Sample records for additional genetic variants

  1. Germline genetic variants in men with prostate cancer and one or more additional cancers.

    PubMed

    Pilié, Patrick G; Johnson, Anna M; Hanson, Kristen L; Dayno, Megan E; Kapron, Ashley L; Stoffel, Elena M; Cooney, Kathleen A

    2017-10-15

    Prostate cancer has a significant heritable component, and rare deleterious germline variants in certain genes can increase the risk of the disease. The aim of the current study was to describe the prevalence of pathogenic germline variants in cancer-predisposing genes in men with prostate cancer and at least 1 additional primary cancer. Using a multigene panel, the authors sequenced germline DNA from 102 men with prostate cancer and at least 1 additional primary cancer who also met ≥1 of the following criteria: 1) age ≤55 years at the time of diagnosis of the first malignancy; 2) rare tumor type or atypical presentation of a common tumor; and/or 3) ≥3 primary malignancies. Cancer family history and clinicopathologic data were independently reviewed by a clinical genetic counselor to determine whether the patient met established criteria for testing for a hereditary cancer syndrome. Sequencing identified approximately 3500 variants. Nine protein-truncating deleterious mutations were found across 6 genes, including BRCA2, ataxia telangiectasia mutated (ATM), mutL homolog 1 (MLH1), BRCA1 interacting protein C-terminal helicase 1 (BRIP1), partner and localizer of BRCA2 (PALB2), and fibroblast growth factor receptor 3 (FGFR3). Likely pathogenic missense variants were identified in checkpoint kinase 2 (CHEK2) and homeobox protein Hox-B13 (HOXB13). In total, 11 of 102 patients (10.8%) were found to have pathogenic or likely pathogenic mutations in cancer-predisposing genes. The majority of these men (64%) did not meet current clinical criteria for germline testing. Men with prostate cancer and at least 1 additional primary cancer are enriched for harboring a germline deleterious mutation in a cancer-predisposing gene that may impact cancer prognosis and treatment, but the majority do not meet current criteria for clinical genetic testing. Cancer 2017;123:3925-32. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Germline genetic variants with implications for disease risk and therapeutic outcomes.

    PubMed

    Pasternak, Amy L; Ward, Kristen M; Luzum, Jasmine A; Ellingrod, Vicki L; Hertz, Daniel L

    2017-10-01

    Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care. Copyright © 2017 the American Physiological Society.

  3. Cerivastatin, Genetic Variants, and the Risk of Rhabdomyolysis

    PubMed Central

    Marciante, Kristin D.; Durda, Jon P.; Heckbert, Susan R.; Lumley, Thomas; Rice, Ken; McKnight, Barbara; Totah, Rheem A.; Tamraz, Bani; Kroetz, Deanna L.; Fukushima, Hisayo; Kaspera, Rüdiger; Bis, Joshua C.; Glazer, Nicole L.; Li, Guo; Austin, Thomas R.; Taylor, Kent D.; Rotter, Jerome I.; Jaquish, Cashell E.; Kwok, Pui-Yan; Tracy, Russell P.; Psaty, Bruce M.

    2011-01-01

    Objective The withdrawal of cerivastatin involved an uncommon but serious adverse reaction, rhabdomyolysis. The bimodal response--rhabdomyolysis in a small proportion of users-- points to genetic factors as a potential cause. We conducted a case-control study to evaluate genetic markers for cerivastatin-associated rhabdomyolysis. Methods The study had two components: a candidate gene study to evaluate variants in CYP2C8, UGT1A1, UGT1A3, and SLCO1B1; and a genome-wide association (GWA) study to identify risk factors in other regions of the genome. 185 rhabdomyolysis cases were frequency matched to statin-using controls from the Cardiovascular Health Study (n=374) and the Heart and Vascular Health Study (n=358). Validation relied on functional studies. Results Permutation test results suggested an association between cerivastatin-associated rhabdomyolysis and variants in SLCO1B1 (p = 0.002), but not variants in CYP2C8 (p = 0.073) or the UGTs (p = 0.523). An additional copy of the minor allele of SLCO1B1 rs4149056 (p.Val174Ala) was associated with the risk of rhabdomyolysis (OR: 1.89, 95% CI: 1.40 to 2.56). In transfected cells, this variant reduced cerivastatin transport by 40% compared with the reference transporter (p < 0.001). The GWA identified an intronic variant (rs2819742) in the ryanodine receptor 2 gene (RYR2) as significant (p=1.74E-07). An additional copy of the minor allele of the RYR2 variant was associated with a reduced risk of rhabdomyolysis (OR: 0.48; 95% CI: 0.36 to 0.63). Conclusion We identified modest genetic risk factors for an extreme response to cerivastatin. Disabling genetic variants in the candidate genes were not responsible for the bimodal response to cerivastatin. PMID:21386754

  4. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  5. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    PubMed

    Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V

    2012-02-17

    The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  6. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants.

    PubMed

    Romanos, Jihane; Rosén, Anna; Kumar, Vinod; Trynka, Gosia; Franke, Lude; Szperl, Agata; Gutierrez-Achury, Javier; van Diemen, Cleo C; Kanninga, Roan; Jankipersadsing, Soesma A; Steck, Andrea; Eisenbarth, Georges; van Heel, David A; Cukrowska, Bozena; Bruno, Valentina; Mazzilli, Maria Cristina; Núñez, Concepcion; Bilbao, Jose Ramon; Mearin, M Luisa; Barisani, Donatella; Rewers, Marian; Norris, Jill M; Ivarsson, Anneli; Boezen, H Marieke; Liu, Edwin; Wijmenga, Cisca

    2014-03-01

    The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case-control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD.

  7. Visualizing the geography of genetic variants.

    PubMed

    Marcus, Joseph H; Novembre, John

    2017-02-15

    One of the key characteristics of any genetic variant is its geographic distribution. The geographic distribution can shed light on where an allele first arose, what populations it has spread to, and in turn on how migration, genetic drift, and natural selection have acted. The geographic distribution of a genetic variant can also be of great utility for medical/clinical geneticists and collectively many genetic variants can reveal population structure. Here we develop an interactive visualization tool for rapidly displaying the geographic distribution of genetic variants. Through a REST API and dynamic front-end, the Geography of Genetic Variants (GGV) browser ( http://popgen.uchicago.edu/ggv/ ) provides maps of allele frequencies in populations distributed across the globe. GGV is implemented as a website ( http://popgen.uchicago.edu/ggv/ ) which employs an API to access frequency data ( http://popgen.uchicago.edu/freq_api/ ). Python and javascript source code for the website and the API are available at: http://github.com/NovembreLab/ggv/ and http://github.com/NovembreLab/ggv-api/ . jnovembre@uchicago.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements.

    PubMed

    Ganz, Ariel B; Klatt, Kevin C; Caudill, Marie A

    2017-08-04

    Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches.

  9. Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements

    PubMed Central

    Ganz, Ariel B.; Klatt, Kevin C.; Caudill, Marie A.

    2017-01-01

    Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches. PMID:28777294

  10. m6ASNP: a tool for annotating genetic variants by m6A function.

    PubMed

    Jiang, Shuai; Xie, Yubin; He, Zhihao; Zhang, Ya; Zhao, Yuli; Chen, Li; Zheng, Yueyuan; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian

    2018-05-01

    Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants that target m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the genetic variants. We believe that m6ASNP is a very convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at [60].

  11. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  12. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects

    PubMed Central

    Johnson, Ben; Lowe, Gillian C.; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A.; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J.; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula HB; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E.; Watson, Steve P.; Morgan, Neil V.

    2016-01-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×109/L to 186×109/L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified “pathogenic” or “likely pathogenic” variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. PMID:27479822

  13. Preliminary spectrum of genetic variants in familial hypercholesterolemia in Argentina.

    PubMed

    Bañares, Virginia G; Corral, Pablo; Medeiros, Ana Margarida; Araujo, María Beatriz; Lozada, Alfredo; Bustamante, Juan; Cerretini, Roxana; López, Graciela; Bourbon, Mafalda; Schreier, Laura E

    Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein cholesterol and early cardiovascular disease. As cardiovascular disease is a leading cause of mortality in Argentina, early identification of patients with FH is of great public health importance. The aim of our study was to identify families with FH and to approximate to the characterization of the genetic spectrum mutations of FH in Argentina. Thirty-three not related index cases were selected with clinical diagnosis of FH. Genetic analysis was performed by sequencing, multiplex ligation-dependent probe amplification, and bioinformatics tools. Twenty genetic variants were identified among 24 cases (73%), 95% on the low-density lipoprotein receptor gene. The only variant on APOB was the R3527Q. Four were novel variants: c.-135C>A, c.170A>C p.(Asp57Ala), c.684G>C p.(Glu228Asp), and c.1895A>T p.(Asn632Ile); the bioinformatics' analysis revealed clear destabilizing effects for 2 of them. The exon 14 presented the highest number of variants (32%). Four variants were observed in more than 1 case and the c.2043C>A p.(Cys681*) was carried by 18% of index cases. Two true homozygotes, 3 compound heterozygotes, and 1 double heterozygote were identified. This study characterizes for the first time in Argentina genetic variants associated with FH and suggest that the allelic heterogeneity of the FH in the country could have 1 relative common low-density lipoprotein receptor mutation. This knowledge is important for the genotype-phenotype correlation and for optimizing both cholesterol-lowering therapies and mutational analysis protocols. In addition, these data contribute to the understanding of the molecular basis of FH in Argentina. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  14. Filtering genetic variants and placing informative priors based on putative biological function.

    PubMed

    Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W; Almeida, Marcio; Liu, Xiao Qing; Bailey, Julia N

    2016-02-03

    High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure.

  15. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects.

    PubMed

    Johnson, Ben; Lowe, Gillian C; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula Hb; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E; Watson, Steve P; Morgan, Neil V

    2016-10-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×10 9 /L to 186×10 9 /L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified "pathogenic" or "likely pathogenic" variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. Copyright© Ferrata Storti Foundation.

  16. Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population.

    PubMed

    Lee, Sangmoon; Seo, Jihae; Park, Jinman; Nam, Jae-Yong; Choi, Ahyoung; Ignatius, Jason S; Bjornson, Robert D; Chae, Jong-Hee; Jang, In-Jin; Lee, Sanghyuk; Park, Woong-Yang; Baek, Daehyun; Choi, Murim

    2017-06-27

    Despite efforts to interrogate human genome variation through large-scale databases, systematic preference toward populations of Caucasian descendants has resulted in unintended reduction of power in studying non-Caucasians. Here we report a compilation of coding variants from 1,055 healthy Korean individuals (KOVA; Korean Variant Archive). The samples were sequenced to a mean depth of 75x, yielding 101 singleton variants per individual. Population genetics analysis demonstrates that the Korean population is a distinct ethnic group comparable to other discrete ethnic groups in Africa and Europe, providing a rationale for such independent genomic datasets. Indeed, KOVA conferred 22.8% increased variant filtering power in addition to Exome Aggregation Consortium (ExAC) when used on Korean exomes. Functional assessment of nonsynonymous variant supported the presence of purifying selection in Koreans. Analysis of copy number variants detected 5.2 deletions and 10.3 amplifications per individual with an increased fraction of novel variants among smaller and rarer copy number variable segments. We also report a list of germline variants that are associated with increased tumor susceptibility. This catalog can function as a critical addition to the pre-existing variant databases in pursuing genetic studies of Korean individuals.

  17. Genetic variants of ghrelin in metabolic disorders.

    PubMed

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Genetic variants in IL-6/JAK/STAT3 pathway and the risk of CRC.

    PubMed

    Wang, Shuwei; Zhang, Weidong

    2016-05-01

    Interleukin (IL)-6 and the downstream Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway have previously been reported to be important in the development of colorectal cancer (CRC), and several studies have shown the relationship between the polymorphisms of related genes in this pathway with the risk of CRC. However, the findings of these related studies are inconsistent. Moreover, there has no systematic review and meta-analysis to evaluate the relationship between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility. Hence, we conducted a meta-analysis to explore the relationship between polymorphisms in IL-6/JAK/STAT3 pathway genes and CRC risk. Eighteen eligible studies with a total of 13,795 CRC cases and 18,043 controls were identified by searching PubMed, Web of Science, Embase, and the Cochrane Library databases for the period up to September 15, 2015. Odds ratios (ORs) and their 95 % confidence intervals (CIs) were used to calculate the strength of the association. Our results indicated that IL-6 genetic variants in allele additive model (OR = 1.05, 95 % CI = 1.00, 1.09) and JAK2 genetic variants (OR = 1.40, 95 % CI = 1.15, 1.65) in genotype recessive model were significantly associated with CRC risk. Moreover, the pooled data revealed that IL-6 rs1800795 polymorphism significantly increased the risk of CRC in allele additive model in Europe (OR = 1.07, 95 % CI = 1.01, 1.14). In conclusion, the present findings indicate that IL-6 and JAK2 genetic variants are associated with the increased risk of CRC while STAT3 genetic variants not. We need more well-designed clinical studies covering more countries and population to definitively establish the association between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility.

  19. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype.

    PubMed

    Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent

  20. MYH9 genetic variants associated with glomerular disease: what is the role for genetic testing?

    PubMed

    Kopp, Jeffrey B; Winkler, Cheryl A; Nelson, George W

    2010-07-01

    Genetic variation in MYH9, encoding nonmuscle myosin IIA heavy chain, has been associated recently with increased risk for kidney disease. Previously, MYH9 missense mutations have been shown to cause the autosomal-dominant MYH9 (ADM9) spectrum, characterized by large platelets, leukocyte Döhle bodies, and, variably, sensorineural deafness, cataracts, and glomerulopathy. Genetic testing is indicated for familial and sporadic cases that fit this spectrum. By contrast, the MYH9 kidney risk variant is characterized by multiple intronic single nucleotide polymorphisms, but the causative variant has not been identified. Disease associations include human immunodeficiency virus-associated collapsing glomerulopathy, focal segmental glomerulosclerosis, hypertension-attributed end-stage kidney disease, and diabetes-attributed end-stage kidney disease. One plausible hypothesis is that the MYH9 kidney risk variant confers a fragile podocyte phenotype. In the case of hypertension-attributed kidney disease, it remains unclear if the hypertension is a contributing cause or a consequence of glomerular injury. The MYH9 kidney risk variant is strikingly more common among individuals of African descent, but only some will develop clinical kidney disease in their lifetime. Thus, it is likely that additional genes and/or environmental factors interact with the MYH9 kidney risk variant to trigger glomerular injury. A preliminary genetic risk stratification scheme, using two single nucleotide polymorphisms, may estimate lifetime risk for kidney disease. Nevertheless, at present, no role has been established for genetic testing as part of personalized medicine, but testing should be considered in clinical studies of glomerular diseases among populations of African descent. Such studies will address critical questions pertaining to MYH9-associated kidney disease, including mechanism, course, and response to therapy. Published by Elsevier Inc.

  1. Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making

    PubMed Central

    Thouvenot, Pierre; Ben Yamin, Barbara; Fourrière, Lou; Lescure, Aurianne; Boudier, Thomas; Del Nery, Elaine; Chauchereau, Anne; Goldgar, David E.; Stoppa-Lyonnet, Dominique; Nicolas, Alain; Millot, Gaël A.

    2016-01-01

    Understanding the medical effect of an ever-growing number of human variants detected is a long term challenge in genetic counseling. Functional assays, based on in vitro or in vivo evaluations of the variant effects, provide essential information, but they require robust statistical validation, as well as adapted outputs, to be implemented in the clinical decision-making process. Here, we assessed 25 pathogenic and 15 neutral missense variants of the BRCA1 breast/ovarian cancer susceptibility gene in four BRCA1 functional assays. Next, we developed a novel approach that refines the variant ranking in these functional assays. Lastly, we developed a computational system that provides a probabilistic classification of variants, adapted to clinical interpretation. Using this system, the best functional assay exhibits a variant classification accuracy estimated at 93%. Additional theoretical simulations highlight the benefit of this ready-to-use system in the classification of variants after functional assessment, which should facilitate the consideration of functional evidences in the decision-making process after genetic testing. Finally, we demonstrate the versatility of the system with the classification of siRNAs tested for human cell growth inhibition in high throughput screening. PMID:27272900

  2. The curation of genetic variants: difficulties and possible solutions.

    PubMed

    Pandey, Kapil Raj; Maden, Narendra; Poudel, Barsha; Pradhananga, Sailendra; Sharma, Amit Kumar

    2012-12-01

    The curation of genetic variants from biomedical articles is required for various clinical and research purposes. Nowadays, establishment of variant databases that include overall information about variants is becoming quite popular. These databases have immense utility, serving as a user-friendly information storehouse of variants for information seekers. While manual curation is the gold standard method for curation of variants, it can turn out to be time-consuming on a large scale thus necessitating the need for automation. Curation of variants described in biomedical literature may not be straightforward mainly due to various nomenclature and expression issues. Though current trends in paper writing on variants is inclined to the standard nomenclature such that variants can easily be retrieved, we have a massive store of variants in the literature that are present as non-standard names and the online search engines that are predominantly used may not be capable of finding them. For effective curation of variants, knowledge about the overall process of curation, nature and types of difficulties in curation, and ways to tackle the difficulties during the task are crucial. Only by effective curation, can variants be correctly interpreted. This paper presents the process and difficulties of curation of genetic variants with possible solutions and suggestions from our work experience in the field including literature support. The paper also highlights aspects of interpretation of genetic variants and the importance of writing papers on variants following standard and retrievable methods. Copyright © 2012. Published by Elsevier Ltd.

  3. The Curation of Genetic Variants: Difficulties and Possible Solutions

    PubMed Central

    Pandey, Kapil Raj; Maden, Narendra; Poudel, Barsha; Pradhananga, Sailendra; Sharma, Amit Kumar

    2012-01-01

    The curation of genetic variants from biomedical articles is required for various clinical and research purposes. Nowadays, establishment of variant databases that include overall information about variants is becoming quite popular. These databases have immense utility, serving as a user-friendly information storehouse of variants for information seekers. While manual curation is the gold standard method for curation of variants, it can turn out to be time-consuming on a large scale thus necessitating the need for automation. Curation of variants described in biomedical literature may not be straightforward mainly due to various nomenclature and expression issues. Though current trends in paper writing on variants is inclined to the standard nomenclature such that variants can easily be retrieved, we have a massive store of variants in the literature that are present as non-standard names and the online search engines that are predominantly used may not be capable of finding them. For effective curation of variants, knowledge about the overall process of curation, nature and types of difficulties in curation, and ways to tackle the difficulties during the task are crucial. Only by effective curation, can variants be correctly interpreted. This paper presents the process and difficulties of curation of genetic variants with possible solutions and suggestions from our work experience in the field including literature support. The paper also highlights aspects of interpretation of genetic variants and the importance of writing papers on variants following standard and retrievable methods. PMID:23317699

  4. From Common to Rare Variants: The Genetic Component of Alzheimer Disease.

    PubMed

    Nicolas, Gaël; Charbonnier, Camille; Campion, Dominique

    2016-01-01

    Alzheimer disease (AD) is a remarkable example of genetic heterogeneity. Extremely rare variants in the APP, PSEN1, or PSEN2 genes, or duplications of the APP gene cause autosomal dominant forms, generally with complete penetrance by the age of 65 years. Nonautosomal dominant forms are considered as a complex disorder with a high genetic component, whatever the age of onset. Although genetically heterogeneous, AD is defined by the same neuropathological criteria in all configurations. According to the amyloid cascade hypothesis, the Aβ peptide, which aggregates in AD brains, is a key player. APP, PSEN1, or PSEN2 gene mutations increase the production of more aggregation-prone forms of the Aβ peptide, triggering the pathological process. Several risk factors identified in association studies hit genes involved in Aβ production/secretion, aggregation, clearance, or toxicity. Among them, the APOE ε4 allele is a rare example of a common allele with a large effect size, the ORs ranging from 4 to 11-14 for heterozygous and homozygous carriers, respectively. In addition, genome-wide association studies have identified more than two dozen loci with a weak but significant association, the OR of the at-risk allele ranging from 1.08 to 1.30. Recently, the use of massive parallel sequencing has enabled the analysis of rare variants in a genome-wide manner. Two rare variants have been nominally associated with AD risk or protection (TREM2 p.R47H, MAF approximately 0.002, OR approximately 4 and APP p.A673T, MAF approximately 0.0005, OR approximately 0.2). Association analyses at the gene level identified rare loss-of-function and missense, predicted damaging, variants (MAF <0.01) in the SORL1 and ABCA7 genes associated with a moderate relative risk (OR approximately 5 and approximately 2.8, respectively). Although the latter analyses revealed association signals with moderately rare variants by collapsing them, the power to detect genes hit by extremely rare variants is

  5. Genetic variants in RNA-induced silencing complex genes and prostate cancer.

    PubMed

    Nikolić, Z; Savić Pavićević, D; Vučić, N; Cerović, S; Vukotić, V; Brajušković, G

    2017-04-01

    The purpose of this study is to evaluate the potential association between genetic variants in genes encoding the components of RNA-induced silencing complex and prostate cancer (PCa) risk. Genetic variants chosen for this study are rs3742330 in DICER1, rs4961280 in AGO2, rs784567 in TARBP2, rs7813 in GEMIN4 and rs197414 in GEMIN3. The study involved 355 PCa patients, 360 patients with benign prostatic hyperplasia and 318 healthy controls. For individuals diagnosed with PCa, clinicopathological characteristics including serum prostate-specific antigen level at diagnosis, Gleason score (GS) and clinical stage were determined. Genotyping was performed using high-resolution melting analysis, PCR-RFLP, TaqMan SNP Genotyping Assay and real-time PCR-based genotyping assay using specific probes. Allelic and genotypic associations were evaluated by unconditional linear and logistic regression methods. The study provided no evidence of association between the analyzed genetic variants and PCa risk. Nevertheless, allele A of rs784567 was found to confer the reduced risk of higher serum PSA level at diagnosis (P = 0.046; Difference = -66.64, 95 % CI -131.93 to 1.35, for log-additive model). Furthermore, rs4961280, as well as rs3742330, were shown to be associated with GS. These variants, together with rs7813, were found to be associated with the lower clinical stage of PCa. Also, rs3742330 minor allele G was found to be associated with lower PCa aggressiveness (P = 0.036; OR 0.14, 95 % CI 0.023-1.22, for recessive model). According to our data, rs3742330, rs4961280 and rs7813 qualify for potentially protective genetic variants against PCa progression. These variants were not shown to be associated with PCa risk.

  6. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  7. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  8. Rare genetic variants and the risk of cancer.

    PubMed

    Bodmer, Walter; Tomlinson, Ian

    2010-06-01

    There are good reasons to expect that common genetic variants do not explain all of the inherited risk of the common cancers, not least of these being the relatively low proportion of familial relative risk that common cancer SNPs currently explain. One promising source of the unexplained risk is rare, low-penetrance genetic variants, a class that ranges from low-frequency polymorphisms (allele frequency < 5%) through subpolymorphic variants (frequency 0.1-1.0%) to very low frequency or 'private' variants with frequencies of 0.1% or less. Examples of rare cancer variants include breast cancer susceptibility loci CHEK2, BRIP1 and PALB2. There are considerable challenges associated with the discovery and testing of rare predisposition alleles, many of which are illustrated by the issues associated with variants of unknown significance in the Mendelian cancer predisposition genes. However, whilst cost constraints remain, the technological barriers to rare variant discovery and large-scale genotyping no longer exist. If each individual carries many disease-causing rare variants, the so-called missing heritability of cancer might largely be explained. Whether or not rare variants do end up filling the heritability gap, it is imperative to look for them along side common variants.

  9. Genetic epidemiology of motor neuron disease-associated variants in the Scottish population.

    PubMed

    Black, Holly A; Leighton, Danielle J; Cleary, Elaine M; Rose, Elaine; Stephenson, Laura; Colville, Shuna; Ross, David; Warner, Jon; Porteous, Mary; Gorrie, George H; Swingler, Robert; Goldstein, David; Harms, Matthew B; Connick, Peter; Pal, Suvankar; Aitman, Timothy J; Chandran, Siddharthan

    2017-03-01

    Genetic understanding of motor neuron disease (MND) has evolved greatly in the past 10 years, including the recent identification of association between MND and variants in TBK1 and NEK1. Our aim was to determine the frequency of pathogenic variants in known MND genes and to assess whether variants in TBK1 and NEK1 contribute to the burden of MND in the Scottish population. SOD1, TARDBP, OPTN, TBK1, and NEK1 were sequenced in 441 cases and 400 controls. In addition to 44 cases known to carry a C9orf72 hexanucleotide repeat expansion, we identified 31 cases and 2 controls that carried a loss-of-function or pathogenic variant. Loss-of-function variants were found in TBK1 in 3 cases and no controls and, separately, in NEK1 in 3 cases and no controls. This study provides an accurate description of the genetic epidemiology of MND in Scotland and provides support for the contribution of both TBK1 and NEK1 to MND susceptibility in the Scottish population. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Imaging-Genetics in Dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments

    PubMed Central

    Eicher, John D.; Gruen, Jeffrey R.

    2013-01-01

    Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia. PMID:23916419

  11. Identifying genetic variants that affect viability in large cohorts

    PubMed Central

    Berisa, Tomaz; Day, Felix R.; Perry, John R. B.

    2017-01-01

    A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we found only a few common variants with large effects on age-specific mortality: tagging the APOE ε4 allele and near CHRNA3. These results suggest that when large, even late-onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence 1 of 42 traits, we detected a number of strong signals. In participants of the UK Biobank of British ancestry, we found that variants that delay puberty timing are associated with a longer parental life span (P~6.2 × 10−6 for fathers and P~2.0 × 10−3 for mothers), consistent with epidemiological studies. Similarly, variants associated with later age at first birth are associated with a longer maternal life span (P~1.4 × 10−3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease (CAD), body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. We also found marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of CAD and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical data sets can be used to learn about selection effects in contemporary humans. PMID:28873088

  12. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  13. Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans.

    PubMed

    Xu, Bin; Woodroffe, Abigail; Rodriguez-Murillo, Laura; Roos, J Louw; van Rensburg, Elizabeth J; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2009-09-29

    To elucidate the genetic architecture of familial schizophrenia we combine linkage analysis with studies of fine-level chromosomal variation in families recruited from the Afrikaner population in South Africa. We demonstrate that individually rare inherited copy number variants (CNVs) are more frequent in cases with familial schizophrenia as compared to unaffected controls and affect almost exclusively genic regions. Interestingly, we find that while the prevalence of rare structural variants is similar in familial and sporadic cases, the type of variants is markedly different. In addition, using a high-density linkage scan with a panel of nearly 2,000 markers, we identify a region on chromosome 13q34 that shows genome-wide significant linkage to schizophrenia and show that in the families not linked to this locus, there is evidence for linkage to chromosome 1p36. No causative CNVs were identified in either locus. Overall, our results from approaches designed to detect risk variants with relatively low frequency and high penetrance in a well-defined and relatively homogeneous population, provide strong empirical evidence supporting the notion that multiple genetic variants, including individually rare ones, that affect many different genes contribute to the genetic risk of familial schizophrenia. They also highlight differences in the genetic architecture of the familial and sporadic forms of the disease.

  14. Statistical methods to detect novel genetic variants using publicly available GWAS summary data.

    PubMed

    Guo, Bin; Wu, Baolin

    2018-03-01

    We propose statistical methods to detect novel genetic variants using only genome-wide association studies (GWAS) summary data without access to raw genotype and phenotype data. With more and more summary data being posted for public access in the post GWAS era, the proposed methods are practically very useful to identify additional interesting genetic variants and shed lights on the underlying disease mechanism. We illustrate the utility of our proposed methods with application to GWAS meta-analysis results of fasting glucose from the international MAGIC consortium. We found several novel genome-wide significant loci that are worth further study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Estimating the contribution of genetic variants to difference in incidence of disease between population groups.

    PubMed

    Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-08-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.

  16. Estimating the contribution of genetic variants to difference in incidence of disease between population groups

    PubMed Central

    Moonesinghe, Ramal; Ioannidis, John PA; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-01-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene–environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal. PMID:22333905

  17. Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech

    PubMed Central

    Wijsman, Ellen M.; Nato, Alejandro Q.; Matsushita, Mark M.; Chapman, Kathy L.; Stanaway, Ian B.; Wolff, John; Oda, Kaori; Gabo, Virginia B.; Raskind, Wendy H.

    2016-01-01

    Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21 (ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS. PMID:27120335

  18. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs.

    PubMed

    Donner, Jonas; Anderson, Heidi; Davison, Stephen; Hughes, Angela M; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Kaukonen, Maria; Forman, Oliver P; Fretwell, Neale; Cole, Cynthia A; Lohi, Hannes

    2018-04-01

    Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk

  19. Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study

    PubMed Central

    2010-01-01

    Background Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5-S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively). Grouping individuals according to the presence of TG-lowering or TG-raising polymorphisms showed significant differences in TG levels (p < 0.0001), with the lowest levels exhibited by carriers of two lowering variants (10.2% reduction in TG geometric mean with respect to individuals who were homozygous for the frequent alleles of all the variants), and the highest levels in carriers of raising combinations (25.1% mean TG increase). Thus, carrying two lowering variants was protective against HTG (OR = 0.62; 95% CI, 0.39-0.98; p = 0.042) and having one single raising polymorphism (OR

  20. Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans

    PubMed Central

    Xu, Bin; Woodroffe, Abigail; Rodriguez-Murillo, Laura; Roos, J. Louw; van Rensburg, Elizabeth J.; Abecasis, Gonçalo R.; Gogos, Joseph A.; Karayiorgou, Maria

    2009-01-01

    To elucidate the genetic architecture of familial schizophrenia we combine linkage analysis with studies of fine-level chromosomal variation in families recruited from the Afrikaner population in South Africa. We demonstrate that individually rare inherited copy number variants (CNVs) are more frequent in cases with familial schizophrenia as compared to unaffected controls and affect almost exclusively genic regions. Interestingly, we find that while the prevalence of rare structural variants is similar in familial and sporadic cases, the type of variants is markedly different. In addition, using a high-density linkage scan with a panel of nearly 2,000 markers, we identify a region on chromosome 13q34 that shows genome-wide significant linkage to schizophrenia and show that in the families not linked to this locus, there is evidence for linkage to chromosome 1p36. No causative CNVs were identified in either locus. Overall, our results from approaches designed to detect risk variants with relatively low frequency and high penetrance in a well-defined and relatively homogeneous population, provide strong empirical evidence supporting the notion that multiple genetic variants, including individually rare ones, that affect many different genes contribute to the genetic risk of familial schizophrenia. They also highlight differences in the genetic architecture of the familial and sporadic forms of the disease. PMID:19805367

  1. Orsomucoid: A new variant and additional duplicated ORM1 gene in Qatari population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebetan, I.M.; Alali, K.A.; Alzaman, A.

    1994-09-01

    A new genetically determined ORM2 variant and additional duplicated ORM1 gene were observed in Qatari population using isoelectric focusing in ultra thin layer polyacrylamide gels. The studied population samples indicate occurence of six ORM1 alleles and three ORM2 ones. A simple reliable method for separation of orsomucoid variations with comparison of different reported methods will be presented.

  2. Incorporating gene-environment interaction in testing for association with rare genetic variants.

    PubMed

    Chen, Han; Meigs, James B; Dupuis, Josée

    2014-01-01

    The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.

  3. Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients

    PubMed Central

    Sadovnick, A. Dessa; Traboulsee, Anthony L.; Bernales, Cecily Q.; Ross, Jay P.; Forwell, Amanda L.; Yee, Irene M.; Guillot-Noel, Lena; Fontaine, Bertrand; Cournu-Rebeix, Isabelle; Alcina, Antonio; Fedetz, Maria; Izquierdo, Guillermo; Matesanz, Fuencisla; Hilven, Kelly; Dubois, Bénédicte; Goris, An; Astobiza, Ianire; Alloza, Iraide; Antigüedad, Alfredo; Vandenbroeck, Koen; Akkad, Denis A.; Aktas, Orhan; Blaschke, Paul; Buttmann, Mathias; Chan, Andrew; Epplen, Joerg T.; Gerdes, Lisa-Ann; Kroner, Antje; Kubisch, Christian; Kümpfel, Tania; Lohse, Peter; Rieckmann, Peter; Zettl, Uwe K.; Zipp, Frauke; Bertram, Lars; Lill, Christina M; Fernandez, Oscar; Urbaneja, Patricia; Leyva, Laura; Alvarez-Cermeño, Jose Carlos; Arroyo, Rafael; Garagorri, Aroa M.; García-Martínez, Angel; Villar, Luisa M.; Urcelay, Elena; Malhotra, Sunny; Montalban, Xavier; Comabella, Manuel; Berger, Thomas; Fazekas, Franz; Reindl, Markus; Schmied, Mascha C.; Zimprich, Alexander; Vilariño-Güell, Carles

    2016-01-01

    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility. PMID:27194806

  4. Genetic Variants Associated with Circulating Parathyroid Hormone

    PubMed Central

    Lutsey, Pamela L.; Kleber, Marcus E.; Nielson, Carrie M.; Mitchell, Braxton D.; Bis, Joshua C.; Eny, Karen M.; Portas, Laura; Eriksson, Joel; Lorentzon, Mattias; Koller, Daniel L.; Milaneschi, Yuri; Teumer, Alexander; Pilz, Stefan; Nethander, Maria; Selvin, Elizabeth; Tang, Weihong; Weng, Lu-Chen; Wong, Hoi Suen; Lai, Dongbing; Peacock, Munro; Hannemann, Anke; Völker, Uwe; Homuth, Georg; Nauk, Matthias; Murgia, Federico; Pattee, Jack W.; Orwoll, Eric; Zmuda, Joseph M.; Riancho, Jose Antonio; Wolf, Myles; Williams, Frances; Penninx, Brenda; Econs, Michael J.; Ryan, Kathleen A.; Ohlsson, Claes; Paterson, Andrew D.; Psaty, Bruce M.; Siscovick, David S.; Rotter, Jerome I.; Pirastu, Mario; Streeten, Elizabeth; März, Winfried; Fox, Caroline; Coresh, Josef; Wallaschofski, Henri; Pankow, James S.; de Boer, Ian H.; Kestenbaum, Bryan

    2017-01-01

    Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies (n=22,653 and n=6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 (P=4.2 × 10−53), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 (P=6.6 × 10−17), rs219779 adjacent to CLDN14 (P=3.5 × 10−16), rs4443100 near RTDR1 (P=8.7 × 10−9), and rs73186030 near CASR (P=4.8 × 10−8). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued. PMID:27927781

  5. Genetic Variants Associated with Circulating Parathyroid Hormone.

    PubMed

    Robinson-Cohen, Cassianne; Lutsey, Pamela L; Kleber, Marcus E; Nielson, Carrie M; Mitchell, Braxton D; Bis, Joshua C; Eny, Karen M; Portas, Laura; Eriksson, Joel; Lorentzon, Mattias; Koller, Daniel L; Milaneschi, Yuri; Teumer, Alexander; Pilz, Stefan; Nethander, Maria; Selvin, Elizabeth; Tang, Weihong; Weng, Lu-Chen; Wong, Hoi Suen; Lai, Dongbing; Peacock, Munro; Hannemann, Anke; Völker, Uwe; Homuth, Georg; Nauk, Matthias; Murgia, Federico; Pattee, Jack W; Orwoll, Eric; Zmuda, Joseph M; Riancho, Jose Antonio; Wolf, Myles; Williams, Frances; Penninx, Brenda; Econs, Michael J; Ryan, Kathleen A; Ohlsson, Claes; Paterson, Andrew D; Psaty, Bruce M; Siscovick, David S; Rotter, Jerome I; Pirastu, Mario; Streeten, Elizabeth; März, Winfried; Fox, Caroline; Coresh, Josef; Wallaschofski, Henri; Pankow, James S; de Boer, Ian H; Kestenbaum, Bryan

    2017-05-01

    Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies ( n =22,653 and n =6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 ( P =4.2 × 10 -53 ), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 ( P =6.6 × 10 -17 ), rs219779 adjacent to CLDN14 ( P =3.5 × 10 -16 ), rs4443100 near RTDR1 ( P =8.7 × 10 -9 ), and rs73186030 near CASR ( P =4.8 × 10 -8 ). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued. Copyright © 2017 by the American Society of Nephrology.

  6. Variant pathogenicity evaluation in the community-driven Inherited Neuropathy Variant Browser.

    PubMed

    Saghira, Cima; Bis, Dana M; Stanek, David; Strickland, Alleene; Herrmann, David N; Reilly, Mary M; Scherer, Steven S; Shy, Michael E; Züchner, Stephan

    2018-05-01

    Charcot-Marie-Tooth disease (CMT) is an umbrella term for inherited neuropathies affecting an estimated one in 2,500 people. Over 120 CMT and related genes have been identified and clinical gene panels often contain more than 100 genes. Such a large genomic space will invariantly yield variants of uncertain clinical significance (VUS) in nearly any person tested. This rise in number of VUS creates major challenges for genetic counseling. Additionally, fewer individual variants in known genes are being published as the academic merit is decreasing, and most testing now happens in clinical laboratories, which typically do not correlate their variants with clinical phenotypes. For CMT, we aim to encourage and facilitate the global capture of variant data to gain a large collection of alleles in CMT genes, ideally in conjunction with phenotypic information. The Inherited Neuropathy Variant Browser provides user-friendly open access to currently reported variation in CMT genes. Geneticists, physicians, and genetic counselors can enter variants detected by clinical tests or in research studies in addition to genetic variation gathered from published literature, which are then submitted to ClinVar biannually. Active participation of the broader CMT community will provide an advance over existing resources for interpretation of CMT genetic variation. © 2018 Wiley Periodicals, Inc.

  7. Changes in classification of genetic variants in BRCA1 and BRCA2.

    PubMed

    Kast, Karin; Wimberger, Pauline; Arnold, Norbert

    2018-02-01

    Classification of variants of unknown significance (VUS) in the breast cancer genes BRCA1 and BRCA2 changes with accumulating evidence for clinical relevance. In most cases down-staging towards neutral variants without clinical significance is possible. We searched the database of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) for changes in classification of genetic variants as an update to our earlier publication on genetic variants in the Centre of Dresden. Changes between 2015 and 2017 were recorded. In the group of variants of unclassified significance (VUS, Class 3, uncertain), only changes of classification towards neutral genetic variants were noted. In BRCA1, 25% of the Class 3 variants (n = 2/8) changed to Class 2 (likely benign) and Class 1 (benign). In BRCA2, in 50% of the Class 3 variants (n = 16/32), a change to Class 2 (n = 10/16) or Class 1 (n = 6/16) was observed. No change in classification was noted in Class 4 (likely pathogenic) and Class 5 (pathogenic) genetic variants in both genes. No up-staging from Class 1, Class 2 or Class 3 to more clinical significance was observed. All variants with a change in classification in our cohort were down-staged towards no clinical significance by a panel of experts of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). Prevention in families with Class 3 variants should be based on pedigree based risks and should not be guided by the presence of a VUS.

  8. Harmonizing the interpretation of genetic variants across the world: the Malaysian experience.

    PubMed

    Hassan, Nik Norliza Nik; Plazzer, John-Paul; Smith, Timothy D; Halim-Fikri, Hashim; Macrae, Finlay; Zubaidi, A A L; Zilfalil, Bin Alwi

    2016-02-26

    Databases for gene variants are very useful for sharing genetic data and to facilitate the understanding of the genetic basis of diseases. This report summarises the issues surrounding the development of the Malaysian Human Variome Project Country Node. The focus is on human germline variants. Somatic variants, mitochondrial variants and other types of genetic variation have corresponding databases which are not covered here, as they have specific issues that do not necessarily apply to germline variations. The ethical, legal, social issues, intellectual property, ownership of the data, information technology implementation, and efforts to improve the standards and systems used in data sharing are discussed. An overarching framework such as provided by the Human Variome Project to co-ordinate activities is invaluable. Country Nodes, such as MyHVP, enable human gene variation associated with human diseases to be collected, stored and shared by all disciplines (clinicians, molecular biologists, pathologists, bioinformaticians) for a consistent interpretation of genetic variants locally and across the world.

  9. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs

    PubMed Central

    Anderson, Heidi; Davison, Stephen; Hughes, Angela M.; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M.; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Forman, Oliver P.; Fretwell, Neale; Cole, Cynthia A.; Lohi, Hannes

    2018-01-01

    Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk

  10. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds.

    PubMed

    Webster, Matthew T; Kamgari, Nona; Perloski, Michele; Hoeppner, Marc P; Axelsson, Erik; Hedhammar, Åke; Pielberg, Gerli; Lindblad-Toh, Kerstin

    2015-06-23

    The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants. We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves. We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals.

  11. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    PubMed Central

    Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung

    2014-01-01

    There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172

  12. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants

    PubMed Central

    Pilling, Luke C.; Atkins, Janice L.; Bowman, Kirsty; Jones, Samuel E.; Tyrrell, Jessica; Beaumont, Robin N.; Ruth, Katherine S.; Tuke, Marcus A.; Yaghootkar, Hanieh; Wood, Andrew R.; Freathy, Rachel M.; Murray, Anna; Weedon, Michael N.; Xue, Luting; Lunetta, Kathryn; Murabito, Joanne M.; Harries, Lorna W.; Robine, Jean-Marie; Brayne, Carol; Kuchel, George A.; Ferrucci, Luigi; Frayling, Timothy M.; Melzer, David

    2016-01-01

    Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus (CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7×10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable. PMID:27015805

  13. The Association between Pediatric NAFLD and Common Genetic Variants

    PubMed Central

    Umano, Giuseppina Rosaria; Martino, Mariangela; Santoro, Nicola

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of obesity. Several studies have shown that genetic predisposition probably plays an important role in its pathogenesis. In fact, in the last few years a large number of genetic studies have provided compelling evidence that some gene variants, especially those in genes encoding proteins regulating lipid metabolism, are associated with intra-hepatic fat accumulation. Here we provide a comprehensive review of the gene variants that have affected the natural history of the disease. PMID:28629152

  14. High-throughput, image-based screening of pooled genetic variant libraries

    PubMed Central

    Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2018-01-01

    Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401

  15. Discriminatory power of common genetic variants in personalized breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Yirong; Abbey, Craig K.; Liu, Jie; Ong, Irene; Peissig, Peggy; Onitilo, Adedayo A.; Fan, Jun; Yuan, Ming; Burnside, Elizabeth S.

    2016-03-01

    Technology advances in genome-wide association studies (GWAS) has engendered optimism that we have entered a new age of precision medicine, in which the risk of breast cancer can be predicted on the basis of a person's genetic variants. The goal of this study is to evaluate the discriminatory power of common genetic variants in breast cancer risk estimation. We conducted a retrospective case-control study drawing from an existing personalized medicine data repository. We collected variables that predict breast cancer risk: 153 high-frequency/low-penetrance genetic variants, reflecting the state-of-the-art GWAS on breast cancer, mammography descriptors and BI-RADS assessment categories in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We trained and tested naïve Bayes models by using these predictive variables. We generated ROC curves and used the area under the ROC curve (AUC) to quantify predictive performance. We found that genetic variants achieved comparable predictive performance to BI-RADS assessment categories in terms of AUC (0.650 vs. 0.659, p-value = 0.742), but significantly lower predictive performance than the combination of BI-RADS assessment categories and mammography descriptors (0.650 vs. 0.751, p-value < 0.001). A better understanding of relative predictive capability of genetic variants and mammography data may benefit clinicians and patients to make appropriate decisions about breast cancer screening, prevention, and treatment in the era of precision medicine.

  16. Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.

    PubMed

    Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo

    2018-03-30

    Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on

  17. Exceptions to the rule: case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes.

    PubMed

    Rosenthal, E T; Bowles, K R; Pruss, D; van Kan, A; Vail, P J; McElroy, H; Wenstrup, R J

    2015-12-01

    Based on current consensus guidelines and standard practice, many genetic variants detected in clinical testing are classified as disease causing based on their predicted impact on the normal expression or function of the gene in the absence of additional data. However, our laboratory has identified a subset of such variants in hereditary cancer genes for which compelling contradictory evidence emerged after the initial evaluation following the first observation of the variant. Three representative examples of variants in BRCA1, BRCA2 and MSH2 that are predicted to disrupt splicing, prematurely truncate the protein, or remove the start codon were evaluated for pathogenicity by analyzing clinical data with multiple classification algorithms. Available clinical data for all three variants contradicts the expected pathogenic classification. These variants illustrate potential pitfalls associated with standard approaches to variant classification as well as the challenges associated with monitoring data, updating classifications, and reporting potentially contradictory interpretations to the clinicians responsible for translating test outcomes to appropriate clinical action. It is important to address these challenges now as the model for clinical testing moves toward the use of large multi-gene panels and whole exome/genome analysis, which will dramatically increase the number of genetic variants identified. © 2015 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Identification of Genetic Variants Linking Protein C and Lipoprotein Metabolism: The ARIC Study (Atherosclerosis Risk in Communities).

    PubMed

    Pankow, James S; Tang, Weihong; Pankratz, Nathan; Guan, Weihua; Weng, Lu-Chen; Cushman, Mary; Boerwinkle, Eric; Folsom, Aaron R

    2017-03-01

    Previous studies have identified common genetic variants in 4 chromosomal regions that together account for 14% to 15% of the variance in circulating levels of protein C. To further characterize the genetic architecture of protein C, we obtained denser coverage at some loci, extended investigation of protein C to low-frequency and rare variants, and searched for new associations in genes known to influence protein C. Genetic associations with protein C antigen level were evaluated in ≤10 778 European and 3190 black participants aged 45 to 64 years. Analyses included >26 million autosomal variants available after imputation to the 1000 Genomes reference panel along with additional low-frequency and rare variants directly genotyped using the Illumina ITMAT-Broad-CARe chip and Illumina HumanExome BeadChip. Genome-wide significant associations ( P <5×10 -8 ) were found for common variants in the GCKR , PROC , BAZ1B , and PROCR-EDEM2 regions in whites and PROC and PROCR-EDEM2 regions in blacks, confirming earlier findings. In a novel finding, the low-density lipoprotein cholesterol-lowering allele of rs12740374, located in the CELSR2-PSRC1-SORT1 region, was associated with lower protein C level in both whites and blacks, reaching genome-wide significance in a meta-analysis combining results from both groups ( P =1.4×10 -9 ). To further investigate a possible link between lipid metabolism and protein C level, we conducted Mendelian randomization analyses using 185 lipid-related genetic variants as instrumental variables. The results indicated that triglycerides, and possibly low-density lipoprotein cholesterol, influence protein C levels. Discovery of variants influencing circulating protein C levels in the CELSR2-PSRC1-SORT1 region may indicate a novel genetic link between lipoprotein metabolism and hemostasis. © 2017 American Heart Association, Inc.

  19. FAVR (Filtering and Annotation of Variants that are Rare): methods to facilitate the analysis of rare germline genetic variants from massively parallel sequencing datasets

    PubMed Central

    2013-01-01

    Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software

  20. New genetic variants associated with prostate cancer

    Cancer.gov

    Researchers have newly identified 23 common genetic variants -- one-letter changes in DNA known as single-nucleotide polymorphisms or SNPs -- that are associated with risk of prostate cancer. These results come from an analysis of more than 10 million SNP

  1. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration.

    PubMed

    Pras, Eran; Kristal, Dana; Shoshany, Nadav; Volodarsky, Dina; Vulih, Inna; Celniker, Gershon; Isakov, Ofer; Shomron, Noam; Pras, Elon

    2015-07-01

    To explore the molecular basis of familial, early onset, age-related macular degeneration (AMD) with diverse phenotypes, using whole exome sequencing (WES). We performed WES on four patients (two sibs from two families) manifesting early-onset AMD and searched for disease-causing genetic variants in previously identified macular degeneration related genes. Validation studies of the variants included bioinformatics tools, segregation analysis of mutations within the families and mutation screening in an AMD cohort of patients. The index patients were in their 50s when diagnosed and displayed a wide variety of clinical AMD presentations: from limited drusen in the posterior pole to multiple basal-laminar drusen extending peripherally. Severe visual impairment due to extensive geographic atrophy and/or choroidal-neovascularisation was common by the age of 75 years. Approximately, 400 000 genomic variants for each DNA sample were included in the downstream bioinformatics analysis, which ended in the discovery of two novel variants; in one family a single bp deletion was identified in the Hemicentin (HMCN1) gene (c.4162delC), whereas in the other, a missense variant (p.V412M) in the Complement Factor-I (CFI) gene was found. Screening for these variants in a cohort of patients with AMD identified another family with the CFI variant. This report uses WES to uncover rare genetic variants in AMD. A null-variant in HMCN1 has been identified in one AMD family, and a missense variant in CFI was discovered in two other families. These variants confirm the genetic complexity and significance of rare genetic variants in the pathogenesis of AMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Genetic variants in miRNAs and its association with breast cancer].

    PubMed

    Méndez-Gómez, Susana; Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel; Dolores-Vergara, Maria; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego Julio

    2014-01-01

    In Mexico, breast cancer represents the first cause of cancer death in females. At the molecular level, non-coding RNAs and especially microRNAs have played an important role in the origin and development of this neoplasm In the Anglo-Saxon population, diverse genetic variants in microRNA genes and in their targets are associated with the development of this disease. In the Mexican population it is not known if these or other variants exist. Identification of these or new variants in our population is fundamental in order to have a better understanding of cancer development and to help establish a better diagnostic strategy. DNA was isolated from mammary tumors, adjacent tissue and peripheral blood of Mexican females with or without cancer. From DNA, five microRNA genes and three of their targets were amplified and sequenced. Genetic variants associated with breast cancer in an Anglo- Saxon population have been previously identified in these sequences. In the samples studied we identified seven single nucleotide polymorphisms (SNPs). Two had not been previously described and were identified only in women with cancer. The new variants may be genetic predisposition factors for the development of breast cancer in our population. Further experiments are needed to determine the involvement of these variants in the development, establishment and progression of breast cancer.

  4. Genetic Variants in Transcription Factors Are Associated With the Pharmacokinetics and Pharmacodynamics of Metformin

    PubMed Central

    Goswami, S; Yee, SW; Stocker, S; Mosley, JD; Kubo, M; Castro, R; Mefford, JA; Wen, C; Liang, X; Witte, J; Brett, C; Maeda, S; Simpson, MD; Hedderson, MM; Davis, RL; Roden, DM; Giacomini, KM; Savic, RM

    2014-01-01

    One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin transporters have been extensively studied as a likely contributor to this high failure rate. Here, we investigate, for the first time, the effect of genetic variants in transcription factors on metformin pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the expression of metformin transporters, were associated with changes in treatment HbA1c (P < 0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant, rs784888. Genetic variants in other transcription factors, peroxisome proliferator–activated receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change only. Overall, our study highlights the importance of genetic variants in transcription factors as modulators of metformin PK and response. PMID:24853734

  5. Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine

    PubMed Central

    2016-01-01

    Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS) data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:27195526

  6. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants.

    PubMed

    Pierce, Brandon L; Ahsan, Habibul; Vanderweele, Tyler J

    2011-06-01

    Mendelian Randomization (MR) studies assess the causality of an exposure-disease association using genetic determinants [i.e. instrumental variables (IVs)] of the exposure. Power and IV strength requirements for MR studies using multiple genetic variants have not been explored. We simulated cohort data sets consisting of a normally distributed disease trait, a normally distributed exposure, which affects this trait and a biallelic genetic variant that affects the exposure. We estimated power to detect an effect of exposure on disease for varying allele frequencies, effect sizes and samples sizes (using two-stage least squares regression on 10,000 data sets-Stage 1 is a regression of exposure on the variant. Stage 2 is a regression of disease on the fitted exposure). Similar analyses were conducted using multiple genetic variants (5, 10, 20) as independent or combined IVs. We assessed IV strength using the first-stage F statistic. Simulations of realistic scenarios indicate that MR studies will require large (n > 1000), often very large (n > 10,000), sample sizes. In many cases, so-called 'weak IV' problems arise when using multiple variants as independent IVs (even with as few as five), resulting in biased effect estimates. Combining genetic factors into fewer IVs results in modest power decreases, but alleviates weak IV problems. Ideal methods for combining genetic factors depend upon knowledge of the genetic architecture underlying the exposure. The feasibility of well-powered, unbiased MR studies will depend upon the amount of variance in the exposure that can be explained by known genetic factors and the 'strength' of the IV set derived from these genetic factors.

  7. Empirical Bayes scan statistics for detecting clusters of disease risk variants in genetic studies.

    PubMed

    McCallum, Kenneth J; Ionita-Laza, Iuliana

    2015-12-01

    Recent developments of high-throughput genomic technologies offer an unprecedented detailed view of the genetic variation in various human populations, and promise to lead to significant progress in understanding the genetic basis of complex diseases. Despite this tremendous advance in data generation, it remains very challenging to analyze and interpret these data due to their sparse and high-dimensional nature. Here, we propose novel applications and new developments of empirical Bayes scan statistics to identify genomic regions significantly enriched with disease risk variants. We show that the proposed empirical Bayes methodology can be substantially more powerful than existing scan statistics methods especially so in the presence of many non-disease risk variants, and in situations when there is a mixture of risk and protective variants. Furthermore, the empirical Bayes approach has greater flexibility to accommodate covariates such as functional prediction scores and additional biomarkers. As proof-of-concept we apply the proposed methods to a whole-exome sequencing study for autism spectrum disorders and identify several promising candidate genes. © 2015, The International Biometric Society.

  8. Genetic variants of innate immune receptors and infections after liver transplantation

    PubMed Central

    Sanclemente, Gemma; Moreno, Asuncion; Navasa, Miquel; Lozano, Francisco; Cervera, Carlos

    2014-01-01

    Infection is the leading cause of complication after liver transplantation, causing morbidity and mortality in the first months after surgery. Allograft rejection is mediated through adaptive immunological responses, and thus immunosuppressive therapy is necessary after transplantation. In this setting, the presence of genetic variants of innate immunity receptors may increase the risk of post-transplant infection, in comparison with patients carrying wild-type alleles. Numerous studies have investigated the role of genetic variants of innate immune receptors and the risk of complication after liver transplantation, but their results are discordant. Toll-like receptors and mannose-binding lectin are arguably the most important studied molecules; however, many other receptors could increase the risk of infection after transplantation. In this article, we review the published studies analyzing the impact of genetic variants in the innate immune system on the development of infectious complications after liver transplantation. PMID:25170199

  9. Evaluation: A Qualitative Pilot Study of Novel Information Technology Infrastructure to Communicate Genetic Variant Updates.

