (PCR) method has been widely used due to its high specificity and sensitivity. In particular, use of the event-specific PCR method based on the flanking sequence of transgenes has become the primary trend. In this study, both qualitative and quantitative PCR methods were established on the basis of the 5' flanking sequence of transgenic soybean A2704-12 and the 3' flanking sequence of transgenic soybean A5547-127, respectively. In qualitative PCR assays, the limits of detection (LODs) were 10 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127. In quantitative real-time PCR assays, the LODs were 5 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127, and the limits of quantification (LOQs) were 10 copies for both. Low bias and acceptable SD and RSD values were also achieved in quantification of four blind samples using the developed real-time PCR assays. In addition, the developed PCR assays for the two transgenic soybean events were used for routine analysis of soybean samples imported to Shanghai in a 6 month period from October 2010 to March 2011. A total of 27 lots of soybean from the United States and Argentina were analyzed: 8 lots from the Unites States were found to have the GM soybean A2704-12 event, and the GM contents were <1.5% in all eight analyzed lots. On the contrary, no GM soybean A5547-127 content was found in any of the eight lots. These results demonstrated that the established event-specific qualitative and quantitative PCR methods could be used effectively in routine identification and quantification of GM soybeans A2704-12 and A5547-127 and their derived products.

  14. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study.

    PubMed

    Greenwood, Tiffany A; Lazzeroni, Laura C; Calkins, Monica E; Freedman, Robert; Green, Michael F; Gur, Raquel E; Gur, Ruben C; Light, Gregory A; Nuechterlein, Keith H; Olincy, Ann; Radant, Allen D; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Stone, William S; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L

    2016-01-01

    The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.

    PubMed

    Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A

    2017-09-13

    The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.

  16. A Bayesian additive model for understanding public transport usage in special events.

    PubMed

    Rodrigues, Filipe; Borysov, Stanislav; Ribeiro, Bernardete; Pereira, Francisco

    2016-12-02

    Public special events, like sports games, concerts and festivals are well known to create disruptions in transportation systems, often catching the operators by surprise. Although these are usually planned well in advance, their impact is difficult to predict, even when organisers and transportation operators coordinate. The problem highly increases when several events happen concurrently. To solve these problems, costly processes, heavily reliant on manual search and personal experience, are usual practice in large cities like Singapore, London or Tokyo. This paper presents a Bayesian additive model with Gaussian process components that combines smart card records from public transport with context information about events that is continuously mined from the Web. We develop an efficient approximate inference algorithm using expectation propagation, which allows us to predict the total number of public transportation trips to the special event areas, thereby contributing to a more adaptive transportation system. Furthermore, for multiple concurrent event scenarios, the proposed algorithm is able to disaggregate gross trip counts into their most likely components related to specific events and routine behavior. Using real data from Singapore, we show that the presented model outperforms the best baseline model by up to 26% in R2 and also has explanatory power for its individual components.

  17. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  18. Genetic Causes of Recurrent Pregnancy Loss.

    PubMed

    Page, Jessica M; Silver, Robert M

    2016-09-01

    Pregnancy loss is one of the most common obstetric complications, affecting over 30% of conceptions. A considerable proportion of losses are due to genetic abnormalities. Indeed, over 50% of early pregnancy losses have been associated with chromosomal abnormalities. Most are due to de novo nondisjunctional events but balanced parental translocations are responsible for a small but important percentage of genetic abnormalities in couples with recurrent pregnancy loss. In the past, assessment of genetic abnormalities was limited to karyotype performed on placental or fetal tissue. However, advances in molecular genetic technology now provide rich genetic information about additional genetic causes of and risk factors for pregnancy loss. In addition, the use of preimplantation genetic testing in couples undergoing in vitro fertilization has the potential to decrease the risk of pregnancy loss from genetic abnormalities. To date, efficacy is uncertain but considerable potential remains. This chapter will review what is known about genetic causes of recurrent pregnancy loss with a focus on novel causes and potential treatments. Remaining knowledge gaps will be highlighted.

  19. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  20. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive.

    PubMed

    Paracchini, Valentina; Petrillo, Mauro; Reiting, Ralf; Angers-Loustau, Alexandre; Wahler, Daniela; Stolz, Andrea; Schönig, Birgit; Matthies, Anastasia; Bendiek, Joachim; Meinel, Dominik M; Pecoraro, Sven; Busch, Ulrich; Patak, Alex; Kreysa, Joachim; Grohmann, Lutz

    2017-09-01

    Many food and feed additives result from fermentation of genetically modified (GM) microorganisms. For vitamin B2 (riboflavin), GM Bacillus subtilis production strains have been developed and are often used. The presence of neither the GM strain nor its recombinant DNA is allowed for fermentation products placed on the EU market as food or feed additive. A vitamin B 2 product (80% feed grade) imported from China was analysed. Viable B. subtilis cells were identified and DNAs of two bacterial isolates (LHL and LGL) were subjected to three whole genome sequencing (WGS) runs with different devices (MiSeq, 454 or HiSeq system). WGS data revealed the integration of a chloramphenicol resistance gene, the deletion of the endogenous riboflavin (rib) operon and presence of four putative plasmids harbouring rib operons. Event- and construct-specific real-time PCR methods for detection of the GM strain and its putative plasmids in food and feed products have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genetic and Epigenetic Variations Induced by Wheat-Rye 2R and 5R Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Background Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. Methodology/Principal Findings In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. Conclusions/Significance The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat. PMID:23342073

  2. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    PubMed

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  3. Contribution of Genetic Background, Traditional Risk Factors, and HIV-Related Factors to Coronary Artery Disease Events in HIV-Positive Persons

    PubMed Central

    Rotger, Margalida; Glass, Tracy R.; Junier, Thomas; Lundgren, Jens; Neaton, James D.; Poloni, Estella S.; van 't Wout, Angélique B.; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F.; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A.; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P.; Li, Xiuhong; Kingsley, Lawrence A.; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S.; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M.; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H.; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R.; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A.; Reiss, Peter; Weber, Rainer; Bucher, Heiner C.; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E.

    2013-01-01

    Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD. PMID:23532479

  4. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons.

    PubMed

    Rotger, Margalida; Glass, Tracy R; Junier, Thomas; Lundgren, Jens; Neaton, James D; Poloni, Estella S; van 't Wout, Angélique B; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P; Li, Xiuhong; Kingsley, Lawrence A; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A; Reiss, Peter; Weber, Rainer; Bucher, Heiner C; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E

    2013-07-01

    Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.

  5. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.

    PubMed

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance

  6. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  7. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    PubMed

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  8. [Chromosome as a chronicler: Genetic dating, historical events, and DNA-genealogic temptation].

    PubMed

    Balanovsky, O P; Zaporozhchenko, V V

    2016-07-01

    Nonrecombinant portions of the genome, Y chromosome and mitochondrial DNA, are widely used for research on human population gene pools and reconstruction of their history. These systems allow the genetic dating of clusters of emerging haplotypes. The main method for age estimations is ρ statistics, which is an average number of mutations from founder haplotype to all modern-day haplotypes. A researcher can estimate the age of the cluster by multiplying this number by the mutation rate. The second method of estimation, ASD, is used for STR haplotypes of the Y chromosome and is based on the squared difference in the number of repeats. In addition to the methods of calculation, methods of Bayesian modeling assume a new significance. They have greater computational cost and complexity, but they allow obtaining an a posteriori distribution of the value of interest that is the most consistent with experimental data. The mutation rate must be known for both calculation methods and modeling methods. It can be determined either during the analysis of lineages or by providing calibration points based on populations with known formation time. These two approaches resulted in rate estimations for Y-chromosomal STR haplotypes with threefold difference. This contradiction was only recently refuted through the use of sequence data for the complete Y chromosome; “whole-genomic” rates of single nucleotide mutations obtained by both methods are mutually consistent and mark the area of application for different rates of STR markers. An issue even more crucial than that of the rates is correlation of the reconstructed history of the haplogroup (a cluster of haplotypes) and the history of the population. Although the need for distinguishing “lineage history” and “population history” arose in the earliest days of phylogeographic research, reconstructing the population history using genetic dating requires a number of methods and conditions. It is known that population

  9. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.

    PubMed

    Bocianowski, Jan

    2013-03-01

    Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

  10. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  11. Additive genetic variance in polyandry enables its evolution, but polyandry is unlikely to evolve through sexy or good sperm processes.

    PubMed

    Travers, L M; Simmons, L W; Garcia-Gonzalez, F

    2016-05-01

    Polyandry is widespread despite its costs. The sexually selected sperm hypotheses ('sexy' and 'good' sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2 ) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects

    PubMed Central

    Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Porth, Ilga; Chen, Charles; El-Kassaby, Yousry A.

    2016-01-01

    The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates’ offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter estimates is often questioned as the assumption of “half-sibling” in OP families may often be violated. We compared the pedigree- vs. marker-based genetic models by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the disentanglement of additive from all nonadditive factors through genetic variance decomposition. The marker-based models produced more realistic narrow-sense heritability estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the genomic models showed better prediction accuracies compared to pedigree models and were able to predict individual breeding values for new individuals from untested families, which was not possible using the pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the quantitative genetic parameters of complex traits even under simple and shallow pedigree structure. PMID:26801647

  13. Genetic predisposition to coronary heart disease and stroke using an additive genetic risk score: a population-based study in Greece

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine the extent to which the risk for incident coronary heart disease (CHD) increases in relation to a genetic risk score (GRS) that additively integrates the influence of high-risk alleles in nine documented single nucleotide polymorphisms (SNPs) for CHD, and to examine whether t...

  14. Do Health Professionals Need Additional Competencies for Stratified Cancer Prevention Based on Genetic Risk Profiling?

    PubMed Central

    Chowdhury, Susmita; Henneman, Lidewij; Dent, Tom; Hall, Alison; Burton, Alice; Pharoah, Paul; Pashayan, Nora; Burton, Hilary

    2015-01-01

    There is growing evidence that inclusion of genetic information about known common susceptibility variants may enable population risk-stratification and personalized prevention for common diseases including cancer. This would require the inclusion of genetic testing as an integral part of individual risk assessment of an asymptomatic individual. Front line health professionals would be expected to interact with and assist asymptomatic individuals through the risk stratification process. In that case, additional knowledge and skills may be needed. Current guidelines and frameworks for genetic competencies of non-specialist health professionals place an emphasis on rare inherited genetic diseases. For common diseases, health professionals do use risk assessment tools but such tools currently do not assess genetic susceptibility of individuals. In this article, we compare the skills and knowledge needed by non-genetic health professionals, if risk-stratified prevention is implemented, with existing competence recommendations from the UK, USA and Europe, in order to assess the gaps in current competences. We found that health professionals would benefit from understanding the contribution of common genetic variations in disease risk, the rationale for a risk-stratified prevention pathway, and the implications of using genomic information in risk-assessment and risk management of asymptomatic individuals for common disease prevention. PMID:26068647

  15. Reconstructing demographic events from population genetic data: the introduction of bumblebees to New Zealand.

    PubMed

    Lye, G C; Lepais, O; Goulson, D

    2011-07-01

    Four British bumblebee species (Bombus terrestris, Bombus hortorum, Bombus ruderatus and Bombus subterraneus) became established in New Zealand following their introduction at the turn of the last century. Of these, two remain common in the United Kingdom (B. terrestris and B. hortorum), whilst two (B. ruderatus and B. subterraneus) have undergone marked declines, the latter being declared extinct in 2000. The presence of these bumblebees in New Zealand provides an unique system in which four related species have been isolated from their source population for over 100 years, providing a rare opportunity to examine the impacts of an initial bottleneck and introduction to a novel environment on their population genetics. We used microsatellite markers to compare modern populations of B. terrestris, B. hortorum and B. ruderatus in the United Kingdom and New Zealand and to compare museum specimens of British B. subterraneus with the current New Zealand population. We used approximate Bayesian computation to estimate demographic parameters of the introduction history, notably to estimate the number of founders involved in the initial introduction. Species-specific patterns derived from genetic analysis were consistent with the predictions based on the presumed history of these populations; demographic events have left a marked genetic signature on all four species. Approximate Bayesian analyses suggest that the New Zealand population of B. subterraneus may have been founded by as few as two individuals, giving rise to low genetic diversity and marked genetic divergence from the (now extinct) UK population. © 2011 Blackwell Publishing Ltd.

  16. Fragile X-associated primary ovarian insufficiency: evidence for additional genetic contributions to severity.

    PubMed

    Hunter, Jessica Ezzell; Epstein, Michael P; Tinker, Stuart W; Charen, Krista H; Sherman, Stephanie L

    2008-09-01

    The fragile X mental retardation gene (FMR1) contains a CGG repeat sequence in its 5' untranslated region that can become unstable and expand in length from generation to generation. Alleles with expanded repeats in the range of approximately 55-199, termed premutation alleles, are associated with an increased risk for fragile-X-associated primary ovarian insufficiency (FXPOI). However, not all women who carry the premutation develop FXPOI. To determine if additional genes could explain variability in onset and severity, we used a random-effects Cox proportional hazards model to analyze age at menopause on 680 women from 225 families who have a history of fragile X syndrome and 321 women from 219 families from the general population. We tested for the presence of a residual additive genetic effect after adjustment for FMR1 repeat length, race, smoking, body mass index, and method of ascertainment. Results showed significant familial aggregation of age at menopause with an estimated additive genetic variance of 0.55-0.96 depending on the parameterization of FMR1 repeat size and definition of age at menopause (P-values ranging between 0.0002 and 0.0027). This is the first study to analyze familial aggregation of FXPOI. This result is important for proper counseling of women who carry FMR1 premutation alleles and for guidance of future studies to identify additional genes that influence ovarian insufficiency. (c) 2008 Wiley-Liss, Inc.

  17. Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model

    Treesearch

    Wendell P. Cropper; N.B. Comerford

    2005-01-01

    Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...

  18. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    PubMed

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  19. The impact of intimate partner violence and additional traumatic events on trauma symptoms and PTSD in preschool-aged children.

    PubMed

    Graham-Bermann, Sandra A; Castor, Lana E; Miller, Laura E; Howell, Kathryn H

    2012-08-01

    Children exposed to intimate partner violence (IPV) are at increased risk for developing traumatic stress symptoms and posttraumatic stress disorder (PTSD). Unfortunately, children who witness IPV are often exposed to additional traumatic events. Previous research has indicated that approximately one third of children experience 2 or more direct victimizations each year, and that exposure to one type of victimization places children at risk for exposure to additional types of victimization. Yet little is known about the impact of these additional traumas on children's functioning. For a sample of 120 preschool children (age 4-6 years) exposed to IPV in the past 2 years, 38% were exposed to additional traumatic events, including sexual assaults by family members, physical assaults, serious accidents, and/or life-threatening illnesses. Those exposed to both IPV and additional traumatic events had higher rates of PTSD diagnoses, traumatic stress symptoms (d = 0.96), and internalizing (d = 0.86) and externalizing behavior (d = 0.47) problems, than those exposed to IPV alone. We also compared DSM-IV diagnostic criteria to proposed criteria for evaluating traumatic stress in preschool-aged children. Results revealed the importance of conducting a complete assessment of traumatic events prior to treating children exposed to IPV. Copyright © 2012 International Society for Traumatic Stress Studies.

  20. Regression Analysis of Mixed Recurrent-Event and Panel-Count Data with Additive Rate Models

    PubMed Central

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L.

    2015-01-01

    Summary Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007; Zhao et al., 2011). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013). In this paper, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. PMID:25345405

  1. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle.

    PubMed

    Bolormaa, Sunduimijid; Pryce, Jennie E; Zhang, Yuandan; Reverter, Antonio; Barendse, William; Hayes, Ben J; Goddard, Michael E

    2015-04-02

    A better understanding of non-additive variance could lead to increased knowledge on the genetic control and physiology of quantitative traits, and to improved prediction of the genetic value and phenotype of individuals. Genome-wide panels of single nucleotide polymorphisms (SNPs) have been mainly used to map additive effects for quantitative traits, but they can also be used to investigate non-additive effects. We estimated dominance and epistatic effects of SNPs on various traits in beef cattle and the variance explained by dominance, and quantified the increase in accuracy of phenotype prediction by including dominance deviations in its estimation. Genotype data (729 068 real or imputed SNPs) and phenotypes on up to 16 traits of 10 191 individuals from Bos taurus, Bos indicus and composite breeds were used. A genome-wide association study was performed by fitting the additive and dominance effects of single SNPs. The dominance variance was estimated by fitting a dominance relationship matrix constructed from the 729 068 SNPs. The accuracy of predicted phenotypic values was evaluated by best linear unbiased prediction using the additive and dominance relationship matrices. Epistatic interactions (additive × additive) were tested between each of the 28 SNPs that are known to have additive effects on multiple traits, and each of the other remaining 729 067 SNPs. The number of significant dominance effects was greater than expected by chance and most of them were in the direction that is presumed to increase fitness and in the opposite direction to inbreeding depression. Estimates of dominance variance explained by SNPs varied widely between traits, but had large standard errors. The median dominance variance across the 16 traits was equal to 5% of the phenotypic variance. Including a dominance deviation in the prediction did not significantly increase its accuracy for any of the phenotypes. The number of additive × additive epistatic effects that were

  2. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events.

    PubMed

    Demeke, Tigst; Eng, Monika

    2018-05-01

    Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.

  3. 36 CFR § 1280.72 - What additional rules apply for a NARA approved event?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true What additional rules apply for a NARA approved event? § 1280.72 Section § 1280.72 Parks, Forests, and Public Property NATIONAL..., distribute approved literature, name tags, and other material. (b) We must approve in advance any item that...

  4. Genetic Structure in the Seabuckthorn Carpenter Moth (Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and Host Factors

    PubMed Central

    Tao, Jing; Chen, Min; Zong, Shi-Xiang; Luo, You-Qing

    2012-01-01

    Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP) markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation. PMID:22291983

  5. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    PubMed

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.

  6. Mutation scanning in a single and a stacked genetically modified (GM) event by real-time PCR and high resolution melting (HRM) analysis.

    PubMed

    Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G; Brandes, Christian

    2014-10-31

    Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017×MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found.

  7. Mutation Scanning in a Single and a Stacked Genetically Modified (GM) Event by Real-Time PCR and High Resolution Melting (HRM) Analysis

    PubMed Central

    Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G.; Brandes, Christian

    2014-01-01

    Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017 × MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found. PMID:25365178

  8. Genetic recombination events between sympatric Clade A and Clade C lice in Africa.

    PubMed

    Veracx, Aurélie; Boutellis, Amina; Raoult, Didier

    2013-09-01

    Human head and body lice have been classified into three phylogenetic clades (Clades A, B, and C) based on mitochondrial DNA. Based on nuclear markers (the 18S rRNA gene and the PM2 spacer), two genotypes of Clade A head and body lice, including one that is specifically African (Clade A2), have been described. In this study, we sequenced the PM2 spacer of Clade C head lice from Ethiopia and compared these sequences with sequences from previous works. Trees were drawn, and an analysis of genetic diversity based on the cytochrome b gene and the PM2 spacer was performed for African and non-African lice. In the tree drawn based on the PM2 spacer, the African and non-African lice formed separate clusters. However, Clade C lice from Ethiopia were placed within the African Clade A subcluster (Clade A2). This result suggests that recombination events have occurred between Clade A2 lice and Clade C lice, reflecting the sympatric nature of African lice. Finally, the PM2 spacer and cytochrome b gene sequences of human lice revealed a higher level of genetic diversity in Africa than in other regions.

  9. Resampling to Address the Winner's Curse in Genetic Association Analysis of Time to Event

    PubMed Central

    Poirier, Julia G.; Faye, Laura L.; Dimitromanolakis, Apostolos; Paterson, Andrew D.; Sun, Lei

    2015-01-01

    ABSTRACT The “winner's curse” is a subtle and difficult problem in interpretation of genetic association, in which association estimates from large‐scale gene detection studies are larger in magnitude than those from subsequent replication studies. This is practically important because use of a biased estimate from the original study will yield an underestimate of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investigation of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213 single‐nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15 top‐ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based on the observed DCCT/EDIC genotype data, genome‐wide bootstrap estimates for false‐positive SNPs and for true‐positive SNPs with low‐to‐moderate power are closer to the true values than uncorrected naïve estimates, but tend to overcorrect SNPs with high power. This bias‐reduction technique is generally applicable for complex trait studies including quantitative, binary, and time‐to‐event traits. PMID:26411674

  10. Additive Genetic Effects on Circulating Periostin Contribute to the Heritability of Bone Microstructure.

    PubMed

    Bonnet, N; Biver, E; Durosier, C; Chevalley, T; Rizzoli, R; Ferrari, S

    2015-07-01

    Genetic factors account for 60-80% of the areal bone mineral density (aBMD) variance, whereas the heritability of bone microstructure is not clearly established. aBMD and microstructure are under the control of osteocytes, which regulate bone formation through the expression of molecules such as sclerostin (SOST) and periostin (POSTN). We hypothesized that additive genetic effects contribute to serum levels of SOST and POSTN and thereby to the individual variance of bone microstructure. In a retrospective analysis of 432 subjects from the Geneva Retiree Cohort age 64.9 ± 1.4 years and 96 of their offspring age 37.9 ± 5.7 years, we measured serum SOST (sSOST) and serum POSTN (sPOSTN), distal radius and tibia microstructure, hip and lumbar spine aBMD, and bone turnover markers, Heritability (h(2), %) was calculated as twice the slope of the regression (β) between parents and offspring. cPOSTN levels were significantly higher in men than women and in offspring than parents. h(2) values for bone microstructural traits ranged from 22-64% depending on the envelope (trabecular [Tb] or cortical [Ct]) and skeletal site (radius or tibia), whereas h(2) for sPOSTN and sSOST was 50% and 40%, respectively. sPOSTN was positively associated with Tb bone volume on total volume and Ct thickness, and negatively with Ct porosity. The associations for Ct parameters remain significant after adjustment for propetide of type-I procollagen, cross-linked telopeptide of type I collagen, femoral neck aBMD, sex or age. After adjustment of bone traits for sPOSTN, h(2) values decreased for several Tb and Ct bone parameters, but not for aBMD. In contrast, adjusting for sSOST did not alter h(2) values for bone traits. Additive genetic effects account for a substantial proportion of the individual variance of bone microstructure, sPOSTN, and sSOST. sPOSTN is largely inherited as a sex-related trait and carries an important contribution to the heritability of bone microstructure, indicating that

  11. Life events and borderline personality features: the influence of gene-environment interaction and gene-environment correlation.

    PubMed

    Distel, M A; Middeldorp, C M; Trull, T J; Derom, C A; Willemsen, G; Boomsma, D I

    2011-04-01

    Traumatic life events are generally more common in patients with borderline personality disorder (BPD) than in non-patients or patients with other personality disorders. This study investigates whether exposure to life events moderates the genetic architecture of BPD features. As the presence of genotype-environment correlation (rGE) can lead to spurious findings of genotype-environment interaction (G × E), we also test whether BPD features increase the likelihood of exposure to life events. The extent to which an individual is at risk to develop BPD was assessed with the Personality Assessment Inventory - Borderline features scale (PAI-BOR). Life events under study were a divorce/break-up, traffic accident, violent assault, sexual assault, robbery and job loss. Data were available for 5083 twins and 1285 non-twin siblings. Gene-environment interaction and correlation were assessed by using structural equation modelling (SEM) and the co-twin control design. There was evidence for both gene-environment interaction and correlation. Additive genetic influences on BPD features interacted with the exposure to sexual assault, with genetic variance being lower in exposed individuals. In individuals who had experienced a divorce/break-up, violent assault, sexual assault or job loss, environmental variance for BPD features was higher, leading to a lower heritability of BPD features in exposed individuals. Gene-environment correlation was present for some life events. The genes that influence BPD features thus also increased the likelihood of being exposed to certain life events. To our knowledge, this study is the first to test the joint effect of genetic and environmental influences and the exposure to life events on BPD features in the general population. Our results indicate the importance of both genetic vulnerability and life events.

  12. Additive gene-environment effects on hippocampal structure in healthy humans.

    PubMed

    Rabl, Ulrich; Meyer, Bernhard M; Diers, Kersten; Bartova, Lucie; Berger, Andreas; Mandorfer, Dominik; Popovic, Ana; Scharinger, Christian; Huemer, Julia; Kalcher, Klaudius; Pail, Gerald; Haslacher, Helmuth; Perkmann, Thomas; Windischberger, Christian; Brocke, Burkhard; Sitte, Harald H; Pollak, Daniela D; Dreher, Jean-Claude; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Esterbauer, Harald; Pezawas, Lukas

    2014-07-23

    Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD). Copyright © 2014 the authors 0270-6474/14/349917-10$15.00/0.

  13. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  14. Additive genetic variation for tolerance to estrogen pollution in natural populations of Alpine whitefish (Coregonus sp., Salmonidae).

    PubMed

    Brazzola, Gregory; Chèvre, Nathalie; Wedekind, Claus

    2014-11-01

    The evolutionary potential of natural populations to adapt to anthropogenic threats critically depends on whether there exists additive genetic variation for tolerance to the threat. A major problem for water-dwelling organisms is chemical pollution, and among the most common pollutants is 17α-ethinylestradiol (EE2), the synthetic estrogen that is used in oral contraceptives and that can affect fish at various developmental stages, including embryogenesis. We tested whether there is variation in the tolerance to EE2 within Alpine whitefish. We sampled spawners from two species of different lakes, bred them in vitro in a full-factorial design each, and studied growth and mortality of embryos. Exposure to EE2 turned out to be toxic in all concentrations we tested (≥1 ng/L). It reduced embryo viability and slowed down embryogenesis. We found significant additive genetic variation in EE2-induced mortality in both species, that is, genotypes differed in their tolerance to estrogen pollution. We also found maternal effects on embryo development to be influenced by EE2, that is, some maternal sib groups were more susceptible to EE2 than others. In conclusion, the toxic effects of EE2 were strong, but both species demonstrated the kind of additive genetic variation that is necessary for an evolutionary response to this type of pollution.

  15. Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size.

    PubMed

    Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M

    2018-02-01

    Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.

  16. Marker-Based Estimates Reveal Significant Non-additive Effects in Clonally Propagated Cassava (Manihot esculenta): Implications for the Prediction of Total Genetic Value and the Selection of Varieties.

    PubMed

    Wolfe, Marnin D; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc

    2016-08-31

    In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and nature of non-additive genetic variation for three key traits in a breeding population of cassava from sub-Saharan Africa using additive and non-additive genome-wide marker-based relationship matrices. We then assessed the accuracy of genomic prediction for total (additive plus non-additive) genetic value. We confirmed previous findings based on diallel populations, that non-additive genetic variation is significant for key cassava traits. Specifically, we found that dominance is particularly important for root yield and epistasis contributes strongly to variation in CMD resistance. Further, we showed that total genetic value predicted observed phenotypes more accurately than additive only models for root yield but not for dry matter content, which is mostly additive or for CMD resistance, which has high narrow-sense heritability. We address the implication of these results for cassava breeding and put our work in the context of previous results in cassava, and other plant and animal species. Copyright © 2016 Author et al.

  17. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event

    PubMed Central

    2010-01-01

    Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary

  18. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event.

    PubMed

    Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph

    2010-08-23

    Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations

  19. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor.

    PubMed

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao

    2017-05-15

    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Additive genetic variance and developmental plasticity in growth trajectories in a wild cooperative mammal.

    PubMed

    Huchard, E; Charmantier, A; English, S; Bateman, A; Nielsen, J F; Clutton-Brock, T

    2014-09-01

    Individual variation in growth is high in cooperative breeders and may reflect plastic divergence in developmental trajectories leading to breeding vs. helping phenotypes. However, the relative importance of additive genetic variance and developmental plasticity in shaping growth trajectories is largely unknown in cooperative vertebrates. This study exploits weekly sequences of body mass from birth to adulthood to investigate sources of variance in, and covariance between, early and later growth in wild meerkats (Suricata suricatta), a cooperative mongoose. Our results indicate that (i) the correlation between early growth (prior to nutritional independence) and adult mass is positive but weak, and there are frequent changes (compensatory growth) in post-independence growth trajectories; (ii) among parameters describing growth trajectories, those describing growth rate (prior to and at nutritional independence) show undetectable heritability while associated size parameters (mass at nutritional independence and asymptotic mass) are moderately heritable (0.09 ≤ h(2) < 0.3); and (iii) additive genetic effects, rather than early environmental effects, mediate the covariance between early growth and adult mass. These results reveal that meerkat growth trajectories remain plastic throughout development, rather than showing early and irreversible divergence, and that the weak effects of early growth on adult mass, an important determinant of breeding success, are partly genetic. In contrast to most cooperative invertebrates, the acquisition of breeding status is often determined after sexual maturity and strongly impacted by chance in many cooperative vertebrates, who may therefore retain the ability to adjust their morphology to environmental changes and social opportunities arising throughout their development, rather than specializing early. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Bayesian regression model for recurrent event data with event-varying covariate effects and event effect.

    PubMed

    Lin, Li-An; Luo, Sheng; Davis, Barry R

    2018-01-01

    In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).

  2. Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

    PubMed Central

    Lin, Li-An; Luo, Sheng; Davis, Barry R.

    2017-01-01

    In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT). PMID:29755162

  3. Association Between the Presence of Carotid Artery Plaque and Cardiovascular Events in Patients With Genetic Hypercholesterolemia.

    PubMed

    Bea, Ana M; Civeira, Fernando; Jarauta, Estíbaliz; Lamiquiz-Moneo, Itziar; Pérez-Calahorra, Sofía; Marco-Benedí, Victoria; Cenarro, Ana; Mateo-Gallego, Rocío

    2017-07-01

    The equations used in the general population to calculate cardiovascular risk are not useful in genetic hypercholesterolemia (GH). Carotid plaque detection has proved useful in cardiovascular prediction and risk reclassification but there have been no studies of its usefulness in GH. The aim of this study was to determine the association between the presence of carotid artery plaque and the occurrence of cardiovascular events in patients with GH. This study included 1778 persons with GH. The mean follow-up until the occurrence of cardiovascular events was 6.26 years. At presentation, the presence of carotid artery plaque was studied by high-resolution ultrasound. Carotid artery plaque was found in 661 (37.2%) patients: 31.9% with familial hypercholesterolemia, 39.8% with familial combined hyperlipidemia, 45.5% with dysbetalipoproteinemia, and 43.2% with polygenic hypercholesterolemia. During follow-up, 58 patients had a cardiovascular event. Event rates were 6354/100 000 (95%CI, 4432.4-8275.6) in the group with plaque and 1432/100 000 (95%CI, 730.6-2134.3) in the group without plaque, with significant differences between the 2 groups (P < .001). The relative risk of an event was 4.34 (95CI%, 2.44-7.71; P < .001) times higher in patients with plaque and was 2.40 (95%CI, 1.27-4.56; P = .007) times higher after adjustment for major risk factors. The number of carotid artery plaques was positively associated with the risk of cardiovascular events. Most cardiovascular events occur in a subgroup of patients who can be identified by carotid plaque detection. These results support the use of plaque screening in this population and should help in risk stratification and treatment in GH. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Unnatural reactive amino acid genetic code additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [San Diego, CA; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [Bethesda, MD; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Lack of association between lipoprotein(a) genetic variants and subsequent cardiovascular events in Chinese Han patients with coronary artery disease after percutaneous coronary intervention.

    PubMed

    Li, Zhi-Gen; Li, Guang; Zhou, Ying-Ling; Chen, Zhu-Jun; Yang, Jun-Qing; Zhang, Ying; Sun, Shuo; Zhong, Shi-Long

    2013-08-27

    Elevated lipoprotein(a) [Lp(a)] levels predict cardiovascular events incidence in patients with coronary artery disease (CAD). Genetic variants in the rs3798220, rs10455872 and rs6415084 single-nucleotide polymorphisms (SNPs) in the Lp(a) gene (LPA) correlate with elevated Lp(a) levels, but whether these SNPs have prognostic value for CAD patients is unknown. The present study evaluated the association of LPA SNPs with incidence of subsequent cardiovascular events in CAD patients after percutaneous coronary intervention (PCI). TaqMan SNP genotyping assays were performed to detect the rs6415084, rs3798220 and rs10455872 genotypes in 517 Chinese Han patients with CAD after PCI. We later assessed whether there was an association of these SNPs with incidence of major adverse cardiovascular events (MACE: cardiac death, nonfatal myocardial infarction, ischemic stroke and coronary revascularization). Serum lipid profiles were also determined using biochemical methods. Only the rs6415084 variant allele was associated with higher Lp(a) levels [41.3 (20.8, 74.6) vs. 18.6 (10.3, 40.9) mg/dl, p < 0.001]. During a 2-year follow-up period, 102 patients suffered MACE, and Cox regression analysis demonstrated that elevated Lp(a) (≥30 mg/dl) levels correlated with increased MACE (adjusted HR, 1.69; 95% CI 1.13-2.53), but there was no association between LPA genetic variants (rs6415084 and rs3798220) and MACE incidence (p > 0.05). Our data did not support a relationship between genetic LPA variants (rs6415084 and rs3798220) and subsequent cardiovascular events after PCI in Chinese Han CAD patients.

  10. Geographic population structure in an outcrossing plant invasion after centuries of cultivation and recent founding events

    USDA-ARS?s Scientific Manuscript database

    Population structure and genetic diversity of invasions are the result of evolutionary processes such as natural selection, drift, and founding events. Some invasions are also molded by additional human activities such as selection for cultivars and intentional introduction of desired phenotypes, wh...

  11. Genetic Diversity in Introduced Populations with an Allee Effect

    PubMed Central

    Wittmann, Meike J.; Gabriel, Wilfried; Metzler, Dirk

    2014-01-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations. PMID:25009147

  12. Covariate adjustment of event histories estimated from Markov chains: the additive approach.

    PubMed

    Aalen, O O; Borgan, O; Fekjaer, H

    2001-12-01

    Markov chain models are frequently used for studying event histories that include transitions between several states. An empirical transition matrix for nonhomogeneous Markov chains has previously been developed, including a detailed statistical theory based on counting processes and martingales. In this article, we show how to estimate transition probabilities dependent on covariates. This technique may, e.g., be used for making estimates of individual prognosis in epidemiological or clinical studies. The covariates are included through nonparametric additive models on the transition intensities of the Markov chain. The additive model allows for estimation of covariate-dependent transition intensities, and again a detailed theory exists based on counting processes. The martingale setting now allows for a very natural combination of the empirical transition matrix and the additive model, resulting in estimates that can be expressed as stochastic integrals, and hence their properties are easily evaluated. Two medical examples will be given. In the first example, we study how the lung cancer mortality of uranium miners depends on smoking and radon exposure. In the second example, we study how the probability of being in response depends on patient group and prophylactic treatment for leukemia patients who have had a bone marrow transplantation. A program in R and S-PLUS that can carry out the analyses described here has been developed and is freely available on the Internet.

  13. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  14. Microdissecting the Genetic Events in Nephrogenic Rests and Wilms’ Tumor Development

    PubMed Central

    Charles, Adrian K.; Brown, Keith W.; Berry, P. Jeremy

    1998-01-01

    Nephrogenic rests are precursor lesions associated with about 40% of Wilms’ tumors. This study identifies genetic steps occurring in the development of Wilms’ tumor. Thirty-four Wilms’ tumors with nephrogenic rests and/or areas of anaplasia were microdissected from paraffin sections to determine whether and at what stage loss of heterozygosity (LOH) occurred, using polymerase chain reaction-based polymorphic markers at 11p13, 11p15, and 16q. LOH at these loci have been identified in Wilms’ tumors and are associated with identified or putative tumor suppressor genes. Three cystic nephromas/cystic partially differentiated nephroblastomas were also examined. LOH was detected in six cases at 11p13 and in six cases at 11p15, and two of these cases had LOH at both loci. All intralobar rests showing LOH also showed LOH in the tumor. A case with a small perilobar rest showed LOH of 11p13 only in the tumor. Five cases showing LOH at 16q were identified (this was identified only in the tumor, and not in the associated rest), and three of these had recurrence of the tumor. Two cases had a WT1 mutation (one germline and the other somatic), as well as LOH in both the intralobar rest and the tumor. A cystic partially differentiated nephroblastoma showed loss at 11p13 and 11p15, as well as at 16q. This study suggests that LOH at 11p13 and 11p15 and WT1 mutations are early events but that LOH at 16q occurs late in the pathogenesis of Wilms’ tumor. Intralobar and perilobar nephrogenic rests are known to have different biological behaviors, and this study suggests that they are genetically different. A multistep model of Wilms’ tumor pathogenesis is supported by these findings. PMID:9736048

  15. Characterization of GM events by insert knowledge adapted re-sequencing approaches

    PubMed Central

    Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing

    2013-01-01

    Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events. PMID:24088728

  16. Characterization of GM events by insert knowledge adapted re-sequencing approaches.

    PubMed

    Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing

    2013-10-03

    Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events.

  17. Pulmonary Neoplasms in Patients with Birt-Hogg-Dubé Syndrome: Histopathological Features and Genetic and Somatic Events.

    PubMed

    Furuya, Mitsuko; Tanaka, Reiko; Okudela, Koji; Nakamura, Satoko; Yoshioka, Hiromu; Tsuzuki, Toyonori; Shibuya, Ryo; Yatera, Kazuhiro; Shirasaki, Hiroki; Sudo, Yoshiko; Kimura, Naoko; Yamada, Kazuaki; Uematsu, Shugo; Kunimura, Toshiaki; Kato, Ikuma; Nakatani, Yukio

    2016-01-01

    Birt-Hogg-Dubé syndrome (BHD) is an inherited disorder caused by genetic mutations in the folliculin (FLCN) gene. Individuals with BHD have multiple pulmonary cysts and are at a high risk for developing renal cell carcinomas (RCCs). Currently, little information is available about whether pulmonary cysts are absolutely benign or if the lungs are at an increased risk for developing neoplasms. Herein, we describe 14 pulmonary neoplastic lesions in 7 patients with BHD. All patients were confirmed to have germline FLCN mutations. Neoplasm histologies included adenocarcinoma in situ (n = 2), minimally invasive adenocarcinoma (n = 1), papillary adenocarcinoma (n = 1), micropapillary adenocarcinoma (n = 1), atypical adenomatous hyperplasia (n = 8), and micronodular pneumocyte hyperplasia (MPH)-like lesion (n = 1). Five of the six adenocarcinoma/MPH-like lesions (83.3%) demonstrated a loss of heterozygosity (LOH) of FLCN. All of these lesions lacked mutant alleles and preserved wild-type alleles. Three invasive adenocarcinomas possessed additional somatic events: 2 had a somatic mutation in the epidermal growth factor receptor gene (EGFR) and another had a somatic mutation in KRAS. Immunohistochemical analysis revealed that most of the lesions were immunostained for phospho-mammalian target of rapamycin (p-mTOR) and phospho-S6. Collective data indicated that pulmonary neoplasms of peripheral adenocarcinomatous lineage in BHD patients frequently exhibit LOH of FLCN with mTOR pathway signaling. Additional driver gene mutations were detected only in invasive cases, suggesting that FLCN LOH may be an underlying abnormality that cooperates with major driver gene mutations in the progression of pulmonary adenocarcinomas in BHD patients.