    PubMed

    Klinkenberg-Ramirez, Stephanie; Neri, Pamela M; Volk, Lynn A; Samaha, Sara J; Newmark, Lisa P; Pollard, Stephanie; Varugheese, Matthew; Baxter, Samantha; Aronson, Samuel J; Rehm, Heidi L; Bates, David W

    2016-01-01

    Partners HealthCare Personalized Medicine developed GeneInsight Clinic (GIC), a tool designed to communicate updated variant information from laboratory geneticists to treating clinicians through automated alerts, categorized by level of variant interpretation change. The study aimed to evaluate feedback from the initial users of the GIC, including the advantages and challenges to receiving this variant information and using this technology at the point of care. Healthcare professionals from two clinics that ordered genetic testing for cardiomyopathy and related disorders were invited to participate in one-hour semi-structured interviews and/ or a one-hour focus group. Using a Grounded Theory approach, transcript concepts were coded and organized into themes. Two genetic counselors and two physicians from two treatment clinics participated in individual interviews. Focus group participants included one genetic counselor and four physicians. Analysis resulted in 8 major themes related to structuring and communicating variant knowledge, GIC's impact on the clinic, and suggestions for improvements. The interview analysis identified longitudinal patient care, family data, and growth in genetic testing content as potential challenges to optimization of the GIC infrastructure. Participants agreed that GIC implementation increased efficiency and effectiveness of the clinic through increased access to genetic variant information at the point of care. Development of information technology (IT) infrastructure to aid in the organization and management of genetic variant knowledge will be critical as the genetic field moves towards whole exome and whole genome sequencing. Findings from this study could be applied to future development of IT support for genetic variant knowledge management that would serve to improve clinicians' ability to manage and care for patients.

  10. Reducing Communication in Algebraic Multigrid Using Additive Variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  11. Reducing Communication in Algebraic Multigrid Using Additive Variants

    DOE PAGES

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    2014-02-12

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  12. A systematic approach to assessing the clinical significance of genetic variants.

    PubMed

    Duzkale, H; Shen, J; McLaughlin, H; Alfares, A; Kelly, M A; Pugh, T J; Funke, B H; Rehm, H L; Lebo, M S

    2013-11-01

    Molecular genetic testing informs diagnosis, prognosis, and risk assessment for patients and their family members. Recent advances in low-cost, high-throughput DNA sequencing and computing technologies have enabled the rapid expansion of genetic test content, resulting in dramatically increased numbers of DNA variants identified per test. To address this challenge, our laboratory has developed a systematic approach to thorough and efficient assessments of variants for pathogenicity determination. We first search for existing data in publications and databases including internal, collaborative and public resources. We then perform full evidence-based assessments through statistical analyses of observations in the general population and disease cohorts, evaluation of experimental data from in vivo or in vitro studies, and computational predictions of potential impacts of each variant. Finally, we weigh all evidence to reach an overall conclusion on the potential for each variant to be disease causing. In this report, we highlight the principles of variant assessment, address the caveats and pitfalls, and provide examples to illustrate the process. By sharing our experience and providing a framework for variant assessment, including access to a freely available customizable tool, we hope to help move towards standardized and consistent approaches to variant assessment. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Genetic Variants Associated with Gestational Hypertriglyceridemia and Pancreatitis

    PubMed Central

    Huang, Xie-Lin; Chen, Chao; Jin, Rong; Huang, Zhi-Ming; Zhou, Meng-Tao

    2015-01-01

    Severe hypertriglyceridemia is a well-known cause of pancreatitis. Usually, there is a moderate increase in plasma triglyceride level during pregnancy. Additionally, certain pre-existing genetic traits may render a pregnant woman susceptible to development of severe hypertriglyceridemia and pancreatitis, especially in the third trimester. To elucidate the underlying mechanism of gestational hypertriglyceridemic pancreatitis, we undertook DNA mutation analysis of the lipoprotein lipase (LPL), apolipoprotein C2 (APOC2), apolipoprotein A5 (APOA5), lipase maturation factor 1 (LMF1), and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) genes in five unrelated pregnant Chinese women with severe hypertriglyceridemia and pancreatitis. DNA sequencing showed that three out of five patients had the same homozygous variation, p.G185C, in APOA5 gene. One patient had a compound heterozygous mutation, p.A98T and p.L279V, in LPL gene. Another patient had a compound heterozygous mutation, p.A98T & p.C14F in LPL and GPIHBP1 gene, respectively. No mutations were seen in APOC2 or LMF1 genes. All patients were diagnosed with partial LPL deficiency in non-pregnant state. As revealed in our study, genetic variants appear to play an important role in the development of severe gestational hypertriglyceridemia, and, p.G185C mutation in APOA5 gene appears to be the most common variant implicated in the Chinese population. Antenatal screening for mutations in susceptible women, combined with subsequent interventions may be invaluable in the prevention of potentially life threatening gestational hypertriglyceridemia-induced pancreatitis. PMID:26079787

  14. Association Between Coronary Artery Disease Genetic Variants and Subclinical Atherosclerosis: An Association Study and Meta-analysis.

    PubMed

    Zabalza, Michel; Subirana, Isaac; Lluis-Ganella, Carla; Sayols-Baixeras, Sergi; de Groot, Eric; Arnold, Roman; Cenarro, Ana; Ramos, Rafel; Marrugat, Jaume; Elosua, Roberto

    2015-10-01

    Recent studies have identified several genetic variants associated with coronary artery disease. Some of these genetic variants are not associated with classical cardiovascular risk factors and the mechanism of such associations is unclear. The aim of the study was to determine whether these genetic variants are related to subclinical atherosclerosis measured by carotid intima media thickness, carotid stiffness, and ankle brachial index. A cross-sectional study nested in the follow-up of the REGICOR cohort was undertaken. The study included 2667 individuals. Subclinical atherosclerosis measurements were performed with standardized methods. Nine genetic variants were genotyped to assess associations with subclinical atherosclerosis, individually and in a weighted genetic risk score. A systematic review and meta-analysis of previous studies that analyzed these associations was undertaken. Neither the selected genetic variants nor the genetic risk score were significantly associated with subclinical atherosclerosis. In the meta-analysis, the rs1746048 (CXCL12; n = 10581) risk allele was directly associated with carotid intima-media thickness (β = 0.008; 95% confidence interval, 0.001-0.015), whereas the rs6725887 (WDR12; n = 7801) risk allele was inversely associated with this thickness (β = -0.013; 95% confidence interval, -0.024 to -0.003). The analyzed genetic variants seem to mediate their association with coronary artery disease through different mechanisms. Our results generate the hypothesis that the CXCL12 variant appears to influence coronary artery disease risk through arterial remodeling and thickening, whereas the WDR12 risk variant could be related to higher plaque vulnerability. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake.

    PubMed

    Tanaka, Toshiko; Ngwa, Julius S; van Rooij, Frank J A; Zillikens, M Carola; Wojczynski, Mary K; Frazier-Wood, Alexis C; Houston, Denise K; Kanoni, Stavroula; Lemaitre, Rozenn N; Luan, Jian'an; Mikkilä, Vera; Renstrom, Frida; Sonestedt, Emily; Zhao, Jing Hua; Chu, Audrey Y; Qi, Lu; Chasman, Daniel I; de Oliveira Otto, Marcia C; Dhurandhar, Emily J; Feitosa, Mary F; Johansson, Ingegerd; Khaw, Kay-Tee; Lohman, Kurt K; Manichaikul, Ani; McKeown, Nicola M; Mozaffarian, Dariush; Singleton, Andrew; Stirrups, Kathleen; Viikari, Jorma; Ye, Zheng; Bandinelli, Stefania; Barroso, Inês; Deloukas, Panos; Forouhi, Nita G; Hofman, Albert; Liu, Yongmei; Lyytikäinen, Leo-Pekka; North, Kari E; Dimitriou, Maria; Hallmans, Goran; Kähönen, Mika; Langenberg, Claudia; Ordovas, Jose M; Uitterlinden, André G; Hu, Frank B; Kalafati, Ioanna-Panagiota; Raitakari, Olli; Franco, Oscar H; Johnson, Andrew; Emilsson, Valur; Schrack, Jennifer A; Semba, Richard D; Siscovick, David S; Arnett, Donna K; Borecki, Ingrid B; Franks, Paul W; Kritchevsky, Stephen B; Lehtimäki, Terho; Loos, Ruth J F; Orho-Melander, Marju; Rotter, Jerome I; Wareham, Nicholas J; Witteman, Jacqueline C M; Ferrucci, Luigi; Dedoussis, George; Cupples, L Adrienne; Nettleton, Jennifer A

    2013-06-01

    Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. The objective of the study was to identify common genetic variants that are associated with macronutrient intake. We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data. A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10(-8)) and lower fat (β ± SE: -0.21 ± 0.04%; P = 1.57 × 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)-increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10(-10)), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10(-7)). Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health

  16. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    PubMed

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  17. Estimating genetic effects and quantifying missing heritability explained by identified rare-variant associations.

    PubMed

    Liu, Dajiang J; Leal, Suzanne M

    2012-10-05

    Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. A pooling-based approach to mapping genetic variants associated with DNA methylation

    PubMed Central

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; McEwen, Lisa M.; Kobor, Michael S.; Fraser, Hunter B.

    2015-01-01

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data. PMID:25910490

  19. A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field

    PubMed Central

    El Malti, Rajae; Liu, Hui; Doray, Bérénice; Thauvin, Christel; Maltret, Alice; Dauphin, Claire; Gonçalves-Rocha, Miguel; Teboul, Michel; Blanchet, Patricia; Roume, Joëlle; Gronier, Céline; Ducreux, Corinne; Veyrier, Magali; Marçon, François; Acar, Philippe; Lusson, Jean-René; Levy, Marilyne; Beyler, Constance; Vigneron, Jacqueline; Cordier-Alex, Marie-Pierre; Heitz, François; Sanlaville, Damien; Bonnet, Damien; Bouvagnet, Patrice

    2016-01-01

    The etiology of congenital heart defect (CHD) combines environmental and genetic factors. So far, there were studies reporting on the screening of a single gene on unselected CHD or on familial cases selected for specific CHD types. Our goal was to systematically screen a proband of familial cases of CHD on a set of genetic tests to evaluate the prevalence of disease-causing variant identification. A systematic screening of GATA4, NKX2-5, ZIC3 and Multiplex ligation-dependent probe amplification (MLPA) P311 Kit was setup on the proband of 154 families with at least two cases of non-syndromic CHD. Additionally, ELN screening was performed on families with supravalvular arterial stenosis. Twenty-two variants were found, but segregation analysis confirmed unambiguously the causality of 16 variants: GATA4 (1 ×), NKX2-5 (6 ×), ZIC3 (3 ×), MLPA (2 ×) and ELN (4 ×). Therefore, this approach was able to identify the causal variant in 10.4% of familial CHD cases. This study demonstrated the existence of a de novo variant even in familial CHD cases and the impact of CHD variants on adult cardiac condition even in the absence of CHD. This study showed that the systematic screening of genetic factors is useful in familial CHD cases with up to 10.4% elucidated cases. When successful, it drastically improved genetic counseling by discovering unaffected variant carriers who are at risk of transmitting their variant and are also exposed to develop cardiac complications during adulthood thus prompting long-term cardiac follow-up. This study provides an important baseline at dawning of the next-generation sequencing era. PMID:26014430

  20. Meta-analysis of genetic variants associated with human exceptional longevity

    PubMed Central

    Sebastiani, Paola; Bae1, Harold; Sun, Fangui X.; Andersen, Stacy L.; Daw, E. Warwick; Malovini, Alberto; Kojima, Toshio; Hirose, Nobuyoshi; Schupf, Nicole; Puca, Annibale; Perls, Thomas T

    2013-01-01

    Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non-centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta-analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population. PMID:24244950

  1. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders

    PubMed Central

    Pfundt, Rolph; del Rosario, Marisol; Vissers, Lisenka E.L.M.; Kwint, Michael P.; Janssen, Irene M.; de Leeuw, Nicole; Yntema, Helger G.; Nelen, Marcel R.; Lugtenberg, Dorien; Kamsteeg, Erik-Jan; Wieskamp, Nienke; Stegmann, Alexander P.A.; Stevens, Servi J.C.; Rodenburg, Richard J.T.; Simons, Annet; Mensenkamp, Arjen R.; Rinne, Tuula; Gilissen, Christian; Scheffer, Hans; Veltman, Joris A.; Hehir-Kwa, Jayne Y.

    2017-01-01

    Purpose: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10–20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. Methods: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. Results: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to –5.8% per disorder). Conclusions: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics. Genet Med advance online publication 27 October 2016 PMID:28574513

  2. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES)

    PubMed Central

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong

    2018-01-01

    Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555

  3. Cerebral palsy: causes, pathways, and the role of genetic variants.

    PubMed

    MacLennan, Alastair H; Thompson, Suzanna C; Gecz, Jozef

    2015-12-01

    Cerebral palsy (CP) is heterogeneous with different clinical types, comorbidities, brain imaging patterns, causes, and now also heterogeneous underlying genetic variants. Few are solely due to severe hypoxia or ischemia at birth. This common myth has held back research in causation. The cost of litigation has devastating effects on maternity services with unnecessarily high cesarean delivery rates and subsequent maternal morbidity and mortality. CP rates have remained the same for 50 years despite a 6-fold increase in cesarean birth. Epidemiological studies have shown that the origins of most CP are prior to labor. Increased risk is associated with preterm delivery, congenital malformations, intrauterine infection, fetal growth restriction, multiple pregnancy, and placental abnormalities. Hypoxia at birth may be primary or secondary to preexisting pathology and international criteria help to separate the few cases of CP due to acute intrapartum hypoxia. Until recently, 1-2% of CP (mostly familial) had been linked to causative mutations. Recent genetic studies of sporadic CP cases using new-generation exome sequencing show that 14% of cases have likely causative single-gene mutations and up to 31% have clinically relevant copy number variations. The genetic variants are heterogeneous and require function investigations to prove causation. Whole genome sequencing, fine scale copy number variant investigations, and gene expression studies may extend the percentage of cases with a genetic pathway. Clinical risk factors could act as triggers for CP where there is genetic susceptibility. These new findings should refocus research about the causes of these complex and varied neurodevelopmental disorders. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  4. Genome-wide scans of genetic variants for psychophysiological endophenotypes: a methodological overview.

    PubMed

    Iacono, William G; Malone, Stephen M; Vaidyanathan, Uma; Vrieze, Scott I

    2014-12-01

    This article provides an introductory overview of the investigative strategy employed to evaluate the genetic basis of 17 endophenotypes examined as part of a 20-year data collection effort from the Minnesota Center for Twin and Family Research. Included are characterization of the study samples, descriptive statistics for key properties of the psychophysiological measures, and rationale behind the steps taken in the molecular genetic study design. The statistical approach included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 single nucleotide polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 17,601 autosomal genes, (d) follow-up analyses of candidate SNPs and genes hypothesized to have an association with each endophenotype, (e) rare variant analysis of nonsynonymous SNPs in the exome, and (f) whole genome sequencing association analysis using 27 million genetic variants. These methods were used in the accompanying empirical articles comprising this special issue, Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes. Copyright © 2014 Society for Psychophysiological Research.

  5. A pooling-based approach to mapping genetic variants associated with DNA methylation

    DOE PAGES

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; ...

    2015-04-24

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a trulymore » genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. Here we found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.« less

  6. Genetic variants in cellular transport do not affect mesalamine response in ulcerative colitis

    PubMed Central

    Huang, Hailiang; Rivas, Manuel; Kaplan, Jess L.; Daly, Mark J.; Winter, Harland S.

    2018-01-01

    Background and aims Mesalamine is commonly used to treat ulcerative colitis (UC). Although mesalamine acts topically, in vitro data suggest that intracellular transport is required for its beneficial effect. Genetic variants in mucosal transport proteins may affect this uptake, but the clinical relevance of these variants has not been studied. The aim of this study was to determine whether variants in genes involved in cellular transport affect the response to mesalamine in UC. Methods Subjects with UC from a 6-week clinical trial using multiple doses of mesalamine were genotyped using a genome-wide array that included common exome variants. Analysis focused on cellular transport gene variants with a minor allele frequency >5%. Mesalamine response was defined as improvement in Week 6 Physician’s Global Assessment (PGA) and non-response as a lack of improvement in Week 6 PGA. Quality control thresholds included an individual genotyping rate of >90%, SNP genotyping rate of >98%, and exclusion for subjects with cryptic relatedness. All included variants met Hardy-Weinberg equilibrium (p>0.001). Results 457 adults with UC were included with 280 responders and 177 non-responders. There were no common variants in transporter genes that were associated with response to mesalamine. The genetic risk score of responders was similar to that of non-responders (p = 0.18). Genome-wide variants demonstrating a trend towards mesalamine response included ST8SIA5 (p = 1x10-5). Conclusions Common transporter gene variants did not affect response to mesalamine in adult UC. The response to mesalamine may be due to rare genetic events or environmental factors such as the intestinal microbiome. PMID:29579042

  7. GENETIC VARIANTS, IMMUNE FUNCTION AND RISK OF PRE-ECLAMPSIA AMONG AMERICAN INDIANS

    PubMed Central

    Best, Lyle G.; Nadeau, Melanie; Davis, Kylie; Lamb, Felicia; Bercier, Shellee; Anderson, Cindy M.

    2011-01-01

    Objective To determine the prevalence in an American Indian population of genetic variants with putative effects on immune function and determine if they are associated with pre-eclampsia. Methods In a study of 66 cases and 130 matched controls, six single nucleotide polymorphisms (SNP) with either previously demonstrated or postulated modulating effects on the immune system were genotyped. Allele frequencies and various genetic models were evaluated by conditional logistic regression in both univariate and multiply adjusted models. Results Although most genetic variants lacked evidence of association with pre-eclampsia, the minor allele of the CRP related, rs1205 SNP in a dominant model with adjustment for age at delivery, nulliparity and body mass index, exhibited an odds ratio of 0.259 (95% CI of 0.08 – 0.81, p=0.020) in relation to severe pre-eclampsia (48 cases). The allelic prevalence of this variant was 46.1% in this population. Conclusion Of the six SNPs related to immune function in this study, a functional variant in the 3'UTR of the CRP gene was shown to be associated with severe pre-eclampsia in an American Indian population. PMID:22004660

  8. Relations of mitochondrial genetic variants to measures of vascular function.

    PubMed

    Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel

    2018-05-01

    Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  9. Exploring genetic variants predisposing to diabetes mellitus and their association with indicators of socioeconomic status.

    PubMed

    Schmidt, Börge; Dragano, Nico; Scherag, André; Pechlivanis, Sonali; Hoffmann, Per; Nöthen, Markus M; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne

    2014-06-16

    The relevance of disease-related genetic variants for the explanation of social inequalities in complex diseases is unclear and empirical analyses are largely missing. The aim of our study was to examine whether genetic variants predisposing to diabetes mellitus are associated with socioeconomic status in a population-based cohort. We genotyped 11 selected diabetes-related single nucleotide polymorphisms in 4655 participants (age 45-75 years) of the Heinz Nixdorf Recall study. Diabetes status was self-reported or defined by blood glucose levels. Education, income and paternal occupation were assessed as indicators of socioeconomic status. Multiple regression analyses were used to examine the association of socioeconomic status and diabetes by estimating sex-specific and age-adjusted prevalence ratios and their corresponding 95%-confidence intervals. To explore the relationship between individual single nucleotide polymorphisms and socioeconomic status sex- and age-adjusted odds ratios were computed. We adjusted the alpha-level for multiple testing of 11 single nucleotide polymorphisms using Bonferroni's method (α(BF) ~ 0.005). In addition, we explored the association of a genetic risk score with socioeconomic status. Social inequalities in diabetes were observed for all indicators of socioeconomic status. However, there were no significant associations between individual diabetes-related risk alleles and socioeconomic status with odds ratios ranging from 0.87 to 1.23. Similarly, the genetic risk score analysis revealed no evidence for an association. Our data provide no evidence for an association between 11 diabetes-related risk alleles and different indicators of socioeconomic status in a population-based cohort, suggesting that the explored genetic variants do not contribute to health inequalities in diabetes.

  10. Synergistic Association of Genetic Variants with Environmental Risk Factors in Susceptibility to Essential Hypertension.

    PubMed

    Sousa, Ana Célia; Mendonça, Maria I; Pereira, Andreia; Gouveia, Sara; Freitas, Ana I; Guerra, Graça; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Borges, Sofia; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto

    2017-10-01

    Essential hypertension (EH) is a disease in which both environment and genes have an important role. This study was designed to identify the interaction model between genetic variants and environmental risk factors that most highly potentiates EH development. We performed a case-control study with 1641 participants (mean age 50.6 ± 8.1 years), specifically 848 patients with EH and 793 controls, adjusted for gender and age. Traditional risk factors, biochemical and genetic parameters, including the genotypic discrimination of 14 genetic variants previously associated with EH, were investigated. Multifactorial dimensionality reduction (MDR) software was used to analyze gene-environment interactions. Validation was performed using logistic regression analysis with environmental risk factors, significant genetic variants, and the best MDR model. The best model indicates that the interactions among the ADD1 rs4961 640T allele, diabetes, and obesity (body mass index ≥30) increase approximately four-fold the risk of EH (odds ratio = 3.725; 95% confidence interval: 2.945-4.711; p < 0.0001). This work showed that the interaction between the ADD1 rs4961 variant, obesity, and the presence of diabetes increased the susceptibility to EH four-fold. In these circumstances, lifestyle adjustment and diabetes control should be intensified in patients who carry the ADD1 variant.

  11. Quantitative determination of casein genetic variants in goat milk: Application in Girgentana dairy goat breed.

    PubMed

    Montalbano, Maria; Segreto, Roberta; Di Gerlando, Rosalia; Mastrangelo, Salvatore; Sardina, Maria Teresa

    2016-02-01

    The study was conducted to develop a high-performance liquid chromatographic (HPLC) method to quantify casein genetic variants (αs2-, β-, and κ-casein) in milk of homozygous individuals of Girgentana goat breed. For calibration experiments, pure genetic variants were extracted from individual milk samples of animals with known genotypes. The described HPLC approach was precise, accurate and highly suitable for quantification of goat casein genetic variants of homozygous individuals. The amount of each casein per allele was: αs2-casein A = 2.9 ± 0.8 g/L and F = 1.8 ± 0.4 g/L; β-casein C = 3.0 ± 0.8 g/L and C1 = 2.0 ± 0.7 g/L and κ-casein A = 1.6 ± 0.3 g/L and B = 1.1 ± 0.2 g/L. A good correlation was found between the quantities of αs2-casein genetic variants A and F, and β-casein C and C1 with other previously described method. The main important result was obtained for κ-casein because, till now, no data were available on quantification of single genetic variants for this protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Joint effects of genetic variants and residential proximity to pesticide applications on hypospadias risk.

    PubMed

    Carmichael, Suzan L; Yang, Wei; Ma, Chen; Roberts, Eric; Kegley, Susan; English, Paul; Lammer, Edward J; Witte, John S; Shaw, Gary M

    2016-08-01

    We examined risks associated with joint exposure of gene variants and pesticides. Analyses included 189 cases and 390 male controls born from 1991 to 2003 in California's San Joaquin Valley. We used logistic regression to examine risks associated with joint exposures of gene variants and pesticides that our previous work identified as associated with hypospadias. Genetic variables were based on variants in DGKK, genes involved in sex steroid synthesis/metabolism, and genes involved in genital tubercle development. Pesticide exposure was based on residential proximity to commercial agricultural pesticide applications. Odds ratios (ORs) were highest among babies with joint exposures, who had two- to fourfold increased risks; for example, the OR was 3.7 (95% confidence interval [CI], 0.8-16.5) among subjects with the risk-associated DGKK haplotype and pesticide exposure; OR, 1.5 (95% CI, 0.7-3.1) among subjects with the haplotype and no pesticide exposure; and OR, 0.9 (95% CI, 0.5-1.6) among subjects without the haplotype but with pesticide exposure, relative to subjects with neither. However, results did not provide statistical evidence that these risks were significantly greater than expected on an additive scale, relative to risks associated with one exposure at a time. We observed elevated risks associated with joint exposures to selected pesticides and genetic variants but no statistical evidence for interaction. Birth Defects Research (Part A) 106:653-658, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Genetic variant as a marker for bladder cancer therapy

    Cancer.gov

    Patients who have inherited a specific common genetic variant develop bladder cancer tumors that strongly express a protein known as prostate stem cell antigen (PSCA), which is also expressed in many pancreatic and prostate tumors, according to research a

  14. Association of genetic variants of GRIN2B with autism.

    PubMed

    Pan, Yongcheng; Chen, Jingjing; Guo, Hui; Ou, Jianjun; Peng, Yu; Liu, Qiong; Shen, Yidong; Shi, Lijuan; Liu, Yalan; Xiong, Zhimin; Zhu, Tengfei; Luo, Sanchuan; Hu, Zhengmao; Zhao, Jingping; Xia, Kun

    2015-02-06

    Autism (MIM 209850) is a complex neurodevelopmental disorder characterized by social communication impairments and restricted repetitive behaviors. It has a high heritability, although much remains unclear. To evaluate genetic variants of GRIN2B in autism etiology, we performed a system association study of common and rare variants of GRIN2B and autism in cohorts from a Chinese population, involving a total sample of 1,945 subjects. Meta-analysis of a triad family cohort and a case-control cohort identified significant associations of multiple common variants and autism risk (Pmin = 1.73 × 10(-4)). Significantly, the haplotype involved with the top common variants also showed significant association (P = 1.78 × 10(-6)). Sanger sequencing of 275 probands from a triad cohort identified several variants in coding regions, including four common variants and seven rare variants. Two of the common coding variants were located in the autism-related linkage disequilibrium (LD) block, and both were significantly associated with autism (P < 9 × 10(-3)) using an independent control cohort. Burden analysis and case-only analysis of rare coding variants identified by Sanger sequencing did not find this association. Our study for the first time reveals that common variants and related haplotypes of GRIN2B are associated with autism risk.

  15. Genetic variants associated with susceptibility to psychosis in late-onset Alzheimer's disease families.

    PubMed

    Barral, Sandra; Vardarajan, Badri N; Reyes-Dumeyer, Dolly; Faber, Kelley M; Bird, Thomas D; Tsuang, Debby; Bennett, David A; Rosenberg, Roger; Boeve, Bradley F; Graff-Radford, Neill R; Goate, Alison M; Farlow, Martin; Lantigua, Rafael; Medrano, Martin Z; Wang, Xinbing; Kamboh, M Ilyas; Barmada, Mahmud Muhiedine; Schaid, Daniel J; Foroud, Tatiana M; Weamer, Elise A; Ottman, Ruth; Sweet, Robert A; Mayeux, Richard

    2015-11-01

    Psychotic symptoms are frequent in late-onset Alzheimer's disease (LOAD) patients. Although the risk for psychosis in LOAD is genetically mediated, no genes have been identified. To identify loci potentially containing genetic variants associated with risk of psychosis in LOAD, a total of 263 families from the National Institute of Aging-LOAD cohort were classified into psychotic (LOAD+P, n = 215) and nonpsychotic (LOAD-P, n = 48) families based on the presence/absence of psychosis during the course of LOAD. The LOAD+P families yielded strong evidence of linkage on chromosome 19q13 (two-point [2-pt] ​logarithm of odds [LOD] = 3.8, rs2285513 and multipoint LOD = 2.7, rs541169). Joint linkage and association in 19q13 region detected strong association with rs2945988 (p = 8.7 × 10(-7)). Linkage results for the LOAD-P families yielded nonsignificant 19q13 LOD scores. Several 19q13 single-nucleotide polymorphisms generalized the association of LOAD+P in a Caribbean Hispanic (CH) cohort, and the strongest signal was rs10410711 (pmeta = 5.1 × 10(-5)). A variant located 24 kb upstream of rs10410711 and rs10421862 was strongly associated with LOAD+P (pmeta = 1.0 × 10(-5)) in a meta-analysis of the CH cohort and an additional non-Hispanic Caucasian dataset. Identified variants rs2945988 and rs10421862 affect brain gene expression levels. Our results suggest that genetic variants in genes on 19q13, some of which are involved in brain development and neurodegeneration, may influence the susceptibility to psychosis in LOAD patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Genetic variants determining body fat distribution and sex hormone-binding globulin among Chinese female young adults.

    PubMed

    Shi, Juan; Li, Lijuan; Hong, Jie; Qi, Lu; Cui, Bin; Gu, Weiqiong; Zhang, Yifei; Miao, Lin; Wang, Rui; Wang, Weiqing; Ning, Guang

    2014-11-01

    Measures of body fat distribution (i.e. waist : hip ratio [WHR]) are major risk factors for diabetes, independent of overall adiposity. The genetic variants related to body fat distribution show sexual dimorphism and particularly affect females. Substantial literature supports a role for sex hormone-binding globulin (SHBG) in the maintenance of glucose homeostasis. The aim of the present study was to examine the association of the genetic risk score of body fat distribution with SHBG levels and insulin resistance in young (14-30 years) Chinese females. In all, 675 young Chinese females were evaluated in the present study. A genetic risk score (GRS) was calculated on the basis of 12 established variants associated with body fat distribution. The main outcome variable was serum SHBG levels and homeostasis model assessment of insulin resistance (HOMA-IR). The GRS of body fat distribution was significantly associated with decreasing serum SHBG levels (P = 0.018), independent of body mass index and WHR. In addition, the GRS and SHBG showed additive effects on HOMA-IR (P = 0.004). The GRS of body fat distribution reflects serum SHBG levels, and the GRS and SHBG jointly influence the risk of insulin resistance. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  17. Persistence of genetic variants of the arctic fox strain of Rabies virus in southern Ontario.

    PubMed

    Nadin-Davis, Susan A; Muldoon, Frances; Wandeler, Alexander I

    2006-01-01

    Genetic-variant analysis of rabies viruses provides the most sensitive epidemiologic tool for following the spread and persistence of these viruses in their wildlife hosts. Since its introduction by a southern epizootic movement that began in the far north, the arctic fox (AFX) strain of Rabies virus has been enzootic in Ontario for almost 50 y. Prior genetic studies identified 4 principal genetic variants (ONT.T1 to ONT.T4) that were localized to different regions of the province; furthermore, these viruses could be distinguished from the variant circulating in northern regions of Quebec, Newfoundland, and arctic zones, ARC.T5. Despite an intensive provincial control program undertaken over the last decade that involved aerial distribution of baits laden with rabies vaccine to combat fox rabies throughout the enzootic zone of Ontario, pockets of rabies activity persist. Re-evaluation of the genetic characteristics of the viral variants circulating in these areas of persistence has been undertaken. These data demonstrate that the recent outbreaks are, with 1 exception, due to persistence of the regional variant first identified in the area in the early 1990s. In contrast, the disease in the Georgian Bay area is a consequence of the incursion of a variant previously found further south. An outbreak that occurred in northern Ontario north and west of North Bay and in the neighboring border areas of Quebec in 2000-2001 was due to renewed incursion of the ARC.T5 variant from more northerly areas.

  18. Involvement of genetic variants associated with primary open-angle glaucoma in pathogenic mechanisms and family history of glaucoma.

    PubMed

    Mabuchi, Fumihiko; Sakurada, Yoichi; Kashiwagi, Kenji; Yamagata, Zentaro; Iijima, Hiroyuki; Tsukahara, Shigeo

    2015-03-01

    To investigate the associations between the non-intraocular pressure (IOP)-related genetic variants (genetic variants associated with vulnerability of the optic nerve independent of IOP) and primary open-angle glaucoma (POAG), including normal-tension glaucoma (NTG) and high-tension glaucoma (HTG), and between the non-IOP-related genetic variants and a family history of glaucoma. Case-control study. Japanese patients with NTG (n = 213) and HTG (n = 212) and 191 control subjects were genotyped for 5 non-IOP-related genetic variants predisposing to POAG near the SRBD1, ELOVL5, CDKN2B/CDKN2B-AS1, SIX1/SIX6, and ATOH7 genes. The load of these genetic variants was compared between the control subjects and patients with NTG or HTG and between the POAG patients with and without a family history of glaucoma. The total number of POAG risk alleles and the product of the odds ratios (POAG risk) of these genetic variants were significantly larger (P < .0025) in patients with both NTG and HTG than in the control subjects, and were significantly larger (P = .0042 and P = .023, respectively) in POAG patients with a family history of glaucoma than in those without. As the number of relatives with glaucoma increased, the total number of risk alleles and the product of the odds ratios increased (P = .012 and P = .047, respectively). Non-IOP-related genetic variants contribute to the pathogenesis of HTG as well as NTG. A positive family history of glaucoma in cases of POAG is thought to reflect the influence of genetic variants predisposing to POAG. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Incidental and clinically actionable genetic variants in 1005 whole exomes and genomes from Qatar.

    PubMed

    Jain, Abhinav; Gandhi, Shrey; Koshy, Remya; Scaria, Vinod

    2018-03-20

    Incidental findings in genomic data have been studied in great detail in the recent years, especially from population-scale data sets. However, little is known about the frequency of such findings in ethnic groups, specifically the Middle East, which were not previously covered in global sequencing studies. The availability of whole exome and genome data sets for a highly consanguineous Arab population from Qatar motivated us to explore the incidental findings in this population-scale data. The sequence data of 1005 Qatari individuals were systematically analyzed for incidental genetic variants in the 59 genes suggested by the American College of Medical Genetics and Genomics. We identified four genetic variants which were pathogenic or likely pathogenic. These variants occurred in six individuals, suggesting a frequency of 0.59% in the population, much lesser than that previously reported from European and African populations. Our analysis identified a variant in RYR1 gene associated with Malignant Hyperthermia that has significantly higher frequency in the population compared to global frequencies. Evaluation of the allele frequencies of these variants suggested enrichment in sub-populations, especially in individuals of Sub-Saharan African ancestry. The present study thereby provides the information on pathogenicity and frequency, which could aid in genomic medicine. To the best of our knowledge, this is the first comprehensive analysis of incidental genetic findings in any Arab population and suggests ethnic differences in incidental findings.

  20. Obesity is associated with genetic variants that alter dopamine availability.

    PubMed

    Need, A C; Ahmadi, K R; Spector, T D; Goldstein, D B

    2006-05-01

    Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI > or = 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:chi2= 15.45, p = 0.004; MAOB:chi2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the 'at risk genotype'--low activity genotypes at both the MAOA and MAOB loci--shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets.

  1. Genetic variants of the unsaturated fatty acid receptor GPR120 relating to obesity in dogs

    PubMed Central

    MIYABE, Masahiro; GIN, Azusa; ONOZAWA, Eri; DAIMON, Mana; YAMADA, Hana; ODA, Hitomi; MORI, Akihiro; MOMOTA, Yutaka; AZAKAMI, Daigo; YAMAMOTO, Ichiro; MOCHIZUKI, Mariko; SAKO, Toshinori; TAMURA, Katsutoshi; ISHIOKA, Katsumi

    2015-01-01

    G protein-coupled receptor (GPR) 120 is an unsaturated fatty acid receptor, which is associated with various physiological functions. It is reported that the genetic variant of GPR120, p.Arg270His, is detected more in obese people, and this genetic variation functionally relates to obesity in humans. Obesity is a common nutritional disorder also in dogs, but the genetic factors have not ever been identified in dogs. In this study, we investigated the molecular structure of canine GPR120 and searched for candidate genetic variants which may relate to obesity in dogs. Canine GPR120 was highly homologous to those of other species, and seven transmembrane domains and two N-glycosylation sites were conserved. GPR120 mRNA was expressed in lung, jejunum, ileum, colon, hypothalamus, hippocampus, spinal cord, bone marrow, dermis and white adipose tissues in dogs, as those in mice and humans. Genetic variants of GPR120 were explored in client-owned 141 dogs, resulting in that 5 synonymous and 4 non-synonymous variants were found. The variant c.595C>A (p.Pro199Thr) was found in 40 dogs, and the gene frequency was significantly higher in dogs with higher body condition scores, i.e. 0.320 in BCS4–5 dogs, 0.175 in BCS3 dogs and 0.000 in BCS2 dogs. We conclude that c.595C>A (p.Pro199Thr) is a candidate variant relating to obesity, which may be helpful for nutritional management of dogs. PMID:25960032

  2. Genetic variants of the unsaturated fatty acid receptor GPR120 relating to obesity in dogs.

    PubMed

    Miyabe, Masahiro; Gin, Azusa; Onozawa, Eri; Daimon, Mana; Yamada, Hana; Oda, Hitomi; Mori, Akihiro; Momota, Yutaka; Azakami, Daigo; Yamamoto, Ichiro; Mochizuki, Mariko; Sako, Toshinori; Tamura, Katsutoshi; Ishioka, Katsumi

    2015-10-01

    G protein-coupled receptor (GPR) 120 is an unsaturated fatty acid receptor, which is associated with various physiological functions. It is reported that the genetic variant of GPR120, p.Arg270His, is detected more in obese people, and this genetic variation functionally relates to obesity in humans. Obesity is a common nutritional disorder also in dogs, but the genetic factors have not ever been identified in dogs. In this study, we investigated the molecular structure of canine GPR120 and searched for candidate genetic variants which may relate to obesity in dogs. Canine GPR120 was highly homologous to those of other species, and seven transmembrane domains and two N-glycosylation sites were conserved. GPR120 mRNA was expressed in lung, jejunum, ileum, colon, hypothalamus, hippocampus, spinal cord, bone marrow, dermis and white adipose tissues in dogs, as those in mice and humans. Genetic variants of GPR120 were explored in client-owned 141 dogs, resulting in that 5 synonymous and 4 non-synonymous variants were found. The variant c.595C>A (p.Pro199Thr) was found in 40 dogs, and the gene frequency was significantly higher in dogs with higher body condition scores, i.e. 0.320 in BCS4-5 dogs, 0.175 in BCS3 dogs and 0.000 in BCS2 dogs. We conclude that c.595C>A (p.Pro199Thr) is a candidate variant relating to obesity, which may be helpful for nutritional management of dogs.

  3. Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease

    PubMed Central

    Chen, Haoyan; Hayashi, Genki; Lai, Olivia Y.; Dilthey, Alexander; Kuebler, Peter J.; Wong, Tami V.; Martin, Maureen P.; Fernandez Vina, Marcelo A.; McVean, Gil; Wabl, Matthias; Leslie, Kieron S.; Maurer, Toby; Martin, Jeffrey N.; Deeks, Steven G.; Carrington, Mary; Bowcock, Anne M.; Nixon, Douglas F.; Liao, Wilson

    2012-01-01

    An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis. PMID:22577363

  4. Persistence of genetic variants of the arctic fox strain of Rabies virus in southern Ontario

    PubMed Central

    2006-01-01

    Abstract Genetic-variant analysis of rabies viruses provides the most sensitive epidemiologic tool for following the spread and persistence of these viruses in their wildlife hosts. Since its introduction by a southern epizootic movement that began in the far north, the arctic fox (AFX) strain of Rabies virus has been enzootic in Ontario for almost 50 y. Prior genetic studies identified 4 principal genetic variants (ONT.T1 to ONT.T4) that were localized to different regions of the province; furthermore, these viruses could be distinguished from the variant circulating in northern regions of Quebec, Newfoundland, and arctic zones, ARC.T5. Despite an intensive provincial control program undertaken over the last decade that involved aerial distribution of baits laden with rabies vaccine to combat fox rabies throughout the enzootic zone of Ontario, pockets of rabies activity persist. Re-evaluation of the genetic characteristics of the viral variants circulating in these areas of persistence has been undertaken. These data demonstrate that the recent outbreaks are, with 1 exception, due to persistence of the regional variant first identified in the area in the early 1990s. In contrast, the disease in the Georgian Bay area is a consequence of the incursion of a variant previously found further south. An outbreak that occurred in northern Ontario north and west of North Bay and in the neighboring border areas of Quebec in 2000–2001 was due to renewed incursion of the ARC.T5 variant from more northerly areas. PMID:16548327

  5. Common Gene Variants Account for Most Genetic Risk for Autism

    MedlinePlus

    ... gene variants account for most genetic risk for autism Roles of heritability, mutations, environment estimated – NIH-funded study. The bulk of risk, or liability, for autism spectrum disorders (ASD) was traced to inherited variations ...

  6. Human Papillomavirus Type 6 and 11 Genetic Variants Found in 71 Oral and Anogenital Epithelial Samples from Australia

    PubMed Central

    Danielewski, Jennifer A.; Garland, Suzanne M.; McCloskey, Jenny; Hillman, Richard J.; Tabrizi, Sepehr N.

    2013-01-01

    Genetic variation of 49 human papillomavirus (HPV) 6 and 22 HPV11 isolates from recurrent respiratory papillomatosis (RRP) (n = 17), genital warts (n = 43), anal cancer (n = 6) and cervical neoplasia cells (n = 5), was determined by sequencing the long control region (LCR) and the E6 and E7 genes. Comparative analysis of genetic variability was examined to determine whether different disease states resulting from HPV6 or HPV11 infection cluster into distinct variant groups. Sequence variation analysis of HPV6 revealed that isolates cluster into variants within previously described HPV6 lineages, with the majority (65%) clustering to HPV6 sublineage B1 across the three genomic regions examined. Overall 72 HPV6 and 25 HPV11 single nucleotide variations, insertions and deletions were observed within samples examined. In addition, missense alterations were observed in the E6/E7 genes for 6 HPV6 and 5 HPV11 variants. No nucleotide variations were identified in any isolates at the four E2 binding sites for HPV6 or HPV11, nor were any isolates found to be identical to the HPV6 lineage A or HPV11 sublineage A1 reference genomes. Overall, a high degree of sequence conservation was observed between isolates across each of the regions investigated for both HPV6 and HPV11. Genetic variants identified a slight association with HPV6 and anogenital lesions (p = 0.04). This study provides important information on the genetic diversity of circulating HPV 6 and HPV11 variants within the Australian population and supports the observation that the majority of HPV6 isolates cluster to the HPV6 sublineage B1 with anogenital lesions demonstrating an association with this sublineage (p = 0.02). Comparative analysis of Australian isolates for both HPV6 and HPV11 to those from other geographical regions based on the LCR revealed a high degree of sequence similarity throughout the world, confirming previous observations that there are no geographically specific

  7. Genetic risk variants in the CDKN2A/B, RTEL1 and EGFR genes are associated with somatic biomarkers in glioma.

    PubMed

    Ghasimi, Soma; Wibom, Carl; Dahlin, Anna M; Brännström, Thomas; Golovleva, Irina; Andersson, Ulrika; Melin, Beatrice

    2016-05-01

    During the last years, genome wide association studies have discovered common germline genetic variants associated with specific glioma subtypes. We aimed to study the association between these germline risk variants and tumor phenotypes, including copy number aberrations and protein expression. A total of 91 glioma patients were included. Thirteen well known genetic risk variants in TERT, EGFR, CCDC26, CDKN2A, CDKN2B, PHLDB1, TP53, and RTEL1 were selected for investigation of possible correlations with the glioma somatic markers: EGFR amplification, 1p/19q codeletion and protein expression of p53, Ki-67, and mutated IDH1. The CDKN2A/B risk variant, rs4977756, and the CDKN2B risk variant, rs1412829 were inversely associated (p = 0.049 and p = 0.002, respectively) with absence of a mutated IDH1, i.e., the majority of patients homozygous for the risk allele showed no or low expression of mutated IDH1. The RTEL1 risk variant, rs6010620 was associated (p = 0.013) with not having 1p/19q codeletion, i.e., the majority of patients homozygous for the risk allele did not show 1p/19q codeletion. In addition, the EGFR risk variant rs17172430 and the CDKN2B risk variant rs1412829, both showed a trend for association (p = 0.055 and p = 0.051, respectively) with increased EGFR copy number, i.e., the majority of patients homozygote for the risk alleles showed chromosomal gain or amplification of EGFR. Our findings indicate that CDKN2A/B risk genotypes are associated with primary glioblastoma without IDH mutation, and that there is an inverse association between RTEL1 risk genotypes and 1p/19q codeletion, suggesting that these genetic variants have a molecular impact on the genesis of high graded brain tumors. Further experimental studies are needed to delineate the functional mechanism of the association between genotype and somatic genetic aberrations.

  8. Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies.

    PubMed

    Sekula, Peggy; Li, Yong; Stanescu, Horia C; Wuttke, Matthias; Ekici, Arif B; Bockenhauer, Detlef; Walz, Gerd; Powis, Stephen H; Kielstein, Jan T; Brenchley, Paul; Eckardt, Kai-Uwe; Kronenberg, Florian; Kleta, Robert; Köttgen, Anna

    2017-02-01

    Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Previous genome-wide association studies (GWAS) of 300 000 genotyped variants identified MN-associated loci at HLA-DQA1 and PLA2R1. We used a combined approach of genotype imputation, GWAS, human leucocyte antigen (HLA) imputation and extension to other aetiologies of chronic kidney disease (CKD) to investigate genetic MN risk variants more comprehensively. GWAS using 9 million high-quality imputed genotypes and classical HLA alleles were conducted for 323 MN European-ancestry cases and 345 controls. Additionally, 4960 patients with different CKD aetiologies in the German Chronic Kidney Disease (GCKD) study were genotyped for risk variants at HLA-DQA1 and PLA2R1. In GWAS, lead variants in known loci [rs9272729, HLA-DQA1, odds ratio (OR) = 7.3 per risk allele, P = 5.9 × 10 -27 and rs17830558, PLA2R1, OR = 2.2, P = 1.9 × 10 -8 ] were significantly associated with MN. No novel signals emerged in GWAS of X-chromosomal variants or in sex-specific analyses. Classical HLA alleles (DRB1*0301-DQA1*0501-DQB1*0201 haplotype) were associated with MN but provided little additional information beyond rs9272729. Associations were replicated in 137 GCKD patients with MN (HLA-DQA1: P = 6.4 × 10 -24 ; PLA2R1: P = 5.0 × 10 -4 ). MN risk increased steeply for patients with high-risk genotype combinations (OR > 79). While genetic variation in PLA2R1 exclusively associated with MN across 19 CKD aetiologies, the HLA-DQA1 risk allele was also associated with lupus nephritis (P = 2.8 × 10 -6 ), type 1 diabetic nephropathy (P = 6.9 × 10 -5 ) and focal segmental glomerulosclerosis (P = 5.1 × 10 -5 ), but not with immunoglobulin A nephropathy. PLA2R1 and HLA-DQA1 are the predominant risk loci for MN detected by GWAS. While HLA-DQA1 risk variants show an association with other CKD aetiologies, PLA2R1 variants are specific to MN. © The Author 2016. Published by Oxford University Press on behalf of ERA

  9. Genetic association of marbling score with intragenic nucleotide variants at selection signals of the bovine genome.

    PubMed

    Ryu, J; Lee, C

    2016-04-01

    Selection signals of Korean cattle might be attributed largely to artificial selection for meat quality. Rapidly increased intragenic markers of newly annotated genes in the bovine genome would help overcome limited findings of genetic markers associated with meat quality at the selection signals in a previous study. The present study examined genetic associations of marbling score (MS) with intragenic nucleotide variants at selection signals of Korean cattle. A total of 39 092 nucleotide variants of 407 Korean cattle were utilized in the association analysis. A total of 129 variants were selected within newly annotated genes in the bovine genome. Their genetic associations were analyzed using the mixed model with random polygenic effects based on identical-by-state genetic relationships among animals in order to control for spurious associations produced by population structure. Genetic associations of MS were found (P<3.88×10-4) with six intragenic nucleotide variants on bovine autosomes 3 (cache domain containing 1, CACHD1), 5 (like-glycosyltransferase, LARGE), 16 (cell division cycle 42 binding protein kinase alpha, CDC42BPA) and 21 (snurportin 1, SNUPN; protein tyrosine phosphatase, non-receptor type 9, PTPN9; chondroitin sulfate proteoglycan 4, CSPG4). In particular, the genetic associations with CDC42BPA and LARGE were confirmed using an independent data set of Korean cattle. The results implied that allele frequencies of functional variants and their proximity variants have been augmented by directional selection for greater MS and remain selection signals in the bovine genome. Further studies of fine mapping would be useful to incorporate favorable alleles in marker-assisted selection for MS of Korean cattle.

  10. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses

    PubMed Central

    Derringer, Jaime; Gratten, Jacob; Lee, James J; Liu, Jimmy Z; de Vlaming, Ronald; Ahluwalia, Tarunveer S; Buchwald, Jadwiga; Cavadino, Alana; Frazier-Wood, Alexis C; Davies, Gail; Furlotte, Nicholas A; Garfield, Victoria; Geisel, Marie Henrike; Gonzalez, Juan R; Haitjema, Saskia; Karlsson, Robert; van der Laan, Sander W; Ladwig, Karl-Heinz; Lahti, Jari; van der Lee, Sven J; Miller, Michael B; Lind, Penelope A; Liu, Tian; Matteson, Lindsay; Mihailov, Evelin; Minica, Camelia C; Nolte, Ilja M; Mook-Kanamori, Dennis O; van der Most, Peter J; Oldmeadow, Christopher; Qian, Yong; Raitakari, Olli; Rawal, Rajesh; Realo, Anu; Rueedi, Rico; Schmidt, Börge; Smith, Albert V; Stergiakouli, Evie; Tanaka, Toshiko; Taylor, Kent; Thorleifsson, Gudmar; Wedenoja, Juho; Wellmann, Juergen; Westra, Harm-Jan; Willems, Sara M; Zhao, Wei; Amin, Najaf; Bakshi, Andrew; Bergmann, Sven; Bjornsdottir, Gyda; Boyle, Patricia A; Cherney, Samantha; Cox, Simon R; Davis, Oliver S P; Ding, Jun; Direk, Nese; Eibich, Peter; Emeny, Rebecca T; Fatemifar, Ghazaleh; Faul, Jessica D; Ferrucci, Luigi; Forstner, Andreas J; Gieger, Christian; Gupta, Richa; Harris, Tamara B; Harris, Juliette M; Holliday, Elizabeth G; Hottenga, Jouke-Jan; De Jager, Philip L; Kaakinen, Marika A; Kajantie, Eero; Karhunen, Ville; Kolcic, Ivana; Kumari, Meena; Launer, Lenore J; Franke, Lude; Li-Gao, Ruifang; Liewald, David C; Koini, Marisa; Loukola, Anu; Marques-Vidal, Pedro; Montgomery, Grant W; Mosing, Miriam A; Paternoster, Lavinia; Pattie, Alison; Petrovic, Katja E; Pulkki-Råback, Laura; Quaye, Lydia; Räikkönen, Katri; Rudan, Igor; Scott, Rodney J; Smith, Jennifer A; Sutin, Angelina R; Trzaskowski, Maciej; Vinkhuyzen, Anna E; Yu, Lei; Zabaneh, Delilah; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Boomsma, Dorret I; Snieder, Harold; Chang, Shun-Chiao; Cucca, Francesco; Deary, Ian J; van Duijn, Cornelia M; Eriksson, Johan G; Bültmann, Ute; de Geus, Eco J C; Groenen, Patrick J F; Gudnason, Vilmundur; Hansen, Torben; Hartman, Catharine A; Haworth, Claire M A; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Hyppönen, Elina; Iacono, William G; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Keltikangas-Järvinen, Liisa; Kraft, Peter; Kubzansky, Laura D; Lehtimäki, Terho; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Mills, Melinda; de Mutsert, Renée; Oldehinkel, Albertine J; Pasterkamp, Gerard; Pedersen, Nancy L; Plomin, Robert; Polasek, Ozren; Power, Christine; Rich, Stephen S; Rosendaal, Frits R; den Ruijter, Hester M; Schlessinger, David; Schmidt, Helena; Svento, Rauli; Schmidt, Reinhold; Alizadeh, Behrooz Z; Sørensen, Thorkild I A; Spector, Tim D; Starr, John M; Stefansson, Kari; Steptoe, Andrew; Terracciano, Antonio; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Uitterlinden, André G; Vollenweider, Peter; Wagner, Gert G; Weir, David R; Yang, Jian; Conley, Dalton C; Smith, George Davey; Hofman, Albert; Johannesson, Magnus; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Pickrell, Joseph K; Esko, Tõnu; Krueger, Robert F; Beauchamp, Jonathan P; Koellinger, Philipp D; Benjamin, Daniel J; Bartels, Meike; Cesarini, David

    2016-01-01

    We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association. PMID:27089181

  11. Statistical tests for detecting associations with groups of genetic variants: generalization, evaluation, and implementation

    PubMed Central

    Ferguson, John; Wheeler, William; Fu, YiPing; Prokunina-Olsson, Ludmila; Zhao, Hongyu; Sampson, Joshua

    2013-01-01

    With recent advances in sequencing, genotyping arrays, and imputation, GWAS now aim to identify associations with rare and uncommon genetic variants. Here, we describe and evaluate a class of statistics, generalized score statistics (GSS), that can test for an association between a group of genetic variants and a phenotype. GSS are a simple weighted sum of single-variant statistics and their cross-products. We show that the majority of statistics currently used to detect associations with rare variants are equivalent to choosing a specific set of weights within this framework. We then evaluate the power of various weighting schemes as a function of variant characteristics, such as MAF, the proportion associated with the phenotype, and the direction of effect. Ultimately, we find that two classical tests are robust and powerful, but details are provided as to when other GSS may perform favorably. The software package CRaVe is available at our website (http://dceg.cancer.gov/bb/tools/crave). PMID:23092956

  12. Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants

    PubMed Central

    Menon, Ramkumar; Pearce, Brad; Velez, Digna R; Merialdi, Mario; Williams, Scott M; Fortunato, Stephen J; Thorsen, Poul

    2009-01-01

    Objective To study pathophysiologic pathways in spontaneous preterm birth and possibly the racial disparity associating with maternal and fetal genetic variations, using bioinformatics tools. Methods A large scale candidate gene association study was performed on 1442 SNPs in 130 genes in a case (preterm birth < 36 weeks) control study (term birth > 37 weeks). Both maternal and fetal DNA from Caucasians (172 cases and 198 controls) and 279 African-Americans (82 cases and 197 controls) were used. A single locus association (genotypic) analysis followed by hierarchical clustering was performed, where clustering was based on p values for significant associations within each race. Using Ingenuity Pathway Analysis (IPA) software, known pathophysiologic pathways in both races were determined. Results From all SNPs entered into the analysis, the IPA mapped genes to specific disease functions. Gene variants in Caucasians were implicated in disease functions shared with other known disorders; specifically, dermatopathy, inflammation, and hematological disorders. This may reflect abnormal cervical ripening and decidual hemorrhage. In African-Americans inflammatory pathways were the most prevalent. In Caucasians, maternal gene variants showed the most prominent role in disease functions, whereas in African Americans it was fetal variants. The IPA software was used to generate molecular interaction maps that differed between races and also between maternal and fetal genetic variants. Conclusion Differences at the genetic level revealed distinct disease functions and operational pathways in African Americans and Caucasians in spontaneous preterm birth. Differences in maternal and fetal contributions in pregnancy outcome are also different between African Americans and Caucasians. These results present a set of explicit testable hypotheses regarding genetic associations with preterm birth in African Americans and Caucasians PMID:19527514

  13. Interleukin-10 family cytokines pathway: genetic variants and psoriasis.

    PubMed

    Galimova, E; Rätsep, R; Traks, T; Kingo, K; Escott-Price, V; Kõks, S

    2017-06-01

    Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20 and IL-24 have been implicated in autoimmune diseases and we have previously reported that genetic variants in the IL10 gene cluster were associated with psoriasis. To analyse the relationship between genetic polymorphisms in the IL10 gene cluster and psoriasis. This study also explores whether there are gene-gene interactions among these genetic polymorphisms. A total of 377 patients with psoriasis and 403 matched healthy controls were enrolled to carry out a case-control study for 48 single-nucleotide polymorphisms (SNPs) of the IL10 gene cluster. Genotyping for the SNPs was conducted on the Applied Biosystems 3730 DNA Analyzer using SNPlex ® technology. Generalized multifactor dimensionality reduction (GMDR) analysis was applied to discover a likely gene-gene interaction model among the SNPs. The results showed that the allele distributions of IL10 gene cluster SNPs are significantly different between the case and control groups. Carriers of the IL10 T allele (rs1554286) and the IL20 T allele (rs1400986) conferred protection from psoriasis [odds ratio (OR) = 0·63, corrected P-value (Pc) = 0·007; OR = 0·62, Pc = 0·038, respectively]. GMDR analysis displayed a significant gene-gene interaction between IL10 (rs1554286) and IL20 (rs1518108) variants. The strongest protective effect was found with the block 1 haplotype ACATA in the IL10 gene (Pc = 0·004). This study presents a novel finding that the combination of the two SNPs, IL10 (rs1554286) and IL20 (rs1518108), is associated with a reduced risk of psoriasis. Our results indicate that genetic variants of the immunomodulatory IL10 and IL20 genes may offer a protective effect in Europeans from Russia. Independent studies are required to verify the results and find a possible functional explanation. © 2017 British Association of Dermatologists.

  14. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    PubMed Central

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry TC; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Bo, Roberto Del; Comi, Giacomo P; D’Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc’h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H

    2017-01-01

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk. PMID:27455348

  15. Allele-Specific Methylation Occurs at Genetic Variants Associated with Complex Disease

    PubMed Central

    Hutchinson, John N.; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T.; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results. PMID:24911414

  16. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population.

    PubMed

    Kang, Ho-Jin; Song, Im-Sook; Shin, Ho Jung; Kim, Woo-Young; Lee, Choong-Hee; Shim, Joo-Cheol; Zhou, Hong-Hao; Lee, Sang Seop; Shin, Jae-Gook

    2007-04-01

    Genetic variants of three human organic cation transporter genes (hOCTs) were extensively explored in a Korean population. The functional changes of hOCT2 variants were evaluated in vitro, and those genetic polymorphisms of hOCTs were compared among different ethnic populations. From direct DNA sequencing, 7 of 13 coding variants were nonsynonymous single-nucleotide polymorphisms (SNPs), including four variants from hOCT1 (F160L, P283L, P341L, and M408V) and three from hOCT2 (T199I, T201M, and A270S), whereas 6 were synonymous SNPs. The linkage disequilibrium analysis presented for three independent LD blocks for each hOCT gene showed no significant linkage among all three hOCT genes. The transporter activities of MDCK cells that overexpress the hOCT2-T199I, -T201M, and -A270S variants showed significantly decreased uptake of [(3)H]methyl-4-phenylpyridinium acetate (MPP(+)) or [(14)C]tetraethylammonium compared with those cells that overexpress wild-type hOCT2, and the estimated kinetic parameters of these variants for [(3)H]MPP(+) uptake in oocytes showed a 2- to 5-fold increase in K(m) values and a 10- to 20-fold decrease in V(max) values. The allele frequencies of the five functional variants hOCT1-P283L, -P341L, and hOCT2-T199I, -T201M, and -A270S were 1.3, 17, 0.7, 0.7, and 11%, respectively, in a Korean population; the frequency distributions of these variants were not significantly different from those of Chinese and Vietnamese populations. These findings suggest that genetic variants of hOCTs are not linked among three genes in a Korean population, and several of the hOCT genetic variants cause decreased transport activity in vitro compared with the wild type, although the clinical relevance of these variants remains to be evaluated.

  17. Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework.

    PubMed

    Glusman, Gustavo; Rose, Peter W; Prlić, Andreas; Dougherty, Jennifer; Duarte, José M; Hoffman, Andrew S; Barton, Geoffrey J; Bendixen, Emøke; Bergquist, Timothy; Bock, Christian; Brunk, Elizabeth; Buljan, Marija; Burley, Stephen K; Cai, Binghuang; Carter, Hannah; Gao, JianJiong; Godzik, Adam; Heuer, Michael; Hicks, Michael; Hrabe, Thomas; Karchin, Rachel; Leman, Julia Koehler; Lane, Lydie; Masica, David L; Mooney, Sean D; Moult, John; Omenn, Gilbert S; Pearl, Frances; Pejaver, Vikas; Reynolds, Sheila M; Rokem, Ariel; Schwede, Torsten; Song, Sicheng; Tilgner, Hagen; Valasatava, Yana; Zhang, Yang; Deutsch, Eric W

    2017-12-18

    The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.

  18. The role of ST2 and ST2 genetic variants in schistosomiasis.

    PubMed

    Long, Xin; Daya, Michelle; Zhao, Jianping; Rafaels, Nicholas; Liang, Huifang; Potee, Joseph; Campbell, Monica; Zhang, Bixiang; Araujo, Maria Ilma; Oliveira, Ricardo R; Mathias, Rasika A; Gao, Li; Ruczinski, Ingo; Georas, Steve N; Vercelli, Donata; Beaty, Terri H; Barnes, Kathleen C; Chen, Xiaoping; Chen, Qian

    2017-11-01

    Chronic schistosomiasis and its severe complication, periportal fibrosis, are characterized by a predominant T h 2 response. To date, specific single nucleotide polymorphisms in ST2 have been some of the most consistently associated genetic variants for asthma. We investigated the role of ST2 (a receptor for the T h 2 cytokine IL-33) in chronic and late-stage schistosomiasis caused by Schistosoma japonicum and the potential effect of ST2 genetic variants on stage of disease and ST2 expression. We recruited 947 adult participants (339 with end-stage schistosomiasis and liver cirrhosis, 307 with chronic infections without liver fibrosis, and 301 health controls) from a S japonicum-endemic area (Hubei, China). Six ST2 single nucleotide polymorphisms were genotyped. Serum soluble ST2 (sST2) was measured by ELISA, and ST2 expression in normal liver tissues, Hepatitis B virus-induced fibrotic liver tissues, and S japonicum-induced fibrotic liver tissues was measured by immunohistochemistry. We found sST2 levels were significantly higher in the end-stage group (36.04 [95% CI, 33.85-38.37]) compared with chronic cases and controls (22.7 [95% CI, 22.0-23.4], P < 1E-10). In addition, S japonicum-induced fibrotic liver tissues showed increased ST2 staining compared with normal liver tissues (P = .0001). Markers rs12712135, rs1420101, and rs6543119 were strongly associated with sST2 levels (P = 2E-10, 5E-05, and 6E-05, respectively), and these results were replicated in an independent cohort from Brazil living in a S mansoni endemic region. We demonstrate for the first time that end-stage schistosomiasis is associated with elevated sST2 levels and show that ST2 genetic variants are associated with sST2 levels in patients with schistosomiasis. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women.

    PubMed

    Liao, Shunyao; Liu, Yunqiang; Chen, Xiaojuan; Tan, Yuande; Mei, Jie; Song, Wenzhong; Gan, Lu; Wang, Hailian; Yin, Shi; Dong, Xianjue; Chi, Shu; Deng, Shaoping

    2015-11-01

    We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis. © The Author(s) 2015.

  20. Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records.

    PubMed

    Van Driest, Sara L; Wells, Quinn S; Stallings, Sarah; Bush, William S; Gordon, Adam; Nickerson, Deborah A; Kim, Jerry H; Crosslin, David R; Jarvik, Gail P; Carrell, David S; Ralston, James D; Larson, Eric B; Bielinski, Suzette J; Olson, Janet E; Ye, Zi; Kullo, Iftikhar J; Abul-Husn, Noura S; Scott, Stuart A; Bottinger, Erwin; Almoguera, Berta; Connolly, John; Chiavacci, Rosetta; Hakonarson, Hakon; Rasmussen-Torvik, Laura J; Pan, Vivian; Persell, Stephen D; Smith, Maureen; Chisholm, Rex L; Kitchner, Terrie E; He, Max M; Brilliant, Murray H; Wallace, John R; Doheny, Kimberly F; Shoemaker, M Benjamin; Li, Rongling; Manolio, Teri A; Callis, Thomas E; Macaya, Daniela; Williams, Marc S; Carey, David; Kapplinger, Jamie D; Ackerman, Michael J; Ritchie, Marylyn D; Denny, Joshua C; Roden, Dan M

    2016-01-05

    %; P = .35). In the 1270 (63%) with ECGs, corrected QT intervals were not different in variant carriers vs those without (median, 429 vs 439 milliseconds; difference, -10 milliseconds; 95% CI, -16 to +3 milliseconds; P = .17). After manual review, 22 of 63 participants (35%) with designated variants had any ECG or arrhythmia phenotype, and only 2 had corrected QT interval longer than 500 milliseconds. Among laboratories experienced in genetic testing for cardiac arrhythmia disorders, there was low concordance in designating SCN5A and KCNH2 variants as pathogenic. In an unselected population, the putatively pathogenic genetic variants were not associated with an abnormal phenotype. These findings raise questions about the implications of notifying patients of incidental genetic findings.

  1. Lack of association between arterial stiffness and genetic variants by genome-wide association scan.

    PubMed

    Park, Sungha; Lee, Ji-Young; Kim, Byeong-Keuk; Lee, Sang-Hak; Chang, Hyuk-Jae; Choi, DongHoon; Jang, Yangsoo

    2015-01-01

    Arterial stiffness is an independent predictor of cardiovascular disease risk. However, whether genetic risk variants are associated with arterial stiffness measures, such as pulse-wave velocity (PWV), is largely unknown. Therefore, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) associated with PWV in a Korea population. Study participants consisted of 402 patients in the Yonsei cardiovascular genome center cohort. Arterial stiffness was measured as brachial-ankle pulse-wave velocity (baPWV). Genotyping was performed in 402 subjects with the Axiom Genome-Wide ASI 1 Array Plate containing more than 600,000 SNP markers. The findings were tested for replication in independent subjects from a community-based cohort of 1206 individuals, using a Taqman assay to include two candidate SNPs. Associations with PWV were evaluated using an additive genetic model that included age, gender, systolic blood pressure and diastolic blood pressure as covariates. GWAS and replication analyses were conducted using the measured genotype method implemented in PLINK and SAS. We observed two candidate SNPs associated with baPWV in GWAS: rs7271920 (p = 7.15 × 10(-9)) and rs10125157 (p = 8.25 × 10(-7)). However, neither of these was significant in the replication cohort. In summary, we did not identify any common genetic variants associated with baPWV in cardiovascular patients.

  2. Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke: The NHLBI Exome Sequence Project.

    PubMed

    Auer, Paul L; Nalls, Mike; Meschia, James F; Worrall, Bradford B; Longstreth, W T; Seshadri, Sudha; Kooperberg, Charles; Burger, Kathleen M; Carlson, Christopher S; Carty, Cara L; Chen, Wei-Min; Cupples, L Adrienne; DeStefano, Anita L; Fornage, Myriam; Hardy, John; Hsu, Li; Jackson, Rebecca D; Jarvik, Gail P; Kim, Daniel S; Lakshminarayan, Kamakshi; Lange, Leslie A; Manichaikul, Ani; Quinlan, Aaron R; Singleton, Andrew B; Thornton, Timothy A; Nickerson, Deborah A; Peters, Ulrike; Rich, Stephen S

    2015-07-01

    subtype and in African Americans. Replication of protein-coding variants in candidate genes was observed for 2 previously reported GWAS associations: ZFHX3 (cardioembolic stroke) and ABCA1 (large-vessel stroke). Exome sequencing discovered 2 novel genes and mechanisms, PDE4DIP and ACOT4, associated with increased risk for ischemic stroke. In addition, ZFHX3 and ABCA1 were discovered to have protein-coding variants associated with ischemic stroke. These results suggest that genetic variation in novel pathways contributes to ischemic stroke risk and serves as a target for prediction, prevention, and therapy.

  3. Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding

    PubMed Central

    Verweij, Karin J.H.; Yang, Jian; Lahti, Jari; Veijola, Juha; Hintsanen, Mirka; Pulkki-Råback, Laura; Heinonen, Kati; Pouta, Anneli; Pesonen, Anu-Katriina; Widen, Elisabeth; Taanila, Anja; Isohanni, Matti; Miettunen, Jouko; Palotie, Aarno; Penke, Lars; Service, Susan K.; Heath, Andrew C.; Montgomery, Grant W.; Raitakari, Olli; Kähönen, Mika; Viikari, Jorma; Räikkönen, Katri; Eriksson, Johan G; Keltikangas-Järvinen, Liisa; Lehtimäki, Terho; Martin, Nicholas G.; Järvelin, Marjo-Riitta; Visscher, Peter M.; Keller, Matthew C.; Zietsch, Brendan P.

    2012-01-01

    Personality traits are basic dimensions of behavioural variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly-growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide SNP data from >8,000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially-desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance. PMID:23025612

  4. CDKL5 variants

    PubMed Central

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  5. Genetic profile for five common variants associated with age-related macular degeneration in densely affected families: a novel analytic approach

    PubMed Central

    Sobrin, Lucia; Maller, Julian B; Neale, Benjamin M; Reynolds, Robyn C; Fagerness, Jesen A; Daly, Mark J; Seddon, Johanna M

    2010-01-01

    About 40% of the genetic variance of age-related macular degeneration (AMD) can be explained by a common variation at five common single-nucleotide polymorphisms (SNPs). We evaluated the degree to which these known variants explain the clustering of AMD in a group of densely affected families. We sought to determine whether the actual number of risk alleles at the five variants in densely affected families matched the expected number. Using data from 322 families with AMD, we used a simulation strategy to generate comparison groups of families and determined whether their genetic profile at the known AMD risk loci differed from the observed genetic profile, given the density of disease observed. Overall, the genotypic loads for the five SNPs in the families did not deviate significantly from the genotypic loads predicted by the simulation. However, for a subset of densely affected families, the mean genotypic load in the families was significantly lower than the expected load determined from the simulation. Given that these densely affected families may harbor rare, more penetrant variants for AMD, linkage analyses and resequencing targeting these families may be an effective approach to finding additional implicated genes. PMID:19844262

  6. Genetic Risk Variants for Social Anxiety

    PubMed Central

    Stein, Murray B.; Chen, Chia-Yen; Jain, Sonia; Jensen, Kevin P.; He, Feng; Heeringa, Steven G.; Kessler, Ronald C.; Maihofer, Adam; Nock, Matthew K.; Ripke, Stephan; Sun, Xiaoying; Thomas, Michael L.; Ursano, Robert J.; Smoller, Jordan W.; Gelernter, Joel

    2017-01-01

    Social anxiety is a neurobehavioral trait characterized by fear and reticence in social situations. Twin studies have shown that social anxiety has a heritable basis, shared with neuroticism and extraversion, but genetic studies have yet to demonstrate robust risk variants. We conducted genomewide association analysis (GWAS) of subjects within the Army Study To Assess Risk and Resilience in Service members (Army STARRS) to (1) determine SNP-based heritability of social anxiety; (2) discern genetic risk loci for social anxiety; and (3) determine shared genetic risk with neuroticism and extraversion. GWAS were conducted within ancestral groups (EUR, AFR, LAT) using linear regression models for each of the 3 component studies in Army STARRS, and then meta-analyzed across studies. SNP-based heritability for social anxiety was significant (h2g=0.12, p=2.17×10-4 in EUR). One meta-analytically genomewide significant locus was seen in each of EUR (rs708012, Chr 6: BP 36965970, p = 1.55×10-8; beta = 0.073) and AFR (rs78924501, Chr 1: BP 88406905, p = 3.58×10-8; beta = 0.265) samples. Social anxiety in Army STARRS was significantly genetically correlated (negatively) with extraversion (rg = -0.52, se = 0.22, p = 0.02) but not with neuroticism (rg = 0.05, se = 0.22, p = 0.81) or with an anxiety disorder factor score (rg = 0.02, se = 0.32, p = 0.94) from external GWAS meta-analyses. This first GWAS of social anxiety confirms a genetic basis for social anxiety, shared with extraversion but possibly less so with neuroticism. PMID:28224735

  7. Do Genetic Susceptibility Variants Associate with Disease Severity in Early Active Rheumatoid Arthritis?

    PubMed

    Scott, Ian C; Rijsdijk, Frühling; Walker, Jemma; Quist, Jelmar; Spain, Sarah L; Tan, Rachael; Steer, Sophia; Okada, Yukinori; Raychaudhuri, Soumya; Cope, Andrew P; Lewis, Cathryn M

    2015-07-01

    Genetic variants affect both the development and severity of rheumatoid arthritis (RA). Recent studies have expanded the number of RA susceptibility variants. We tested the hypothesis that these associated with disease severity in a clinical trial cohort of patients with early, active RA. We evaluated 524 patients with RA enrolled in the Combination Anti-Rheumatic Drugs in Early RA (CARDERA) trials. We tested validated susceptibility variants - 69 single-nucleotide polymorphisms (SNP), 15 HLA-DRB1 alleles, and amino acid polymorphisms in 6 HLA molecule positions - for their associations with progression in Larsen scoring, 28-joint Disease Activity Scores, and Health Assessment Questionnaire (HAQ) scores over 2 years using linear mixed-effects and latent growth curve models. HLA variants were associated with joint destruction. The *04:01 SNP (rs660895, p = 0.0003), *04:01 allele (p = 0.0002), and HLA-DRβ1 amino acids histidine at position 13 (p = 0.0005) and valine at position 11 (p = 0.0012) significantly associated with radiological progression. This association was only significant in anticitrullinated protein antibody (ACPA)-positive patients, suggesting that while their effects were not mediated by ACPA, they only predicted joint damage in ACPA-positive RA. Non-HLA variants did not associate with radiograph damage (assessed individually and cumulatively as a weighted genetic risk score). Two SNP - rs11889341 (STAT4, p = 0.0001) and rs653178 (SH2B3-PTPN11, p = 0.0004) - associated with HAQ scores over 6-24 months. HLA susceptibility variants play an important role in determining radiological progression in early, active ACPA-positive RA. Genome-wide and HLA-wide analyses across large populations are required to better characterize the genetic architecture of radiological progression in RA.

  8. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals.

    PubMed

    Lin, Yu-Cheng; Chang, Pi-Feng; Chang, Mei-Hwei; Ni, Yen-Hsuan

    2014-04-01

    A genome-wide association study identified variants in or near patatin-like phospholipase domain-containing-3 (PNPLA3), neurocan (NCAN), lysophospholipase-like 1 (LYPLAL1), glucokinase regulatory protein (GCKR), and protein phosphatase 1 regulatory subunit 3b (PPP1R3B) that were strongly associated with nonalcoholic fatty liver disease (NAFLD) in adults of European ancestry. We examined these genetic variants in obese children and tested whether their effects on NAFLD are significant in the Taiwanese Han Chinese population. We genotyped PNPLA3 rs738409, NCAN rs2228603, LYPLAL1 rs12137855, GCKR rs780094, and PPP1R3B rs4240624 in 797 obese children aged 7-18 y. NAFLD was identified by liver ultrasonography. We analyzed the effect of these genetic variants on NAFLD. NAFLD was identified in 24% of the recruited obese children. We found significant associations with NAFLD at variants in PNPLA3 and GCKR but not in NCAN, LYPLAL1, and PPP1R3B. Multiple logistic regression analysis showed that, after control for the effects of age- and sex-adjusted body mass index, waist-to-hip ratio, sex, and PNPLA3 rs738409 polymorphism, the variant GCKR rs780094 TT genotype independently increased the OR of NAFLD by 1.997 (95% CI: 1.196, 3.335; P = 0.008) compared with the CC genotype. Subjects with the variant GCKR rs780094 TT genotype had a higher mean serum alanine aminotransferase concentration than did those with the CC genotype (30.8 ± 34.7 compared with 22.2 ± 18.6 IU/L; P = 0.01). By studying the genetic variants of obese Taiwanese children, we confirmed that the genetic variants in GCKR rs780094 and PNPLA3 rs738409, but not in NCAN rs2228603, LYPLAL1 rs12137855, and PPP1R3B rs4240624, are associated with an increased risk of NAFLD. GCKR and PNPLA3 variants are the common genetic factors that may confer susceptibility to NAFLD in obese individuals across multiple ethnic groups.

  9. Genetic variants linked to education predict longevity

    PubMed Central

    Marioni, Riccardo E.; Ritchie, Stuart J.; Joshi, Peter K.; Hagenaars, Saskia P.; Fischer, Krista; Adams, Mark J.; Hill, W. David; Davies, Gail; Nagy, Reka; Amador, Carmen; Läll, Kristi; Metspalu, Andres; Liewald, David C.; Wilson, James F.; Hayward, Caroline; Esko, Tõnu; Porteous, David J.; Gale, Catharine R.; Deary, Ian J.

    2016-01-01

    Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∼17,000; UK Biobank, n = ∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members’ polygenic profile score for education to predict their parents’ longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∼2.7% lower mortality risk for both mothers (total ndeaths = 79,702) and ∼2.4% lower risk for fathers (total ndeaths = 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity. PMID:27799538

  10. Genetic variants linked to education predict longevity.

    PubMed

    Marioni, Riccardo E; Ritchie, Stuart J; Joshi, Peter K; Hagenaars, Saskia P; Okbay, Aysu; Fischer, Krista; Adams, Mark J; Hill, W David; Davies, Gail; Nagy, Reka; Amador, Carmen; Läll, Kristi; Metspalu, Andres; Liewald, David C; Campbell, Archie; Wilson, James F; Hayward, Caroline; Esko, Tõnu; Porteous, David J; Gale, Catharine R; Deary, Ian J

    2016-11-22

    Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∼17,000; UK Biobank, n = ∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members' polygenic profile score for education to predict their parents' longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∼2.7% lower mortality risk for both mothers (total n deaths = 79,702) and ∼2.4% lower risk for fathers (total n deaths = 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity.

  11. Genetic Variants from Lipid-Related Pathways and Risk for Incident Myocardial Infarction

    PubMed Central

    Song, Ci; Pedersen, Nancy L.; Reynolds, Chandra A.; Sabater-Lleal, Maria; Kanoni, Stavroula; Willenborg, Christina; Syvänen, Ann-Christine; Watkins, Hugh; Hamsten, Anders; Prince, Jonathan A.; Ingelsson, Erik

    2013-01-01

    Background Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI). Objectives We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples. Setting and Subjects Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142). Results In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048). Conclusions rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI. PMID:23555974

  12. Novel Genetic Variants in BAG3 and TNNT2 in a Swedish Family with a History of Dilated Cardiomyopathy and Sudden Cardiac Death.

    PubMed

    Fernlund, Eva; Österberg, A Wålinder; Kuchinskaya, E; Gustafsson, M; Jansson, K; Gunnarsson, C

    2017-08-01

    Familial dilated cardiomyopathy is a rare cause of dilated cardiomyopathy (DCM), especially in childhood. Our aim was to describe the clinical course and the genetic variants in a family where the proband was a four-month-old infant presenting with respiratory problems due to DCM. In the family, there was a strong family history of DCM and sudden cardiac death in four generations. DNA was analyzed initially from the deceased girl using next-generation sequencing including 50 genes involved in cardiomyopathy. A cascade family screening was performed in the family after identification of the TNNT2 and the BAG3 variants in the proband. The first-degree relatives underwent clinical examination including biochemistry panel, cardiac ultrasound, Holter ECG, exercise stress test, and targeted genetic testing. The index patient presented with advanced DCM. After a severe clinical course, the baby had external left ventricular assist as a bridge to heart transplantation. 1.5 months after transplantation, the baby suffered sudden cardiac death (SCD) despite maximal treatment in the pediatric intensive care unit. The patient was shown to carry two heterozygous genetic variants in the TNNT2 gene [TNNT2 c.518G>A(p.Arg173Gln)] and BAG3 [BAG3 c.785C>T(p.Ala262Val)]. Two of the screened individuals (two females) appeared to carry both the familial variants. All the individuals carrying the TNNT2 variant presented with DCM, the two adult patients had mild or moderate symptoms of heart failure and reported palpitations but no syncope or presyncopal attacks prior to the genetic diagnosis. The female carriers of TNNT2 and BAG3 variants had more advanced DCM. In the family history, there were three additional cases of SCD due to DCM, diagnosed by autopsy, but no genetic analysis was possible in these cases. Our findings suggest that the variants in TNNT2 and BAG3 are associated with a high propensity to life-threatening cardiomyopathy presenting from childhood and young adulthood.

  13. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children.

    PubMed

    Visscher, H; Ross, C J D; Rassekh, S R; Sandor, G S S; Caron, H N; van Dalen, E C; Kremer, L C; van der Pal, H J; Rogers, P C; Rieder, M J; Carleton, B C; Hayden, M R

    2013-08-01

    The use of anthracyclines as effective antineoplastic drugs is limited by the occurrence of cardiotoxicity. Multiple genetic variants predictive of anthracycline-induced cardiotoxicity (ACT) in children were recently identified. The current study was aimed to assess replication of these findings in an independent cohort of children. . Twenty-three variants were tested for association with ACT in an independent cohort of 218 patients. Predictive models including genetic and clinical risk factors were constructed in the original cohort and assessed in the current replication cohort. . We confirmed the association of rs17863783 in UGT1A6 and ACT in the replication cohort (P = 0.0062, odds ratio (OR) 7.98). Additional evidence for association of rs7853758 (P = 0.058, OR 0.46) and rs885004 (P = 0.058, OR 0.42) in SLC28A3 was found (combined P = 1.6 × 10(-5) and P = 3.0 × 10(-5), respectively). A previously constructed prediction model did not significantly improve risk prediction in the replication cohort over clinical factors alone. However, an improved prediction model constructed using replicated genetic variants as well as clinical factors discriminated significantly better between cases and controls than clinical factors alone in both original (AUC 0.77 vs. 0.68, P = 0.0031) and replication cohort (AUC 0.77 vs. 0.69, P = 0.060). . We validated genetic variants in two genes predictive of ACT in an independent cohort. A prediction model combining replicated genetic variants as well as clinical risk factors might be able to identify high- and low-risk patients who could benefit from alternative treatment options. Copyright © 2013 Wiley Periodicals, Inc.

  14. New genetic variants of LATS1 detected in urinary bladder and colon cancer.

    PubMed

    Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania

    2014-01-01

    LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.

  15. MAOA Variants and Genetic Susceptibility to Major Psychiatric Disorders.

    PubMed

    Liu, Zichao; Huang, Liang; Luo, Xiong-Jian; Wu, Lichuan; Li, Ming

    2016-09-01

    Monoamine oxidase A (MAOA) is a mitochondrial enzyme involved in the metabolism of several biological amines such as dopamine, norepinephrine, and serotonin, which are important neurochemicals in the pathogenesis of major psychiatric illnesses. MAOA is regarded as a functional plausible susceptibility gene for psychiatric disorders, whereas previous hypothesis-driven association studies obtained controversial results, a reflection of small sample size, genetic heterogeneity, or true negative associations. In addition, MAOA is not analyzed in most of genome-wide association studies (GWAS) on psychiatric disorders, since it is located on Chromosome Xp11.3. Therefore, the effects of MAOA variants on genetic predisposition to psychiatric disorders remain obscure. To fill this gap, we collected psychiatric phenotypic (schizophrenia, bipolar disorder, and major depressive disorder) and genetic data in up to 18,824 individuals from diverse ethnic groups. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (OR) and 95 % confidence intervals (CI). We identified a synonymous SNP rs1137070 showing significant associations with major depressive disorder (p = 0.00067, OR = 1.263 for T allele) and schizophrenia (p = 0.0039, OR = 1.225 for T allele) as well as a broad spectrum of psychiatric phenotype (p = 0.000066, OR = 1.218 for T allele) in both males and females. The effect size was similar between different ethnic populations and different gender groups. Collectively, we confirmed that MAOA is a risk gene for psychiatric disorders, and our results provide useful information toward a better understanding of genetic mechanism involving MAOA underlying risk of complex psychiatric disorders.

  16. Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome.

    PubMed

    Braun, Daniela A; Warejko, Jillian K; Ashraf, Shazia; Tan, Weizhen; Daga, Ankana; Schneider, Ronen; Hermle, Tobias; Jobst-Schwan, Tilman; Widmeier, Eugen; Majmundar, Amar J; Nakayama, Makiko; Schapiro, David; Rao, Jia; Schmidt, Johanna Magdalena; Hoogstraten, Charlotte A; Hugo, Hannah; Bakkaloglu, Sevcan A; Kari, Jameela A; El Desoky, Sherif; Daouk, Ghaleb; Mane, Shrikant; Lifton, Richard P; Shril, Shirlee; Hildebrandt, Friedhelm

    2018-03-09

    Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.

  17. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    NASA Astrophysics Data System (ADS)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  18. Association of Genetic Variants with Isolated Fasting Hyperglycaemia and Isolated Postprandial Hyperglycaemia in a Han Chinese Population

    PubMed Central

    Chen, Ying; Chen, Li; Zhao, Zhigang; Li, Qiang; Ge, Jiapu; Chen, Gang; Guo, Xiaohui; Lu, Juming; Weng, Jianping; Jia, Weiping; Ji, Linong; Xiao, Jianzhong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Zhou, Zhiguang; Shan, Guangliang; Yang, Wenying

    2013-01-01

    Background Though multiple single nucleotide polymorphisms (SNPs) associated with type 2 diabetes have been identified, the genetic bases of isolated fasting hyperglycaemia (IFH) and isolated postprandial hyperglycaemia (IPH) were still unclear. In present study, we aimed to investigate the association of genome-wide association study-validated genetic variants and IFH or IPH in Han Chinese. Methods/Principal Findings We genotyped 27 validated SNPs in 6,663 unrelated individuals comprising 341 IFH, 865 IPH, 1,203 combined fasting hyperglycaemia and postprandial hyperglycaemia, and 4,254 normal glycaemic subjects of Han ancestry. The distributions of genotype frequencies of FTO, CDKAL1 and GCKR were significant different between individuals with IFH and those with IPH (SNP(ptrend): rs8050136(0.0024), rs9939609(0.0049), rs7756992(0.0122), rs780094(0.0037)). Risk allele of FTO specifically increased the risk of IFH (rs8050136: OR 1.403 [95% CI 1.125–1.750], p = 0.0027; rs9939609: 1.398 [1.120–1.744], p = 0.0030). G allele of CDKAL1 specifically increased the risk of IPH (1.217 [1.092–1.355], p = 0.0004). G allele of GCKR increased the risk of IFH (1.167 [0.999–1.362], p = 0.0513), but decreased the risk of IPH (0.891 [0.801–0.991], p = 0.0331). In addition, TCF7L2 and KCNQ1 increased the risk of both IFH and IPH. When combined, each additional risk allele associated with IFH increased the risk for IFH by 1.246-fold (p<0.0001), while each additional risk allele associated with IPH increased the risk for IPH by 1.190-fold (p<0.0001). Conclusion/Significance Our results indicate that genotype distributions of variants from FTO, GCKR, CDKAL1 were different between IPH and IFH in Han Chinese. Variants of genes modulating insulin sensitivity (FTO, GCKR) contributed to the risk of IFH, while variants of genes related to beta cell function (CDKAL1) increase the risk of IPH. PMID:23990951

  19. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors.

    PubMed

    Lockridge, Oksana; Norgren, Robert B; Johnson, Rudolph C; Blake, Thomas A

    2016-09-19

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides.

  20. A genetic variant of the NTCP gene is associated with HBV infection status in a Chinese population.

    PubMed

    Yang, Jingmin; Yang, Yuan; Xia, Mingying; Wang, Lianghui; Zhou, Weiping; Yang, Yajun; Jiang, Yueming; Wang, Hongyang; Qian, Ji; Jin, Li; Wang, Xiaofeng

    2016-03-12

    To investigate whether genetic variants of the HBV receptor gene NTCP are associated with HBV infection in the Han Chinese population. We sequenced the entire 23 kb NTCP gene from 111 HBeAg-positive HBsAg carriers (PSE group), 110 HBeAg-negative HBsAg carriers (PS group), and 110 control subjects. Then, we performed association analyses of suggestively significant SNPs with HBV infection in 1075 controls, 1936 PSs and 639 PSEs. In total, 109 rare variants (74 novel) and 38 single nucleotide polymorphisms (SNPs, one novel) were screened. Of the seven non-synonymous rare variants, six were singletons and one was a double hit. All three damaging rare singletons presented exclusively in the PSE group. Of the five SNPs validated in all 3650 subjects, the T allele of rs4646287 was significantly decreased (p = 0.002) in the PS group (10.1%) and PSE group (8.1%) compared to the controls (10.9%) and was decreased to 7.4% in the PSE hepatocellular carcinoma (HCC) subgroup. Additionally, rs4646287-T was associated with a 0.68-fold (95% CI = 0.51-0.89, p = 0.006) decreased risk of PSE compared with the controls. The NTCP mRNA level was lower in HCC tissues in "CT + TT" carriers than in "CC" carriers. We found a genetic variant (rs4646287) located in intron 1 of NTCP that may be associated with increased risk of HBV infection in Han Chinese.

  1. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  2. Association of genetic variants in RAB23 and ANXA11 with uveitis in sarcoidosis

    PubMed Central

    Davoudi, Samaneh; Chang, Victoria S.; Navarro-Gomez, Daniel; Stanwyck, Lynn K.; Sevgi, Damla Duriye; Papavasileiou, Evangelia; Ren, Aiai; Uchiyama, Eduardo; Sullivan, Lynn; Lobo, Ann-Marie; Papaliodis, George N.

    2018-01-01

    Purpose Uveitis occurs in a subset of patients with sarcoidosis. The purpose of this study was to determine whether genetic variants that have been associated previously with overall sarcoidosis are associated with increased risk of developing uveitis. Methods Seventy-seven subjects were enrolled, including 45 patients diagnosed with sarcoidosis-related uveitis as cases and 32 patients with systemic sarcoidosis without ocular involvement as controls. Thirty-eight single nucleotide polymorphisms (SNPs) previously associated with sarcoidosis, sarcoidosis severity, or other organ-specific sarcoidosis involvement were identified. Allele frequencies in ocular sarcoidosis cases versus controls were compared using the chi-square test, and p values were corrected for multiple hypotheses testing using permutation. All analyses were conducted with PLINK. Results SNPs rs1040461 and rs61860052, in ras-related protein RAS23 (RAB23) and annexin A11 (ANXA11) genes, respectively, were associated with sarcoidosis-associated uveitis. The T allele of rs1040461 and the A allele of rs61860052 were found to be more prevalent in ocular sarcoidosis cases. These associations remained after correction for the multiple hypotheses tested (p=0.01 and p=0.02). In a subanalysis of Caucasian Americans only, two additional variants within the major histocompatibility complex (MHC) genes on chromosome 6, in HLA-DRB5 and HLA-DRB1, were associated with uveitis as well (p=0.009 and p=0.04). Conclusions Genetic variants in RAB23 and ANXA11 genes were associated with an increased risk of sarcoidosis-associated uveitis. These loci have previously been associated with overall sarcoidosis risk. PMID:29416296

  3. Proteomic analysis of hair shafts from monozygotic twins: Expression profiles and genetically variant peptides.

    PubMed

    Wu, Pei-Wen; Mason, Katelyn E; Durbin-Johnson, Blythe P; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Parker, Glendon J; Rice, Robert H

    2017-07-01

    Forensic association of hair shaft evidence with individuals is currently assessed by comparing mitochondrial DNA haplotypes of reference and casework samples, primarily for exclusionary purposes. Present work tests and validates more recent proteomic approaches to extract quantitative transcriptional and genetic information from hair samples of monozygotic twin pairs, which would be predicted to partition away from unrelated individuals if the datasets contain identifying information. Protein expression profiles and polymorphic, genetically variant hair peptides were generated from ten pairs of monozygotic twins. Profiling using the protein tryptic digests revealed that samples from identical twins had typically an order of magnitude fewer protein expression differences than unrelated individuals. The data did not indicate that the degree of difference within twin pairs increased with age. In parallel, data from the digests were used to detect genetically variant peptides that result from common nonsynonymous single nucleotide polymorphisms in genes expressed in the hair follicle. Compilation of the variants permitted sorting of the samples by hierarchical clustering, permitting accurate matching of twin pairs. The results demonstrate that genetic differences are detectable by proteomic methods and provide a framework for developing quantitative statistical estimates of personal identification that increase the value of hair shaft evidence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions.

    PubMed

    Chung, Wen-Hung; Chang, Wan-Chun; Lee, Yun-Shien; Wu, Ying-Ying; Yang, Chih-Hsun; Ho, Hsin-Chun; Chen, Ming-Jing; Lin, Jing-Yi; Hui, Rosaline Chung-Yee; Ho, Ji-Chen; Wu, Wei-Ming; Chen, Ting-Jui; Wu, Tony; Wu, Yih-Ru; Hsih, Mo-Song; Tu, Po-Hsun; Chang, Chen-Nen; Hsu, Chien-Ning; Wu, Tsu-Lan; Choon, Siew-Eng; Hsu, Chao-Kai; Chen, Der-Yuan; Liu, Chin-San; Lin, Ching-Yuang; Kaniwa, Nahoko; Saito, Yoshiro; Takahashi, Yukitoshi; Nakamura, Ryosuke; Azukizawa, Hiroaki; Shi, Yongyong; Wang, Tzu-Hao; Chuang, Shiow-Shuh; Tsai, Shih-Feng; Chang, Chee-Jen; Chang, Yu-Sun; Hung, Shuen-Iu

    2014-08-06

    -related severe cutaneous adverse reactions was observed in additional samples from Taiwan, Japan, and Malaysia. A meta-analysis using the data from the 3 populations showed an overall odds ratio of 11 (95% CI, 6.2-18; z=8.58; P < .00001) for CYP2C9*3 association with phenytoin-related severe cutaneous adverse reactions. Delayed clearance of plasma phenytoin was detected in patients with severe cutaneous adverse reactions, especially CYP2C9*3 carriers, providing a functional link of the associated variants to the disease. This study identified CYP2C variants, including CYP2C9*3, known to reduce drug clearance, as important genetic factors associated with phenytoin-related severe cutaneous adverse reactions.

  5. Comparing Mammography Abnormality Features and Genetic Variants in the Prediction of Breast Cancer in Women Recommended for Breast Biopsy

    PubMed Central

    Burnside, Elizabeth S.; Liu, Jie; Wu, Yirong; Onitilo, Adedayo A.; McCarty, Catherine; Page, C. David; Peissig, Peggy; Trentham-Dietz, Amy; Kitchner, Terrie; Fan, Jun; Yuan, Ming

    2015-01-01

    Rationale and Objectives The discovery of germline genetic variants associated with breast cancer has engendered interest in risk stratification for improved, targeted detection and diagnosis. However, there has yet to be a comparison of the predictive ability of these genetic variants with mammography abnormality descriptors. Materials and Methods Our IRB-approved, HIPAA-compliant study utilized a personalized medicine registry in which participants consented to provide a DNA sample and participate in longitudinal follow-up. In our retrospective, age-matched, case-controlled study of 373 cases and 395 controls who underwent breast biopsy, we collected risk factors selected a priori based on the literature including: demographic variables based on the Gail model, common germline genetic variants, and diagnostic mammography findings according to BI-RADS. We developed predictive models using logistic regression to determine the predictive ability of: 1) demographic variables, 2) 10 selected genetic variants, or 3) mammography BI-RADS features. We evaluated each model in turn by calculating a risk score for each patient using 10-fold cross validation; used this risk estimate to construct ROC curves; and compared the AUC of each using the DeLong method. Results The performance of the regression model using demographic risk factors was not statistically different from the model using genetic variants (p=0.9). The model using mammography features (AUC = 0.689) was superior to both the demographic model (AUC = .598; p<0.001) and the genetic model (AUC = .601; p<0.001). Conclusion BI-RADS features exceeded the ability of demographic and 10 selected germline genetic variants to predict breast cancer in women recommended for biopsy. PMID:26514439

  6. Functional genetic variant in the Kozak sequence of WW domain-containing oxidoreductase (WWOX) gene is associated with oral cancer risk.

    PubMed

    Cheng, Hsin-Lin; Liu, Yu-Fan; Su, Chun-Wen; Su, Shih-Chi; Chen, Mu-Kuan; Yang, Shun-Fa; Lin, Chiao-Wen

    2016-10-25

    In Taiwan, oral cancer is the fourth leading cancer in males and is associated with exposure to environmental carcinogens. WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, is associated with the development of various cancers. We hypothesized that genetic variants of WWOX influence the susceptibility to oral cancer. Five polymorphisms of WWOX gene from 761 male patients with oral cancer and 1199 male cancer-free individuals were genotyped. We observed that individuals carrying the polymorphic allele of WWOX rs11545028 are more susceptible to oral cancer. Furthermore, patients with advanced-stage oral cancer were associated with a higher frequency of WWOX rs11545028 polymorphisms with the variant genotype TT than did patients with the wild-type gene. An additional integrated in silico analysis confirmed that rs11545028 affects WWOX expression, which significantly correlates with tumor expression and subsequently with tumor development and aggressiveness. In conclusion, genetic variants of WWOX contribute to the occurrence of oral cancer, and the findings regarding these biomarkers provided a prediction model for risk assessment.

  7. [Improvement of laboratory diagnostics of cholera due to genetically altered (hybrid) variants of cholera Vibrio biovar El Tor].

    PubMed

    Savel'eva, I V; Khatsukov, K X; Savel'eva, E I; Moskvitina, S I; Kovalev, D A; Savel'ev, V N; Kulichenko, A N; Antonenko, A D; Babenyshev, B V

    2015-01-01

    Improvement of laboratory diagnostics of cholera taking into the account appearance of hybrid variants of cholera vibrio El Tor biovar in the 1990s. Phenotypic and molecular-genetic properties of typical toxigenic (151 strains) and hybrid (102 strains) variants of El Tor biovar cholera vibrios, isolated in the Caucuses in 1970-1990 and 1993-1998, respectively, were studied. Toxigenicity gene DNA fragments, inherent to El Tor biovars or classic, were detected by using a reagent kit "Genes of Vibrio cholerae variant ctxB-rstR-rstC, REF" developed by us. Reagent kit "Genes of V. cholerae variant ctxB-rstR-rstC, REF" is proposed to be used for laboratory diagnostics of cholera during study of material from humans or environmental objects and for identification of V. cholerae 01 on genome level in PCR-analysis as a necessary addition to the classic scheme of bacteriological analysis. Laboratory diagnostics of cholera due to genetically altered (hybrid) variants of cholera vibrio El Tor biovar is based on a complex study of material from humans and environmental objects by routine bacteriologic and PCR-analysis methods with the aim of detection of gene DNA fragments in the studied material, that determine biovar (classic or El Tor), identification of V. cholerae O1 strains with differentiation of El Tor vibrios into typical and altered, as well as determination of enterotoxin, produced by the specific cholera vibrio strain (by the presence ctxB(El) or ctxB(Cl) gene DNA fragment, coding biosynthesis of CT-2 or CT-1, respectively).

  8. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants.

    PubMed

    Claustres, Mireille; Thèze, Corinne; des Georges, Marie; Baux, David; Girodon, Emmanuelle; Bienvenu, Thierry; Audrezet, Marie-Pierre; Dugueperoux, Ingrid; Férec, Claude; Lalau, Guy; Pagin, Adrien; Kitzis, Alain; Thoreau, Vincent; Gaston, Véronique; Bieth, Eric; Malinge, Marie-Claire; Reboul, Marie-Pierre; Fergelot, Patricia; Lemonnier, Lydie; Mekki, Chadia; Fanen, Pascale; Bergougnoux, Anne; Sasorith, Souphatta; Raynal, Caroline; Bareil, Corinne

    2017-10-01

    Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles. © 2017 Wiley Periodicals, Inc.

  9. Mutation extraction tools can be combined for robust recognition of genetic variants in the literature

    PubMed Central

    Jimeno Yepes, Antonio; Verspoor, Karin

    2014-01-01

    As the cost of genomic sequencing continues to fall, the amount of data being collected and studied for the purpose of understanding the genetic basis of disease is increasing dramatically. Much of the source information relevant to such efforts is available only from unstructured sources such as the scientific literature, and significant resources are expended in manually curating and structuring the information in the literature. As such, there have been a number of systems developed to target automatic extraction of mutations and other genetic variation from the literature using text mining tools. We have performed a broad survey of the existing publicly available tools for extraction of genetic variants from the scientific literature. We consider not just one tool but a number of different tools, individually and in combination, and apply the tools in two scenarios. First, they are compared in an intrinsic evaluation context, where the tools are tested for their ability to identify specific mentions of genetic variants in a corpus of manually annotated papers, the Variome corpus. Second, they are compared in an extrinsic evaluation context based on our previous study of text mining support for curation of the COSMIC and InSiGHT databases. Our results demonstrate that no single tool covers the full range of genetic variants mentioned in the literature. Rather, several tools have complementary coverage and can be used together effectively. In the intrinsic evaluation on the Variome corpus, the combined performance is above 0.95 in F-measure, while in the extrinsic evaluation the combined recall performance is above 0.71 for COSMIC and above 0.62 for InSiGHT, a substantial improvement over the performance of any individual tool. Based on the analysis of these results, we suggest several directions for the improvement of text mining tools for genetic variant extraction from the literature. PMID:25285203

  10. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis.

    PubMed

    Alberts, Rudi; de Vries, Elisabeth M G; Goode, Elizabeth C; Jiang, Xiaojun; Sampaziotis, Fotis; Rombouts, Krista; Böttcher, Katrin; Folseraas, Trine; Weismüller, Tobias J; Mason, Andrew L; Wang, Weiwei; Alexander, Graeme; Alvaro, Domenico; Bergquist, Annika; Björkström, Niklas K; Beuers, Ulrich; Björnsson, Einar; Boberg, Kirsten Muri; Bowlus, Christopher L; Bragazzi, Maria C; Carbone, Marco; Chazouillères, Olivier; Cheung, Angela; Dalekos, Georgios; Eaton, John; Eksteen, Bertus; Ellinghaus, David; Färkkilä, Martti; Festen, Eleonora A M; Floreani, Annarosa; Franceschet, Irene; Gotthardt, Daniel Nils; Hirschfield, Gideon M; Hoek, Bart van; Holm, Kristian; Hohenester, Simon; Hov, Johannes Roksund; Imhann, Floris; Invernizzi, Pietro; Juran, Brian D; Lenzen, Henrike; Lieb, Wolfgang; Liu, Jimmy Z; Marschall, Hanns-Ulrich; Marzioni, Marco; Melum, Espen; Milkiewicz, Piotr; Müller, Tobias; Pares, Albert; Rupp, Christian; Rust, Christian; Sandford, Richard N; Schramm, Christoph; Schreiber, Stefan; Schrumpf, Erik; Silverberg, Mark S; Srivastava, Brijesh; Sterneck, Martina; Teufel, Andreas; Vallier, Ludovic; Verheij, Joanne; Vila, Arnau Vich; Vries, Boudewijn de; Zachou, Kalliopi; Chapman, Roger W; Manns, Michael P; Pinzani, Massimo; Rushbrook, Simon M; Lazaridis, Konstantinos N; Franke, Andre; Anderson, Carl A; Karlsen, Tom H; Ponsioen, Cyriel Y; Weersma, Rinse K

    2017-08-04

    Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10 -9 ). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3 , we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Genetic variants in autism-related CNTNAP2 impair axonal growth of cortical neurons.

    PubMed

    Canali, Giorgia; Garcia, Marta; Hivert, Bruno; Pinatel, Delphine; Goullancourt, Aline; Oguievetskaia, Ksenia; Saint-Martin, Margaux; Girault, Jean-Antoine; Faivre-Sarrailh, Catherine; Goutebroze, Laurence

    2018-06-01

    The CNTNAP2 gene, coding for the cell adhesion glycoprotein Caspr2, is thought to be one of the major susceptibility genes for autism spectrum disorder (ASD). A large number of rare heterozygous missense CNTNAP2 variants have been identified in ASD patients. However, most of them are inherited from an unaffected parent, questioning their clinical significance. In the present study, we evaluate their impact on neurodevelopmental functions of Caspr2 in a heterozygous genetic background. Performing cortical neuron cultures from mouse embryos, we demonstrate that Caspr2 plays a dose-dependent role in axon growth in vitro. Loss of one Cntnap2 allele is sufficient to elicit axonal growth alteration, revealing a situation that may be relevant for CNTNAP2 heterozygosity in ASD patients. Then, we show that the two ASD variants I869T and G731S, which present impaired binding to Contactin2/TAG-1, do not rescue axonal growth deficits. We find that the variant R1119H leading to protein trafficking defects and retention in the endoplasmic reticulum has a dominant-negative effect on heterozygous Cntnap2 cortical neuron axon growth, through oligomerization with wild-type Caspr2. Finally, we identify an additional variant (N407S) with a dominant-negative effect on axon growth although it is well-localized at the membrane and properly binds to Contactin2. Thus, our data identify a new neurodevelopmental function for Caspr2, the dysregulation of which may contribute to clinical manifestations of ASD, and provide evidence that CNTNAP2 heterozygous missense variants may contribute to pathogenicity in ASD, through selective mechanisms.

  12. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  13. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  14. Heritability estimates of the Big Five personality traits based on common genetic variants.

    PubMed

    Power, R A; Pluess, M

    2015-07-14

    According to twin studies, the Big Five personality traits have substantial heritable components explaining 40-60% of the variance, but identification of associated genetic variants has remained elusive. Consequently, knowledge regarding the molecular genetic architecture of personality and to what extent it is shared across the different personality traits is limited. Using genomic-relatedness-matrix residual maximum likelihood analysis (GREML), we here estimated the heritability of the Big Five personality factors (extraversion, agreeableness, conscientiousness, neuroticism and openness for experience) in a sample of 5011 European adults from 527,469 single-nucleotide polymorphisms across the genome. We tested for the heritability of each personality trait, as well as for the genetic overlap between the personality factors. We found significant and substantial heritability estimates for neuroticism (15%, s.e. = 0.08, P = 0.04) and openness (21%, s.e. = 0.08, P < 0.01), but not for extraversion, agreeableness and conscientiousness. The bivariate analyses showed that the variance explained by common variants entirely overlapped between neuroticism and openness (rG = 1.00, P < 0.001), despite low phenotypic correlation (r = - 0.09, P < 0.001), suggesting that the remaining unique heritability may be determined by rare or structural variants. As far as we are aware of, this is the first study estimating the shared and unique heritability of all Big Five personality traits using the GREML approach. Findings should be considered exploratory and suggest that detectable heritability estimates based on common variants is shared between neuroticism and openness to experiences.

  15. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors

    PubMed Central

    2016-01-01

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784

  16. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing

    PubMed Central

    Wang, Yimin; Du, Xiaonan; Bin, Rao; Yu, Shanshan; Xia, Zhezhi; Zheng, Guo; Zhong, Jianmin; Zhang, Yunjian; Jiang, Yong-hui; Wang, Yi

    2017-01-01

    Genetic factors play a major role in the etiology of epilepsy disorders. Recent genomics studies using next generation sequencing (NGS) technique have identified a large number of genetic variants including copy number (CNV) and single nucleotide variant (SNV) in a small set of genes from individuals with epilepsy. These discoveries have contributed significantly to evaluate the etiology of epilepsy in clinic and lay the foundation to develop molecular specific treatment. However, the molecular basis for a majority of epilepsy patients remains elusive, and furthermore, most of these studies have been conducted in Caucasian children. Here we conducted a targeted exome-sequencing of 63 trios of Chinese epilepsy families using a custom-designed NGS panel that covers 412 known and candidate genes for epilepsy. We identified pathogenic and likely pathogenic variants in 15 of 63 (23.8%) families in known epilepsy genes including SCN1A, CDKL5, STXBP1, CHD2, SCN3A, SCN9A, TSC2, MBD5, POLG and EFHC1. More importantly, we identified likely pathologic variants in several novel candidate genes such as GABRE, MYH1, and CLCN6. Our results provide the evidence supporting the application of custom-designed NGS panel in clinic and indicate a conserved genetic susceptibility for epilepsy between Chinese and Caucasian children. PMID:28074849

  17. Genetic variants in endotoxin signalling pathway, domestic endotoxin exposure and asthma exacerbations.

    PubMed

    Kljaic-Bukvic, Blazenka; Blekic, Mario; Aberle, Neda; Curtin, John A; Hankinson, Jenny; Semic-Jusufagic, Aida; Belgrave, Danielle; Simpson, Angela; Custovic, Adnan

    2014-10-01

    We investigated the interaction between genetic variants in endotoxin signalling pathway and domestic endotoxin exposure in relation to asthma presence, and amongst children with asthma, we explored the association of these genetic variants and endotoxin exposure with hospital admissions due to asthma exacerbations. In a case-control study, we analysed data from 824 children (417 asthmatics, 407 controls; age 5-18 yr). Amongst asthmatics, we extracted data on hospitalization for asthma exacerbation from medical records. Endotoxin exposure was measured in dust samples collected from homes. We included 26 single-nucleotide polymorphisms (SNPs) in the final analysis (5 CD14, 7LY96 and 14 TLR4). Two variants remained significantly associated with hospital admissions with asthma exacerbations after correction for multiple testing: for CD14 SNP rs5744455, carriers of T allele had decreased risk of repeated hospital admissions compared with homozygotes for C allele [OR (95% CI), 0.42 (0.25-0.88), p = 0.01, False Discovery Rate (FDR) p = 0.02]; for LY96 SNP rs17226566, C-allele carriers were at a lower risk of hospital admissions compared with T-allele homozygotes [0.59 (0.38-0.90), p = 0.01, FDR p = 0.04]. We observed two interactions between SNPs in CD14 and LY96 with environmental endotoxin exposure in relation to hospital admissions due to asthma exacerbation which remained significant after correction for multiple testing (CD14 SNPs rs2915863 and LY96 SNP rs17226566). Amongst children with asthma, genetic variants in CD14 and LY96 may increase the risk of hospital admissions with acute exacerbations. Polymorphisms in endotoxin pathway interact with domestic endotoxin exposure in further modification of the risk of hospitalization. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  19. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  20. al mena: a comprehensive resource of human genetic variants integrating genomes and exomes from Arab, Middle Eastern and North African populations.