  18. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine

    PubMed Central

    Ortega, Victor E; Meyers, Deborah A; Bleecker, Eugene R

    2015-01-01

    Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. PMID:25691813

  19. Congruence of Additive and Non-Additive Effects on Gene Expression Estimated from Pedigree and SNP Data

    PubMed Central

    Powell, Joseph E.; Henders, Anjali K.; McRae, Allan F.; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G.; Dermitzakis, Emmanouil T.; Gibson, Greg

    2013-01-01

    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted—in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects. PMID:23696747

  20. Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data.

    PubMed

    Powell, Joseph E; Henders, Anjali K; McRae, Allan F; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G; Dermitzakis, Emmanouil T; Gibson, Greg; Montgomery, Grant W; Visscher, Peter M

    2013-05-01

    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.

  1. Life Events, Genetic Susceptibility, and Smoking among Adolescents

    PubMed Central

    Pampel, Fred C.; Boardman, Jason D.; Daw, Jonathan; Stallings, Michael C.; Smolen, Andrew; Haberstick, Brett; Widaman, Keith F.; Neppl, Tricia K.; Conger, Rand D.

    2015-01-01

    Although stressful life events during adolescence are associated with the adoption of unhealthy behaviors such as smoking, both social circumstances and physical traits can moderate the relationship. This study builds on the stress paradigm and gene-environment approach to social behavior by examining how a polymorphism in the serotonin transporter gene 5-HTTLPR moderates the effect of life events on adolescent smoking. Tests of interaction hypotheses use data from the Family Transitions Project, a longitudinal study of 7th graders followed for 5 years. A sibling-pair design with separate models for the gender composition of pairs (brothers, sisters, or brother/sister) controls for unmeasured family background. The results show that negative life events are significantly and positively associated with smoking. Among brother pairs but not other pairs, the results provide evidence of gene-environment interaction by showing that life events more strongly influence smoking behavior for those with more copies of the 5-HTTLPR S allele. PMID:26463545

  2. A genetic atlas of human admixture history.

    PubMed

    Hellenthal, Garrett; Busby, George B J; Band, Gavin; Wilson, James F; Capelli, Cristian; Falush, Daniel; Myers, Simon

    2014-02-14

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.

  3. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  4. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  5. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  6. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 1, the health risk assessment includes a request for genetic information (that is, the individual's... health risk assessment are a request for genetic information for underwriting purposes and are prohibited.... Individual A group health plan covers genetic testing for celiac disease for individuals who have family...

  7. Additive genetic contribution to symptom dimensions in major depressive disorder.

    PubMed

    Pearson, Rahel; Palmer, Rohan H C; Brick, Leslie A; McGeary, John E; Knopik, Valerie S; Beevers, Christopher G

    2016-05-01

    Major depressive disorder (MDD) is a phenotypically heterogeneous disorder with a complex genetic architecture. In this study, genomic-relatedness-matrix restricted maximum-likelihood analysis (GREML) was used to investigate the extent to which variance in depression symptoms/symptom dimensions can be explained by variation in common single nucleotide polymorphisms (SNPs) in a sample of individuals with MDD (N = 1,558) who participated in the National Institute of Mental Health Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. A principal components analysis of items from the Hamilton Rating Scale for Depression (HRSD) obtained prior to treatment revealed 4 depression symptom components: (a) appetite, (b) core depression symptoms (e.g., depressed mood, anhedonia), (c) insomnia, and (d) anxiety. These symptom dimensions were associated with SNP-based heritability (hSNP2) estimates of 30%, 14%, 30%, and 5%, respectively. Results indicated that the genetic contribution of common SNPs to depression symptom dimensions were not uniform. Appetite and insomnia symptoms in MDD had a relatively strong genetic contribution whereas the genetic contribution was relatively small for core depression and anxiety symptoms. While in need of replication, these results suggest that future gene discovery efforts may strongly benefit from parsing depression into its constituent parts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. A genetic atlas of human admixture history

    PubMed Central

    Hellenthal, Garrett; Busby, George B.J.; Band, Gavin; Wilson, James F.; Capelli, Cristian

    2014-01-01

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations. PMID:24531965

  9. Clinical and genetic predictors of major cardiac events in patients with Anderson-Fabry Disease.

    PubMed

    Patel, Vimal; O'Mahony, Constantinos; Hughes, Derralynn; Rahman, Mohammad Shafiqur; Coats, Caroline; Murphy, Elaine; Lachmann, Robin; Mehta, Atul; Elliott, Perry M

    2015-06-01

    Anderson-Fabry Disease (AFD) is an X linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene. Some mutations are associated with prominent and, in many cases, exclusive cardiac involvement. The primary aims of this study were to determine the incidence of major cardiac events in AFD and to identify clinical and genetic predictors of adverse outcomes. We studied 207 patients with AFD (47% male, mean age 44 years, mean follow-up 7.1 years). Fifty-eight (28%) individuals carried mutations that have been previously associated with a cardiac predominant phenotype. Twenty-one (10%) developed severe heart failure (New York Heart Association functional class (NYHA) ≥3), 13 (6%) developed atrial fibrillation (AF), 13 (6%) received devices for the treatment of bradycardia; there were a total of 7 (3%) cardiac deaths. The incidence of the primary endpoint (a composite of new onset AF, NYHA ≥ 3 symptoms, device insertion for bradycardia and cardiac death) was 2.64 per 100 person-years (CI 1.78 to 3.77). Age (HR 1.04, CI 1.01 to 1.08, p=0.004), Mainz Severity Score Index score (HR 1.05, CI 1.01 to 1.09, p=0.012) and QRS duration (HR 1.03, CI 1.00 to 1.05, p=0.020) were significant independent predictors of the primary endpoint. The presence of a cardiac genetic variant did not predict the primary end point. AFD is associated with a high burden of cardiac morbidity and mortality. Adverse cardiac outcomes are associated with age, global disease severity and advanced cardiac disease but not the presence of cardiac genetic variants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Loss of heterozygosity at D8S262: an early genetic event of hepatocarcinogenesis.

    PubMed

    Zhu, Qiao; Gong, Li; Liu, Xiaoyan; Wang, Jun; Ren, Pin; Zhang, Wendong; Yao, Li; Han, Xiujuan; Zhu, Shaojun; Lan, Miao; Li, Yanhong; Zhang, Wei

    2015-06-16

    Hepatocellular carcinoma (HCC) is a multi-factor, multi-step, multi-gene and complicated process resulting from the accumulation of sequential genetic and epigenetic alterations. An important change among them is from precancerous lesions to HCC. However, only few studies have been reported about the sequential genetic changes during hepatocarcinogenesis. We observed firstly molecular karyotypes of 10 matched HCC using Affymetrix single-nucleotide polymorphism (SNP) 6.0 arrays, and found chromosomal fragments with high incidence (more than 70%) of loss of heterozygosity (LOH). Then, we selected 28 microsatellite markers at some gene spanning these chromosomal fragments, and examined the frequency of LOH of 128 matched HCC and 43 matched precancerous lesions-dysplastic nodules (DN) by a PCR-based analysis. Finally, we investigated the expression of proteins encoded by these genes in HCC, DN and the surrounding hepatic tissues. The result of Affymetrix SNP6.0 arrays demonstrated that more than 70% (7/10) cases had chromosomal fragment deletion on 4q13.3-35.1, 8p23.2-21.2, 16q11.2-24.3, and 17p13.3-12. Among 28 microsatellite markers selected, LOH frequencies at D8S262 for DN and HCC were found to be the highest, 51.2% and 72.7%, respectively. Immunohistochemically, the positive rate of its adjacent gene CSMD1 in HCC, DN, and the surrounding hepatic tissues were 27.3% (35/128), 75% (33/44), and 82% (105/128), respectively. LOH at D8S262 may be associated with an early genetic event of hepatocarcinogenesis, and a predictor for the monitor and prevention of HCC. The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1557074981159099 .

  11. Smokers' unprompted comments on cigarette additives during conversations about the genetic basis for nicotine addiction: a focus group study.

    PubMed

    Philpott, Sydney E; Gehlert, Sarah; Waters, Erika A

    2018-04-13

    Research designed to elicit smokers' cognitive and affective reactions to information about chemicals that tobacco companies add to cigarettes ("additives") found that knowledge is limited. However, little is known about smokers' unprompted thoughts and feelings about additives. Such information could be used to shape future communication efforts. We explored the content and possible functions of spontaneous statements about cigarette additives made by smokers during a study examining reactions to learning about the genetic link to nicotine addiction. Adult smokers (N = 84) were recruited from a medium-sized Midwestern city. Focus groups (N = 13) were conducted between April-September 2012. Data were analyzed by 2 coders using thematic analysis. Comments about cigarette additives arose without prompting by the focus group moderator. Three main themes were identified: (1) discussing additives helped participants navigate the conceptual link between smoking and genetics, (2) additives were discussed as an alternative mechanism for addiction to cigarettes, and (3) additives provided an alternative mechanism by which cigarette smoking exacerbates physical harm. Notably, discussion of additives contained a pervasive tone of mistrust illustrated by words like "they" and "them," by statements of uncertainty such as "you don't know what they're putting into cigarettes," and by negative affective verbalizations such as "nasty" and "disgusting". Participants had distinct beliefs about cigarette additives, each of which seemed to serve a purpose. Although mistrust may complicate communication about the health risks of tobacco use, health communication experts could use smokers' existing beliefs and feelings to better design more effective anti-smoking messages.

  12. Off-Patent Transgenic Events: Challenges and Opportunities for New Actors and Markets in Agriculture.

    PubMed

    Rüdelsheim, Patrick; Dumont, Philippe; Freyssinet, Georges; Pertry, Ine; Heijde, Marc

    2018-01-01

    More than 20 years ago, the first genetically modified (GM) plants entered the seed market. The patents covering the first GM plants have begun to expire and these can now be considered as Off-Patent Events. Here we describe the challenges that will be faced by a Secondary Party by further use and development of these Off-Patent Events. Indeed, the conditions for Off-Patent Events are not available yet to form the basis for a new viable industry similar to the generic manufacturers of agrochemicals or pharmaceutical products, primarily because of (i) unharmonized global regulatory requirements for GM organisms, (ii) inaccessibility of regulatory submissions and data, and (iii) potential difficulties to obtain seeds and genetic material of the unique genotypes used to generate regulatory data. We propose certain adaptations by comparing what has been done in the agrochemical and pharmaceutical markets to facilitate the development of generics. Finally, we present opportunities that still exist for further development of Off-Patent Events in collaboration with Proprietary Regulatory Property Holders in emerging markets, provided (i) various countries approve these events without additional regulatory burdens (i.e., acceptance of the concept of data transportability), and (ii) local breeders agree to meet product stewardship requirements.

  13. Peptidic tools applied to redirect alternative splicing events.

    PubMed

    Nancy, Martínez-Montiel; Nora, Rosas-Murrieta; Rebeca, Martínez-Contreras

    2015-05-01

    Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions.

    PubMed

    Alagoz, O; Durham, D; Kasirajan, K

    2016-04-01

    We evaluated the cost-effectiveness of one-time pharmacogenomic testing for preventing adverse drug reactions (ADRs) over a patient's lifetime. We developed a Markov-based Monte Carlo microsimulation model to represent the ADR events in the lifetime of each patient. The base-case considered a 40-year-old patient. We measured health outcomes in life years (LYs) and quality-adjusted LYs (QALYs) and estimated costs using 2013 US$. In the base-case, one-time genetic testing had an incremental cost-effectiveness ratio (ICER) of $43,165 (95% confidence interval (CI) is ($42,769,$43,561)) per additional LY and $53,680 per additional QALY (95% CI is ($53,182,$54,179)), hence under the base-case one-time genetic testing is cost-effective. The ICER values were most sensitive to the average probability of death due to ADR, reduction in ADR rate due to genetic testing, mean ADR rate and cost of genetic testing.

  15. Chemical genetics - a versatile method to combine science and higher level teaching in molecular genetics.

    PubMed

    Sandrock, Björn

    2012-10-09

    Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determination of the don3 phenotype we have chosen this approach for a genetic course for M.Sc. students and for IMPRS (International Max-Planck research school) students. According to the principle of "problem-based learning" the aim of this two-week course is to transfer knowledge about the broad spectrum of kinases to the students and that the students acquire the ability to design their own analog-sensitive kinase of interest. In addition to these training goals, we benefit from these annual courses the synthesis of basic constructs for genetic modification of several kinases in our model system U. maydis.

  16. Psychological opportunities and hazards in predictive genetic testing for cancer risk.

    PubMed

    Codori, A M

    1997-03-01

    Although the availability of genetic tests seems like an unequivocally favorable turn of events, they are, in fact, not without controversy. At the center of the controversy is a question regarding the risks and benefits of genetic testing. Many geneticists, ethicists, psychologists, and persons at risk for cancer are concerned about the potentially adverse psychological effects of genetic testing on tested persons and their families. In addition, the screening and interventions that are useful in the general population remain to be shown effective in those with high genetic cancer risk. Consequently, there have been calls for caution in moving genetic testing out of research laboratories and into commercial laboratories until their impact and the effectiveness of cancer prevention strategies can be studied. This article examines the arguments and data for and against this caution, citing examples related to hereditary nonpolyposis colon cancer and drawing upon literature on testing for other genetic diseases.

  17. Adenomas - Genetic factors in colorectal cancer prevention.

    PubMed

    Witold, Kycler; Anna, Kubiak; Maciej, Trojanowski; Jakub, Janowski

    2018-01-01

    Colorectal cancer is the second most common type of cancer both in Europe and Poland. During the last 30 years more than a 3-fold increase has been observed in Poland due to environmental and genetic factors. Almost all colorectal malignancies are related to the formation and malignant transformation of colorectal dysplasia and adenoma. Efforts aiming to decrease the number of colorectal cancer deaths are focused on the disease early detection. Genetic diagnosis for hereditary syndromes predisposing to colorectal cancer has been developed and is a part of the routine treatment. Most cancers are sporadic. They often develop from polyps in the colon. In addition to the genetic events described in the 1990s, showing the adenoma transformation into carcinoma that has been a prime example of malignant transformation for a long time, there are also other possibilities of neoplastic transformation. The recognition of colorectal cancer risk factors make sense as their nature is lifestyle- and diet-related. In this review paper those risk factors are presented and the prevention of colorectal cancer is discussed taking into account genetic factors.

  18. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  19. Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin).

    PubMed

    Converse, Paul E; Kuchta, Shawn R; Hauswaldt, J Susanne; Roosenburg, Willem M

    2017-01-01

    Diamondback terrapins (Malaclemys terrapin) were a popular food item in early twentieth century America, and were consumed in soup with sherry. Intense market demand for terrapin meat resulted in population declines, notably along the Atlantic seaboard. Efforts to supply terrapins to markets resulted in translocation events, as individuals were moved about to stock terrapin farms. However, in 1920 the market for turtle soup buckled with the enactment of the eighteenth amendment to the United States' Constitution-which initiated the prohibition of alcoholic drinks-and many terrapin fisheries dumped their stocks into local waters. We used microsatellite data to show that patterns of genetic diversity along the terrapin's coastal range are consistent with historical accounts of translocation and cultivation activities. We identified possible instances of human-mediated dispersal by estimating gene flow over historical and contemporary timescales, Bayesian model testing, and bottleneck tests. We recovered six genotypic clusters along the Gulf and Atlantic coasts with varying degrees of admixture, including increased contemporary gene flow from Texas to South Carolina, from North Carolina to Maryland, and from North Carolina to New York. In addition, Bayesian models incorporating translocation events outperformed stepping-stone models. Finally, we were unable to detect population bottlenecks, possibly due to translocation reintroducing genetic diversity into bottlenecked populations. Our data suggest that current patterns of genetic diversity in the terrapin were altered by the demand for turtle soup followed by the enactment of alcohol prohibition. In addition, our study shows that population genetic tools can elucidate metapopulation dynamics in taxa with complex genetic histories impacted by anthropogenic activities.

  20. Germline genetic variants in men with prostate cancer and one or more additional cancers.

    PubMed

    Pilié, Patrick G; Johnson, Anna M; Hanson, Kristen L; Dayno, Megan E; Kapron, Ashley L; Stoffel, Elena M; Cooney, Kathleen A

    2017-10-15

    Prostate cancer has a significant heritable component, and rare deleterious germline variants in certain genes can increase the risk of the disease. The aim of the current study was to describe the prevalence of pathogenic germline variants in cancer-predisposing genes in men with prostate cancer and at least 1 additional primary cancer. Using a multigene panel, the authors sequenced germline DNA from 102 men with prostate cancer and at least 1 additional primary cancer who also met ≥1 of the following criteria: 1) age ≤55 years at the time of diagnosis of the first malignancy; 2) rare tumor type or atypical presentation of a common tumor; and/or 3) ≥3 primary malignancies. Cancer family history and clinicopathologic data were independently reviewed by a clinical genetic counselor to determine whether the patient met established criteria for testing for a hereditary cancer syndrome. Sequencing identified approximately 3500 variants. Nine protein-truncating deleterious mutations were found across 6 genes, including BRCA2, ataxia telangiectasia mutated (ATM), mutL homolog 1 (MLH1), BRCA1 interacting protein C-terminal helicase 1 (BRIP1), partner and localizer of BRCA2 (PALB2), and fibroblast growth factor receptor 3 (FGFR3). Likely pathogenic missense variants were identified in checkpoint kinase 2 (CHEK2) and homeobox protein Hox-B13 (HOXB13). In total, 11 of 102 patients (10.8%) were found to have pathogenic or likely pathogenic mutations in cancer-predisposing genes. The majority of these men (64%) did not meet current clinical criteria for germline testing. Men with prostate cancer and at least 1 additional primary cancer are enriched for harboring a germline deleterious mutation in a cancer-predisposing gene that may impact cancer prognosis and treatment, but the majority do not meet current criteria for clinical genetic testing. Cancer 2017;123:3925-32. © 2017 American Cancer Society. © 2017 American Cancer Society.

  1. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    PubMed

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  2. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus.

    PubMed

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.

  3. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus

    PubMed Central

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent. PMID:27148282

  4. Pathology, genetics and cytogenetics of Wilms' tumour.

    PubMed

    Md Zin, Reena; Murch, Ashleigh; Charles, Adrian

    2011-06-01

    Wilms' tumour (WT) is an embryonal cancer of childhood and is thought to be derived from embryonic kidney precursor cells. The Knudson two hit model was initially thought to occur in WT, but findings emerging from genetic and cytogenetic studies in the past two decades have implicated several genetic events. Recent techniques in genetic analysis have improved our ability to characterise changes in genes involved in WT which include WT1, CTNNB1, IGF2 and WTX. These genetic events have not only provided insight into the pathobiology of this malignancy, but the recognition of these candidate genes may offer potential targets for novel therapies. In this review, we will provide an overview of the pathological, genetic and cytogenetic characteristics of WT.

  5. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  6. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  7. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  8. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). Because completing the health risk assessment results in a premium reduction, the request for genetic.... (ii) Conclusion. In this Example 3, because the health risk assessment includes a request for genetic.... Individual A's group health plan covers genetic testing for celiac disease for individuals who have family...

  9. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  10. [A twin study on genetic and environmental factors of adolescents violence behaviors].

    PubMed

    Zhu, Wenfen; Fu, Yixiao; Hu, Xiaomei; Wang, Yingcheng; Deng, Wei; Li, Tao; Ma, Xingshun

    2015-11-01

    To explore the influence of genetic and environmental factors on adolescents violence behaviors. The violence behaviors of 111 twin pairs from Chongqing (aged from 11 to 18 years) were investigated with risk behavior questionnaire-adolescent (RBQ-A). The Parenting Styles and Dimensions Questionnaire (PSDQ) and Stressful Life Event (SLE) and the General Functioning Scale of the MacMaster Family Activity Device (FAD-GFS) were applied to assess their environment factors. Structural equation modeling was performed to evaluate the effects of the additive genetic factors (A), shared environment factors (C) and individual specific environmental factors (E) on the adolescents violence behaviors. The effects of A and E on adolescents violence behaviors were 0.41 (95% CI 0.19-0.58) and 0.59 (95% CI 0.42-0.81) respectively. There were significantly negative correlation between violence behaviors and authoritative-parenting-style (r = -0.140, P < 0.05), the score of adolescents violence behaviors was positively correlated with repressive-parenting-style score (r = 0.133, P < 0.05), the score of adolescents violence behaviors were not significantly correlated with the family functions, stress life events and the parenting education level and occupation. Adolescents violence behaviors were influenced by additive genetic factors and individual specific environmental factors. Environmental plays an important role. It should not been ignored that parental rearing pattern play a role in adolescents violence behaviors.

  11. Non-additive Effects in Genomic Selection

    PubMed Central

    Varona, Luis; Legarra, Andres; Toro, Miguel A.; Vitezica, Zulma G.

    2018-01-01

    In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism) markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i) they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii) they allow the definition of mate allocation procedures between candidates for selection; and (iii) they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection. PMID:29559995

  12. Non-additive Effects in Genomic Selection.

    PubMed

    Varona, Luis; Legarra, Andres; Toro, Miguel A; Vitezica, Zulma G

    2018-01-01

    In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism) markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i) they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii) they allow the definition of mate allocation procedures between candidates for selection; and (iii) they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection.

  13. Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations.

    PubMed

    Shama, Lisa N S; Kubow, Karen B; Jokela, Jukka; Robinson, Christopher T

    2011-09-27

    Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003. We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods. We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state

  14. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  15. A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events (GHB119 and T304-40).

    PubMed

    Li, Xiang; Wang, Xiuxiu; Yang, Jielin; Liu, Yueming; He, Yuping; Pan, Liangwen

    2014-05-16

    To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5'-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products.

  16. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    PubMed Central

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C.; Souza, Milena M.; Cirillo, Cintia A.; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S.; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K.

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception. PMID:23966204

  17. Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.

    2018-04-01

    Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.

  18. Unraveling additive from nonadditive effects using genomic relationship matrices.

    PubMed

    Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F

    2014-12-01

    The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.

  19. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the

  20. 36 CFR 1280.72 - What additional rules apply for a NARA approved event?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for a NARA approved event? 1280.72 Section 1280.72 Parks, Forests, and Public Property NATIONAL... approved event? (a) Approved applicants must provide support people as needed to register guests... for the use of food and drink at your event. (d) No food or drink may be present or consumed in areas...

  1. 36 CFR 1280.72 - What additional rules apply for a NARA approved event?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for a NARA approved event? 1280.72 Section 1280.72 Parks, Forests, and Public Property NATIONAL... approved event? (a) Approved applicants must provide support people as needed to register guests... for the use of food and drink at your event. (d) No food or drink may be present or consumed in areas...

  2. 36 CFR 1280.72 - What additional rules apply for a NARA approved event?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for a NARA approved event? 1280.72 Section 1280.72 Parks, Forests, and Public Property NATIONAL... approved event? (a) Approved applicants must provide support people as needed to register guests... for the use of food and drink at your event. (d) No food or drink may be present or consumed in areas...

  3. Genetic Stratigraphy of Key Demographic Events in Arabia

    PubMed Central

    Fernandes, Verónica; Triska, Petr; Pereira, Joana B.; Alshamali, Farida; Rito, Teresa; Machado, Alison; Fajkošová, Zuzana; Cavadas, Bruno; Černý, Viktor; Soares, Pedro

    2015-01-01

    At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (∼8–37 generations for African input into Arabia, and 30–90 generations for “back-to-Africa” migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ∼2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ∼8 ka. The main “back-to-Africa” migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa. PMID:25738654

  4. Genetic stratigraphy of key demographic events in Arabia.

    PubMed

    Fernandes, Verónica; Triska, Petr; Pereira, Joana B; Alshamali, Farida; Rito, Teresa; Machado, Alison; Fajkošová, Zuzana; Cavadas, Bruno; Černý, Viktor; Soares, Pedro; Richards, Martin B; Pereira, Luísa

    2015-01-01

    At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (~8-37 generations for African input into Arabia, and 30-90 generations for "back-to-Africa" migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ~2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ~8 ka. The main "back-to-Africa" migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa.

  5. Commerce and genetic diagnostics.

    PubMed

    Silverman, Paul H

    1995-01-01

    The revolution in molecular biology and molecular genetics has begun to reveal the sequence of events that links genes and disease. As a result of activities such as the Human Genome Project, a parallel revolution in technology is bringing nearer to hand the possibility of readily available genetic diagnostics. Genetic testing services have begun to move out of the academic medical centers and into the private enterprise arena. Under these circumstances it is important to understand the factors affecting the availability and application of this powerful predictive tool in a for-profit mode. How does the marketplace encourage or discourage genetic testing? Will the same market influences that generate pharmaceutical sales be operating to "sell" genetic tests?

  6. Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti

    PubMed Central

    Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana

    2017-01-01

    Background Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. Principal findings We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. Significance The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti. PMID:28248964

  7. Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti.

    PubMed

    Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana

    2017-01-01

    Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti.

  8. Effects of strains, strain crosses and environments on additive genetic and phenotypic variances in Drosophila melanogaster.

    PubMed

    Noor, R R; Barker, J S; Kinghorn, B P

    1993-01-12

    The stability of phenotypic, additive genetic and environmental variances of thorax length of Drosophila melanogaster in pure and synthetic strains was examined in two different environments. Two pure strains from different geographic locations (Melbourne and Townsville) were used, together with three synthetic populations formed from them. The existence of differences in thorax length between the Melbourne and Townsville populations, genotype by environment interaction, and heterosis in crosses between these populations indicate that they are genetically different. Thus geographic separation can cause differences in mean thorax length of flies from different populations. Both the difference in selection histories between the two localities and drift could lead to these differences. Up to the thirty fifth generation there was no evidence of any reduction in the difference between the Melbourne and Townsville populations, in either laboratory environment. The genetic differentiation of strains therefore may be maintained over many generations under new environmental conditions. The fluctuation over generations of heterosis of thorax length is possibly caused by the fluctuation of the rate of loss of favourable epistatic interaction in crossbred genotypes in combination with natural selection effects. V(p) was significantly higher in poor than in the good environment. This higher V(p) in the poor environment is most likly due to higher non additive genetic variance. V(p) was also significantly influenced by strain. In general, V(p) values of synthetic strains were higher than those of pure strains in both environments. Finally, the additive and environmental variances of thorax length were relatively stable across strains, generations and environments. ZUSAMMENFASSUNG: Wirkung von Herkünften, Kreuzungen und Umwelten auf additiv-genetische und phänotypische Varianzen in Drosophila melanogaster Die Stabilität phänotypischer, additiv-genetischer und umweltbedingter

  9. Molecular-genetic diagnostics of von Hippel-Lindau syndrome (VHL) in Bulgaria: first complex mutation event in the VHL gene.

    PubMed

    Glushkova, Maria; Dimova, Petia; Yordanova, Iglika; Todorov, Tihomir; Tourtourikov, Ivan; Mitev, Vanyo; Todorova, Albena

    2018-02-01

    Von Hippel-Lindau syndrome is an autosomal-dominant disease characterized by the formation of various tumours and cysts in many different parts of the body. Von Hippel-Lindau syndrome is caused by VHL gene mutations leading to production of impaired tumor suppressor Von Hippel-Lindau syndrome protein or its complete absence. To study five patients with clinically suspected Von Hippel-Lindau syndrome, who were referred for molecular genetic testing. Sanger sequencing of the coding regions of the VHL gene. Five clinically relevant germline mutations were detected. One of the pathogenic variants has not been previously reported. This novel mutation is a complex mutation event combining a duplication and an indel, rearranging exon 3 of the VHL gene - c. [516_517dupGTCAAGCCT; 532_542delCTGGACATCGTinsATTA], p. (Glu173Serfs*4). Overall, our results showed that the diagnosis of Von Hippel-Lindau syndrome in our country is difficult most probably because of its heterogeneous clinical manifestation and insufficient knowledge on the diagnostic criteria for the disease. From genetic point of view our results add some novel data on the mutation profile of the VHL gene. In order to prove or revise the diagnosis, early genetic testing is strongly recommended in affected patients and their family members to ensure appropriate follow-up and treatment of the malignancies.

  10. A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events (GHB119 and T304-40)

    PubMed Central

    2014-01-01

    Background To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. Results To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5′-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. Conclusions The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products. PMID:24884946

  11. Diversity of genetic events associated with MLH1 promoter methylation in Lynch syndrome families with heritable constitutional epimutation.

    PubMed

    Leclerc, Julie; Flament, Cathy; Lovecchio, Tonio; Delattre, Lucie; Ait Yahya, Emilie; Baert-Desurmont, Stéphanie; Burnichon, Nelly; Bronner, Myriam; Cabaret, Odile; Lejeune, Sophie; Guimbaud, Rosine; Morin, Gilles; Mauillon, Jacques; Jonveaux, Philippe; Laurent-Puig, Pierre; Frébourg, Thierry; Porchet, Nicole; Buisine, Marie-Pierre

    2018-04-12

    PurposeConstitutional epimutations are an alternative to genetic mutations in the etiology of genetic diseases. Some of these epimutations, termed secondary, correspond to the epigenetic effects of cis-acting genetic defects transmitted to the offspring following a Mendelian inheritance pattern. In Lynch syndrome, a few families with such apparently heritable MLH1 epimutations have been reported so far.MethodsWe designed a long-range polymerase chain reaction next-generation sequencing strategy to screen MLH1 entire gene and applied it to 4 French families with heritable epimutations and 10 additional patients with no proven transmission of their epimutations.ResultsThis strategy successfully detected the insertion of an Alu element in MLH1 coding sequence in one family. Two previously unreported MLH1 variants were also identified in other epimutation carriers: a nucleotide substitution within intron 1 and a single-nucleotide deletion in the 5'-UTR. Detection of a partial MLH1 duplication in another family required multiplex ligation-dependent probe amplification technology. We demonstrated the segregation of these variants with MLH1 methylation and studied the functional consequences of these defects on transcription.ConclusionThis is the largest cohort of patients with MLH1 secondary epimutations associated with a broad spectrum of genetic defects. This study provides further insight into the complexity of molecular mechanisms leading to secondary epimutations.GENETICS in MEDICINE advance online publication, 12 April 2018; doi:10.1038/gim.2018.47.

  12. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids.

    PubMed

    Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte

    2018-02-01

    This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.

  13. Marker-based estimates reveal significant non-additive effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic value and the selection of varieties

    USDA-ARS?s Scientific Manuscript database

    In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and natur...

  14. Genetic and Epigenetic Events Generate Multiple Pathways in Colorectal Cancer Progression

    PubMed Central

    Pancione, Massimo; Remo, Andrea; Colantuoni, Vittorio

    2012-01-01

    Colorectal cancer (CRC) is one of the most common causes of death, despite decades of research. Initially considered as a disease due to genetic mutations, it is now viewed as a complex malignancy because of the involvement of epigenetic abnormalities. A functional equivalence between genetic and epigenetic mechanisms has been suggested in CRC initiation and progression. A hallmark of CRC is its pathogenetic heterogeneity attained through at least three distinct pathways: a traditional (adenoma-carcinoma sequence), an alternative, and more recently the so-called serrated pathway. While the alternative pathway is more heterogeneous and less characterized, the traditional and serrated pathways appear to be more homogeneous and clearly distinct. One unsolved question in colon cancer biology concerns the cells of origin and from which crypt compartment the different pathways originate. Based on molecular and pathological evidences, we propose that the traditional and serrated pathways originate from different crypt compartments explaining their genetic/epigenetic and clinicopathological differences. In this paper, we will discuss the current knowledge of CRC pathogenesis and, specifically, summarize the role of genetic/epigenetic changes in the origin and progression of the multiple CRC pathways. Elucidation of the link between the molecular and clinico-pathological aspects of CRC would improve our understanding of its etiology and impact both prevention and treatment. PMID:22888469

  15. Molecular toolbox for the identification of unknown genetically modified organisms.

    PubMed

    Ruttink, Tom; Demeyer, Rolinde; Van Gulck, Elke; Van Droogenbroeck, Bart; Querci, Maddalena; Taverniers, Isabel; De Loose, Marc

    2010-03-01

    Competent laboratories monitor genetically modified organisms (GMOs) and products derived thereof in the food and feed chain in the framework of labeling and traceability legislation. In addition, screening is performed to detect the unauthorized presence of GMOs including asynchronously authorized GMOs or GMOs that are not officially registered for commercialization (unknown GMOs). Currently, unauthorized or unknown events are detected by screening blind samples for commonly used transgenic elements, such as p35S or t-nos. If (1) positive detection of such screening elements shows the presence of transgenic material and (2) all known GMOs are tested by event-specific methods but are not detected, then the presence of an unknown GMO is inferred. However, such evidence is indirect because it is based on negative observations and inconclusive because the procedure does not identify the causative event per se. In addition, detection of unknown events is hampered in products that also contain known authorized events. Here, we outline alternative approaches for analytical detection and GMO identification and develop new methods to complement the existing routine screening procedure. We developed a fluorescent anchor-polymerase chain reaction (PCR) method for the identification of the sequences flanking the p35S and t-nos screening elements. Thus, anchor-PCR fingerprinting allows the detection of unique discriminative signals per event. In addition, we established a collection of in silico calculated fingerprints of known events to support interpretation of experimentally generated anchor-PCR GM fingerprints of blind samples. Here, we first describe the molecular characterization of a novel GMO, which expresses recombinant human intrinsic factor in Arabidopsis thaliana. Next, we purposefully treated the novel GMO as a blind sample to simulate how the new methods lead to the molecular identification of a novel unknown event without prior knowledge of its transgene

  16. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes.

    PubMed

    Wu, Huixia; Doherty, Angela; Jones, Huw D

    2008-06-01

    Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.

  17. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat.

    PubMed

    Jighly, Abdulqader; Joukhadar, Reem; Singh, Sukhwinder; Ogbonnaya, Francis C

    2018-01-01

    Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents ( Triticum turgidum; 2n = 4x = 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii ; 2n = 2x = 14, DD subgenome). The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy, which will

  18. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat

    PubMed Central

    Jighly, Abdulqader; Joukhadar, Reem; Singh, Sukhwinder; Ogbonnaya, Francis C.

    2018-01-01

    Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents (Triticum turgidum; 2n = 4x = 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome). The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy, which will

  19. Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors

    PubMed Central

    Schenkel, Laila C.; Rodenhiser, David; Siu, Victoria; McCready, Elizabeth; Ainsworth, Peter; Sadikovic, Bekim

    2016-01-01

    There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional “epi/genetic” conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of “DNA encodes RNA encodes protein” to best understand the spectrum of factors that can influence genetic traits in a pediatric population. PMID:28180025

  20. Event-Based control of depth of hypnosis in anesthesia.

    PubMed

    Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio

    2017-08-01

    In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression.

    PubMed

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    the event of interest and recovery of the RP germplasm across the genome at population size of 400, with selection intensity of 0.01 for all generations. In addition, strategies for choice of donor parent to facilitate conversion efficiency and quality were evaluated. Two essential criteria for choosing an optimal donor parent for a given RP were established: introgression history showing reduction of linkage drag to ~1 cM in the 20 cM region flanking the event and genetic similarity between the RP and potential donor parents. Computer simulation demonstrated that single event conversions with <8 cM residual NRP germplasm can be accomplished by BC5 with no genetic similarity, by BC4 with 30 % genetic similarity, and by BC3 with 86 % genetic similarity using previously converted RPs as event donors. This study indicates that MTI to produce a 'quality' 15-event-stacked hybrid conversion is achievable. Furthermore, it lays the groundwork for a comprehensive approach to MTI by outlining a pathway to produce appropriate starting materials with which to proceed with event pyramiding and trait fixation before version testing.

  2. Genetics of generalized anxiety disorder and related traits.

    PubMed

    Gottschalk, Michael G; Domschke, Katharina

    2017-06-01

    This review serves as a systematic guide to the genetics of generalized anxiety disorder (GAD) and further focuses on anxiety-relevant endophenotypes, such as pathological worry fear of uncertainty, and neuroticism. We inspect clinical genetic evidence for the familialityl heritability of GAD and cross-disorder phenotypes based on family and twin studies. Recent advances of linkage studies, genome-wide association studies, and candidate gene studies (eg, 5-HTT, 5-HT1A, MAOA, BDNF ) are outlined. Functional and structural neuroimaging and neurophysiological readouts relating to peripheral stress markers and psychophysiology are further integrated, building a multilevel disease framework. We explore etiologic factors in gene-environment interaction approaches investigating childhood trauma, environmental adversity, and stressful life events in relation to selected candidate genes ( 5-HTT, NPSR1, COMT, MAOA, CRHR1, RGS2 ), Additionally, the pharmacogenetics of selective serotonin reuptake inhibitor/serotonin-norepinephrine reuptake inhibitor treatment are summarized ( 5-HTT, 5-HT2A, COMT, CRHR1 ). Finally, GAD and trait anxiety research challenges and perspectives in the field of genetics, including epigenetics, are discussed.

  3. Persistent genetic signatures of historic climatic events in an Antarctic octopus.

    PubMed

    Strugnell, J M; Watts, P C; Smith, P J; Allcock, A L

    2012-06-01

    Repeated cycles of glaciation have had major impacts on the distribution of genetic diversity of the Antarctic marine fauna. During glacial periods, ice cover limited the amount of benthic habitat on the continental shelf. Conversely, more habitat and possibly altered seaways were available during interglacials when the ice receded and the sea level was higher. We used microsatellites and partial sequences of the mitochondrial cytochrome oxidase 1 gene to examine genetic structure in the direct-developing, endemic Southern Ocean octopod Pareledone turqueti sampled from a broad range of areas that circumvent Antarctica. We find that, unusually for a species with poor dispersal potential, P. turqueti has a circumpolar distribution and is also found off the islands of South Georgia and Shag Rocks. The overriding pattern of spatial genetic structure can be explained by hydrographic (with ocean currents both facilitating and hindering gene flow) and bathymetric features. The Antarctic Peninsula region displays a complex population structure, consistent with its varied topographic and oceanographic influences. Genetic similarities between the Ross and Weddell Seas, however, are interpreted as a persistent historic genetic signature of connectivity during the hypothesized Pleistocene West Antarctic Ice Sheet collapses. A calibrated molecular clock indicates two major lineages within P. turqueti, a continental lineage and a sub-Antarctic lineage, that diverged in the mid-Pliocene with no subsequent gene flow. Both lineages survived subsequent major glacial cycles. Our data are indicative of potential refugia at Shag Rocks and South Georgia and also around the Antarctic continent within the Ross Sea, Weddell Sea and off Adélie Land. The mean age of mtDNA diversity within these main continental lineages coincides with Pleistocene glacial cycles. © 2012 Blackwell Publishing Ltd.

  4. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  5. Alternative life histories in the Atlantic salmon: genetic covariances within the sneaker sexual tactic in males.

    PubMed

    Páez, David James; Bernatchez, Louis; Dodson, Julian J

    2011-07-22

    Alternative reproductive tactics are ubiquitous in many species. Tactic expression often depends on whether an individual's condition surpasses thresholds that are responsible for activating particular developmental pathways. Two central goals in understanding the evolution of reproductive tactics are quantifying the extent to which thresholds are explained by additive genetic effects, and describing their covariation with condition-related traits. We monitored the development of early sexual maturation that leads to the sneaker reproductive tactic in Atlantic salmon (Salmo salar L.). We found evidence for additive genetic variance in the timing of sexual maturity (which is a measure of the surpassing of threshold values) and body-size traits. This suggests that selection can affect the patterns of sexual development by changing the timing of this event and/or body size. Significant levels of covariation between these traits also occurred, implying a potential for correlated responses to selection. Closer examination of genetic covariances suggests that the detected genetic variation is distributed along at least five directions of phenotypic variation. Our results show that the potential for evolution of the life-history traits constituting this reproductive phenotype is greatly influenced by their patterns of genetic covariance.

  6. Alternative life histories in the Atlantic salmon: genetic covariances within the sneaker sexual tactic in males

    PubMed Central

    Páez, David James; Bernatchez, Louis; Dodson, Julian J.

    2011-01-01

    Alternative reproductive tactics are ubiquitous in many species. Tactic expression often depends on whether an individual's condition surpasses thresholds that are responsible for activating particular developmental pathways. Two central goals in understanding the evolution of reproductive tactics are quantifying the extent to which thresholds are explained by additive genetic effects, and describing their covariation with condition-related traits. We monitored the development of early sexual maturation that leads to the sneaker reproductive tactic in Atlantic salmon (Salmo salar L.). We found evidence for additive genetic variance in the timing of sexual maturity (which is a measure of the surpassing of threshold values) and body-size traits. This suggests that selection can affect the patterns of sexual development by changing the timing of this event and/or body size. Significant levels of covariation between these traits also occurred, implying a potential for correlated responses to selection. Closer examination of genetic covariances suggests that the detected genetic variation is distributed along at least five directions of phenotypic variation. Our results show that the potential for evolution of the life-history traits constituting this reproductive phenotype is greatly influenced by their patterns of genetic covariance. PMID:21177685

  7. Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events.

    PubMed

    Pi, Liqun; Li, Xiang; Cao, Yiwei; Wang, Canhua; Pan, Liangwen; Yang, Litao

    2015-04-01

    Reference materials are important in accurate analysis of genetically modified organism (GMO) contents in food/feeds, and development of novel reference plasmid is a new trend in the research of GMO reference materials. Herein, we constructed a novel multi-targeting plasmid, pSOY, which contained seven event-specific sequences of five GM soybeans (MON89788-5', A2704-12-3', A5547-127-3', DP356043-5', DP305423-3', A2704-12-5', and A5547-127-5') and sequence of soybean endogenous reference gene Lectin. We evaluated the specificity, limit of detection and quantification, and applicability of pSOY in both qualitative and quantitative PCR analyses. The limit of detection (LOD) was as low as 20 copies in qualitative PCR, and the limit of quantification (LOQ) in quantitative PCR was 10 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and Lectin assays were higher than 90%, and the squared regression coefficients (R(2)) were more than 0.999. The quantification bias varied from 0.21% to 19.29%, and the relative standard deviations were from 1.08% to 9.84% in simulated samples analysis. All the results demonstrated that the developed multi-targeting plasmid, pSOY, was a credible substitute of matrix reference materials, and could be used as a reliable reference calibrator in the identification and quantification of multiple GM soybean events.

  8. 76 FR 8707 - Syngenta Seeds, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... for Corn Genetically Engineered To Produce an Enzyme That Facilitates Ethanol Production AGENCY... event 3272, which has been genetically engineered to produce a microbial enzyme that facilitates ethanol... transformation event 3272, which has been genetically engineered to produce a microbial enzyme that facilitates...

  9. Genetic change and rates of cladogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avise, J.C.; Ayala, F.J.

    1975-12-01

    Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predictions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic distance between species is a function of time, mean genetic distances inmore » speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. The limited information presently available agrees better with the model predicting that genetic change is primarily a function of time, and is not correlated with rates of speciation. Further testing of the models is, however, required before firm conclusions can be drawn. (auth)« less

  10. A Comparison of Telephone Genetic Counseling and In-Person Genetic Counseling from the Genetic Counselor's Perspective.

    PubMed

    Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M

    2016-02-01

    Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.

  11. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling.

    PubMed

    Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E; Mandl, René C; Almasy, Laura; Booth, Tom; Brouwer, Rachel M; Curran, Joanne E; de Zubicaray, Greig I; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T; Hong, L Elliot; Landman, Bennett A; Lemaitre, Hervé; Lopez, Lorna M; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton D; Olvera, Rene L; Peterson, Charles P; Starr, John M; Sussmann, Jessika E; Toga, Arthur W; Wardlaw, Joanna M; Wright, Margaret J; Wright, Susan N; Bastin, Mark E; McIntosh, Andrew M; Boomsma, Dorret I; Kahn, René S; den Braber, Anouk; de Geus, Eco J C; Deary, Ian J; Hulshoff Pol, Hilleke E; Williamson, Douglas E; Blangero, John; van 't Ent, Dennis; Thompson, Paul M; Glahn, David C

    2014-07-15

    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Latest Research: Genetic Links

    MedlinePlus

    ... additional genetic risk factors. The network will also explore the relationship between a genetic disease and its ... surgery involves inserting a hollow needle into the space between the eye's retinal layers and transferring genetic ...

  13. Effect of OPRM1 and stressful life events on symptoms of major depression in African American adolescents.

    PubMed

    Swann, Gregory; Byck, Gayle R; Dick, Danielle M; Aliev, Fazil; Latendresse, Shawn J; Riley, Brien; Kertes, Darlene; Sun, Cuie; Salvatore, Jessica E; Bolland, John; Mustanski, Brian

    2014-06-01

    In a community sample of low-income African American adolescents, we tested the interactive effects of variation in the mu 1 opioid receptor (OPRM1) gene and the occurrence of stressful life events on symptoms of depression. Interactive effects of 24 OPRM1 simple nucleotide polymorphisms (SNP) and adolescent report of stressful life events on depression were tested using multilevel regressions. SNPs were dummy coded to test both additive and dominate forms of coding. Five OPRM1 SNPs showed significant evidence of interaction with stressful life events to alter depression risk (or symptoms) after adjusting for multiple testing and the correlated nature of the SNPs. Follow-up analyses showed significant differences based on OPRM1 genotype at both lower and higher frequencies of stressful life events, suggesting that participants with a copy of the minor allele on OPRM1 SNPs rs524731, rs9478503, rs3778157, rs10485057, and rs511420 have fewer symptoms in low stress conditions but more symptoms in high stress conditions compared to major allele homozygotes. The genetic variants associated with depression in African American adolescents may not translate to other ethnic groups. This study is also limited in that only one gene that functions within a complex biological system is addressed. This current study is the first to find an interaction between OPRM1 and life stress that is associated with depression. It also addressed an understudied population within the behavioral genetics literature. Further research should test additional genes involved in the opioid system and expand the current findings to more diverse samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  15. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  16. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  17. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... history. (ii) Conclusion. In this Example 1, the health risk assessment includes a request for genetic... the health risk assessment includes a request for genetic information (that is, the individual's... about family medical history on the health risk assessment are a request for genetic information for...

  18. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  19. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  20. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.

    PubMed

    Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P

    2005-04-01

    The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A

  1. Additive influence of genetic predisposition and conventional risk factors in the incidence of coronary heart disease: a population-based study in Greece

    USDA-ARS?s Scientific Manuscript database

    An additive genetic risk score (GRS) for coronary heart disease (CHD) has previously been associated with incident CHD in the population-based Greek European Prospective Investigation into Cancer and nutrition (EPIC) cohort. In this study, we explore GRS-‘environment’ joint actions on CHD for severa...

  2. The partly Aalen's model for recurrent event data with a dependent terminal event.

    PubMed

    Chen, Chyong-Mei; Shen, Pao-Sheng; Chuang, Ya-Wen

    2016-01-30

    Recurrent event data are commonly observed in biomedical longitudinal studies. In many instances, there exists a terminal event, which precludes the occurrence of additional repeated events, and usually there is also a nonignorable correlation between the terminal event and recurrent events. In this article, we propose a partly Aalen's additive model with a multiplicative frailty for the rate function of recurrent event process and assume a Cox frailty model for terminal event time. A shared gamma frailty is used to describe the correlation between the two types of events. Consequently, this joint model can provide the information of temporal influence of absolute covariate effects on the rate of recurrent event process, which is usually helpful in the decision-making process for physicians. An estimating equation approach is developed to estimate marginal and association parameters in the joint model. The consistency of the proposed estimator is established. Simulation studies demonstrate that the proposed approach is appropriate for practical use. We apply the proposed method to a peritonitis cohort data set for illustration. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Genetic determinants in head and neck squamous cell carcinoma and their influence on global personalized medicine

    PubMed Central

    Michmerhuizen, Nicole L.; Birkeland, Andrew C.; Bradford, Carol R.; Brenner, J. Chad

    2016-01-01

    While sequencing studies have provided an improved understanding of the genetic landscape of head and neck squamous cell carcinomas (HNSCC), there remains a significant lack of genetic data derived from non-Caucasian cohorts. Additionally, there is wide variation in HNSCC incidence and mortality worldwide both between and within various geographic regions. These epidemiologic differences are in part accounted for by varying exposure to environmental risk factors such as tobacco, alcohol, high risk human papilloma viruses and betel quid. However, inherent genetic factors may also play an important role in this variability. As limited sequencing data is available for many populations, the involvement of unique genetic factors in HNSCC pathogenesis from epidemiologically diverse groups is unknown. Here, we review current knowledge about the epidemiologic, environmental, and genetic variation in HNSCC cohorts globally and discuss future studies necessary to further our understanding of these differences. Long-term, a more complete understanding of the genetic drivers found in diverse HNSCC cohorts may help the development of personalized medicine protocols for patients with rare or complex genetic events. PMID:27551333

  4. Thinking-for-Speaking of Chinese EFL Learners in the Use of Additional Expressions of Manner in the Expression of Motion Events

    ERIC Educational Resources Information Center

    Ziyan, Xu

    2013-01-01

    This study adopts Talmy's (1985, 1991, 2000) theory of linguistic typology and Slobin's (2003, 2004) hypothesis of Thinking-for-Speaking to investigate the use of additional expressions of Manner in the expression of Motion events by Chinese EFL learners in comparison with French EFL learners. The aim is to find out the Thinking-for-Speaking…

  5. Assessing non-additive effects in GBLUP model.

    PubMed

    Vieira, I C; Dos Santos, J P R; Pires, L P M; Lima, B M; Gonçalves, F M A; Balestre, M

    2017-05-10

    Understanding non-additive effects in the expression of quantitative traits is very important in genotype selection, especially in species where the commercial products are clones or hybrids. The use of molecular markers has allowed the study of non-additive genetic effects on a genomic level, in addition to a better understanding of its importance in quantitative traits. Thus, the purpose of this study was to evaluate the behavior of the GBLUP model in different genetic models and relationship matrices and their influence on the estimates of genetic parameters. We used real data of the circumference at breast height in Eucalyptus spp and simulated data from a population of F 2 . Three commonly reported kinship structures in the literature were adopted. The simulation results showed that the inclusion of epistatic kinship improved prediction estimates of genomic breeding values. However, the non-additive effects were not accurately recovered. The Fisher information matrix for real dataset showed high collinearity in estimates of additive, dominant, and epistatic variance, causing no gain in the prediction of the unobserved data and convergence problems. Estimates presented differences of genetic parameters and correlations considering the different kinship structures. Our results show that the inclusion of non-additive effects can improve the predictive ability or even the prediction of additive effects. However, the high distortions observed in the variance estimates when the Hardy-Weinberg equilibrium assumption is violated due to the presence of selection or inbreeding can converge at zero gains in models that consider epistasis in genomic kinship.

  6. Quo Vadis, Medical Genetics?

    NASA Astrophysics Data System (ADS)

    Czeizel, Andrew E.

    The beginning of human genetics and its medical part: medical genetics was promising in the early decades of this century. Many genetic diseases and defects with Mendelian origin were identified and it helped families with significant genetic burden to limit their child number. Unfortunately this good start was shadowed by two tragic events. On the one hand, in the 1930s and early 1940s the German fascism brought about the dominance of an unscientific eugenics to mask vile political crimes. People with genetic diseases-defects were forced to sterilisation and several of them were killed. On the other hand, in the 1950s lysenkoism inhibitied the evolution of genetics in the Soviet Union and their satelite countries. Lysenko's doctrine declared genetics as a product of imperialism and a guilty science, therefore leading geneticists were ousted form their posts and some of them were executed or put in prison. Past decades genetics has resulted fantastic new results and achieved a leading position within the natural sciences. To my mind, however, the expected wider use of new eugenics indicates a new tragedy and this Cassandra's prediction is the topic of this presentation.

  7. Evolution of the additive genetic variance–covariance matrix under continuous directional selection on a complex behavioural phenotype

    PubMed Central

    Careau, Vincent; Wolak, Matthew E.; Carter, Patrick A.; Garland, Theodore

    2015-01-01

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance–covariance matrix (G). Yet knowledge of G in a population experiencing new or altered selection is not sufficient to predict selection response because G itself evolves in ways that are poorly understood. We experimentally evaluated changes in G when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. PMID:26582016

  8. Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

    PubMed

    Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore

    2015-11-22

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. © 2015 The Author(s).

  9. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  10. Genomic Model with Correlation Between Additive and Dominance Effects.

    PubMed

    Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres

    2018-05-09

    Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant

  11. Secondary scintillation yield of xenon with sub-percent levels of CO 2 additive for rare-event detection

    DOE PAGES

    Henriques, C. A. O.; Freitas, E. D. C.; Azevedo, C. D. R.; ...

    2017-09-12

    Xe–CO 2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO 2 to pure xenon at the level of 0.05–0.1% can reduce significantly the scale of electron diffusion from 10 mm / √m to 2.5mm / √m, with high impact on the discrimination efficiency of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL)more » yield of Xe–CO 2 mixtures, with sub-percent CO 2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO 2 concentrations around 0.05% and 0.1%, respectively. In conclusion, the contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO 2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO 2.« less

  12. Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection

    NASA Astrophysics Data System (ADS)

    Henriques, C. A. O.; Freitas, E. D. C.; Azevedo, C. D. R.; González-Díaz, D.; Mano, R. D. P.; Jorge, M. R.; Fernandes, L. M. P.; Monteiro, C. M. B.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carríon, J. V.; Cebrían, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Ferrario, P.; Ferreira, A. L.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2017-10-01

    Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm /√{m} to 2.5 mm /√{m}, with high impact on the discrimination efficiency of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.

  13. Secondary scintillation yield of xenon with sub-percent levels of CO 2 additive for rare-event detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriques, C. A. O.; Freitas, E. D. C.; Azevedo, C. D. R.

    Xe–CO 2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO 2 to pure xenon at the level of 0.05–0.1% can reduce significantly the scale of electron diffusion from 10 mm / √m to 2.5mm / √m, with high impact on the discrimination efficiency of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL)more » yield of Xe–CO 2 mixtures, with sub-percent CO 2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO 2 concentrations around 0.05% and 0.1%, respectively. In conclusion, the contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO 2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO 2.« less

  14. Clopidogrel and genetic testing: is it necessary for everyone?

    PubMed

    Goswami, Sweta; Cheng-Lai, Angela; Nawarskas, James

    2012-01-01

    Clopidogrel is a widely used antiplatelet agent to treat and prevent a variety of atherothrombotic diseases. More than a decade after its initial Food and Drug Administration approval, studies have emerged raising concerns regarding its possible reduced efficacy in patients who have impaired conversion of clopidogrel to its active metabolite (ie, poor metabolizers). Research has implicated genetic variations in the CYP2C19 isozyme as at least partly responsible for the variable antiplatelet response seen with clopidogrel. Studies have shown that patients possessing genetic variants of the CYP2C19 isozyme may be at increased risk of adverse cardiovascular events due to impaired clopidogrel efficacy, although this has not been definitively demonstrated. The Food and Drug Administration has issued a boxed warning regarding this concern. However, specific recommendations on genetic testing and alternative therapeutic strategies are not currently available. Genetic testing is commercially available to test patients for variability in the CYP2C19 isozyme, but altering antiplatelet therapy based on the results of this testing has not been adequately studied, and it is therefore not clear how to adjust therapy based on the results of this genetic testing. In addition, there are many other factors that may contribute to the variability in antiplatelet effect seen with clopidogrel besides CYP2C19 genetic polymorphisms. Ongoing trials dealing with adjusting antiplatelet therapy based on genetic testing will hopefully provide more useful information on how to appropriately integrate pharmacogenomics with the care of patients with atherothrombotic disease.

  15. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution.

    PubMed

    Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C

    2016-08-16

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.

  16. Genetics and Personal Insurance: the Perspectives of Canadian Cancer Genetic Counselors.

    PubMed

    Lane, Michelle; Ngueng Feze, Ida; Joly, Yann

    2015-12-01

    Genetic discrimination in the context of genetic testing has been identified as a concern for symptomatic and asymptomatic individuals for more than three decades. Genetic counselors are often the health care professionals who discuss risks and benefits of genetic testing with patients, thereby making them most appropriate to address patient concerns about genetics and personal insurance (i.e., life, life as related to mortgage or group insurance, disability, critical illness and travel). A pilot study was conducted to ascertain the current practices of Canadian cancer genetic counselors in regard to their discussions with patients about genetic testing and access to personal insurance. Among the 36 counselors surveyed, 100 % reported discussing the issue of genetic testing and personal insurance with their patients. Several factors influenced the content, depth and length of these discussions including age, cancer status, family members, and patients' current and future insurance needs. Counselors reported discussing with patients the possible impact of genetic test results on access to personal insurance, possible access and use of patient genetic information by insurance companies, and whom patients should contact if they have additional questions. The most commonly reported inquiries from patients included questions about the possible impact of genetic testing on their ability to obtain insurance, and the insurability of family members. While 28 % of counselors reported having been contacted by an insurer requesting access to patient information, only one counselor was aware of or could recall the outcome of such a request. This pilot study revealed that issues concerning genetics and personal insurance are commonly discussed in Canadian cancer genetic counseling sessions. Counselors furthermore expressed a need for additional educational resources on the topic of genetics and personal insurance for themselves and their patients.

  17. Genetic differentiation among populations of marine algae

    NASA Astrophysics Data System (ADS)

    Innes, D. J.

    1984-09-01

    Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data

  18. Patterns of genetic variation in the endangered European mink (Mustela lutreola L., 1761).

    PubMed

    Cabria, Maria Teresa; Gonzalez, Elena G; Gomez-Moliner, Benjamin J; Michaux, Johan R; Skumatov, Dimitry; Kranz, Andreas; Fournier, Pascal; Palazon, Santiago; Zardoya, Rafael

    2015-07-17

    The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North- and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for

  19. Heritability and molecular-genetic basis of the P3 event-related brain potential: A genome-wide association study

    PubMed Central

    MALONE, STEPHEN M.; VAIDYANATHAN, UMA; BASU, SAONLI; MILLER, MICHAEL B.; MCGUE, MATT; IACONO, WILLIAM G.

    2014-01-01

    P3 amplitude is a candidate endophenotype for disinhibitory psychopathology, psychosis, and other disorders. The present study is a comprehensive analysis of the behavioral- and molecular-genetic basis of P3 amplitude and a P3 genetic factor score in a large community sample (N = 4,211) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric models indicated that as much as 65% of the variance in each measure was due to additive genes. All SNPs in aggregate accounted for approximately 40% to 50% of the heritable variance. However, analyses of individual SNPs did not yield any significant associations. Analyses of individual genes did not confirm previous associations between P3 amplitude and candidate genes but did yield a novel association with myelin expression factor 2 (MYEF2). Main effects of individual variants may be too small to be detected by GWAS without larger samples. PMID:25387705

  20. Investigating the modulation of genetic effects on late AMD by age and sex: Lessons learned and two additional loci

    PubMed Central

    Grassmann, Felix; Gorski, Mathias; Loss, Julika; Heid, Iris M.

    2018-01-01

    Late-stage age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly with a complex etiology. The most important non-modifiable risk factors for onset and progression of late AMD are age and genetic risk factors, however, little is known about the interplay between genetics and age or sex. Here, we conducted a large-scale age- and sex-stratified genome-wide association study (GWAS) using 1000 Genomes imputed genome-wide and ExomeChip data (>12 million variants). The data were established by the International Age-related Macular Degeneration Genomics Consortium (IAMDGC) from 16,144 late AMD cases and 17,832 controls. Our systematic search for interaction effects yielded significantly stronger effects among younger individuals at two known AMD loci (near CFH and ARMS2/HTRA1). Accounting for age and gene-age interaction using a joint test identified two additional AMD loci compared to the previous main effect scan. One of these two is a novel AMD GWAS locus, near the retinal clusterin-like protein (CLUL1) gene, and the other, near the retinaldehyde binding protein 1 (RLBP1), was recently identified in a joint analysis of nuclear and mitochondrial variants. Despite considerable power in our data, neither sex-dependent effects nor effects with opposite directions between younger and older individuals were observed. This is the first genome-wide interaction study to incorporate age, sex and their interaction with genetic effects for late AMD. Results diminish the potential for a role of sex in the etiology of late AMD yet highlight the importance and existence of age-dependent genetic effects. PMID:29529059

  1. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women.

    PubMed

    Sartor, C E; McCutcheon, V V; Pommer, N E; Nelson, E C; Grant, J D; Duncan, A E; Waldron, M; Bucholz, K K; Madden, P A F; Heath, A C

    2011-07-01

    The few genetically informative studies to examine post-traumatic stress disorder (PTSD) and alcohol dependence (AD), all of which are based on a male veteran sample, suggest that the co-morbidity between PTSD and AD may be attributable in part to overlapping genetic influences, but this issue has yet to be addressed in females.MethodData were derived from an all-female twin sample (n=3768) ranging in age from 18 to 29 years. A trivariate genetic model that included trauma exposure as a separate phenotype was fitted to estimate genetic and environmental contributions to PTSD and the degree to which they overlap with those that contribute to AD, after accounting for potential confounding effects of heritable influences on trauma exposure. Additive genetic influences (A) accounted for 72% of the variance in PTSD; individual-specific environmental (E) factors accounted for the remainder. An AE model also provided the best fit for AD, for which heritability was estimated to be 71%. The genetic correlation between PTSD and AD was 0.54. The heritability estimate for PTSD in our sample is higher than estimates reported in earlier studies based almost exclusively on an all-male sample in which combat exposure was the precipitating traumatic event. However, our findings are consistent with the absence of evidence for shared environmental influences on PTSD and, most importantly, the substantial overlap in genetic influences on PTSD and AD reported in these investigations. Additional research addressing potential distinctions by gender in the relative contributions of genetic and environmental influences on PTSD is merited.

  2. Genetics Home Reference: Alexander disease

    MedlinePlus

    ... the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency The prevalence of Alexander disease ... Degenerative Nerve Diseases Health Topic: Leukodystrophies Genetic and Rare Diseases Information Center (1 link) Alexander disease Additional NIH ...

  3. Language-related cerebral oscillatory changes are influenced equally by genetic and environmental factors.

    PubMed

    Araki, Toshihiko; Hirata, Masayuki; Yanagisawa, Takufumi; Sugata, Hisato; Onishi, Mai; Watanabe, Yoshiyuki; Ogata, Soshiro; Honda, Chika; Hayakawa, Kazuo; Yorifuji, Shiro

    2016-11-15

    Twin studies have suggested that there are genetic influences on inter-individual variation in terms of verbal abilities, and candidate genes have been identified by genome-wide association studies. However, the brain activities under genetic influence during linguistic processing remain unclear. In this study, we investigated neuromagnetic activities during a language task in a group of 28 monozygotic (MZ) and 12 dizygotic (DZ) adult twin pairs. We examined the spatio-temporal distribution of the event-related desynchronizations (ERDs) in the low gamma band (25-50Hz) using beamformer analyses and time-frequency analyses. Heritability was evaluated by comparing the respective MZ and DZ correlations. The genetic and environmental contributions were then estimated by structural equation modeling (SEM). We found that the peaks of the low gamma ERDs were localized to the left frontal area. The power of low gamma ERDs in this area exhibited higher similarity between MZ twins than that between DZ twins. SEM estimated the genetic contribution as approximately 50%. In addition, these powers were negatively correlated with the behavioral verbal scores. These results improve our understanding of how genetic and environmental factors influence cerebral activities during linguistic processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hawksbill turtle terra incognita: conservation genetics of eastern Pacific rookeries.

    PubMed

    Gaos, Alexander R; Lewison, Rebecca L; Liles, Michael J; Gadea, Velkiss; Altamirano, Eduardo; Henríquez, Ana V; Torres, Perla; Urteaga, José; Vallejo, Felipe; Baquero, Andres; LeMarie, Carolina; Muñoz, Juan Pablo; Chaves, Jaime A; Hart, Catherine E; Peña de Niz, Alejandro; Chácon, Didiher; Fonseca, Luis; Otterstrom, Sarah; Yañez, Ingrid L; LaCasella, Erin L; Frey, Amy; Jensen, Michael P; Dutton, Peter H

    2016-02-01

    reproductive populations and evolutionarily recent colonization events. Additional research with larger sample sizes and variable markers will help further genetic understanding of hawksbill turtles in the EP.

  5. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa

    PubMed Central

    2011-01-01

    Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro

  6. Genetic diversity of a newly established population of golden eagles on the Channel Islands, California

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

  7. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Positive relationships between genetic diversity and abundance in fishes.

    PubMed

    McCusker, Megan R; Bentzen, Paul

    2010-11-01

    Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and 'abundance' compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out. © 2010 Blackwell Publishing Ltd.

  9. Ridge, Lasso and Bayesian additive-dominance genomic models.

    PubMed

    Azevedo, Camila Ferreira; de Resende, Marcos Deon Vilela; E Silva, Fabyano Fonseca; Viana, José Marcelo Soriano; Valente, Magno Sávio Ferreira; Resende, Márcio Fernando Ribeiro; Muñoz, Patricio

    2015-08-25

    A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes). G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close. Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (-2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.

  10. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis

    PubMed Central

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-01-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524

  11. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    PubMed

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  12. Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill.

    PubMed

    Robertson, Marta; Schrey, Aaron; Shayter, Ashley; Moss, Christina J; Richards, Christina

    2017-09-01

    Catastrophic events offer unique opportunities to study rapid population response to stress in natural settings. In concert with genetic variation, epigenetic mechanisms may allow populations to persist through severe environmental challenges. In 2010, the Deepwater Horizon oil spill devastated large portions of the coastline along the Gulf of Mexico. However, the foundational salt marsh grass, Spartina alterniflora , showed high resilience to this strong environmental disturbance. Following the spill, we simultaneously examined the genetic and epigenetic structure of recovering populations of S. alterniflora to oil exposure. We quantified genetic and DNA methylation variation using amplified fragment length polymorphism and methylation sensitive fragment length polymorphism (MS-AFLP) to test the hypothesis that response to oil exposure in S. alterniflora resulted in genetically and epigenetically based population differentiation. We found high genetic and epigenetic variation within and among sites and found significant genetic differentiation between contaminated and uncontaminated sites, which may reflect nonrandom mortality in response to oil exposure. Additionally, despite a lack of genomewide patterns in DNA methylation between contaminated and uncontaminated sites, we found five MS-AFLP loci (12% of polymorphic MS-AFLP loci) that were correlated with oil exposure. Overall, our findings support genetically based differentiation correlated with exposure to the oil spill in this system, but also suggest a potential role for epigenetic mechanisms in population differentiation.

  13. Genetic predisposition to coronary heart disease and stroke using an additive genetic risk score: A population-based study in Greece

    PubMed Central

    Yiannakouris, N.; Katsoulis, M.; Dilis, V.; Parnell, L.D.; Trichopoulos, D.; Ordovas, J.M.; Trichopoulou, A.

    2012-01-01

    Objective To determine the extent to which the risk for incident coronary heart disease (CHD) increases in relation to a genetic risk score (GRS) that additively integrates the influence of high-risk alleles in nine documented single nucleotide polymorphisms (SNPs) for CHD, and to examine whether this GRS also predicts incident stroke. Methods Genotypes at nine CHD-relevant SNPs were determined in 494 cases of incident CHD, 320 cases of incident stroke and 1345 unaffected controls drawn from the population-based Greek component of the European Prospective Investigation into Cancer and nutrition (EPIC) cohort. An additive GRS was calculated for each study participant by adding one unit for the presence of each high-risk allele multiplied by the estimated effect size of that allele in the discovery samples. Statistical analysis was performed using logistic regression. Results The GRS was significantly associated with the incidence of CHD where the odds of CHD incidence in the highest quintile of the GRS were 1.74 times higher (95% confidence interval [CI] = 1.25–2.43, p for trend = 0.0004), compared to the lowest quintile. With respect to stroke, a weaker and non-significant positive association with GRS was apparent as the odds of stroke incidence in the highest quintile of the GRS were 1.36 times higher (95% CI = 0.90–2.06, p for trend = 0.188), compared to the lowest quintile. Conclusion A GRS relying on nine documented “CHD-specific” SNPs is significantly predictive of CHD but it was not found to be statistically significantly associated with incident stroke. PMID:22429504

  14. Replication of a gene-environment interaction Via Multimodel inference: additive-genetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status.

    PubMed

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2015-03-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research.

  15. Replication of a Gene-Environment Interaction via Multimodel Inference: Additive-Genetic Variance in Adolescents’ General Cognitive Ability Increases with Family-of-Origin Socioeconomic Status

    PubMed Central

    Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.

    2015-01-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES—an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975

  16. Activation of IFN-beta element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis.

    PubMed Central

    Watanabe, N; Sakakibara, J; Hovanessian, A G; Taniguchi, T; Fujita, T

    1991-01-01

    Expression of the Type I IFN (i.e., IFN-alpha s and IFN-beta) genes is efficiently induced by viruses at the transcriptional level. This induction is mediated by at least two types of positive regulatory elements located in the human IFN-beta gene promoter: (1) the repeated elements which bind both the transcriptional activator IRF-1 and the repressor IRF-2 (IRF-elements; IRF-Es), and (2) the kappa B element (kappa B-E), which binds NF kappa B and is located between the IRF-Es and the TATA box. In this study we demonstrate that a promoter containing synthetic IRF-E, which displays high affinity for the IRFs can be efficiently activated by Newcastle disease virus (NDV). In contrast, such activation was either very weak or nil when cells were treated by IFN-beta or tumor necrosis factor-alpha (TNF-alpha), despite the fact they both efficiently induce de novo synthesis of the short-lived IRF-1 in L929 cells. In fact, efficient activation of the IRF-E apparently requires an event in addition to de novo IRF-1 induction, which can be elicited by NDV even in the presence of protein synthesis inhibitor, cycloheximide. Moreover, efficient activation of the IRF-E by NDV is specifically inhibited by the protein kinase inhibitor, Staurosporin. Hence our results suggest the importance of IRF-1 synthesis and post-translational modification event(s), possibly phosphorylation for the efficient activation of IRF-Es, which are otherwise under negative regulation by IRF-2. Images PMID:1886766

  17. Childhood adverse life events and parental psychopathology as risk factors for bipolar disorder.

    PubMed

    Bergink, V; Larsen, J T; Hillegers, M H J; Dahl, S K; Stevens, H; Mortensen, P B; Petersen, L; Munk-Olsen, T

    2016-10-25

    Childhood adverse events are risk factors for later bipolar disorder. We quantified the risks for a later diagnosis of bipolar disorder after exposure to adverse life events in children with and without parental psychopathology. This register-based population cohort study included all persons born in Denmark from 1980 to 1998 (980 554 persons). Adversities before age 15 years were: familial disruption; parental somatic illness; any parental psychopathology; parental labour market exclusion; parental imprisonment; placement in out-of-home care; and parental natural and unnatural death. We calculated risk estimates of each of these eight life events as single exposure and risk estimates for exposure to multiple life events. Main outcome variable was a diagnosis of bipolar disorder after the age of 15 years, analysed with Cox proportional hazard regression. Single exposure to most of the investigated adversities were associated with increased risk for bipolar disorder, exceptions were parental somatic illness and parental natural death. By far the strongest risk factor for bipolar disorder in our study was any mental disorder in the parent (hazard ratio 3.53; 95% confidence interval 2.73-4.53) and the additional effects of life events on bipolar risk were limited. An effect of early adverse life events on bipolar risk later in life was mainly observed in children without parental psychopathology. Our findings do not exclude early-life events as possible risk factors, but challenge the concept of adversities as important independent determinants of bipolar disorder in genetically vulnerable individuals.

  18. Optimizing graph-based patterns to extract biomedical events from the literature

    PubMed Central

    2015-01-01

    In BioNLP-ST 2013 We participated in the BioNLP 2013 shared tasks on event extraction. Our extraction method is based on the search for an approximate subgraph isomorphism between key context dependencies of events and graphs of input sentences. Our system was able to address both the GENIA (GE) task focusing on 13 molecular biology related event types and the Cancer Genetics (CG) task targeting a challenging group of 40 cancer biology related event types with varying arguments concerning 18 kinds of biological entities. In addition to adapting our system to the two tasks, we also attempted to integrate semantics into the graph matching scheme using a distributional similarity model for more events, and evaluated the event extraction impact of using paths of all possible lengths as key context dependencies beyond using only the shortest paths in our system. We achieved a 46.38% F-score in the CG task (ranking 3rd) and a 48.93% F-score in the GE task (ranking 4th). After BioNLP-ST 2013 We explored three ways to further extend our event extraction system in our previously published work: (1) We allow non-essential nodes to be skipped, and incorporated a node skipping penalty into the subgraph distance function of our approximate subgraph matching algorithm. (2) Instead of assigning a unified subgraph distance threshold to all patterns of an event type, we learned a customized threshold for each pattern. (3) We implemented the well-known Empirical Risk Minimization (ERM) principle to optimize the event pattern set by balancing prediction errors on training data against regularization. When evaluated on the official GE task test data, these extensions help to improve the extraction precision from 62% to 65%. However, the overall F-score stays equivalent to the previous performance due to a 1% drop in recall. PMID:26551594

  19. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity.

    PubMed

    Nouvel, Laurent X; Sirand-Pugnet, Pascal; Marenda, Marc S; Sagné, Eveline; Barbe, Valérie; Mangenot, Sophie; Schenowitz, Chantal; Jacob, Daniel; Barré, Aurélien; Claverol, Stéphane; Blanchard, Alain; Citti, Christine

    2010-02-02

    While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and

  20. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity

    PubMed Central

    2010-01-01

    Background While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. Results The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. Conclusion Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow

  1. Optimisation of Ferrochrome Addition Using Multi-Objective Evolutionary and Genetic Algorithms for Stainless Steel Making via AOD Converter

    NASA Astrophysics Data System (ADS)

    Behera, Kishore Kumar; Pal, Snehanshu

    2018-03-01

    This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.

  2. The Influence of Major Life Events on Economic Attitudes in a World of Gene-Environment Interplay.

    PubMed

    Hatemi, Peter K

    2013-10-01

    The role of "genes" on political attitudes has gained attention across disciplines. However, person-specific experiences have yet to be incorporated into models that consider genetic influences. Relying on a gene-environment interplay approach, this study explicates how life-events, such as losing one's job or suffering a financial loss, influence economic policy attitudes. The results indicate genetic and environmental variance on support for unions, immigration, capitalism, socialism and property tax is moderated by financial risks. Changes in the magnitude of genetic influences, however, are temporary. After two years, the phenotypic effects of the life events remain on most attitudes, but changes in the sources of individual differences do not. Univariate twin models that estimate the independent contributions of genes and environment on the variation of attitudes appear to provide robust baseline indicators of sources of individual differences. These estimates, however, are not event or day specific. In this way, genetic influences add stability, while environment cues change, and this process is continually updated.

  3. Evolution caused by extreme events.

    PubMed

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  4. Investigating European genetic history through computer simulations.

    PubMed

    Currat, Mathias; Silva, Nuno M

    2013-01-01

    The genetic diversity of Europeans has been shaped by various evolutionary forces including their demographic history. Genetic data can thus be used to draw inferences on the population history of Europe using appropriate statistical methods such as computer simulation, which constitutes a powerful tool to study complex models. Here, we focus on spatially explicit simulation, a method which takes population movements over space and time into account. We present its main principles and then describe a series of studies using this approach that we consider as particularly significant in the context of European prehistory. All simulation studies agree that ancient demographic events played a significant role in the establishment of the European gene pool; but while earlier works support a major genetic input from the Near East during the Neolithic transition, the most recent ones revalue positively the contribution of pre-Neolithic hunter-gatherers and suggest a possible impact of very ancient demographic events. This result of a substantial genetic continuity from pre-Neolithic times to the present challenges some recent studies analyzing ancient DNA. We discuss the possible reasons for this discrepancy and identify future lines of investigation in order to get a better understanding of European evolution.