    PubMed

    Koshy, Remya; Ranawat, Anop; Scaria, Vinod

    2017-10-01

    Middle East and North Africa (MENA) encompass very unique populations, with a rich history and encompasses characteristic ethnic, linguistic and genetic diversity. The genetic diversity of MENA region has been largely unknown. The recent availability of whole-exome and whole-genome sequences from the region has made it possible to collect population-specific allele frequencies. The integration of data sets from this region would provide insights into the landscape of genetic variants in this region. We integrated genetic variants from multiple data sets systematically, available from this region to create a compendium of over 26 million genetic variations. The variants were systematically annotated and their allele frequencies in the data sets were computed and available as a web interface which enables quick query. As a proof of principle for application of the compendium for genetic epidemiology, we analyzed the allele frequencies for variants in transglutaminase 1 (TGM1) gene, associated with autosomal recessive lamellar ichthyosis. Our analysis revealed that the carrier frequency of selected variants differed widely with significant interethnic differences. To the best of our knowledge, al mena is the first and most comprehensive repertoire of genetic variations from the Arab, Middle Eastern and North African region. We hope al mena would accelerate Precision Medicine in the region.

  1. Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants

    PubMed Central

    Panoutsopoulou, Kalliope; Hatzikotoulas, Konstantinos; Xifara, Dionysia Kiara; Colonna, Vincenza; Farmaki, Aliki-Eleni; Ritchie, Graham R. S.; Southam, Lorraine; Gilly, Arthur; Tachmazidou, Ioanna; Fatumo, Segun; Matchan, Angela; Rayner, Nigel W.; Ntalla, Ioanna; Mezzavilla, Massimo; Chen, Yuan; Kiagiadaki, Chrysoula; Zengini, Eleni; Mamakou, Vasiliki; Athanasiadis, Antonis; Giannakopoulou, Margarita; Kariakli, Vassiliki-Eirini; Nsubuga, Rebecca N.; Karabarinde, Alex; Sandhu, Manjinder; McVean, Gil; Tyler-Smith, Chris; Tsafantakis, Emmanouil; Karaleftheri, Maria; Xue, Yali; Dedoussis, George; Zeggini, Eleftheria

    2014-01-01

    Isolated populations are emerging as a powerful study design in the search for low-frequency and rare variant associations with complex phenotypes. Here we genotype 2,296 samples from two isolated Greek populations, the Pomak villages (HELIC-Pomak) in the North of Greece and the Mylopotamos villages (HELIC-MANOLIS) in Crete. We compare their genomic characteristics to the general Greek population and establish them as genetic isolates. In the MANOLIS cohort, we observe an enrichment of missense variants among the variants that have drifted up in frequency by more than fivefold. In the Pomak cohort, we find novel associations at variants on chr11p15.4 showing large allele frequency increases (from 0.2% in the general Greek population to 4.6% in the isolate) with haematological traits, for example, with mean corpuscular volume (rs7116019, P=2.3 × 10−26). We replicate this association in a second set of Pomak samples (combined P=2.0 × 10−36). We demonstrate significant power gains in detecting medical trait associations. PMID:25373335

  2. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol).

    PubMed

    Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea

    2017-07-13

    Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta

  3. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    PubMed

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  4. Lack of validation of genetic variants associated with anti-tumor necrosis factor therapy response in rheumatoid arthritis: a genome-wide association study replication and meta-analysis.

    PubMed

    Márquez, Ana; Ferreiro-Iglesias, Aida; Dávila-Fajardo, Cristina L; Montes, Ariana; Pascual-Salcedo, Dora; Perez-Pampin, Eva; Moreno-Ramos, Manuel J; García-Portales, Rosa; Navarro, Federico; Moreira, Virginia; Magro, César; Caliz, Rafael; Ferrer, Miguel Angel; Alegre-Sancho, Juan José; Joven, Beatriz; Carreira, Patricia; Balsa, Alejandro; Vasilopoulos, Yiannis; Sarafidou, Theologia; Cabeza-Barrera, José; Narvaez, Javier; Raya, Enrique; Cañete, Juan D; Fernández-Nebro, Antonio; Ordóñez, María del Carmen; de la Serna, Arturo R; Magallares, Berta; Gomez-Reino, Juan J; González, Antonio; Martín, Javier

    2014-03-11

    In this study, our aim was to elucidate the role of four polymorphisms identified in a prior large genome-wide association study (GWAS) in which the investigators analyzed the responses of patients with rheumatoid arthritis (RA) to treatment with tumor necrosis factor inhibitors (TNFi). The authors of that study reported that the four genetic variants were significantly associated. However, none of the associations reached GWAS significance, and two subsequent studies failed to replicate these associations. The four polymorphisms (rs12081765, rs1532269, rs17301249 and rs7305646) were genotyped in a total of 634 TNFi-treated RA patients of Spanish Caucasian origin. Four outcomes were evaluated: changes in the Disease Activity Score in 28 joints (DAS28) after 6 and 12 months of treatment and classification according to the European League Against Rheumatism (EULAR) response criteria at the same time points. Association with DAS28 changes was assessed by linear regression using an additive genetic model. Contingency tables of genotype and allele frequencies between EULAR responder and nonresponder patients were compared. In addition, we combined our data with those of previously reported studies in a meta-analysis including 2,998 RA patients. None of the four genetic variants showed an association with response to TNFi in any of the four outcomes analyzed in our Spanish patients. In addition, only rs1532269 yielded a suggestive association (P = 0.0033) with the response to TNFi when available data from previous studies were combined in the meta-analysis. Our data suggest that the rs12081765, rs1532269, rs17301249 and rs7305646 genetic variants do not have a role as genetic predictors of TNFi treatment outcomes.

  5. Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes.

    PubMed

    Saxena, R; Welt, C K

    2013-06-01

    Polycystic ovary syndrome (PCOS) is a disorder of irregular menses, hyperandrogenism and/or polycystic ovary morphology. A large proportion of women with PCOS also exhibit insulin resistance, β-cell dysfunction, impaired glucose tolerance and/or type 2 diabetes (T2D). We therefore hypothesized that genetic variants that predispose to risk of T2D also result in risk of PCOS. Variants robustly associated with T2D in candidate gene or genome-wide association studies (GWAS; n = 56 SNPs from 33 loci) were genotyped in women of European ancestry with PCOS (n = 525) and controls (n = 472), aged 18-45 years. Metabolic, reproductive and anthropomorphic data were examined as a function of the T2D variants. All genetic association analyses were adjusted for age, BMI and ancestry and were reported after correction for multiple testing. There was a nominal association between variants in KCNJ11 and risk of PCOS. However, a risk score of 33 independent T2D-associated variants from GWAS was not significantly associated with PCOS. T2D variants were associated with PCOS phenotype parameters including those in THADA and WFS1 with testosterone levels, ENPP/PC1 with triglyceride levels, FTO with glucose levels and KCNJ11 with FSH levels. Diabetes risk variants are not important risk variants for PCOS.

  6. Genetic architecture and balancing selection: the life and death of differentiated variants.

    PubMed

    Llaurens, Violaine; Whibley, Annabel; Joron, Mathieu

    2017-05-01

    Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems. © 2017 John Wiley & Sons Ltd.

  7. Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.

    PubMed

    Lohoff, F W; Hodge, R; Narasimhan, S; Nall, A; Ferraro, T N; Mickey, B J; Heitzeg, M M; Langenecker, S A; Zubieta, J-K; Bogdan, R; Nikolova, Y S; Drabant, E; Hariri, A R; Bevilacqua, L; Goldman, D; Doyle, G A

    2014-01-01

    Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.

  8. An Evaluation of Factors Associated With Pathogenic PRSS1, SPINK1, CTFR, and/or CTRC Genetic Variants in Patients With Idiopathic Pancreatitis.

    PubMed

    Jalaly, Niloofar Y; Moran, Robert A; Fargahi, Farshid; Khashab, Mouen A; Kamal, Ayesha; Lennon, Anne Marie; Walsh, Christi; Makary, Martin A; Whitcomb, David C; Yadav, Dhiraj; Cebotaru, Liudmila; Singh, Vikesh K

    2017-08-01

    We evaluated factors associated with pathogenic genetic variants in patients with idiopathic pancreatitis. Genetic testing (PRSS1, CFTR, SPINK1, and CTRC) was performed in all eligible patients with idiopathic pancreatitis between 2010 to 2015. Patients were classified into the following groups based on a review of medical records: (1) acute recurrent idiopathic pancreatitis (ARIP) with or without underlying chronic pancreatitis; (2) idiopathic chronic pancreatitis (ICP) without a history of ARP; (3) an unexplained first episode of acute pancreatitis (AP)<35 years of age; and (4) family history of pancreatitis. Logistic regression analysis was used to determine the factors associated with pathogenic genetic variants. Among 197 ARIP and/or ICP patients evaluated from 2010 to 2015, 134 underwent genetic testing. A total of 88 pathogenic genetic variants were found in 64 (47.8%) patients. Pathogenic genetic variants were identified in 58, 63, and 27% of patients with ARIP, an unexplained first episode of AP <35 years of age, and ICP without ARP, respectively. ARIP (OR: 18.12; 95% CI: 2.16-151.87; P=0.008) and an unexplained first episode of AP<35 years of age (OR: 2.46; 95% CI: 1.18-5.15; P=0.017), but not ICP, were independently associated with pathogenic genetic variants in the adjusted analysis. Pathogenic genetic variants are most likely to be identified in patients with ARIP and an unexplained first episode of AP<35 years of age. Genetic testing in these patient populations may delineate an etiology and prevent unnecessary diagnostic testing and procedures.

  9. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  10. Genetic variants in AKR1B10 associate with human eating behavior.

    PubMed

    Rohde, Kerstin; Federbusch, Martin; Horstmann, Annette; Keller, Maria; Villringer, Arno; Stumvoll, Michael; Tönjes, Anke; Kovacs, Peter; Böttcher, Yvonne

    2015-03-25

    The human Aldoketoreductase 1B10 gene (AKR1B10) encodes one of the enzymes belonging to the family of aldoketoreductases and may be involved in detoxification of nutrients during digestion. Further, AKR1B10 mRNA (messenger ribonucleic acid) expression was diminished in brain regions potentially involved in the regulation of eating behavior in rats which are more sensitive to cocaine and alcohol. We hypothesized that the human AKR1B10 gene may also play a role in the regulation of human eating behavior. We investigated the effects of 5 genetic variants of AKR1B10 on human eating behavior among 548 subjects from a German self-contained population, the Sorbs, and in 350 subjects from another independent German cohort. Among the Sorbs, we observed nominal associations with disinhibition at the 5' untranslated region (5' UTR) variant rs10232478 and the intragenic variants rs1834150 and rs782881 (all P ≤ 0.05). Further, we detected a relationship of rs1834150 and rs782881 with waist, smoking consumption (rs782881) and coffee consumption (rs1834150) (all P ≤ 0.05). Albeit non-significant, replication analyses revealed similar effect directions for disinhibition at rs1834150 (combined P = 0.0096). Moreover, in the replication cohort we found rs1834150 related to increased restraint scores with a similar direction as in the Sorbs (combined P = 0.0072). Our data suggest that genetic variants in the AKR1B10 locus may influence human eating behavior.

  11. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    PubMed

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems.

    PubMed

    Saha, Tanusree; Chatterjee, Mahasweta; Verma, Deepak; Ray, Anirban; Sinha, Swagata; Rajamma, Usha; Mukhopadhyay, Kanchan

    2018-06-08

    An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B 9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B 12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B 6 , which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated

  13. Mapping genetic variants for cranial vault shape in humans.

    PubMed

    Roosenboom, Jasmien; Lee, Myoung Keun; Hecht, Jacqueline T; Heike, Carrie L; Wehby, George L; Christensen, Kaare; Feingold, Eleanor; Marazita, Mary L; Maga, A Murat; Shaffer, John R; Weinberg, Seth M

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10-8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10-9) for MCL. Additionally, 32 suggestive loci (p < 5x10-6) were observed. Several candidate genes were located in these loci, such as NLK, MEF2A, SOX9 and SOX11. Genome-wide linkage analysis of cranial vault shape in mice (N = 433) was performed to follow-up the associated candidate loci identified in the human GWAS. Two loci, 17q11.2 (c11.loc44 in mice) and 17q25.1 (c11.loc74 in mice), associated with cranial vault size in humans, were also linked with cranial vault size in mice (LOD scores: 3.37 and 3.79 respectively). These results provide further insight into genetic pathways and mechanisms underlying normal variation in human craniofacial morphology.

  14. Mapping genetic variants for cranial vault shape in humans

    PubMed Central

    Lee, Myoung Keun; Hecht, Jacqueline T.; Heike, Carrie L.; Wehby, George L.; Christensen, Kaare; Feingold, Eleanor; Marazita, Mary L.; Weinberg, Seth M.

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10−8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10−9) for MCL. Additionally, 32 suggestive loci (p < 5x10-6) were observed. Several candidate genes were located in these loci, such as NLK, MEF2A, SOX9 and SOX11. Genome-wide linkage analysis of cranial vault shape in mice (N = 433) was performed to follow-up the associated candidate loci identified in the human GWAS. Two loci, 17q11.2 (c11.loc44 in mice) and 17q25.1 (c11.loc74 in mice), associated with cranial vault size in humans, were also linked with cranial vault size in mice (LOD scores: 3.37 and 3.79 respectively). These results provide further insight into genetic pathways and mechanisms underlying normal variation in human craniofacial morphology. PMID:29698431

  15. Genetic variants associated with skin aging in the Chinese Han population.

    PubMed

    Gao, Wenshan; Tan, Jingze; Hüls, Anke; Ding, Anan; Liu, Yu; Matsui, Mary S; Vierkötter, Andrea; Krutmann, Jean; Schikowski, Tamara; Jin, Li; Wang, Sijia

    2017-04-01

    The progression and manifestation of human skin aging has a strong genetic basis; however, most of the supporting evidence has been gathered in Caucasian populations. The genetic contribution to the variation in skin aging in non-Caucasian populations is poorly understood. To investigate the genetic risk factors of relevance for skin aging in East Asians, we conducted the first candidate gene study for signs of skin aging in Han Chinese. We collected skin aging and genotype data in 502 female Han Chinese from the Taizhou cohort. We evaluated skin aging by the validated skin aging score SCINEXA™. Confounding factors were assessed through a questionnaire. We obtained the genotype data for 21 candidate SNPs and for a further 509 SNPs from 16 related candidate genes. Associations were tested by linear and logistic regression analyses and adjusted for potential confounders. Our candidate study found a significant association between SNP rs2066853 in exon 10 of the aryl hydrocarbon receptor gene AHR and crow's feet. In addition, we found a significant association between SNP rs10733310 in intron 5 of BNC2 and pigment spots on the arms, and between SNP rs11979919, 3kb downstream of COL1A2, and laxity of eyelids. Our results identified genetic risk factors for signs of skin aging (pigmentation, wrinkles or laxity) in Han Chinese. We also found that the manifestation of skin aging is further modified by anatomical site. Together with previous work, our results also suggest that different genetic variants could be responsible for distinct skin aging signs characteristic of Caucasians compared to East Asians. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. ANRIL Genetic Variants in Iranian Breast Cancer Patients

    PubMed Central

    Khorshidi, Hamid Reza; Taheri, Mohammad; Noroozi, Rezvan; Sarrafzadeh, Shaghayegh; Sayad, Arezou; Ghafouri-Fard, Soudeh

    2017-01-01

    Objective The genetic variants of the long non-coding RNA ANRIL (an antisense noncoding RNA in the INK4 locus) as well as its expression have been shown to be associated with several human diseases including cancers. The aim of this study was to examine the association of ANRIL variants with breast cancer susceptibility in Iranian patients. Materials and Methods In this case-control study, we genotyped rs1333045, rs4977574, rs1333048 and rs10757278 single nucleotide polymorphisms (SNPs) in 122 breast can- cer patients as well as in 200 normal age-matched subjects by tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR). Results The TT genotype at rs1333045 was significantly over-represented among pa- tients (P=0.038) but did not remain significant after multiple-testing correction. In addi- tion, among all observed haplotypes (with SNP order of rs1333045, rs1333048 rs4977574 and rs10757278), four haplotypes were shown to be associated with breast cancer risk. However, after multiple testing corrections, TCGA was the only haplotype which remained significant. Conclusion These results suggest that breast cancer risk is significantly associated with ANRIL variants. Future work analyzing the expression of different associated ANRIL haplotypes would further shed light on the role of ANRIL in this disease. PMID:28580310

  17. Protein-based forensic identification using genetically variant peptides in human bone.

    PubMed

    Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon

    2018-04-22

    Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.

  18. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma

    PubMed Central

    Wang, I-Jen; Karmaus, Wilfried J. J.

    2017-01-01

    Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase pi 1 (GSTP1), superoxide dismutase 2 (SOD2), catalase (CAT), myeloperoxidase (MPO), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma. Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11–1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54–5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2, but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75–6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2, considered to be reflect oxidative stress metabolisms, might

  19. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma.

    PubMed

    Wang, I-Jen; Karmaus, Wilfried J J

    2017-02-08

    Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S -transferase Mu 1 ( GSTM1 ), glutathione S -transferase pi 1 ( GSTP1 ), superoxide dismutase 2 ( SOD2 ), catalase ( CAT ), myeloperoxidase ( MPO ), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma. Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11-1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54-5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2 , but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75-6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2 , considered to be reflect oxidative stress metabolisms

  20. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants.

    PubMed

    Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D

    2016-07-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.

    PubMed

    Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H

    2016-05-01

    Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice

  2. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium.

    PubMed

    Fan, Qiao; Guo, Xiaobo; Tideman, J Willem L; Williams, Katie M; Yazar, Seyhan; Hosseini, S Mohsen; Howe, Laura D; Pourcain, Beaté St; Evans, David M; Timpson, Nicholas J; McMahon, George; Hysi, Pirro G; Krapohl, Eva; Wang, Ya Xing; Jonas, Jost B; Baird, Paul Nigel; Wang, Jie Jin; Cheng, Ching-Yu; Teo, Yik-Ying; Wong, Tien-Yin; Ding, Xiaohu; Wojciechowski, Robert; Young, Terri L; Pärssinen, Olavi; Oexle, Konrad; Pfeiffer, Norbert; Bailey-Wilson, Joan E; Paterson, Andrew D; Klaver, Caroline C W; Plomin, Robert; Hammond, Christopher J; Mackey, David A; He, Mingguang; Saw, Seang-Mei; Williams, Cathy; Guggenheim, Jeremy A

    2016-05-13

    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).

  3. Identifying rare variants for genetic risk through a combined pedigree and phenotype approach: application to suicide and asthma.

    PubMed

    Darlington, T M; Pimentel, R; Smith, K; Bakian, A V; Jerominski, L; Cardon, J; Camp, N J; Callor, W B; Grey, T; Singleton, M; Yandell, M; Renshaw, P F; Yurgelun-Todd, D A; Gray, D; Coon, H

    2014-10-21

    Suicidal behavior is a complex disorder, with evidence for genetic risk independent of other genetic risk factors including psychiatric disorders. Since 1996, over 3000 DNA samples from Utah suicide decedents have been collected and banked for research use through the Utah Medical Examiner. In addition, over 12,000 Utah suicides were identified through examination of death certificates back to 1904. By linking this data with the Utah Population Database, we have identified multiple extended pedigrees with increased risk for suicide completion. A number of medical conditions co-occur with suicide, including asthma, and this study was undertaken to identify genetic risk common to asthma and suicide. This study tests the hypothesis that a particular comorbid condition may identify a more homogeneous genetic subgroup, facilitating the identification of specific genetic risk factors in that group. From pedigrees at increased risk for suicide, we identified three pedigrees also at significantly increased familial risk for asthma. Five suicide decedents from each of these pedigrees, plus an additional three decedents not from these pedigrees with diagnosed asthma, and 10 decedents with close relatives with asthma were genotyped. Results were compared with 183 publicly available unaffected control exomes from 1000 Genomes and CEPH (Centre d'etude du polymorphisme humain) samples genotyped on the same platform. A further 432 suicide decedents were also genotyped as non-asthma suicide controls. Genotyping was done using the Infinium HumanExome BeadChip. For analysis, we used the pedigree extension of Variant Annotation, Analysis and Search Tool (pVAAST) to calculate the disease burden of each gene. The Phenotype Driven Variant Ontological Re-ranking tool (Phevor) then re-ranked our pVAAST results in context of the phenotype. Using asthma as a seed phenotype, Phevor traversed biomedical ontologies and identified genes with similar biological properties to those known to

  4. Identifying rare variants for genetic risk through a combined pedigree and phenotype approach: application to suicide and asthma

    PubMed Central

    Darlington, T M; Pimentel, R; Smith, K; Bakian, A V; Jerominski, L; Cardon, J; Camp, N J; Callor, W B; Grey, T; Singleton, M; Yandell, M; Renshaw, P F; Yurgelun-Todd, D A; Gray, D; Coon, H

    2014-01-01

    Suicidal behavior is a complex disorder, with evidence for genetic risk independent of other genetic risk factors including psychiatric disorders. Since 1996, over 3000 DNA samples from Utah suicide decedents have been collected and banked for research use through the Utah Medical Examiner. In addition, over 12 000 Utah suicides were identified through examination of death certificates back to 1904. By linking this data with the Utah Population Database, we have identified multiple extended pedigrees with increased risk for suicide completion. A number of medical conditions co-occur with suicide, including asthma, and this study was undertaken to identify genetic risk common to asthma and suicide. This study tests the hypothesis that a particular comorbid condition may identify a more homogeneous genetic subgroup, facilitating the identification of specific genetic risk factors in that group. From pedigrees at increased risk for suicide, we identified three pedigrees also at significantly increased familial risk for asthma. Five suicide decedents from each of these pedigrees, plus an additional three decedents not from these pedigrees with diagnosed asthma, and 10 decedents with close relatives with asthma were genotyped. Results were compared with 183 publicly available unaffected control exomes from 1000 Genomes and CEPH (Centre d'etude du polymorphisme humain) samples genotyped on the same platform. A further 432 suicide decedents were also genotyped as non-asthma suicide controls. Genotyping was done using the Infinium HumanExome BeadChip. For analysis, we used the pedigree extension of Variant Annotation, Analysis and Search Tool (pVAAST) to calculate the disease burden of each gene. The Phenotype Driven Variant Ontological Re-ranking tool (Phevor) then re-ranked our pVAAST results in context of the phenotype. Using asthma as a seed phenotype, Phevor traversed biomedical ontologies and identified genes with similar biological properties to those known to

  5. Comparison of the Inhibitory Profiles of Itraconazole and Cimetidine in Cytochrome P450 3A4 Genetic Variants

    PubMed Central

    Akiyoshi, Takeshi; Saito, Takashi; Murase, Saori; Miyazaki, Mitsue; Murayama, Norie; Yamazaki, Hiroshi; Guengerich, F. Peter; Nakamura, Katsunori; Yamamoto, Koujirou

    2011-01-01

    CYP3A4, an important drug-metabolizing enzyme, is known to have genetic variants. We have previously reported that CYP3A4 variants such as CYP3A4.2, 7, 16, and 18 show different enzymatic kinetics from CYP3A4.1 (wild type). In this study, we quantitatively investigated the inhibition kinetics of two typical inhibitors, itraconazole (ITCZ) and cimetidine (CMD), on CYP3A4 variants and evaluated whether the genetic variation leads to interindividual differences in the extent of CYP3A4-mediated drug interactions. The inhibitory profiles of ITCZ and CMD on the metabolism of testosterone (TST) were analyzed by using recombinant CYP3A4 variants. The genetic variation of CYP3A4 significantly affected the inhibition profiles of the two inhibitors. In CYP3A4.7, the Ki value for ITCZ was 2.4-fold higher than that for the wild-type enzyme, whereas the Ki value for CMD was 0.64-fold lower. In CYP3A4.16, the Ki value for ITCZ was 0.54-fold lower than that for wild-type CYP3A4, whereas the Ki value for CMD was 3.2-fold higher. The influence of other genetic variations also differed between the two inhibitors. Docking simulations could explain the changes in the Ki values, based on the accessibility of TST and inhibitors to the heme moiety of the CYP3A4 molecule. In conclusion, the inhibitory effects of an inhibitor differ among CYP3A4 variants, suggesting that the genetic variation of CYP3A4 may contribute, at least in part, to interindividual differences in drug interactions mediated by CYP3A4 inhibition, and the pattern of the influences of genetic variation differs among inhibitors as well as substrates. PMID:21212239

  6. Rare Variants in RTEL1 Are Associated with Familial Interstitial Pneumonia

    PubMed Central

    Cogan, Joy D.; Zhao, Min; Mitchell, Daphne B.; Rives, Lynette; Markin, Cheryl; Garnett, Errine T.; Montgomery, Keri H.; Mason, Wendi R.; McKean, David F.; Powers, Julia; Murphy, Elissa; Olson, Lana M.; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R.; Lancaster, Lisa H.; Steele, Mark P.; Brown, Kevin K.; Schwarz, Marvin I.; Fingerlin, Tasha E.; Schwartz, David A.; Lawson, William E.; Loyd, James E.; Zhao, Zhongming; Phillips, John A.; Blackwell, Timothy S.

    2015-01-01

    Rationale: Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. Objectives: To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Methods: Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. Measurements and Main Results: We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Conclusions: Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis. PMID:25607374

  7. Rare variants in RTEL1 are associated with familial interstitial pneumonia.

    PubMed

    Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S

    2015-03-15

    Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.

  8. Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts

    PubMed Central

    García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio

    2014-01-01

    Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism. PMID:24466135

  9. Acute coronary syndrome: Relationship between genetic variants and TIMI risk.

    PubMed

    de Carvalho, Viviane do Carmo Vasconcelos; Silva, Lílian Caroliny Amorim; Araújo, Romário Martins; da Silva Soares, Fábia Carla; Bezerra, Maria José Ribeiro; de Oliveira, Sávio Augusto Vieira; de Melo Silva, Alex José; Montenegro, Sérgio Tavares; Werkhauser, Roberto Pereira; da Silva, Carlos Gustavo Régis; Gomes, Adriana Vieira; de Morais, Clarice Neuenschwander Lins; Montenegro, Silvia Maria Lucena

    2018-04-11

    Acute Coronary Syndrome (ACS) is a multifactorial disease, including the genetic factor, caused by coronary artery obstruction by atheroma. Some genetic variants have been described as risk factors for this disease. Its early diagnosis and stratification of risk of death by Thrombolysis in Myocardial Infarction (TIMI) are important. Therefore, we evaluated variants in the IL6R (c950-1722C>T), TNFa (c.-488G>A), LEPR (c.2673+1118C>T) and IL1b (c.-598T>C) genes in relation to TIMI risk, cytokine serum levels, and risk factors for ACS. We selected 200 patients with ACS, 50 without ACS from the Real Hospital Português, Recife - PE, and 295 blood donors at the Fundação de Hematologia e Hemoterapia de Pernambuco (Hemope). Variants were determined by DNA sequencing or enzymatic cleavage. Cytokine levels were measured by ELISA. The most frequent risk factors found in the patients were dyslipidemia and hypertension, this latter associated with high TIMI risk (p = 0.003). Genotype frequencies of IL6R and TNFa differed between patients with ACS and the blood donors (p = 0.0002 and p = 0.01, respectively), and TNF-α levels differed between genotypes. The TT genotype of the IL6R gene is as a possible protective factor for ACS because it was significantly more present in blood donors (32.2%) than in patients with ACS (18.0%), and was more frequent in low TIMI risk (22.9%) than in the intermediate (20.2%) or high (4.9%). In patients with ACS, the TT genotype in IL6R was related to a lower concentration of c-reactive protein (p = 0.03) and troponin (p = 0.02), showing a less inflammatory reaction and tissue damage. The differences in the frequencies of variants in genes of medical interest among the groups show the importance of studies in specific populations groups to establish the relationship between genes and diseases. Copyright © 2018. Published by Elsevier Ltd.

  10. ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants.

    PubMed

    Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar

    2017-01-12

    The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http

  11. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants.

    PubMed

    Tada, Hayato; Kawashiri, Masa-Aki; Yamagishi, Masakazu

    2017-04-01

    Dyslipidemias, especially hyper-low-density lipoprotein cholesterolemia and hypertriglyceridemia, are important causal risk factors for coronary artery disease. Comprehensive genotyping using the 'next-generation sequencing' technique has facilitated the investigation of Mendelian dyslipidemias, in addition to Mendelian randomization studies using common genetic variants associated with plasma lipids and coronary artery disease. The beneficial effects of low-density lipoprotein cholesterol-lowering therapies on coronary artery disease have been verified by many randomized controlled trials over the years, and subsequent genetic studies have supported these findings. More recently, Mendelian randomization studies have preceded randomized controlled trials. When the on-target/off-target effects of rare variants and common variants exhibit the same direction, novel drugs targeting molecules identified by investigations of rare Mendelian lipid disorders could be promising. Such a strategy could aid in the search for drug discovery seeds other than those for dyslipidemias.

  12. Genetic variants and cognitive aging: destiny or a nudge?

    PubMed

    Raz, Naftali; Lustig, Cindy

    2014-06-01

    One would be hard-pressed to find a human trait that is not heritable at least to some extent, and genetics have played an important role in behavioral science for more than half a century. With the advent of high-throughput molecular methods and the increasing availability of genomic analyses, genetics have acquired a firm foothold in public discourse. However, although the proliferation of genetic association studies and ever-expanding library of single-nucleotide polymorphisms have generated some fascinating results, they have thus far fallen short of delivering the anticipated dramatic breakthroughs. In this collection of eight articles, we present a spectrum of efforts aimed at finding more nuanced and meaningful ways of integrating genomic findings into the study of cognitive aging. The articles present examples of Mendelian randomization in the service of investigating difficult-to-manipulate biochemical properties of human participants. Furthermore, in an important step forward, they acknowledge the interactive effects of genes and physiological risk factors on age-related difference and change in cognitive performance, as well as the possibility of modifying the negative effect of genetic variants by lifestyle changes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. SEPTIN12 Genetic Variants Confer Susceptibility to Teratozoospermia

    PubMed Central

    Lin, Ying-Hung; Wang, Ya-Yun; Chen, Hau-Inh; Kuo, Yung-Che; Chiou, Yu-Wei; Lin, Hsi-Hui; Wu, Ching-Ming; Hsu, Chao-Chin; Chiang, Han-Sun; Kuo, Pao-Lin

    2012-01-01

    It is estimated that 10–15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12+/+/Septin12+/− chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development. PMID:22479503

  14. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium

    PubMed Central

    Fan, Qiao; Guo, Xiaobo; Tideman, J. Willem L.; Williams, Katie M.; Yazar, Seyhan; Hosseini, S. Mohsen; Howe, Laura D.; Pourcain, Beaté St; Evans, David M.; Timpson, Nicholas J.; McMahon, George; Hysi, Pirro G.; Krapohl, Eva; Wang, Ya Xing; Jonas, Jost B.; Baird, Paul Nigel; Wang, Jie Jin; Cheng, Ching-Yu; Teo, Yik-Ying; Wong, Tien-Yin; Ding, Xiaohu; Wojciechowski, Robert; Young, Terri L.; Pärssinen, Olavi; Oexle, Konrad; Pfeiffer, Norbert; Bailey-Wilson, Joan E.; Paterson, Andrew D.; Klaver, Caroline C. W.; Plomin, Robert; Hammond, Christopher J.; Mackey, David A.; He, Mingguang; Saw, Seang-Mei; Williams, Cathy; Guggenheim, Jeremy A.; Meguro, Akira; Wright, Alan F.; Hewitt, Alex W.; Young, Alvin L.; Veluchamy, Amutha Barathi; Metspalu, Andres; Paterson, Andrew D.; Döring, Angela; Khawaja, Anthony P.; Klein, Barbara E.; Pourcain, Beate St; Fleck, Brian; Klaver, Caroline C. W.; Hayward, Caroline; Williams, Cathy; Delcourt, Cécile; Pang, Chi Pui; Khor, Chiea-Chuen; Cheng, Ching-Yu; Gieger, Christian; Hammond, Christopher J.; Simpson, Claire L.; van Duijn, Cornelia M.; Mackey, David A.; Evans, David M.; Stambolian, Dwight; Chew, Emily; Tai, E-Shyong; Krapohl, Eva; Mihailov, Evelin; Smith, George Davey; McMahon, George; Biino, Ginevra; Campbell, Harry; Rudan, Igor; Seppälä, Ilkka; Kaprio, Jaakko; Wilson, James F.; Craig, Jamie E.; Tideman, J. Willem L.; Ried, Janina S.; Korobelnik, Jean-François; Guggenheim, Jeremy A.; Fondran, Jeremy R.; Wang, Jie Jin; Liao, Jiemin; Zhao, Jing Hua; Xie, Jing; Bailey-Wilson, Joan E.; Kemp, John P.; Lass, Jonathan H.; Jonas, Jost B.; Rahi, Jugnoo S.; Wedenoja, Juho; Mäkelä, Kari-Matti; Burdon, Kathryn P.; Williams, Katie M; Khaw, Kay-Tee; Yamashiro, Kenji; Oexle, Konrad; Howe, Laura D.; Chen, Li Jia; Xu, Liang; Farrer, Lindsay; Ikram, M. Kamran; Deangelis, Margaret M.; Morrison, Margaux; Schache, Maria; Pirastu, Mario; Miyake, Masahiro; Yap, Maurice K. H.; Fossarello, Maurizio; Kähönen, Mika; Tedja, Milly S.; He, Mingguang; Yoshimura, Nagahisa; Martin, Nicholas G.; Timpson, Nicholas J.; Wareham, Nick J.; Mizuki, Nobuhisa; Pfeiffer, Norbert; Pärssinen, Olavi; Raitakari, Olli; Polasek, Ozren; Tam, Pancy O.; Foster, Paul J.; Mitchell, Paul; Baird, Paul Nigel; Chen, Peng; Hysi, Pirro G.; Cumberland, Phillippa; Gharahkhani, Puya; Fan, Qiao; Höhn, René; Fogarty, Rhys D.; Luben, Robert N.; Igo Jr, Robert P.; Plomin, Robert; Wojciechowski, Robert; Klein, Ronald; Mohsen Hosseini, S.; Janmahasatian, Sarayut; Saw, Seang-Mei; Yazar, Seyhan; Ping Yip, Shea; Feng, Sheng; Vaccargiu, Simona; Panda-Jonas, Songhomitra; MacGregor, Stuart; Iyengar, Sudha K.; Rantanen, Taina; Lehtimäki, Terho; Young, Terri L.; Meitinger, Thomas; Wong, Tien-Yin; Aung, Tin; Haller, Toomas; Vitart, Veronique; Nangia, Vinay; Verhoeven, Virginie J. M.; Jhanji, Vishal; Zhao, Wanting; Chen, Wei; Zhou, Xiangtian; Guo, Xiaobo; Ding, Xiaohu; Wang, Ya Xing; Lu, Yi; Teo, Yik-Ying; Vatavuk, Zoran

    2016-01-01

    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7–15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E–08) and 2.3% (P = 6.9E–21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E–04). PMID:27174397

  15. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results

    PubMed Central

    Plon, Sharon E.; Eccles, Diana M.; Easton, Douglas; Foulkes, William D.; Genuardi, Maurizio; Greenblatt, Marc S.; Hogervorst, Frans B.L.; Hoogerbrugge, Nicoline; Spurdle, Amanda B.; Tavtigian, Sean

    2011-01-01

    Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genetic testing may detect changes that are clearly pathogenic, clearly neutral or variants of unclear clinical significance. Such variants present a considerable challenge to the diagnostic laboratory and the receiving clinician in terms of interpretation and clear presentation of the implications of the result to the patient. There does not appear to be a consistent approach to interpreting and reporting the clinical significance of variants either among genes or among laboratories. The potential for confusion among clinicians and patients is considerable and misinterpretation may lead to inappropriate clinical consequences. In this article we review the current state of sequence-based genetic testing, describe other standardized reporting systems used in oncology and propose a standardized classification system for application to sequence based results for cancer predisposition genes. We suggest a system of five classes of variants based on the degree of likelihood of pathogenicity. Each class is associated with specific recommendations for clinical management of at-risk relatives that will depend on the syndrome. We propose that panels of experts on each cancer predisposition syndrome facilitate the classification scheme and designate appropriate surveillance and cancer management guidelines. The international adoption of a standardized reporting system should improve the clinical utility of sequence-based genetic tests to predict cancer risk. PMID:18951446

  16. PNPLA3 genetic variants determine hepatic steatosis in non-obese chronic hepatitis C patients.

    PubMed

    Huang, Chung-Feng; Chen, Jyh-Jou; Yeh, Ming-Lun; Huang, Ching-I; Hsieh, Ming-Yen; Yang, Hua-Ling; Dai, Chia-Yen; Huang, Jee-Fu; Lin, Zu-Yau; Chen, Shinn-Cherng; Chuang, Wan-Long; Chen, Yao-Li; Yu, Ming-Lung

    2015-07-03

    The influence of patatin-like phospholipase domain-containing 3 (PNPLA3) genetic variants in the development of liver steatosis in Asian chronic hepatitis C patients remains elusive. A total of 1018 biopsy-proven chronic hepatitis C patients were enrolled for evaluation. The proportions of PNPLA3 rs738409 GG genotype carriage were 7.8% (44/563), 15.8% (58/367) and 19.3% (17/88) in patients with no (liver fat content < 5%), mild (5-33%) and moderate/severe (> 66%) hepatic steatosis, respectively (trend P < 0.001). Stepwise logistic regression analysis revealed that the strongest factor independently associated with steatosis was the carriage of the PNPLA3 rs738409 GG genotype (odds ratio [OR]/95% confidence intervals [CI]:2.34/1.557-3.515, P < 0.001). Among the patients with BMI < 24 kg/m(2), carriage of the rs738409 GG genotype was the only factor associated with hepatic steatosis (OR/CI:3.44/1.824-6.500, P < 0.001). PNPLA3 genetic variants had minimal effects on hepatic steatosis among overweight or obese patients. Compared to patients with BMI < 24 kg/m(2)/non-GG genotype, those with BMI >24 kg/m(2)/GG genotype were more likely to have hepatic steatosis (OR/CI:3.87/2.292-6.524, P < 0.001). In conclusions, both PNPLA3 genetic variants and BMI played important roles in hepatic steatosis among Asian chronic hepatitis C patients. However, the genetic effect was mainly restricted to non-obese patients.

  17. Full-length genome analysis of two genetically distinct variants of porcine epidemic diarrhea virus in Thailand.

    PubMed

    Cheun-Arom, Thaniwan; Temeeyasen, Gun; Tripipat, Thitima; Kaewprommal, Pavita; Piriyapongsa, Jittima; Sukrong, Suchada; Chongcharoen, Wanchai; Tantituvanont, Angkana; Nilubol, Dachrit

    2016-10-01

    Porcine epidemic diarrhea virus (PEDV) has continued to cause sporadic outbreaks in Thailand since 2007 and a pandemic variant containing an insertion and deletion in the spike gene was responsible for outbreaks. In 2014, there were further outbreaks of the disease occurring within four months of each other. In this study, the full-length genome sequences of two genetically distinct PEDV isolates from the outbreaks were characterized. The two PEDV isolates, CBR1/2014 and EAS1/2014, were 28,039 and 28,033 nucleotides in length and showed 96.2% and 93.6% similarities at nucleotide and amino acid levels respectively. In total, we have observed 1048 nucleotide substitutions throughout the genome. Compared to EAS1/2014, CBR1/2014 has 2 insertions of 4 ((56)GENQ(59)) and 1 ((140)N) amino acid positions 56-59 and 140, and 2 deletions of 2 ((160)DG(161)) and 1 ((1199)Y) amino acid positions 160-161 and 1199. The phylogenetic analysis based on full-length genome of CBR1/2014 isolate has grouped the virus with the pandemic variants. In contrast, EAS1/2014 isolate was grouped with CV777, LZC and SM98, a classical variant. Our findings demonstrated the emergence of EAS1/2014, a classical variant which is novel to Thailand and genetically distinct from the currently circulating endemic variants. This study warrants further investigations into molecular epidemiology and genetic evolution of the PEDV in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study.

    PubMed

    Murray, Anna; Bennett, Claire E; Perry, John R B; Weedon, Michael N; Jacobs, Patricia A; Morris, Danielle H; Orr, Nicholas; Schoemaker, Minouk J; Jones, Michael; Ashworth, Alan; Swerdlow, Anthony J

    2011-01-01

    Women become infertile approximately 10 years before menopause, and as more women delay childbirth into their 30s, the number of women who experience infertility is likely to increase. Tests that predict the timing of menopause would allow women to make informed reproductive decisions. Current predictors are only effective just prior to menopause, and there are no long-range indicators. Age at menopause and early menopause (EM) are highly heritable, suggesting a genetic aetiology. Recent genome-wide scans have identified four loci associated with variation in the age of normal menopause (40-60 years). We aimed to determine whether theses loci are also risk factors for EM. We tested the four menopause-associated genetic variants in a cohort of approximately 2000 women with menopause≤45 years from the Breakthrough Generations Study (BGS). All four variants significantly increased the odds of having EM. Comparing the 4.5% of individuals with the lowest number of risk alleles (two or three) with the 3.0% with the highest number (eight risk alleles), the odds ratio was 4.1 (95% CI 2.4-7.1, P=4.0×10(-7)). In combination, the four variants discriminated EM cases with a receiver operator characteristic area under the curve of 0.6. Four common genetic variants identified by genome-wide association studies, had a significant impact on the odds of having EM in an independent cohort from the BGS. The discriminative power is still limited, but as more variants are discovered they may be useful for predicting reproductive lifespan.

  19. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    PubMed

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  20. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka.

    PubMed

    Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio

    2015-09-01

    The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.

  1. SNCA 3'UTR genetic variants in patients with Parkinson's disease and REM sleep behavior disorder.

    PubMed

    Toffoli, M; Dreussi, E; Cecchin, E; Valente, M; Sanvilli, N; Montico, M; Gagno, S; Garziera, M; Polano, M; Savarese, M; Calandra-Buonaura, G; Placidi, F; Terzaghi, M; Toffoli, G; Gigli, G L

    2017-07-01

    REM sleep behavior disorder (RBD) is an early marker of Parkinson's disease (PD); however, it is still unclear which patients with RBD will eventually develop PD. Single nucleotide polymorphisms (SNPs) in the 3'untranslated region (3'UTR) of alpha-synuclein (SNCA) have been associated with PD, but at present, no data is available about RBD. The 3'UTR hosts regulatory regions involved in gene expression control, such as microRNA binding sites. The aim of this study was to determine RBD specific genetic features associated to an increased risk of progression to PD, by sequencing of the SNCA-3'UTR in patients with "idiopathic" RBD (iRBD) and in patients with PD. We recruited 113 consecutive patients with a diagnosis of iRBD (56 patients) or PD (with or without RBD, 57 patients). Sequencing of SNCA-3'UTR was performed on genomic DNA extracted from peripheral blood samples. Bioinformatic analyses were carried out to predict the potential effect of the identified genetic variants on microRNA binding. We found three SNCA-3'UTR SNPs (rs356165, rs3857053, rs1045722) to be more frequent in PD patients than in iRBD patients (p = 0.014, 0.008, and 0.008, respectively). Four new or previously reported but not annotated specific genetic variants (KP876057, KP876056, NM_000345.3:c*860T>A, NM_000345.3:c*2320A>T) have been observed in the RBD population. The in silico approach highlighted that these variants could affect microRNA-mediated gene expression control. Our data show specific SNPs in the SNCA-3'UTR that may bear a risk for RBD to be associated with PD. Moreover, new genetic variants were identified in patients with iRBD.

  2. Resequencing of the vesicular glutamate transporter 2 gene (VGLUT2) reveals some rare genetic variants that may increase the genetic burden in schizophrenia.

    PubMed

    Shen, Yu-Chih; Liao, Ding-Lieh; Lu, Chao-Lin; Chen, Jen-Yeu; Liou, Ying-Jay; Chen, Tzu-Ting; Chen, Chia-Hsiang

    2010-08-01

    Vesicular glutamate transporters (VGLUT1-3) package glutamate into vesicles in the presynaptic terminal and regulate the release of glutamate. In mesencephalic dopamine neuron culture, the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3, have been demonstrated. As related to the dysregulated glutamatergic hypothesis of schizophrenia, the gene encoding VGLUT2 is the most plausible candidate involved in the pathogenesis of this illness. We searched for genetic variants in the promoter region and 12 exons (including UTR ends) of the VGLUT2 gene using direct sequencing in a sample of Han Chinese schizophrenic patients (n=375) and non-psychotic controls (n=366) from Taiwan, and conducted a case-control association study. We identified 8 common SNPs in the VGLUT2 gene. SNP and haplotype-based analyses showed no association with schizophrenia. Besides, we identified 9 rare variants in 13 out of 375 patients, including 3 variants located at the promoter region, 2 synonymous variants located at protein coding regions, and 4 variants located at UTR ends. No rare variants were found in the control subjects. Collectively, these rare variants were significantly overrepresented in the patient group (3.5% versus 0, p value of Fisher's exact test=2.3x10(-5)), suggesting they may contribute to the pathogenesis of schizophrenia. Although the functional significance of these rare variants remains to be characterized, our study may lend support to the multiple rare mutations hypothesis of schizophrenia, and may provide genetic clues to indicate the involvement of the glutamate transmission pathway in the pathogenesis of schizophrenia. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Childhood Abuse Experiences and the COMT and MTHFR Genetic Variants Associated With Male Sexual Orientation in the Han Chinese Populations: A Case-Control Study.

    PubMed

    Qin, Jia-Bi; Zhao, Guang-Lu; Wang, Feng; Cai, Yu-Mao; Lan, Li-Na; Yang, Lin; Feng, Tie-Jian

    2018-01-01

    Although it is widely acknowledged that genetic and environmental factors are involved in the development of male homosexuality, the causes are not fully understood. To explore the association and interaction of childhood abuse experiences and genetic variants of the catechol-O-methyltransferase (COMT) and methylenetetrahydrofolate reductase (MTHFR) genes with the development of male homosexuality. A case-control study of 537 exclusively homosexual men and 583 exclusively heterosexual men was conducted, with data collected from March 2013 to August 2015. Data were analyzed using χ 2 tests and logistic regression models. Sociodemographic characteristics, childhood abuse experiences, and polymorphisms of COMT at rs4680, rs4818, and rs6267 and MTHFR at rs1801133. More frequent occurrence of physical (adjusted odds ratio [aOR] = 1.78), emotional (aOR = 2.07), and sexual (aOR = 2.53) abuse during childhood was significantly associated with the development of male homosexuality. The polymorphisms of MTHFR at rs1801133 and COMT at rs4818 also were significantly associated with the development of male homosexuality in the homozygote comparisons (T/T vs C/C at rs1801133, aOR = 1.68; G/G vs C/C at rs4818, aOR = 1.75). In addition, significant interaction effects between childhood abuse experiences and the COMT and MTHFR genetic variants on the development of male homosexuality were found. This is the first time that an association of childhood abuse, COMT and MTHFR genetic variants, and their interactions with development of male homosexuality was exhaustively explored, which could help provide new insight into the etiology of male homosexuality. Because homosexual men are a relatively obscure population, it was impossible to select the study participants by random sampling, which could lead to selection bias. In addition, because this was a case-control study, recall bias was inevitable, and we could not verify causality. Childhood abuse and the COMT and MTHFR genetic

  4. AB087. Synergistic genetic effects of RET and NRG1 susceptibility variants in Hirschsprung disease

    PubMed Central

    Iskandar, Kristy; Makhmudi, Akhmad; Gunadi

    2017-01-01

    Background Hirschsprung disease (HSCR) is a complex genetic disorder, which characterized by absence of ganglion cells along variable lengths of the intestines in neonates, with the RET and NRG1 are reported as the most common susceptible genes for HSCR development. Here, we investigated three common genetic markers: RET rs2506030 and NRG1 rs7835688 and rs16879552, to determine their potential interactions to the susceptibility of HSCR in Indonesian population. Methods We ascertained 60 HSCR subjects and 118 non-HSCR controls. Three genetic markers of the RET and NRG1 were examined using TaqMan assay. Case-control association tests between three genetic markers and HSCR were performed using the χ2 (chi square) statistic and 2×2 contingency tables. We analyzed the family based association in duos and trios using the transmission disequilibrium test (TDT) for the variants using PLINK. Results There was association between NRG1 rs7835688 (4.3×10−3) variant and HSCR, but not RET rs2506030 (P=0.042) and NRG1 rs16879552 (P=0.097). TDT of 33 HSCR families demonstrates no genetic effect either at RET rs2506030 (P=0.034) or NRG1 rs7835688 (P=0.18) and rs16879552 (P=0.28). Two locus analyses of polymorphisms demonstrated that RET rs2506030 (GG), in combination with NRG1 rs7835688 (CC) or rs16879552 (CC), were associated with the increased disease risks of HSCR (OR =6.22, P=0.028 and OR =3.34, P=6.0×10−4, respectively) compared with a single variant of either RET or NRG1. Conclusions Our study shows that RET and NRG1 polymorphisms are common genetic risk factors for Indonesian HSCR. These results also imply that synergistic effects of RET and NRG1 is necessary for normal ganglionosis.

  5. Variants of the MTHFR gene and susceptibility to acute lymphoblastic leukemia in children: a synthesis of genetic association studies.

    PubMed

    Zintzaras, Elias; Doxani, Chrysoula; Rodopoulou, Paraskevi; Bakalos, Georgios; Ziogas, Dimitris C; Ziakas, Panayiotis; Voulgarelis, Michael

    2012-04-01

    Acute lymphoblastic leukemia (ALL) is a complex disease with genetic background. The genetic association studies (GAS) that investigated the association between ALL and the MTHFR C677T and A1298C gene variants have produced contradictory or inconclusive results. In order to decrease the uncertainty of estimated genetic risk effects, a meticulous meta-analysis of published GAS related the variants in the MTFHR gene with susceptibility to ALL was conducted. The risk effects were estimated based on the odds ratio (OR) of the allele contrast and the generalized odds ratio (OR(G)). Cumulative and recursive cumulative meta-analyses were also performed. The analysis showed marginal significant association for the C677T variant, overall [OR=0.91 (0.82-1.00) and OR(G)=0.89 (0.79-1.01)], and in Whites [OR=0.88 (0.77-0.99) and OR(G)=0.85 (0.73-0.99)]. The A1298C variant produced non-significant results. For both variants, the cumulative meta-analysis did not show a trend of association as evidence accumulates and the recursive cumulative meta-analysis indicated lack of sufficient evidence for denying or claiming an association. The current evidence is not sufficient to draw definite conclusions regarding the association of MTHFR variants and development of ALL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    USDA-ARS?s Scientific Manuscript database

    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted ...

  7. Privacy preserving protocol for detecting genetic relatives using rare variants.

    PubMed

    Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Guan, Feng; Ostrosky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-06-15

    High-throughput sequencing technologies have impacted many areas of genetic research. One such area is the identification of relatives from genetic data. The standard approach for the identification of genetic relatives collects the genomic data of all individuals and stores it in a database. Then, each pair of individuals is compared to detect the set of genetic relatives, and the matched individuals are informed. The main drawback of this approach is the requirement of sharing your genetic data with a trusted third party to perform the relatedness test. In this work, we propose a secure protocol to detect the genetic relatives from sequencing data while not exposing any information about their genomes. We assume that individuals have access to their genome sequences but do not want to share their genomes with anyone else. Unlike previous approaches, our approach uses both common and rare variants which provide the ability to detect much more distant relationships securely. We use a simulated data generated from the 1000 genomes data and illustrate that we can easily detect up to fifth degree cousins which was not possible using the existing methods. We also show in the 1000 genomes data with cryptic relationships that our method can detect these individuals. The software is freely available for download at http://genetics.cs.ucla.edu/crypto/. © The Author 2014. Published by Oxford University Press.

  8. A genetic variant of NLRP1 gene is associated with asbestos body burden in patients with malignant pleural mesothelioma.

    PubMed

    Crovella, S; Moura, R R; Cappellani, S; Celsi, F; Trevisan, E; Schneider, M; Brollo, A; Nicastro, E M; Vita, F; Finotto, L; Zabucchi, G; Borelli, V

    2018-01-01

    The presence of asbestos bodies (ABs) in lung parenchyma is considered a histopathologic hallmark of past exposure to asbestos fibers, of which there was a population of longer fibers. The mechanisms underlying AB formation are complex, involving inflammatory responses and iron (Fe) metabolism. Thus, the responsiveness to AB formation is variable, with some individuals appearing to be poor AB formers. The aim of this study was to disclose the possible role of genetic variants of genes encoding inflammasome and iron metabolism proteins in the ability to form ABs in a population of 81 individuals from North East Italy, who died after having developed malignant pleural mesothelioma (MPM). This study included 86 genetic variants distributed in 10 genes involved in Fe metabolism and 7 genetic variants in two genes encoding for inflammasome molecules. Genotypes/haplotypes were compared according to the number of lung ABs. Data showed that the NLRP1 rs12150220 missense variant (H155L) was significantly correlated with numbers of ABs in MPM patients. Specifically, a low number of ABs was detected in individuals carrying the NLRP1 rs12150220 A/T genotype. Our findings suggest that the NLRP1 inflammasome might contribute in the development of lung ABs. It is postulated that the NLRP1 missense variant may be considered as one of the possible host genetic factors contributing to individual variability in coating efficiency, which needs to be taken when assessing occupational exposure to asbestos.

  9. Common Genetic Variant Risk Score Is Associated With Drug-Induced QT Prolongation and Torsade de Pointes Risk: A Pilot Study.

    PubMed

    Strauss, David G; Vicente, Jose; Johannesen, Lars; Blinova, Ksenia; Mason, Jay W; Weeke, Peter; Behr, Elijah R; Roden, Dan M; Woosley, Ray; Kosova, Gulum; Rosenberg, Michael A; Newton-Cheh, Christopher

    2017-04-04

    Drug-induced QT interval prolongation, a risk factor for life-threatening ventricular arrhythmias, is a potential side effect of many marketed and withdrawn medications. The contribution of common genetic variants previously associated with baseline QT interval to drug-induced QT prolongation and arrhythmias is not known. We tested the hypothesis that a weighted combination of common genetic variants contributing to QT interval at baseline, identified through genome-wide association studies, can predict individual response to multiple QT-prolonging drugs. Genetic analysis of 22 subjects was performed in a secondary analysis of a randomized, double-blind, placebo-controlled, crossover trial of 3 QT-prolonging drugs with 15 time-matched QT and plasma drug concentration measurements. Subjects received single doses of dofetilide, quinidine, ranolazine, and placebo. The outcome was the correlation between a genetic QT score comprising 61 common genetic variants and the slope of an individual subject's drug-induced increase in heart rate-corrected QT (QTc) versus drug concentration. The genetic QT score was correlated with drug-induced QTc prolongation. Among white subjects, genetic QT score explained 30% of the variability in response to dofetilide ( r =0.55; 95% confidence interval, 0.09-0.81; P =0.02), 23% in response to quinidine ( r =0.48; 95% confidence interval, -0.03 to 0.79; P =0.06), and 27% in response to ranolazine ( r =0.52; 95% confidence interval, 0.05-0.80; P =0.03). Furthermore, the genetic QT score was a significant predictor of drug-induced torsade de pointes in an independent sample of 216 cases compared with 771 controls ( r 2 =12%, P =1×10 -7 ). We demonstrate that a genetic QT score comprising 61 common genetic variants explains a significant proportion of the variability in drug-induced QT prolongation and is a significant predictor of drug-induced torsade de pointes. These findings highlight an opportunity for recent genetic discoveries to

  10. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    PubMed Central

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that

  11. Role of genetic variants in ADIPOQ in human eating behavior.

    PubMed

    Rohde, Kerstin; Keller, Maria; Horstmann, Annette; Liu, Xuanshi; Eichelmann, Fabian; Stumvoll, Michael; Villringer, Arno; Kovacs, Peter; Tönjes, Anke; Böttcher, Yvonne

    2015-01-01

    The beneficial effects of adiponectin and its negative correlation with BMI are well described. Adiponectin serum levels are altered in eating disorders such as anorexia nervosa, bulimia nervosa or binge eating. Here, we tested the hypothesis that (1) adiponectin serum levels correlate with human eating behavior factors and (2) that genetic variants of the ADIPOQ locus influence both serum levels and eating behavior. We analyzed 11 SNPs within ADIPOQ and in the 5' UTR and measured serum adiponectin levels in 1,036 individuals from the German Sorbs population. The German version of the three-factor eating questionnaire (FEV) was completed by 548 Sorbs. For replication purposes, we included an independent replication cohort from Germany (N = 350). In the Sorbs, we observed positive correlations of restraint with adiponectin serum levels (P = 0.001; r = 0.148) which, however, did not withstand adjustment for covariates (P = 0.083; r = 0.077). In addition, four SNPs were nominally associated with serum adiponectin levels (all P < 0.05). Of these, two variants (rs3774261; rs1501229, all P < 0.05) were also related to disinhibition. Furthermore, three variants were exclusively associated with hunger (rs2036373, P = 0.049) and disinhibition (rs822396; rs864265, all P < 0.05). However, none of these associations withstood Bonferroni corrections for multiple testing (all P > 9.3 × 10(-4)). In our replication cohort, we observed similar effect directions at rs1501229 for disinhibition and hunger. A meta-analysis resulted in nominal statistical significance P = 0.036 (Z score 2.086) and P = 0.017 (Z score 2.366), respectively. Given the observed relationship of the SNPs with adiponectin levels and eating behavior, our data support a potential role of adiponectin in human eating behavior. Whether the relationship with eating behavior is mediated by the effects of circulating adiponectin warrants further investigations.

  12. Heritability of Individual Psychotic Experiences Captured by Common Genetic Variants in a Community Sample of Adolescents.

    PubMed

    Sieradzka, Dominika; Power, Robert A; Freeman, Daniel; Cardno, Alastair G; Dudbridge, Frank; Ronald, Angelica

    2015-09-01

    Occurrence of psychotic experiences is common amongst adolescents in the general population. Twin studies suggest that a third to a half of variance in adolescent psychotic experiences is explained by genetic influences. Here we test the extent to which common genetic variants account for some of the twin-based heritability. Psychotic experiences were assessed with the Specific Psychotic Experiences Questionnaire in a community sample of 2152 16-year-olds. Self-reported measures of Paranoia, Hallucinations, Cognitive Disorganization, Grandiosity, Anhedonia, and Parent-rated Negative Symptoms were obtained. Estimates of SNP heritability were derived and compared to the twin heritability estimates from the same sample. Three approaches to genome-wide restricted maximum likelihood (GREML) analyses were compared: (1) standard GREML performed on full genome-wide data; (2) GREML stratified by minor allele frequency (MAF); and (3) GREML performed on pruned data. The standard GREML revealed a significant SNP heritability of 20 % for Anhedonia (SE = 0.12; p < 0.046) and an estimate of 19 % for Cognitive Disorganization, which was close to significant (SE = 0.13; p < 0.059). Grandiosity and Paranoia showed modest SNP heritability estimates (17 %; SE = 0.13 and 14 %; SE = 0.13, respectively, both n.s.), and zero estimates were found for Hallucinations and Negative Symptoms. The estimates for Anhedonia, Cognitive Disorganization and Grandiosity accounted for approximately half the previously reported twin heritability. SNP heritability estimates from the MAF-stratified approach were mostly consistent with the standard estimates and offered additional information about the distribution of heritability across the MAF range of the SNPs. In contrast, the estimates derived from the pruned data were for the most part not consistent with the other two approaches. It is likely that the difference seen in the pruned estimates was driven by the loss of tagged causal variants, an issue

  13. Predicting Gene Structure Changes Resulting from Genetic Variants via Exon Definition Features.

    PubMed

    Majoros, William H; Holt, Carson; Campbell, Michael S; Ware, Doreen; Yandell, Mark; Reddy, Timothy E

    2018-04-25

    Genetic variation that disrupts gene function by altering gene splicing between individuals can substantially influence traits and disease. In those cases, accurately predicting the effects of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying those traits and diseases. While methods have been developed to generate high quality computational predictions of gene structures in reference genomes, the same methods perform poorly when used to predict the potentially deleterious effects of genetic changes that alter gene splicing between individuals. Underlying that discrepancy in predictive ability are the common assumptions by reference gene finding algorithms that genes are conserved, well-formed, and produce functional proteins. We describe a probabilistic approach for predicting recent changes to gene structure that may or may not conserve function. The model is applicable to both coding and noncoding genes, and can be trained on existing gene annotations without requiring curated examples of aberrant splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes of individual humans, and we demonstrate that performing gene-structure prediction without relying on conserved coding features is feasible. The model predicts an unexpected abundance of variants that create de novo splice sites, an observation supported by both simulations and empirical data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted by other tools as coding or noncoding variants of little or no effect, we find that in some cases they can have large effects on splicing activity and protein products, and we propose that they may commonly act as cryptic factors in disease. The software is available from geneprediction.org/SGRF. bmajoros@duke.edu. Supplementary information is available at Bioinformatics online.

  14. Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke.

    PubMed

    Phuah, Chia-Ling; Dave, Tushar; Malik, Rainer; Raffeld, Miriam R; Ayres, Alison M; Goldstein, Joshua N; Viswanathan, Anand; Greenberg, Steven M; Jagiella, Jeremiasz M; Hansen, Björn M; Norrving, Bo; Jimenez-Conde, Jordi; Roquer, Jaume; Pichler, Alexander; Enzinger, Christian; Montaner, Joan; Fernandez-Cadenas, Israel; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Biffi, Alessandro; Rost, Natalia; Langefeld, Carl D; Markus, Hugh S; Mitchell, Braxton D; Worrall, Brad B; Kittner, Steven J; Woo, Daniel; Dichgans, Martin; Rosand, Jonathan; Anderson, Christopher D

    2017-10-01

    intracerebral haemorrhage risk (odds ratio, 1.07, P = 0.04) and recurrent intracerebral haemorrhage risk (hazards ratio, 1.45, P = 0.006). In analysis of ischaemic stroke subtypes, the myeloperoxidase increasing genetic risk score was strongly associated with lacunar subtype only (odds ratio, 1.05, P = 0.0012). These results, demonstrating that common genetic variants that increase myeloperoxidase levels increase risk of primary intracerebral haemorrhage and lacunar stroke, directly implicate the myeloperoxidase pathway in the pathogenesis of cerebral small vessel disease. Because genetic variants are not influenced by environmental exposures, these results provide new support for a causal rather than bystander role for myeloperoxidase in the progression of cerebrovascular disease. Furthermore, these results support a rationale for chronic inflammation as a potential modifiable stroke risk mechanism, and suggest that immune-targeted therapies could be useful for treatment and prevention of cerebrovascular disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Germline genetic variants in somatically significantly mutated genes in tumors are associated with renal cell carcinoma risk and outcome.

    PubMed

    Shu, Xiang; Gu, Jianchun; Huang, Maosheng; Tannir, Nizar M; Matin, Surena F; Karam, Jose A; Wood, Christopher G; Wu, Xifeng; Ye, Yuanqing

    2018-05-28

    Genome-wide association studies (GWAS) have identified 13 susceptibility loci for renal cell carcinoma (RCC). Additional genetic loci of risk remain to be explored. Moreover, the role of germline genetic variants in predicting RCC recurrence and overall survival (OS) is less understood. In this study, we focused on 127 significantly mutated genes from The Cancer Genome Atlas (TCGA) Pan-Cancer Analysis across 12 major cancer sites to identify potential genetic variants predictive of RCC risk and clinical outcomes. In a three-phase design with a total of 2657 RCC cases and 5315 healthy controls, two single nucleotide polymorphisms (SNPs) that map to PIK3CG (rs6466135:A, ORmeta = 0.85, 95% CI = 0.77-0.94, Pmeta = 1.4 × 10-3) and ATM (rs611646:T, ORmeta = 1.17, 95% CI = 1.05-1.31, Pmeta = 3.5 × 10-3) were significantly associated with RCC risk. With respect to RCC recurrence and OS, two separate datasets with a total of 661 stages I-III RCC patients (discovery: 367; validation: 294) were analyzed. The most significant association was observed for rs10932384:C (ERBB4) with both outcomes (recurrence: HRmeta = 0.52, 95% CI = 0.39-0.68, Pmeta = 3.81 × 10-6; OS: HRmeta = 0.50, 95% CI = 0.37-0.67, Pmeta = 6.00 × 10-6). In addition, six SNPs were significantly associated with either RCC recurrence or OS but not both (Pmeta < 0.01). Rs10932384:C was significantly correlated with mutation frequency of ERBB4 in clear cell RCC (ccRCC) patients (P = 0.003, Fisher's exact test). Cis-eQTL was observed for several SNPs in blood/transformed fibroblasts but not in RCC tumor tissues. In summary, we identified promising genetic predictors of recurrence and OS among RCC patients with localized disease.

  16. Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

    PubMed Central

    Puffenberger, Erik G.; Jinks, Robert N.; Sougnez, Carrie; Cibulskis, Kristian; Willert, Rebecca A.; Achilly, Nathan P.; Cassidy, Ryan P.; Fiorentini, Christopher J.; Heiken, Kory F.; Lawrence, Johnny J.; Mahoney, Molly H.; Miller, Christopher J.; Nair, Devika T.; Politi, Kristin A.; Worcester, Kimberly N.; Setton, Roni A.; DiPiazza, Rosa; Sherman, Eric A.; Eastman, James T.; Francklyn, Christopher; Robey-Bond, Susan; Rider, Nicholas L.; Gabriel, Stacey; Morton, D. Holmes; Strauss, Kevin A.

    2012-01-01

    The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data. PMID:22279524

  17. Maternal obesity and tobacco use modify the impact of genetic variants on the occurrence of conotruncal heart defects.

    PubMed

    Tang, Xinyu; Nick, Todd G; Cleves, Mario A; Erickson, Stephen W; Li, Ming; Li, Jingyun; MacLeod, Stewart L; Hobbs, Charlotte A

    2014-01-01

    Conotruncal heart defects (CTDs) are among the most severe birth defects worldwide. Studies of CTDs indicate both lifestyle behaviors and genetic variation contribute to the risk of CTDs. Based on a hybrid design using data from 616 case-parental and 1645 control-parental triads recruited for the National Birth Defects Prevention Study between 1997 and 2008, we investigated whether the occurrence of CTDs is associated with interactions between 921 maternal and/or fetal single nucleotide polymorphisms (SNPs) and maternal obesity and tobacco use. The maternal genotypes of the variants in the glutamate-cysteine ligase, catalytic subunit (GCLC) gene and the fetal genotypes of the variants in the glutathione S-transferase alpha 3 (GSTA3) gene were associated with an elevated risk of CTDs among obese mothers. The risk of delivering infants with CTDs among obese mothers carrying AC genotype for a variant in the GCLC gene (rs6458939) was 2.00 times the risk among those carrying CC genotype (95% confidence interval: 1.41, 2.38). The maternal genotypes of several variants in the glutathione-S-transferase (GST) family of genes and the fetal genotypes of the variants in the GCLC gene interacted with tobacco exposures to increase the risk of CTDs. Our study suggests that the genetic basis underlying susceptibility of the developing heart to the adverse effects of maternal obesity and tobacco use involve both maternal and embryonic genetic variants. These results may provide insights into the underlying pathophysiology of CTDs, and ultimately lead to novel prevention strategies.

  18. Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases

    PubMed Central

    He, Liang; Kernogitski, Yelena; Kulminskaya, Irina; Loika, Yury; Arbeev, Konstantin G.; Loiko, Elena; Bagley, Olivia; Duan, Matt; Yashkin, Arseniy; Ukraintseva, Svetlana V.; Kovtun, Mikhail; Yashin, Anatoliy I.; Kulminski, Alexander M.

    2016-01-01

    Age-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1) endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2) time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM), cancer, cardiovascular diseases (CVDs) and neurodegenerative diseases (NDs), and (3) both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08), out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2) and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory influence on

  19. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study.

    PubMed

    Greenwood, Tiffany A; Lazzeroni, Laura C; Calkins, Monica E; Freedman, Robert; Green, Michael F; Gur, Raquel E; Gur, Ruben C; Light, Gregory A; Nuechterlein, Keith H; Olincy, Ann; Radant, Allen D; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Stone, William S; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L

    2016-01-01

    The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease.

    PubMed

    Emdin, Connor A; Khera, Amit V; Chaffin, Mark; Klarin, Derek; Natarajan, Pradeep; Aragam, Krishna; Haas, Mary; Bick, Alexander; Zekavat, Seyedeh M; Nomura, Akihiro; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gupta, Namrata; Danesh, John; Chasman, Daniel; Ridker, Paul; Denny, Joshua; Bastarache, Lisa; Lichtman, Judith H; D'Onofrio, Gail; Mattera, Jennifer; Spertus, John A; Sheu, Wayne H-H; Taylor, Kent D; Psaty, Bruce M; Rich, Stephen S; Post, Wendy; Rotter, Jerome I; Chen, Yii-Der Ida; Krumholz, Harlan; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2018-04-24

    Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.

  1. Association between genetic variants of the clock gene and obesity and sleep duration.

    PubMed

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  2. Do Health Professionals Need Additional Competencies for Stratified Cancer Prevention Based on Genetic Risk Profiling?

    PubMed Central

    Chowdhury, Susmita; Henneman, Lidewij; Dent, Tom; Hall, Alison; Burton, Alice; Pharoah, Paul; Pashayan, Nora; Burton, Hilary

    2015-01-01

    There is growing evidence that inclusion of genetic information about known common susceptibility variants may enable population risk-stratification and personalized prevention for common diseases including cancer. This would require the inclusion of genetic testing as an integral part of individual risk assessment of an asymptomatic individual. Front line health professionals would be expected to interact with and assist asymptomatic individuals through the risk stratification process. In that case, additional knowledge and skills may be needed. Current guidelines and frameworks for genetic competencies of non-specialist health professionals place an emphasis on rare inherited genetic diseases. For common diseases, health professionals do use risk assessment tools but such tools currently do not assess genetic susceptibility of individuals. In this article, we compare the skills and knowledge needed by non-genetic health professionals, if risk-stratified prevention is implemented, with existing competence recommendations from the UK, USA and Europe, in order to assess the gaps in current competences. We found that health professionals would benefit from understanding the contribution of common genetic variations in disease risk, the rationale for a risk-stratified prevention pathway, and the implications of using genomic information in risk-assessment and risk management of asymptomatic individuals for common disease prevention. PMID:26068647

  3. Polymorphism at donkey β-lactoglobulin II locus: identification and characterization of a new genetic variant with a very low expression.

    PubMed

    Criscione, Andrea; Cunsolo, Vincenzo; Tumino, Serena; Di Francesco, Antonella; Bordonaro, Salvatore; Muccilli, Vera; Saletti, Rosaria; Marletta, Donata

    2018-06-01

    In the last years, donkey milk had evidenced a renewed interest as a potential functional food and a breast milk substitute. In this light, the study of the protein composition assumes an important role. In particular, β-lactoglobulin (β-LG), which is considered as one of the main allergenic milk protein, in donkey species consists of two molecular forms, namely β-LG I and β-LG II. In the present research, a genetic analysis coupled with a proteomic approach showed the presence of a new allele, here named F, which is apparently associated with a null or a severely reduced expression of β-LG II protein. The new β-LG II F genetic variant shows a theoretical average mass (M av ) of 18,310.64 Da, a value practically corresponding with that of the variant D (∆ mass  < 0.07 Da), but differs from β-LG II D for two amino acid substitutions: Thr 100 (variant F) → Ala 100 (variant D) and Thr 118 (variant F) → Met 118 (variant D). Proteomic investigation of the whey protein fraction of an individual milk sample, homozygous FF at β-LG II locus, allowed to identify, as very minor component, the new β-LG II F genetic variant. By MS/MS analysis of enzymatic digests, the sequence of the β-LG II F was characterized, and the predicted genomic data confirmed.

  4. Pathogenic Germline Variants in 10,389 Adult Cancers.

    PubMed

    Huang, Kuan-Lin; Mashl, R Jay; Wu, Yige; Ritter, Deborah I; Wang, Jiayin; Oh, Clara; Paczkowska, Marta; Reynolds, Sheila; Wyczalkowski, Matthew A; Oak, Ninad; Scott, Adam D; Krassowski, Michal; Cherniack, Andrew D; Houlahan, Kathleen E; Jayasinghe, Reyka; Wang, Liang-Bo; Zhou, Daniel Cui; Liu, Di; Cao, Song; Kim, Young Won; Koire, Amanda; McMichael, Joshua F; Hucthagowder, Vishwanathan; Kim, Tae-Beom; Hahn, Abigail; Wang, Chen; McLellan, Michael D; Al-Mulla, Fahd; Johnson, Kimberly J; Lichtarge, Olivier; Boutros, Paul C; Raphael, Benjamin; Lazar, Alexander J; Zhang, Wei; Wendl, Michael C; Govindan, Ramaswamy; Jain, Sanjay; Wheeler, David; Kulkarni, Shashikant; Dipersio, John F; Reimand, Jüri; Meric-Bernstam, Funda; Chen, Ken; Shmulevich, Ilya; Plon, Sharon E; Chen, Feng; Ding, Li

    2018-04-05

    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention--the TULIP Study.

    PubMed

    Weyrich, Peter; Machicao, Fausto; Reinhardt, Julia; Machann, Jürgen; Schick, Fritz; Tschritter, Otto; Stefan, Norbert; Fritsche, Andreas; Häring, Hans-Ulrich

    2008-11-12

    Sirtuin1 (SIRT1) regulates gene expression in distinct metabolic pathways and mediates beneficial effects of caloric restriction in animal models. In humans, SIRT1 genetic variants associate with fasting energy expenditure. To investigate the relevance of SIRT1 for human metabolism and caloric restriction, we analyzed SIRT1 genetic variants in respect to the outcome of a controlled lifestyle intervention in Caucasians at risk for type 2 diabetes. A total of 1013 non-diabetic Caucasians from the Tuebingen Family Study (TUEF) were genotyped for four tagging SIRT1 SNPs (rs730821, rs12413112, rs7069102, rs2273773) for cross-sectional association analyses with prediabetic traits. SNPs that associated with basal energy expenditure in the TUEF cohort were additionally analyzed in 196 individuals who underwent a controlled lifestyle intervention (Tuebingen Lifestyle Intervention Program; TULIP). Multivariate regressions analyses with adjustment for relevant covariates were performed to detect associations of SIRT1 variants with the changes in anthropometrics, weight, body fat or metabolic characteristics (blood glucose, insulin sensitivity, insulin secretion and liver fat, measured by magnetic resonance techniques) after the 9-month follow-up test in the TULIP study. Minor allele (X/A) carriers of rs12413112 (G/A) had a significantly lower basal energy expenditure (p = 0.04) and an increased respiratory quotient (p = 0.02). This group (rs12413112: X/A) was resistant against lifestyle-induced improvement of fasting plasma glucose (GG: -2.01%, X/A: 0.53%; p = 0.04), had less increase in insulin sensitivity (GG: 17.3%, X/A: 9.6%; p = 0.05) and an attenuated decline in liver fat (GG: -38.4%, X/A: -7.5%; p = 0.01). SIRT1 plays a role for the individual lifestyle intervention response, possibly owing to decreased basal energy expenditure and a lower lipid-oxidation rate in rs12413112 X/A allele carriers. SIRT1 genetic variants may, therefore, represent a relevant determinant for

  6. 22q11.2 deletion carriers and schizophrenia-associated novel variants.

    PubMed

    Balan, S; Iwayama, Y; Toyota, T; Toyoshima, M; Maekawa, M; Yoshikawa, T

    2014-01-01

    The penetrance of schizophrenia risk in carriers of the 22q11.2 deletion is high but incomplete, suggesting the possibility of additional genetic defects. We performed whole exome sequencing on two individuals with 22q11.2 deletion, one with schizophrenia and the other who was psychosis-free. The results revealed novel genetic variants related to neuronal function exclusively in the person with schizophrenia (frameshift: KAT8, APOH and SNX31; nonsense: EFCAB11 and CLVS2). This study paves the way towards a more complete understanding of variant dose and genetic architecture in schizophrenia.

  7. Host genetic variants of ABCB1 and IL15 influence treatment outcome in paediatric acute lymphoblastic leukaemia

    PubMed Central

    Lu, Y; Kham, S K Y; Ariffin, H; Oei, A M I; Lin, H P; Tan, A M; Quah, T C; Yeoh, A E J

    2014-01-01

    Background: Host germline variations and their potential prognostic importance is an emerging area of interest in paediatric ALL. Methods: We investigated the associations between 20 germline variations and various clinical end points in 463 children with ALL. Results: After adjusting for known prognostic factors, variants in two genes were found to be independently associated with poorer EFS: ABCB1 T/T at either 2677 (rs2032582) or 3435 (rs1045642) position (P=0.003) and IL15 67276493G/G (rs17015014; P=0.022). These variants showed a strong additive effect affecting outcome (P<0.001), whereby patients with both risk genotypes had the worst EFS (P=0.001), even after adjusting for MRD levels at the end of remission induction. The adverse effect of ABCB1 T/T genotypes was most pronounced in patients with favourable cytogenetics (P=0.011) while the IL15 67276493G/G genotype mainly affected patients without common chromosomal abnormalities (P=0.022). In both cytogenetic subgroups, increasing number of such risk genotypes still predicted worsening outcome (P<0.001 and=0.009, respectively). Conclusion: These results point to the prognostic importance of host genetic variants, although the specific mechanisms remain unclarified. Inclusion of ABCB1 and IL15 variants may help improve risk assignment strategies in paediatric ALL. PMID:24434428

  8. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.

    PubMed

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K; Milne, Roger L; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G; Guénel, Pascal; Haiman, Christopher A; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jasmine, Farzana; John, Esther M; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J; Schmutzler, Rita K; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C; Swerdlow, Anthony J; Toland, Amanda E; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S; Winqvist, Robert; Pilar Zamora, M; Zhao, Hui; Dunning, Alison M; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F; Zheng, Wei

    2016-05-01

    Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92-0.95, p = 4.13E-13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02-1.06, p = 1.26E-05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95-0.99, p = 8.05E-04). We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk.

  9. Genetic variants of organic cation transporter 1 (OCT1) and OCT2 significantly reduce lamivudine uptake.

    PubMed

    Choi, Min-Koo; Song, Im-Sook

    2012-04-01

    The study sought to investigate the effect of genetic variants of OCT1 (OCT1-P283L and -P341L) and OCT2 (OCT2-T199I, -T201M and -A270S), which were identified in a Korean population, on the transport of lamivudine in vitro and to compare the substrate dependent effects of OCT1 and OCT2 variants with 1-methyl-4-phenylpyridinium (MPP+), tetraethyl ammonium (TEA), metformin and lamivudine as substrates for these transporters. When the transport kinetics of lamivudine uptake in oocytes overexpressing OCT1 and OCT2 wild-type (WT) and variant proteins were measured, lamivudine uptake mediated by OCT1-WT was saturable, and uptake was decreased in oocytes expressing OCT1-P283L and -P341L variants compared with that in OCT1-WT. The Clint of lamivudine in oocytes expressing OCT1-P283L was decreased by 85.1% compared with OCT1-WT, whereas it was decreased by 48.7% in oocytes expressing OCT1-P341L. The Clint of lamivudine in oocytes expressing OCT2-T199I, -T201M and -A270S was decreased by 86.2%, 88.9% and 73.6%, respectively, compared with OCT2-WT. When comparing various substrates such as MPP+, TEA, metformin and lamivudine, the effects of the OCT1 genetic polymorphisms on their uptake were not identical. However, contrary to the case of OCT1, the uptake of MPP+, TEA, metformin and lamivudine in oocytes expressing OCT2-T199I, -T201M and -A270S variants was decreased significantly compared with that in oocytes expressing OCT2-WT. In conclusion, the effect of genetic variations of OCT1 and OCT2 on the uptake of MPP+, TEA, metformin and lamivudine was substrate-dependent. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions.

    PubMed

    Fenwick, Peri H; Jeejeebhoy, Khursheed; Dhaliwal, Rupinder; Royall, Dawna; Brauer, Paula; Tremblay, Angelo; Klein, Doug; Mutch, David M

    2018-02-05

    Metabolic syndrome (MetS) comprises a cluster of risk factors that includes central obesity, dyslipidemia, impaired glucose homeostasis and hypertension. Individuals with MetS have elevated risk of type 2 diabetes and cardiovascular disease; thus placing significant burdens on social and healthcare systems. Lifestyle interventions (comprised of diet, exercise or a combination of both) are routinely recommended as the first line of treatment for MetS. Only a proportion of people respond, and it has been assumed that psychological and social aspects primarily account for these differences. However, the etiology of MetS is multifactorial and stems, in part, on a person's genetic make-up. Numerous single nucleotide polymorphisms (SNPs) are associated with the various components of MetS, and several of these SNPs have been shown to modify a person's response to lifestyle interventions. Consequently, genetic variants can influence the extent to which a person responds to changes in diet and/or exercise. The goal of this review is to highlight SNPs reported to influence the magnitude of change in body weight, dyslipidemia, glucose homeostasis and blood pressure during lifestyle interventions aimed at improving MetS components. Knowledge regarding these genetic variants and their ability to modulate a person's response will provide additional context for improving the effectiveness of personalized lifestyle interventions that aim to reduce the risks associated with MetS.

  11. Clinical impact of genetic variants of drug transporters in different ethnic groups within and across regions.

    PubMed

    Ono, Chiho; Kikkawa, Hironori; Suzuki, Akiyuki; Suzuki, Misaki; Yamamoto, Yuichi; Ichikawa, Katsuomi; Fukae, Masato; Ieiri, Ichiro

    2013-11-01

    Drug transporters, together with drug metabolic enzymes, are major determinants of drug disposition and are known to alter the response to many commonly used drugs. Substantial frequency differences for known variants exist across geographic regions for certain drug transporters. To deliver efficacious medicine with the right dose for each patient, it is important to understand the contribution of genetic variants for drug transporters. Recently, mutual pharmacokinetic data usage among Asian regions, which are thought to be relatively similar in their own genetic background, is expected to accelerate new drug applications and reduce developmental costs. Polymorphisms of drug transporters could be key factors to be considered in implementing multiethnic global clinical trials. This review addresses the current knowledge on genetic variations of major drug transporters affecting drug disposition, efficacy and toxicity, focusing on the east Asian populations, and provides insights into future directions for precision medicine and drug development in east Asia.

  12. Variant Discovery and Fine Mapping of Genetic Loci Associated with Blood Pressure Traits in Hispanics and African Americans.

    PubMed

    Franceschini, Nora; Carty, Cara L; Lu, Yingchang; Tao, Ran; Sung, Yun Ju; Manichaikul, Ani; Haessler, Jeff; Fornage, Myriam; Schwander, Karen; Zubair, Niha; Bien, Stephanie; Hindorff, Lucia A; Guo, Xiuqing; Bielinski, Suzette J; Ehret, Georg; Kaufman, Joel D; Rich, Stephen S; Carlson, Christopher S; Bottinger, Erwin P; North, Kari E; Rao, D C; Chakravarti, Aravinda; Barrett, Paula Q; Loos, Ruth J F; Buyske, Steven; Kooperberg, Charles

    2016-01-01

    Despite the substantial burden of hypertension in US minority populations, few genetic studies of blood pressure have been conducted in Hispanics and African Americans, and it is unclear whether many of the established loci identified in European-descent populations contribute to blood pressure variation in non-European descent populations. Using the Metabochip array, we sought to characterize the genetic architecture of previously identified blood pressure loci, and identify novel cardiometabolic variants related to systolic and diastolic blood pressure in a multi-ethnic US population including Hispanics (n = 19,706) and African Americans (n = 18,744). Several known blood pressure loci replicated in African Americans and Hispanics. Fourteen variants in three loci (KCNK3, FGF5, ATXN2-SH2B3) were significantly associated with blood pressure in Hispanics. The most significant diastolic blood pressure variant identified in our analysis, rs2586886/KCNK3 (P = 5.2 x 10-9), also replicated in independent Hispanic and European-descent samples. African American and trans-ethnic meta-analysis data identified novel variants in the FGF5, ULK4 and HOXA-EVX1 loci, which have not been previously associated with blood pressure traits. Our identification and independent replication of variants in KCNK3, a gene implicated in primary hyperaldosteronism, as well as a variant in HOTTIP (HOXA-EVX1) suggest that further work to clarify the roles of these genes may be warranted. Overall, our findings suggest that loci identified in European descent populations also contribute to blood pressure variation in diverse populations including Hispanics and African Americans-populations that are understudied for hypertension genetic risk factors.

  13. Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome.

    PubMed

    De Cario, Rosina; Sticchi, Elena; Lucarini, Laura; Attanasio, Monica; Nistri, Stefano; Marcucci, Rossella; Pepe, Guglielmina; Giusti, Betti

    2017-08-25

    Genetic variants in transforming growth factor beta (TGF-β) receptors type 1 (TGFBR1) and type 2 (TGFBR2) genes have been associated with different hereditary connective tissue disorders sharing thoracic aortic aneurysm and dissection (TAA/D). Mutations in both TGFBR1/2 genes have been described in patients with TAA/D and Marfan syndrome (MFS), and they are associated consistently with Loeys-Dietz syndrome. The existing literature shows discordant data resulting from mutational screening of TGFBR1/2 genes in patients with MFS. The aim of the study was to investigate the role of TGFBR1/2 genetic variants in determining and/or modulating MFS clinical phenotype. We investigated 75 unrelated patients with MFS referred to the Center for Marfan Syndrome and Related Disorders (Careggi University Hospital, Florence) who were subjected to FBN1 and TGFBR1/2 Sanger mutational screening. Forty-seven patients with MFS (63%) carried a pathogenetic FBN1 mutation. No pathogenetic mutations were detected in TGFBR1/2 genes. Ten common polymorphisms were identified in TGFBR2 and 6 in TGFBR1. Their association with cardiovascular manifestations was evaluated. Carriers of the A allele of rs11466512, delA allele of c.383delA or delT allele of c.1256-15del1T polymorphisms had a trend toward or significantly reduced z-scores (median [interquartile range (IQR)], 2.2 [1.13-4.77]; 2.1 [1.72-3.48]; 2.5 [1.85-3.86]) with respect to homozygous patients with wild-type MFS (median [IQR], 4.20 [2.39-7.25]; 3.9 [2.19-7.00]; 3.9 [2.14-6.93]). Carriers of the A allele of the rs2276767 polymorphism showed a trend toward increased z-score (median [IQR], 4.9 [2.14-7.16]) with respect to patients with wild-type MFS (median [IQR], 3.3 [1.75-5.45]). The protective effect of TGFBR1/2 genetic score including all the 4 variants was also evaluated. Patients with MFS with two or more protective alleles included in the score had statistically significant reduced aortic z-scores (median [IQR], 2.20 [1

  14. Genetic purgatory and the cardiac channelopathies: Exposing the variants of uncertain/unknown significance issue.

    PubMed

    Ackerman, Michael J

    2015-11-01

    Merriam-Webster's online dictionary defines purgatory as "an intermediate state after death for expiatory purification" or more specifically as "a place or state of punishment wherein according to Roman Catholic doctrine the souls of those who die in God׳s grace may make satisfaction for past sins and so become fit for heaven." Alternatively, it is defined as "a place or state of temporary suffering or misery." Either way, purgatory is a place where you are stuck, and you don't want to be stuck there. It is in this context that the term genetic purgatory is introduced. Genetic purgatory is a place where the genetic test-ordering physician and patients and their families are stuck when a variant of uncertain/unknown significance (VUS) has been elucidated. It is in this dark place where suffering and misery are occurring because of unenlightened handling of a VUS, which includes using the VUS for predictive genetic testing and making radical treatment recommendations based on the presence or absence of a so-called maybe mutation. Before one can escape from this miserable place, one must first recognize that one is stuck there. Hence, the purpose of this review article is to fully expose the VUS issue as it relates to the cardiac channelopathies and make the cardiologists/geneticists/genetic counselors who order such genetic tests believers in genetic purgatory. Only then can one meaningfully attempt to get out of that place and seek to promote a VUS to disease-causative mutation status or demote it to an utterly innocuous and irrelevant variant. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Reduced ITPase activity and favorable IL28B genetic variant protect against ribavirin-induced anemia in interferon-free regimens.

    PubMed

    Vasanthakumar, Aparna; Davis, Justin W; Abunimeh, Manal; Söderholm, Jonas; Zha, Jiuhong; Dumas, Emily O; Cohen, Daniel E; Waring, Jeffrey F; Lagging, Martin

    2018-01-01

    Genetic variants of inosine triphosphatase (ITPA) that confer reduced ITPase activity are associated with protection against ribavirin(RBV)-induced hemolytic anemia in peginterferon(IFN)/RBV-based treatment of hepatitis C virus (HCV). Patients with reduced ITPase activity showed improved treatment efficacy when treated with IFN/RBV. In addition, a genetic polymorphism near the IL28B gene is associated with an improved response to IFN/RBV treatment. RBV has been an important component of IFN-containing regimens, and is currently recommended in combination with several IFN-free regimens for treatment of harder to cure HCV infections. To evaluate whether genetic variations that reduce ITPase activity impact RBV-induced anemia in IFN-free/RBV regimens. In this study, genetic analyses were conducted in the PEARL-IV trial to investigate the effect of activity-reducing ITPA variants as well as IL28B polymorphism on anemia, platelet (PLT) counts, and virologic response in HCV genotype1a-infected patients treated with the direct-acting antiviral (DAA) regimen of ombitasvir/paritaprevir/ritonavir and dasabuvir±RBV. Reduction in ITPase activity and homozygosity for the IL28Brs12979860 CC genotype protected against RBV-induced anemia. In patients receiving RBV, reduced ITPase activity was associated with reduced plasma RBV concentration and higher PLT counts. ITPase activity had no impact on response to DAA treatment, viral kinetics, or baseline IP-10 levels. Our study demonstrates that genetics of ITPA and IL28B may help identify patients protected from RBV-induced anemia when treated with IFN-free regimens. Our work demonstrates for the first time that IL28B genetics may also have an impact on RBV-induced anemia. This may be of particular significance in patients with difficult-to-cure HCV infections, such as patients with decompensated cirrhosis where RBV-containing regimens likely will continue to be recommended.

  16. Genetic ancestry modifies the association between genetic risk variants and breast cancer risk among Hispanic and non-Hispanic white women

    PubMed Central

    Fejerman, Laura

    2013-01-01

    Hispanic women in the USA have lower breast cancer incidence than non-Hispanic white (NHW) women. Genetic factors may contribute to this difference. Breast cancer genome-wide association studies (GWAS) conducted in women of European or Asian descent have identified multiple risk variants. We tested the association between 10 previously reported single nucleotide polymorphisms (SNPs) and risk of breast cancer in a sample of 4697 Hispanic and 3077 NHW women recruited as part of three population-based case–control studies of breast cancer. We used stratified logistic regression analyses to compare the associations with different genetic variants in NHWs and Hispanics classified by their proportion of Indigenous American (IA) ancestry. Five of 10 SNPs were statistically significantly associated with breast cancer risk. Three of the five significant variants (rs17157903-RELN, rs7696175-TLR1 and rs13387042-2q35) were associated with risk among Hispanics but not in NHWs. The odds ratio (OR) for the heterozygous at 2q35 was 0.75 [95% confidence interval (CI) = 0.50–1.15] for low IA ancestry and 1.38 (95% CI = 1.04–1.82) for high IA ancestry (P interaction 0.02). The ORs for association at RELN were 0.87 (95% CI = 0.59–1.29) and 1.69 (95% CI = 1.04–2.73), respectively (P interaction 0.03). At the TLR1 locus, the ORs for women homozygous for the rare allele were 0.74 (95% CI = 0.42–1.31) and 1.73 (95% CI = 1.19–2.52) (P interaction 0.03). Our results suggest that the proportion of IA ancestry modifies the magnitude and direction of the association of 3 of the 10 previously reported variants. Genetic ancestry should be considered when assessing risk in women of mixed descent and in studies designed to discover causal mutations. PMID:23563089

  17. Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbrekar, Kamalesh Dattaram; Bola Sadashiva, Satish Rao; Kabekkodu, Shama Prasada

    Purpose: Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage–repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. Methods and Materials: The present study was conducted in a cohort of patients with breast cancer to evaluatemore » the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. Results: Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3′-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene–gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). Conclusions: The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue

  18. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds.

    PubMed

    Poulsen, N A; Bertelsen, H P; Jensen, H B; Gustavsson, F; Glantz, M; Månsson, H Lindmark; Andrén, A; Paulsson, M; Bendixen, C; Buitenhuis, A J; Larsen, L B

    2013-08-01

    Substantial variation in milk coagulation properties has been observed among dairy cows. Consequently, raw milk from individual cows and breeds exhibits distinct coagulation capacities that potentially affect the technological properties and milk processing into cheese. This variation is largely influenced by protein composition, which is in turn affected by underlying genetic polymorphisms in the major milk proteins. In this study, we conducted a large screening on 3 major Scandinavian breeds to resolve the variation in milk coagulation traits and the frequency of milk with impaired coagulation properties (noncoagulation). In total, individual coagulation properties were measured on morning milk collected from 1,299 Danish Holstein (DH), Danish Jersey (DJ), and Swedish Red (SR) cows. The 3 breeds demonstrated notable interbreed differences in coagulation properties, with DJ cows exhibiting superior coagulation compared with the other 2 breeds. In addition, milk samples from 2% of DH and 16% of SR cows were classified as noncoagulating. Furthermore, the cows were genotyped for major genetic variants in the αS1- (CSN1S1), β- (CSN2), and κ-casein (CSN3) genes, revealing distinct differences in variant frequencies among breeds. Allele I of CSN2, which had not formerly been screened in such a high number of cows in these Scandinavian breeds, showed a frequency around 7% in DH and DJ, but was not detected in SR. Genetic polymorphisms were significantly associated with curd firming rate and rennet coagulation time. Thus, CSN1S1 C, CSN2 B, and CSN3 B positively affected milk coagulation, whereas CSN2 A(2), in particular, had a negative effect. In addition to the influence of individual casein genes, the effects of CSN1S1-CSN2-CSN3 composite genotypes were also examined, and revealed strong associations in all breeds, which more or less reflected the single gene results. Overall, milk coagulation is under the influence of additive genetic variation. Optimal milk for

  19. Spectrum of genetic variants of BRCA1 and BRCA2 in a German single center study.

    PubMed

    Meisel, Cornelia; Sadowski, Carolin Eva; Kohlstedt, Daniela; Keller, Katja; Stäritz, Franziska; Grübling, Nannette; Becker, Kerstin; Mackenroth, Luisa; Rump, Andreas; Schröck, Evelin; Arnold, Norbert; Wimberger, Pauline; Kast, Karin

    2017-05-01

    Determination of mutation status of BRCA1 and BRCA2 has become part of the clinical routine. However, the spectrum of genetic variants differs between populations. The aim of this study was to deliver a comprehensive description of all detected variants. In families fulfilling one of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) criteria for genetic testing, one affected was chosen for analysis. DNA of blood lymphocytes was amplified by PCR and prescreened by DHPLC. Aberrant fragments were sequenced. All coding exons and splice sites of BRCA1 and BRCA2 were analyzed. Screening for large rearrangements in both genes was performed by MLPA. Of 523 index patients, 121 (23.1%) were found to carry a pathogenic or likely pathogenic (class 4/5) mutation. A variant of unknown significance (VUS) was detected in 73/523 patients (13.9%). Two mutations p.Gln1756Profs*74 and p.Cys61Gly comprised 42.3% (n = 33/78) of all detected pathogenic mutations in BRCA1. Most of the other mutations were unique mutations. The most frequently detected mutation in BRCA2 was p.Val1283Lys (13.9%; n = 6/43). Altogether, 101 different neutral genetic variants were counted in BRCA1 (n = 35) and in BRCA2 (n = 66). The two most frequently detected mutations are founder mutations in Poland and Czech Republic. More similarities seem to be shared with our direct neighbor countries compared to other European countries. For comparison of the extended genotype, a shared database is needed.

  20. Utilizing population controls in rare-variant case-parent association tests.

    PubMed

    Jiang, Yu; Satten, Glen A; Han, Yujun; Epstein, Michael P; Heinzen, Erin L; Goldstein, David B; Allen, Andrew S

    2014-06-05

    There is great interest in detecting associations between human traits and rare genetic variation. To address the low power implicit in single-locus tests of rare genetic variants, many rare-variant association approaches attempt to accumulate information across a gene, often by taking linear combinations of single-locus contributions to a statistic. Using the right linear combination is key-an optimal test will up-weight true causal variants, down-weight neutral variants, and correctly assign the direction of effect for causal variants. Here, we propose a procedure that exploits data from population controls to estimate the linear combination to be used in an case-parent trio rare-variant association test. Specifically, we estimate the linear combination by comparing population control allele frequencies with allele frequencies in the parents of affected offspring. These estimates are then used to construct a rare-variant transmission disequilibrium test (rvTDT) in the case-parent data. Because the rvTDT is conditional on the parents' data, using parental data in estimating the linear combination does not affect the validity or asymptotic distribution of the rvTDT. By using simulation, we show that our new population-control-based rvTDT can dramatically improve power over rvTDTs that do not use population control information across a wide variety of genetic architectures. It also remains valid under population stratification. We apply the approach to a cohort of epileptic encephalopathy (EE) trios and find that dominant (or additive) inherited rare variants are unlikely to play a substantial role within EE genes previously identified through de novo mutation studies. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population.

    PubMed

    Peplonska, B; Adamczyk, J G; Siewierski, M; Safranow, K; Maruszak, A; Sozanski, H; Gajewski, A K; Zekanowski, C

    2017-08-01

    The aim of the study was to assess whether selected genetic variants are associated with elite athlete performance in a group of 413 elite athletes and 451 sedentary controls. Polymorphisms in ACE, ACTN3, AGT, NRF-2, PGC1A, PPARG, and TFAM implicated in physical performance traits were analyzed. Additionally, polymorphisms in CHRNB3 and FAAH coding for proteins modulating activity of brain's emotion centers were included. The results of univariate analyses indicated that the elite athletic performance is associated with four polymorphisms: ACE (rs4341, P = 0.0095), NRF-2 (rs12594956, P = 0.011), TFAM (rs2306604, P = 0.049), and FAAH (rs324420, P = 0.0041). The multivariate analysis adjusted for age and gender confirmed this association. The higher number of ACE D alleles (P = 0.0021) and the presence of NRF-2 rs12594956 A allele (P = 0.0067) are positive predictors, whereas TFAM rs2306604 GG genotype (P = 0.031) and FAAH rs324420 AA genotype (P = 0.0084) negatively affect the elite athletic performance. The CHRNB3 variant (rs4950, G allele) is significantly more frequent in the endurance athletes compared with the power ones (P = 0.025). Multivariate analysis demonstrated that the presence of rs4950 G allele contributes to endurance performance (P = 0.0047). Our results suggest that genetic inheritance of psychological traits should be taken into consideration while trying to decipher a genetic profile of top athletic performance. © 2016 The Authors. Scandinavian Journal of Medicine & Science in Sports published by John Wiley & Sons Ltd.

  2. De Novo Coding Variants Are Strongly Associated with Tourette Disorder

    PubMed Central

    Willsey, A. Jeremy; Fernandez, Thomas V.; Yu, Dongmei; King, Robert A.; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J.; Mandell, Jeffrey D.; Huang, Alden Y.; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E.; Neale, Benjamin M.; Coppola, Giovanni; Mathews, Carol A.; Tischfield, Jay A.; Scharf, Jeremiah M.; State, Matthew W.; Heiman, Gary A.

    2017-01-01

    SUMMARY Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. PMID:28472652

  3. Genetic variant in CXCL13 gene is associated with susceptibility to intrauterine infection of hepatitis B virus

    PubMed Central

    Wan, Zhihua; Lin, Xiaofang; Li, Tongyang; Zhou, Aifen; Yang, Mei; Hu, Dan; Feng, Li; Peng, Songxu; Fan, Linlin; Tu, Si; Bin Zhang; Du, Yukai

    2016-01-01

    Intrauterine infection of hepatitis B virus (HBV), which accounts for the majority of mother-to-child transmission, is one of the main reasons for the failure of combined immunoprophylaxis against the transmission. Recent studies have identified that genetic background might influence the susceptibility to intrauterine infection of HBV. We conducted this study to investigate the associations between 10 genetic variants in 9 genes (SLC10A1, HLA-DP, HLA-C, CXCR5, CXCL13, TLR3, TLR4, TLR9 and UBE2L3) of mothers and their neonates and HBV intrauterine infection. A significantly decreased risk of HBV intrauterine transmission were found among mothers who carried the rs355687 CT genotypes in CXCL13 gene compared to those with CC genotypes (OR = 0.25, 95% CI, 0.08–0.82, P = 0.022); and a marginally significantly decreased risk was also observed under the dominant model (OR = 0.34, 95% CI, 0.11–1.01, P = 0.052). Besides, neonatal rs3130542 in HLA-C gene was found to be marginally significantly associated with decreased risk of HBV intrauterine infection under the additive model (OR = 0.55, 95% CI, 0.29–1.04, P = 0.064). However, we found no evidence of associations between the remaining 8 SNPs and risk of HBV intrauterine infection among mothers and their neonates. In conclusion, this study suggested that genetic variant in CXCL13 gene was associated with susceptibility to intrauterine infection of HBV. PMID:27212637

  4. Genetic variants involved in gallstone formation and capsaicin metabolism, and the risk of gallbladder cancer in Chilean women

    PubMed Central

    Báez, Sergio; Tsuchiya, Yasuo; Calvo, Alfonso; Pruyas, Martha; Nakamura, Kazutoshi; Kiyohara, Chikako; Oyama, Mari; Yamamoto, Masaharu

    2010-01-01

    AIM: To determine the effects of genetic variants associated with gallstone formation and capsaicin (a pungent component of chili pepper) metabolism on the risk of gallbladder cancer (GBC). METHODS: A total of 57 patients with GBC, 119 patients with gallstones, and 70 controls were enrolled in this study. DNA was extracted from their blood or paraffin block sample using standard commercial kits. The statuses of the genetic variants were assayed using Taqman® SNP Genotyping Assays or Custom Taqman® SNP Genotyping Assays. RESULTS: The non-ancestral T/T genotype of apolipoprotein B rs693 polymorphism was associated with a decreased risk of GBC (OR: 0.14, 95% CI: 0.03-0.63). The T/T genotype of cholesteryl ester transfer protein (CETP) rs708272 polymorphism was associated with an increased risk of GBC (OR: 5.04, 95% CI: 1.43-17.8). CONCLUSION: Genetic variants involved in gallstone formation such as the apolipoprotein B rs693 and CETP rs708272 polymorphisms may be related to the risk of developing GBC in Chilean women. PMID:20082485

  5. Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing

    PubMed Central

    Jiang, Yong-hui; Yuen, Ryan K.C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T.; Chrysler, Christina; Drmic, Irene E.; Howe, Jennifer L.; Lau, Lynette; Marshall, Christian R.; Merico, Daniele; Nalpathamkalam, Thomas; Thiruvahindrapuram, Bhooma; Thompson, Ann; Uddin, Mohammed; Walker, Susan; Luo, Jun; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Ring, Robert H.; Wang, Jian; Lajonchere, Clara; Wang, Jun; Shih, Andy; Szatmari, Peter; Yang, Huanming; Dawson, Geraldine; Li, Yingrui; Scherer, Stephen W.

    2013-01-01

    Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. PMID:23849776

  6. The genetic validation of heterogeneity in schizophrenia.

    PubMed

    Tsutsumi, Atsushi; Glatt, Stephen J; Kanazawa, Tetsufumi; Kawashige, Seiya; Uenishi, Hiroyuki; Hokyo, Akira; Kaneko, Takao; Moritani, Makiko; Kikuyama, Hiroki; Koh, Jun; Matsumura, Hitoshi; Yoneda, Hiroshi

    2011-10-07

    Schizophrenia is a heritable disorder, however clear genetic architecture has not been detected. To overcome this state of uncertainty, the SZGene database has been established by including all published case-control genetic association studies appearing in peer-reviewed journals. In the current study, we aimed to determine if genetic variants strongly suggested by SZGene are associated with risk of schizophrenia in our case-control samples of Japanese ancestry. In addition, by employing the additive model for aggregating the effect of seven variants, we aimed to verify the genetic heterogeneity of schizophrenia diagnosed by an operative diagnostic manual, the DSM-IV. Each positively suggested genetic polymorphism was ranked according to its p-value, then the seven top-ranked variants (p < 0.0005) were selected from DRD2, DRD4, GRIN2B, TPH1, MTHFR, and DTNBP1 (February, 2007). 407 Schizophrenia cases and 384 controls participated in this study. To aggregate the vulnerability of the disorder based on the participants' genetic information, we calculated the "risk-index" by adding the number of genetic risk factors. No statistically significant deviation between cases and controls was observed in the genetic risk-index derived from all seven variants on the top-ranked polymorphisms. In fact, the average risk-index score in the schizophrenia group (6.5+/-1.57) was slightly lower than among controls (6.6+/-1.39). The current work illustrates the difficulty in identifying universal and definitive risk-conferring polymorphisms for schizophrenia. Our employed number of samples was small, so we can not preclude the possibility that some or all of these variants are minor risk factors for schizophrenia in the Japanese population. It is also important to aggregate the updated positive variants in the SZGene database when the replication work is conducted.

  7. [Study of genetic variants in the BDNF, COMT, DAT1 and SERT genes in Colombian children with attention deficit disorder].

    PubMed

    Ortega-Rojas, Jenny; Arboleda-Bustos, Carlos E; Morales, Luis; Benítez, Bruno A; Beltrán, Diana; Izquierdo, Álvaro; Arboleda, Humberto; Vásquez, Rafael

    Attention deficit and hyperactive disorder (ADHD) is highly prevalent among children in Bogota City. Both genetic and environmental factors play a very important role in the etiology of ADHD. However, to date few studies have addressed the association of genetic variants and ADHD in the Colombian population. To test the genetic association between polymorphisms in the DAT1, HTTLPR, COMT and BDNF genes and ADHD in a sample from Bogota City. We genotyped the most common polymorphisms in DAT1, SERT, COMT and BDNF genes associated with ADHD using conventional PCR followed by restriction fragment length polymorphism (RFLP) in 97 trios recruited in a medical center in Bogota. The transmission disequilibrium test (TDT) was used to determine the association between such genetic variants and ADHD. The TDT analysis showed that no individual allele of any variant studied has a preferential transmission. Our results suggest that the etiology of the ADHD may be complex and involves several genetic factors. Further studies in other candidate polymorphisms in a larger sample size will improve our knowledge of the ADHD in Colombian population. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  8. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis.

    PubMed

    Lotta, Luca A; Sharp, Stephen J; Burgess, Stephen; Perry, John R B; Stewart, Isobel D; Willems, Sara M; Luan, Jian'an; Ardanaz, Eva; Arriola, Larraitz; Balkau, Beverley; Boeing, Heiner; Deloukas, Panos; Forouhi, Nita G; Franks, Paul W; Grioni, Sara; Kaaks, Rudolf; Key, Timothy J; Navarro, Carmen; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, Jose-Ramón; Riboli, Elio; Rolandsson, Olov; Sacerdote, Carlotta; Salamanca, Elena C; Slimani, Nadia; Spijkerman, Annemieke Mw; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; van der Schouw, Yvonne T; McCarthy, Mark I; Barroso, Inês; O'Rahilly, Stephen; Savage, David B; Sattar, Naveed; Langenberg, Claudia; Scott, Robert A; Wareham, Nicholas J

    2016-10-04

    Low-density lipoprotein cholesterol (LDL-C)-lowering alleles in or near NPC1L1 or HMGCR, encoding the respective molecular targets of ezetimibe and statins, have previously been used as proxies to study the efficacy of these lipid-lowering drugs. Alleles near HMGCR are associated with a higher risk of type 2 diabetes, similar to the increased incidence of new-onset diabetes associated with statin treatment in randomized clinical trials. It is unknown whether alleles near NPC1L1 are associated with the risk of type 2 diabetes. To investigate whether LDL-C-lowering alleles in or near NPC1L1 and other genes encoding current or prospective molecular targets of lipid-lowering therapy (ie, HMGCR, PCSK9, ABCG5/G8, LDLR) are associated with the risk of type 2 diabetes. The associations with type 2 diabetes and coronary artery disease of LDL-C-lowering genetic variants were investigated in meta-analyses of genetic association studies. Meta-analyses included 50 775 individuals with type 2 diabetes and 270 269 controls and 60 801 individuals with coronary artery disease and 123 504 controls. Data collection took place in Europe and the United States between 1991 and 2016. Low-density lipoprotein cholesterol-lowering alleles in or near NPC1L1, HMGCR, PCSK9, ABCG5/G8, and LDLR. Odds ratios (ORs) for type 2 diabetes and coronary artery disease. Low-density lipoprotein cholesterol-lowering genetic variants at NPC1L1 were inversely associated with coronary artery disease (OR for a genetically predicted 1-mmol/L [38.7-mg/dL] reduction in LDL-C of 0.61 [95% CI, 0.42-0.88]; P = .008) and directly associated with type 2 diabetes (OR for a genetically predicted 1-mmol/L reduction in LDL-C of 2.42 [95% CI, 1.70-3.43]; P < .001). For PCSK9 genetic variants, the OR for type 2 diabetes per 1-mmol/L genetically predicted reduction in LDL-C was 1.19 (95% CI, 1.02-1.38; P = .03). For a given reduction in LDL-C, genetic variants were associated with a similar reduction in

  9. Prediction of individual genetic risk to prostate cancer using a polygenic score.

    PubMed

    Szulkin, Robert; Whitington, Thomas; Eklund, Martin; Aly, Markus; Eeles, Rosalind A; Easton, Douglas; Kote-Jarai, Z Sofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel M; Henderson, Brian E; Schumacher, Fredrick; Haiman, Christopher A; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L J; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Lubiński, Jan; Kluźniak, Wojciech; Cannon-Albright, Lisa; Brenner, Hermann; Butterbach, Katja; Stegmaier, Christa; Park, Jong Y; Sellers, Thomas; Lin, Hui-Yi; Lim, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Clements, Judith A; Spurdle, Amanda; Teixeira, Manuel R; Paulo, Paula; Maia, Sofia; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej; Gronberg, Henrik; Wiklund, Fredrik

    2015-09-01

    Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. © 2015 Wiley Periodicals, Inc.