  5. Genetic secrets: Protecting privacy and confidentiality in the genetic era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, M.A.

    1998-07-01

    Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emergingmore » genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.« less

  6. 45 CFR 146.122 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-degree relatives include parents, spouses, siblings, and children. (B) Second-degree relatives include... include great-great grandparents, great-great grandchildren, and children of first cousins. (3) Genetic... a health care professional with appropriate training and expertise in the field of medicine involved...

  7. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.

    PubMed

    Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva

    2018-01-01

    All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.

  8. Child exposure to serious life events, COMT, and aggression: Testing differential susceptibility theory.

    PubMed

    Hygen, Beate Wold; Belsky, Jay; Stenseng, Frode; Lydersen, Stian; Guzey, Ismail Cuneyt; Wichstrøm, Lars

    2015-08-01

    Both genetic and environmental factors contribute to individual differences in aggression. Catechol-O-methyltransferase Val158Met (COMT), a common, functional polymorphism, has been implicated in aggression and aggression traits, as have childhood experiences of adversity. It is unknown whether these effects are additive or interactional and, in the case of interaction, whether they conform to a diathesis-stress or differential susceptibility model. We examined Gene × Environment interactions between COMT and serious life events on measures of childhood aggression and contrasted these 2 models. The sample was composed of community children (N = 704); 355 were boys, and the mean age was 54.8 months (SD = 3.0). The children were genotyped for COMT rs4680 and assessed for serious life events and by teacher-rated aggression. Regression analysis showed no main effects of COMT and serious life events on aggression. However, a significant interactive effect of childhood serious life events and COMT genotype was observed: Children who had faced many serious life events and were Val homozygotes exhibited more aggression (p = .02) than did their Met-carrying counterparts. Notably, in the absence of serious life events, Val homozygotes displayed significantly lower aggression scores than did Met carriers (p = .03). When tested, this constellation of findings conformed to the differential susceptibility hypothesis: In this case, Val homozygotes are more malleable to the effect of serious life events on aggression and not simply more vulnerable to the negative effect of having experienced many serious life events. (c) 2015 APA, all rights reserved).

  9. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    PubMed

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  10. Biological Extreme Events - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Gutschick, V. P.

    2010-12-01

    Biological extreme events span wide ranges temporally and spatially and in type - population dieoffs, extinctions, ecological reorganizations, changes in biogeochemical fluxes, and more. Driving variables consist in meteorology, tectonics, orbital changes, anthropogenic changes (land-use change, species introductions, reactive N injection into the biosphere), and evolution (esp. of diseases). However, the mapping of extremes in the drivers onto biological extremes as organismal responses is complex, as laid out originally in the theoretical framework of Gutschick and BassiriRad (New Phytologist [2003] 100:21-42). Responses are nonlinear and dependent on (mostly unknown and) complex temporal sequences - often of multiple environmental variables. The responses are species- and genotype specific. I review extreme events over from past to present over wide temporal scales, while noting that they are not wholly informative of responses to the current and near-future drivers for at least two reasons: 1) the current combination of numerous environmental extremes - changes in CO2, temperature, precipitation, reactive N, land fragmentation, O3, etc. -is unprecedented in scope, and 2) adaptive genetic variation for organismal responses is constrained by poorly-characterized genetic structures (in organisms and populations) and by loss of genetic variation by genetic drift over long periods. We may expect radical reorganizations of ecosystem and biogeochemical functions. These changes include many ecosystem services in flood control, crop pollination and insect/disease control, C-water-mineral cycling, and more, as well as direct effects on human health. Predictions of such changes will necessarily be very weak in the critical next few decades, given the great deal of observation, experimentation, and theory construction that will be necessary, on both organisms and drivers. To make the research efforts most effective will require extensive, insightful planning, beginning

  11. Patient Education and Informed Consent for Preimplantation Genetic Diagnosis: Health Literacy for Genetics and Assisted Reproductive Technology

    PubMed Central

    McGowan, Michelle L.; Burant, Chris; Moran, Rocio; Farrell, Ruth

    2013-01-01

    Introduction Innovative applications of genetic testing have emerged within the field of assisted reproductive technology through preimplantation genetic diagnosis (PGD). As in all forms of genetic testing, adequate genetic counseling and informed consent are critical. Despite the growing recognition of the role of informed consent in genetic testing, there is little data available about how this process occurs in the setting of PGD. Methods A cross sectional study of IVF clinics offering PGD in the U.S. was conducted to assess patient education and informed consent practices. Descriptive data were collected with a self-administered survey instrument. Results More than half of the clinics offering PGD required genetic counseling prior to PGD (56%). Genetic counseling was typically performed by certified genetic counselors (84 %). Less than half (37%) of the clinics required a separate informed consent process for genetic testing of embryonic cells. At a majority of those clinics requiring a separate informed consent for genetic testing (54%), informed consent for PGD and genetic testing took place as a single event before beginning IVF procedures. Conclusions The results suggest that patient education and informed consent practices for PGD have yet to be standardized. These findings warrant the establishment of professional guidelines for patient education and informed consent specific to embryonic genetic testing. PMID:19652605

  12. Multivariate Genetic Correlates of the Auditory Paired Stimuli-Based P2 Event-Related Potential in the Psychosis Dimension From the BSNIP Study.

    PubMed

    Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D

    2016-05-01

    The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For

  13. Emergency preparedness for genetics centers, laboratories, and patients: the Southeast Region Genetics Collaborative strategic plan.

    PubMed

    Andersson, Hans C; Perry, William; Bowdish, Bruce; Floyd-Browning, Phaidra

    2011-10-01

    Emergencies occur unpredictably and interrupt routine genetic care. The events after hurricanes Katrina and Rita have led to the recognition that a coherent plan is necessary to ensure continuity of operations for genetic centers and laboratories, including newborn screening. No geographic region is protected from the effects of a variety of potential emergencies. Regional and national efforts have begun to address the need for such preparedness, but a plan for ensuring continuity of operations by creating an emergency preparedness plan must be developed for each genetic center and laboratory, with attention to the interests of patients. This article describes the first steps in development of an emergency preparedness plan for individual centers.

  14. The Frasnian-Famennian mass killing event(s), methods of identification and evaluation

    NASA Technical Reports Server (NTRS)

    Geldsetzer, H. H. J.

    1988-01-01

    The absence of an abnormally high number of earlier Devonian taxa from Famennian sediments was repeatedly documented and can hardly be questioned. Primary recognition of the event(s) was based on paleontological data, especially common macrofossils. Most paleontologists place the disappearance of these common forms at the gigas/triangularis contact and this boundary was recently proposed as the Frasnian-Famennian (F-F) boundary. Not unexpectedly, alternate F-F positions were suggested caused by temporary Frasnian survivors or sudden post-event radiations of new forms. Secondary supporting evidence for mass killing event(s) is supplied by trace element and stable isotope geochemistry but not with the same success as for the K/T boundary, probably due to additional 300 ma of tectonic and diagenetic overprinting. Another tool is microfacies analysis which is surprisingly rarely used even though it can explain geochemical anomalies or paleontological overlap not detectable by conventional macrofacies analysis. The combination of microfacies analysis and geochemistry was applied at two F-F sections in western Canada and showed how interdependent the two methods are. Additional F-F sections from western Canada, western United States, France, Germany and Australia were sampled or re-sampled and await geochemical/microfacies evaluation.

  15. When are pathogen genome sequences informative of transmission events?

    PubMed Central

    Ferguson, Neil; Jombart, Thibaut

    2018-01-01

    Recent years have seen the development of numerous methodologies for reconstructing transmission trees in infectious disease outbreaks from densely sampled whole genome sequence data. However, a fundamental and as of yet poorly addressed limitation of such approaches is the requirement for genetic diversity to arise on epidemiological timescales. Specifically, the position of infected individuals in a transmission tree can only be resolved by genetic data if mutations have accumulated between the sampled pathogen genomes. To quantify and compare the useful genetic diversity expected from genetic data in different pathogen outbreaks, we introduce here the concept of ‘transmission divergence’, defined as the number of mutations separating whole genome sequences sampled from transmission pairs. Using parameter values obtained by literature review, we simulate outbreak scenarios alongside sequence evolution using two models described in the literature to describe transmission divergence of ten major outbreak-causing pathogens. We find that while mean values vary significantly between the pathogens considered, their transmission divergence is generally very low, with many outbreaks characterised by large numbers of genetically identical transmission pairs. We describe the impact of transmission divergence on our ability to reconstruct outbreaks using two outbreak reconstruction tools, the R packages outbreaker and phybreak, and demonstrate that, in agreement with previous observations, genetic sequence data of rapidly evolving pathogens such as RNA viruses can provide valuable information on individual transmission events. Conversely, sequence data of pathogens with lower mean transmission divergence, including Streptococcus pneumoniae, Shigella sonnei and Clostridium difficile, provide little to no information about individual transmission events. Our results highlight the informational limitations of genetic sequence data in certain outbreak scenarios, and

  16. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  17. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    PubMed

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions

  18. Genetic variability among power athletes: The stronger vs. the faster.

    PubMed

    Ben-Zaken, Sigal; Eliakim, Alon; Nemet, Dan; Meckel, Yoav

    2016-01-29

    Athletic events can be divided into "aerobic-type event" or "anaerobic-type event" based on energetic usage. Power, speed, and strength, also used to specify sports subtypes. Weightlifters, sprinters, and jumpers feature high-intensity efforts lasting few seconds. However, their performance requires different proportions of power, speed, and strength. The aim of the current study was to examine genetic differences between subtypes of anaerobic athletes in 3 genetic variants: ACTN3 R577X, which is associated with muscle contractions, AGT Met235Thr which is associated with muscle growth, and PPARD T/C, which is associated with aerobic capacity. 71 sprinters and jumpers (S/J), 54 weightlifters (WL) and 86 controls participated in the study. Genomic DNA was extracted from peripheral blood using standard protocol. Genotypes were determined using Taqman allelic discrimination assay. ACTN3 RR-genotype frequency was significantly higher among S/J (39.4%) compared to WL (22.2%) and controls (18.6%). AGT ThrThr-genotype was significantly higher among WL (25.9%) compared to S/J (4.2%) and controls (12.8%). PPARD T294C genotype frequencies did not differ between groups. The results suggest that there may be a specific genetic makeup enabling an athlete to excel in speed-oriented events (sprints), rather than in strength-oriented events (weightlifting).

  19. Genetics Home Reference: bladder cancer

    MedlinePlus

    ... events in bladder tumors. Researchers believe that several genes that control cell growth and division are probably located on chromosome 9 . ... Kwast TH, Zwarthoff EC, Radvanyi F. Novel fibroblast growth factor receptor ... identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002 Dec;10( ...

  20. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer.

    PubMed

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-11-01

    Adenoid cystic carcinoma of the breast is a rare histological type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Although the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intratumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by the MYB-NFIB fusion gene and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple

  1. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer

    PubMed Central

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-01-01

    Adenoid cystic carcinoma of the breast is a rare histologic type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Whilst the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intra-tumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by MYB-NFIB fusion gene, and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple

  2. Early events in Agrobacterium-mediated genetic transformation of citrus explants.

    PubMed

    Peña, Leandro; Pérez, Rosa M; Cervera, Magdalena; Juárez, José A; Navarro, Luis

    2004-07-01

    Genetic transformation of plants relies on two independent but concurrent processes: integration of foreign DNA into plant cells and regeneration of whole plants from these transformed cells. Cell competence for regeneration and for transformation does not always fall into the same cell type/developmental stage, and this is one of the main causes of the so-called recalcitrance for transformation of certain plant species. In this study, a detailed examination of the first steps of morphogenesis from citrus explants after co-cultivation with Agrobacterium tumefaciens was performed, and an investigation into which cells and tissues are competent for regeneration and transformation was carried out. Moreover, the role of phytohormones in the co-cultivation medium as possible enhancers of gene transfer was also studied. A highly responsive citrus genotype and well-established culture conditions were used to perform a histological analysis of morphogenesis and cell competence for transformation after co-cultivation of citrus epicotyl segments with A. tumefaciens. In addition, the role of phytohormones as transformation enhancers was investigated by flow cytometry. It is demonstrated that cells competent for transformation are located in the newly formed callus growing from the cambial ring. Conditions conducive to further development of this callus, such as treatment of explants in a medium rich in auxins, resulted in a more pronounced formation of cambial callus and a slower shoot regeneration process, both in Agrobacterium-inoculated and non-inoculated explants. Furthermore, co- cultivation in a medium rich in auxins caused a significant increase in the rate of actively dividing cells in S-phase, the stage in which cells are more prone to integrate foreign DNA. Use of proper co-cultivation medium and conditions led to a higher number of stably transformed cells and to an increase in the final number of regenerated transgenic plants.

  3. Exploring the Potential of Direct-To-Consumer Genomic Test Data for Predicting Adverse Drug Events.

    PubMed

    Zhang, Patrick M; Sarkar, Indra Neil

    2018-01-01

    Recent technological advancements in genetic testing and the growing accessibility of public genomic data provide researchers with a unique avenue to approach personalized medicine. This feasibility study examined the potential of direct-to-consumer (DTC) genomic tests (focusing on 23andMe) in research and clinical applications. In particular, we combined population genetics information from the Personal Genome Project with adverse event reports from AEOLUS and pharmacogenetic information from PharmGKB. Primarily, associations between drugs based on co-occurring genetic variations and associations between variants and adverse events were used to assess the potential for leveraging single nucleotide polymorphism information from 23andMe. The results of this study suggest potential clinical uses of DTC tests in light of potential drug interactions. Furthermore, the results suggest great potential for analyzing associations at a population level to facilitate knowledge discovery in the realm of predicting adverse drug events.

  4. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  5. Computational challenges in modeling gene regulatory events.

    PubMed

    Pataskar, Abhijeet; Tiwari, Vijay K

    2016-10-19

    Cellular transcriptional programs driven by genetic and epigenetic mechanisms could be better understood by integrating "omics" data and subsequently modeling the gene-regulatory events. Toward this end, computational biology should keep pace with evolving experimental procedures and data availability. This article gives an exemplified account of the current computational challenges in molecular biology.

  6. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  7. The Influence of Major Life Events on Economic Attitudes in a World of Gene-Environment Interplay

    PubMed Central

    Hatemi, Peter K.

    2014-01-01

    The role of “genes” on political attitudes has gained attention across disciplines. However, person-specific experiences have yet to be incorporated into models that consider genetic influences. Relying on a gene-environment interplay approach, this study explicates how life-events, such as losing one’s job or suffering a financial loss, influence economic policy attitudes. The results indicate genetic and environmental variance on support for unions, immigration, capitalism, socialism and property tax is moderated by financial risks. Changes in the magnitude of genetic influences, however, are temporary. After two years, the phenotypic effects of the life events remain on most attitudes, but changes in the sources of individual differences do not. Univariate twin models that estimate the independent contributions of genes and environment on the variation of attitudes appear to provide robust baseline indicators of sources of individual differences. These estimates, however, are not event or day specific. In this way, genetic influences add stability, while environment cues change, and this process is continually updated. PMID:24860199

  8. Distinct genetic evolution patterns of relapsing diffuse large B-cell lymphoma revealed by genome-wide copy number aberration and targeted sequencing analysis.

    PubMed

    Juskevicius, D; Lorber, T; Gsponer, J; Perrina, V; Ruiz, C; Stenner-Liewen, F; Dirnhofer, S; Tzankov, A

    2016-12-01

    Recurrences of diffuse large B-cell lymphomas (DLBCL) result in significant morbidity and mortality, but their underlying genetic and biological mechanisms are unclear. Clonal relationship in DLBCL relapses so far is mostly addressed by the investigation of immunoglobulin (IG) rearrangements, therefore, lacking deeper insights into genome-wide lymphoma evolution. We studied mutations and copy number aberrations in 20 paired relapsing and 20 non-relapsing DLBCL cases aiming to test the clonal relationship between primaries and relapses to track tumors' genetic evolution and to investigate the genetic background of DLBCL recurrence. Three clonally unrelated DLBCL relapses were identified (15%). Also, two distinct patterns of genetic evolution in clonally related relapses were detected as follows: (1) early-divergent/branching evolution from a common progenitor in 6 patients (30%), and (2) late-divergent/linear progression of relapses in 11 patients (65%). Analysis of recurrent genetic events identified potential early drivers of lymphomagenesis (KMT2D, MYD88, CD79B and PIM1). The most frequent relapse-specific events were additional mutations in KMT2D and alterations of MEF2B. SOCS1 mutations were exclusive to non-relapsing DLBCL, whereas primaries of relapsing DLBCL more commonly displayed gains of 10p15.3-p12.1 containing the potential oncogenes PRKCQ, GATA3, MLLT10 and ABI1. Altogether, our study expands the knowledge on clonal relationship, genetic evolution and mutational basis of DLBCL relapses.

  9. Identification of Novel Genetic Markers of Breast Cancer Survival

    PubMed Central

    Guo, Qi; Schmidt, Marjanka K.; Kraft, Peter; Canisius, Sander; Chen, Constance; Khan, Sofia; Tyrer, Jonathan; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Michailidou, Kyriaki; Lush, Michael; Kar, Siddhartha; Beesley, Jonathan; Dunning, Alison M.; Shah, Mitul; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Lambrechts, Diether; Weltens, Caroline; Leunen, Karin; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Blomqvist, Carl; Aittomäki, Kristiina; Fagerholm, Rainer; Muranen, Taru A.; Couch, Fergus J.; Olson, Janet E.; Vachon, Celine; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Broeks, Annegien; Hogervorst, Frans B.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Hopper, John L.; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; van den Ouweland, Ans M. W.; Marme, Federik; Schneeweiss, Andreas; Yang, Rongxi; Burwinkel, Barbara; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Holleczek, Bernd; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Li, Jingmei; Brand, Judith S.; Humphreys, Keith; Devilee, Peter; Tollenaar, Rob A. E. M.; Seynaeve, Caroline; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Mariani, Paolo; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Chenevix-Trench, Georgia; Balleine, Rosemary; Phillips, Kelly-Anne; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Hamann, Ute; Kabisch, Maria; Ulmer, Hans Ulrich; Rüdiger, Thomas; Margolin, Sara; Kristensen, Vessela; Nord, Silje; Evans, D. Gareth; Abraham, Jean E.; Earl, Helena M.; Hiller, Louise; Dunn, Janet A.; Bowden, Sarah; Berg, Christine; Campa, Daniele; Diver, W. Ryan; Gapstur, Susan M.; Gaudet, Mia M.; Hankinson, Susan E.; Hoover, Robert N.; Hüsing, Anika; Kaaks, Rudolf; Machiela, Mitchell J.; Willett, Walter; Barrdahl, Myrto; Canzian, Federico; Chin, Suet-Feung; Caldas, Carlos; Hunter, David J.; Lindstrom, Sara; García-Closas, Montserrat; Hall, Per; Easton, Douglas F.; Eccles, Diana M.; Rahman, Nazneen; Nevanlinna, Heli; Pharoah, Paul D. P.

    2015-01-01

    Background: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer–specific survival. Methods: We conducted a large meta-analysis of studies in populations of European ancestry, including 37954 patients with 2900 deaths from breast cancer. Each study had been genotyped for between 200000 and 900000 single nucleotide polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common reference panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen receptor (ER)–negative patients (920 events) and 23059 ER-positive patients (1333 events). All statistical tests were two-sided. Results: We identified one new locus (rs2059614 at 11q24.2) associated with survival in ER-negative breast cancer cases (hazard ratio [HR] = 1.95, 95% confidence interval [CI] = 1.55 to 2.47, P = 1.91 x 10–8). Genotyping a subset of 2113 case patients, of which 300 were ER negative, provided supporting evidence for the quality of the imputation. The association in this set of case patients was stronger for the observed genotypes than for the imputed genotypes. A second locus (rs148760487 at 2q24.2) was associated at genome-wide statistical significance in initial analyses; the association was similar in ER-positive and ER-negative case patients. Here the results of genotyping suggested that the finding was less robust. Conclusions: This is currently the largest study investigating genetic variation associated with breast cancer survival. Our results have potential clinical implications, as they confirm that germline genotype can provide prognostic information in addition to standard tumor prognostic factors. PMID:25890600

  10. Inferences of Recent and Ancient Human Population History Using Genetic and Non-Genetic Data

    ERIC Educational Resources Information Center

    Kitchen, Andrew

    2008-01-01

    I have adopted complementary approaches to inferring human demographic history utilizing human and non-human genetic data as well as cultural data. These complementary approaches form an interdisciplinary perspective that allows one to make inferences of human history at varying timescales, from the events that occurred tens of thousands of years…

  11. Genetics educational needs in China: physicians' experience and knowledge of genetic testing.

    PubMed

    Li, Jing; Xu, Tengda; Yashar, Beverly M

    2015-09-01

    The aims of this study were to explore the relationship between physicians' knowledge and utilization of genetic testing and to explore genetics educational needs in China. An anonymous survey about experience, attitudes, and knowledge of genetic testing was conducted among physicians affiliated with Peking Union Medical College Hospital during their annual health evaluation. A personal genetics knowledge score was developed and predictors of personal genetics knowledge score were evaluated. Sixty-four physicians (33% male) completed the survey. Fifty-eight percent of them had used genetic testing in their clinical practice. Using a 4-point scale, mean knowledge scores of six common genetic testing techniques ranged from 1.7 ± 0.9 to 2.4 ± 1.0, and the average personal genetics knowledge score was 2.1 ± 0.8. In regression analysis, significant predictors of higher personal genetics knowledge score were ordering of genetic testing, utilization of pedigrees, higher medical degree, and recent genetics training (P < 0.05). Sixty-six percent of physicians indicated a desire for specialized genetic services, and 84% reported a desire for additional genetics education. This study demonstrated a sizable gap between Chinese physicians' knowledge and utilization of genetic testing. Participants had high self-perceived genetics educational needs. Development of genetics educational platforms is both warranted and desired in China.Genet Med 17 9, 757-760.

  12. Additive influence of genetic predisposition and conventional risk factors in the incidence of coronary heart disease: a population-based study in Greece

    PubMed Central

    Yiannakouris, Nikos; Katsoulis, Michail; Trichopoulou, Antonia; Ordovas, Jose M; Trichopoulos, Dimitrios

    2014-01-01

    Objectives An additive genetic risk score (GRS) for coronary heart disease (CHD) has previously been associated with incident CHD in the population-based Greek European Prospective Investigation into Cancer and nutrition (EPIC) cohort. In this study, we explore GRS-‘environment’ joint actions on CHD for several conventional cardiovascular risk factors (ConvRFs), including smoking, hypertension, type-2 diabetes mellitus (T2DM), body mass index (BMI), physical activity and adherence to the Mediterranean diet. Design A case–control study. Setting The general Greek population of the EPIC study. Participants and outcome measures 477 patients with medically confirmed incident CHD and 1271 controls participated in this study. We estimated the ORs for CHD by dividing participants at higher or lower GRS and, alternatively, at higher or lower ConvRF, and calculated the relative excess risk due to interaction (RERI) as a measure of deviation from additivity. Results The joint presence of higher GRS and higher risk ConvRF was in all instances associated with an increased risk of CHD, compared with the joint presence of lower GRS and lower risk ConvRF. The OR (95% CI) was 1.7 (1.2 to 2.4) for smoking, 2.7 (1.9 to 3.8) for hypertension, 4.1 (2.8 to 6.1) for T2DM, 1.9 (1.4 to 2.5) for lower physical activity, 2.0 (1.3 to 3.2) for high BMI and 1.5 (1.1 to 2.1) for poor adherence to the Mediterranean diet. In all instances, RERI values were fairly small and not statistically significant, suggesting that the GRS and the ConvRFs do not have effects beyond additivity. Conclusions Genetic predisposition to CHD, operationalised through a multilocus GRS, and ConvRFs have essentially additive effects on CHD risk. PMID:24500614

  13. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    PubMed

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  14. Comments on event driven animation

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    1987-01-01

    Event driven animation provides a general method of describing controlling values for various computer animation techniques. A definition and comments are provided on genralizing motion description with events. Additional comments are also provided about the implementation of twixt.

  15. Characterization of large structural genetic mosaicism in human autosomes.

    PubMed

    Machiela, Mitchell J; Zhou, Weiyin; Sampson, Joshua N; Dean, Michael C; Jacobs, Kevin B; Black, Amanda; Brinton, Louise A; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M; Gaudet, Mia M; Haiman, Christopher A; Hankinson, Susan E; Hartge, Patricia; Henderson, Brian E; Hong, Yun-Chul; Hosgood, H Dean; Hsiung, Chao A; Hu, Wei; Hunter, David J; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M; Matsuo, Keitaro; Olson, Sara H; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C; Albanes, Demetrius; Aldrich, Melinda C; Amos, Christopher; Amundadottir, Laufey T; Berndt, Sonja I; Blot, William J; Bock, Cathryn H; Bracci, Paige M; Burdett, Laurie; Buring, Julie E; Butler, Mary A; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C; Cook, Michael B; Cullen, Michael; Davis, Faith G; Ding, Ti; Duell, Eric J; Epstein, Caroline G; Fan, Jin-Hu; Figueroa, Jonine D; Fraumeni, Joseph F; Freedman, Neal D; Fuchs, Charles S; Gao, Yu-Tang; Gapstur, Susan M; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J Michael; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goldin, Lynn; Goldstein, Alisa M; Greene, Mark H; Hallmans, Goran; Harris, Curtis C; Henriksson, Roger; Holly, Elizabeth A; Hoover, Robert N; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M; Malats, Nuria; McGlynn, Katherine A; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G; Rajaraman, Preetha; Real, Francisco X; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M; Savage, Sharon A; Schwartz, Ann G; Schwartz, Kendra L; Sesso, Howard D; Severi, Gianluca; Silverman, Debra T; Spitz, Margaret R; Stevens, Victoria L; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R; Teras, Lauren R; Tobias, Geoffrey S; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J; Wheeler, William; White, Emily; Wiencke, John K; Wolpin, Brian M; Wu, Xifeng; Wunder, Jay S; Yu, Kai; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G; de Andrade, Mariza; Barnes, Kathleen C; Beaty, Terri H; Bierut, Laura J; Desch, Karl C; Doheny, Kimberly F; Feenstra, Bjarke; Ginsburg, David; Heit, John A; Kang, Jae H; Laurie, Cecilia A; Li, Jun Z; Lowe, William L; Marazita, Mary L; Melbye, Mads; Mirel, Daniel B; Murray, Jeffrey C; Nelson, Sarah C; Pasquale, Louis R; Rice, Kenneth; Wiggs, Janey L; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A; Laurie, Cathy C; Caporaso, Neil E; Yeager, Meredith; Chanock, Stephen J

    2015-03-05

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska

    USGS Publications Warehouse

    Ramstad, K.M.; Woody, C.A.; Sage, G.K.; Allendorf, F.W.

    2004-01-01

    Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sock-eye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.

  17. Genetic structure of Micromeria (Lamiaceae) in Tenerife, the imprint of geological history and hybridization on within-island diversification.

    PubMed

    Puppo, Pamela; Curto, Manuel; Meimberg, Harald

    2016-06-01

    Geological history of oceanic islands can have a profound effect on the evolutionary history of insular flora, especially in complex islands such as Tenerife in the Canary Islands. Tenerife results from the secondary connection of three paleo-islands by a central volcano, and other geological events that further shaped it. This geological history has been shown to influence the phylogenetic history of several taxa, including genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals representing the eight species of Micromeria present in Tenerife, this study aims to assess the genetic diversity and structure of these species and its relation with the geological events on the island. In addition, we evaluate the extent of hybridization among species and discuss its influence on the speciation process. We found that the species restricted to the paleo-islands present lower levels of genetic diversity but the highest levels of genetic differentiation suggesting that their ranges might have contracted over time. The two most widespread species in the island, M. hyssopifolia and M. varia , present the highest genetic diversity levels and a genetic structure that seems correlated with the geological composition of the island. Samples from M. hyssopifolia from the oldest paleo-island, Adeje, appear as distinct while samples from M. varia segregate into two main clusters corresponding to the paleo-islands of Anaga and Teno. Evidence of hybridization and intraspecific migration between species was found. We argue that species boundaries would be retained despite hybridization in response to the habitat's specific conditions causing postzygotic isolation and preserving morphological differentiation.

  18. Influence of geology and human activity on the genetic structure and demography of the Oriental fire-bellied toad (Bombina orientalis).

    PubMed

    Fong, Jonathan J; Li, Pi-Peng; Yang, Bao-Tian; Zhou, Zheng-Yan; Leaché, Adam D; Min, Mi-Sook; Waldman, Bruce

    2016-04-01

    The Oriental fire-bellied toad (Bombina orientalis) is a commonly used study organism, but knowledge of its evolutionary history is incomplete. We analyze sequence data from four genetic markers (mtDNA genes encoding cytochrome c oxidase subunit I, cytochrome b, and 12S-16S rRNA; nuDNA gene encoding recombination activating gene 2) from 188 individuals across its range in Northeast Asia to elucidate phylogeographic patterns and to identify the historic events that shaped its evolutionary history. Although morphologically similar across its range, B. orientalis exhibits phylogeographic structure, which we infer was shaped by geologic, climatic, and anthropogenic events. Phylogenetic and divergence-dating analyses recover four genetically distinct groups of B. orientalis: Lineage 1-Shandong Province and Beijing (China); Lineage 2-Bukhan Mountain (Korea); Lineage 3-Russia, Northeast China, and northern South Korea; and Lineage 4-South Korea. Lineage 2 was previously unknown. Additionally, we discover an area of secondary contact on the Korean Peninsula, and infer a single dispersal event as the origin of the insular Jeju population. Skyline plots estimate different population histories for the four lineages: Lineages 1 and 2 experienced population decreases, Lineage 3 remained stable, while Lineage 4 experienced a sharp increase during the Holocene. The timing of the population expansion of Lineage 4 coincides with the advent of rice cultivation, which may have facilitated the increase in population size by providing additional breeding habitat. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip.

    PubMed

    Trevors, J T

    1996-07-01

    This review examines interactions between DNA and soil with an emphasis on the persistence and stability of DNA in soil. The role of DNA in genetic transformation in soil microorganisms will also be discussed. In addition, a postulated mechanism for stabilization and elongation/assembly of primitive genetic material and the role of soil particles, salt concentrations, temperature cycling and crystal formation is examined.

  20. Research Issues in Genetic Testing of Adolescents for Obesity

    PubMed Central

    Segal, Mary E.; Sankar, Pamela; Reed, Danielle R.

    2006-01-01

    Obesity is often established in adolescence, and advances are being made in identifying its genetic underpinnings. We examine issues related to the eventual likelihood of genetic tests for obesity targeted to adolescents: family involvement; comprehension of the test’s meaning; how knowledge of genetic status may affect psychological adaptation; minors’ ability to control events; parental/child autonomy; ability to make informed medical decisions; self-esteem; unclear distinctions between early/late onset for this condition; and social stigmatization. The public health arena will be important in educating families about possible future genetic tests for obesity. PMID:15478685

  1. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  2. Short communication: influence of composite casein genotypes on additive genetic variation of milk production traits and coagulation properties in Holstein-Friesian cows.

    PubMed

    Penasa, M; Cassandro, M; Pretto, D; De Marchi, M; Comin, A; Chessa, S; Dal Zotto, R; Bittante, G

    2010-07-01

    The aim of the study was to quantify the effects of composite beta- and kappa-casein (CN) genotypes on genetic variation of milk coagulation properties (MCP); milk yield; fat, protein, and CN contents; somatic cell score; pH; and titratable acidity (TA) in 1,042 Italian Holstein-Friesian cows. Milk coagulation properties were defined as rennet coagulation time (RCT) and curd firmness (a(30)). Variance components were estimated using 2 animal models: model 1 included herd, days in milk, and parity as fixed effects and animal and residual as random effects, and model 2 was model 1 with the addition of composite beta- and kappa-CN genotype as a fixed effect. Genetic correlations between RCT and a(30) and between these traits and milk production traits were obtained with bivariate analyses, based on the same models. The inclusion of casein genotypes led to a decrease of 47, 68, 18, and 23% in the genetic variance for RCT, a(30), pH, and TA, respectively, and less than 6% for other traits. Heritability of RCT and a(30) decreased from 0.248 to 0.143 and from 0.123 to 0.043, respectively. A moderate reduction was found for pH and TA, whereas negligible changes were detected for other milk traits. Estimates of genetic correlations were comparable between the 2 models. Results show that composite beta- and kappa-CN genotypes are important for RCT and a(30) but cannot replace the recording of MCP themselves. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Computational challenges in modeling gene regulatory events

    PubMed Central

    Pataskar, Abhijeet; Tiwari, Vijay K.

    2016-01-01

    ABSTRACT Cellular transcriptional programs driven by genetic and epigenetic mechanisms could be better understood by integrating “omics” data and subsequently modeling the gene-regulatory events. Toward this end, computational biology should keep pace with evolving experimental procedures and data availability. This article gives an exemplified account of the current computational challenges in molecular biology. PMID:27390891

  4. Molecular population genetics of inversion breakpoint regions in Drosophila pseudoobscura.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2013-07-08

    Paracentric inversions in populations can have a profound effect on the pattern and organization of nucleotide variability along a chromosome. Regions near inversion breakpoints are expected to have greater levels of differentiation because of reduced genetic exchange between different gene arrangements whereas central regions in the inverted segments are predicted to have lower levels of nucleotide differentiation due to greater levels of genetic flux among different karyotypes. We used the inversion polymorphism on the third chromosome of Drosophila pseudoobscura to test these predictions with an analysis of nucleotide diversity of 18 genetic markers near and away from inversion breakpoints. We tested hypotheses about how the presence of different chromosomal arrangements affects the pattern and organization of nucleotide variation. Overall, markers in the distal segment of the chromosome had greater levels of nucleotide heterozygosity than markers within the proximal segment of the chromosome. In addition, our results rejected the hypothesis that the breakpoints of derived inversions will have lower levels of nucleotide variability than breakpoints of ancestral inversions, even when strains with gene conversion events were removed. High levels of linkage disequilibrium were observed within all 11 breakpoint regions as well as between the ends of most proximal and distal breakpoints. The central region of the chromosome had the greatest levels of linkage disequilibrium compared with the proximal and distal regions because this is the region that experiences the highest level of recombination suppression. These data do not fully support the idea that genetic exchange is the sole force that influences genetic variation on inverted chromosomes.

  5. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model.

    PubMed

    Mazzuco, Tania L; Chabre, Olivier; Sturm, Nathalie; Feige, Jean-Jacques; Thomas, Michaël

    2006-02-01

    Aberrant expression of ectopic G protein-coupled receptors (GPCRs) in adrenal cortex tissue has been observed in several cases of ACTH-independent macronodular adrenal hyperplasias and adenomas associated with Cushing's syndrome. Although there is clear clinical evidence for the implication of these ectopic receptors in abnormal regulation of cortisol production, whether this aberrant GPCR expression is the cause or the consequence of the development of an adrenal hyperplasia is still an open question. To answer it, we genetically engineered primary bovine adrenocortical cells to have them express the gastric inhibitory polypeptide receptor. After transplantation of these modified cells under the renal capsule of adrenalectomized immunodeficient mice, tissues formed had their functional and histological characteristics analyzed. We observed the formation of an enlarged and hyperproliferative adenomatous adrenocortical tissue that secreted cortisol in a gastric inhibitory polypeptide-dependent manner and induced a mild Cushing's syndrome with hyperglycemia. Moreover, we show that tumor development was ACTH independent. Thus, a single genetic event, inappropriate expression of a nonmutated GPCR gene, is sufficient to initiate the complete phenotypic alterations that ultimately lead to the formation of a benign adrenocortical tumor.

  6. Relevance of genetics for conservation policies: the case of Minorcan cork oaks

    PubMed Central

    Lorenzo, Zaida; Burgarella, Concetta; de Heredia, Unai López; Lumaret, Roselyne; Petit, Rémy J.; Soto, Álvaro; Gil, Luis

    2009-01-01

    Background and Aims Marginal populations of widely distributed species can be of high conservation interest when they hold a significant or unique portion of the genetic diversity of the species. However, such genetic information is frequently lacking. Here the relevance of genetic surveys to develop efficient conservation strategies for such populations is illustrated using cork oak (Quercus suber) from Minorca (Balearic Islands, Spain) as a case study. Cork oak is highly endangered on the island, where no more than 67 individuals live in small, isolated stands in siliceous sites. As a consequence, it was recently granted protected status. Methods Two Bayesian clustering approaches were used to analyse the genetic structure of the Minorcan population, on the basis of nuclear microsatellite data. The different groups within the island were also compared with additional island and continental populations surrounding Minorca. Key Results Very high genetic diversity was found, with values comparable with those observed in continental parts of the species' range. Furthermore, the Minorcan oak stands were highly differentiated from one another and were genetically related to different continental populations of France and Spain. Conclusions The high levels of genetic diversity and inter-stands differentiation make Minorcan cork oak eligible for specific conservation efforts. The relationship of Minorcan stands to different continental populations in France and Spain probably reflects multiple colonization events. However, discrepancy between chloroplast DNA- and nuclear DNA-based groups does not support a simple scenario of recent introduction. Gene exchanges between neighbouring cork oak stands and with holm oak have created specific and exceptional genetic combinations. They also constitute a wide range of potential genetic resources for research on adaptation to new environmental conditions. Conservation guidelines that take into account these findings are provided

  7. Genetic secrets: Protecting privacy and confidentiality in the genetic era. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, M.A.

    1998-09-01

    Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emergingmore » genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.« less

  8. [The genetics of thrombosis in cancer].