  10. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    PubMed

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma.

    PubMed

    Machiela, Mitchell J; Hofmann, Jonathan N; Carreras-Torres, Robert; Brown, Kevin M; Johansson, Mattias; Wang, Zhaoming; Foll, Matthieu; Li, Peng; Rothman, Nathaniel; Savage, Sharon A; Gaborieau, Valerie; McKay, James D; Ye, Yuanqing; Henrion, Marc; Bruinsma, Fiona; Jordan, Susan; Severi, Gianluca; Hveem, Kristian; Vatten, Lars J; Fletcher, Tony; Koppova, Kvetoslava; Larsson, Susanna C; Wolk, Alicja; Banks, Rosamonde E; Selby, Peter J; Easton, Douglas F; Pharoah, Paul; Andreotti, Gabriella; Freeman, Laura E Beane; Koutros, Stella; Albanes, Demetrius; Mannisto, Satu; Weinstein, Stephanie; Clark, Peter E; Edwards, Todd E; Lipworth, Loren; Gapstur, Susan M; Stevens, Victoria L; Carol, Hallie; Freedman, Matthew L; Pomerantz, Mark M; Cho, Eunyoung; Kraft, Peter; Preston, Mark A; Wilson, Kathryn M; Gaziano, J Michael; Sesso, Howard S; Black, Amanda; Freedman, Neal D; Huang, Wen-Yi; Anema, John G; Kahnoski, Richard J; Lane, Brian R; Noyes, Sabrina L; Petillo, David; Colli, Leandro M; Sampson, Joshua N; Besse, Celine; Blanche, Helene; Boland, Anne; Burdette, Laurie; Prokhortchouk, Egor; Skryabin, Konstantin G; Yeager, Meredith; Mijuskovic, Mirjana; Ognjanovic, Miodrag; Foretova, Lenka; Holcatova, Ivana; Janout, Vladimir; Mates, Dana; Mukeriya, Anush; Rascu, Stefan; Zaridze, David; Bencko, Vladimir; Cybulski, Cezary; Fabianova, Eleonora; Jinga, Viorel; Lissowska, Jolanta; Lubinski, Jan; Navratilova, Marie; Rudnai, Peter; Szeszenia-Dabrowska, Neonila; Benhamou, Simone; Cancel-Tassin, Geraldine; Cussenot, Olivier; Bueno-de-Mesquita, H Bas; Canzian, Federico; Duell, Eric J; Ljungberg, Börje; Sitaram, Raviprakash T; Peters, Ulrike; White, Emily; Anderson, Garnet L; Johnson, Lisa; Luo, Juhua; Buring, Julie; Lee, I-Min; Chow, Wong-Ho; Moore, Lee E; Wood, Christopher; Eisen, Timothy; Larkin, James; Choueiri, Toni K; Lathrop, G Mark; Teh, Bin Tean; Deleuze, Jean-Francois; Wu, Xifeng; Houlston, Richard S; Brennan, Paul; Chanock, Stephen J; Scelo, Ghislaine; Purdue, Mark P

    2017-11-01

    Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings. We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length. Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis. Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R 2 >0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13). Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk. Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with

  12. Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy.

    PubMed

    de Haas, Sanne; Delmar, Paul; Bansal, Aruna T; Moisse, Matthieu; Miles, David W; Leighl, Natasha; Escudier, Bernard; Van Cutsem, Eric; Carmeliet, Peter; Scherer, Stefan J; Pallaud, Celine; Lambrechts, Diether

    2014-10-01

    Despite extensive translational research, no validated biomarkers predictive of bevacizumab treatment outcome have been identified. We performed a meta-analysis of individual patient data from six randomized phase III trials in colorectal, pancreatic, lung, renal, breast, and gastric cancer to explore the potential relationships between 195 common genetic variants in the vascular endothelial growth factor (VEGF) pathway and bevacizumab treatment outcome. The analysis included 1,402 patients (716 bevacizumab-treated and 686 placebo-treated). Twenty variants were associated (P < 0.05) with progression-free survival (PFS) in bevacizumab-treated patients. Of these, 4 variants in EPAS1 survived correction for multiple testing (q < 0.05). Genotype-by-treatment interaction tests revealed that, across these 20 variants, 3 variants in VEGF-C (rs12510099), EPAS1 (rs4953344), and IL8RA (rs2234671) were potentially predictive (P < 0.05), but not resistant to multiple testing (q > 0.05). A weak genotype-by-treatment interaction effect was also observed for rs699946 in VEGF-A, whereas Bayesian genewise analysis revealed that genetic variability in VHL was associated with PFS in the bevacizumab arm (q < 0.05). Variants in VEGF-A, EPAS1, and VHL were located in expression quantitative loci derived from lymphoblastoid cell lines, indicating that they affect the expression levels of their respective gene. This large genetic analysis suggests that variants in VEGF-A, EPAS1, IL8RA, VHL, and VEGF-C have potential value in predicting bevacizumab treatment outcome across tumor types. Although these associations did not survive correction for multiple testing in a genotype-by-interaction analysis, they are among the strongest predictive effects reported to date for genetic variants and bevacizumab efficacy.

  13. Association of Genetic Susceptibility Variants for Type 2 Diabetes with Breast Cancer Risk in Women of European Ancestry

    PubMed Central

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K.; Milne, Roger L.; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E.; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V.; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G.; Guénel, Pascal; Haiman, Christopher A.; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J.; Hopper, John L.; Jakubowska, Anna; Jasmine, Farzana; John, Esther M.; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A.; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E.; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J.; Schmutzler, Rita K.; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C.; Swerdlow, Anthony J; Toland, Amanda E.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B.; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S.; Winqvist, Robert; Zamora, M. Pilar; Zhao, Hui; Dunning, Alison M.; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F.; Zheng, Wei

    2016-01-01

    Purpose Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (OR) and 95% confidence intervals (CI) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. Results The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at P < 0.001), rs9939609 (FTO) (OR = 0.94, 95% CI = 0.92 – 0.95, P = 4.13E-13), rs7903146 (TCF7L2) (OR = 1.04, 95% CI = 1.02 – 1.06, P = 1.26E-05), and rs8042680 (PRC1) (OR = 0.97, 95% CI = 0.95 – 0.99, P = 8.05E-04). Conclusions We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk. PMID:27053251

  14. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-02-26

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.

  15. Genetic variants in oxytocin receptor gene (OXTR) and childhood physical abuse collaborate to modify the risk of aggression in chinese adolescents.

    PubMed

    Zhang, Yanmei; Wu, Chunxia; Chang, Hongjuan; Yan, Qiuge; Wu, Linguo; Yuan, Shanshan; Xiang, Jingjing; Hao, Wen; Yu, Yizhen

    2018-03-15

    Accumulating evidence suggests that genetic and environmental factors may influence aggression susceptibility. However, the etiology of aggressive behavior remains unknown. Compared to some extensively studied candidate genes of aggression, very little is known about the OXTR gene. The objective of this study was to determine whether OXTR genetic variants were associated with aggression risk and whether these polymorphisms showed interactive effects with childhood maltreatment on aggression in Chinese adolescents. A total of 996 participants including 488 cases and 488 controls were selected in our study. Aggression, childhood maltreatment were measured by self-reported questionnaire. Buccal cells were collected. Genotyping was performed using SNPscan. Logistic regressions were used to estimate both main effects of OXTR polymorphisms and the interactive effects with childhood maltreatment on aggressive behavior. Participants who carried the rs237885 TT genotypes in OXTR had a higher risk of aggression compared to those who carried GG or GT genotypes under the recessive model (OR=1.40, 95% CI, 1.04-1.89) after controlling for potential confounders. In addition, we also found that the polymorphism had a synergic additive interaction with childhood physical abuse on the aggression risk. The subjects in the present study were only males, thus our findings and conclusions could not be generalized to females. The present study provides evidence that OXTR genetic variants may contribute to aggression susceptibility. Moreover, this is the first study reporting significant interactive effects of OXTR polymorphism and childhood physical abuse on aggressive behavior in Chinese adolescents. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2

    PubMed Central

    Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-01-01

    ABSTRACT Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. IMPORTANCE This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. PMID:26401046

  17. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2.

    PubMed

    Burrel, Sonia; Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-12-01

    Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Genetic risk variants for metabolic traits in Arab populations.

    PubMed

    Hebbar, Prashantha; Elkum, Naser; Alkayal, Fadi; John, Sumi Elsa; Thanaraj, Thangavel Alphonse; Alsmadi, Osama

    2017-01-20

    Despite a high prevalence of metabolic trait related diseases in Arabian Peninsula, there is a lack of convincingly identified genetic determinants for metabolic traits in this population. Arab populations are underrepresented in global genome-wide association studies. We genotyped 1965 unrelated Arab individuals from Kuwait using Cardio-MetaboChip, and tested SNP associations with 13 metabolic traits. Models based on recessive mode of inheritance identified Chr15:40531386-rs12440118/ZNF106/W->R as a risk variant associated with glycated-hemoglobin at close to 'genome-wide significant' p-value and five other risk variants 'nominally' associated (p-value ≤ 5.45E-07) with fasting plasma glucose (rs7144734/[OTX2-AS1,RPL3P3]) and triglyceride (rs17501809/PLGRKT; rs11143005/LOC105376072; rs900543/[THSD4,NR2E3]; and Chr12:101494770/IGF1). Furthermore, we identified 33 associations (30 SNPs with 12 traits) with 'suggestive' evidence of association (p-value < 1.0E-05); 20 of these operate under recessive mode of inheritance. Two of these 'suggestive' associations (rs1800775-CETP/HDL; and rs9326246-BUD13/TGL) showed evidence at genome-wide significance in previous studies on Euro-centric populations. Involvement of many of the identified loci in mediating metabolic traits was supported by literature evidences. The identified loci participate in critical metabolic pathways (such as Ceramide signaling, and Mitogen-Activated Protein Kinase/Extracellular Signal Regulated Kinase signaling). Data from Genotype-Tissue Expression database affirmed that 7 of the identified variants differentially regulate the up/downstream genes that mediate metabolic traits.

  19. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome.

    PubMed

    Burgos, Mariana; Arenas, Alvaro; Cabrera, Rodrigo

    2016-08-01

    Inherited long QT syndrome (LQTS) is a cardiac channelopathy characterized by a prolongation of QT interval and the risk of syncope, cardiac arrest, and sudden cardiac death. Genetic diagnosis of LQTS is critical in medical practice as results can guide adequate management of patients and distinguish phenocopies such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, extensive screening of large genomic regions is required in order to reliably identify genetic causes. Semiconductor whole exome sequencing (WES) is a promising approach for the identification of variants in the coding regions of most human genes. DNA samples from 21 Colombian patients clinically diagnosed with LQTS were enriched for coding regions using multiplex polymerase chain reaction (PCR) and subjected to WES using a semiconductor sequencer. Semiconductor WES showed mean coverage of 93.6 % for all coding regions relevant to LQTS at >10× depth with high intra- and inter-assay depth heterogeneity. Fifteen variants were detected in 12 patients in genes associated with LQTS. Three variants were identified in three patients in genes associated with CPVT. Co-segregation analysis was performed when possible. All variants were analyzed with two pathogenicity prediction algorithms. The overall prevalence of LQTS and CPVT variants in our cohort was 71.4 %. All LQTS variants previously identified through commercial genetic testing were identified. Standardized WES assays can be easily implemented, often at a lower cost than sequencing panels. Our results show that WES can identify LQTS-causing mutations and permits differential diagnosis of related conditions in a real-world clinical setting. However, high heterogeneity in sequencing depth and low coverage in the most relevant genes is expected to be associated with reduced analytical sensitivity.

  20. Regression and Data Mining Methods for Analyses of Multiple Rare Variants in the Genetic Analysis Workshop 17 Mini-Exome Data

    PubMed Central

    Bailey-Wilson, Joan E.; Brennan, Jennifer S.; Bull, Shelley B; Culverhouse, Robert; Kim, Yoonhee; Jiang, Yuan; Jung, Jeesun; Li, Qing; Lamina, Claudia; Liu, Ying; Mägi, Reedik; Niu, Yue S.; Simpson, Claire L.; Wang, Libo; Yilmaz, Yildiz E.; Zhang, Heping; Zhang, Zhaogong

    2012-01-01

    Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors. PMID:22128066

  1. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants

    PubMed Central

    Bagley, Steven C.; Sirota, Marina; Chen, Richard; Butte, Atul J.; Altman, Russ B.

    2016-01-01

    Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford), and compared to a large database of published disease-associated genetic variants (VARIMED); data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups. PMID:27115429

  2. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    PubMed

    Bagley, Steven C; Sirota, Marina; Chen, Richard; Butte, Atul J; Altman, Russ B

    2016-04-01

    Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford), and compared to a large database of published disease-associated genetic variants (VARIMED); data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  3. Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China.

    PubMed

    Xiang, Yang-Lin; Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2015-11-01

    Leprosy is an ancient chronic infection caused by Mycobacterium leprae. Onset of leprosy was highly affected by host nutritional condition and energy production, (partially) due to genomic loss and parasitic life style of M. leprae. The optic atrophy 1 (OPA1) gene plays an essential role in mitochondria, which function in cellular energy supply and innate immunity. To investigate the potential involvement of OPA1 in leprosy. We analyzed 7 common genetic variants of OPA1 in 1110 Han Chinese subjects with and without leprosy, followed by mRNA expression profiling and protein-protein interaction (PPI) network analysis. We observed positive associations between OPA1 variants rs9838374 (Pgenotypic=0.003) and rs414237 (Pgenotypic=0.002) with lepromatous leprosy. expression quantitative trait loci (eQTL) analysis showed that the leprosy-related risk allele C of rs414237 is correlated with lower OPA1 mRNA expression level. Indeed, we identified a decrease of OPA1 mRNA expression in both with patients and cellular model of leprosy. In addition, the PPI analysis showed that OPA1 protein was actively involved in the interaction network of M. leprae induced differentially expressed genes. Our results indicated that OPA1 variants confer risk of leprosy and may affect OPA1 expression, mitochondrial function and antimicrobial pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants.

    PubMed

    Jo, Jihoon; Oh, Jooseong; Lee, Hyun-Gwan; Hong, Hyun-Hee; Lee, Sung-Gwon; Cheon, Seongmin; Kern, Elizabeth M A; Jin, Soyeong; Cho, Sung-Jin; Park, Joong-Ki; Park, Chungoo

    2017-01-01

    The Japanese sea cucumber (Apostichopus japonicus Selenka 1867) is an economically important species as a source of seafood and ingredient in traditional medicine. It is mainly found off the coasts of northeast Asia. Recently, substantial exploitation and widespread biotic diseases in A. japonicus have generated increasing conservation concern. However, the genomic knowledge base and resources available for researchers to use in managing this natural resource and to establish genetically based breeding systems for sea cucumber aquaculture are still in a nascent stage. A total of 312 Gb of raw sequences were generated using the Illumina HiSeq 2000 platform and assembled to a final size of 0.66 Gb, which is about 80.5% of the estimated genome size (0.82 Gb). We observed nucleotide-level heterozygosity within the assembled genome to be 0.986%. The resulting draft genome assembly comprising 132 607 scaffolds with an N50 value of 10.5 kb contains a total of 21 771 predicted protein-coding genes. We identified 6.6-14.5 million heterozygous single nucleotide polymorphisms in the assembled genome of the three natural color variants (green, red, and black), resulting in an estimated nucleotide diversity of 0.00146. We report the first draft genome of A. japonicus and provide a general overview of the genetic variation in the three major color variants of A. japonicus. These data will help provide a comprehensive view of the genetic, physiological, and evolutionary relationships among color variants in A. japonicus, and will be invaluable resources for sea cucumber genomic research. © The Author 2017. Published by Oxford University Press.

  5. A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants.

    PubMed

    Nedeljkovic, Ivana; Terzikhan, Natalie; Vonk, Judith M; van der Plaat, Diana A; Lahousse, Lies; van Diemen, Cleo C; Hobbs, Brian D; Qiao, Dandi; Cho, Michael H; Brusselle, Guy G; Postma, Dirkje S; Boezen, H M; van Duijn, Cornelia M; Amin, Najaf

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, associated with multiple genetic variants. Specific familial types of COPD may be explained by rare variants, which have not been widely studied. We aimed to discover rare genetic variants underlying COPD through a genome-wide linkage scan. Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family (ERF) study. Potential causal variants were identified by searching for shared rare variants in the exome-sequence data of the affected members of the families contributing most to the linkage peak. The identified rare variants were then tested for association with COPD in a large meta-analysis of several cohorts. Significant evidence for linkage was observed on chromosomes 15q14-15q25 [logarithm of the odds (LOD) score = 5.52], 11p15.4-11q14.1 (LOD = 3.71) and 5q14.3-5q33.2 (LOD = 3.49). In the chromosome 15 peak, that harbors the known COPD locus for nicotinic receptors, and in the chromosome 5 peak we could not identify shared variants. In the chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), predicted pathogenic, missense variants. These were shared among the affected family members. The identified variants localize to genes including neuroblast differentiation-associated protein ( AHNAK ), previously associated with blood biomarkers in COPD, phospholipase C Beta 3 ( PLCB3 ), shown to increase airway hyper-responsiveness, solute carrier family 22-A11 ( SLC22A11 ), involved in amino acid metabolism and ion transport, and metallothionein-like protein 5 ( MTL5 ), involved in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 variants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls. In conclusion, we have identified novel rare variants in plausible genes related to COPD. Further studies utilizing large sample

  6. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.

    PubMed

    Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao

    2016-11-30

    Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. BRCA1 and BRCA2 genetic testing—pitfalls and recommendations for managing variants of uncertain clinical significance

    PubMed Central

    Eccles, D. M.; Mitchell, G.; Monteiro, A. N. A.; Schmutzler, R.; Couch, F. J.; Spurdle, A. B.; Gómez-García, E. B.

    2015-01-01

    Background Increasing use of BRCA1/2 testing for tailoring cancer treatment and extension of testing to tumour tissue for somatic mutation is moving BRCA1/2 mutation screening from a primarily prevention arena delivered by specialist genetic services into mainstream oncology practice. A considerable number of gene tests will identify rare variants where clinical significance cannot be inferred from sequence information alone. The proportion of variants of uncertain clinical significance (VUS) is likely to grow with lower thresholds for testing and laboratory providers with less experience of BRCA. Most VUS will not be associated with a high risk of cancer but a misinterpreted VUS has the potential to lead to mismanagement of both the patient and their relatives. Design Members of the Clinical Working Group of ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) global consortium (www.enigmaconsortium.org) observed wide variation in practices in reporting, disclosure and clinical management of patients with a VUS. Examples from current clinical practice are presented and discussed to illustrate potential pitfalls, explore factors contributing to misinterpretation, and propose approaches to improving clarity. Results and conclusion Clinicians, patients and their relatives would all benefit from an improved level of genetic literacy. Genetic laboratories working with clinical geneticists need to agree on a clinically clear and uniform format for reporting BRCA test results to non-geneticists. An international consortium of experts, collecting and integrating all available lines of evidence and classifying variants according to an internationally recognized system, will facilitate reclassification of variants for clinical use. PMID:26153499

  8. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians

    PubMed Central

    Nan, Hongmei; Kraft, Peter; Hunter, David J.; Han, Jiali

    2009-01-01

    , 1.18–2.39) and SCC (OR, 1.54; 95% CI, 1.08–2.19). These associations remained similar after adjusting for pigmentary phenotypes and MC1R variants. The statistical power of this study was modest and additional studies are warranted to confirm the associations observed in the present study. This study provides evidence for the contribution of pigmentation genetic variants, in addition to the MC1R variants, to variation in human pigmentary phenotypes and possibly the development of skin cancer. PMID:19384953

  9. Prediction of breast cancer risk based on common genetic variants in women of East Asian ancestry.

    PubMed

    Wen, Wanqing; Shu, Xiao-Ou; Guo, Xingyi; Cai, Qiuyin; Long, Jirong; Bolla, Manjeet K; Michailidou, Kyriaki; Dennis, Joe; Wang, Qin; Gao, Yu-Tang; Zheng, Ying; Dunning, Alison M; García-Closas, Montserrat; Brennan, Paul; Chen, Shou-Tung; Choi, Ji-Yeob; Hartman, Mikael; Ito, Hidemi; Lophatananon, Artitaya; Matsuo, Keitaro; Miao, Hui; Muir, Kenneth; Sangrajrang, Suleeporn; Shen, Chen-Yang; Teo, Soo H; Tseng, Chiu-Chen; Wu, Anna H; Yip, Cheng Har; Simard, Jacques; Pharoah, Paul D P; Hall, Per; Kang, Daehee; Xiang, Yongbing; Easton, Douglas F; Zheng, Wei

    2016-12-08

    Approximately 100 common breast cancer susceptibility alleles have been identified in genome-wide association studies (GWAS). The utility of these variants in breast cancer risk prediction models has not been evaluated adequately in women of Asian ancestry. We evaluated 88 breast cancer risk variants that were identified previously by GWAS in 11,760 cases and 11,612 controls of Asian ancestry. SNPs confirmed to be associated with breast cancer risk in Asian women were used to construct a polygenic risk score (PRS). The relative and absolute risks of breast cancer by the PRS percentiles were estimated based on the PRS distribution, and were used to stratify women into different levels of breast cancer risk. We confirmed significant associations with breast cancer risk for SNPs in 44 of the 78 previously reported loci at P < 0.05. Compared with women in the middle quintile of the PRS, women in the top 1% group had a 2.70-fold elevated risk of breast cancer (95% CI: 2.15-3.40). The risk prediction model with the PRS had an area under the receiver operating characteristic curve of 0.606. The lifetime risk of breast cancer for Shanghai Chinese women in the lowest and highest 1% of the PRS was 1.35% and 10.06%, respectively. Approximately one-half of GWAS-identified breast cancer risk variants can be directly replicated in East Asian women. Collectively, common genetic variants are important predictors for breast cancer risk. Using common genetic variants for breast cancer could help identify women at high risk of breast cancer.

  10. Population differences in platinum toxicity as a means to identify novel genetic susceptibility variants

    PubMed Central

    O'Donnell, Peter H.; Gamazon, Eric; Zhang, Wei; Stark, Amy L.; Kistner-Griffin, Emily O.; Huang, R. Stephanie; Dolan, M. Eileen

    2010-01-01

    Objectives Clinical studies show that Asians (ASN) are more susceptible to toxicities associated with platinum-containing regimens. We hypothesized that studying ASN as an `enriched phenotype' population could enable the discovery of novel genetic determinants of platinum susceptibility. Methods Using well-genotyped lymphoblastoid cell lines from the HapMap, we determined cisplatin and carboplatin cytotoxicity phenotypes (IC50s) for ASN, Caucasians (CEU), and Africans (YRI). IC50s were used in genome-wide association studies. Results ASN were most sensitive to platinums, corroborating clinical findings. ASN genome-wide association studies produced 479 single-nucleotide polymorphisms (SNPs) associating with cisplatin susceptibility and 199 with carboplatin susceptibility (P<10−4). Considering only the most significant variants (P< 9.99 × 10−6), backwards elimination was then used to identify reduced-model SNPs, which robustly described the drug phenotypes within ASN. These SNPs comprised highly descriptive genetic signatures of susceptibility, with 12 SNPs explaining more than 95% of the susceptibility phenotype variation for cisplatin, and eight SNPs approximately 75% for carboplatin. To determine the possible function of these variants in ASN, the SNPs were tested for association with differential expression of target genes. SNPs were highly associated with the expression of multiple target genes, and notably, the histone H3 family was implicated for both drugs, suggesting a platinum-class mechanism. Histone H3 has repeatedly been described as regulating the formation of platinum-DNA adducts, but this is the first evidence that specific genetic variants might mediate these interactions in a pharmacogenetic manner. Finally, to determine whether any ASN-identified SNPs might also be important in other human populations, we interrogated all 479/199 SNPs for association with platinum susceptibility in an independent combined CEU/YRI population. Three unique SNPs

  11. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

    PubMed

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark

    2013-06-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

  12. Genetic Variants Associated With Glycine Metabolism and Their Role in Insulin Sensitivity and Type 2 Diabetes

    PubMed Central

    Xie, Weijia; Wood, Andrew R.; Lyssenko, Valeriya; Weedon, Michael N.; Knowles, Joshua W.; Alkayyali, Sami; Assimes, Themistocles L.; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M.; Nolan, John J.; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E.; Frayling, Timothy M.; Walker, Mark

    2013-01-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity–related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites—glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)—and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits. PMID:23378610

  13. Genetic predisposition to obesity and lifestyle factors--the combined analyses of twenty-six known BMI- and fourteen known waist:hip ratio (WHR)-associated variants in the Finnish Diabetes Prevention Study.

    PubMed

    Jääskeläinen, Tiina; Paananen, Jussi; Lindström, Jaana; Eriksson, Johan G; Tuomilehto, Jaakko; Uusitupa, Matti

    2013-11-01

    Recent genome-wide association studies have identified multiple loci associated with BMI or the waist:hip ratio (WHR). However, evidence on gene-lifestyle interactions is still scarce, and investigation of the effects of well-documented dietary and other lifestyle data is warranted to assess whether genetic risk can be modified by lifestyle. We assessed whether previously established BMI and WHR genetic variants associate with obesity and weight change in the Finnish Diabetes Prevention Study, and whether the associations are modified by dietary factors or physical activity. Individuals (n 459) completed a 3 d food record and were genotyped for twenty-six BMI- and fourteen WHR-related variants. The effects of the variants individually and in combination were investigated in relation to obesity and to 1- and 3-year weight change by calculating genetic risk scores (GRS). The GRS were separately calculated for BMI and the WHR by summing the increasing alleles weighted by their published effect sizes. At baseline, the GRS were not associated with total intakes of energy, macronutrients or fibre. The mean 1- and 3-year weight changes were not affected by the BMI or WHR GRS. During the 3-year follow-up, a trend for higher BMI by the GRS was detected especially in those who reported a diet low in fibre (P for interaction=0·065). Based on the present findings, it appears unlikely that obesity-predisposing variants substantially modify the effect of lifestyle modification on the success of weight reduction in the long term. In addition, these findings suggest that the association between the BMI-related genetic variants and obesity could be modulated by the diet.

  14. De Novo Coding Variants Are Strongly Associated with Tourette Disorder.

    PubMed

    Willsey, A Jeremy; Fernandez, Thomas V; Yu, Dongmei; King, Robert A; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J; Mandell, Jeffrey D; Huang, Alden Y; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E; Neale, Benjamin M; Coppola, Giovanni; Mathews, Carol A; Tischfield, Jay A; Scharf, Jeremiah M; State, Matthew W; Heiman, Gary A

    2017-05-03

    Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Chymotrypsinogen C Genetic Variants, Including c.180TT, Are Strongly Associated With Chronic Pancreatitis in Pediatric Patients.

    PubMed

    Grabarczyk, Alicja Monika; Oracz, Grzegorz; Wertheim-Tysarowska, Katarzyna; Kujko, Aleksandra Anna; Wejnarska, Karolina; Kolodziejczyk, Elwira; Bal, Jerzy; Koziel, Dorota; Kowalik, Artur; Gluszek, Stanislaw; Rygiel, Agnieszka Magdalena

    2017-12-01

    Genetic studies in adults/adolescent patients with chronic pancreatitis (CP) identified chymotrypsinogen C (CTRC) genetic variants but their association with CP risk has been difficult to replicate. To evaluate the risk of CP associated with CTRC variants in CP pediatric patients-control study. The distribution of CTRC variants in CP pediatric cohort (n = 136, median age at CP onset 8 years) with no history of alcohol/smoking abuse was compared with controls (n = 401, median age 45). We showed that p.Arg254Trp (4.6%) and p.Lys247_Arg254del (5.3%) heterozygous mutations are frequent and significantly associated with CP risk in pediatric patients (odds ratio [OR] = 19.1; 95% CI 2.8-160; P = 0.001 and OR = 5.5; 95% CI 1.6-19.4; P = 0.001, respectively). For the first time, we demonstrated that the c.180TT genotype of common p.Gly60Gly variant is strong, an independent CP risk factor (OR = 23; 95% CI 7.7-70; P < 0.001) with effect size comparable to p.Arg254Trp mutation. The other novel observation is that common c.493+51C>A variant, both CA and AA genotype, is significantly underrepresented in CP compared with controls (15% vs 35%; OR = 0.33; 95% CI 0.19-0.59; P < 0.001 and 2.8% vs 11%; OR = 0.24; 95% CI 0.06-0.85; P = 0.027, respectively). Our study provides evidence that CTRC variants, including c.180TT (p.Gly60Gly) are strong CP risk factors. The c.493+51C>A variant may play a protective role against CP development.

  16. Genetic variants in post myocardial infarction patients presenting with electrical storm of unstable ventricular tachycardia.

    PubMed

    Rangaraju, Advithi; Krishnan, Shuba; Aparna, G; Sankaran, Satish; Mannan, Ashraf U; Rao, B Hygriv

    2018-01-30

    Electrical storm (ES) is a life threatening clinical situation. Though a few clinical pointers exist, the occurrence of ES in a patient with remote myocardial infarction (MI) is generally unpredictable. Genetic markers for this entity have not been studied. In the present study, we carried out genetic screening in patients with remote myocardial infarction presenting with ES by next generation sequencing and identified 25 rare variants in 19 genes predominantly in RYR2, SCN5A, KCNJ11, KCNE1 and KCNH2, CACNA1B, CACNA1C, CACNA1D and desmosomal genes - DSP and DSG2 that could potentially be implicated in electrical storm. These genes have been previously reported to be associated with inherited syndromes of Sudden Cardiac Death. The present study suggests that the genetic architecture in patients with remote MI and ES of unstable ventricular tachycardia may be similar to that of Ion channelopathies. Identification of these variants may identify post MI patients who are predisposed to develop electrical storm and help in risk stratification. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  17. Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium.

    PubMed

    Toth, Reka; Scherer, Dominique; Kelemen, Linda E; Risch, Angela; Hazra, Aditi; Balavarca, Yesilda; Issa, Jean-Pierre J; Moreno, Victor; Eeles, Rosalind A; Ogino, Shuji; Wu, Xifeng; Ye, Yuanqing; Hung, Rayjean J; Goode, Ellen L; Ulrich, Cornelia M

    2017-06-01

    Background: Epigenetic disturbances are crucial in cancer initiation, potentially with pleiotropic effects, and may be influenced by the genetic background. Methods: In a subsets (ASSET) meta-analytic approach, we investigated associations of genetic variants related to epigenetic mechanisms with risks of breast, lung, colorectal, ovarian and prostate carcinomas using 51,724 cases and 52,001 controls. False discovery rate-corrected P values (q values < 0.05) were considered statistically significant. Results: Among 162,887 imputed or genotyped variants in 555 candidate genes, SNPs in eight genes were associated with risk of more than one cancer type. For example, variants in BABAM1 were confirmed as a susceptibility locus for squamous cell lung, overall breast, estrogen receptor (ER)-negative breast, and overall prostate, and overall serous ovarian cancer; the most significant variant was rs4808076 [OR = 1.14; 95% confidence interval (CI) = 1.10-1.19; q = 6.87 × 10 -5 ]. DPF1 rs12611084 was inversely associated with ER-negative breast, endometrioid ovarian, and overall and aggressive prostate cancer risk (OR = 0.93; 95% CI = 0.91-0.96; q = 0.005). Variants in L3MBTL3 were associated with colorectal, overall breast, ER-negative breast, clear cell ovarian, and overall and aggressive prostate cancer risk (e.g., rs9388766: OR = 1.06; 95% CI = 1.03-1.08; q = 0.02). Variants in TET2 were significantly associated with overall breast, overall prostate, overall ovarian, and endometrioid ovarian cancer risk, with rs62331150 showing bidirectional effects. Analyses of subpathways did not reveal gene subsets that contributed disproportionately to susceptibility. Conclusions: Functional and correlative studies are now needed to elucidate the potential links between germline genotype, epigenetic function, and cancer etiology. Impact: This approach provides novel insight into possible pleiotropic effects of genes involved in epigenetic processes. Cancer Epidemiol Biomarkers Prev

  18. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    PubMed

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene; Grarup, Niels; Sebastian, David; Rodriguez-Fos, Elias; Sánchez, Friman; Planas-Fèlix, Mercè; Cortes-Sánchez, Paula; González, Santi; Timshel, Pascal; Pers, Tune H; Morgan, Claire C; Moran, Ignasi; Atla, Goutham; González, Juan R; Puiggros, Montserrat; Martí, Jonathan; Andersson, Ehm A; Díaz, Carlos; Badia, Rosa M; Udler, Miriam; Leong, Aaron; Kaur, Varindepal; Flannick, Jason; Jørgensen, Torben; Linneberg, Allan; Jørgensen, Marit E; Witte, Daniel R; Christensen, Cramer; Brandslund, Ivan; Appel, Emil V; Scott, Robert A; Luan, Jian'an; Langenberg, Claudia; Wareham, Nicholas J; Pedersen, Oluf; Zorzano, Antonio; Florez, Jose C; Hansen, Torben; Ferrer, Jorge; Mercader, Josep Maria; Torrents, David

    2018-01-22

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

  19. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  20. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy.

    PubMed

    Ross, Colin J D; Katzov-Eckert, Hagit; Dubé, Marie-Pierre; Brooks, Beth; Rassekh, S Rod; Barhdadi, Amina; Feroz-Zada, Yassamin; Visscher, Henk; Brown, Andrew M K; Rieder, Michael J; Rogers, Paul C; Phillips, Michael S; Carleton, Bruce C; Hayden, Michael R

    2009-12-01

    Cisplatin is a widely used and effective chemotherapeutic agent, although its use is restricted by the high incidence of irreversible ototoxicity associated with it. In children, cisplatin ototoxicity is a serious and pervasive problem, affecting more than 60% of those receiving cisplatin and compromising language and cognitive development. Candidate gene studies have previously reported associations of cisplatin ototoxicity with genetic variants in the genes encoding glutathione S-transferases and megalin. We report association analyses for 220 drug-metabolism genes in genetic susceptibility to cisplatin-induced hearing loss in children. We genotyped 1,949 SNPs in these candidate genes in an initial cohort of 54 children treated in pediatric oncology units, with replication in a second cohort of 112 children recruited through a national surveillance network for adverse drug reactions in Canada. We identified genetic variants in TPMT (rs12201199, P value = 0.00022, OR = 17.0, 95% CI 2.3-125.9) and COMT (rs9332377, P value = 0.00018, OR = 5.5, 95% CI 1.9-15.9) associated with cisplatin-induced hearing loss in children.

  1. CYP21A2 mutation update: Comprehensive analysis of databases and published genetic variants.

    PubMed

    Simonetti, Leandro; Bruque, Carlos D; Fernández, Cecilia S; Benavides-Mori, Belén; Delea, Marisol; Kolomenski, Jorge E; Espeche, Lucía D; Buzzalino, Noemí D; Nadra, Alejandro D; Dain, Liliana

    2018-01-01

    Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders of adrenal steroidogenesis. Disorders in steroid 21-hydroxylation account for over 95% of patients with CAH. Clinically, the 21-hydroxylase deficiency has been classified in a broad spectrum of clinical forms, ranging from severe or classical, to mild late onset or non-classical. Known allelic variants in the disease causing CYP21A2 gene are spread among different sources. Until recently, most variants reported have been identified in the clinical setting, which presumably bias described variants to pathogenic ones, as those found in the CYPAlleles database. Nevertheless, a large number of variants are being described in massive genome projects, many of which are found in dbSNP, but lack functional implications and/or their phenotypic effect. In this work, we gathered a total of 1,340 GVs in the CYP21A2 gene, from which 899 variants were unique and 230 have an effect on human health, and compiled all this information in an integrated database. We also connected CYP21A2 sequence information to phenotypic effects for all available mutations, including double mutants in cis. Data compiled in the present work could help physicians in the genetic counseling of families affected with 21-hydroxylase deficiency. © 2017 Wiley Periodicals, Inc.

  2. Genetic variants influencing effectiveness of exercise training programmes in obesity - an overview of human studies.

    PubMed

    Leońska-Duniec, A; Ahmetov, I I; Zmijewski, P

    2016-09-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary.

  3. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    USDA-ARS?s Scientific Manuscript database

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  4. Genetic risk variants for metabolic traits in Arab populations

    PubMed Central

    Hebbar, Prashantha; Elkum, Naser; Alkayal, Fadi; John, Sumi Elsa; Thanaraj, Thangavel Alphonse; Alsmadi, Osama

    2017-01-01

    Despite a high prevalence of metabolic trait related diseases in Arabian Peninsula, there is a lack of convincingly identified genetic determinants for metabolic traits in this population. Arab populations are underrepresented in global genome-wide association studies. We genotyped 1965 unrelated Arab individuals from Kuwait using Cardio-MetaboChip, and tested SNP associations with 13 metabolic traits. Models based on recessive mode of inheritance identified Chr15:40531386-rs12440118/ZNF106/W->R as a risk variant associated with glycated-hemoglobin at close to ‘genome-wide significant’ p-value and five other risk variants ‘nominally’ associated (p-value ≤ 5.45E-07) with fasting plasma glucose (rs7144734/[OTX2-AS1,RPL3P3]) and triglyceride (rs17501809/PLGRKT; rs11143005/LOC105376072; rs900543/[THSD4,NR2E3]; and Chr12:101494770/IGF1). Furthermore, we identified 33 associations (30 SNPs with 12 traits) with ‘suggestive’ evidence of association (p-value < 1.0E-05); 20 of these operate under recessive mode of inheritance. Two of these ‘suggestive’ associations (rs1800775-CETP/HDL; and rs9326246-BUD13/TGL) showed evidence at genome-wide significance in previous studies on Euro-centric populations. Involvement of many of the identified loci in mediating metabolic traits was supported by literature evidences. The identified loci participate in critical metabolic pathways (such as Ceramide signaling, and Mitogen-Activated Protein Kinase/Extracellular Signal Regulated Kinase signaling). Data from Genotype-Tissue Expression database affirmed that 7 of the identified variants differentially regulate the up/downstream genes that mediate metabolic traits. PMID:28106113

  5. Evaluation of regulatory genetic variants in POU5F1 and risk of congenital heart disease in Han Chinese

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Ding, Chenyue; Zhang, Kai; Ni, Bixian; da, Min; Hu, Liang; Hu, Yuanli; Xu, Jing; Wang, Xiaowei; Chen, Yijiang; Mo, Xuming; Cui, Yugui; Shen, Hongbing; Sha, Jiahao; Liu, Jiayin; Hu, Zhibin

    2015-10-01

    OCT4 is a transcription factor of the POU family, which plays a key role in embryonic development and stem cell pluripotency. Previous studies have shown that Oct4 is required for cardiomyocyte differentiation in mice and its depletion could result in cardiac morphogenesis in embryo. However, whether the genetic variations in OCT4 coding gene, POU5F1, confer the predisposition to congenital heart disease (CHD) is unclear. This study sought to investigate the associations between low-frequency (defined here as having minor allele frequency (MAF) between 0.1%-5%) and rare (MAF below 0.1%) variants with potential function in POU5F1 and risk of CHD. We conducted association analysis in a two-stage case-control study with a total of 2,720 CHD cases and 3,331 controls in Chinese. The low-frequency variant rs3130933 was observed to be associated with a significantly increased risk of CHD [additive model: adjusted odds ratio (OR) = 2.15, adjusted P = 3.37 × 10-6]. Furthermore, luciferase activity assay showed that the variant A allele led to significantly lower expression levels as compared to the G allele. These findings indicate for the first time that low-frequency functional variant in POU5F1 may contribute to the risk of congenital heart malformations.

  6. Variant Carvajal syndrome with additional dental anomalies.

    PubMed

    Barber, Sophy; Day, Peter; Judge, Mary; Toole, Edell O'; Fayle, Stephen

    2012-09-01

    This paper aims to review the case of a girl who presented with a number of dental anomalies, in addition to unusual skin, nail and hair conditions. Tragically an undiagnosed cardiomyopathy caused unexpected sudden death. The case is discussed with reference to a number of dermatological and oral conditions which were considered as possible diagnoses. AW had been under long term dental care for prepubertal periodontitis, premature root resorption of primary teeth, soft tissue and dental anomalies, and angular cheilitis. Separately she had also been seen by several dermatologists with respect to palmar plantar keratosis, striae keratoderma, wiry hair and abnormal finger nails. Tragically the patient suffered a sudden unexpected death and the subsequent post mortem identified an undiagnosed dilated cardiomyopathy. The most likely diagnosis is that this case is a variant of Carvajal Syndrome with additional dental anomalies. To date we have been unable to identify mutations in the desoplakin gene. We aim to emphasise the importance of recognising these dental and dermatological signs when they present together as a potential risk factor for cardiac abnormalities. © 2012 The Authors. International Journal of Paediatric Dentistry © 2012 BSPD, IAPD and Blackwell Publishing Ltd.

  7. Common genetic variants of the human UMOD gene are functional on transcription and predict plasma uric acid in two distinct populations

    PubMed Central

    Han, Jia; Liu, Ying; Rao, Fangwen; Nievergelt, Caroline M.; O’Connor, Daniel T.; Wang, Xingyu; Liu, Lisheng; Bu, Dingfang; Liang, Yu; Wang, Fang; Zhang, Luxia; Zhang, Hong; Chen, Yuqing; Wang, Haiyan

    2013-01-01

    Uromodulin (UMOD) genetic variants cause familial juvenile hyperuricemic nephropathy, characterized by hyperuricemia, decreased renal excretion of UMOD and uric acid; such findings suggest a role for UMOD in the regulation of plasma uric acid. We screened common variants across the UMOD locus in two populations, one from a community-based Chinese population, the other from California twins and siblings. Transcriptional activity of promoter variants was estimated in luciferase reporter plasmids transfected into HEK293 cells and mlMCD3 cells. By variance components in twin pairs, uric acid concentration and excretion were heritable traits. In the primary population from Beijing, we identified that carriers of haplotype GCC displayed higher plasma uric acid, and 3 UMOD promoter variants associated with plasma uric acid. UMOD promoter variants displayed reciprocal effects on urine uric acid excretion and plasma uric acid concentration, suggesting a primary effect on renal tubular handling of urate. These UMOD genetic marker-on-trait associations for uric acid were replicated in an independent American population sample. Site-directed mutagenesis at trait-associated UMOD promoter variants altered promoter activity in transfected luciferase reporter plasmids. These results suggest that UMOD promoter variants seem to initiate a cascade of transcriptional and biochemical changes influencing UMOD secretion, eventuating in elevation of plasma uric acid. PMID:23344472

  8. Infectious Bronchitis Virus Variants: Molecular Analysis and Pathogenicity Investigation

    PubMed Central

    Lin, Shu-Yi

    2017-01-01

    Infectious bronchitis virus (IBV) variants constantly emerge and pose economic threats to poultry farms worldwide. Numerous studies on the molecular and pathogenic characterization of IBV variants have been performed between 2007 and 2017, which we have reviewed herein. We noted that viral genetic mutations and recombination events commonly gave rise to distinct IBV genotypes, serotypes and pathotypes. In addition to characterizing the S1 genes, full viral genomic sequencing, comprehensive antigenicity, and pathogenicity studies on emerging variants have advanced our understanding of IBV infections, which is valuable for developing countermeasures against IBV field outbreaks. This review of IBV variants provides practical value for understanding their phylogenetic relationships and epidemiology from both regional and worldwide viewpoints. PMID:28937583

  9. High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences

    PubMed Central

    Ronninger, Marcus; Shchetynsky, Klementy; Franke, Andre; Nöthen, Markus M.; Müller-Quernheim, Joachim; Schreiber, Stefan; Adrianto, Indra; Karakaya, Bekir; van Moorsel, Coline H. M.; Navratilova, Zdenka; Kolek, Vitezslav; Rybicki, Benjamin A.; Iannuzzi, Michael C.; Petrek, Martin; Grutters, Jan C.; Montgomery, Courtney; Fischer, Annegret; Eklund, Anders; Padyukov, Leonid; Grunewald, Johan

    2016-01-01

    Rationale: Sarcoidosis is a multisystem disease of unknown cause. Löfgren’s syndrome (LS) is a characteristic subgroup of sarcoidosis that is associated with a good prognosis in sarcoidosis. However, little is known about its genetic architecture or its broader phenotype, non-LS sarcoidosis. Objectives: To address the genetic architecture of sarcoidosis phenotypes, LS and non-LS. Methods: An association study in a white Swedish cohort of 384 LS, 664 non-LS, and 2,086 control subjects, totaling 3,134 subjects using a fine-mapping genotyping platform was conducted. Replication was performed in four independent cohorts, three of white European descent (Germany, n = 4,975; the Netherlands, n = 613; and Czech Republic, n = 521), and one of black African descent (United States, n = 1,657), totaling 7,766 subjects. Measurements and Main Results: A total of 727 LS-associated variants expanding throughout the extended major histocompatibility complex (MHC) region and 68 non-LS–associated variants located in the MHC class II region were identified and confirmed. A shared overlap between LS and non-LS defined by 17 variants located in the MHC class II region was found. Outside the MHC region, two LS-associated loci, in ADCY3 and between CSMD1 and MCPH1, were observed and replicated. Conclusions: Comprehensive and integrative analyses of genetics, transcription, and pathway modeling on LS and non-LS indicates that these sarcoidosis phenotypes have different genetic susceptibility, genomic distributions, and cellular activities, suggesting distinct molecular mechanisms in pathways related to immune response with a common region. PMID:26651848

  10. Aggregation of population‐based genetic variation over protein domain homologues and its potential use in genetic diagnostics

    PubMed Central

    Wiel, Laurens; Venselaar, Hanka; Veltman, Joris A.; Vriend, Gert

    2017-01-01

    Abstract Whole exomes of patients with a genetic disorder are nowadays routinely sequenced but interpretation of the identified genetic variants remains a major challenge. The increased availability of population‐based human genetic variation has given rise to measures of genetic tolerance that have been used, for example, to predict disease‐causing genes in neurodevelopmental disorders. Here, we investigated whether combining variant information from homologous protein domains can improve variant interpretation. For this purpose, we developed a framework that maps population variation and known pathogenic mutations onto 2,750 “meta‐domains.” These meta‐domains consist of 30,853 homologous Pfam protein domain instances that cover 36% of all human protein coding sequences. We find that genetic tolerance is consistent across protein domain homologues, and that patterns of genetic tolerance faithfully mimic patterns of evolutionary conservation. Furthermore, for a significant fraction (68%) of the meta‐domains high‐frequency population variation re‐occurs at the same positions across domain homologues more often than expected. In addition, we observe that the presence of pathogenic missense variants at an aligned homologous domain position is often paired with the absence of population variation and vice versa. The use of these meta‐domains can improve the interpretation of genetic variation. PMID:28815929

  11. CHEK2*1100delC Variant and BRCA1/2-Negative Familial Breast Cancer - A Family-Based Genetic Association Study

    DTIC Science & Technology

    2007-10-01

    AD_________________ Award Number: DAMD17-03-1-0774 TITLE: CHEK2 *1100delC Variant and BRCA1/2...NUMBER CHEK2 *1100delC Variant and BRCA1/2-Negative Familial Breast Cancer - A Family- Based Genetic Association Study 5b. GRANT NUMBER DAMD17...association between the CHEK2 *1100delC gene variant and breast cancer among BRCA1/2-negative families. Vital to DNA replication and normal growth of breast

  12. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance.

    PubMed

    Eccles, D M; Mitchell, G; Monteiro, A N A; Schmutzler, R; Couch, F J; Spurdle, A B; Gómez-García, E B

    2015-10-01

    Increasing use of BRCA1/2 testing for tailoring cancer treatment and extension of testing to tumour tissue for somatic mutation is moving BRCA1/2 mutation screening from a primarily prevention arena delivered by specialist genetic services into mainstream oncology practice. A considerable number of gene tests will identify rare variants where clinical significance cannot be inferred from sequence information alone. The proportion of variants of uncertain clinical significance (VUS) is likely to grow with lower thresholds for testing and laboratory providers with less experience of BRCA. Most VUS will not be associated with a high risk of cancer but a misinterpreted VUS has the potential to lead to mismanagement of both the patient and their relatives. Members of the Clinical Working Group of ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) global consortium (www.enigmaconsortium.org) observed wide variation in practices in reporting, disclosure and clinical management of patients with a VUS. Examples from current clinical practice are presented and discussed to illustrate potential pitfalls, explore factors contributing to misinterpretation, and propose approaches to improving clarity. Clinicians, patients and their relatives would all benefit from an improved level of genetic literacy. Genetic laboratories working with clinical geneticists need to agree on a clinically clear and uniform format for reporting BRCA test results to non-geneticists. An international consortium of experts, collecting and integrating all available lines of evidence and classifying variants according to an internationally recognized system, will facilitate reclassification of variants for clinical use. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Meta-analysis of interaction between dietary magnesium intake and genetic risk variants on diabetes phenotypes in the charge consortium

    USDA-ARS?s Scientific Manuscript database

    Little is known about whether genetic variation modifies the effect of magnesium (Mg) intake on two important diabetes risk factors: fasting glucose (FG) and insulin (FI). We examined interactions between dietary Mg and genetic variants associated with glucose (16 SNPs), insulin (2 SNPs), or Mg home...

  14. Vitamin D-related host genetic variants alter HIV disease progression in children.

    PubMed

    Moodley, Amaran; Qin, Min; Singh, Kumud K; Spector, Stephen A

    2013-11-01

    Vitamin D deficiency is common in HIV infection and has been associated with advanced disease. This study investigated whether vitamin D-related genetic variants were associated with disease progression in HIV-infected children. The Fok-I (C/T), Bsm-I (G/A), GC (A/C), DHCR7 (G/T) and CYP2R1 (G/A) genetic variants were detected by real-time polymerase chain reaction in HIV-infected children who participated in the Pediatric AIDS Clinical Trials Group P152 and P300 protocols, which predated the availability of effective combination antiretroviral therapy. The primary endpoints included time to progression to the first HIV-related disease endpoint (≥2 opportunistic infection, weight growth failure) or death, which constituted the progression-free survival. Analyses were performed for age>2 years and ≤2 years separately adjusting for race and treatment effect. Of the 998 children evaluated, 139 experienced HIV disease progression. For children>2 years, rapid disease progression was associated with the DHCR7 G allele compared with the T allele (G/G vs. T/T: hazard ratio [HR]=5.0, P = 0.035; G/T vs. T/T: HR=4.5, P=0.042; G/G+G/T vs. T/T: HR=4.8, P=0.036) and the Bsm-I A allele compared with the G allele (A/G vs. G/G: HR=2.2, P=0.014 and A/G+A/A vs. G/G: HR=2.0, P=0.026). In children≤2 years, the Bsm-I A allele increased the risk of disease progression in Hispanics (A/A vs. G/A+G/G: HR=2.8, P=0.03 and A/A vs. G/G: HR=2.8, P=0.046) and whites (A/A vs. G/G: HR=6.6, P=0.025 and A/A vs. G/A+G/G: HR=3.6, P=0.038). Vitamin D-related host genetic variants that alter the availability and activity of vitamin D are associated with risk of HIV disease progression in children and may vary by age and race.

  15. Value of genetic profiling for the prediction of coronary heart disease.

    PubMed

    van der Net, Jeroen B; Janssens, A Cecile J W; Sijbrands, Eric J G; Steyerberg, Ewout W

    2009-07-01

    Advances in high-throughput genomics facilitate the identification of novel genetic susceptibility variants for coronary heart disease (CHD). This may improve CHD risk prediction. The aim of the present simulation study was to investigate to what degree CHD risk can be predicted by testing multiple genetic variants (genetic profiling). We simulated genetic profiles for a population of 100,000 individuals with a 10-year CHD incidence of 10%. For each combination of model parameters (number of variants, genotype frequency and odds ratio [OR]), we calculated the area under the receiver operating characteristic curve (AUC) to indicate the discrimination between individuals who will and will not develop CHD. The AUC of genetic profiles could rise to 0.90 when 100 hypothetical variants with ORs of 1.5 and genotype frequencies of 50% were simulated. The AUC of a genetic profile consisting of 10 established variants, with ORs ranging from 1.13 to 1.42, was 0.59. When 2, 5, and 10 times as many identical variants would be identified, the AUCs were 0.63, 0.69, and 0.76. To obtain AUCs similar to those of conventional CHD risk predictors, a considerable number of additional common genetic variants need to be identified with preferably strong effects.

  16. Investigation of established genetic risk variants for glioma in prediagnostic samples from a population-based nested case-control study.

    PubMed

    Wibom, Carl; Späth, Florentin; Dahlin, Anna M; Langseth, Hilde; Hovig, Eivind; Rajaraman, Preetha; Johannesen, Tom Børge; Andersson, Ulrika; Melin, Beatrice

    2015-05-01

    Although glioma etiology is poorly understood in general, growing evidence indicates a genetic component. Four large genome-wide association studies (GWAS) have linked common genetic variants with an increased glioma risk. However, to date, these studies are based largely on a case-control design, where cases have been recruited at the time of or after diagnosis. They may therefore suffer from a degree of survival bias, introduced when rapidly fatal cases are not included. To confirm glioma risk variants in a prospective setting, we have analyzed 11 previously identified risk variants in a set of prediagnostic serum samples with 598 cases and 595 matched controls. Serum samples were acquired from The Janus Serum Bank, a Norwegian population-based biobank reserved for cancer research. We confirmed the association with glioma risk for variants within five genomic regions: 8q24.21 (CCDC26), 9p21.3 (CDKN2B-AS1), 11q23.3 (PHLDB1), 17p13.1 (TP53), and 20q13.33 (RTEL1). However, previously identified risk variants within the 7p11.2 (EGFR) region were not confirmed by this study. Our results indicate that the risk variants that were confirmed by this study are truly associated with glioma risk and may, consequently, affect gliomagenesis. Though the lack of positive confirmation of EGFR risk variants may be attributable to relatively limited statistical power, it nevertheless raises the question whether they truly are risk variants or markers for glioma prognosis. Our findings indicate the need for further studies to clarify the role of glioma risk loci with respect to prolonged survival versus etiology. ©2015 American Association for Cancer Research.

  17. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia.

    PubMed

    Cano-Corres, Ruth; Candás-Estébanez, Beatriz; Padró-Miquel, Ariadna; Fanlo-Maresma, Marta; Pintó, Xavier; Alía-Ramos, Pedro

    2018-05-07

    Patients with dyslipidemia are often treated with statins to reduce lipids and hence cardiovascular risk, but treatment response is variable, partly due to genetic factors. We studied the influence of 6 gene variants (APOE c.526C > T (APOE2), APOE c.388T > C (APOE4), SLCO1B1 c.521T > C, CYP3A4 c.-392G > A, HMGCR c.1564-106A > G, and LPA c.3947 + 467T > C) on statin efficacy assessing 2 indicators: the percent reduction in total cholesterol (TC) and non-HDL cholesterol (non-HDL), as well as the achievement of therapeutic goals. The study was performed in a group of patients (n = 100) without previous pharmacological treatment. Multiple regression models were used to calculate the percentage of explanation in response variability added by every variant to a basal model constructed with significant nongenetic control variables. The most influential variant was HMGCR c.1564-106A > G (rs3846662), and carriers showed a significantly lower reduction in TC and non-HDL. This variant is related to an alternative splicing involving exon 13, which is also regulated by lipid concentrations in patients without the variant. Concerning therapeutic goals, HMGCR c.1564-106A > G hindered the achievement of TC targets on patients. The HMGCR c.1564-106A > G variant was associated with less statin efficacy to decrease cholesterol. © 2018 Wiley Periodicals, Inc.

  18. Developmental programming of growth: genetic variant in GH2 gene encoding placental growth hormone contributes to adult height determination.

    PubMed

    Timasheva, Y; Putku, M; Kivi, R; Kožich, V; Männik, J; Laan, M

    2013-11-01

    Given the physiological role of placental growth hormone (PGH) during intrauterine development and growth, genetic variation in the coding Growth hormone 2 (GH2) gene may modulate developmental programming of adult stature. Two major GH2 variants were described worldwide, determined by single polymorphism (rs2006123; c.171 + 50C > A). We sought to study whether GH2 variants may contribute to adult anthropometric measurements. Genotyping of GH2 SNP rs2006123 by RFLP, testing its genetic association with adult height and Body Mass Index (BMI) by linear regression analysis, and combining the results of three individual study samples in meta-analysis. HYPEST (Estonia), n = 1464 (506 men/958 women), CADCZ (Czech), n = 871 (518/353); UFA (Bashkortostan), n = 954 (655/299); meta-analysis, n = 3289 (1679/1610). Meta-analysis across HYPEST, CADCZ and UFA samples (n = 3289) resulted in significant association of GH2 rs2006123 with height (recessive model: AA-homozygote effect: beta (SE) = 1.26 (0.46), P = 5.90 × 10⁻³; additive model: A-allele effect: beta (SE) = 0.45 (0.18), P = 1.40 × 10⁻²). Among men (n = 1679), the association of the A-allele with taller stature remained significant after multiple-testing correction (additive effect: beta = 0.86 (0.28), P = 1.83 × 10⁻³). No association was detected with BMI. Notably, rs2006123 was in strong LD (r² ≥ 0.87) with SNPs significantly associated with height (rs2665838, rs7209435, rs11658329) and mapped near GH2 in three independent meta-analyses of GWA studies. This is the first study demonstrating a link between a placental gene variant and programming of growth potential in adulthood. The detected association between PGH encoding GH2 and adult height promotes further research on the role of placental genes in prenatal programming of human metabolism. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC.

    PubMed

    Allot, Alexis; Peng, Yifan; Wei, Chih-Hsuan; Lee, Kyubum; Phan, Lon; Lu, Zhiyong

    2018-05-14

    The identification and interpretation of genomic variants play a key role in the diagnosis of genetic diseases and related research. These tasks increasingly rely on accessing relevant manually curated information from domain databases (e.g. SwissProt or ClinVar). However, due to the sheer volume of medical literature and high cost of expert curation, curated variant information in existing databases are often incomplete and out-of-date. In addition, the same genetic variant can be mentioned in publications with various names (e.g. 'A146T' versus 'c.436G>A' versus 'rs121913527'). A search in PubMed using only one name usually cannot retrieve all relevant articles for the variant of interest. Hence, to help scientists, healthcare professionals, and database curators find the most up-to-date published variant research, we have developed LitVar for the search and retrieval of standardized variant information. In addition, LitVar uses advanced text mining techniques to compute and extract relationships between variants and other associated entities such as diseases and chemicals/drugs. LitVar is publicly available at https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar.

  20. MSX1 gene variant - its presence in tooth absence - a case control genetic study.

    PubMed

    Reddy, Naveen Admala; Adusumilli, Gopinath; Devanna, Raghu; Pichai, Saravanan; Rohra, Mayur Gobindram; Arjunan, Sharmila

    2013-10-01

    Non Syndromic tooth agenesis is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study was to test whether MSX1 671 T>C gene variant was involved in etiology of Non Syndromic tooth agenesis in Raichur Patients. Blood samples were collected with informed consent from 50 subjects having Non Syndromic tooth agenesis and 50 controls. Genomic DNA was extracted from the blood samples, Polymerase Chain Reaction was performed (PCR) and Restriction Fragment Length Polymorphism (RFLP) was performed for digestion products that were evaluated. The RESULTS showed positive correlation between MSX1671 T>C gene variant and Non Syndromic tooth agenesis in Raichur Patients. MSX1 671 T>C gene variant may be a good screening marker for Non Syndromic tooth agenesis in Raichur Patients . How to cite this article:Reddy NA, Adusumilli G, Devanna R, Pichai S, Rohra MG, Arjunan S. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. J Int Oral Health 2013; 5(5):20-6.

  1. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study

    PubMed Central

    Reddy, Naveen Admala; Adusumilli, Gopinath; Devanna, Raghu; Pichai, Saravanan; Rohra, Mayur Gobindram; Arjunan, Sharmila

    2013-01-01

    Background: Non Syndromic tooth agenesis is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study was to test whether MSX1 671 T>C gene variant was involved in etiology of Non Syndromic tooth agenesis in Raichur Patients. Materials & Methods: Blood samples were collected with informed consent from 50 subjects having Non Syndromic tooth agenesis and 50 controls. Genomic DNA was extracted from the blood samples, Polymerase Chain Reaction was performed (PCR) and Restriction Fragment Length Polymorphism (RFLP) was performed for digestion products that were evaluated. Results: The Results showed positive correlation between MSX1671 T>C gene variant and Non Syndromic tooth agenesis in Raichur Patients. Conclusion: MSX1 671 T>C gene variant may be a good screening marker for Non Syndromic tooth agenesis in Raichur Patients . How to cite this article:Reddy NA, Adusumilli G, Devanna R, Pichai S, Rohra MG, Arjunan S. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. J Int Oral Health 2013; 5(5):20-6. PMID:24324300

  2. Three new genetic loci (R1210C in CFH, variants in COL8A1 and RAD51B) are independently related to progression to advanced macular degeneration.

    PubMed

    Seddon, Johanna M; Reynolds, Robyn; Yu, Yi; Rosner, Bernard

    2014-01-01

    To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models. In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models. THREE NEW GENETIC VARIANTS WERE SIGNIFICANTLY RELATED TO PROGRESSION: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2-5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1-3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60-0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC's for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA. Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes.

  3. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  4. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  5. Genetic variants associated with fetal hemoglobin levels show the diverse ethnic origin in Colombian patients with sickle cell anemia.

    PubMed

    Fong, Cristian; Menzel, Stephan; Lizarralde, María Alejandra; Barreto, Guillermo

    2015-01-01

    Fetal hemoglobin is an important factor in modulating the severity of sickle cell anemia. Its level in peripheral blood underlies strong genetic determination. Associated loci with increased levels of fetal hemoglobin display population-specific allele frequencies. We investigated the presence and effect of known common genetic variants promoting fetal hemoglobin persistence (rs11886868, rs9399137, rs4895441, and rs7482144) in 60 Colombian patients with sickle cell anemia. Four single nucleotide polymorphisms (SNP) were genotyped by restriction fragment length polymorphisms (RFLP) and the use of the TaqMan procedure. Fetal hemoglobin (HbF) from these patients was quantified using the oxyhemoglobin alkaline denaturation technique. Genotype frequencies were compared with frequencies reported in global reference populations. We detected genetic variants in the four SNPs, reported to be associated with higher HbF levels for all four SNPs in the Colombian patients. Genetic association between SNPs and HbF levels did not reach statistical significance. The frequency of these variants reflected the specific ethnic make-up of our patient population: A high prevalence of rs7482144-'A' reflects the West-African origin of the sickle cell mutation, while high frequencies of rs4895441-'G' and rs11886868-'C' point to a significant influence of an Amerindian ethnic background in the Colombian sickle cell disease population. These results showed that in the sickle cell disease population in Colombia there is not a unique genetic background, but two (African and Amerindian). This unique genetic situation will provide opportunities for a further study of these loci, such as fine-mapping and molecular-biological investigation. Colombian patients are expected to yield a distinctive insight into the effect of modifier loci in sickle cell disease.

  6. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    PubMed

    Read, Timothy; Richmond, Phillip A; Dowell, Robin D

    2016-01-01

    Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  7. Genetics of alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD. © 2014 Elsevier B.V. All rights reserved.

  8. A meta-analysis of Th2 pathway genetic variants and risk for allergic rhinitis.

    PubMed

    Bunyavanich, Supinda; Shargorodsky, Josef; Celedón, Juan C

    2011-06-01

    There is a significant genetic contribution to allergic rhinitis (AR). Genetic association studies for AR have been performed, but varying results make it challenging to decipher the overall potential effect of specific variants. The Th2 pathway plays an important role in the immunological development of AR. We performed meta-analyses of genetic association studies of variants in Th2 pathway genes and AR. PubMed and Phenopedia were searched by double extraction for original studies on Th2 pathway-related genetic polymorphisms and their associations with AR. A meta-analysis was conducted on each genetic polymorphism with data meeting our predetermined selection criteria. Analyses were performed using both fixed and random effects models, with stratification by age group, ethnicity, and AR definition where appropriate. Heterogeneity and publication bias were assessed. Six independent studies analyzing three candidate polymorphisms and involving a total of 1596 cases and 2892 controls met our inclusion criteria. Overall, the A allele of IL13 single nucleotide polymorphism (SNP) rs20541 was associated with increased odds of AR (estimated OR=1.2; 95% CI 1.1-1.3, p-value 0.004 in fixed effects model, 95% CI 1.0-1.5, p-value 0.056 in random effects model). The A allele of rs20541 was associated with increased odds of AR in mixed age groups using both fixed effects and random effects modeling. IL13 SNP rs1800925 and IL4R SNP 1801275 did not demonstrate overall associations with AR. We conclude that there is evidence for an overall association between IL13 SNP rs20541 and increased risk of AR, especially in mixed-age populations. © 2011 John Wiley & Sons A/S.

  9. Variant discovery in the sheep milk transcriptome using RNA sequencing.

    PubMed

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan José

    2017-02-15

    The identification of genetic variation underlying desired phenotypes is one of the main challenges of current livestock genetic research. High-throughput transcriptome sequencing (RNA-Seq) offers new opportunities for the detection of transcriptome variants (SNPs and short indels) in different tissues and species. In this study, we used RNA-Seq on Milk Sheep Somatic Cells (MSCs) with the goal of characterizing the genetic variation within the coding regions of the milk transcriptome in Churra and Assaf sheep, two common dairy sheep breeds farmed in Spain. A total of 216,637 variants were detected in the MSCs transcriptome of the eight ewes analyzed. Among them, a total of 57,795 variants were detected in the regions harboring Quantitative Trait Loci (QTL) for milk yield, protein percentage and fat percentage, of which 21.44% were novel variants. Among the total variants detected, 561 (2.52%) and 1,649 (7.42%) were predicted to produce high or moderate impact changes in the corresponding transcriptional unit, respectively. In the functional enrichment analysis of the genes positioned within selected QTL regions harboring novel relevant functional variants (high and moderate impact), the KEGG pathway with the highest enrichment was "protein processing in endoplasmic reticulum". Additionally, a total of 504 and 1,063 variants were identified in the genes encoding principal milk proteins and molecules involved in the lipid metabolism, respectively. Of these variants, 20 mutations were found to have putative relevant effects on the encoded proteins. We present herein the first transcriptomic approach aimed at identifying genetic variants of the genes expressed in the lactating mammary gland of sheep. Through the transcriptome analysis of variability within regions harboring QTL for milk yield, protein percentage and fat percentage, we have found several pathways and genes that harbor mutations that could affect dairy production traits. Moreover, remarkable variants

  10. Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.

    PubMed

    Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng

    2015-12-01

    Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants.

    PubMed

    Lee, Jessica M; Ong, Jessica R; Vergnes, Laurent; de Aguiar Vallim, Thomas Q; Nolan, Jonathan; Cantor, Rita M; Walters, Julian R F; Reue, Karen

    2018-03-01

    Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1 -null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1 -/- mice on the C57BL/6J genetic background. C57BL/6J Diet1 -/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant ( rs12256835 ) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Physical activity modifies the associations between genetic variants and blood pressure in European adolescents.

    PubMed

    de Moraes, Augusto César Ferreira; Fernández-Alvira, Juan Miguel; Carvalho, Heráclito Barbosa; Meirhaeghe, Aline; Dallongeville, Jean; Kafatos, Anthony; Marcos, Ascensión; Molnar, Dénes; Manios, Yannis; Ruiz, Jonatan R; Labayen, Idoia; Widhalm, Kurt; Breidenassel, Christina; Gonzalez-Gróss, Marcela; Moreno, Luis A

    2014-11-01

    We hypothesized that physical activity and sedentary behavior could modify the associations between known genetic variants blood pressure-associated genes in European adolescents. Meeting current physical activity recommendations (≥ 60 minutes/day) was able attenuate the deleterious effect of the NOS3 rs3918227 polymorphism on systolic blood pressure in European adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children.

    PubMed

    Pussegoda, K; Ross, C J; Visscher, H; Yazdanpanah, M; Brooks, B; Rassekh, S R; Zada, Y F; Dubé, M-P; Carleton, B C; Hayden, M R

    2013-08-01

    Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. A serious complication of cisplatin treatment is permanent hearing loss. The aim of this study was to replicate previous genetic findings in an independent cohort of 155 pediatric patients. Associations were replicated for genetic variants in TPMT (rs12201199, P = 0.0013, odds ratio (OR) 6.1) and ABCC3 (rs1051640, P = 0.036, OR 1.8). A predictive model combining variants in TPMT, ABCC3, and COMT with clinical variables (patient age, vincristine treatment, germ-cell tumor, and cranial irradiation) significantly improved the prediction of hearing-loss development as compared with using clinical risk factors alone (area under the curve (AUC) 0.786 vs. 0.708, P = 0.00048). The novel combination of genetic and clinical factors predicted the risk of hearing loss with a sensitivity of 50.3% and a specificity of 92.7%. These findings provide evidence to support the importance of TPMT, COMT, and ABCC3 in the prediction of cisplatin-induced hearing loss in children.

  14. Replication of TPMT and ABCC3 Genetic Variants Highly Associated With Cisplatin-Induced Hearing Loss in Children

    PubMed Central

    Pussegoda, K; Ross, CJ; Visscher, H; Yazdanpanah, M; Brooks, B; Rassekh, SR; Zada, YF; Dubé, M-P; Carleton, BC; Hayden, MR

    2014-01-01

    Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. A serious complication of cisplatin treatment is permanent hearing loss. The aim of this study was to replicate previous genetic findings in an independent cohort of 155 pediatric patients. Associations were replicated for genetic variants in TPMT (rs12201199, P = 0.0013, odds ratio (OR) 6.1) and ABCC3 (rs1051640, P = 0.036, OR 1.8). A predictive model combining variants in TPMT, ABCC3, and COMT with clinical variables (patient age, vincristine treatment, germ-cell tumor, and cranial irradiation) significantly improved the prediction of hearing-loss development as compared with using clinical risk factors alone (area under the curve (AUC) 0.786 vs. 0.708, P = 0.00048). The novel combination of genetic and clinical factors predicted the risk of hearing loss with a sensitivity of 50.3% and a specificity of 92.7%. These findings provide evidence to support the importance of TPMT, COMT, and ABCC3 in the prediction of cisplatin-induced hearing loss in children. PMID:23588304

  15. Comparison of locus-specific databases for BRCA1 and BRCA2 variants reveals disparity in variant classification within and among databases.

    PubMed

    Vail, Paris J; Morris, Brian; van Kan, Aric; Burdett, Brianna C; Moyes, Kelsey; Theisen, Aaron; Kerr, Iain D; Wenstrup, Richard J; Eggington, Julie M

    2015-10-01

    Genetic variants of uncertain clinical significance (VUSs) are a common outcome of clinical genetic testing. Locus-specific variant databases (LSDBs) have been established for numerous disease-associated genes as a research tool for the interpretation of genetic sequence variants to facilitate variant interpretation via aggregated data. If LSDBs are to be used for clinical practice, consistent and transparent criteria regarding the deposition and interpretation of variants are vital, as variant classifications are often used to make important and irreversible clinical decisions. In this study, we performed a retrospective analysis of 2017 consecutive BRCA1 and BRCA2 genetic variants identified from 24,650 consecutive patient samples referred to our laboratory to establish an unbiased dataset representative of the types of variants seen in the US patient population, submitted by clinicians and researchers for BRCA1 and BRCA2 testing. We compared the clinical classifications of these variants among five publicly accessible BRCA1 and BRCA2 variant databases: BIC, ClinVar, HGMD (paid version), LOVD, and the UMD databases. Our results show substantial disparity of variant classifications among publicly accessible databases. Furthermore, it appears that discrepant classifications are not the result of a single outlier but widespread disagreement among databases. This study also shows that databases sometimes favor a clinical classification when current best practice guidelines (ACMG/AMP/CAP) would suggest an uncertain classification. Although LSDBs have been well established for research applications, our results suggest several challenges preclude their wider use in clinical practice.

  16. Separate and combined effects of genetic variants and pre-treatment whole blood gene expression on response to exposure-based cognitive behavioural therapy for anxiety disorders.

    PubMed

    Coleman, Jonathan R I; Lester, Kathryn J; Roberts, Susanna; Keers, Robert; Lee, Sang Hyuck; De Jong, Simone; Gaspar, Héléna; Teismann, Tobias; Wannemüller, André; Schneider, Silvia; Jöhren, Peter; Margraf, Jürgen; Breen, Gerome; Eley, Thalia C

    2017-04-01

    Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for anxiety disorders. Response varies between individuals. Gene expression integrates genetic and environmental influences. We analysed the effect of gene expression and genetic markers separately and together on treatment response. Adult participants (n ≤ 181) diagnosed with panic disorder or a specific phobia underwent eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity rating was assessed across treatment, and between baseline and a 6-month follow-up. Associations with treatment response were assessed using expression data from 3,233 probes, and expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic variants were used to predict treatment response alone and combined in polygenic risk scores. Genotype and expression data were combined in expression quantitative trait loci (eQTL) analyses. Expression levels were not associated with either treatment phenotype in any analysis. A total of 1,492 eQTLs were identified with q < 0.05, but interactions between genetic variants and treatment response did not affect expression levels significantly. Genetic variants did not significantly predict treatment response alone or in polygenic risk scores. We assessed gene expression alone and alongside genetic variants. No associations with treatment outcome were identified. Future studies require larger sample sizes to discover associations.

  17. Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder

    PubMed Central

    Cardno, Alastair G.

    2014-01-01

    There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant. PMID:24567502

  18. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine.

    PubMed

    Lockridge, O

    1990-01-01

    People with genetic variants of cholinesterase respond abnormally to succinylcholine, experiencing substantial prolongation of muscle paralysis with apnea rather than the usual 2-6 min. The structure of usual cholinesterase has been determined including the complete amino acid and nucleotide sequence. This has allowed identification of altered amino acids and nucleotides. The variant most frequently found in patients who respond abnormally to succinylcholine is atypical cholinesterase, which occurs in homozygous form in 1 out of 3500 Caucasians. Atypical cholinesterase has a single substitution at nucleotide 209 which changes aspartic acid 70 to glycine. This suggests that Asp 70 is part of the anionic site, and that the absence of this negatively charged amino acid explains the reduced affinity of atypical cholinesterase for positively charged substrates and inhibitors. The clinical consequence of reduced affinity for succinylcholine is that none of the succinylcholine is hydrolyzed in blood and a large overdose reaches the nerve-muscle junction where it causes prolonged muscle paralysis. Silent cholinesterase has a frame shift mutation at glycine 117 which prematurely terminates protein synthesis and yields no active enzyme. The K variant, named in honor of W. Kalow, has threonine in place of alanine 539. The K variant is associated with 33% lower activity. All variants arise from a single locus as there is only one gene for human cholinesterase (EC 3.1.1.8). Comparison of amino acid sequences of esterases and proteases shows that cholinesterase belongs to a new family of serine esterases which is different from the serine proteases.

  19. Genetic Variants of the FADS Gene Cluster and ELOVL Gene Family, Colostrums LC-PUFA Levels, Breastfeeding, and Child Cognition

    PubMed Central

    Morales, Eva; Bustamante, Mariona; Gonzalez, Juan Ramon; Guxens, Monica; Torrent, Maties; Mendez, Michelle; Garcia-Esteban, Raquel; Julvez, Jordi; Forns, Joan; Vrijheid, Martine; Molto-Puigmarti, Carolina; Lopez-Sabater, Carmen; Estivill, Xavier; Sunyer, Jordi

    2011-01-01

    Introduction Breastfeeding effects on cognition are attributed to long-chain polyunsaturated fatty acids (LC-PUFAs), but controversy persists. Genetic variation in fatty acid desaturase (FADS) and elongase (ELOVL) enzymes has been overlooked when studying the effects of LC-PUFAs supply on cognition. We aimed to: 1) to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum; 2) to analyze whether these maternal variants are related to child cognition; and 3) to assess whether children's variants modify breastfeeding effects on cognition. Methods Data come from two population-based birth cohorts (n = 400 mother-child pairs from INMA-Sabadell; and n = 340 children from INMA-Menorca). LC-PUFAs were measured in 270 colostrum samples from INMA-Sabadell. Tag SNPs were genotyped both in mothers and children (13 in the FADS cluster, 6 in ELOVL2, and 7 in ELOVL5). Child cognition was assessed at 14 mo and 4 y using the Bayley Scales of Infant Development and the McCarthy Scales of Children's Abilities, respectively. Results Children of mothers carrying genetic variants associated with lower FADS1 activity (regulating AA and EPA synthesis), higher FADS2 activity (regulating DHA synthesis), and with higher EPA/AA and DHA/AA ratios in colostrum showed a significant advantage in cognition at 14 mo (3.5 to 5.3 points). Not being breastfed conferred an 8- to 9-point disadvantage in cognition among children GG homozygote for rs174468 (low FADS1 activity) but not among those with the A allele. Moreover, not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs2397142 (low ELOVL5 activity), but not among those carrying the G allele. Conclusion Genetically determined maternal supplies of LC-PUFAs during pregnancy and lactation appear to be crucial for child cognition. Breastfeeding effects on cognition are modified by child genetic variation in

  20. Common Genetic Variants of the Human Steroid 21-Hydroxylase Gene (CYP21A2) Are Related to Differences in Circulating Hormone Levels

    PubMed Central

    Doleschall, Márton; Szabó, Julianna Anna; Pázmándi, Júlia; Szilágyi, Ágnes; Koncz, Klára; Farkas, Henriette; Tóth, Miklós; Igaz, Péter; Gláz, Edit; Prohászka, Zoltán; Korbonits, Márta; Rácz, Károly; Patócs, Attila

    2014-01-01

    Purpose Systematic evaluation of the potential relationship between the common genetic variants of CYP21A2 and hormone levels. Methods The relationships of CYP21A2 intron 2 polymorphisms and haplotypes with diverse baseline and stimulated blood hormone levels were studied in 106 subjects with non-functioning adrenal incidentaloma (NFAI). The rationale for using NFAI subjects is dual: i) their baseline hormone profiles do not differ from those of healthy subjects and ii) hormone levels after stimulation tests are available. Results The carriers (N = 27) of a well-defined CYP21A2 haplotype cluster (c5) had significantly elevated levels of cortisol (p = 0.0110), and 17-hydroxyprogesterone (p = 0.0001) after ACTH stimulation, and 11-deoxycortisol after metyrapone administration (p = 0.0017), but the hormone values were in normal ranges. In addition, the carriers (N = 33) of the C allele of the rs6462 polymorphism had a higher baseline aldosterone level (p = 0.0006). The prevalence of these genetic variants of CYP21A2 did not differ between NFAI and healthy subjects. Conclusions The common CYP21A2 variants presumably exert the same effect on hormone levels in the healthy and disease-affected populations. Therefore, they may contribute to complex diseases such as some cardiovascular diseases, and may influence the genotype-phenotype correlation in patients with congenital adrenal hyperplasia (CAH) including the individual need for hormone substitution. PMID:25210767

  1. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy

    PubMed Central

    Holstege, Henne; van der Lee, Sven J; Hulsman, Marc; Wong, Tsz Hang; van Rooij, Jeroen GJ; Weiss, Marjan; Louwersheimer, Eva; Wolters, Frank J; Amin, Najaf; Uitterlinden, André G; Hofman, Albert; Ikram, M Arfan; van Swieten, John C; Meijers-Heijboer, Hanne; van der Flier, Wiesje M; Reinders, Marcel JT; van Duijn, Cornelia M; Scheltens, Philip

    2017-01-01

    Accumulating evidence suggests that genetic variants in the SORL1 gene are associated with Alzheimer disease (AD), but a strategy to identify which variants are pathogenic is lacking. In a discovery sample of 115 SORL1 variants detected in 1908 Dutch AD cases and controls, we identified the variant characteristics associated with SORL1 variant pathogenicity. Findings were replicated in an independent sample of 103 SORL1 variants detected in 3193 AD cases and controls. In a combined sample of the discovery and replication samples, comprising 181 unique SORL1 variants, we developed a strategy to classify SORL1 variants into five subtypes ranging from pathogenic to benign. We tested this pathogenicity screen in SORL1 variants reported in two independent published studies. SORL1 variant pathogenicity is defined by the Combined Annotation Dependent Depletion (CADD) score and the minor allele frequency (MAF) reported by the Exome Aggregation Consortium (ExAC) database. Variants predicted strongly damaging (CADD score >30), which are extremely rare (ExAC-MAF <1 × 10−5) increased AD risk by 12-fold (95% CI 4.2–34.3; P=5 × 10−9). Protein-truncating SORL1 mutations were all unknown to ExAC and occurred exclusively in AD cases. More common SORL1 variants (ExAC-MAF≥1 × 10−5) were not associated with increased AD risk, even when predicted strongly damaging. Findings were independent of gender and the APOE-ε4 allele. High-risk SORL1 variants were observed in a substantial proportion of the AD cases analyzed (2%). Based on their effect size, we propose to consider high-risk SORL1 variants next to variants in APOE, PSEN1, PSEN2 and APP for personalized risk assessments in clinical practice. PMID:28537274

  2. Genetic variants influencing effectiveness of exercise training programmes in obesity – an overview of human studies

    PubMed Central

    Ahmetov, II; Zmijewski, P

    2016-01-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary. PMID:27601774

  3. CDKL5 variants: Improving our understanding of a rare neurologic disorder.

    PubMed

    Hector, Ralph D; Kalscheuer, Vera M; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E S; Cobb, Stuart R

    2017-12-01

    To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.

  4. Investigation of the role of TCF4 rare sequence variants in schizophrenia.

    PubMed

    Basmanav, F Buket; Forstner, Andreas J; Fier, Heide; Herms, Stefan; Meier, Sandra; Degenhardt, Franziska; Hoffmann, Per; Barth, Sandra; Fricker, Nadine; Strohmaier, Jana; Witt, Stephanie H; Ludwig, Michael; Schmael, Christine; Moebus, Susanne; Maier, Wolfgang; Mössner, Rainald; Rujescu, Dan; Rietschel, Marcella; Lange, Christoph; Nöthen, Markus M; Cichon, Sven

    2015-07-01

    Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations. © 2015 Wiley Periodicals, Inc.

  5. Association of the g.19074G>A genetic variant in the osteoprotegerin gene with bone mineral density in Chinese postmenopausal women.

    PubMed

    Zhang, Y D; Zhang, Z; Zhou, N F; Jia, W T; Cheng, X G; Wei, X J

    2014-08-28

    Primary osteoporosis is a common health problem in postmenopausal women. This study aimed to detect the association of the g.19074G>A genetic variant in the osteoprotegerin gene (OPG) with bone mineral density (BMD) and primary osteoporosis. The created restriction site-polymerase chain reaction method was used to investigate the g.19074G>A genetic variant. The BMD of the femoral neck hip, lumbar spine (L2-4), and total hip were assessed by dual-energy X-ray absorptiometry (DEXA) in 856 unrelated Chinese postmenopausal women. We found significant differences in the BMDs of the femoral neck hip, lumbar spine (L2-4), and total hip among different genotypes; individuals with the GG genotype had significantly higher BMDs than those with the GA and AA genotypes (P < 0.05). Our results indicated that the A allele was an increased risk factor for primary osteoporosis and the g.19074G>A genetic variant of the OPG gene was associated with BMD and primary osteoporosis in Chinese postmenopausal women.

  6. Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.

    PubMed

    Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng

    2014-11-25

    The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P < 0.05). Our study shows evidence of significant associations between SNPs within the HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.

  7. [Molecular genetics in chronic myeloid leukemia with variant Ph translocation].

    PubMed

    Wu, Wei; Li, Jian-yong; Zhu, Yu; Qiu, Hai-rong; Pan, Jin-lan; Xu, Wei; Chen, Li-juan; Shen, Yun-feng; Xue, Yong-quan

    2007-08-01

    To explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh). Cytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique. Of the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities. The combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.

  8. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    PubMed

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  9. Genetic variants and the risk of gestational diabetes mellitus: a systematic review.

    PubMed

    Zhang, Cuilin; Bao, Wei; Rong, Ying; Yang, Huixia; Bowers, Katherine; Yeung, Edwina; Kiely, Michele

    2013-01-01

    Several studies have examined associations between genetic variants and the risk of gestational diabetes mellitus (GDM). However, inferences from these studies were often hindered by limited statistical power and conflicting results. We aimed to systematically review and quantitatively summarize the association of commonly studied single nucleotide polymorphisms (SNPs) with GDM risk and to identify important gaps that remain for consideration in future studies. Genetic association studies of GDM published through 1 October 2012 were searched using the HuGE Navigator and PubMed databases. A SNP was included if the SNP-GDM associations were assessed in three or more independent studies. Two reviewers independently evaluated the eligibility for inclusion and extracted the data. The allele-specific odds ratios (ORs) and 95% confidence intervals (CIs) were pooled using random effects models accounting for heterogeneity. Overall, 29 eligible articles capturing associations of 12 SNPs from 10 genes were included for the systematic review. The minor alleles of rs7903146 (TCF7L2), rs12255372 (TCF7L2), rs1799884 (-30G/A, GCK), rs5219 (E23K, KCNJ11), rs7754840 (CDKAL1), rs4402960 (IGF2BP2), rs10830963 (MTNR1B), rs1387153 (MTNR1B) and rs1801278 (Gly972Arg, IRS1) were significantly associated with a higher risk of GDM. Among them, genetic variants in TCF7L2 showed the strongest association with GDM risk, with ORs (95% CIs) of 1.44 (1.29-1.60, P < 0.001) per T allele of rs7903146 and 1.46 (1.15-1.84, P = 0.002) per T allele of rs12255372. In this systematic review, we found significant associations of GDM risk with nine SNPs in seven genes, most of which have been related to the regulation of insulin secretion.

  10. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation.

    PubMed

    Tang, Haiming; Thomas, Paul D

    2016-07-15

    PANTHER-PSEP is a new software tool for predicting non-synonymous genetic variants that may play a causal role in human disease. Several previous variant pathogenicity prediction methods have been proposed that quantify evolutionary conservation among homologous proteins from different organisms. PANTHER-PSEP employs a related but distinct metric based on 'evolutionary preservation': homologous proteins are used to reconstruct the likely sequences of ancestral proteins at nodes in a phylogenetic tree, and the history of each amino acid can be traced back in time from its current state to estimate how long that state has been preserved in its ancestors. Here, we describe the PSEP tool, and assess its performance on standard benchmarks for distinguishing disease-associated from neutral variation in humans. On these benchmarks, PSEP outperforms not only previous tools that utilize evolutionary conservation, but also several highly used tools that include multiple other sources of information as well. For predicting pathogenic human variants, the trace back of course starts with a human 'reference' protein sequence, but the PSEP tool can also be applied to predicting deleterious or pathogenic variants in reference proteins from any of the ∼100 other species in the PANTHER database. PANTHER-PSEP is freely available on the web at http://pantherdb.org/tools/csnpScoreForm.jsp Users can also download the command-line based tool at ftp://ftp.pantherdb.org/cSNP_analysis/PSEP/ CONTACT: pdthomas@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Variant Interpretation: Functional Assays to the Rescue.

    PubMed

    Starita, Lea M; Ahituv, Nadav; Dunham, Maitreya J; Kitzman, Jacob O; Roth, Frederick P; Seelig, Georg; Shendure, Jay; Fowler, Douglas M

    2017-09-07

    Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Imaging genetics approach to predict progression of Parkinson's diseases.

    PubMed

    Mansu Kim; Seong-Jin Son; Hyunjin Park

    2017-07-01

    Imaging genetics is a tool to extract genetic variants associated with both clinical phenotypes and imaging information. The approach can extract additional genetic variants compared to conventional approaches to better investigate various diseased conditions. Here, we applied imaging genetics to study Parkinson's disease (PD). We aimed to extract significant features derived from imaging genetics and neuroimaging. We built a regression model based on extracted significant features combining genetics and neuroimaging to better predict clinical scores of PD progression (i.e. MDS-UPDRS). Our model yielded high correlation (r = 0.697, p <; 0.001) and low root mean squared error (8.36) between predicted and actual MDS-UPDRS scores. Neuroimaging (from 123 I-Ioflupane SPECT) predictors of regression model were computed from independent component analysis approach. Genetic features were computed using image genetics approach based on identified neuroimaging features as intermediate phenotypes. Joint modeling of neuroimaging and genetics could provide complementary information and thus have the potential to provide further insight into the pathophysiology of PD. Our model included newly found neuroimaging features and genetic variants which need further investigation.

  13. Prevalence, genetic variants and clinical implications of G-6-PD deficiency in Burkina Faso: a systematic review.

    PubMed

    Ouattara, Abdoul Karim; Yameogo, Pouiré; Traore, Lassina; Diarra, Birama; Assih, Maléki; Compaore, Tegwindé Rébéca; Obiri-Yeboah, Dorcas; Soubeiga, Serge Théophile; Djigma, Florencia Wendkuuni; Simpore, Jacques

    2017-11-23

    It is now well-known that some antimalarials such as primaquine may induce severe hemolytic anemia in people with G-6-PD deficiency. Antimalarial drug prescriptions must, therefore take into account the patient's G-6-PD status in malaria endemic areas such as Burkina Faso, where the prevalence of this genetic abnormality is relatively high. Although great clinical heterogeneity is observed depending on the molecular nature of the deficiency and the residual enzyme activity in the red blood cell, there is very poor data on the prevalence of G-6-PD deficiency and the distribution of involved genetic variants in Burkina Faso. In this systematic review, we present a synthesis of the various studies carried out on the G-6-PD deficiency in Burkina Faso in order to determine its prevalence, probable distribution of the genetic variants involved and their clinical implications for a national systematic screening policy among the groups most vulnerable to malaria. A systematic review was carried out to analyze available published data on the prevalence, phenotypes and mutations responsible for G-6-PD deficiency in Burkina Faso. The key words used were "G-6-PD deficiency AND Burkina Faso" or "Déficit en G-6-PD AND Burkina Faso" in French. To identify the relevant articles, two independent reviewers reviewed the titles, abstracts and the full text of the selected papers. An average prevalence of 16.6% (183/1100; CI 95%: 0.145-0.190) and 6.5% (69/1066; CI 95%: 0.051-0.081) of G-6-PD deficiency was found respectively in men and women in this systematic review. Although the predominance (99.8% of G-6-PD deficient cases) of 202A/376G G-6-PD A- variant, the Santamaria and Betica Selma variants were identified in Burkina Faso. Independently of the method used, the enzymatic deficiency was significantly higher in males (2.5-20.5%) compared to females (3.3-12.3%). This systematic review suggests that despite the ubiquity of the 202A/376G G-6-PD A- variant in Burkina Faso, it will be

  14. Rare-Variant Association Analysis: Study Designs and Statistical Tests

    PubMed Central

    Lee, Seunggeung; Abecasis, Gonçalo R.; Boehnke, Michael; Lin, Xihong

    2014-01-01

    Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research directions. PMID:24995866

  15. Public variant databases: liability?

    PubMed

    Thorogood, Adrian; Cook-Deegan, Robert; Knoppers, Bartha Maria

    2017-07-01

    Public variant databases support the curation, clinical interpretation, and sharing of genomic data, thus reducing harmful errors or delays in diagnosis. As variant databases are increasingly relied on in the clinical context, there is concern that negligent variant interpretation will harm patients and attract liability. This article explores the evolving legal duties of laboratories, public variant databases, and physicians in clinical genomics and recommends a governance framework for databases to promote responsible data sharing.Genet Med advance online publication 15 December 2016.

  16. Shared Genetics and Couple-Associated Environment Are Major Contributors to the Risk of Both Clinical and Self-Declared Depression.

    PubMed

    Zeng, Yanni; Navarro, Pau; Xia, Charley; Amador, Carmen; Fernandez-Pujals, Ana M; Thomson, Pippa A; Campbell, Archie; Nagy, Reka; Clarke, Toni-Kim; Hafferty, Jonathan D; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2016-12-01

    Both genetic and environmental factors contribute to risk of depression, but estimates of their relative contributions are limited. Commonalities between clinically-assessed major depressive disorder (MDD) and self-declared depression (SDD) are also unclear. Using data from a large Scottish family-based cohort (GS:SFHS, N=19,994), we estimated the genetic and environmental variance components for MDD and SDD. The components representing the genetic effect associated with genome-wide common genetic variants (SNP heritability), the additional pedigree-associated genetic effect and non-genetic effects associated with common environments were estimated in a linear mixed model (LMM). Both MDD and SDD had significant contributions from components representing the effect from common genetic variants, the additional genetic effect associated with the pedigree and the common environmental effect shared by couples. The estimate of correlation between SDD and MDD was high (r=1.00, se=0.20) for common-variant-associated genetic effect and lower for the additional genetic effect from the pedigree (r=0.57, se=0.08) and the couple-shared environmental effect (r=0.53, se=0.22). Both genetics and couple-shared environmental effects were major factors influencing liability to depression. SDD may provide a scalable alternative to MDD in studies seeking to identify common risk variants. Rarer variants and environmental effects may however differ substantially according to different definitions of depression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease.

    PubMed

    Schott, Jonathan M; Crutch, Sebastian J; Carrasquillo, Minerva M; Uphill, James; Shakespeare, Tim J; Ryan, Natalie S; Yong, Keir X; Lehmann, Manja; Ertekin-Taner, Nilufer; Graff-Radford, Neill R; Boeve, Bradley F; Murray, Melissa E; Khan, Qurat Ul Ain; Petersen, Ronald C; Dickson, Dennis W; Knopman, David S; Rabinovici, Gil D; Miller, Bruce L; González, Aida Suárez; Gil-Néciga, Eulogio; Snowden, Julie S; Harris, Jenny; Pickering-Brown, Stuart M; Louwersheimer, Eva; van der Flier, Wiesje M; Scheltens, Philip; Pijnenburg, Yolande A; Galasko, Douglas; Sarazin, Marie; Dubois, Bruno; Magnin, Eloi; Galimberti, Daniela; Scarpini, Elio; Cappa, Stefano F; Hodges, John R; Halliday, Glenda M; Bartley, Lauren; Carrillo, Maria C; Bras, Jose T; Hardy, John; Rossor, Martin N; Collinge, John; Fox, Nick C; Mead, Simon

    2016-08-01

    The genetics underlying posterior cortical atrophy (PCA), typically a rare variant of Alzheimer's disease (AD), remain uncertain. We genotyped 302 PCA patients from 11 centers, calculated risk at 24 loci for AD/DLB and performed an exploratory genome-wide association study. We confirm that variation in/near APOE/TOMM40 (P = 6 × 10(-14)) alters PCA risk, but with smaller effect than for typical AD (PCA: odds ratio [OR] = 2.03, typical AD: OR = 2.83, P = .0007). We found evidence for risk in/near CR1 (P = 7 × 10(-4)), ABCA7 (P = .02) and BIN1 (P = .04). ORs at variants near INPP5D and NME8 did not overlap between PCA and typical AD. Exploratory genome-wide association studies confirmed APOE and identified three novel loci: rs76854344 near CNTNAP5 (P = 8 × 10(-10) OR = 1.9 [1.5-2.3]); rs72907046 near FAM46A (P = 1 × 10(-9) OR = 3.2 [2.1-4.9]); and rs2525776 near SEMA3C (P = 1 × 10(-8), OR = 3.3 [2.1-5.1]). We provide evidence for genetic risk factors specifically related to PCA. We identify three candidate loci that, if replicated, may provide insights into selective vulnerability and phenotypic diversity in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Cortisol reactivity to stress among youth: Stability over time and genetic variants for stress sensitivity

    PubMed Central

    Hankin, Benjamin L.; Badanes, Lisa S.; Smolen, Andrew; Young, Jami F.

    2015-01-01

    Stress sensitivity may be one process that can explain why some genetically at-risk individuals are more susceptible to some types of stress-reactive psychopathologies. Dysregulation of the Limbic Hypothalamic Pituitary Adrenal (LHPA) axis, including cortisol reactivity to challenge, represents a key aspect of stress sensitivity. However, the degree of stability over time among youth, especially differential stability as a function of particular genetic variants, has not been investigated. A general community sample of children and adolescents (mean age = 11.4; 56% girls) provided a DNA sample and completed two separate laboratory stress challenges, across an 18-month follow-up (N =224 at Time 1; N = 194 at Time 2), with repeated measures of salivary cortisol. Results showed that test-retest stability for several indices of cortisol reactivity across the laboratory challenge visits were significant and of moderate magnitude for the whole sample. Moreover, gene variants of several biologically plausible systems relevant for stress sensitivity (especially 5-HTTLPR and CRHR1) demonstrated differential stability of cortisol reactivity over 18-months, such that carriers of genotypes conferring enhanced environmental susceptibility exhibited greater stability of cortisol levels over time for some LHPA axis indices. Findings suggest that LHPA axis dysregulation may exhibit some trait-like aspects underlying stress sensitivity in youth, especially for those who carry genes related to greater genetic susceptibility to environmental stress. PMID:25688432

  19. Genetic risk score of common genetic variants for impaired fasting glucose and newly diagnosed type 2 diabetes influences oxidative stress.

    PubMed

    Kim, Minjoo; Kim, Minkyung; Huang, Limin; Jee, Sun Ha; Lee, Jong Ho

    2018-05-18

    We tested the hypothesis that the cumulative effects of common genetic variants related to elevated fasting glucose are collectively associated with oxidative stress. Using 25 single nucleotide polymorphisms (SNPs), a weighted genetic risk score (wGRS) was constructed by summing nine risk alleles based on nominal significance and a consistent effect direction in 1,395 controls and 718 patients with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes. All the participants were divided into the following three groups: low-wGRS, middle-wGRS, and high-wGRS groups. Among the nine SNPs, five SNPs were significantly associated with IFG and type 2 diabetes in this Korean population. wGRS was significantly associated with increased IFG and newly diagnosed type 2 diabetes (p = 6.83 × 10 -14 , odds ratio = 1.839) after adjusting for confounding factors. Among the IFG and type 2 diabetes patients, the fasting serum glucose and HbA 1c levels were significantly higher in the high-wGRS group than in the other groups. The urinary 8-epi-PGF 2α and malondialdehyde concentrations were significantly higher in the high-wGRS group than in the other groups. Moreover, general population-level instrumental variable estimation (using wGRS as an instrument) strengthened the causal effect regarding the largely adverse influence of high levels of fasting serum glucose on markers of oxidative stress in the Korean population. Thus, the combination of common genetic variants with small effects on IFG and newly diagnosed type 2 diabetes are significantly associated with oxidative stress.

  20. TREM2 Variants in Alzheimer's Disease

    PubMed Central

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  1. Recipient’s Genetic R702W NOD2 Variant Is Associated with an Increased Risk of Bacterial Infections after Orthotopic Liver Transplantation

    PubMed Central

    van Hoek, Bart; van den Berg, Arie P.; Porte, Robert J.; Blokzijl, Hans; Coenraad, Minneke J.; Hepkema, Bouke G.; Schaapherder, Alexander F.; Ringers, Jan; Weersma, Rinse K.; Verspaget, Hein W.

    2013-01-01

    Introduction Orthotopic liver transplantation (OLT) is accompanied by a significant postoperative infection risk. Immunosuppression to prevent rejection increases the susceptibility to infections, mainly by impairing the adaptive immune system. Genetic polymorphisms in the lectin complement pathway of the donor have recently been identified as important risk determinants of clinically significant bacterial infection (CSI) after OLT. Another genetic factor involved in innate immunity is NOD2, which was reported to be associated with increased risk of spontaneous bacterial peritonitis in cirrhotic patients. Methods We assessed association of three genetic NOD2 variants (R702W, G908R and 3020insC) with increased risk of CSI after OLT. 288 OLT recipient-donor pairs from two tertiary referral centers were genotyped for the three NOD2 variants. The probability of CSI in relation to NOD2 gene variants was determined with cumulative incidence curves and log-rank analysis. Results The R702W NOD2 variant in the recipient was associated with CSI after OLT. Eight out of 15 (53.3%) individuals with a mutated genotype compared to 80/273 (29.3%) with wild type genotype developed CSI (p=0.027, univariate cox regression), illustrated by a higher frequency of CSI after OLT over time (p=0.0003, log rank analysis). Multivariate analysis (including the donor lectin complement pathway profile) showed independence of this R702W NOD2 association from other risk factors (HR 2.0; p=0.04). The other NOD2 variants, G908R and 3020insC, in the recipient were not associated with CSI. There was no association with CSI after OLT for any of the NOD2 variants in the donor. Conclusion The mutated NOD2 R702W genotype in the recipient is independently associated with an increased risk of bacterial infections after liver transplantation, indicating a predisposing role for this genetic factor impairing the recipient’s innate immune system. PMID:23977330

  2. How important are rare variants in common disease?

    PubMed

    Saint Pierre, Aude; Génin, Emmanuelle

    2014-09-01

    Genome-wide association studies have uncovered hundreds of common genetic variants involved in complex diseases. However, for most complex diseases, these common genetic variants only marginally contribute to disease susceptibility. It is now argued that rare variants located in different genes could in fact play a more important role in disease susceptibility than common variants. These rare genetic variants were not captured by genome-wide association studies using single nucleotide polymorphism-chips but with the advent of next-generation sequencing technologies, they have become detectable. It is now possible to study their contribution to common disease by resequencing samples of cases and controls or by using new genotyping exome arrays that cover rare alleles. In this review, we address the question of the contribution of rare variants in common disease by taking the examples of different diseases for which some resequencing studies have already been performed, and by summarizing the results of simulation studies conducted so far to investigate the genetic architecture of complex traits in human. So far, empirical data have not allowed the exclusion of many models except the most extreme ones involving only a small number of rare variants with large effects contributing to complex disease. To unravel the genetic architecture of complex disease, case-control data will not be sufficient, and alternative study designs need to be proposed together with methodological developments. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Ring finger protein 39 genetic variants associate with HIV-1 plasma viral loads and its replication in cell culture.

    PubMed

    Lin, Ying-Ju; Chen, Chia-Yen; Jeang, Kuan-Teh; Liu, Xiang; Wang, Jen-Hsien; Hung, Chien-Hui; Tsang, Hsinyi; Lin, Ting-Hsu; Liao, Chiu-Chu; Huang, Shao-Mei; Lin, Cheng-Wen; Ho, Mao-Wang; Chien, Wen-Kuei; Chen, Jin-Hua; Ho, Tsung-Jung; Tsai, Fuu-Jen

    2014-01-01

    The human immunodeficiency virus (HIV-1) exploits host proteins to complete its life cycle. Genome-wide siRNA approaches suggested that host proteins affect HIV-1 replication. However, the results barely overlapped. RING finger protein 39 (RNF39) has been identified from genome-wide association studies. However, its function during HIV-1 replication remains unclear. We investigated the relationship between common RNF39 genetic variants and HIV-1 viral loads. The effect of RNF39 protein knockdown or overexpression on HIV-1 replication was then investigated in different cell lines. Two genetic variants were associated with HIV-1 viral loads. Patients with the ht1-GG/GG haplotype presented lower RNF39 expression levels and lower HIV-1 viral load. RNF39 knockdown inhibited HIV-1 expression. RNF39 protein may be involved in HIV-1 replication as observed in genetic studies on patients with HIV-1 and in in vitro cell cultures.

  4. Public variant databases: liability?

    PubMed Central

    Thorogood, Adrian; Cook-Deegan, Robert; Knoppers, Bartha Maria

    2017-01-01

    Public variant databases support the curation, clinical interpretation, and sharing of genomic data, thus reducing harmful errors or delays in diagnosis. As variant databases are increasingly relied on in the clinical context, there is concern that negligent variant interpretation will harm patients and attract liability. This article explores the evolving legal duties of laboratories, public variant databases, and physicians in clinical genomics and recommends a governance framework for databases to promote responsible data sharing. Genet Med advance online publication 15 December 2016 PMID:27977006

  5. Genetics of nonsyndromic obesity.

    PubMed

    Lee, Yung Seng

    2013-12-01

    Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.

  6. Association between ESR2 genetic variants and risk of myocardial infarction.

    PubMed

    Domingues-Montanari, Sophie; Subirana, Isaac; Tomás, Marta; Marrugat, Jaume; Sentí, Mariano

    2008-07-01

    Environmental and genetic factors contribute to the development of complex diseases such as myocardial infarction (MI), the leading cause of death in men and women. Women develop MI approximately 10 years later than men, a difference that could be explained by the genes coding for the estrogen receptors. Single nucleotide polymorphisms (SNPs) in the ESR2 gene may affect susceptibility for MI in a sex-dependent manner. A nested case-control design was used to analyze 3 polymorphisms of the ESR2 gene and their associated haplotypes in 710 myocardial infarction cases from the REGICOR (Registre Gironí del Corazón) study and 2379 controls randomly selected in a representative population of a Spanish cross-sectional study. The rs1271572 T allele was significantly more common in patients who developed MI (P < 0.001). No association was observed for rs1256049 or rs4986938. Assuming a dominant model of inheritance, the association, as determined by logistic multivariate regression after adjustment for conventional cardiac risk factors, remained statistically significant in men [odds ratio (OR) 1.65, 95% CI 1.18-2.30; P = 0.003) but not in women (P = 0.754). A very common haplotype encompassing the rs1271572 variant was also associated with the risk of MI in the overall population (OR 1.41, 95% CI 1.06-1.87; P = 0.020) and in men (OR 1.57, 95% CI 1.12-2.21; P = 0.009). The rs1271572 SNP T variant was associated with increased risk of MI in a Spanish population, and this association was found to be limited to men only. Sex differences in the genetic risk merit further investigation.

  7. Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants.

    PubMed

    Shahid, Saleem Ullah; Shabana; Cooper, Jackie A; Beaney, Katherine E; Li, Kawah; Rehman, Abdul; Humphries, Steve E

    2017-03-01

    Conventional coronary artery disease (CAD) risk factors like age, gender, blood lipids, hypertension and smoking have been the basis of CAD risk prediction algorithms, but provide only modest discrimination. Genetic risk score (GRS) may provide improved discrimination over and above conventional risk factors. Here we analyzed the genetic risk of CAD in subjects from Pakistan, using a GRS of 21 variants in 18 genes and examined whether the GRS is associated with blood lipid levels. 625 (405 cases and 220 controls) subjects were genotyped for variants, NOS3 rs1799983, SMAD3 rs17228212, APOB rs1042031, LPA rs3798220, LPA rs10455872, SORT1 rs646776, APOE rs429358, GLUL rs10911021, FTO rs9939609, MIA3 rs17465637, CDKN2Ars10757274, DAB2IP rs7025486, CXCL12 rs1746048, ACE rs4341, APOA5 rs662799, CETP rs708272, MRAS rs9818870, LPL rs328, LPL rs1801177, PCSK9 rs11591147 and APOE rs7412 by TaqMan and KASPar allele discrimination techniques. Individually, the single SNPs were not associated with CAD except APOB rs1042031 and FTO rs993969 (p = 0.01 and 0.009 respectively). However, the combined GRS of 21 SNPs was significantly higher in cases than controls (19.37 ± 2.56 vs. 18.47 ± 2.45, p = 2.9 × 10 -5 ), and compared to the bottom quintile, CAD risk in the top quintile of the GRS was 2.96 (95% CI 1.71-5.13). Atherogenic blood lipids showed significant positive association with GRS. The GRS was quantitatively associated with CAD risk and showed association with blood lipid levels, suggesting that the mechanism of these variants is likely to be, in part at least, through creating an atherogenic lipid profile in subjects carrying high numbers of risk alleles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigating the modulation of genetic effects on late AMD by age and sex: Lessons learned and two additional loci

    PubMed Central

    Grassmann, Felix; Gorski, Mathias; Loss, Julika; Heid, Iris M.

    2018-01-01

    Late-stage age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly with a complex etiology. The most important non-modifiable risk factors for onset and progression of late AMD are age and genetic risk factors, however, little is known about the interplay between genetics and age or sex. Here, we conducted a large-scale age- and sex-stratified genome-wide association study (GWAS) using 1000 Genomes imputed genome-wide and ExomeChip data (>12 million variants). The data were established by the International Age-related Macular Degeneration Genomics Consortium (IAMDGC) from 16,144 late AMD cases and 17,832 controls. Our systematic search for interaction effects yielded significantly stronger effects among younger individuals at two known AMD loci (near CFH and ARMS2/HTRA1). Accounting for age and gene-age interaction using a joint test identified two additional AMD loci compared to the previous main effect scan. One of these two is a novel AMD GWAS locus, near the retinal clusterin-like protein (CLUL1) gene, and the other, near the retinaldehyde binding protein 1 (RLBP1), was recently identified in a joint analysis of nuclear and mitochondrial variants. Despite considerable power in our data, neither sex-dependent effects nor effects with opposite directions between younger and older individuals were observed. This is the first genome-wide interaction study to incorporate age, sex and their interaction with genetic effects for late AMD. Results diminish the potential for a role of sex in the etiology of late AMD yet highlight the importance and existence of age-dependent genetic effects. PMID:29529059

  9. Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients.