    PubMed

    Soria, José Manuel; López, Sonia

    2015-01-01

    Venous thromboembolism (VTE) is a multifactorial and complex disease in which the interaction of genetic factors (estimated at 60%) and environmental factors (e.g., the use of oral contraceptives, pregnancy, immobility and cancer) determine the risk of thrombosis for each individual. In particular, the association between thrombosis and cancer is well established. Approximately 20% of patients with cancer develop a thromboembolic event over the course of the natural history of the tumor process, with thrombosis being the second leading cause of death for these patients. One of the greatest challenges currently facing the field of oncology is the identification of patients at high risk of VTE who can benefit from thromboprophylaxis. Currently, there is a VTE risk prediction model for patients with cancer (the Khorana risk score); however, its ability to identify patients at high risk is very low. It is important to note that this score, which is based on five clinical parameters, ignores the genetic variability associated with VTE risk. In this article, we present the preliminary results of the Oncothromb study, whose objective is to develop an individual VTE risk prediction model for patients with cancer who are treated with outpatient chemotherapy. Our model includes the clinical and genetic data on each patient (Thrombo inCode(®) genetic profile). Only by integrating multiple layers of biological information (clinical, plasmatic and genetic) we could obtain models that provide accurate information as to which patients are at high risk of developing a thromboembolic event associated with cancer so as to take appropriate prophylactic measures. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  9. Additional sex combs-like 1 belongs to the enhancer of trithorax and Polycomb Group and genetically interacts with Cbx2 in mice

    PubMed Central

    Fisher, C.L.; Lee, I.; Bloyer, S.; Bozza, S.; Chevalier, J.; Dahl, A; Bodner, C.; Helgason, C. D.; Hess, J.L.; Humphries, R.K.; Brock, H.W.

    2009-01-01

    The Additional sex combs (Asx) gene of Drosophila behaves genetically as an enhancer of trithorax and Polycomb (ETP) in displaying bidirectional homeotic phenotypes, suggesting that is required for maintenance of both activation and silencing of Hox genes. There are 3 murine homologs of Asx called Additional sex combs-like1, 2, and-3. Asxl1 is required for normal adult hematopoiesis; however its embryonic function is unknown. We used a targeted mouse mutant line Asxl1tm1Bc to determine if Asxl1 is required to silence and activate Hox genes in mice during axial patterning. The mutant embryos exhibit simultaneous anterior and posterior transformations of the axial skeleton, consistent with a role for Asxl1 in activation and silencing of Hox genes. Transformations of the axial skeleton are enhanced in compound mutant embryos for the Polycomb group gene M33/Cbx2. Hox a4, a7, and c8 are derepressed in Asxl1tm1Bc mutants in the antero-posterior axis, but Hox c8 expression is reduced in the brain of mutants, consistent with Asxl1 being required both for activation and repression of Hox genes. We discuss the genetic and molecular definition of ETPs, and suggest that the function of Asxl1 depends on its cellular context. PMID:19833123

  10. 29 CFR 2590.702-1 - Additional requirements prohibiting discrimination based on genetic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-degree relatives include parents, spouses, siblings, and children. (B) Second-degree relatives include... include great-great grandparents, great-great grandchildren, and children of first cousins. (3) Genetic... a health care professional with appropriate training and expertise in the field of medicine involved...

  11. Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations.

    PubMed

    Arciero, Elena; Kraaijenbrink, Thirsa; Asan; Haber, Marc; Mezzavilla, Massimo; Ayub, Qasim; Wang, Wei; Pingcuo, Zhaxi; Yang, Huanming; Wang, Jian; Jobling, Mark A; van Driem, George; Xue, Yali; de Knijff, Peter; Tyler-Smith, Chris

    2018-05-22

    We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India or Tibet at over 500,000 SNPs, and analysed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively-selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 (EPAS1) and Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1) loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.

  12. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense.

    PubMed

    Zhang, Wei; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2015-09-01

    Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  13. Molar intercuspal dimensions: genetic input to phenotypic variation.

    PubMed

    Townsend, G; Richards, L; Hughes, T

    2003-05-01

    Molecular studies indicate that epigenetic events are important in determining how the internal enamel epithelium folds during odontogenesis. Since this process of folding leads to the subsequent arrangement of cusps on molar teeth, we hypothesized that intercuspal distances of human molar teeth would display greater phenotypic variation but lower heritabilities than overall crown diameters. Intercuspal distances and maximum crown diameters were recorded from digitized images of dental casts in 100 monozygotic and 74 dizygotic twin pairs. Intercuspal distances displayed less sexual dimorphism in mean values but greater relative variability and fluctuating asymmetry than overall crown measures. Correlations between intercuspal distances and overall crown measures were low. Models incorporating only environmental effects accounted for observed variation in several intercuspal measures. For those intercuspal variables displaying significant additive genetic variance, estimates of heritability ranged from 43 to 79%, whereas those for overall crown size were higher generally, ranging from 60 to 82%. Our finding of high phenotypic variation in intercuspal distances with only moderate genetic contribution is consistent with substantial epigenetic influence on the progressive folding of the internal enamel epithelium, following formation of the primary and secondary enamel knots.

  14. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey.

    PubMed

    Glasset, Benjamin; Herbin, Sabine; Granier, Sophie A; Cavalié, Laurent; Lafeuille, Emilie; Guérin, Cyprien; Ruimy, Raymond; Casagrande-Magne, Florence; Levast, Marion; Chautemps, Nathalie; Decousser, Jean-Winoc; Belotti, Laure; Pelloux, Isabelle; Robert, Jerôme; Brisabois, Anne; Ramarao, Nalini

    2018-01-01

    Bacillus cereus is the 2nd most frequent bacterial agent responsible for food-borne outbreaks in France and the 3rd in Europe. In addition, local and systemic infections have been reported, mainly describing individual cases or single hospital setting. The real incidence of such infection is unknown and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We performed an extensive study of B. cereus strains isolated from patients and hospital environments from nine hospitals during a 5-year study, giving an overview of the consequences, sources and pathogenic patterns of B. cereus clinical infections. We demonstrated the occurrence of several hospital-cross-contaminations. Identical B. cereus strains were recovered from different patients and hospital environments for up to 2 years. We also clearly revealed the occurrence of inter hospital contaminations by the same strain. These cases represent the first documented events of nosocomial epidemy by B. cereus responsible for intra and inter hospitals contaminations. Indeed, contamination of different patients with the same strain of B. cereus was so far never shown. In addition, we propose a scheme for the characterization of B. cereus based on biochemical properties and genetic identification and highlight that main genetic signatures may carry a high pathogenic potential. Moreover, the characterization of antibiotic resistance shows an acquired resistance phenotype for rifampicin. This may provide indication to adjust the antibiotic treatment and care of patients.

  15. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties

  16. Fragmentation, Fusion, and Genetic Homogeneity in a Calcareous Sponge (Porifera, Calcarea).

    PubMed

    Padua, André; Leocorny, Pedro; Custódio, Márcio Reis; Klautau, Michelle

    2016-06-01

    Sessile marine invertebrates living on hard substrata usually present strategies such as size variations, longer life spans, fragmentation and fusion to occupy and compete for space. Calcareous sponges are usually small and short-lived, and some species are known to undergo frequent fragmentation and fusion events. However, whether fusion occurs only between genetically identical individuals remains unclear. We investigated the occurrence of chimaeras in the calcareous sponge Clathrina aurea by following the dynamics of fragmentation and fusion of 66 individuals in the field for up to 18 months and determined size variations and the life span of each individual. Microsatellites were used to determine whether fusion events occur among genetically different individuals. Growth and shrinkage of individuals were frequently observed, showing that size cannot be associated with age in C. aurea. The life span of the species ranged from 1 to 16 months (mean: 4.7 months). Short life spans and variable growth rates have been observed in other species of the class Calcarea. Fragmentation and fusion events were observed, but fusion events always occurred between genetically identical individuals, as has been suggested by graft experiments in adult Demospongiae and other Calcarea. These results suggest that at least C. aurea adults may have some mechanism to avoid chimaerism. © 2016 Wiley Periodicals, Inc.

  17. Event segmentation improves event memory up to one month later.

    PubMed

    Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M

    2017-08-01

    When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Treesearch

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  19. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.

    PubMed

    Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M

    2017-06-01

    Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.

  20. Temporal genetic change in the last remaining population of woolly mammoth

    PubMed Central

    Nyström, Veronica; Dalén, Love; Vartanyan, Sergey; Lidén, Kerstin; Ryman, Nils; Angerbjörn, Anders

    2010-01-01

    During the Late Pleistocene, the woolly mammoth (Mammuthus primigenius) experienced a series of local extinctions generally attributed to human predation or environmental change. Some small and isolated populations did however survive far into the Holocene. Here, we investigated the genetic consequences of the isolation of the last remaining mammoth population on Wrangel Island. We analysed 741 bp of the mitochondrial DNA and found a loss of genetic variation in relation to the isolation event, probably caused by a demographic bottleneck or a founder event. However, in spite of ca 5000 years of isolation, we did not detect any further loss of genetic variation. Together with the relatively high number of mitochondrial haplotypes on Wrangel Island near the final disappearance, this suggests a sudden extinction of a rather stable population. PMID:20356891

  1. Drosophila Neuronal Injury Follows a Temporal Sequence of Cellular Events Leading to Degeneration at the Neuromuscular Junction

    PubMed Central

    Lincoln, Barron L.; Alabsi, Sahar H.; Frendo, Nicholas; Freund, Robert; Keller, Lani C.

    2015-01-01

    Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments. PMID:26512206

  2. Genetic Alterations in Glioma

    PubMed Central

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes. PMID:24212656

  3. Association between serotonin 2A receptor genetic variations, stressful life events and suicide.

    PubMed

    Ghasemi, Asghar; Seifi, Morteza; Baybordi, Fatemeh; Danaei, Nasim; Samadi Rad, Bahram

    2018-06-05

    Life events are series of events that disrupt a person's psychological equilibrium and may enhance the development of a disorder such as suicide. Several studies have assessed a relationship between 5-hydroxytryptamine (serotonin) 2A receptor (5-HTR2A) gene polymorphisms with an increased risk of suicide. However, there has been no study about the association between three 5-HTR2A gene polymorphisms, A1438G (rs6311), T102C (rs6313) and C1354T (rs6314), suicide, stressful life, and loss events in a same time. Relatives of 191 suicide victims were interviewed using a semi-structured questionnaire designed according to Iranian culture. Venous blood was taken from all subjects for DNA isolation. 5-HTR2A polymorphisms in a total of 191 suicide victims and 218 healthy controls were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Chi-squared and Fisher's exact tests were used to compare genotype and allele frequencies between suicide and control groups. Correction for multiple comparisons was calculated using Bonferroni correction. There was a significant association between the 102 C/C genotype of 5-HTR2A gene and suicide (к 2  = 8.700, P = 0.012). Furthermore, we found that suicide victims with a 102 C/C genotype had a significantly higher number of stressful life and loss events (P < 0.05). Genotype and allele distributions of A1438G (rs6311) and C1354T (rs6314) polymorphisms of 5-HTR2A gene showed no differences between suicide victims and control participants and there was no association between genotype distribution and higher number of stressful life and loss events (P > 0.05). Our results suggest that C102T (rs6313) polymorphism of 5-HTR2A gene may be involved in the susceptibility to suicide, higher number of stressful life and loss events, but A1438G (rs6311) and C1354T (rs6314) polymorphisms of 5-HTR2A gene were not associated with suicide, higher number of stressful life and loss events. Copyright

  4. Concordance of nuclear and mitochondrial DNA markers in detecting a founder event in Lake Clark sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann; Habicht, Chris; Sage, G. Kevin; Seeb, James E.; Allendorf, Fred W.

    2007-01-01

    Genetic bottleneck effects can reduce genetic variation, persistence probability, and evolutionary potential of populations. Previous microsatellite analysis suggested a bottleneck associated with a common founding of sock-eye salmon Oncorhynchus nerka populations of Lake Clark, Alaska, about 100 to 400 generations ago. The common foundingevent occurred after the last glacial recession and resulted in reduced allelic diversity and strong divergence of Lake Clarksockeye salmon relative to neighboring Six Mile Lake and LakeIliamna populations. Here we used two additional genetic marker types (allozymes and mtDNA) to examine these patterns further. Allozyme and mtDNA results were congruent with the microsatellite data in suggesting a common founder event in LakeClark sockeye salmon and confirmed the divergence of Lake Clarkpopulations from neighboring Six Mile Lake and Lake Iliamna populations. The use of multiple marker types provided better understanding of the bottleneck in Lake Clark. For example, the Sucker Bay Lake population had an exceptionally severe reduction in allelic diversity at microsatellite loci, but not at mtDNA. This suggests that the reduced microsatellite variation in Sucker Bay Lake fish is due to consistently smaller effective population size than other Lake Clark populations, rather than a more acute or additional bottleneck since founding. Caution is urged in using reduced heterozygosity as a measure of genetic bottleneck effects because stochastic variance among loci resulted in an overall increase in allozyme heterozygosity within bottlenecked Lake Clark populations. However, heterozygosity excess, which assesses heterozygosity relative to allelic variation, detected genetic bottleneck effects in both allozyme and microsatellite loci. 

  5. Comparative study of sickle cell anemia and hemoglobin SC disease: clinical characterization, laboratory biomarkers and genetic profiles.

    PubMed

    Aleluia, Milena Magalhães; Fonseca, Teresa Cristina Cardoso; Souza, Regiana Quinto; Neves, Fábia Idalina; da Guarda, Caroline Conceição; Santiago, Rayra Pereira; Cunha, Bruna Laís Almeida; Figueiredo, Camylla Villas Boas; Santana, Sânzio Silva; da Paz, Silvana Sousa; Ferreira, Júnia Raquel Dutra; Cerqueira, Bruno Antônio Veloso; Gonçalves, Marilda de Souza

    2017-01-01

    In this study, we evaluate the association of different clinical profiles, laboratory and genetic biomarkers in patients with sickle cell anemia (SCA) and hemoglobin SC disease (HbSC) in attempt to characterize the sickle cell disease (SCD) genotypes. We conducted a cross-sectional study from 2013 to 2014 in 200 SCD individuals (141 with SCA; 59 with HbSC) and analyzed demographic data to characterize the study population. In addition, we determined the association of hematological, biochemical and genetic markers including the β S -globin gene haplotypes and the 3.7 Kb deletion of α-thalassemia (-α 3.7Kb -thal), as well as the occurrence of clinical events in both SCD genotypes. Laboratory parameters showed a hemolytic profile associated with endothelial dysfunction in SCA individuals; however, the HbSC genotype was more associated with increased blood viscosity and inflammatory conditions. The BEN haplotype was the most frequently observed and was associated with elevated fetal hemoglobin (HbF) and low S hemoglobin (HbS). The -α 3.7Kb -thal prevalence was 0.09 (9%), and it was associated with elevated hemoglobin and hematocrit concentrations. Clinical events were more frequent in SCA patients. Our data emphasize the differences between SCA and HbSC patients based on laboratory parameters and the clinical and genetic profile of both genotypes.

  6. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events.

    PubMed

    James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei

    2016-04-01

    Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.

  7. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  8. Adverse life events, psychiatric history, and biological predictors of postpartum depression in an ethnically diverse sample of postpartum women.

    PubMed

    Guintivano, J; Sullivan, P F; Stuebe, A M; Penders, T; Thorp, J; Rubinow, D R; Meltzer-Brody, S

    2018-05-01

    Race, psychiatric history, and adverse life events have all been independently associated with postpartum depression (PPD). However, the role these play together in Black and Latina women remains inadequately studied. Therefore, we performed a case-control study of PPD, including comprehensive assessments of symptoms and biomarkers, while examining the effects of genetic ancestry. We recruited our sample (549 cases, 968 controls) at 6 weeks postpartum from obstetrical clinics in North Carolina. PPD status was determined using the MINI-plus. Psychiatric history was extracted from medical records. Participants were administered self-report instruments to assess depression (Edinburgh Postnatal Depression Scale) and adverse life events. Levels of estradiol, progesterone, brain-derived neurotrophic factor, oxytocin, and allopregnanalone were assayed. Principal components from genotype data were used to estimate genetic ancestry and logistic regression was used to identify predictors of PPD. This population was racially diverse (68% Black, 13% Latina, 18% European). Genetic ancestry was not a predictor of PPD. Case status was predicted by a history of major depression (p = 4.01E-14), lifetime anxiety disorder diagnosis (p = 1.25E-34), and adverse life events (p = 6.06E-06). There were no significant differences between groups in any hormones or neurosteroids. Psychiatric history and multiple exposures to adverse life events were significant predictors of PPD in a population of minority and low-income women. Genetic ancestry and hormone levels were not predictive of case status. Increased genetic vulnerability in conjunction with risk factors may predict the onset of PPD, whereas genetic ancestry does not appear predictive.

  9. [Posttraumatic stress disorder (PTSD) as a consequence of the interaction between an individual genetic susceptibility, a traumatogenic event and a social context].

    PubMed

    Auxéméry, Y

    2012-10-01

    Why are some individuals more likely than others to develop a posttraumatic stress disorder (PTSD) in the face of similar levels of trauma exposure? Monitoring the traumatic process combining the antecedents, the determinants of the psychic trauma and the acute symptoms can clarify the causes of the final onset of a chronic repetition syndrome. Epidemiologic research has clarified risk factors that increase the likelihood of PTSD after exposure to a potentially traumatic event. PTSD is an interaction between a subject, a traumatogenic factor and a social context. With each epidemiological, psychopathological and more particularly neurogenetic study, we will expand on the impact of these interactions on the therapeutic treatment of psycho-traumatised persons. Most studies have shown that unrelated to the traumatic event, additional risk factors for developing PTSD include younger age at the time of the trauma, female gender, lower social economic statuts, lack of social support, premorbid personality characteristics and preexisting anxiety or depressive disorders increase the risk of PTSD. The psychic trauma is firmly attached to the repetition and the previous traumas are as many risks of developing a subsequent PTSD in the wake of a new trauma: PTSD in adults may represent a prolonged symptomatic reaction to prior traumatic assault, child abuse and childhood adversities. Related to the traumatic event, the organic pain, the traumatic brain injury, but also the sight of blood can lead to a trauma being considered as more serious or more harmful to life. It is useful to recognize the acute reactions of exhaustion stress as they can guide both the pharmacotherapeutic and the psychotherapeutic treatment thanks to debriefings. Even though the majority of people with acute stress disorder subsequently develop PTSD, the current data indicate that too many people can develop PTSD without initially displaying acute stress disorder. Though peritraumatic dissociation and

  10. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  11. Genetics and epigenetics of rheumatoid arthritis

    PubMed Central

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  12. [Genetics and family medicine].

    PubMed

    Bugarín-González, R; Carracedo, Á

    There have been spectacular advances in genetics in the last decades. Their implications in medicine have been so relevant that the family doctor cannot ignore them. However, interestingly, our specialty training program has hardly any contents related to this discipline. For this reason, several publications have warned of the need to correct this deficit and to determine the knowledge, skills and abilities in genetics that should be acquired by family physicians. It is considered that, in addition to some general concepts, we must have training related to genetic testing, genetic counselling, aspects related to hereditary cancers, and to be aware of the ethical and legal limits of genetic information. It is also necessary to establish guidelines for collaboration with the genetic services. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  14. Population genetics of Ice Age brown bears

    PubMed Central

    Leonard, Jennifer A.; Wayne, Robert K.; Cooper, Alan

    2000-01-01

    The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet. PMID:10677513

  15. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.

    PubMed

    Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing

    2009-11-25

    Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.

  16. [60 years of medical genetics in Israel].

    PubMed

    Shalev, Stavit A; Borochowitz, Zvi U; Zlotogora, Joel

    2010-02-01

    The principle deeds of genetics in Israel consist of a wide array of disciplines including agriculture, nutrients, biotechnology, pharmacology and pharmacogenetics, pertaining to criminal as well as medical aspects. In the scope of this state of the art historical review, the authors emphasize the medical issues. The initial stimulus for genetic studies and medical awareness among the various ethnic populations in Israel was the immigration, in the early 1950s, of over a million Jewish immigrants from more than 100 countries from all continents. It was soon recognized that frequencies of genetic diseases differed markedly among the various communities, serving as a trigger for studying and managing these populations. In this state of the art historical review, particular emphasize was given to the historical events concerning genetics in the land of Israel, as well as in the state of Israel. Highlights of genetic diversity of the various ethnic and sub-populations are added, along with the advances and major achievements of the human genetics discipline in the state of Israel.

  17. Clustering of ABCB1 and CYP2C19 Genetic Variants Predicts Risk of Major Bleeding and Thrombotic Events in Elderly Patients with Acute Coronary Syndrome Receiving Dual Antiplatelet Therapy with Aspirin and Clopidogrel.

    PubMed

    Galeazzi, Roberta; Olivieri, Fabiola; Spazzafumo, Liana; Rose, Giuseppina; Montesanto, Alberto; Giovagnetti, Simona; Cecchini, Sara; Malatesta, Gelsomina; Di Pillo, Raffaele; Antonicelli, Roberto

    2018-06-23

    The clinical efficacy of clopidogrel in secondary prevention of vascular events is hampered by marked inter-patient variability in drug response, which partially depends on genetic make-up. The aim of this pilot prospective study was to evaluate 12-month cardiovascular outcomes in elderly patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (aspirin and clopidogrel) according to the clustering of CYP2C19 and ABCB1 genetic variants. Participants were 100 consecutive ACS patients who were genotyped for CYP2C19 (G681A and C-806T) and ABCB1 (C3435T) polymorphisms, which affect clopidogrel metabolism and bioavailability, using PCR-restriction fragment length polymorphism. They were then grouped as poor, extensive and ultra-rapid metabolisers based on the combination of CYP2C19 loss-of-function (CYP2C19*2) and gain-of-function (CYP2C19*17) alleles and ABCB1 alleles. The predictive value of each phenotype for acute vascular events was estimated based on 12-month cardiovascular outcomes. The poor metabolisers were at an increased risk of thrombotic events (OR 1.26; 95% CI 1.099-1.45; χ 2  = 5.676; p = 0.027), whereas the ultra-rapid metabolisers had a 1.31-fold increased risk of bleeding events compared with the poor and extensive metabolisers (OR 1.31; 95% CI 1.033-1.67; χ 2  = 5.676; p = 0.048). Logistic regression model, including age, sex, BMI and smoking habit, confirmed the differential risk of major events in low and ultra-rapid metabolisers. Our findings suggest that ACS patients classified as 'poor or ultra-rapid' metabolisers based on CYP2C19 and ABCB1 genotypes should receive alternative antiplatelet therapies to clopidogrel.

  18. Genomewide Association Study Identifies Novel Genetic Loci That Modify Antiplatelet Effects and Pharmacokinetics of Clopidogrel

    PubMed Central

    Zhong, W‐P; Wu, H; Chen, J‐Y; Li, X‐X; Lin, H‐M; Zhang, B; Zhang, Z‐W; Ma, D‐L; Sun, S; Li, H‐P; Mai, L‐P; He, G‐D; Wang, X‐P; Lei, H‐P; Zhou, H‐K; Tang, L; Liu, S‐W

    2017-01-01

    Genetic variants in the pharmacokinetic (PK) mechanism are the main underlying factors affecting the antiplatelet response to clopidogrel. Using a genomewide association study (GWAS) to identify new genetic loci that modify antiplatelet effects in Chinese patients with coronary heart disease, we identified novel variants in two transporter genes (SLC14A2 rs12456693, ATP‐binding cassette [ABC]A1 rs2487032) and in N6AMT1 (rs2254638) associated with P2Y12 reaction unit (PRU) and plasma active metabolite (H4) concentration. These new variants dramatically improved the predictability of PRU variability to 37.7%. The associations between these loci and PK parameters of clopidogrel and H4 were observed in additional patients, and its function on the activation of clopidogrel was validated in liver S9 fractions (P < 0.05). Rs2254638 was further identified to exert a marginal risk effect for major adverse cardiac events in an independent cohort. In conclusion, new genetic variants were systematically identified as risk factors for the reduced efficacy of clopidogrel treatment. PMID:27981573

  19. Entering the second century of maize quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  20. Genetic modulation of sickle cell anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, M.H.

    1995-05-01

    Sickle cell anemia, a common disorder associated with reduced life span of the red blood cell and vasoocclusive events, is caused by a mutation in the {Beta}-hemoglobin gene. Yet, despite this genetic homogeneity, the phenotype of the disease is heterogeneous. This suggests the modulating influence of associated inherited traits. Some of these may influence the accumulation of fetal hemoglobin, a hemoglobin type that interferes with the polymerization of sickle hemoglobin. Another inherited trait determines the accumulation of {alpha}-globin chains. This review focuses on potential genetic regulators of the phenotype of sickle cell anemia. 125 refs., 6 figs., 3 tabs.

  1. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Scarce events of mitochondrial introgression in Trypanosoma cruzi: new case with a Bolivian strain.

    PubMed

    Barnabé, Christian; Brenière, Simone Frédérique

    2012-12-01

    Trypanosoma cruzi, the agent of Chagas disease, presents a predominantly clonal structure that has been shaped by recombination events leading to six genetic groups (DTUs, discrete typing units, TcI-TcVI). Several conventional and unconventional genetic exchange events have been described, including hybridization and mitochondrial introgression, which is explored here among Bolivian and Peruvian strains belonging to TcI because recombination events have been previously suspected by means of the MLMT method (multilocus microsatellite typing). We analyzed the variation of one nuclear (Gpi) and one mitochondrial (Nd1) gene among 60 TcI strains and 15 reference strains belonging to the six DTUs. The results clearly showed that one strain isolated from Triatoma infestans in the Cochabamba department (Bolivia) presented a genotype TcI for Gpi and a mitochondrial Nd1 genotype common to the DTUs TcIII, IV, V, and VI; this can be interpreted as a mitochondrial introgression event between distant DTUs. These kinds of events, although probably scarce, may have played an important role in the adaptive evolution of the species. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Dominance genetic and maternal effects for genetic evaluation of egg production traits in dual-purpose chickens.

    PubMed

    Jasouri, M; Zamani, P; Alijani, S

    2017-10-01

    1. A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared. 2. Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits. 3. Estimates of heritability (h 2 ) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28-32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d 2 ) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m 2 ) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c 2 ) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30. 4. Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and

  4. Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds

    PubMed Central

    Gautier, Mathieu; Laloë, Denis; Moazami-Goudarzi, Katayoun

    2010-01-01

    Background Modern cattle originate from populations of the wild extinct aurochs through a few domestication events which occurred about 8,000 years ago. Newly domesticated populations subsequently spread worldwide following breeder migration routes. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time. Methodology/Principal Findings This study gives a detailed assessment of cattle genetic diversity based on 1,121 individuals sampled in 47 populations from different parts of the world (with a special focus on French cattle) genotyped for 44,706 autosomal SNPs. The analyzed data set consisted of new genotypes for 296 individuals representing 14 French cattle breeds which were combined to those available from three previously published studies. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. We further searched for spatial patterns of genetic diversity among 23 European populations, most of them being of French origin, under the recently developed spatial Principal Component analysis framework. Conclusions/Significance Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. In addition, patterns of differentiation among the three main groups of populations—the African taurine, the European taurine and zebus—may provide some additional support for three distinct domestication centres. Finally, among the European cattle breeds investigated, spatial patterns of genetic diversity were found in good agreement with the two main migration routes towards France, initially postulated based on archeological evidence. PMID:20927341

  5. Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation

    PubMed Central

    Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.

    2015-01-01

    We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173

  6. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling

    PubMed Central

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of

  7. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling.

    PubMed

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of

  8. Detection of genetically modified organisms in foreign-made processed foods containing corn and potato.

    PubMed

    Monma, Kimio; Araki, Rie; Sagi, Naoki; Satoh, Masaki; Ichikawa, Hisatsugu; Satoh, Kazue; Tobe, Takashi; Kamata, Kunihiro; Hino, Akihiro; Saito, Kazuo

    2005-06-01

    Investigations of the validity of labeling regarding genetically modified (GM) products were conducted using polymerase chain reaction (PCR) methods for foreign-made processed foods made from corn and potato purchased in the Tokyo area and in the USA. Several kinds of GM crops were detected in 12 of 32 samples of processed corn samples. More than two GM events for which safety reviews have been completed in Japan were simultaneously detected in 10 samples. GM events MON810 and Bt11 were most frequently detected in the samples by qualitative PCR methods. MON810 was detected in 11 of the 12 samples, and Bt11 was detected in 6 of the 12 samples. In addition, Roundup Ready soy was detected in one of the 12 samples. On the other hand, CBH351, for which the safety assessment was withdrawn in Japan, was not detected in any of the 12 samples. A trial quantitative analysis was performed on six of the GM maize qualitatively positive samples. The estimated amounts of GM maize in these samples ranged from 0.2 to 2.8%, except for one sample, which contained 24.1%. For this sample, the total amount found by event-specific quantitative analysis was 23.8%. Additionally, Roundup Ready soy was detected in one sample of 21 potato-processed foods, although GM potatoes were not detected in any sample.

  9. How Might the Genetics Profession Better Utilize Social Media.

    PubMed

    Moore, Rebekah A; Matthews, Anne L; Cohen, Leslie

    2018-04-01

    Social media is a common method of communication in people's personal lives and professional settings. Gallagher et al. (2016) recommended, "it is time for genetic counselors to embrace social media as a means of communicating with patients or other healthcare professionals." Full members of the National Society of Genetic Counselors (NSGC) in the USA and Canada and genetics patients in Cleveland, OH, were surveyed to determine interest in using social media for patient-provider interactions. Both cohorts indicated that patient privacy and confidentiality would be a concern; however, survey results indicated patients would be interested in using social media to receive general information about genetic counseling and to learn about genetics services. Genetic counselors indicated privacy issues were not concerning if social media were to be used in this capacity. The majority of genetic counselor participants (88.7%) indicated they would welcome national guidelines for patient-provider social media use. Data from this study demonstrated that sharing what to expect at a genetic counseling appointment, defining genetic counseling, and announcing community outreach events are possible ways genetic counselors could utilize social media to communicate with and educate patients.

  10. Guidelines for collecting and maintaining archives for genetic monitoring

    USGS Publications Warehouse

    Jackson, Jennifer A.; Laikre, Linda; Baker, C. Scott; Kendall, Katherine C.; ,

    2012-01-01

    Rapid advances in molecular genetic techniques and the statistical analysis of genetic data have revolutionized the way that populations of animals, plants and microorganisms can be monitored. Genetic monitoring is the practice of using molecular genetic markers to track changes in the abundance, diversity or distribution of populations, species or ecosystems over time, and to follow adaptive and non-adaptive genetic responses to changing external conditions. In recent years, genetic monitoring has become a valuable tool in conservation management of biological diversity and ecological analysis, helping to illuminate and define cryptic and poorly understood species and populations. Many of the detected biodiversity declines, changes in distribution and hybridization events have helped to drive changes in policy and management. Because a time series of samples is necessary to detect trends of change in genetic diversity and species composition, archiving is a critical component of genetic monitoring. Here we discuss the collection, development, maintenance, and use of archives for genetic monitoring. This includes an overview of the genetic markers that facilitate effective monitoring, describes how tissue and DNA can be stored, and provides guidelines for proper practice.

  11. Genetic counselling issues in cystic fibrosis.

    PubMed

    Culling, Bronwyn; Ogle, Robert

    2010-06-01

    Cystic fibrosis is a chronic condition for which genetic testing offers much for the individuals affected in terms of an early diagnosis and offers timely additional information for families with regard to family planning and prenatal testing. Genetic counselling encompasses a range of clinical issues for families and forms a complementary resource for clinicians caring for people with cystic fibrosis. This review will discuss the range of genetic information readily available to patients and families through genetic counselling. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Use of the Hadoop structured storage tools for the ATLAS EventIndex event catalogue

    NASA Astrophysics Data System (ADS)

    Favareto, A.

    2016-09-01

    The ATLAS experiment at the LHC collects billions of events each data-taking year, and processes them to make them available for physics analysis in several different formats. An even larger amount of events is in addition simulated according to physics and detector models and then reconstructed and analysed to be compared to real events. The EventIndex is a catalogue of all events in each production stage; it includes for each event a few identification parameters, some basic non-mutable information coming from the online system, and the references to the files that contain the event in each format (plus the internal pointers to the event within each file for quick retrieval). Each EventIndex record is logically simple but the system has to hold many tens of billions of records, all equally important. The Hadoop technology was selected at the start of the EventIndex project development in 2012 and proved to be robust and flexible to accommodate this kind of information; both the insertion and query response times are acceptable for the continuous and automatic operation that started in Spring 2015. This paper describes the EventIndex data input and organisation in Hadoop and explains the operational challenges that were overcome in order to achieve the expected performance.

  13. Defining Extreme Events: A Cross-Disciplinary Review

    NASA Astrophysics Data System (ADS)

    McPhillips, Lauren E.; Chang, Heejun; Chester, Mikhail V.; Depietri, Yaella; Friedman, Erin; Grimm, Nancy B.; Kominoski, John S.; McPhearson, Timon; Méndez-Lázaro, Pablo; Rosi, Emma J.; Shafiei Shiva, Javad

    2018-03-01

    Extreme events are of interest worldwide given their potential for substantial impacts on social, ecological, and technical systems. Many climate-related extreme events are increasing in frequency and/or magnitude due to anthropogenic climate change, and there is increased potential for impacts due to the location of urbanization and the expansion of urban centers and infrastructures. Many disciplines are engaged in research and management of these events. However, a lack of coherence exists in what constitutes and defines an extreme event across these fields, which impedes our ability to holistically understand and manage these events. Here, we review 10 years of academic literature and use text analysis to elucidate how six major disciplines—climatology, earth sciences, ecology, engineering, hydrology, and social sciences—define and communicate extreme events. Our results highlight critical disciplinary differences in the language used to communicate extreme events. Additionally, we found a wide range in definitions and thresholds, with more than half of examined papers not providing an explicit definition, and disagreement over whether impacts are included in the definition. We urge distinction between extreme events and their impacts, so that we can better assess when responses to extreme events have actually enhanced resilience. Additionally, we suggest that all researchers and managers of extreme events be more explicit in their definition of such events as well as be more cognizant of how they are communicating extreme events. We believe clearer and more consistent definitions and communication can support transdisciplinary understanding and management of extreme events.

  14. Toxicological safety assessment of genetically modified Bacillus thuringiensis with additional N-acyl homoserine lactonase gene.

    PubMed

    Peng, Donghai; Zhou, Chenfei; Chen, Shouwen; Ruan, Lifang; Yu, Ziniu; Sun, Ming

    2008-01-01

    The aim of the present study is to evaluate the toxicology safety to mammals of a genetically modified (GM) Bacillus thuringiensis with an additional N-acyl homoserine lactones gene (aiiA), which possesses insecticidal activity together with restraint of bacterial pathogenicity and is intended for use as a multifunctional biopesticide. Safety assessments included an acute oral toxicity test and 28-d animal feeding study in Wistar rats, primary eye and dermal irritation in Zealand White rabbits, and delayed contact hypersensitivity in guinea pigs. Tests were conducted using spray-dried powder preparation. This GM product showed toxicity neither in oral acute toxicity test nor in 28-d animal feeding test at a dose of 5,000 mg/kg body weight. During the animal feeding test, there were no significant differences in growth, food and water consumption, hematology, blood biochemical indices, organ weights, and histopathology finding between rats in controls and tested groups. Tested animals in primary eye and dermal irritation and delayed contact hypersensitivity test were also devoid of any toxicity compared to controls. All the above results demonstrated that the GM based multifunctional B. thuringiensis has low toxicity and low eye and dermal irritation and would not cause hypersensitivity to laboratory mammals and therefore could be regarded as safe for use as a pesticide.

  15. [Insights about uncertainty in genetic counseling].

    PubMed

    Huicochea-Montiel, Juan Carlos; Cárdenas-Conejo, Alan; Cervantes-Díaz, María Teresa; Araujo-Solís, María Antonieta de Jesús

    2015-01-01

    Genetic counseling is an information process to help people in the understanding and adaptation to the medical, psychological and family implications of the genetic contribution in diseases. This counseling encompasses all sorts of patients. This represents a challenge in the daily work of the medical geneticist, because giving information in a meaningful way to the patient and his family implies an emotional and psychological burden. Generally we can see two outcomes in the medical practice of genetics, which converge after a diagnosis process: 1) we can face the inability to reach a diagnostic conclusion or 2) we can establish or confirm a diagnosis with certainty, which is the main piece in the genetic counseling. However, in all the situations the uncertainty is a fact, since in the case of those individuals who come in for genetic counseling before symptoms appear or those in prenatal cases, the absence of clinical manifestations and the impossibility to change the course of events lead to the appearance of helplessness and despair. In those cases without diagnostic conclusion, this situation represents a reason for uncertainty, and even in those patients with a diagnosis, certain factors can modify the circumstances in which genetic counseling occurs, such as unpredictability or lack of control. Therefore, it is important to consider the management of uncertainty as an inherent part throughout the process of care in medical genetics. The teaching of medical genetics should also consider the inclusion of topics related to this circumstance.

  16. Basic Genetics: A Human Approach.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  17. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider

    PubMed Central

    Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.

    2017-01-01

    The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction–expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation–deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity. PMID:29134072

  18. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider

    NASA Astrophysics Data System (ADS)

    Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.; Arango, Claudia P.

    2017-10-01

    The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction-expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation-deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity.

  19. 76 FR 63278 - Bayer CropScience LP; Determination of Nonregulated Status for Cotton Genetically Engineered for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... for Cotton Genetically Engineered for Insect Resistance and Herbicide Tolerance AGENCY: Animal and... determination that a genetically engineered cotton developed by Bayer CropScience LP, designated as TwinLink TM cotton (events T304-40 and GHB119), which has been genetically engineered to be tolerant to the herbicide...

  20. Economic evaluation of using a genetic test to direct breast cancer chemoprevention in white women with a previous breast biopsy.

    PubMed

    Green, Linda E; Dinh, Tuan A; Hinds, David A; Walser, Bryan L; Allman, Richard

    2014-04-01

    Tamoxifen therapy reduces the risk of breast cancer but increases the risk of serious adverse events including endometrial cancer and thromboembolic events. The cost effectiveness of using a commercially available breast cancer risk assessment test (BREVAGen™) to inform the decision of which women should undergo chemoprevention by tamoxifen was modeled in a simulated population of women who had undergone biopsies but had no diagnosis of cancer. A continuous time, discrete event, mathematical model was used to simulate a population of white women aged 40-69 years, who were at elevated risk for breast cancer because of a history of benign breast biopsy. Women were assessed for clinical risk of breast cancer using the Gail model and for genetic risk using a panel of seven common single nucleotide polymorphisms. We evaluated the cost effectiveness of using genetic risk together with clinical risk, instead of clinical risk alone, to determine eligibility for 5 years of tamoxifen therapy. In addition to breast cancer, the simulation included health states of endometrial cancer, pulmonary embolism, deep-vein thrombosis, stroke, and cataract. Estimates of costs in 2012 US dollars were based on Medicare reimbursement rates reported in the literature and utilities for modeled health states were calculated as an average of utilities reported in the literature. A 50-year time horizon was used to observe lifetime effects including survival benefits. For those women at intermediate risk of developing breast cancer (1.2-1.66 % 5-year risk), the incremental cost-effectiveness ratio for the combined genetic and clinical risk assessment strategy over the clinical risk assessment-only strategy was US$47,000, US$44,000, and US$65,000 per quality-adjusted life-year gained, for women aged 40-49, 50-59, and 60-69 years, respectively (assuming a price of US$945 for genetic testing). Results were sensitive to assumptions about patient adherence, utility of life while taking tamoxifen

  1. Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias.

    PubMed

    Spoonamore, Katherine G; Ware, Stephanie M

    2016-03-01

    Sudden cardiac death due to heritable ventricular arrhythmias is an important cause of mortality, especially in young healthy individuals. The identification of the genetic basis of Mendelian diseases associated with arrhythmia has allowed the integration of this information into the diagnosis and clinical management of patients and at-risk family members. The rapid expansion of genetic testing options and the increasing complexity involved in the interpretation of results creates unique opportunities and challenges. There is a need for competency to incorporate genetics into clinical management and to provide appropriate family-based risk assessment and information. In addition, disease-specific genetic knowledge is required to order and correctly interpret and apply genetic testing results. Importantly, genetic diagnosis has a critical role in the risk stratification and clinical management of family members. This review summarizes the approach to genetic counseling and genetic testing for inherited arrhythmias and highlights specific genetic principles that apply to long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. Stereotypes influence false memories for imagined events.

    PubMed

    Kleider, Heather M; Goldinger, Stephen D; Knuycky, Leslie

    2008-02-01

    Two experiments tested the influences of vivid imagery and person schemata on eyewitness accuracy. Participants watched an event sequence including actors performing stereotype-consistent and inconsistent actions. Additionally, participants either read descriptions of actions (Experiment 1) or vividly imagined actions (Experiment 2). After either 30 minutes or 2 days, recognition memory, source memory, and remember/know judgements were made. After 2 days, false alarms to imagined events increased, relative to the 30-minute test; those false alarms were more often misattributed to stereotype-consistent actors, relative to the same actions in the reading condition. In addition, the accompanying remember judgements were higher for false alarms to imagined events, relative to read events, regardless of stereotype consistency. Overall the results suggest that, over time, vivid imagery reinforces schema activation, increasing stereotype-consistent false memories.

  3. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  4. Host association drives genetic divergence in the bed bug, Cimex lectularius.

    PubMed

    Booth, Warren; Balvín, Ondřej; Vargo, Edward L; Vilímová, Jitka; Schal, Coby

    2015-03-01

    Genetic differentiation may exist among sympatric populations of a species due to long-term associations with alternative hosts (i.e. host-associated differentiation). While host-associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host-associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human-built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock-down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host-specific populations. Within locations human-associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human-mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association. © 2015 John Wiley & Sons Ltd.

  5. Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genome-wide SNP data.

    PubMed

    Yew, Chee Wei; Hoque, Mohd Zahirul; Pugh-Kitingan, Jacqueline; Minsong, Alexander; Voo, Christopher Lok Yung; Ransangan, Julian; Lau, Sophia Tiek Ying; Wang, Xu; Saw, Woei Yuh; Ong, Rick Twee-Hee; Teo, Yik-Ying; Xu, Shuhua; Hoh, Boon-Peng; Phipps, Maude E; Kumar, S Vijay

    2018-07-01

    The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (F ST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent

  6. Awareness and uptake of direct-to-consumer genetic testing among cancer cases, their relatives, and controls: the Northwest Cancer Genetics Network.

    PubMed

    Hall, Taryn O; Renz, Anne D; Snapinn, Katherine W; Bowen, Deborah J; Edwards, Karen L

    2012-07-01

    To determine if awareness of, interest in, and use of direct-to-consumer (DTC) genetic testing is greater in a sample of high-risk individuals (cancer cases and their relatives), compared to controls. Participants were recruited from the Northwest Cancer Genetics Network. A follow-up survey was mailed to participants to assess DTC genetic testing awareness, interest, and use. One thousand two hundred sixty-seven participants responded to the survey. Forty-nine percent of respondents were aware of DTC genetic testing. Of those aware, 19% indicated interest in obtaining and <1% reported having used DTC genetic testing. Additional information supplied by respondents who reported use of DTC genetic tests indicated that 55% of these respondents likely engaged in clinical genetic testing, rather than DTC genetic testing. Awareness of DTC genetic testing was greater in our sample of high-risk individuals than in controls and population-based studies. Although interest in and use of these tests among cases in our sample were equivalent to other population-based studies, interest in testing was higher among relatives and people who self-referred for a registry focused on cancer than among cases and controls. Additionally, our results suggest that there may be some confusion about what constitutes DTC genetic testing.

  7. Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No. 1 papaya.

    PubMed

    Guo, Jinchao; Yang, Litao; Liu, Xin; Guan, Xiaoyan; Jiang, Lingxi; Zhang, Dabing

    2009-08-26

    Genetically modified (GM) papaya (Carica papaya L.), Huanong No. 1, was approved for commercialization in Guangdong province, China in 2006, and the development of the Huanong No. 1 papaya detection method is necessary for implementing genetically modified organism (GMO) labeling regulations. In this study, we reported the characterization of the exogenous integration of GM Huanong No. 1 papaya by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. The results suggested that one intact copy of the initial construction was integrated in the papaya genome and which probably resulted in one deletion (38 bp in size) of the host genomic DNA. Also, one unintended insertion of a 92 bp truncated NptII fragment was observed at the 5' end of the exogenous insert. Furthermore, we revealed its 5' and 3' flanking sequences between the insert DNA and the papaya genomic DNA, and developed the event-specific qualitative and quantitative PCR assays for GM Huanong No. 1 papaya based on the 5' integration flanking sequence. The relative limit of detection (LOD) of the qualitative PCR assay was about 0.01% in 100 ng of total papaya genomic DNA, corresponding to about 25 copies of papaya haploid genome. In the quantitative PCR, the limits of detection and quantification (LOD and LOQ) were as low as 12.5 and 25 copies of papaya haploid genome, respectively. In practical sample quantification, the quantified biases between the test and true values of three samples ranged from 0.44% to 4.41%. Collectively, we proposed that all of these results are useful for the identification and quantification of Huanong No. 1 papaya and its derivates.

  8. Chimpanzees breed with genetically dissimilar mates

    PubMed Central

    Rudicell, Rebecca S.; Li, Yingying; Hahn, Beatrice H.; Wroblewski, Emily; Pusey, Anne E.

    2017-01-01

    Inbreeding adversely affects fitness, whereas heterozygosity often augments it. Therefore, mechanisms to avoid inbreeding and increase genetic distance between mates should be advantageous in species where adult relatives reside together. Here we investigate mate choice for genetic dissimilarity in chimpanzees, a species in which many females avoid inbreeding through dispersal, but where promiscuous mating and sexual coercion can limit choice when related adults reside together. We take advantage of incomplete female dispersal in Gombe National Park, Tanzania to compare mate choice for genetic dissimilarity among immigrant and natal females in two communities using pairwise relatedness measures in 135 genotyped chimpanzees. As expected, natal females were more related to adult males in their community than were immigrant females. However, among 62 breeding events, natal females were not more related to the sires of their offspring than immigrant females, despite four instances of close inbreeding. Moreover, females were generally less related to the sires of their offspring than to non-sires. These results demonstrate that chimpanzees may be capable of detecting relatedness and selecting mates on the basis of genetic distance. PMID:28280546

  9. Chimpanzees breed with genetically dissimilar mates.

    PubMed

    Walker, Kara K; Rudicell, Rebecca S; Li, Yingying; Hahn, Beatrice H; Wroblewski, Emily; Pusey, Anne E

    2017-01-01

    Inbreeding adversely affects fitness, whereas heterozygosity often augments it. Therefore, mechanisms to avoid inbreeding and increase genetic distance between mates should be advantageous in species where adult relatives reside together. Here we investigate mate choice for genetic dissimilarity in chimpanzees, a species in which many females avoid inbreeding through dispersal, but where promiscuous mating and sexual coercion can limit choice when related adults reside together. We take advantage of incomplete female dispersal in Gombe National Park, Tanzania to compare mate choice for genetic dissimilarity among immigrant and natal females in two communities using pairwise relatedness measures in 135 genotyped chimpanzees. As expected, natal females were more related to adult males in their community than were immigrant females. However, among 62 breeding events, natal females were not more related to the sires of their offspring than immigrant females, despite four instances of close inbreeding. Moreover, females were generally less related to the sires of their offspring than to non-sires. These results demonstrate that chimpanzees may be capable of detecting relatedness and selecting mates on the basis of genetic distance.

  10. Cytogenetic and molecular characterization of double inversion 3 associated with a cryptic BCR-ABL1 rearrangement and additional genetic changes.

    PubMed

    Toydemir, Reha; Rowe, Leslie; Hibbard, Michele; Salama, Mohamed; Shetty, Shashirekha

    2010-09-01

    Rearrangements of chromosome 3 involving bands 3q21 and 3q26 have been reported in about 2% of patients with acute myeloid leukemia, and rarely in myelodysplastic syndrome or chronic myelogenous leukemia (CML). To date, only six cases of inversion of both homologues have been reported. Loss of normal chromosome 3 and duplication of the inverted chromosome have been proposed as the most likely mechanism, but have not been shown experimentally. We present a 36-year-old male with an initial diagnosis of CML and resistance to imatinib mesylate. Chromosome analysis showed an inversion within the long arm of both homologues of chromosome 3 and an interstitial deletion within the long arm of one chromosome 7. The rearrangement of EVI1 locus on both homologues of chromosome 3 was confirmed by fluorescence in situ hybridization (FISH). Additional FISH studies showed a cryptic insertion of ABL1 into the BCR region, and subsequent duplication of the derivative chromosome 22. The single-nucleotide polymorphism array showed copy-neutral loss of heterozygosity on chromosomes 3 and 22, suggesting that a somatic repair mechanism is involved in the evolution of these genetic alterations. This case illustrates the complexity of genetic aberrations in neoplastic cells, and the value of array technology, used in concert with conventional cytogenetic methods, for a better understanding of the pathogenesis. 2010 Elsevier Inc. All rights reserved.

  11. Detection of anomalous events

    DOEpatents

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  12. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms.

    PubMed

    McNally, Elizabeth M; Mestroni, Luisa

    2017-09-15

    Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management. © 2017 American Heart Association, Inc.

  13. Interactive Effect of Stressful Life Events and the Serotonin Transporter 5-HTTLPR Genotype on Posttraumatic Stress Disorder Diagnosis in 2 Independent Populations

    PubMed Central

    Xie, Pingxing; Kranzler, Henry R.; Poling, James; Stein, Murray B.; Anton, Raymond F.; Brady, Kathleen; Weiss, Roger D.; Farrer, Lindsay; Gelernter, Joel

    2010-01-01

    Context: The 5-HTTLPR polymorphism in the promoter region of the serotonin transporter gene (SLC6A4) has been found to moderate several categories of emotional response after stressful life events. Previous studies generally focused on its effect on depressive symptoms; little is known about its moderation of the development of post-traumatic stress disorder (PTSD). Objective: To examine the effects of childhood adversity, adult traumatic events, 5-HTTLPR genotypes, and gene×environment interactions on the etiology of PTSD. Design: A cross-sectional study in which participants in several studies investigating the genetics of substance dependence were also screened for lifetime PTSD. The triallelic system of 5-HTTLPR was genotyped. Logistic regression modeling was used in the analyses. Setting: General community. Participants: Five hundred eighty-two European American and 670 African American individuals who reported experiences of childhood adversity, adult traumatic events, or both. Main Outcome Measure: Diagnosis of PTSD, defined by DSM-IV diagnostic criteria and assessed through the Semi-Structured Assessment for Drug Dependence and Alcoholism interview. Results: Childhood adversity and adult traumatic events both predicted PTSD. Although the 5-HTTLPR genotype alone did not predict the onset of PTSD, it interacted with adult traumatic events and childhood adversity to increase the risk for PTSD, especially for those with high rates of both types of trauma exposure (European American: odds ratio [OR], 2.86; 95% confidence interval [CI], 1.50-5.45; P=.002; African American: OR, 1.88; 95% CI, 1.04-3.40; P=.04; pooled: OR, 2.31; 95% CI, 1.50-3.56; P<.001). Conclusions: Participants who had both childhood adversity and adult traumatic events were more likely to develop lifetime PTSD compared with those who experienced either type of adverse event. The risk was increased in individuals with 1 or 2 copies of the S′ (S) allele compared with the L′ (L) homozygotes

  14. Multilocus genetics to reconstruct aeromonad evolution

    PubMed Central

    2012-01-01

    Background Aeromonas spp. are versatile bacteria that exhibit a wide variety of lifestyles. In an attempt to improve the understanding of human aeromonosis, we investigated whether clinical isolates displayed specific characteristics in terms of genetic diversity, population structure and mode of evolution among Aeromonas spp. A collection of 195 Aeromonas isolates from human, animal and environmental sources was therefore genotyped using multilocus sequence analysis (MLSA) based on the dnaK, gltA, gyrB, radA, rpoB, tsf and zipA genes. Results The MLSA showed a high level of genetic diversity among the population, and multilocus-based phylogenetic analysis (MLPA) revealed 3 major clades: the A. veronii, A. hydrophila and A. caviae clades, among the eleven clades detected. Lower genetic diversity was observed within the A. caviae clade as well as among clinical isolates compared to environmental isolates. Clonal complexes, each of which included a limited number of strains, mainly corresponded to host-associated subsclusters of strains, i.e., a fish-associated subset within A. salmonicida and 11 human-associated subsets, 9 of which included only disease-associated strains. The population structure was shown to be clonal, with modes of evolution that involved mutations in general and recombination events locally. Recombination was detected in 5 genes in the MLSA scheme and concerned approximately 50% of the STs. Therefore, these recombination events could explain the observed phylogenetic incongruities and low robustness. However, the MLPA globally confirmed the current systematics of the genus Aeromonas. Conclusions Evolution in the genus Aeromonas has resulted in exceptionally high genetic diversity. Emerging from this diversity, subsets of strains appeared to be host adapted and/or “disease specialized” while the A. caviae clade displayed an atypical tempo of evolution among aeromonads. Considering that A. salmonicida has been described as a genetically

  15. Investigating the effects of Pleistocene events on genetic divergence within Richardsonius balteatus, a widely distributed western North American minnow

    PubMed Central

    2014-01-01

    Background Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. Results Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. Conclusions Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper

  16. Genetics Home Reference: 3q29 microduplication syndrome

    MedlinePlus

    ... 3q29 Related Information How are genetic conditions and genes named? Additional Information & Resources MedlinePlus (3 links) Encyclopedia: Microcephaly Encyclopedia: Obesity Health Topic: Developmental Disabilities Genetic and Rare Diseases ...

  17. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy.

    PubMed

    van Waning, Jaap I; Caliskan, Kadir; Hoedemaekers, Yvonne M; van Spaendonck-Zwarts, Karin Y; Baas, Annette F; Boekholdt, S Matthijs; van Melle, Joost P; Teske, Arco J; Asselbergs, Folkert W; Backx, Ad P C M; du Marchie Sarvaas, Gideon J; Dalinghaus, Michiel; Breur, Johannes M P J; Linschoten, Marijke P M; Verlooij, Laura A; Kardys, Isabella; Dooijes, Dennis; Lekanne Deprez, Ronald H; IJpma, Arne S; van den Berg, Maarten P; Hofstra, Robert M W; van Slegtenhorst, Marjon A; Jongbloed, Jan D H; Majoor-Krakauer, Danielle

    2018-02-20

    The clinical outcomes of noncompaction cardiomyopathy (NCCM) range from asymptomatic to heart failure, arrhythmias, and sudden cardiac death. Genetics play an important role in NCCM. This study investigated the correlations among genetics, clinical features, and outcomes in adults and children diagnosed with NCCM. A retrospective multicenter study from 4 cardiogenetic centers in the Netherlands classified 327 unrelated NCCM patients into 3 categories: 1) genetic, with a mutation in 32% (81 adults; 23 children) of patients; 2) probably genetic, familial cardiomyopathy without a mutation in 16% (45 adults; 8 children) of patients; or 3) sporadic, no family history, without mutation in 52% (149 adults; 21 children) of patients. Clinical features and major adverse cardiac events (MACE) during follow-up were compared across the children and adults. MYH7, MYBPC3, and TTN mutations were the most common mutations (71%) found in genetic NCCM. The risk of having reduced left ventricular (LV) systolic dysfunction was higher for genetic patients compared with the probably genetic and sporadic cases (p = 0.024), with the highest risk in patients with multiple mutations and TTN mutations. Mutations were more frequent in children (p = 0.04) and were associated with MACE (p = 0.025). Adults were more likely to have sporadic NCCM. High risk for cardiac events in children and adults was related to LV systolic dysfunction in mutation carriers, but not in sporadic cases. Patients with MYH7 mutations had low risk for MACE (p = 0.03). NCCM is a heterogeneous condition, and genetic stratification has a role in clinical care. Distinguishing genetic from nongenetic NCCM complements prediction of outcome and may lead to management and follow-up tailored to genetic status. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Dominance genetic variance for traits under directional selection in Drosophila serrata.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2015-05-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.

  19. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    PubMed Central

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  1. Efficient method for events detection in phonocardiographic signals

    NASA Astrophysics Data System (ADS)

    Martinez-Alajarin, Juan; Ruiz-Merino, Ramon

    2005-06-01

    The auscultation of the heart is still the first basic analysis tool used to evaluate the functional state of the heart, as well as the first indicator used to submit the patient to a cardiologist. In order to improve the diagnosis capabilities of auscultation, signal processing algorithms are currently being developed to assist the physician at primary care centers for adult and pediatric population. A basic task for the diagnosis from the phonocardiogram is to detect the events (main and additional sounds, murmurs and clicks) present in the cardiac cycle. This is usually made by applying a threshold and detecting the events that are bigger than the threshold. However, this method usually does not allow the detection of the main sounds when additional sounds and murmurs exist, or it may join several events into a unique one. In this paper we present a reliable method to detect the events present in the phonocardiogram, even in the presence of heart murmurs or additional sounds. The method detects relative maxima peaks in the amplitude envelope of the phonocardiogram, and computes a set of parameters associated with each event. Finally, a set of characteristics is extracted from each event to aid in the identification of the events. Besides, the morphology of the murmurs is also detected, which aids in the differentiation of different diseases that can occur in the same temporal localization. The algorithms have been applied to real normal heart sounds and murmurs, achieving satisfactory results.

  2. Access to genetic testing and genetic counseling in vulnerable populations: the d/Deaf and hard of hearing population.

    PubMed

    Cooke-Hubley, Sandra; Maddalena, Victor

    2011-09-01

    Genetic testing holds great potential for preventing morbidities and mortalities for a number of diseases through early detection and effective intervention. As the number of genetic tests expand, so will public demand for these services. Therefore, it is essential to evaluate access to genetic testing and genetic services to ensure that all Canadians, including vulnerable groups, have equitable access to all forms of health care, in keeping with the mandate of the Canadian Health Act. The purpose of this paper is to examine the literature to determine if and how the Deaf community, as a vulnerable group, is at an increased risk of inequitable access to genetic services in Canada and to discuss how those who are deaf and hard of hearing are subject to the same risks. First, we define vulnerability and describe why the Deaf community, as a social group, can be considered a vulnerable group, followed by a description of the benefits of genetic testing. Second, we describe the barriers to accessing genetic testing, and how the d/Deaf and hard of hearing population experience additional barriers. Third, we examine the difficulties incorporating genetic testing into medical practice, and how this creates additional barriers to those already at risk. Finally, we discuss the steps necessary to promote equitable access to genetic testing among the d/Deaf and hard of hearing populations within Canada, and provide recommendations for further research in this topic area. Lastly, we comment on how barriers to genetic testing vary among the d/Deaf and hard of hearing is dependent upon the type of health care system available (whether public or private).

  3. Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease.

    PubMed

    Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Sing, Charles F

    2009-05-01

    This article extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (Genet Epidemiol 31:515-527) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2,258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors.

  4. The cost effectiveness of genetic testing for CYP2C19 variants to guide thienopyridine treatment in patients with acute coronary syndromes: a New Zealand evaluation.

    PubMed

    Panattoni, Laura; Brown, Paul M; Te Ao, Braden; Webster, Mark; Gladding, Patrick

    2012-11-01

    A recent clinical trial has demonstrated that patients with acute coronary syndromes (ACS) and the reduced function allele CYP2C19*2 (*2 allele), who are treated with thienopyridines, have an increased risk of adverse cardiac events with clopidogrel, but not with prasugrel. The frequency of the *2 allele varies by ethnicity and the Maoris, Asians and Pacific Islanders of New Zealand have a relatively high incidence. Our objective was to evaluate, from a New Zealand health system perspective, the cost effectiveness of treating all ACS patients with generic clopidogrel compared with prasugrel, and also compared with the genetically guided strategy that *2 allele carriers receive prasugrel and non-carriers receive clopidogrel. A decision-tree model consisting of five health states (myocardial infarction, stroke, bleeding, stent thrombosis and cardiovascular death) was developed. Clinical outcome data (two TRITON-TIMI 38 genetic sub-studies) comparing clopidogrel and prasugrel for both *2 allele carriers and non-carriers were combined with the prevalence of the heterozygosity for the *2 allele in New Zealand Europeans (15%), Maoris (24%), Asians (29%) and Pacific Islanders (45%) to determine the predicted adverse event rate for the New Zealand population. National hospital diagnosis-related group (DRG) discharge codes were used to determine alternative adverse event rates, along with the costs of hospitalizations during the 15 months after patients presented with an ACS. The primary outcome measure was the incremental cost per QALY (calculated using literature-reported weights). Monte Carlo simulations and alternative scenario analysis based on both clinical trial and national hospital incidence were used. Additional analysis considered the overall TRITON-TIMI 38 rates. Costs (in New Zealand dollars [$NZ], year 2009 values) and benefits were discounted at 3% per annum. Actual hospital-based adverse event rates were higher than those reported in the TRITON-TIMI 38

  5. The genetics of Takayasu arteritis.

    PubMed

    Renauer, Paul; Sawalha, Amr H

    Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Genetic Alterations of RDINK4/ARF Enhancer in Human Cancer Cells

    PubMed Central

    Li, Junan; Knobloch, Thomas J.; Poi, Ming J.; Zhang, Zhaoxia; Davis, Andrew T.; Muscarella, Peter; Weghorst, Christopher M.

    2017-01-01

    Recent identification of an enhancer element, RDINK4/ARF (RD), in the prominent INK4/ARF locus provides a novel mechanism to simultaneously regulate the transcription of p15INK4B (p15), p14ARF, and p16INK4A (p16) tumor suppressor genes. While genetic inactivation of p15, p14ARF, and p16 in human tumors has been extensively studied, little is known about genetic alterations of RD and its impact on p15, p14ARF, and p16 in human cancer. The purpose of this study was to investigate the potential existence of genetic alterations of RD in human cancer cells. DNAs extracted from 17 different cancer cell lines and 31 primary pheochromocytoma tumors were analyzed for deletion and mutation of RD using qPCR and direct DNA sequencing. We found that RD was deleted in human cancer cell lines and pheochromocytoma tumors at frequencies of 41.2% (7/17) and 13.0% (4/31), respectively. While some of these RD deletion events occurred along with deletions of the entire INK4/ARF locus, other RD deletion events were independent of genetic alterations in p15, p14ARF, and p16. Furthermore, the status of RD was poorly associated with the expression of p15, p14ARF, and p16 in tested cancer cell lines and tumors. This study demonstrates for the first time that deletion of the RD enhancer is a prevalent event in human cancer cells. Its implication in carcinogenesis remains to be further explored. PMID:23065809

  7. Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures

    PubMed Central

    Engelen, Bert; Meinken, Kristin; von Wintzingerode, Friedrich; Heuer, Holger; Malkomes, Hans-Peter; Backhaus, Horst

    1998-01-01

    Herbogil (dinoterb), a reference herbicide, the mineral oil Oleo (paraffin oil used as an additive to herbicides), and Goltix (metamitron) were taken as model compounds for the study of impacts on microbial soil communities. After the treatment of soil samples, effects on metabolic sum parameters were determined by monitoring substrate-induced respiration (SIR) and dehydrogenase activity, as well as carbon and nitrogen mineralization. These conventional ecotoxicological testing procedures are used in pesticide registration. Inhibition of biomass-related activities and stimulation of nitrogen mineralization were the most significant effects caused by the application of Herbogil. Even though Goltix and Oleo were used at a higher dosage (10 times higher), the application of Goltix resulted in smaller effects and the additive Oleo was the least-active compound, with minor stimulation of test parameters at later observation times. The results served as a background for investigation of the power of “fingerprinting” methods in microbial ecology. Changes in catabolic activities induced by treatments were analyzed by using the 95 carbon sources provided by the BIOLOG system. Variations in the complex metabolic fingerprints demonstrated inhibition of many catabolic pathways after the application of Herbogil. Again, the effects of the other compounds were expressed at much lower levels and comprised stimulations as well as inhibitions. Testing for significance by a multivariate t test indicated that the sensitivity of this method was similar to the sensitivities of the conventional testing procedures. The variation of sensitive carbon sources, as determined by factor weights at different observation times, indicated the dynamics of the community shift induced by the Herbogil treatment in more detail. DNA extractions from soil resulted in a collection of molecules representing the genetic composition of total bacterial communities. Distinct and highly reproducible

  8. The effects of a whole-watershed calcium addition on the chemistry of stream storm events at the Hubbard Brook Experimental Forest in NH, USA.

    PubMed

    Cho, Youngil; Driscoll, Charles T; Blum, Joel D

    2009-10-01

    Patterns of storm runoff chemistry from a wollastonite (calcium-silicate mineral, CaSiO(3)) treated watershed (W1) were compared with a reference watershed (W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire (NH), USA to investigate the role of Ca(2+) supply in the acid-base status of stream chemistry. In the summer of 2003, six storm events were studied in W1 and W6 to evaluate the effects of the wollastonite treatment on the episodic acidification of stream waters. Although mean values of Ca(2+) concentrations decreased slightly from 33.8 to 31.7 mumol/L with increasing stream discharge in W1 during the events, the mean value of acid neutralizing capacity (ANC) was positive (1.2 mueq/L) during storm events, compared to negative values (-0.2 mueq/L) in W6. This pattern is presumably due to enhanced Ca(2+) supply in W1 (20.7 to 29.0% of dissolved Ca(2+) derived from the added wollastonite) to stream water as a result of interflow along shallow flowpaths. In addition, the application of wollastonite increased pH and dissolved silica (H(4)SiO(4)) concentrations, and decreased the concentration of inorganic monomeric Al (Al(i)) in W1 in comparison with W6 during storm events. Despite an increase in SO(4)(2-) concentration, likely due to desorption of sulfate from soil after the treatment, the watershed showed an increase in ANC compared to the reference watershed, serving to mitigate episodic acidification.

  9. Range expansion of the Bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events.

    PubMed

    Jacquet, Stéphanie; Huber, Karine; Pagès, Nonito; Talavera, Sandra; Burgin, Laura E; Carpenter, Simon; Sanders, Christopher; Dicko, Ahmadou H; Djerbal, Mouloud; Goffredo, Maria; Lhor, Youssef; Lucientes, Javier; Miranda-Chueca, Miguel A; Pereira Da Fonseca, Isabel; Ramilo, David W; Setier-Rio, Marie-Laure; Bouyer, Jérémy; Chevillon, Christine; Balenghien, Thomas; Guis, Hélène; Garros, Claire

    2016-06-06

    The role of the northward expansion of Culicoides imicola Kieffer in recent and unprecedented outbreaks of Culicoides-borne arboviruses in southern Europe has been a significant point of contention. We combined entomological surveys, movement simulations of air-borne particles, and population genetics to reconstruct the chain of events that led to a newly colonized French area nestled at the northern foot of the Pyrenees. Simulating the movement of air-borne particles evidenced frequent wind-transport events allowing, within at most 36 hours, the immigration of midges from north-eastern Spain and Balearic Islands, and, as rare events, their immigration from Corsica. Completing the puzzle, population genetic analyses discriminated Corsica as the origin of the new population and identified two successive colonization events within west-Mediterranean basin. Our findings are of considerable importance when trying to understand the invasion of new territories by expanding species.

  10. Efficient and Robust Paramyxoviridae Reverse Genetics Systems

    PubMed Central

    Beaty, Shannon M.; Won, Sohui T.; Hong, Patrick; Lyons, Michael; Vigant, Frederic; Freiberg, Alexander N.; tenOever, Benjamin R.; Duprex, W. Paul

    2017-01-01

    ABSTRACT The notoriously low efficiency of Paramyxoviridae reverse genetics systems has posed a limiting barrier to the study of viruses in this family. Previous approaches to reverse genetics have utilized a wide variety of techniques to overcome the technical hurdles. Although robustness (i.e., the number of attempts that result in successful rescue) has been improved in some systems with the use of stable cell lines, the efficiency of rescue (i.e., the proportion of transfected cells that yield at least one successful rescue event) has remained low. We have substantially increased rescue efficiency for representative viruses from all five major Paramyxoviridae genera (from ~1 in 106-107 to ~1 in 102-103 transfected cells) by the addition of a self-cleaving hammerhead ribozyme (Hh-Rbz) sequence immediately preceding the start of the recombinant viral antigenome and the use of a codon-optimized T7 polymerase (T7opt) gene to drive paramyxovirus rescue. Here, we report a strategy for robust, reliable, and high-efficiency rescue of paramyxovirus reverse genetics systems, featuring several major improvements: (i) a vaccinia virus-free method, (ii) freedom to use any transfectable cell type for viral rescue, (iii) a single-step transfection protocol, and (iv) use of the optimal T7 promoter sequence for high transcription levels from the antigenomic plasmid without incorporation of nontemplated G residues. The robustness of our T7opt-HhRbz system also allows for greater latitude in the ratios of transfected accessory plasmids used that result in successful rescue. Thus, our system may facilitate the rescue and interrogation of the increasing number of emerging paramyxoviruses. IMPORTANCE The ability to manipulate the genome of paramyxoviruses and evaluate the effects of these changes at the phenotypic level is a powerful tool for the investigation of specific aspects of the viral life cycle and viral pathogenesis. However, reverse genetics systems for paramyxoviruses

  11. Genetic privacy in sports: clearing the hurdles.

    PubMed

    Callier, Shawneequa

    2012-12-01

    As genomic medicine continues to advance and inform clinical care, knowledge gained is likely to influence sports medicine and training practices. Susceptibility to injury, sudden cardiac failure, and other serious conditions may one day be tackled on a subclinical level through genetic testing programs. In addition, athletes may increasingly consider using genetic testing services to maximize their performance potential. This paper assesses the role of privacy and genetic discrimination laws that would apply to athletes who engage in genetic testing and the limits of these protections.

  12. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  13. The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    PubMed Central

    2011-01-01

    Background Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, Cardinalis cardinalis. Results Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species' range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America. Conclusion We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in C. cardinalis. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously. PMID:21599972

  14. Genetics of platelet inhibitor treatment

    PubMed Central

    Trenk, Dietmar; Hochholzer, Willibald

    2014-01-01

    Dual antiplatelet therapy with aspirin and a P2Y12 receptor antagonist is the standard of care in patients undergoing percutaneous coronary intervention (PCI) and in patients with acute coronary syndromes (ACS) because this regimen has markedly decreased the rate of cardiovascular events. The substantial variability in pharmacodynamic response as well as the moderate antiplatelet efficacy of clopidogrel has raised major concerns, since high on-clopidogrel platelet reactivity has consistently been associated with increased risk for ischaemic events in PCI patients. Baseline demographic and clinical variables contributing to the observed variability have been identified. Besides this, research within the past decade has focused on the impact of genetic polymorphisms encoding transport systems or enzymes involved in the absorption and metabolism of these drugs. Loss-of-function polymorphisms in CYP2C19 are the strongest individual variables affecting pharmacokinetics and antiplatelet response to clopidogrel, but explain no more than 5 to 12% of the variability in adenosine diphosphate-induced platelet aggregation on clopidogrel. No genetic variables contributing to clinical outcomes of patients treated with the newer P2Y12 receptor antagonists, prasugrel or ticagrelor, have been identified so far. This review aims to provide an update on the current status of genotype-based personalized therapy with clopidogrel. PMID:23981082

  15. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  16. The genetics of Alzheimer's disease.

    PubMed

    Bertram, Lars; Tanzi, Rudolph E

    2012-01-01

    Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The Bangladesh Risk of Acute Vascular Events (BRAVE) Study: objectives and design.

    PubMed

    Chowdhury, Rajiv; Alam, Dewan S; Fakir, Ismail Ibrahim; Adnan, Sheikh Daud; Naheed, Aliya; Tasmin, Ishrat; Monower, Md Mostafa; Hossain, Farzana; Hossain, Fatema Mahjabin; Rahman, Md Mostafizur; Afrin, Sadia; Roy, Anjan Kumar; Akter, Minara; Sume, Sima Akter; Biswas, Ajoy Kumer; Pennells, Lisa; Surendran, Praveen; Young, Robin D; Spackman, Sarah A; Hasan, Khaled; Harshfield, Eric; Sheikh, Nasir; Houghton, Richard; Saleheen, Danish; Howson, Joanna M M; Butterworth, Adam S; Raqib, Rubhana; Majumder, Abdulla Al Shafi; Danesh, John; Di Angelantonio, Emanuele

    2015-07-01

    During recent decades, Bangladesh has experienced a rapid epidemiological transition from communicable to non-communicable diseases. Coronary heart disease (CHD), with myocardial infarction (MI) as its main manifestation, is a major cause of death in the country. However, there is limited reliable evidence about its determinants in this population. The Bangladesh Risk of Acute Vascular Events (BRAVE) study is an epidemiological bioresource established to examine environmental, genetic, lifestyle and biochemical determinants of CHD among the Bangladeshi population. By early 2015, the ongoing BRAVE study had recruited over 5000 confirmed first-ever MI cases, and over 5000 controls "frequency-matched" by age and sex. For each participant, information has been recorded on demographic factors, lifestyle, socioeconomic, clinical, and anthropometric characteristics. A 12-lead electrocardiogram has been recorded. Biological samples have been collected and stored, including extracted DNA, plasma, serum and whole blood. Additionally, for the 3000 cases and 3000 controls initially recruited, genotyping has been done using the CardioMetabochip+ and the Exome+ arrays. The mean age (standard deviation) of MI cases is 53 (10) years, with 88 % of cases being male and 46 % aged 50 years or younger. The median interval between reported onset of symptoms and hospital admission is 5 h. Initial analyses indicate that Bangladeshis are genetically distinct from major non-South Asian ethnicities, as well as distinct from other South Asian ethnicities. The BRAVE study is well-placed to serve as a powerful resource to investigate current and future hypotheses relating to environmental, biochemical and genetic causes of CHD in an important but under-studied South Asian population.

  18. Perceived genetic knowledge, attitudes towards genetic testing, and the relationship between these among patients with a chronic disease.

    PubMed

    Morren, Mattijn; Rijken, Mieke; Baanders, Arianne N; Bensing, Jozien

    2007-02-01

    Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition, patients were asked about their preferred source of genetic information. Questionnaires were mailed to participants of a nationwide representative sample of patients with chronic diseases in the Netherlands (n = 1916). The response rate was 82% (n = 1496). Perceived genetic knowledge was low, particularly among older and lower educated patients. Attitudes towards genetics were rather positive, especially among younger and higher educated patients. Some concerns were also documented, mainly about the consequences of genetic testing for employment and taking insurance. Patients who perceived to have little knowledge found it difficult to formulate an opinion about genetic testing. Higher levels of genetic knowledge were associated with a more favourable attitude towards genetics. Chronic patients prefer to receive genetic information from their GP. Chronic patients are ill prepared when they require genetic knowledge to make decisions regarding the treatment of their disease. This seems to result from a knowledge deficiency rather than from disagreement with the genetic developments. When chronic patients are in need of information about genetics or genetic testing, their general practitioner should provide this.

  19. EPI-743 reverses the progression of the pediatric mitochondrial disease--genetically defined Leigh Syndrome.

    PubMed

    Martinelli, Diego; Catteruccia, Michela; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Dionisi-Vici, Carlo; Pontrelli, Giuseppe; Corsetti, Tiziana; Livadiotti, Susanna; Kheifets, Viktoria; Hinman, Andrew; Shrader, William D; Thoolen, Martin; Klein, Matthew B; Bertini, Enrico; Miller, Guy

    2012-11-01

    Genetically defined Leigh syndrome is a rare, fatal inherited neurodegenerative disorder that predominantly affects children. No treatment is available. EPI-743 is a novel small molecule developed for the treatment of Leigh syndrome and other inherited mitochondrial diseases. In compassionate use cases and in an FDA Expanded Access protocol, children with Leigh syndrome treated with EPI-743 demonstrated objective signs of neurologic and neuromuscular improvement. To confirm these initial findings, a phase 2A open label trial of EPI-743 for children with genetically-confirmed Leigh syndrome was conducted and herein we report the results. A single arm clinical trial was performed in children with genetically defined Leigh syndrome. Subjects were treated for 6 months with EPI-743 three times daily and all were eligible for a treatment extension phase. The primary objective of the trial was to arrest disease progression as assessed by neuromuscular and quality of life metrics. Results were compared to the reported natural history of the disease. Ten consecutive children, ages 1-13 years, were enrolled; they possessed seven different genetic defects. All children exhibited reversal of disease progression regardless of genetic determinant or disease severity. The primary endpoints--Newcastle Pediatric Mitochondrial Disease Scale, the Gross Motor Function Measure, and PedsQL Neuromuscular Module--demonstrated statistically significant improvement (p<0.05). In addition, all children had an improvement of one class on the Movement Disorder-Childhood Rating Scale. No significant drug-related adverse events were recorded. In comparison to the natural history of Leigh syndrome, EPI-743 improves clinical outcomes in children with genetically confirmed Leigh syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. When to suspect a genetic syndrome.

    PubMed

    Solomon, Benjamin D; Muenke, Maximilian

    2012-11-01

    Family physicians should be able to recognize findings on physical examination and history that suggest the presence of a genetic syndrome to aid in the diagnosis and treatment of potentially affected patients, as well as subspecialty referral. General themes that can alert family physicians to the presence of genetic conditions include dysmorphic features that are evident on physical examination; multiple anomalies in one patient; unexplained neurocognitive impairment; and a family history that is suggestive of a hereditary disease. The presence of one obvious malformation should not limit the full evaluation, because additional, subtler findings will often be important in the differential diagnosis. Taking an accurate three-generation family history is invaluable when considering a genetic syndrome. Important elements include the age and sex of family members; when family members were affected by disease or when they died; the ethnic background; and if there is consanguinity. Genetic subspecialists can assist family physicians in diagnosis, suggest additional testing and referrals if warranted, help direct medical care, and provide counseling for affected patients and their families.

  1. Genetic diversity in longleaf pine (Pinus palustris): influence of historical and prehistorical events

    Treesearch

    Ronald C. Schmidtling; V. Hipkins

    1998-01-01

    Genetic diversity of allozymes at 24 loci was studied in 23 populations of longleaf pine (Pinus palustris Mill.), including three seed orchard populations and an old-growth stand. Overall, the mean number of alleles per polymorphic locus was 2.9, the percentage of polymorphic loci was 92 percent, and the mean expected heterozygosity was 0.105. These...

  2. Reproduction in Leishmania: A focus on genetic exchange.

    PubMed

    Rougeron, V; De Meeûs, T; Bañuls, A-L

    2017-06-01

    One key process of the life cycle of pathogens is their mode of reproduction. Indeed, this fundamental biological process conditions the multiplication and the transmission of genes and thus the propagation of diseases in the environment. Reproductive strategies of protozoan parasites have been a subject of debate for many years, principally due to the difficulty in making direct observations of sexual reproduction (i.e. genetic recombination). Traditionally, these parasites were considered as characterized by a preeminent clonal structure. Nevertheless, with the development of elaborate culture experiments, population genetics and evolutionary and population genomics, several studies suggested that most of these pathogens were also characterized by constitutive genetic recombination events. In this opinion, we focused on Leishmania parasites, pathogens responsible of leishmaniases, a major public health issue. We first discuss the evolutionary advantages of a mixed mating reproductive strategy, then we review the evidence of genetic exchange, and finally we detail available tools to detect naturally occurring genetic recombination in Leishmania parasites and more generally in protozoan parasites. Copyright © 2016. Published by Elsevier B.V.

  3. Mutational jackpot events generate effective frequency-dependent selection in adapting populations

    NASA Astrophysics Data System (ADS)

    Hallatschek, Oskar

    The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.

  4. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  5. Genetics and intelligence differences: five special findings.

    PubMed

    Plomin, R; Deary, I J

    2015-02-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture

  6. Genetics and intelligence differences: five special findings

    PubMed Central

    Plomin, R; Deary, I J

    2015-01-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for ‘positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century—Genome-wide Complex Trait Analysis (GCTA)—which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic

  7. Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts.

    PubMed

    Attard, Catherine R M; Beheregaray, Luciano B; Jenner, K Curt S; Gill, Peter C; Jenner, Micheline-Nicole M; Morrice, Margaret G; Teske, Peter R; Möller, Luciana M

    2015-05-01

    Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitation. We apply recently developed analytical approaches in the largest genetic dataset ever compiled to study blue whales (297 samples collected after whaling and representing lineages from Australia, Antarctica and Chile). We find that low levels of genetic diversity in Australia are due to a natural founder event from Antarctic blue whales (Balaenoptera musculus intermedia) that occurred around the Last Glacial Maximum, followed by evolutionary divergence. Historical climate change has therefore driven the evolution of blue whales into genetically, phenotypically and behaviourally distinct lineages that will likely be influenced by future climate change. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. An additional "R": remembering the animals.

    PubMed

    Iliff, Susan A

    2002-01-01

    Relationships inevitably develop between humans and animals, regardless of the function or use of the animal partners. The need to recognize the existence of these human-animal bonds, as well as acknowledge the use of the animals, is widespread. Religious memorial services for animals in certain areas of the world provide an historical basis for such acknowledgment activities. The diversity of sacred and secular approaches to memorializing or acknowledging animals is illustrated by representative examples of such events. The need to establish such events, particularly in academic and research settings, is emphasized. The pros and cons of developing and establishing acknowledgment activities in addition to the benefits of implementing such events are discussed.

  9. Additive effects of affective arousal and top-down attention on the event-related brain responses to human bodies.

    PubMed

    Hietanen, Jari K; Kirjavainen, Ilkka; Nummenmaa, Lauri

    2014-12-01

    The early visual event-related 'N170 response' is sensitive to human body configuration and it is enhanced to nude versus clothed bodies. We tested whether the N170 response as well as later EPN and P3/LPP responses to nude bodies reflect the effect of increased arousal elicited by these stimuli, or top-down allocation of object-based attention to the nude bodies. Participants saw pictures of clothed and nude bodies and faces. In each block, participants were asked to direct their attention towards stimuli from a specified target category while ignoring others. Object-based attention did not modulate the N170 amplitudes towards attended stimuli; instead N170 response was larger to nude bodies compared to stimuli from other categories. Top-down attention and affective arousal had additive effects on the EPN and P3/LPP responses reflecting later processing stages. We conclude that nude human bodies have a privileged status in the visual processing system due to the affective arousal they trigger. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria).

    PubMed

    Aglieri, Giorgio; Papetti, Chiara; Zane, Lorenzo; Milisenda, Giacomo; Boero, Ferdinando; Piraino, Stefano

    2014-01-01

    Genetic drift and non-random mating seldom influence species with large breeding populations and high dispersal potential, characterized by unstructured gene pool and panmixia at a scale lower than the minimum dispersal range of individuals. In the present study, a set of nine microsatellite markers was developed and used to investigate the spatio-temporal genetic patterns of the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa) in the Southern Tyrrhenian Sea. Homozygote excess was detected at eight loci, and individuals exhibited intra-population relatedness higher than expected by chance in at least three samples. This result was supported by the presence of siblings in at least 5 out 8 samples, 4 of which contained full-sib in addition to half-sib dyads. Having tested and ruled out alternative explanations as null alleles, our results suggest the influence of reproductive and behavioural features in shaping the genetic structure of P. noctiluca, as outcomes of population genetics analyses pointed out. Indeed, the genetic differentiation among populations was globally small but highlighted: a) a spatial genetic patchiness uncorrelated with distance between sampling locations, and b) a significant genetic heterogeneity between samples collected in the same locations in different years. Therefore, despite its extreme dispersal potential, P. noctiluca does not maintain a single homogenous population, but rather these jellyfish appear to have intra-bloom localized recruitment and/or individual cohesiveness, whereby siblings more likely swarm together as a single group and remain close after spawning events. These findings provide the first evidence of family structures and consequent genetic patchiness in a species with highly dispersive potential throughout its whole life cycle, contributing to understanding the patterns of dispersal and connectivity in marine environments.

  11. First Evidence of Inbreeding, Relatedness and Chaotic Genetic Patchiness in the Holoplanktonic Jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria)

    PubMed Central

    Aglieri, Giorgio; Papetti, Chiara; Zane, Lorenzo; Milisenda, Giacomo; Boero, Ferdinando; Piraino, Stefano

    2014-01-01

    Genetic drift and non-random mating seldom influence species with large breeding populations and high dispersal potential, characterized by unstructured gene pool and panmixia at a scale lower than the minimum dispersal range of individuals. In the present study, a set of nine microsatellite markers was developed and used to investigate the spatio-temporal genetic patterns of the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa) in the Southern Tyrrhenian Sea. Homozygote excess was detected at eight loci, and individuals exhibited intra-population relatedness higher than expected by chance in at least three samples. This result was supported by the presence of siblings in at least 5 out 8 samples, 4 of which contained full-sib in addition to half-sib dyads. Having tested and ruled out alternative explanations as null alleles, our results suggest the influence of reproductive and behavioural features in shaping the genetic structure of P. noctiluca, as outcomes of population genetics analyses pointed out. Indeed, the genetic differentiation among populations was globally small but highlighted: a) a spatial genetic patchiness uncorrelated with distance between sampling locations, and b) a significant genetic heterogeneity between samples collected in the same locations in different years. Therefore, despite its extreme dispersal potential, P. noctiluca does not maintain a single homogenous population, but rather these jellyfish appear to have intra-bloom localized recruitment and/or individual cohesiveness, whereby siblings more likely swarm together as a single group and remain close after spawning events. These findings provide the first evidence of family structures and consequent genetic patchiness in a species with highly dispersive potential throughout its whole life cycle, contributing to understanding the patterns of dispersal and connectivity in marine environments. PMID:24977703

  12. Advantages of using molecular coancestry in the removal of introgressed genetic material

    PubMed Central

    2013-01-01

    Background When introgression of undesired exogenous genetic material occurs in a population intended to remain pure, actions are necessary to recover the original background. It has been shown that genome-wide information can replace pedigree information for different objectives and is a valuable tool in the fields of genetic conservation and breeding. In this simulation study, molecular information provided by 50 000 SNP was used to minimise the molecular coancestry between individuals of an admixed population and the foreign individuals that originally introgressed a native population in order to remove the exogenous DNA. Results This management method, which detects the ‘purest’ individuals to be used as parents for the next generation, allowed recovery of the native genetic background to a great extent in all simulated scenarios. However, it also caused an increase in inbreeding larger than expected because of the lower number of individuals selected as parents and the higher coancestry between them. In scenarios involving several introgression events the method was more efficient than in those involving a single introgression event because part of the genetic information was mixed with the native genetic material for a shorter period. Conclusions Genome-wide information can be used to identify the purest individuals via the minimisation of molecular coancestry between individuals of the admixed and exogenous populations. Removal of the undesired genetic material is more efficient with a molecular-based approach than with a pedigree-based approach. PMID:23634969

  13. Assessment of imprinting- and genetic variation-dependent monoallelic expression using reciprocal allele descendants between human family trios.

    PubMed

    Chuang, Trees-Juen; Tseng, Yu-Hsiang; Chen, Chia-Ying; Wang, Yi-Da

    2017-08-01

    Genomic imprinting is an important epigenetic process that silences one of the parentally-inherited alleles of a gene and thereby exhibits allelic-specific expression (ASE). Detection of human imprinting events is hampered by the infeasibility of the reciprocal mating system in humans and the removal of ASE events arising from non-imprinting factors. Here, we describe a pipeline with the pattern of reciprocal allele descendants (RADs) through genotyping and transcriptome sequencing data across independent parent-offspring trios to discriminate between varied types of ASE (e.g., imprinting, genetic variation-dependent ASE, and random monoallelic expression (RME)). We show that the vast majority of ASE events are due to sequence-dependent genetic variant, which are evolutionarily conserved and may themselves play a cis-regulatory role. Particularly, 74% of non-RAD ASE events, even though they exhibit ASE biases toward the same parentally-inherited allele across different individuals, are derived from genetic variation but not imprinting. We further show that the RME effect may affect the effectiveness of the population-based method for detecting imprinting events and our pipeline can help to distinguish between these two ASE types. Taken together, this study provides a good indicator for categorization of different types of ASE, opening up this widespread and complex mechanism for comprehensive characterization.

  14. Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage

    PubMed Central

    Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G.; de-la-Rua, Concepcion

    2015-01-01

    The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations. PMID:26053041

  15. Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage.

    PubMed

    Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G; de-la-Rua, Concepcion

    2015-01-01

    The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.

  16. Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata

    PubMed Central

    Sztepanacz, Jacqueline L.; Blows, Mark W.

    2015-01-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700

  17. The genetics of insomnia--evidence for epigenetic mechanisms?

    PubMed

    Palagini, Laura; Biber, Knut; Riemann, Dieter

    2014-06-01

    Sleep is a complex physiological process and still remains one of the great mysteries of science. Over the past 10 y, genetic research has provided a new avenue to address the regulation and function of sleep. Gene loci that contribute quantitatively to sleep characteristics and variability have already been identified. However, up to now, a genetic basis has been established only for a few sleep disorders. Little is yet known about the genetic background of insomnia, one of the most common sleep disorders. According to the conceptualisation of the 3P model of insomnia, predisposing, precipitating and perpetuating factors contribute to the development and maintenance of insomnia. Growing evidence from studies of predisposing factors suggests a certain degree of heritability for insomnia and for a reactivity of sleep patterns to stressful events, explaining the emergence of insomnia in response to stressful life events. While a genetic susceptibility may modulate the impact of stress on the brain, this finding does not provide us with a complete understanding of the capacity of stress to produce long-lasting perturbations of brain and behaviour. Epigenetic gene-environment interactions have been identified just recently and may provide a more complex understanding of the genetic control of sleep and its disorders. It was recently hypothesised that stress-response-related brain plasticity might be epigenetically controlled and, moreover, several epigenetic mechanisms have been assumed to be involved in the regulation of sleep. Hence, it might be postulated that insomnia may be influenced by an epigenetic control process of both sleep mechanisms and stress-response-related gene-environment interactions having an impact on brain plasticity. This paper reviews the evidence for the genetic basis of insomnia and recent theories about epigenetic mechanisms involved in both sleep regulation and brain-stress response, leading to the hypothesis of an involvement of epigenetic

  18. Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants.

    PubMed

    Okello, J B A; Wittemyer, G; Rasmussen, H B; Arctander, P; Nyakaana, S; Douglas-Hamilton, I; Siegismund, H R

    2008-09-01

    Two hundred years of elephant hunting for ivory, peaking in 1970-1980s, caused local extirpations and massive population declines across Africa. The resulting genetic impacts on surviving populations have not been studied, despite the importance of understanding the evolutionary repercussions of such human-mediated events on this keystone species. Using Bayesian coalescent-based genetic methods to evaluate time-specific changes in effective population size, we analysed genetic variation in 20 highly polymorphic microsatellite loci from 400 elephants inhabiting the greater Samburu-Laikipia region of northern Kenya. This area experienced a decline of between 80% and 90% in the last few decades when ivory harvesting was rampant. The most significant change in effective population size, however, occurred approximately 2500 years ago during a mid-Holocene period of climatic drying in tropical Africa. Contrary to expectations, detailed analyses of four contemporary age-based cohorts showed that the peak poaching epidemic in the 1970s caused detectable temporary genetic impacts, with genetic diversity rebounding as juveniles surviving the poaching era became reproductively mature. This study demonstrates the importance of climatic history in shaping the distribution and genetic history of a keystone species and highlights the utility of coalescent-based demographic approaches in unravelling ancestral demographic events despite a lack of ancient samples. Unique insights into the genetic signature of mid-Holocene climatic change in Africa and effects of recent poaching pressure on elephants are discussed.

  19. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    USDA-ARS?s Scientific Manuscript database

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  20. Nature and nurture: environmental influences on a genetic rat model of depression.

    PubMed

    Mehta-Raghavan, N S; Wert, S L; Morley, C; Graf, E N; Redei, E E

    2016-03-29

    In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or 'nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, 'trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms.

  1. Nature and nurture: environmental influences on a genetic rat model of depression

    PubMed Central

    Mehta-Raghavan, N S; Wert, S L; Morley, C; Graf, E N; Redei, E E

    2016-01-01

    In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or ‘nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, ‘trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms. PMID:27023176

  2. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  3. Genetic cancer vaccines: current status and perspectives.

    PubMed

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2012-08-01

    The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.

  4. Genetics of dispersal.

    PubMed

    Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria

    2018-02-01

    Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in

  5. Genetics of dispersal

    PubMed Central

    Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria

    2017-01-01

    ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts

  6. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  7. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.

    PubMed

    Qin, Li-Tang; Chen, Yu-Han; Zhang, Xin; Mo, Ling-Yun; Zeng, Hong-Hu; Liang, Yan-Peng

    2018-05-01

    Antibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures. In this study, we developed a quantitative structure-activity relationship (QSAR) model for the toxicities (half effect concentration, EC 50 ) of 45 binary and multi-component mixtures composed of two antibiotics and four pesticides. The acute toxicities of single compound and mixtures toward Aliivibrio fischeri were tested. A genetic algorithm was used to obtain the optimized model with three theoretical descriptors. Various internal and external validation techniques indicated that the coefficient of determination of 0.9366 and root mean square error of 0.1345 for the QSAR model predicted that 45 mixture toxicities presented additive, synergistic, and antagonistic effects. Compared with the traditional concentration additive and independent action models, the QSAR model exhibited an advantage in predicting mixture toxicity. Thus, the presented approach may be able to fill the gaps in predicting non-additive toxicities of binary and multi-component mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  9. Framework for Interpretation of Trypsin–antitrypsin Imbalance and Genetic Heterogeneity in Pancreatitis

    PubMed Central

    Lin, Kun; Gao, Feng; Chen, Qingquan; Liu, Qicai; Chen, Shu

    2015-01-01

    Early intracellular premature trypsinogen activation was interpreted as the key initiator of pancreatitis. When the balance in the homeostasis of trypsin and antitrypsin system is disequilibrated, elevated aggressive enzymes directly attack the pancreatic tissue, which leads to pancreatic destruction and inflammation. However, trypsin alone is not enough to cause complications in pancreatitis, which may play a crucial role in modulating signaling events in the initial phase of the disease. NFκB activation is the major inflammatory pathway involved in the occurrence and development of pancreatitis and it can be induced by intrapancreatic activation of trypsinogen. Synthesis of trypsinogen occurs in endoplasmic reticulum (ER), and ER stress is an important early acinar cell event. Components of ER stress response are known to be able to trigger cell death as well as NFκB signaling cascade. The strongest evidence supporting the trypsin-centered theory is that gene mutations, which lead to the generation of more trypsin, or reduce the activity of trypsin inhibitors or trypsin degradation, are associated with pancreatitis. Thus, trypsin–antitrypsin imbalance may be the first step leading to pancreatic autodigestion and inducing other pathways. Continued experimental studies are necessary to determine the specific relationships between trypsin–antitrypsin imbalance and genetic heterogeneity in pancreatitis. In this article, we review the latest advances that contributed to the understanding of the basic mechanisms behind the occurrence and development of pancreatitis with a focus on the interpretation of trypsin–antitrypsin imbalance and their relationships with other inflammation pathways. We additionally highlight genetic predispositions to pancreatitis and possible mechanisms associated with them. PMID:26228362

  10. Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.

    PubMed

    Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M

    2016-11-01

    Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding

  11. Event generator tunes obtained from underlying event and multiparton scattering measurements.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Abdelalim, A A; Awad, A; Mahrous, A; Mohammed, Y; Radi, A; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Edelhoff, M; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Bell, A J; Borras, K; Burgmeier, A; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Jain, Sa; Majumdar, N; Modak, A; Mondal, K; Mukherjee, S; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Miniello, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Cappello, G; Chiorboli, M; Costa, S; Mattia, A Di; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fantinel, S; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lee, S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Wan Abdullah, W A T; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beir Ao; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Myagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Yu, S S; Kumar, Arun; Bartek, R; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Demiroglu, Z S; Dozen, C; Eskut, E; Gecit, F H; Girgis, S; Gokbulut, G; Guler, Y; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Onengut, G; Ozcan, M; Ozdemir, K; Polatoz, A; Sunar Cerci, D; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Cripps, N; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Elwood, A; Ferguson, W; Futyan, D; Hall, G; Iles, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Scarborough, T; Wu, Z; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Fantasia, C; Gastler, D; Lawson, P; Rankin, D; Richardson, C; Rohlf, J; St John, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Bhattacharya, S; Cutts, D; Dhingra, N; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Bravo, C; Cousins, R; Everaerts, P; Farrell, C; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Pierini, M; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Jung, A W; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Gleyzer, S V; Hugon, J; Konigsberg, J; Korytov, A; Kotov, K; Low, J F; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, J R; Ackert, A; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Silkworth, C; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Xiao, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Majumder, D; Malek, M; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Bierwagen, K; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Ralph, D; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Keller, J; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Brinkerhoff, A; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Saka, H; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, K; Miller, D H; Neumeister, N; Primavera, F; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Hindrichs, O; Khukhunaishvili, A; Petrillo, G; Tan, P; Verzetti, M; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    New sets of parameters ("tunes") for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton-proton ([Formula: see text]) data at [Formula: see text] and to UE proton-antiproton ([Formula: see text]) data from the CDF experiment at lower [Formula: see text], are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13[Formula: see text]. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan ([Formula: see text] lepton-antilepton+jets) observables at 7 and 8[Formula: see text], as well as predictions for MB and UE observables at 13[Formula: see text].

  12. Probalistic Models for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Xapsos, Michael

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to describe the radiation environment that can be expected at a specified confidence level. The task of the designer is then to choose a design that will operate in the model radiation environment. Probabilistic models have already been developed for solar proton events that describe the peak flux, event-integrated fluence and missionintegrated fluence. In addition a probabilistic model has been developed that describes the mission-integrated fluence for the Z>2 elemental spectra. This talk will focus on completing this suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 element

  13. Genetics Home Reference: histidinemia

    MedlinePlus

    ... condition characterized by elevated blood levels of the amino acid histidine, a building block of most proteins. Histidinemia ... Additional Information & Resources MedlinePlus (2 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Newborn Screening Genetic and ...

  14. Genetic Psychophysiology: advances, problems, and future directions

    PubMed Central

    Anokhin, Andrey P.

    2014-01-01

    This paper presents an overview of historical advances and the current state of genetic psychophysiology, a rapidly developing interdisciplinary research linking genetics, brain, and human behavior, discusses methodological problems, and outlines future directions of research. The main goals of genetic psychophysiology are to elucidate the neural pathways and mechanisms mediating genetic influences on cognition and emotion, identify intermediate brain-based phenotypes for psychopathology, and provide a functional characterization of genes being discovered by large association studies of behavioral phenotypes. Since the initiation of this neurogenetic approach to human individual differences in the 1970s, numerous twin and family studies have provided strong evidence for heritability of diverse aspects of brain function including resting-state brain oscillations, functional connectivity, and event-related neural activity in a variety of cognitive and emotion processing tasks, as well as peripheral psychophysiological responses. These data indicate large differences in the presence and strength of genetic influences across measures and domains, permitting the selection of heritable characteristics for gene finding studies. More recently, candidate gene association studies began to implicate specific genetic variants in different aspects of neurocognition. However, great caution is needed in pursuing this line of research due to its demonstrated proneness to generate false-positive findings. Recent developments in methods for physiological signal analysis, hemodynamic imaging, and genomic technologies offer new exciting opportunities for the investigation of the interplay between genetic and environmental factors in the development of individual differences in behavior, both normal and abnormal. PMID:24739435

  15. Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean.

    PubMed

    Huang, Chia-Chia; Pan, Tzu-Ming

    2005-05-18

    The event-specific real-time detection and quantification of Roundup Ready soybean (RRS) using an ABI PRISM 7700 sequence detection system with light upon extension (LUX) primer was developed in this study. The event-specific primers were designed, targeting the junction of the RRS 5' integration site and the endogenous gene lectin1. Then, a standard reference plasmid was constructed that carried both of the targeted sequences for quantitative analysis. The detection limit of the LUX real-time PCR system was 0.05 ng of 100% RRS genomic DNA, which was equal to 20.5 copies. The range of quantification was from 0.1 to 100%. The sensitivity and range of quantification successfully met the requirement of the labeling rules in the European Union and Taiwan.

  16. Replacing and Additive Horizontal Gene Transfer in Streptococcus

    PubMed Central

    Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam

    2012-01-01

    The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954

  17. Speciation in parasites: a population genetics approach.

    PubMed

    Huyse, Tine; Poulin, Robert; Théron, André

    2005-10-01

    Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.

  18. A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4.

    PubMed

    Prins, Theo W; Scholtens, Ingrid M J; Bak, Arno W; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Laurensse, Emile J; Kok, Esther J

    2016-12-15

    During routine monitoring for GMOs in food in the Netherlands, papaya-containing food supplements were found positive for the genetically modified (GM) elements P-35S and T-nos. The goal of this study was to identify the unknown and EU unauthorised GM papaya event(s). A screening strategy was applied using additional GM screening elements including a newly developed PRSV coat protein PCR. The detected PRSV coat protein PCR product was sequenced and the nucleotide sequence showed identity to PRSV YK strains indigenous to China and Taiwan. The GM events 16-0-1 and 18-2-4 could be identified by amplifying and sequencing events-specific sequences. Further analyses showed that both papaya event 16-0-1 and event 18-2-4 were transformed with the same construct. For use in routine analysis, derived TaqMan qPCR methods for events 16-0-1 and 18-2-4 were developed. Event 16-0-1 was detected in all samples tested whereas event 18-2-4 was detected in one sample. This study presents a strategy for combining information from different sources (literature, patent databases) and novel sequence data to identify unknown GM papaya events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genetic and linguistic coevolution in Northern Island Melanesia.

    PubMed

    Hunley, Keith; Dunn, Michael; Lindström, Eva; Reesink, Ger; Terrill, Angela; Healy, Meghan E; Koki, George; Friedlaender, Françoise R; Friedlaender, Jonathan S

    2008-10-01

    Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may

  20. Genetic and Linguistic Coevolution in Northern Island Melanesia

    PubMed Central

    Hunley, Keith; Dunn, Michael; Lindström, Eva; Reesink, Ger; Terrill, Angela; Healy, Meghan E.; Koki, George; Friedlaender, Françoise R.; Friedlaender, Jonathan S.

    2008-01-01

    Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may

  1. Phylogeography of the South China Field Mouse (Apodemus draco) on the Southeastern Tibetan Plateau Reveals High Genetic Diversity and Glacial Refugia

    PubMed Central

    Liu, Yang; Liao, Lihuan; Zhang, Xiuyue; Yue, Bisong

    2012-01-01

    The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure. PMID:22666478

  2. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    PubMed

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. A practical approach to screen for authorised and unauthorised genetically modified plants.

    PubMed

    Waiblinger, Hans-Ulrich; Grohmann, Lutz; Mankertz, Joachim; Engelbert, Dirk; Pietsch, Klaus

    2010-03-01

    In routine analysis, screening methods based on real-time PCR are most commonly used for the detection of genetically modified (GM) plant material in food and feed. In this paper, it is shown that the combination of five DNA target sequences can be used as a universal screening approach for at least 81 GM plant events authorised or unauthorised for placing on the market and described in publicly available databases. Except for maize event LY038, soybean events DP-305423 and BPS-CV127-9 and cotton event 281-24-236 x 3006-210-23, at least one of the five genetic elements has been inserted in these GM plants and is targeted by this screening approach. For the detection of these sequences, fully validated real-time PCR methods have been selected. A screening table is presented that describes the presence or absence of the target sequences for most of the listed GM plants. These data have been verified either theoretically according to available databases or experimentally using available reference materials. The screening table will be updated regularly by a network of German enforcement laboratories.

  4. Genetic landscape of populations along the Silk Road: admixture and migration patterns.

    PubMed

    Mezzavilla, Massimo; Vozzi, Diego; Pirastu, Nicola; Girotto, Giorgia; d'Adamo, Pio; Gasparini, Paolo; Colonna, Vincenza

    2014-12-05

    The ancient Silk Road has been a trading route between Europe and Central Asia from the 2(nd) century BCE to the 15(th) century CE. While most populations on this route have been characterized, the genetic background of others remains poorly understood, and little is known about past migration patterns. The scientific expedition "Marco Polo" has recently collected genetic and phenotypic data in six regions (Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Tajikistan) along the Silk Road to study the genetics of a number of phenotypes. We characterized the genetic structure of these populations within a worldwide context. We observed a West-East subdivision albeit the existence of a genetic component shared within Central Asia and nearby populations from Europe and Near East. We observed a contribution of up to 50% from Europe and Asia to most of the populations that have been analyzed. The contribution from Asia dates back to ~25 generations and is limited to the Eastern Silk Road. Time and direction of this contribution are consistent with the Mongolian expansion era. We clarified the genetic structure of six populations from Central Asia and suggested a complex pattern of gene flow among them. We provided a map of migration events in time and space and we quantified exchanges among populations. Altogether these novel findings will support the future studies aimed at understanding the genetics of the phenotypes that have been collected during the Marco Polo campaign, they will provide insights into the history of these populations, and they will be useful to reconstruct the developments and events that have shaped modern Eurasians genomes.

  5. The effect of myostatin genotype on body temperature during extreme temperature events.

    PubMed

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P < 0.001) and 12 h (P < 0.02) for Model [C] indicate that a genotype × environment interaction exists for MG. For MG during summer stress events the additive estimate was 0.10°C (P < 0.01) and

  6. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia

    PubMed Central

    Schrey, A.; Ragsdale, A.; Griffith, S. C.

    2018-01-01

    Invasive populations are often associated with low levels of genetic diversity owing to population bottlenecks at the initial stages of invasion. Despite this, the ability of invasive species to adapt rapidly in response to novel environments is well documented. Epigenetic mechanisms have recently been proposed to facilitate the success of invasive species by compensating for reduced levels of genetic variation. Here, we use methylation sensitive-amplification fragment length polymorphism and microsatellite analyses to compare levels of epigenetic and genetic diversity and differentiation across 15 sites in the introduced Australian house sparrow population. We find patterns of epigenetic and genetic differentiation that are consistent with historical descriptions of three distinct, introductions events. However unlike genetic differentiation, epigenetic differentiation was higher among sample sites than among invasion clusters, suggesting that patterns of epigenetic variation are more strongly influenced by local environmental stimuli or sequential founder events than the initial diversity in the introduction population. Interestingly, we fail to detect correlations between pairwise site comparisons of epigenetic and genetic differentiation, suggesting that some of the observed epigenetic variation has arisen independently of genetic variation. We also fail to detect the potentially compensatory relationship between epigenetic and genetic diversity that has been detected in a more recent house sparrow invasion in Africa. We discuss the potential for this relationship to be obscured by recovered genetic diversity in more established populations, and highlight the importance of incorporating introduction history into population-wide epigenetic analyses. PMID:29765671

  7. 26 CFR 54.9802-3T - Additional requirements prohibiting discrimination based on genetic information (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... both parents). (A) First-degree relatives include parents, spouses, siblings, and children. (B) Second... children of first cousins. (3) Genetic information means— (i) Subject to paragraphs (a)(3)(ii) and (a)(3... expertise in the field of medicine involved. For purposes of this section, a disease, disorder, or...

  8. Reasoning over genetic variance information in cause-and-effect models of neurodegenerative diseases

    PubMed Central

    Naz, Mufassra; Kodamullil, Alpha Tom

    2016-01-01

    The work we present here is based on the recent extension of the syntax of the Biological Expression Language (BEL), which now allows for the representation of genetic variation information in cause-and-effect models. In our article, we describe, how genetic variation information can be used to identify candidate disease mechanisms in diseases with complex aetiology such as Alzheimer’s disease and Parkinson’s disease. In those diseases, we have to assume that many genetic variants contribute moderately to the overall dysregulation that in the case of neurodegenerative diseases has such a long incubation time until the first clinical symptoms are detectable. Owing to the multilevel nature of dysregulation events, systems biomedicine modelling approaches need to combine mechanistic information from various levels, including gene expression, microRNA (miRNA) expression, protein–protein interaction, genetic variation and pathway. OpenBEL, the open source version of BEL, has recently been extended to match this requirement, and we demonstrate in our article, how candidate mechanisms for early dysregulation events in Alzheimer’s disease can be identified based on an integrative mining approach that identifies ‘chains of causation’ that include single nucleotide polymorphism information in BEL models. PMID:26249223

  9. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics

    PubMed Central

    Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong

    2016-01-01

    Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae–Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. PMID:27604225

  10. The Evolution of Human Genetic and Phenotypic Variation in Africa

    PubMed Central

    Campbell, Michael C.

    2010-01-01

    Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations. PMID:20178763

  11. Permafrost as an additional driving factor for the extreme fire event in the boreal Baikal region in 2003

    NASA Astrophysics Data System (ADS)

    Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C.

    2012-04-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires degrade the forest, affect human values, emit huge amount of carbon and aerosols and alter the land surface albedo. Usually, wind, slope, and dry conditions have been recognized as factors determining fire spread. In the Baikal region, 127,000 km2 burned in 2003, while the annual average burned area is approx. 8100 km2. In average years, 16% of the burned area occurred in the continuous permafrost zone but in 2003, 33% of these burned areas coincide with the existence of permanently frozen grounds. Permafrost and the associated upper active layer, which thaws during summer and refreezes during winter, is an important supply for soil moisture in boreal ecosystems. This leads to the question if permafrost hydrology is a potential additional driving factor for extreme fire events in boreal forests. Using temperature and precipitation data, we calculated the Nesterov index as indicator for fire weather conditions. Further, we used satellite observations of burned area and surface moisture, a digital elevation model, a land cover and a permafrost map to evaluate drivers for the temporal dynamic and spatial variability of surface moisture conditions and burned area in spring 2003. On the basis of time series decomposition, we separated the effect of drivers for fire activity on different time scales. We next computed cross-correlations to identify potential time lags between weather conditions, surface moisture and fire activity. Finally, we assessed the predictive capability of different combinations of driving variables for surface moisture conditions and burned area using multivariate spatial-temporal regression models. The results from this study demonstrate that permafrost in larch-dominated ecosystems regulates the inter-annual variability of surface moisture and thus increases the inter

  12. Population genetic structure and long-distance dispersal of a recently expanding migratory bird.

    PubMed

    Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin

    2016-06-01

    Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The impact of supervision training on genetic counselor supervisory identity development.

    PubMed

    Atzinger, Carrie L; Lewis, Kimberly; Martin, Lisa J; Yager, Geoffrey; Ramstetter, Catherine; Wusik, Katie

    2014-12-01

    Supervision is critical to the training of genetic counselors. Limited research exists on the influence of supervision training and experience on the development of genetic counseling supervisors. The purpose of this study was to investigate the impact of supervision training in addition to supervisory and clinical experience on supervisory identity development, and the perceived confidence and competence supervisors have in their own supervisory skills. In addition, we explored genetic counselors' (N = 291) interest in and barriers to training as well as perspectives on requirements for supervisors. Results indicated clinical experience, supervision experience, and formal supervision training are positively associated with genetic counselors' supervisory identity development as measured by the Psychotherapy Supervisory Development Scale (PSDS) (p < 0.05). Despite a moderate correlation between supervision experience and formal training (ρ = 0.42, p < 0.001), both had independent effects on PSDS scores (p < 0.04). A majority of genetic counselors were interested in receiving supervision training but noted lack of available training as a barrier. The majority of participants indicated that supervisors should be certified as genetic counselors, but there was no consensus on training requirements. Development of additional supervision training opportunities for genetic counselors should be considered.

  14. Genetics of alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD. © 2014 Elsevier B.V. All rights reserved.

  15. Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events.

    PubMed

    Botwey, Ransford Henry; Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G

    2014-01-01

    Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

  16. Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Ozer, Umit

    2013-03-01

    Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution

  17. Theoretical foundations for quantitative paleogenetics. III - The molecular divergence of nucleic acids and proteins for the case of genetic events of unequal probability

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Pearl, D.

    1980-01-01

    Theoretical equations are derived for molecular divergence with respect to gene and protein structure in the presence of genetic events with unequal probabilities: amino acid and base compositions, the frequencies of nucleotide replacements, the usage of degenerate codons, the distribution of fixed base replacements within codons and the distribution of fixed base replacements among codons. Results are presented in the form of tables relating the probabilities of given numbers of codon base changes with respect to the original codon for the alpha hemoglobin, beta hemoglobin, myoglobin, cytochrome c and parvalbumin group gene families. Application of the calculations to the rabbit alpha and beta hemoglobin mRNAs and proteins indicates that the genes are separated by about 425 fixed based replacements distributed over 114 codon sites, which is a factor of two greater than previous estimates. The theoretical results also suggest that many more base replacements are required to effect a given gene or protein structural change than previously believed.

  18. Genetic susceptibility to neuroblastoma: current knowledge and future directions.

    PubMed

    Ritenour, Laura E; Randall, Michael P; Bosse, Kristopher R; Diskin, Sharon J

    2018-05-01

    Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.

  19. Event Processing and Variable Part of Sample Period Determining in Combined Systems Using GA

    NASA Astrophysics Data System (ADS)

    Strémy, Maximilián; Závacký, Pavol; Jedlička, Martin

    2011-01-01

    This article deals with combined dynamic systems and usage of modern techniques in dealing with these systems, focusing particularly on sampling period design, cyclic processing tasks and related processing algorithms in the combined event management systems using genetic algorithms.

  20. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  1. The genetic correlation between height and IQ: shared genes or assortative mating?

    PubMed

    Keller, Matthew C; Garver-Apgar, Christine E; Wright, Margaret J; Martin, Nicholas G; Corley, Robin P; Stallings, Michael C; Hewitt, John K; Zietsch, Brendan P

    2013-04-01

    Traits that are attractive to the opposite sex are often positively correlated when scaled such that scores increase with attractiveness, and this correlation typically has a genetic component. Such traits can be genetically correlated due to genes that affect both traits ("pleiotropy") and/or because assortative mating causes statistical correlations to develop between selected alleles across the traits ("gametic phase disequilibrium"). In this study, we modeled the covariation between monozygotic and dizygotic twins, their siblings, and their parents (total N = 7,905) to elucidate the nature of the correlation between two potentially sexually selected traits in humans: height and IQ. Unlike previous designs used to investigate the nature of the height-IQ correlation, the present design accounts for the effects of assortative mating and provides much less biased estimates of additive genetic, non-additive genetic, and shared environmental influences. Both traits were highly heritable, although there was greater evidence for non-additive genetic effects in males. After accounting for assortative mating, the correlation between height and IQ was found to be almost entirely genetic in nature. Model fits indicate that both pleiotropy and assortative mating contribute significantly and about equally to this genetic correlation.

  2. Z-rich solar particle event characteristics 1972-1976

    NASA Technical Reports Server (NTRS)

    Zwickl, R. D.; Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Armstrong, T. P.

    1978-01-01

    It is found in the reported investigation that Z-rich solar particle events usually have large and prolonged anisotropies in addition to an extremely variable charge composition that varies not only from event to event but also throughout the event. These observations suggest that one can no longer regard the event-averaged composition of solar particle events at low energies as providing an unbiased global sample of the solar atmospheric composition. The variability from event to event and among classes of events is just too great. However, the tendency for the Z-rich events to be associated with both the low-speed solar wind at or just before the onset of solar wind streams and with active regions located in the western hemisphere, indicates that charge composition studies of solar particle events can yield a better knowledge of the flare acceleration process as well as the inhomogeneous nature of magnetic field structure and particle composition in the solar atmosphere.

  3. Imaging-Genetics in Dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments

    PubMed Central

    Eicher, John D.; Gruen, Jeffrey R.

    2013-01-01

    Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia. PMID:23916419

  4. Genetic selection for lifetime reproductive performance.

    PubMed

    Clutter, A C

    2009-01-01

    Genetic improvement of sow lifetime reproductive performance has value from both the economic perspectives of pork producers and the pork industry, but also from the perspective of ethical and animal welfare concerns by the general public. Genetic potential for piglets produced from individual litters is a primary determinant of lifetime prolificacy, but females must be able to sustain productivity without injury or death beyond the achievement of positive net present value. Evidence exists for between- and within-line genetic variation in sow lifetime performance, suggesting that improvements may be made by both line choices and genetic selection within lines. However, some of the same barriers to accurate within-line selection that apply to individual litter traits also present challenges to genetic selection for sow lifetime prolificacy: generally low heritabilites, sex-limited expression, expression after the age that animals are typically selected, and unfavorable genetic correlations with other traits in the profit function. In addition, there is an inherent conflict within the genetic nucleus herds where selections take place between the goal of shortened generation interval to accelerate genetic progress and the expression of sow lifetime traits. A proliferation in the industry of commercial multipliers with direct genetic ties and routine record flows to genetic nucleus herds provides a framework for accurate estimates of relevant genetic variances and covariances, and estimation of breeding values for sow lifetime traits that can be used in genetic selection.

  5. Insertion/deletion polymorphism in alpha2-adrenergic receptor gene is a genetic risk factor for sudden cardiac death.

    PubMed

    Laukkanen, Jari A; Mäkikallio, Timo H; Kauhanen, Jussi; Kurl, Sudhir

    2009-10-01

    Adrenoceptors mediate contraction of vascular smooth muscle and induce coronary vasoconstriction in humans. A deletion variant of the human alpha(2B)-adrenoreseptor of glutamic acid residues has been associated with impaired receptor desensitization. This receptor variant could, therefore, be involved in cardiovascular diseases associated with enhanced vasoconstriction. Our aim was to study whether an insertion/deletion (I/D) polymorphism in the alpha(2B)-adrenoceptor gene is associated with the risk for sudden cardiac death. This was a prospective population-based study investigating risk factors for cardiovascular diseases in middle-aged men from 42 to 60 years from eastern Finland. The study is based on 1,606 men with complete data on DNA observed for an average time of 17 years. In this study population, 338 men (21%) had the D/D genotype, 467 (29%) had the I/I genotype, and 801 (50%) had a heterozygous genotype. There were 76 sudden cardiac deaths during follow-up (0.81 deaths/1,000 persons per year). In a Cox model adjusting for other coronary risk factors (age, systolic blood pressure, smoking, diabetes, serum low-density lipoprotein and high-density lipoprotein cholesterol, body mass index, and exercise-induced myocardial ischemia), men with the D/D or I/D genotype had 1.97 times (95% CI 1.08-3.59, P = .026) higher risk to experience sudden cardiac death (20 events for D/D genotype, 13 events for I/I genotype, and 43 events for I/D genotype) compared with men carrying the I/I genotype. In addition, the alpha(2B)-adrenoceptor D/D genotype was associated with the risk of coronary heart disease death and acute coronary events, after adjusting for risk factors. The genetic polymorphism of the alpha(2B)-adrenoreceptor is genetic risk predictor for sudden cardiac death.

  6. Elemental abundances in corotating events

    NASA Technical Reports Server (NTRS)

    Vonrosenvinge, T. T.; Mcguire, R. E.

    1986-01-01

    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.

  7. Genetic Homologies Among Streptomyces violaceoruber Strains

    PubMed Central

    Monson, A. M.; Bradley, S. G.; Enquist, L. W.; Cruces, Griselda

    1969-01-01

    Most of the genetic studies on streptomycetes have been done with cultures erroneously designated as Streptomyces coelicolor. To determine whether these cultures are genetically homologous with the S. violaceoruber nominifer, their deoxyribonucleic acids (DNA) were analyzed, and selected pairs of mutants were crossed. The four cultures used in genetic studies, and called S. coelicolor in the literature, were found to constitute a genospecies, based upon DNA hybridization and recombination tests. In addition, DNA from Actinopycnidium caeruleum formed extensive duplexes with S. violaceoruber DNA. S. violaceoruber cultures and A. caeruleum were distinctly different from the S. coelicolor nominifer. PMID:5370275

  8. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape

    PubMed Central

    Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri

    2013-01-01

    Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198

  9. Genetic signals of past demographic changes and the history of oak populations in California

    NASA Astrophysics Data System (ADS)

    Dodd, R. S.

    2009-04-01

    A retrospective view of species' demographic changes can inform on population stability through times of climatic change and the origins and spatial structure of genetic diversity in contemporary populations. The former provides the means to predict responses to future climatic change, while the latter allows us to infer the ability of populations to buffer the effects of reductions in population size and fragmentation. The approximately 1.8 my of the Pleistocene is believed to have had a significant impact on diversity through high rates of extinction during early glacial cycles and population expansions and contractions during the later cycles. In the Mediterranean basin, early emphasis on taxa with wide latitudinal ranges led to models of refugial sites and subsequent recolonization routes that could explain geographic patterns in genetic diversity, with a trend towards reduced genetic diversity in the north. More recently, the study of strictly Mediterranean taxa has revealed relictual sites that have persisted over very long periods of time, commonly relatively poor in diversity, but populations well differentiated from one site to another. In California, relatively little is known of the population dynamics of plant taxa during the Pleistocene glacial cycles, or to what extent differentiation today is a result of pre-Pleistocene events. For several animal taxa, differentiation between Coastal and Sierran taxa are believed to date to the Pliocene. Major demographic changes resulting in population isolation, bottlenecks, founder events and population expansions leave a genetic signal that can be detected through appropriate genetic markers and analyses. Such signals help to infer whether past climate fluctuations have had important effects on population demographics. Here, I will focus on key oak species of the California mediterranean climate zone. I will explore the likely effects of the last glacial maximum on oak populations using palaeoclimate and niche

  10. Lipoprotein(a) levels predict adverse vascular events after acute myocardial infarction.

    PubMed

    Mitsuda, Takayuki; Uemura, Yusuke; Ishii, Hideki; Takemoto, Kenji; Uchikawa, Tomohiro; Koyasu, Masayoshi; Ishikawa, Shinji; Miura, Ayako; Imai, Ryo; Iwamiya, Satoshi; Ozaki, Yuta; Kato, Tomohiro; Shibata, Rei; Watarai, Masato; Murohara, Toyoaki

    2016-12-01

    Lipoprotein(a) [Lp(a)], which is genetically determined, has been reported as an independent risk factor for atherosclerotic vascular disease. However, the prognostic value of Lp(a) for secondary vascular events in patients after coronary artery disease has not been fully elucidated. This 3-year observational study included a total of 176 patients with ST-elevated myocardial infarction (STEMI), whose Lp(a) levels were measured within 24 h after primary percutaneous coronary intervention. We divided enrolled patients into two groups according to Lp(a) level and investigated the association between Lp(a) and the incidence of major adverse cardiac and cerebrovascular events (MACCE). A Kaplan-Meier analysis demonstrated that patients with higher Lp(a) levels had a higher incidence of MACCE than those with lower Lp(a) levels (log-rank P = 0.034). A multivariate Cox regression analysis revealed that Lp(a) levels were independently correlated with the occurrence of MACCE after adjusting for other classical risk factors of atherosclerotic vascular diseases (hazard ratio 1.030, 95 % confidence interval: 1.011-1.048, P = 0.002). In receiver-operating curve analysis, the cutoff value to maximize the predictive power of Lp(a) was 19.0 mg/dl (area under the curve = 0.674, sensitivity 69.2 %, specificity 62.0 %). Evaluation of Lp(a) in addition to the established coronary risk factors improved their predictive value for the occurrence of MACCE. In conclusion, Lp(a) levels at admission independently predict secondary vascular events in patients with STEMI. Lp(a) might provide useful information for the development of secondary prevention strategies in patients with myocardial infarction.

  11. Gene doping: a review of performance-enhancing genetics.

    PubMed

    Gaffney, Gary R; Parisotto, Robin

    2007-08-01

    Unethical athletes and their mentors have long arrogated scientific and medical advances to enhance athletic performance, thus gaining a dishonest competitive advantage. Building on advances in genetics, a new threat arises from athletes using gene therapy techniques in the same manner that some abused performance-enhancing drugs were used. Gene doping, as this is known, may produce spectacular physiologic alterations to dramatically enhance athletic abilities or physical appearance. Furthermore, gene doping may present pernicious problems for the regulatory agencies and investigatory laboratories that are entrusted to keep sporting events fair and ethical. Performance-enhanced genetics will likewise present unique challenges to physicians in many spheres of their practice.

  12. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    PubMed

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  13. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.

    PubMed

    Montaña, Sabrina; Schramm, Sareda T J; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes.

  14. A Population Genetics Model of Marker-Assisted Selection

    PubMed Central

    Luo, Z. W.; Thompson, R.; Woolliams, J. A.

    1997-01-01

    A deterministic two-loci model was developed to predict genetic response to marker-assisted selection (MAS) in one generation and in multiple generations. Formulas were derived to relate linkage disequilibrium in a population to the proportion of additive genetic variance used by MAS, and in turn to an extra improvement in genetic response over phenotypic selection. Predictions of the response were compared to those predicted by using an infinite-loci model and the factors affecting efficiency of MAS were examined. Theoretical analyses of the present study revealed the nonlinearity between the selection intensity and genetic response in MAS. In addition to the heritability of the trait and the proportion of the marker-associated genetic variance, the frequencies of the selectively favorable alleles at the two loci, one marker and one quantitative trait locus, were found to play an important role in determining both the short- and long-term efficiencies of MAS. The evolution of linkage disequilibrium and thus the genetic response over several generations were predicted theoretically and examined by simulation. MAS dissipated the disequilibrium more quickly than drift alone. In some cases studied, the rate of dissipation was as large as that to be expected in the circumstance where the true recombination fraction was increased by three times and selection was absent. PMID:9215918

  15. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  16. 36 CFR 1280.72 - What additional rules apply for a NARA approved event?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What additional rules apply... ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Rules Apply to Use NARA Public Areas in the Washington, DC, Area? General § 1280.72 What additional rules apply for a NARA...

  17. CRISPR-directed mitotic recombination enables genetic mapping without crosses.

    PubMed

    Sadhu, Meru J; Bloom, Joshua S; Day, Laura; Kruglyak, Leonid

    2016-05-27

    Linkage and association studies have mapped thousands of genomic regions that contribute to phenotypic variation, but narrowing these regions to the underlying causal genes and variants has proven much more challenging. Resolution of genetic mapping is limited by the recombination rate. We developed a method that uses CRISPR (clustered, regularly interspaced, short palindromic repeats) to build mapping panels with targeted recombination events. We tested the method by generating a panel with recombination events spaced along a yeast chromosome arm, mapping trait variation, and then targeting a high density of recombination events to the region of interest. Using this approach, we fine-mapped manganese sensitivity to a single polymorphism in the transporter Pmr1. Targeting recombination events to regions of interest allows us to rapidly and systematically identify causal variants underlying trait differences. Copyright © 2016, American Association for the Advancement of Science.

  18. Increasing importance of genetics in nursing.

    PubMed

    Camak, Deborah Jacks

    2016-09-01

    To examine the empirical literature related to the incorporation of genetic research and genetic competency needed by the nurse in practice. Literature review. This article will explore published research within the past seven years of 2008-2015 that address the need for the increased incorporation of genetic content in nursing practice in addition to the need for the nurse to effectively screen the patient at risk of a genetic disorder. This literature review specifically focuses on the inadequacy of nurses in addressing genomic health compromise and serving as advocates for patients and families facing genetic disorders. A review of the literature published from 2008 to 2015 related to the incorporation of genetics in nursing practice and the role of the nurse as a patient advocate for families facing genetic disorders with resulting genomic health compromise. The research exposes the lack of adequate preparation of nurses to incorporate and utilize the recent advances in genomic healthcare. Practicing nurses lack understating and skill in the application of genetics and genomic technologies to patient care. The nursing profession, including nursing academia, need to enhance the integration of genetic and genomic content into nursing curriculum and practice. Practicing nurses are inadequately prepared to apply genetic advancements in screening at risk patients and addressing the needs of the patient or family facing a genomic health compromise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  20. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    PubMed

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  1. NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.

    PubMed

    Leu, Szu-Yun; Sen, Pranab K

    2014-01-01

    The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.

  2. Genetic documentation of filial cannibalism in nature

    PubMed Central

    DeWoody, J. Andrew; Fletcher, Dean E.; Wilkins, S. David; Avise, John C.

    2001-01-01

    Cannibalism is widespread in natural populations of fishes, where the stomachs of adults frequently contain conspecific juveniles. Furthermore, field observations suggest that guardian males routinely eat offspring from their own nests. However, recent genetic paternity analyses have shown that fish nests often contain embryos not sired by the nest-tending male (because of cuckoldry events, egg thievery, or nest piracy). Such findings, coupled with the fact that several fish species have known capabilities for distinguishing kin from nonkin, raise the possibility that cannibalism by guardian males is directed primarily or exclusively toward unrelated embryos in their nests. Here, we test this hypothesis by collecting freshly cannibalized embryos from the stomachs of several nest-tending darter and sunfish males in nature and determining their genetic parentage by using polymorphic microsatellite markers. Our molecular results clearly indicate that guardian males do indeed consume their own genetic offspring, even when unrelated (foster) embryos are present within the nest. These data provide genetic documentation of filial cannibalism in nature. Furthermore, they suggest that the phenomenon may result, at least in part, from an inability of guardians to differentiate between kin and nonkin within their own nests. PMID:11309508

  3. US system of oversight for genetic testing: a report from the Secretary's Advisory Committee on Genetics, Health and Society.

    PubMed

    Ferreira-Gonzalez, Andrea; Teutsch, Steven; Williams, Marc S; Au, Sylvia M; Fitzgerald, Kevin T; Miller, Paul Steven; Fomous, Cathy

    2008-09-01

    As genetic testing technology is integrated into healthcare, increasingly detailed information about individual and population genetic variation is available to patients and providers. Health professionals use genetic testing to diagnose or assess the risk of disease in individuals, families and populations and to guide healthcare decisions. Consumers are beginning to explore personalized genomic services in an effort to learn more about their risk for common diseases. Scientific and technological advances in genetic testing, as with any newly introduced medical technology, present certain challenges to existing frameworks of oversight. In addition, the growing use of genetic testing will require a significant investment in evidence-based assessments to understand the validity and utility of these tests in clinical and personal decisionmaking. To optimize the use of genetic testing in healthcare, all sectors of the oversight system need to be strengthened and yet remain flexible in order to adapt to advances that will inevitably increase the range of genetic tests and methodologies.

  4. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  6. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duster, T.

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culturemore » in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.« less

  7. Genetic Causes of Rickets

    PubMed Central

    Acar, Sezer; Demir, Korcan; Shi, Yufei

    2017-01-01

    Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches. PMID:29280738

  8. Insight into the molecular genetics of myopia

    PubMed Central

    Li, Jiali

    2017-01-01

    Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878

  9. Insight into the molecular genetics of myopia.

    PubMed

    Li, Jiali; Zhang, Qingjiong

    2017-01-01

    Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.

  10. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  11. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  12. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria.

    PubMed

    Toleman, Mark A; Walsh, Timothy R

    2011-09-01

    The emergence of antibiotic and antimicrobial resistance in Gram-negative bacteria is incremental and linked to genetic elements that function in a so-called 'one-ended transposition' manner, including ISEcp1, ISCR elements and Tn3-like transposons. The power of these elements lies in their inability to consistently recognize one of their own terminal sequences, while recognizing more genetically distant surrogate sequences. This has the effect of mobilizing the DNA sequence found adjacent to their initial location. In general, resistance in Gram-negatives is closely linked to a few one-off events. These include the capture of the class 1 integron by a Tn5090-like transposon; the formation of the 3' conserved segment (3'-CS); and the fusion of the ISCR1 element to the 3'-CS. The structures formed by these rare events have been massively amplified and disseminated in Gram-negative bacteria, but hitherto, are rarely found in Gram-positives. Such events dominate current resistance gene acquisition and are instrumental in the construction of large resistance gene islands on chromosomes and plasmids. Similar combinatorial events appear to have occurred between conjugative plasmids and phages constructing hybrid elements called integrative and conjugative elements or conjugative transposons. These elements are beginning to be closely linked to some of the more powerful resistance mechanisms such as the extended spectrum β-lactamases, metallo- and AmpC type β-lactamases. Antibiotic resistance in Gram-negative bacteria is dominated by unusual combinatorial mistakes of Insertion sequences and gene fusions which have been selected and amplified by antibiotic pressure enabling the formation of extended resistance islands. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. The genetic validation of heterogeneity in schizophrenia.

    PubMed

    Tsutsumi, Atsushi; Glatt, Stephen J; Kanazawa, Tetsufumi; Kawashige, Seiya; Uenishi, Hiroyuki; Hokyo, Akira; Kaneko, Takao; Moritani, Makiko; Kikuyama, Hiroki; Koh, Jun; Matsumura, Hitoshi; Yoneda, Hiroshi

    2011-10-07

    Schizophrenia is a heritable disorder, however clear genetic architecture has not been detected. To overcome this state of uncertainty, the SZGene database has been established by including all published case-control genetic association studies appearing in peer-reviewed journals. In the current study, we aimed to determine if genetic variants strongly suggested by SZGene are associated with risk of schizophrenia in our case-control samples of Japanese ancestry. In addition, by employing the additive model for aggregating the effect of seven variants, we aimed to verify the genetic heterogeneity of schizophrenia diagnosed by an operative diagnostic manual, the DSM-IV. Each positively suggested genetic polymorphism was ranked according to its p-value, then the seven top-ranked variants (p < 0.0005) were selected from DRD2, DRD4, GRIN2B, TPH1, MTHFR, and DTNBP1 (February, 2007). 407 Schizophrenia cases and 384 controls participated in this study. To aggregate the vulnerability of the disorder based on the participants' genetic information, we calculated the "risk-index" by adding the number of genetic risk factors. No statistically significant deviation between cases and controls was observed in the genetic risk-index derived from all seven variants on the top-ranked polymorphisms. In fact, the average risk-index score in the schizophrenia group (6.5+/-1.57) was slightly lower than among controls (6.6+/-1.39). The current work illustrates the difficulty in identifying universal and definitive risk-conferring polymorphisms for schizophrenia. Our employed number of samples was small, so we can not preclude the possibility that some or all of these variants are minor risk factors for schizophrenia in the Japanese population. It is also important to aggregate the updated positive variants in the SZGene database when the replication work is conducted.

  16. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows

    PubMed Central

    Reid, J M; Arcese, P; Losdat, S

    2014-01-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454

  17. Genetic diversity and structure of a rare endemic cactus and an assessment of its genetic relationship with a more common congener.

    PubMed

    Rayamajhi, Niraj; Sharma, Jyotsna

    2018-06-01

    Endemic, obligate outcrossing plant species with narrow geographic distributions and disjunct populations are prone to loss of genetic diversity. Simultaneously, delineating clear species boundaries is important for targeted conservation efforts. The rare and endemic cactus, Sclerocactus brevihamatus subsp. tobuschii (SBT), has a parapatric relationship with Sclerocactus brevihamatus subsp. brevihamatus (SBB) but genetic distance between the two taxa is unknown. We: (1) developed taxon-specific polymorphic microsatellites, (2) assessed genetic diversity within and among nine populations of SBT, and within one population of SBB, and (3) estimated the genetic relationship between the two subspecies. Within-population genetic diversity of SBT was moderate to high (mean H o  = 0.37; mean H e  = 0.59). Indirect estimate of inbreeding corrected for null alleles (F is-INEst ) was low for SBT, ranging from 0.03 to 0.14 (mean F is-INEst  = 0.07). Genetic differentiation among populations of SBT was low based on F st (0.08) and AMOVA (Ф PT  = 0.10). Lack of genetic and spatial correlation in SBT populations coupled with the presence of private alleles and bottleneck events in several populations suggests that reproductive isolation is occurring but that sufficient time may not have yet passed to manifest strong differentiation. Cluster analyses segregated the 10 populations into three distinct groups, and separated SBB genotypes clearly. Results suggest that while hybridization between the two subspecies may occur, SBT is clearly differentiated genetically from SBB to retain its current taxonomic status.

  18. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.

    PubMed

    van der Harst, Pim; Verweij, Niek

    2018-02-02

    Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view

  19. [Epilepsy-new diagnostic tools, old drugs? : Therapeutic consequences of epilepsy genetics].

    PubMed

    Tacke, M; Neubauer, B A; Gerstl, L; Roser, T; Rémi, J; Borggraefe, I

    2017-12-01

    Recent advances in the field of epilepsy genetics have led to an increased fraction of patients with epilepsies where the etiology of the disease could be identified. Nevertheless, there is some criticism regarding the use of epilepsy genetics because in many cases the identification of a pathogenetic mutation does not lead to an adaptation of therapy or to an improved prognosis. In addition, the interpretation of genetic results might be complicated due to the considerable numbers of variants of unclear significance. This publication presents the arguments in favour of a broad use of genetic investigations for children with epilepsies. Several diseases where a genetic diagnosis does in fact have direct therapeutic consequences are mentioned. In addition, the indirect impact of an established etiology, encompassing the avoidance of unnecessary diagnostic measures, possibility of genetic counselling, and the easing of the psychologic burden for the caregivers, should not be underestimated. The arguments in favour of broad genetic diagnostics prevail notwithstanding the lack of relevant new developments regarding the therapy.

  20. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China

    PubMed Central

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into “Yuanjiang-Nanhun” basin and “Ejia-Jiepai” basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the

  1. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China.

    PubMed

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation

  2. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics.

    PubMed

    Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong

    2016-11-01

    Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae-Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Alert Regarding Cisplatin-induced Severe Adverse Events in Cancer Patients with Xeroderma Pigmentosum.

    PubMed

    Sumiyoshi, Makoto; Soda, Hiroshi; Sadanaga, Noriaki; Taniguchi, Hirokazu; Ikeda, Takaya; Maruta, Hiroshi; Dotsu, Yosuke; Ogawara, Daiki; Fukuda, Yuichi; Mukae, Hiroshi

    2017-01-01

    Xeroderma pigmentosum (XP) is a genetic disease in which DNA repair mechanisms are impaired. Cisplatin (CDDP) exerts cytotoxic effects by forming mainly intrastrand DNA cross-links, and sensitivity to CDDP depends on the DNA repair system. Several in vitro studies have suggested that treatment with CDDP may cause enhanced adverse events as well as anti-tumor activity in cancer patients with XP. This article is the first to describe two cancer patients with XP showing severe adverse events following CDDP-based chemotherapy. Physicians should pay attention when administering CDDP in cancer patients with XP.

  4. Evidence for Within-Host Genetic Recombination among the Human Pegiviral Strains in HIV Infected Subjects.

    PubMed

    Wu, Haoming; Padhi, Abinash; Xu, Junqiang; Gong, Xiaoyan; Tien, Po

    2016-01-01

    The non-pathogenic Human Pegivirus (HPgV, formerly GBV-C/HGV), the most prevalent RNA virus worldwide, is known to be associated with reduced morbidity and mortality in HIV-infected individuals. Although previous studies documented its ubiquity and important role in HIV-infected individuals, little is known about the underlying genetic mechanisms that maintain high genetic diversity of HPgV within the HIV-infected individuals. To assess the within-host genetic diversity of HPgV and forces that maintain such diversity within the co-infected hosts, we performed phylogenetic analyses taking into account 229 HPgV partial E1-E2 clonal sequences representing 15 male and 8 female co-infected HIV patients from Hubei province of central China. Our results revealed the presence of eleven strongly supported clades. While nine clades belonged to genotype 3, two clades belonged to genotype 2. Additionally, four clades that belonged to genotype 3 exhibited inter-clade recombination events. The presence of clonal sequences representing multiple clades within the HIV-infected individual provided the evidence of co-circulation of HPgV strains across the region. Of the 23 patients, six patients (i.e., five males and one female) were detected to have HPgV recombinant sequences. Our results also revealed that while male patients shared the viral strains with other patients, viral strains from the female patients had restricted dispersal. Taken together, the present study revealed that multiple infections with divergent HPgV viral strains may have caused within-host genetic recombination, predominantly in male patients, and therefore, could be the major driver in shaping genetic diversity of HPgV.

  5. Evidence for Within-Host Genetic Recombination among the Human Pegiviral Strains in HIV Infected Subjects

    PubMed Central

    Wu, Haoming; Padhi, Abinash; Xu, Junqiang; Gong, Xiaoyan; Tien, Po

    2016-01-01

    The non-pathogenic Human Pegivirus (HPgV, formerly GBV-C/HGV), the most prevalent RNA virus worldwide, is known to be associated with reduced morbidity and mortality in HIV-infected individuals. Although previous studies documented its ubiquity and important role in HIV-infected individuals, little is known about the underlying genetic mechanisms that maintain high genetic diversity of HPgV within the HIV-infected individuals. To assess the within-host genetic diversity of HPgV and forces that maintain such diversity within the co-infected hosts, we performed phylogenetic analyses taking into account 229 HPgV partial E1-E2 clonal sequences representing 15 male and 8 female co-infected HIV patients from Hubei province of central China. Our results revealed the presence of eleven strongly supported clades. While nine clades belonged to genotype 3, two clades belonged to genotype 2. Additionally, four clades that belonged to genotype 3 exhibited inter-clade recombination events. The presence of clonal sequences representing multiple clades within the HIV-infected individual provided the evidence of co-circulation of HPgV strains across the region. Of the 23 patients, six patients (i.e., five males and one female) were detected to have HPgV recombinant sequences. Our results also revealed that while male patients shared the viral strains with other patients, viral strains from the female patients had restricted dispersal. Taken together, the present study revealed that multiple infections with divergent HPgV viral strains may have caused within-host genetic recombination, predominantly in male patients, and therefore, could be the major driver in shaping genetic diversity of HPgV. PMID:27560699

  6. Population Genetic Structure of the Deep-Sea Precious Coral Corallium secundum from the Hawaiian Archipelago Based on Microsatellites.

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.

    2006-12-01

    Deep-sea precious corals (Gerardia sp., Corallium lauuense, and Corallium secundum) on the Islands and seamounts of the Hawaiian Archipelago have supported an extremely profitable fishery, yet little is known about the life history and dispersal of the exploited species. Recent studies indicate significant genetic structure between shallow-water coral populations, including several species capable of long distance dispersal. If significant genetic structure exists in seamount and Island populations of precious corals, this could suggest that the elimination (through overharvesting) of a bed of precious corals would result in loss of overall genetic diversity in the species. Here I discuss results based on microsatellite studies of the precious coral, Corallium secundum, from 11 sites in the Hawaiian Archipelago collected between 1998 and 2004, and compare the population genetic structure and dispersal capabilities of Corallium secundum to the results for Corallium lauuense. Microsatellite studies of Corallium lauuense indicated significant heterozygote deficiency in most populations, suggesting recruitment in most populations is from local sources with only occasional long-distance dispersal events. Also, two populations appear to be significantly isolated from other populations of Corallium lauuense and may be separate stocks. In contrast, Corallium secundum populations have little heterozygote deficiency and separate into 3 distinct regions. In addition to having fisheries management implications for these corals, the results of these studies also have implications for the management and protection of seamount fauna.

  7. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  8. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  9. Assessing global carbon burial during Oceanic Anoxic Event 2, Cenomanian-Turonian boundary event

    NASA Astrophysics Data System (ADS)

    Owens, J. D.; Lyons, T. W.; Lowery, C. M.

    2017-12-01

    Reconstructing the areal extent and total amount of organic carbon burial during ancient events remains elusive even for the best documented oceanic anoxic event (OAE) in Earth history, the Cenomanian-Turonian boundary event ( 93.9 Ma), or OAE 2. Reports from 150 OAE 2 localities provide a wide global distribution. However, despite the large number of sections, the majority are found within the proto-Atlantic and Tethyan oceans and interior seaways. Considering these gaps in spatial coverage, the pervasive increase in organic carbon (OC) burial during OAE2 that drove carbon isotope values more positive (average of 4‰) can provide additional insight. These isotope data allow us to estimate the total global burial of OC, even for unstudied portions of the global ocean. Thus, we can solve for any `missing' OC sinks by comparing our estimates from a forward carbon-isotope box model with the known, mapped distribution of OC for OAE 2 sediments. Using the known OC distribution and reasonably extrapolating to the surrounding regions of analogous depositional conditions accounts for only 13% of the total seafloor, mostly in marginal marine settings. This small geographic area accounts for more OC burial than the entire modern ocean, but significantly less than the amount necessary to produce the observed isotope record. Using modern and OAE 2 average OC rates we extrapolate further to appropriate depositional settings in the unknown portions of seafloor, mostly deep abyssal plains. This addition significantly increases the predicted amount buried but still does not account for total burial. Additional sources, including hydrocarbon migration, lacustrine, and coal also cannot account for the missing OC. This difference points to unknown portions of the open ocean with high TOC contents or exceptionally high TOC in productive marginal marine regions, which are underestimated in our extrapolations. This difference might be explained by highly productive margins within the

  10. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    PubMed Central

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  11. Advances in the genetically complex autoinflammatory diseases.

    PubMed

    Ombrello, Michael J

    2015-07-01

    Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly penetrant genetic variants of a single gene. In contrast, genetically complex diseases arise from a combination of multiple genetic and environmental factors. The concept of autoinflammation originally emerged from the identification of individual, activating lesions of the innate immune system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, monogenic forms of autoinflammation, genetically complex autoinflammatory diseases like the periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), Behçet's disease, and systemic arthritis also fulfill the definition of autoinflammatory diseases-namely, the development of apparently unprovoked episodes of inflammation without identifiable exogenous triggers and in the absence of autoimmunity. Interestingly, investigations of these genetically complex autoinflammatory diseases have implicated both innate and adaptive immune abnormalities, blurring the line between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate and adaptive immune dysfunction leading to genetically complex autoinflammatory phenotypes.

  12. Genetic variation and factors affecting the genetic structure of the lichenicolous fungus Heterocephalacria bachmannii (Filobasidiales, Basidiomycota)

    PubMed Central

    Laakso, Into; Stenroos, Soili

    2017-01-01

    Heterocephalacria bachmannii is a lichenicolous fungus that takes as hosts numerous lichen species of the genus Cladonia. In the present study we analyze whether the geographical distance, the host species or the host secondary metabolites determine the genetic structure of this parasite. To address the question, populations mainly from the Southern Europe, Southern Finland and the Azores were sampled. The specimens were collected from 20 different host species representing ten chemotypes. Three loci, ITS rDNA, LSU rDNA and mtSSU, were sequenced. The genetic structure was assessed by AMOVA, redundance analyses and Bayesian clustering methods. The results indicated that the host species and the host secondary metabolites are the most influential factors over the genetic structure of this lichenicolous fungus. In addition, the genetic structure of H. bachmannii was compared with that of one of its hosts, Cladonia rangiformis. The population structure of parasite and host were discordant. The contents in phenolic compounds and fatty acids of C. rangiformis were quantified in order to test whether it had some influence on the genetic structure of the species. But no correlation was found with the genetic clusters of H. bachmannii. PMID:29253026

  13. Maize transformation technology development for commercial event generation.

    PubMed

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.

  14. Maize transformation technology development for commercial event generation

    PubMed Central

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  15. Interindividual differences of corneal sensitivity. Genetic aspects.

    PubMed

    Draeger, J; Schloot, W; Wirt, H

    1985-08-01

    By means of an electronic optical esthesiometer corneal sensitivity was examined in 91 volunteers of different age groups. Additionally, the anesthetic duration of the local anesthetic benoxinate was investigated. Corneal sensitivity decreases with advancing age. Comparing male and female subjects, we can suppose that there are age and sex specific differences of corneal sensitivity. There might be additional genetic factors. There are great interindividual differences in the anesthetic duration of benoxinate. It can be assumed that benoxinate is metabolized by pseudocholinesterase. One possible explanation for the great differences in the anesthetic duration of benoxinate can be seen in the genetically determined variants of pseudocholinesterase.

  16. Genetic Forms of Epilepsies and other Paroxysmal Disorders

    PubMed Central

    Olson, Heather E.; Poduri, Annapurna; Pearl, Phillip L.

    2016-01-01

    Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including Tuberous Sclerosis Complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of singe gene causes or susceptibility factors associated with several epilepsy syndromes, including the early onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look towards the future of epilepsy genetics. PMID:25192505

  17. Identification of multiple genetic susceptibility loci in Takayasu arteritis.

    PubMed

    Saruhan-Direskeneli, Güher; Hughes, Travis; Aksu, Kenan; Keser, Gokhan; Coit, Patrick; Aydin, Sibel Z; Alibaz-Oner, Fatma; Kamalı, Sevil; Inanc, Murat; Carette, Simon; Hoffman, Gary S; Akar, Servet; Onen, Fatos; Akkoc, Nurullah; Khalidi, Nader A; Koening, Curry; Karadag, Omer; Kiraz, Sedat; Langford, Carol A; McAlear, Carol A; Ozbalkan, Zeynep; Ates, Askin; Karaaslan, Yasar; Maksimowicz-McKinnon, Kathleen; Monach, Paul A; Ozer, Hüseyin T; Seyahi, Emire; Fresko, Izzet; Cefle, Ayse; Seo, Philip; Warrington, Kenneth J; Ozturk, Mehmet A; Ytterberg, Steven R; Cobankara, Veli; Onat, A Mesut; Guthridge, Joel M; James, Judith A; Tunc, Ercan; Duzgun, Nurşen; Bıcakcıgil, Muge; Yentür, Sibel P; Merkel, Peter A; Direskeneli, Haner; Sawalha, Amr H

    2013-08-08

    Takayasu arteritis is a rare inflammatory disease of large arteries. The etiology of Takayasu arteritis remains poorly understood, but genetic contribution to the disease pathogenesis is supported by the genetic association with HLA-B*52. We genotyped ~200,000 genetic variants in two ethnically divergent Takayasu arteritis cohorts from Turkey and North America by using a custom-designed genotyping platform (Immunochip). Additional genetic variants and the classical HLA alleles were imputed and analyzed. We identified and confirmed two independent susceptibility loci within the HLA region (r(2) < 0.2): HLA-B/MICA (rs12524487, OR = 3.29, p = 5.57 × 10(-16)) and HLA-DQB1/HLA-DRB1 (rs113452171, OR = 2.34, p = 3.74 × 10(-9); and rs189754752, OR = 2.47, p = 4.22 × 10(-9)). In addition, we identified and confirmed a genetic association between Takayasu arteritis and the FCGR2A/FCGR3A locus on chromosome 1 (rs10919543, OR = 1.81, p = 5.89 × 10(-12)). The risk allele in this locus results in increased mRNA expression of FCGR2A. We also established the genetic association between IL12B and Takayasu arteritis (rs56167332, OR = 1.54, p = 2.18 × 10(-8)). Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Genetic Testing Integration Panels (GTIPs): A novel approach for considering integration of direct-to-consumer and other new genetic tests into patient care

    PubMed Central

    Uhlmann, Wendy R.; Sharp, Richard R.

    2014-01-01

    There has been a dramatic increase in the number of genetic tests available but few tests have practice guidelines. In addition, many tests have become available outside of genetics clinics through direct-to-consumer (DTC) companies and several offer tests not considered standard of care. To address several practical challenges associated with the rapid introduction of clinical and DTC genetic tests, we propose that genetic counselors and geneticists organize expert panels in their institutions to discuss the integration of new tests into patient care. We propose the establishment of Genetic Testing Integration Panels (GTIPs) to bring together local experts in medical genetics, genetic counseling, bioethics and law, health communication and clinical laboratory genetics. We describe key features of this approach and consider some of the potential advantages and limitations of using a GTIP to address the many clinical challenges raised by rapidly emerging clinical and DTC genetic tests. PMID:22246561

  19. Noise in genetic and neural networks

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Longtin, André

    2006-06-01

    Both neural and genetic networks are significantly noisy, and stochastic effects in both cases ultimately arise from molecular events. Nevertheless, a gulf exists between the two fields, with researchers in one often being unaware of similar work in the other. In this Special Issue, we focus on bridging this gap and present a collection of papers from both fields together. For each field, the networks studied range from just a single gene or neuron to endogenous networks. In this introductory article, we describe the sources of noise in both genetic and neural systems. We discuss the modeling techniques in each area and point out similarities. We hope that, by reading both sets of papers, ideas developed in one field will give insight to scientists from the other and that a common language and methodology will develop.

  20. Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes

    PubMed Central

    Dreissig, Steven; Fuchs, Jörg; Himmelbach, Axel; Mascher, Martin; Houben, Andreas

    2017-01-01

    Meiotic recombination is a fundamental mechanism to generate novel allelic combinations which can be harnessed by breeders to achieve crop improvement. The recombination landscape of many crop species, including the major crop barley, is characterized by a dearth of recombination in 65% of the genome. In addition, segregation distortion caused by selection on genetically linked loci is a frequent and undesirable phenomenon in double haploid populations which hampers genetic mapping and breeding. Here, we present an approach to directly investigate recombination at the DNA sequence level by combining flow-sorting of haploid pollen nuclei of barley with single-cell genome sequencing. We confirm the skewed distribution of recombination events toward distal chromosomal regions at megabase resolution and show that segregation distortion is almost absent if directly measured in pollen. Furthermore, we show a bimodal distribution of inter-crossover distances, which supports the existence of two classes of crossovers which are sensitive or less sensitive to physical interference. We conclude that single pollen nuclei sequencing is an approach capable of revealing recombination patterns in the absence of segregation distortion. PMID:29018459