    PubMed

    Mitropoulos, Konstantinos; Merkouri Papadima, Eleni; Xiromerisiou, Georgia; Balasopoulou, Angeliki; Charalampidou, Kyriaki; Galani, Vasiliki; Zafeiri, Krystallia-Vassiliki; Dardiotis, Efthymios; Ralli, Styliani; Deretzi, Georgia; John, Anne; Kydonopoulou, Kyriaki; Papadopoulou, Elpida; di Pardo, Alba; Akcimen, Fulya; Loizedda, Annalisa; Dobričić, Valerija; Novaković, Ivana; Kostić, Vladimir S; Mizzi, Clint; Peters, Brock A; Basak, Nazli; Orrù, Sandro; Kiskinis, Evangelos; Cooper, David N; Gerou, Spyridon; Drmanac, Radoje; Bartsakoulia, Marina; Tsermpini, Evangelia-Eirini; Hadjigeorgiou, Georgios M; Ali, Bassam R; Katsila, Theodora; Patrinos, George P

    2017-12-08

    Amyotrophic lateral sclerosis (ALS) is a devastating disease whose complex pathology has been associated with a strong genetic component in the context of both familial and sporadic disease. Herein, we adopted a next-generation sequencing approach to Greek patients suffering from sporadic ALS (together with their healthy counterparts) in order to explore further the genetic basis of sporadic ALS (sALS). Whole-genome sequencing analysis of Greek sALS patients revealed a positive association between FTO and TBC1D1 gene variants and sALS. Further, linkage disequilibrium analyses were suggestive of a specific disease-associated haplotype for FTO gene variants. Genotyping for these variants was performed in Greek, Sardinian, and Turkish sALS patients. A lack of association between FTO and TBC1D1 variants and sALS in patients of Sardinian and Turkish descent may suggest a founder effect in the Greek population. FTO was found to be highly expressed in motor neurons, while in silico analyses predicted an impact on FTO and TBC1D1 mRNA splicing for the genomic variants in question. To our knowledge, this is the first study to present a possible association between FTO gene variants and the genetic etiology of sALS. In addition, the next-generation sequencing-based genomics approach coupled with the two-step validation strategy described herein has the potential to be applied to other types of human complex genetic disorders in order to identify variants of clinical significance.

  10. Improved genetic counseling in Alport syndrome by new variants of COL4A5 gene.

    PubMed

    Fernandez-Rosado, Francisco; Campos, Ana; Alvarez-Cubero, Maria Jesus; Ruiz, Ana; Entrala-Bernal, Carmen

    2015-07-01

    There are current requirements of using genetic databases for offering a better genetic assistance to patients of some syndromes, especially those with X-linked heredity patterns (like Alport Syndrome) for the high probability of having descendants affected by the disease. We describe the first reported case of COL4A5 gene missense c.1499 G>T mutation in a 16-year-old girl confirmed to be affected by Alport Syndrome after genetic counseling. Next Generation Sequencing procedures let discover this mutation and offer an accurate clinical treatment to this patient. Current scientific understanding of genetic syndromes suggests the high importance of updated databases and the inclusion of Variant of Unknown Significance related to clinical cases. All of this updating could enable patients to have a better opportunity of diagnosis and having genetic and clinical counseling. This event is even more important in women planning to start a family to have correct genetic counseling regarding the risk posed to offspring, and allowing the decision to undergo prenatal testing. © 2015 Asian Pacific Society of Nephrology.

  11. Three New Genetic Loci (R1210C in CFH, Variants in COL8A1 and RAD51B) Are Independently Related to Progression to Advanced Macular Degeneration

    PubMed Central

    Seddon, Johanna M.; Reynolds, Robyn; Yu, Yi; Rosner, Bernard

    2014-01-01

    Objectives To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models. Methods In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models. Results Three new genetic variants were significantly related to progression: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2–5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1–3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60–0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC’s for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA. Conclusions Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes. PMID:24498017

  12. Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Ryles, April B; Kohannim, Omid; Jahanshad, Neda; Medland, Sarah E; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Saykin, Andrew J; Jack, Clifford R; Weiner, Michael W; Toga, Arthur W; Thompson, Paul M

    2013-06-01

    Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (P MA  = 4.79 × 10(-8)). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

  13. Age-Related Macular Degeneration: Genetics and Biology Coming Together

    PubMed Central

    Fritsche, Lars G.; Fariss, Robert N.; Stambolian, Dwight; Abecasis, Gonçalo R.; Curcio, Christine A.

    2014-01-01

    Genetic and genomic studies have enhanced our understanding of complex neurodegenerative diseases that exert a devastating impact on individuals and society. One such disease, age-related macular degeneration (AMD), is a major cause of progressive and debilitating visual impairment. Since the pioneering discovery in 2005 of complement factor H (CFH) as a major AMD susceptibility gene, extensive investigations have confirmed 19 additional genetic risk loci, and more are anticipated. In addition to common variants identified by now-conventional genome-wide association studies, targeted genomic sequencing and exome-chip analyses are uncovering rare variant alleles of high impact. Here, we provide a critical review of the ongoing genetic studies and of common and rare risk variants at a total of 20 susceptibility loci, which together explain 40–60% of the disease heritability but provide limited power for diagnostic testing of disease risk. Identification of these susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment. PMID:24773320

  14. Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes.

    PubMed

    Wong, John K L; Campbell, Desmond; Ngo, Ngoc Diem; Yeung, Fanny; Cheng, Guo; Tang, Clara S M; Chung, Patrick H Y; Tran, Ngoc Son; So, Man-Ting; Cherny, Stacey S; Sham, Pak C; Tam, Paul K; Garcia-Barcelo, Maria-Mercè

    2016-12-12

    Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. We aim to identify genetic risk factors by a "trio-based" exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD.

  15. Association of Genetic Variants With Response to Anti-Vascular Endothelial Growth Factor Therapy in Age-Related Macular Degeneration.

    PubMed

    Lorés-Motta, Laura; Riaz, Moeen; Grunin, Michelle; Corominas, Jordi; van Asten, Freekje; Pauper, Marc; Leenders, Mathieu; Richardson, Andrea J; Muether, Philipp; Cree, Angela J; Griffiths, Helen L; Pham, Connie; Belanger, Marie-Claude; Meester-Smoor, Magda A; Ali, Manir; Heid, Iris M; Fritsche, Lars G; Chakravarthy, Usha; Gale, Richard; McKibbin, Martin; Inglehearn, Chris F; Schlingemann, Reinier O; Omar, Amer; Chen, John; Koenekoop, Robert K; Fauser, Sascha; Guymer, Robyn H; Hoyng, Carel B; de Jong, Eiko K; Lotery, Andrew J; Mitchell, Paul; den Hollander, Anneke I; Baird, Paul N; Chowers, Itay

    2018-05-31

    Visual acuity (VA) outcomes differ considerably among patients with neovascular age-related macular degeneration (nAMD) treated with anti-vascular endothelial growth factor (VEGF) drugs. Identification of pharmacogenetic associations may help clinicians understand the mechanisms underlying this variability as well as pave the way for personalized treatment in nAMD. To identify genetic factors associated with variability in the response to anti-VEGF therapy for patients with nAMD. In this multicenter genome-wide association study, 678 patients with nAMD with genome-wide genotyping data were included in the discovery phase; 1380 additional patients with nAMD were genotyped for selected common variants in the replication phase. All participants received 3 monthly injections of bevacizumab or ranibizumab. Clinical data were evaluated for inclusion/exclusion criteria from October 2014 to October 2015, followed by data analysis from October 2015 to February 2016. For replication cohort genotyping, clinical data collection and analysis (including meta-analysis) was performed from March 2016 to April 2017. Change in VA after the loading dose of 3 monthly anti-VEGF injections compared with baseline. Of the 2058 included patients, 1210 (58.8%) were women, and the mean (SD) age across all cohorts was 78 (7.4) years. Patients included in the discovery cohort and most of the patients in the replication cohorts were of European descent. The mean (SD) baseline VA was 51.3 (20.3) Early Treatment Diabetic Retinopathy Study (ETDRS) score letters, and the mean (SD) change in VA after the loading dose of 3 monthly injections was a gain of 5.1 (13.9) ETDRS score letters (ie, 1-line gain). Genome-wide single-variant analyses of common variants revealed 5 independent loci that reached a P value less than 10 × 10-5. After replication and meta-analysis of the lead variants, rs12138564 located in the CCT3 gene remained nominally associated with a better treatment outcome (ETDRS letter

  16. Establishing the role of rare coding variants in known Parkinson's disease risk loci.

    PubMed

    Jansen, Iris E; Gibbs, J Raphael; Nalls, Mike A; Price, T Ryan; Lubbe, Steven; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Williams, Nigel M; Brice, Alexis; Hardy, John; Wood, Nicholas W; Morris, Huw R; Gasser, Thomas; Singleton, Andrew B; Heutink, Peter; Sharma, Manu

    2017-11-01

    Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    USDA-ARS?s Scientific Manuscript database

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  18. Myopathy With SQSTM1 and TIA1 Variants: Clinical and Pathological Features.

    PubMed

    Niu, Zhiyv; Pontifex, Carly Sabine; Berini, Sarah; Hamilton, Leslie E; Naddaf, Elie; Wieben, Eric; Aleff, Ross A; Martens, Kristina; Gruber, Angela; Engel, Andrew G; Pfeffer, Gerald; Milone, Margherita

    2018-01-01

    The aim of this study is to identify the molecular defect of three unrelated individuals with late-onset predominant distal myopathy; to describe the spectrum of phenotype resulting from the contributing role of two variants in genes located on two different chromosomes; and to highlight the underappreciated complex forms of genetic myopathies. Clinical and laboratory data of three unrelated probands with predominantly distal weakness manifesting in the sixth-seventh decade of life, and available affected and unaffected family members were reviewed. Next-generation sequencing panel, whole exome sequencing, and targeted analyses of family members were performed to elucidate the genetic etiology of the myopathy. Genetic analyses detected two contributing variants located on different chromosomes in three unrelated probands: a heterozygous pathogenic mutation in SQSTM1 (c.1175C>T, p.Pro392Leu) and a heterozygous variant in TIA1 (c.1070A>G, p.Asn357Ser). The affected fraternal twin of one proband also carries both variants, while the unaffected family members harbor one or none. Two unrelated probands (family 1, II.3, and family 3, II.1) have a distal myopathy with rimmed vacuoles that manifested with index extensor weakness; the other proband (family 2, I.1) has myofibrillar myopathy manifesting with hypercapnic respiratory insufficiency and distal weakness. The findings indicate that all the affected individuals have a myopathy associated with both variants in SQSTM1 and TIA1 , respectively, suggesting that the two variants determine the phenotype and likely functionally interact. We speculate that the TIA1 variant is a modifier of the SQSTM1 mutation. We identify the combination of SQSTM1 and TIA1 variants as a novel genetic defect associated with myofibrillar myopathy and suggest to consider sequencing both genes in the molecular investigation of myopathy with rimmed vacuoles and myofibrillar myopathy although additional studies are needed to investigate the

  19. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order.

    PubMed

    Ramasamy, Adaikalavan; Curjuric, Ivan; Coin, Lachlan J; Kumar, Ashish; McArdle, Wendy L; Imboden, Medea; Leynaert, Benedicte; Kogevinas, Manolis; Schmid-Grendelmeier, Peter; Pekkanen, Juha; Wjst, Matthias; Bircher, Andreas J; Sovio, Ulla; Rochat, Thierry; Hartikainen, Anna-Liisa; Balding, David J; Jarvelin, Marjo-Riitta; Probst-Hensch, Nicole; Strachan, David P; Jarvis, Deborah L

    2011-11-01

    Hay fever or seasonal allergic rhinitis (AR) is a chronic disorder associated with IgE sensitization to grass. The underlying genetic variants have not been studied comprehensively. There is overwhelming evidence that those who have older siblings have less AR, although the mechanism for this remains unclear. We sought to identify common genetic variant associations with prevalent AR and grass sensitization using existing genome-wide association study (GWAS) data and to determine whether genetic variants modify the protective effect of older siblings. Approximately 2.2 million genotyped or imputed single nucleotide polymorphisms were investigated in 4 large European adult cohorts for AR (3,933 self-reported cases vs 8,965 control subjects) and grass sensitization (2,315 cases vs 10,032 control subjects). Three loci reached genome-wide significance for either phenotype. The HLA variant rs7775228, which cis-regulates HLA-DRB4, was strongly associated with grass sensitization and weakly with AR (P(grass) = 1.6 × 10(-9); P(AR) = 8.0 × 10(-3)). Variants in a locus near chromosome 11 open reading frame 30 (C11orf30) and leucine-rich repeat containing 32 (LRRC32), which was previously associated with atopic dermatitis and eczema, were also strongly associated with both phenotypes (rs2155219; P(grass) = 9.4 × 10(-9); P(AR) = 3.8 × 10(-8)). The third genome-wide significant variant was rs17513503 (P(grass) = 1.2 × 10(-8); PAR = 7.4 × 10(-7)) which was located near transmembrane protein 232 (TMEM232) and solute carrier family 25, member 46 (SLC25A46). Twelve further loci with suggestive associations were also identified. Using a candidate gene approach, where we considered variants within 164 genes previously thought to be important, we found variants in 3 further genes that may be of interest: thymic stromal lymphopoietin (TSLP), Toll-like receptor 6 (TLR6) and nucleotide-binding oligomerization domain containing 1 (NOD1/CARD4). We found no evidence for variants

  20. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants

    USDA-ARS?s Scientific Manuscript database

    Short sleep duration has been associated with greater risks of obesity, hypertension, diabetes, and cardiovascular disease. Also, common genetic variants in the human Circadian Locomotor Output Cycles Kaput (CLOCK) show associations with ghrelin and total energy intake. We examined associations betw...

  1. Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive.

    PubMed

    Taudien, Stefan; Lausser, Ludwig; Giamarellos-Bourboulis, Evangelos J; Sponholz, Christoph; Schöneweck, Franziska; Felder, Marius; Schirra, Lyn-Rouven; Schmid, Florian; Gogos, Charalambos; Groth, Susann; Petersen, Britt-Sabina; Franke, Andre; Lieb, Wolfgang; Huse, Klaus; Zipfel, Peter F; Kurzai, Oliver; Moepps, Barbara; Gierschik, Peter; Bauer, Michael; Scherag, André; Kestler, Hans A; Platzer, Matthias

    2016-10-01

    Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs). We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic groups. Classification experiments based on the data of the Greek patients allowed discrimination between the disease courses with estimated sensitivity and specificity>75%. By application of the trained model to the German patients we observed comparable discriminatory properties despite lower population-specific rare SNV load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified as classifiers discriminating between the sepsis courses. Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to be affected more often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggesting a protective role of impairments in these processes against a poor disease course. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor

    PubMed Central

    Richter, Anni; Barman, Adriana; Wüstenberg, Torsten; Soch, Joram; Schanze, Denny; Deibele, Anna; Behnisch, Gusalija; Assmann, Anne; Klein, Marieke; Zenker, Martin; Seidenbecher, Constanze; Schott, Björn H.

    2017-01-01

    Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory. PMID

  3. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants12345

    PubMed Central

    Dashti, Hassan S; Follis, Jack L; Smith, Caren E; Tanaka, Toshiko; Cade, Brian E; Gottlieb, Daniel J; Hruby, Adela; Jacques, Paul F; Lamon-Fava, Stefania; Richardson, Kris; Saxena, Richa; Scheer, Frank AJL; Kovanen, Leena; Bartz, Traci M; Perälä, Mia-Maria; Jonsson, Anna; Frazier-Wood, Alexis C; Kalafati, Ioanna-Panagiota; Mikkilä, Vera; Partonen, Timo; Lemaitre, Rozenn N; Lahti, Jari; Hernandez, Dena G; Toft, Ulla; Johnson, W Craig; Kanoni, Stavroula; Raitakari, Olli T; Perola, Markus; Psaty, Bruce M; Ferrucci, Luigi; Grarup, Niels; Highland, Heather M; Rallidis, Loukianos; Kähönen, Mika; Havulinna, Aki S; Siscovick, David S; Räikkönen, Katri; Jørgensen, Torben; Rotter, Jerome I; Deloukas, Panos; Viikari, Jorma SA; Mozaffarian, Dariush; Linneberg, Allan; Seppälä, Ilkka; Hansen, Torben; Salomaa, Veikko; Gharib, Sina A; Eriksson, Johan G; Bandinelli, Stefania; Pedersen, Oluf; Rich, Stephen S; Dedoussis, George; Lehtimäki, Terho

    2015-01-01

    Background: Short sleep duration has been associated with greater risks of obesity, hypertension, diabetes, and cardiovascular disease. Also, common genetic variants in the human Circadian Locomotor Output Cycles Kaput (CLOCK) show associations with ghrelin and total energy intake. Objectives: We examined associations between habitual sleep duration, body mass index (BMI), and macronutrient intake and assessed whether CLOCK variants modify these associations. Design: We conducted inverse-variance weighted, fixed-effect meta-analyses of results of adjusted associations of sleep duration and BMI and macronutrient intake as percentages of total energy as well as interactions with CLOCK variants from 9 cohort studies including up to 14,906 participants of European descent from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Results: We observed a significant association between sleep duration and lower BMI (β ± SE = 0.16 ± 0.04, P < 0.0001) in the overall sample; however, associations between sleep duration and relative macronutrient intake were evident in age- and sex-stratified analyses only. We observed a significant association between sleep duration and lower saturated fatty acid intake in younger (aged 20–64 y) adults (men: 0.11 ± 0.06%, P = 0.03; women: 0.10 ± 0.05%, P = 0.04) and with lower carbohydrate (−0.31 ± 0.12%, P < 0.01), higher total fat (0.18 ± 0.09%, P = 0.05), and higher PUFA (0.05 ± 0.02%, P = 0.02) intakes in older (aged 65–80 y) women. In addition, the following 2 nominally significant interactions were observed: between sleep duration and rs12649507 on PUFA intake and between sleep duration and rs6858749 on protein intake. Conclusions: Our results indicate that longer habitual sleep duration is associated with lower BMI and age- and sex-specific favorable dietary behaviors. Differences in the relative intake of specific macronutrients associated with short sleep duration could, at least in part, explain

  4. FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals.

    PubMed

    Qi, Qibin; Kilpeläinen, Tuomas O; Downer, Mary K; Tanaka, Toshiko; Smith, Caren E; Sluijs, Ivonne; Sonestedt, Emily; Chu, Audrey Y; Renström, Frida; Lin, Xiaochen; Ängquist, Lars H; Huang, Jinyan; Liu, Zhonghua; Li, Yanping; Asif Ali, Muhammad; Xu, Min; Ahluwalia, Tarunveer Singh; Boer, Jolanda M A; Chen, Peng; Daimon, Makoto; Eriksson, Johan; Perola, Markus; Friedlander, Yechiel; Gao, Yu-Tang; Heppe, Denise H M; Holloway, John W; Houston, Denise K; Kanoni, Stavroula; Kim, Yu-Mi; Laaksonen, Maarit A; Jääskeläinen, Tiina; Lee, Nanette R; Lehtimäki, Terho; Lemaitre, Rozenn N; Lu, Wei; Luben, Robert N; Manichaikul, Ani; Männistö, Satu; Marques-Vidal, Pedro; Monda, Keri L; Ngwa, Julius S; Perusse, Louis; van Rooij, Frank J A; Xiang, Yong-Bing; Wen, Wanqing; Wojczynski, Mary K; Zhu, Jingwen; Borecki, Ingrid B; Bouchard, Claude; Cai, Qiuyin; Cooper, Cyrus; Dedoussis, George V; Deloukas, Panos; Ferrucci, Luigi; Forouhi, Nita G; Hansen, Torben; Christiansen, Lene; Hofman, Albert; Johansson, Ingegerd; Jørgensen, Torben; Karasawa, Shigeru; Khaw, Kay-Tee; Kim, Mi-Kyung; Kristiansson, Kati; Li, Huaixing; Lin, Xu; Liu, Yongmei; Lohman, Kurt K; Long, Jirong; Mikkilä, Vera; Mozaffarian, Dariush; North, Kari; Pedersen, Oluf; Raitakari, Olli; Rissanen, Harri; Tuomilehto, Jaakko; van der Schouw, Yvonne T; Uitterlinden, André G; Zillikens, M Carola; Franco, Oscar H; Shyong Tai, E; Ou Shu, Xiao; Siscovick, David S; Toft, Ulla; Verschuren, W M Monique; Vollenweider, Peter; Wareham, Nicholas J; Witteman, Jacqueline C M; Zheng, Wei; Ridker, Paul M; Kang, Jae H; Liang, Liming; Jensen, Majken K; Curhan, Gary C; Pasquale, Louis R; Hunter, David J; Mohlke, Karen L; Uusitupa, Matti; Cupples, L Adrienne; Rankinen, Tuomo; Orho-Melander, Marju; Wang, Tao; Chasman, Daniel I; Franks, Paul W; Sørensen, Thorkild I A; Hu, Frank B; Loos, Ruth J F; Nettleton, Jennifer A; Qi, Lu

    2014-12-20

    FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177,330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 × 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 × 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Impact of ancestry and common genetic variants on QT interval in African Americans.

    PubMed

    Smith, J Gustav; Avery, Christy L; Evans, Daniel S; Nalls, Michael A; Meng, Yan A; Smith, Erin N; Palmer, Cameron; Tanaka, Toshiko; Mehra, Reena; Butler, Anne M; Young, Taylor; Buxbaum, Sarah G; Kerr, Kathleen F; Berenson, Gerald S; Schnabel, Renate B; Li, Guo; Ellinor, Patrick T; Magnani, Jared W; Chen, Wei; Bis, Joshua C; Curb, J David; Hsueh, Wen-Chi; Rotter, Jerome I; Liu, Yongmei; Newman, Anne B; Limacher, Marian C; North, Kari E; Reiner, Alexander P; Quibrera, P Miguel; Schork, Nicholas J; Singleton, Andrew B; Psaty, Bruce M; Soliman, Elsayed Z; Solomon, Allen J; Srinivasan, Sathanur R; Alonso, Alvaro; Wallace, Robert; Redline, Susan; Zhang, Zhu-Ming; Post, Wendy S; Zonderman, Alan B; Taylor, Herman A; Murray, Sarah S; Ferrucci, Luigi; Arking, Dan E; Evans, Michele K; Fox, Ervin R; Sotoodehnia, Nona; Heckbert, Susan R; Whitsel, Eric A; Newton-Cheh, Christopher

    2012-12-01

    Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval. First, individual estimates of African and European ancestry were inferred from genome-wide single-nucleotide polymorphism (SNP) data in 7 population-based cohorts of African Americans (n=12,097) and regressed on measured QT interval from ECGs. Second, imputation was performed for 2.8 million SNPs, and a genome-wide association study of QT interval was performed in 10 cohorts (n=13,105). There was no evidence of association between genetic ancestry and QT interval (P=0.94). Genome-wide significant associations (P<2.5 × 10(-8)) were identified with SNPs at 2 loci, upstream of the genes NOS1AP (rs12143842, P=2 × 10(-15)) and ATP1B1 (rs1320976, P=2 × 10(-10)). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low probability values (P<10(-5)) were observed for SNPs at several other loci previously identified in genome-wide association studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF, and PLN. We observed no difference in duration of cardiac repolarization with global genetic indices of African American ancestry. In addition, our genome-wide association study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include individuals of African ancestry.

  6. Obesity-related genetic variants, human pigmentation, and risk of melanoma

    PubMed Central

    Li, Xin; Liang, Liming; Zhang, Mingfeng; Song, Fengju; Nan, Hongmei; Wang, Li-E; Wei, Qingyi; Lee, Jeffrey E.; Amos, Christopher I.; Qureshi, Abrar A.; Han, Jiali

    2013-01-01

    Previous biological studies showed evidence of a genetic link between obesity and pigmentation in both animal models and humans. Our study investigated the individual and joint associations between obesity-related single nucleotide polymorphisms (SNPs) and both human pigmentation and risk of melanoma. Eight obesity-related SNPs in the FTO, MAP2K5, NEGR1, FLJ35779, ETV5, CADM2, and NUDT3 genes were nominally significantly associated with hair color among 5,876 individuals of European ancestry. The genetic score combining 35 independent obesity-risk loci was significantly associated with darker hair color (beta-coefficient per ten alleles=0.12, P-value=4 10−5). However, single SNPs or genetic scores showed non-significant association with tanning ability. We further examined the SNPs at the FTO locus for their associations with pigmentation and risk of melanoma. Among the 783 SNPs in the FTO gene with imputation R-square quality metric >0.8 using the 1000 genome data set, ten and three independent SNPs were significantly associated with hair color and tanning ability respectively. Moreover, five independent FTO SNPs showed nominally significant association with risk of melanoma in 1,804 cases and 1,026 controls. But none of them was associated with obesity or in linkage disequilibrium with obesity-related variants. FTO locus may confer variation in human pigmentation and risk of melanoma, which may be independent of its effect on obesity. PMID:23539184

  7. Discovery of genetic variants of the kinases that activate tenofovir among individuals in the United States, Thailand, and South Africa: HPTN067.

    PubMed

    Figueroa, Dominique B; Tillotson, Joseph; Li, Maoji; Piwowar-Manning, Estelle; Hendrix, Craig W; Holtz, Timothy H; Bokoch, Kevin; Bekker, Linda-Gail; van Griensven, Frits; Mannheimer, Sharon; Hughes, James P; Grant, Robert M; Bumpus, Namandjé N

    2018-01-01

    Tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, requires two phosphorylation steps to form a competitive inhibitor of HIV reverse transcriptase. Adenylate kinase 2 (AK2) has been previously demonstrated to phosphorylate tenofovir to tenofovir-monophosphate, while creatine kinase, muscle (CKM), pyruvate kinase, muscle (PKM) and pyruvate kinase, liver and red blood cell (PKLR) each have been found to phosphorylate tenofovir-monophosphate to the pharmacologically active tenofovir-diphosphate. In the present study, genomic DNA isolated from dried blood spots collected from 505 participants from Bangkok, Thailand; Cape Town, South Africa; and New York City, USA were examined for variants in AK2, CKM, PKM, and PKLR using next-generation sequencing. The bioinformatics tools SIFT and PolyPhen predicted that 19 of the 505 individuals (3.7% frequency) carried variants in at least one kinase that would result in a decrease or loss of enzymatic activity. To functionally test these predictions, AK2 and AK2 variants were expressed in and purified from E. coli, followed by investigation of their activities towards tenofovir. Interestingly, we found that purified AK2 had the ability to phosphorylate tenofovir-monophosphate to tenofovir-diphosphate in addition to phosphorylating tenofovir to tenofovir-monophosphate. Further, four of the six AK2 variants predicted to result in a loss or decrease of enzyme function exhibited a ≥30% decrease in activity towards tenofovir in our in vitro assays. Of note, an AK2 K28R variant resulted in a 72% and 81% decrease in the formation of tenofovir-monophosphate and tenofovir-diphosphate, respectively. These data suggest that there are naturally occurring genetic variants that could potentially impact TFV activation.

  8. Gene variants as risk factors for gastroschisis.

    PubMed

    Padula, Amy M; Yang, Wei; Schultz, Kathleen; Tom, Lauren; Lin, Bin; Carmichael, Suzan L; Lammer, Edward J; Shaw, Gary M

    2016-11-01

    In a population-based case-control study in California of 228 infants, we investigated 75 genetic variants in 20 genes and risk of gastroschisis with regard to maternal age, race/ethnicity, vitamin use, and smoking exposure. We hypothesized that genes related to vascular compromise may interact with environmental factors to affect the risk of gastroschisis. Haplotypes were constructed for 75 gene variants using the HaploView program. Risk for gastroschisis associated with each gene variant was calculated for both the homozygotes and the heterozygotes, with the homozygous wildtypes as the referent. Risks were estimated as odds ratios (ORs) with 95% confidence intervals (CIs) by logistic regression. We found 11 gene variants with increased risk and four variants with decreased risk of gastroschisis for heterozygous (OR h ) or homozygous variants (OR v ) genotypes. These included NOS3 (rs1036145) OR h  = 0.4 (95% CI: 0.2-0.7); NOS3 (rs10277237) OR v  = 2.7 (95% CI: 1.3-6.0); ADD1 (rs12503220) OR h  = 2.9 (95% CI: 1.6-5.4), GNB3 (rs5443) OR h  = 0.2 (95% CI: 0.1-0.5), OR v  = 0.4 (95% CI: 0.2-0.9); ICAM1 (rs281428) OR v  = 6.9 (95% CI: 2.1-22.9), ICAM1 (rs3093030) OR v  = 2.6 (95% CI: 1.2-5.6); ICAM4 (rs281438) OR v  = 4.9 (95% CI: 1.4-16.6), ICAM5 (rs281417) OR h  = 2.1 (95% CI: 1.1-4.1), OR v  = 4.8 (95% CI: 1.7-13.6); ICAM5 (rs281440) OR h  = 23.7 (95% CI: 5.5-102.5), OR v  = 20.6 (95% CI: 3.4-124.3); ICAM5 (rs2075741) OR v  = 2.2 (95% CI: 1.1-4.4); NAT1 OR v  = 0.3 (95% CI: 0.1-0.9). There were additional associations between several gene variants and gastroschisis among women aged 20-24 and among mothers with and without vitamin use. NOS3, ADD1, ICAM1, ICAM4, and ICAM5 warrant further investigation in additional populations and with the interaction of additional environmental exposures. © 2016 Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley

  9. Higher criticism approach to detect rare variants using whole genome sequencing data

    PubMed Central

    2014-01-01

    Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data that contains rare variants as the majority. By using Genetic Analysis Workshop 18 "dose" genetic data with simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel association test. The results show that the HC approach is preferred for detecting weak genetic effects. PMID:25519367

  10. Genetic variants affecting telomere length are associated with the prognosis of esophageal squamous cell carcinoma in a Chinese population.

    PubMed

    Lu, Yue; Yan, Caiwang; Du, Jiangbo; Ji, Yong; Gao, Yong; Zhu, Xun; Yu, Fei; Huang, Tongtong; Dai, Juncheng; Ma, Hongxia; Jiang, Yue; Chen, Jiaping; Shen, Hongbing; Jin, Guangfu; Yin, Yongmei; Hu, Zhibin

    2017-03-01

    Telomeres are essential for maintaining chromosomal stability and are crucial in tumor progression. Previous studies have explored the associations between telomere length and cancer prognosis, but the findings are inconclusive. Genome-wide association studies have identified several genetic variants associated with telomere length in Caucasians. However, the roles of telomere length and related genetic variants on esophageal squamous cell carcinoma (ESCC) prognosis are largely unknown. Therefore, we conducted a case-cohort study with 431 ESCC patients to assess the associations between relative telomere length (RTL), eight known telomere length related variants and the overall survival of ESCC in Chinese population. We found that as compared with the reference group, patients in the fifth (the longest) quintile had a significantly better prognosis [(adjusted hazard ratio (HR) = 0.58, 95% confidence interval (CI) = 0.34-0.98, P = 0.041]. Furthermore, A allele of rs2736108 was significantly associated with both the increased RTL (P = 0.048) and the better prognosis of ESCC (adjusted HR = 0.55, 95%CI = 0.38-0.79, P = 1.31 × 10 -3 ). Mediation analysis indicated that the effect of rs2736108 on ESCC prognosis was partly explained by RTL (1.99%). Stepwise Cox proportional hazard analysis suggested that rs2736108 played an important protective role in ESCC prognosis (HR = 0.57, 95%CI = 0.40-0.81, P = 1.97 × 10 - 3 ). Our findings provide evidence that prolonged telomere length is a protective factor for ESCC patients' survival and the known telomere length related genetic variant rs2736108 can contribute to the prognosis of ESCC as well in Chinese population. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. WISP1 genetic variants as predictors of tumor development with urothelial cell carcinoma.

    PubMed

    Lee, Hsiang-Lin; Chiou, Hui-Ling; Wang, Shian-Shiang; Hung, Sheng-Chun; Chou, Ming-Chih; Yang, Shun-Fa; Hsieh, Ming-Ju; Chou, Ying-Erh

    2018-04-01

    Urothelial cell carcinoma (UCC) of the urinary bladder is a major malignancy of the genitourinary tract. Etiological factors, such as the environment, ethnicity, genetics, and diet, contribute to UCC carcinogenesis. WNT1-inducible signaling pathway protein 1 (WISP1), also known as CCN4, a cysteine-rich protein belonging to the Cyr61, CTGF, Nov (CCN) family of matricellular proteins, has many developmental functions and might be involved in carcinogenesis. This study investigated WISP1 single-nucleotide polymorphisms to evaluate UCC susceptibility and clinicopathological characteristics. Real-time polymerase chain reaction was used to analyze 4 single-nucleotide polymorphisms of WISP1 in 369 patients with UCC and 738 controls without cancer. The results showed that in 128 women with UCC who carried WISP1 rs2929973 (AG + GG) variants had a higher risk of developing an advanced muscle-invasive tumor stage (pT2-pT4, P = 0.007) and a large tumor (T1-T4, P = 0.030). Further analyses revealed that a correlation between the expressions of WISP1 and invasive tumor and large tumor size in urothelial carcinoma was observed in the TCGA (The Cancer Genome Atlas) dataset. Our results indicated that patients with UCC carrying rs2977530 genetic variants (AG + GG) have a higher risk of developing a more invasive tumor stage and a large tumor. WISP1 polymorphisms may serve as a marker or a therapeutic target in UCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese.

    PubMed

    Enya, Mayumi; Horikawa, Yukio; Iizuka, Katsumi; Takeda, Jun

    2014-01-01

    None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. We screened all exons of the incretin-related genes ( GCG , GLP1R , DPP4 , PCSK1 , GIP , and GIPR ) in 96 patients with type 2 diabetes and investigated for association of genetic variants of these genes with quantitative metabolic traits upon test meal with 38 young healthy volunteers and with the occurrence of type 2 diabetes in Japanese subjects comprising 1303 patients with type 2 diabetes and 1014 controls. Two mutations of GIPR , p.Thr3Alafsx21 and Arg183Gln, were found only in patients with type 2 diabetes, and both of them were treated with insulin. Of ten tagSNPs, we found that risk allele C of SNP393 (rs6235) of PCSK1 was nominally associated with higher fasting insulin and HOMA-R ( P  = 0.034 and P  = 0.030), but not with proinsulin level, incretin level or BMI. The variant showed significant association with occurrence of type 2 diabetes after adjustment for age, sex, and BMI ( P  = 0.0043). Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.

  13. Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans

    PubMed Central

    Meyer-Lindenberg, A; Kolachana, B; Gold, B; Olsh, A; Nicodemus, KK; Mattay, V; Dean, M; Weinberger, DR

    2009-01-01

    In mammals, the neuropeptide vasopressin is a key molecule for complex emotional and social behaviours. Two microsatellite polymorphisms, RS1 and RS3, near the promoter of AVPR1A, encoding the receptor subtype most heavily implicated in behaviour regulation, have been linked to autism and behavioural traits. However, the impact of these variants on human brain function is unknown. Here we show that human amygdala function is strongly associated with genetic variation in AVPR1A. Using an imaging genetics approach in a sample of 121 volunteers studied with an emotional face-matching paradigm, we found that differential activation of amygdala is observed in carriers of risk alleles for RS3 and RS1. Alleles in RS1 previously reported to be significantly over- and undertransmitted to autistic probands showed opposing effects on amygdala activation. Furthermore, we show functional difference in human brain between short and long repeat lengths that mirror findings recently obtained in a corresponding variant in voles. Our results indicate a neural mechanism mediating genetic risk for autism through an impact on amygdala signalling and provide a rationale for exploring therapeutic strategies aimed at abnormal amygdala function in this disorder. PMID:18490926

  14. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    PubMed

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.

  15. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants.

    PubMed

    Sugiura, Kazumitsu

    2014-06-01

    Generalized pustular psoriasis (GPP) is often present in patients with existing or prior psoriasis vulgaris (PV; "GPP with PV"). However, cases of GPP have been known to arise without a history of PV ("GPP alone"). There has long been debate over whether GPP alone and GPP with PV are distinct subtypes that are etiologically different from each other. We recently reported that the majority of GPP alone cases is caused by recessive mutations of IL36RN. In contrast, only a few exceptional cases of GPP with PV were found to have recessive IL36RN mutations. Very recently, we also reported that CARD14 p.Asp176His, a gain-of-function variant, is a predisposing factor for GPP with PV; in contrast, the variant is not associated with GPP alone in the Japanese population. These results suggest that GPP alone is genetically different from GPP with PV. IL36RN mutations are also found in some patients with severe acute generalized exanthematous pustulosis, palmar-plantar pustulosis, and acrodermatitis continua of hallopeau. CARD14 mutations and variants are causal or disease susceptibility factors of PV, GPP, or pityriasis rubra pilaris, depending on the mutation or variant position of CARD14. It is clinically important to analyze IL36RN mutations in patients with sterile pustulosis. For example, identifying recessive IL36RN mutations leads to early diagnosis of GPP, even at the first episode of pustulosis. In addition, individuals with IL36RN mutations are very susceptible to GPP or GPP-related generalized pustulosis induced by drugs (e.g., amoxicillin), infections, pregnancy, or menstruation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. IGF2R Genetic Variants, Circulating IGF2 Concentrations and Colon Cancer Risk in African Americans and Whites

    PubMed Central

    Hoyo, Cathrine; Murphy, Susan K.; Schildkraut, Joellen M.; Vidal, Adriana C.; Skaar, David; Millikan, Robert C.; Galanko, Joseph; Sandler, Robert S.; Jirtle, Randy; Keku, Temitope

    2012-01-01

    The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9–5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2. PMID:22377707

  17. IGF2R genetic variants, circulating IGF2 concentrations and colon cancer risk in African Americans and Whites.

    PubMed

    Hoyo, Cathrine; Murphy, Susan K; Schildkraut, Joellen M; Vidal, Adriana C; Skaar, David; Millikan, Robert C; Galanko, Joseph; Sandler, Robert S; Jirtle, Randy; Keku, Temitope

    2012-01-01

    The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9-5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2.

  18. Genetic variants are major determinants of CSF antibody levels in multiple sclerosis

    PubMed Central

    Pauwels, Ine; Gustavsen, Marte W.; van Son, Brechtje; Hilven, Kelly; Bos, Steffan D.; Celius, Elisabeth Gulowsen; Berg-Hansen, Pål; Aarseth, Jan; Myhr, Kjell-Morten; D’Alfonso, Sandra; Barizzone, Nadia; Leone, Maurizio A.; Martinelli Boneschi, Filippo; Sorosina, Melissa; Liberatore, Giuseppe; Kockum, Ingrid; Olsson, Tomas; Hillert, Jan; Alfredsson, Lars; Bedri, Sahl Khalid; Hemmer, Bernhard; Buck, Dorothea; Berthele, Achim; Knier, Benjamin; Biberacher, Viola; van Pesch, Vincent; Sindic, Christian; Bang Oturai, Annette; Søndergaard, Helle Bach; Sellebjerg, Finn; Jensen, Poul Erik H.; Comabella, Manuel; Montalban, Xavier; Pérez-Boza, Jennifer; Malhotra, Sunny; Lechner-Scott, Jeannette; Broadley, Simon; Slee, Mark; Taylor, Bruce; Kermode, Allan G.; Gourraud, Pierre-Antoine; Sawcer, Stephen J.; Andreassen, Bettina Kullle; Dubois, Bénédicte; Harbo, Hanne F.

    2015-01-01

    Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index—the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 × 10−16). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 × 10−7). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 × 10−37). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 × 10−22), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 × 10−6). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such

  19. Pain modality- and sex-specific effects of COMT genetic functional variants

    PubMed Central

    Belfer, Inna; Segall, Samantha K.; Lariviere, William R.; Smith, Shad B.; Dai, Feng; Slade, Gary G.; Rashid, Naim U.; Mogil, Jeffrey S.; Campbell, Claudia; Edwards, Robert; Liu, Qian; Bair, Eric; Maixner, William; Diatchenko, Luda

    2013-01-01

    The enzyme catechol-O-methyltransferase (COMT) metabolizes catecholamine neurotransmitters involved in a number of physiological functions including pain perception. Both human and mouse COMT genes possess functional polymorphisms contributing to inter-individual variability in pain phenotypes such as sensitivity to noxious stimuli, severity of clinical pain and response to pain treatment. In this study, we found that the effects of Comt functional variation in mice are modality-specific. Spontaneous inflammatory nociception and thermal nociception behaviors were correlated the most with the presence of the B2 SINE transposon insertion residing in the 3’UTR mRNA region. Similarly, in humans, COMT functional haplotypes were associated with thermal pain perception and with capsaicin-induced pain. Furthermore, COMT genetic variations contributed to pain behaviors in mice and pain ratings in humans in a sex-specific manner. The ancestral Comt variant, without a B2 SINE insertion, was more strongly associated with sensitivity to capsaicin in female versus male mice. In humans, the haplotype coding for low COMT activity increased capsaicin-induced pain perception in women, but not men. These findings reemphasize the fundamental contribution of COMT to pain processes, and provide a fine-grained resolution of this contribution at the genetic level that can be used to guide future studies in the area of pain genetics. PMID:23701723

  20. Development of atherosclerotic-moyamoya syndrome with genetic variant of RNF213 p.R4810K and p.T1727M: A case report.

    PubMed

    Liu, Ying; Wu, Xueying; Fan, Zhaoyang; Cheng, Jingdan; Zhong, Lele; Lin, Yongzhong; Qu, Xiaofeng

    2018-05-01

    We report a rare case of atherosclerotic-moyamoya syndrome (A-MMS) in an adult female with genetic variant of both ring finger 213 (RNF213) p.R4810K and p.T1727M. A 46-year-old previously healthy, right-handed woman displayed transient slurred speech, which started to worsen four years ago. Initial magnetic resonance angiography (MRA) revealed stenosis in left middle cerebral artery (MCA), bilateral anterior cerebral artery (ACA), and left posterior cerebral artery (PCA). The patient subsequently underwent catheter angiography, which confirmed the formation of moyamoya vessels, with Suzuki's angiographic staging of grade-3 on the left side. Although the patient had been on both anti-platelet and statin therapy at the time, a follow-up examination showed further exacerbation of left MCA stenosis, along with enhanced moyamoya vessel formation. On black-blood imaging using DANTE-SPACE, there were eccentric, evolving lesions in the left MCA. We next screened for potential genetic variants, using genomic DNA samples isolated from both the patient and her immediate family members. The results showed that the patient, along with her mother, sister, and brother, possessed the heterozygous variant of the RNF213 gene, including c.14429G > A (p.R4810K) and c.5180C > T (p.T1727M). The patient's daughter did not have the variant. Collectively, we present a unique case of A-MMS with genetic variant of RNF213 p.R4810K and p.T1727M, manifesting as progression. Based on the family tree, these two mutations are on the same RNF213 haplotype. Whether atherosclerosis is the cause of A-MMS or it further exacerbates the injury of MMD to the A-MMS patients with RNF213 gene variant is a question to be investigated. Copyright © 2018. Published by Elsevier B.V.

  1. Inflammatory Dietary Pattern, IL-17F Genetic Variant, and the Risk of Colorectal Cancer.

    PubMed

    Cho, Young Ae; Lee, Jeonghee; Oh, Jae Hwan; Chang, Hee Jin; Sohn, Dae Kyung; Shin, Aesun; Kim, Jeongseon

    2018-06-05

    A proinflammatory diet may increase the risk of colorectal cancer, but its role may differ according to individuals' genetic variants. We aimed to examine whether a specific dietary pattern reflecting inflammation was associated with a risk of colorectal cancer and whether IL-17F genetic variant altered this association. In a study of 695 colorectal cancer cases and 1846 controls, we derived a reduced rank regression dietary pattern using 32 food groups as predictors and the plasma C-reactive protein (CRP) concentration as the response. High CRP levels were associated with a high risk of colorectal cancer (OR (95% CI) = 3.58 (2.65⁻4.82) for the highest quartile vs. lowest quartile). After adjusting for potential confounding factors, high pattern scores were associated with a high risk of colorectal cancer (OR (95% CI) = 9.98 (6.81⁻14.62) for the highest quartile vs. lowest quartile). When stratified by the IL-17F rs763780 genotype, this association was stronger for individuals carrying the C allele ( p for interaction = 0.034), particularly for individuals with rectal cancer ( p for interaction = 0.011). In conclusion, a dietary pattern reflecting inflammation was significantly associated with colorectal cancer risk. Moreover, this association could be modified according to the IL-17F rs763780 genotype and anatomic site.

  2. Exome Array Analysis Identifies a Common Variant in IL27 Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Parker, Margaret M.; Chen, Han; Lao, Taotao; Hardin, Megan; Qiao, Dandi; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Yim, Jae-Joon; Kim, Woo Jin; Kim, Deog Kyeom; Castaldi, Peter J.; Hersh, Craig P.; Morrow, Jarrett; Celli, Bartolome R.; Pinto-Plata, Victor M.; Criner, Gerald J.; Marchetti, Nathaniel; Bueno, Raphael; Agustí, Alvar; Make, Barry J.; Crapo, James D.; Calverley, Peter M.; Donner, Claudio F.; Lomas, David A.; Wouters, Emiel F. M.; Vestbo, Jorgen; Paré, Peter D.; Levy, Robert D.; Rennard, Stephen I.; Zhou, Xiaobo; Laird, Nan M.; Lin, Xihong; Beaty, Terri H.; Silverman, Edwin K.

    2016-01-01

    Rationale: Chronic obstructive pulmonary disease (COPD) susceptibility is in part related to genetic variants. Most genetic studies have been focused on genome-wide common variants without a specific focus on coding variants, but common and rare coding variants may also affect COPD susceptibility. Objectives: To identify coding variants associated with COPD. Methods: We tested nonsynonymous, splice, and stop variants derived from the Illumina HumanExome array for association with COPD in five study populations enriched for COPD. We evaluated single variants with a minor allele frequency greater than 0.5% using logistic regression. Results were combined using a fixed effects meta-analysis. We replicated novel single-variant associations in three additional COPD cohorts. Measurements and Main Results: We included 6,004 control subjects and 6,161 COPD cases across five cohorts for analysis. Our top result was rs16969968 (P = 1.7 × 10−14) in CHRNA5, a locus previously associated with COPD susceptibility and nicotine dependence. Additional top results were found in AGER, MMP3, and SERPINA1. A nonsynonymous variant, rs181206, in IL27 (P = 4.7 × 10−6) was just below the level of exome-wide significance but attained exome-wide significance (P = 5.7 × 10−8) when combined with results from other cohorts. Gene expression datasets revealed an association of rs181206 and the surrounding locus with expression of multiple genes; several were differentially expressed in COPD lung tissue, including TUFM. Conclusions: In an exome array analysis of COPD, we identified nonsynonymous variants at previously described loci and a novel exome-wide significant variant in IL27. This variant is at a locus previously described in genome-wide associations with diabetes, inflammatory bowel disease, and obesity and appears to affect genes potentially related to COPD pathogenesis. PMID:26771213

  3. Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer

    PubMed Central

    Selinski, Silvia; Blaszkewicz, Meinolf; Ickstadt, Katja; Gerullis, Holger; Otto, Thomas; Roth, Emanuel; Volkert, Frank; Ovsiannikov, Daniel; Moormann, Oliver; Banfi, Gergely; Nyirady, Peter; Vermeulen, Sita H; Garcia-Closas, Montserrat; Figueroa, Jonine D; Johnson, Alison; Karagas, Margaret R; Kogevinas, Manolis; Malats, Nuria; Schwenn, Molly; Silverman, Debra T; Koutros, Stella; Rothman, Nathaniel; Kiemeney, Lambertus A; Hengstler, Jan G; Golka, Klaus

    2017-01-01

    Abstract Little is known whether genetic variants identified in genome-wide association studies interact to increase bladder cancer risk. Recently, we identified two- and three-variant combinations associated with a particular increase of bladder cancer risk in a urinary bladder cancer case–control series (Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), 1501 cases, 1565 controls). In an independent case–control series (Nijmegen Bladder Cancer Study, NBCS, 1468 cases, 1720 controls) we confirmed these two- and three-variant combinations. Pooled analysis of the two studies as discovery group (IfADo-NBCS) resulted in sufficient statistical power to test up to four-variant combinations by a logistic regression approach. The New England and Spanish Bladder Cancer Studies (2080 cases and 2167 controls) were used as a replication series. Twelve previously identified risk variants were considered. The strongest four-variant combination was obtained in never smokers. The combination of rs1014971[AA] near apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) and chromobox homolog 6 (CBX6), solute carrier family 1s4 (urea transporter), member 1 (Kidd blood group) (SLC14A1) exon single nucleotide polymorphism (SNP) rs1058396[AG, GG], UDP glucuronosyltransferase 1 family, polypeptide A complex locus (UGT1A) intron SNP rs11892031[AA] and rs8102137[CC, CT] near cyclin E1 (CCNE1) resulted in an unadjusted odds ratio (OR) of 2.59 (95% CI = 1.93–3.47; P = 1.87 × 10−10), while the individual variant ORs ranged only between 1.11 and 1.30. The combination replicated in the New England and Spanish Bladder Cancer Studies (ORunadjusted = 1.60, 95% CI = 1.10–2.33; P = 0.013). The four-variant combination is relatively frequent, with 25% in never smoking cases and 11% in never smoking controls (total study group: 19% cases, 14% controls). In conclusion, we show that four high-risk variants can statistically

  4. Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant.

    PubMed

    Lane, Conor; Giudicessi, John R; Ye, Dan; Tester, David J; Rohatgi, Ram K; Bos, J Martijn; Ackerman, Michael J

    2018-04-03

    Long QT syndrome (LQTS) genetic test reports commonly exclude potentially proarrhythmic common variants such as p.Asp85Asn-KCNE1. The purpose of this study was to determine whether a discernible phenotype is associated with p.Asp85Asn-KCNE1 and whether relatively common KCNE1 variants underlie transient QT prolongation pedigrees with negative commercial LQTS genetic tests. Retrospective review was used to compare demographics, symptomatology, and QT parameters of individuals with p.Asp85Asn-KCNE1 in the absence of other rare/ultra-rare variants in LQTS-susceptibility genes and those who underwent comprehensive LQTS genetic testing. Compared to the Genome Aggregation Database, p.Asp85Asn-KCNE1 was more prevalent in individuals undergoing LQTS genetic testing (33/1248 [2.6%] vs 1552/126,652 [1.2%]; P = .0001). In 19 of 33 patients (58%), only p.Asp85Asn-KCNE1 was observed. These patients were predominantly female (90% vs 62%; P = .02) and were less likely to experience syncope (0% vs 34%; P = .0007), receive β-blockers (53% vs 85%; P = .001), or require an implantable cardioverter-defibrillator (5.3% vs 33%; P = .01). However, they exhibited a similar degree of QT prolongation (QTc 460 ms vs 467 ms; P = NS). Whole exome sequencing of 2 commercially genotype-negative pedigrees revealed that p.Asp85Asn-KCNE1 and p.Arg36His-KCNE1 traced with a transient QT prolongation phenotype. Functional characterization of p.Arg36His-KCNE1 demonstrated loss of function, with a 47% reduction in peak I Ks current density in the heterozygous state. We provide further evidence that relatively common variants in KCNE1 may result in a mild QT phenotype designated as "LQT5-Lite" to distinguish such potentially proarrhythmic common variants (ie, functional risk alleles) from rare pathogenic variants that truly confer monogenic disease susceptibility, albeit with incomplete penetrance. Copyright © 2018. Published by Elsevier Inc.

  5. Rare Variants in the Epithelial Cadherin Gene Underlying the Genetic Etiology of Nonsyndromic Cleft Lip with or without Cleft Palate.

    PubMed

    Brito, Luciano Abreu; Yamamoto, Guilherme Lopes; Melo, Soraia; Malcher, Carolina; Ferreira, Simone Gomes; Figueiredo, Joana; Alvizi, Lucas; Kobayashi, Gerson Shigeru; Naslavsky, Michel Satya; Alonso, Nivaldo; Felix, Temis Maria; Zatz, Mayana; Seruca, Raquel; Passos-Bueno, Maria Rita

    2015-11-01

    Nonsyndromic orofacial cleft (NSOFC) is a complex disease of still unclear genetic etiology. To investigate the contribution of rare epithelial cadherin (CDH1) gene variants to NSOFC, we target sequenced 221 probands. Candidate variants were evaluated via in vitro, in silico, or segregation analyses. Three probably pathogenic variants (c.760G>A [p.Asp254Asn], c.1023T>G [p.Tyr341*], and c.2351G>A [p.Arg784His]) segregated according to autosomal dominant inheritance in four nonsyndromic cleft lip with or without cleft palate (NSCL/P) families (Lod score: 5.8 at θ = 0; 47% penetrance). A fourth possibly pathogenic variant (c.387+5G>A) was also found, but further functional analyses are needed (overall prevalence of CDH1 candidate variants: 2%; 15.4% among familial cases). CDH1 mutational burden was higher among probands from familial cases when compared to that of controls (P = 0.002). We concluded that CDH1 contributes to NSCL/P with mainly rare, moderately penetrant variants, and CDH1 haploinsufficiency is the likely etiological mechanism. © 2015 WILEY PERIODICALS, INC.

  6. Integrative Approaches to Understanding the Pathogenic Role of Genetic Variation in Rheumatic Diseases.

    PubMed

    Laufer, Vincent A; Chen, Jake Y; Langefeld, Carl D; Bridges, S Louis

    2017-08-01

    The use of high-throughput omics may help to understand the contribution of genetic variants to the pathogenesis of rheumatic diseases. We discuss the concept of missing heritability: that genetic variants do not explain the heritability of rheumatoid arthritis and related rheumatologic conditions. In addition to an overview of how integrative data analysis can lead to novel insights into mechanisms of rheumatic diseases, we describe statistical approaches to prioritizing genetic variants for future functional analyses. We illustrate how analyses of large datasets provide hope for improved approaches to the diagnosis, treatment, and prevention of rheumatic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma

    PubMed Central

    Shi, Jianxin; Yang, Xiaohong R.; Ballew, Bari; Rotunno, Melissa; Calista, Donato; Fargnoli, Maria Concetta; Ghiorzo, Paola; Paillerets, Brigitte Bressac-de; Nagore, Eduardo; Avril, Marie Francoise; Caporaso, Neil E.; McMaster, Mary L.; Cullen, Michael; Wang, Zhaoming; Zhang, Xijun; Bruno, William; Pastorino, Lorenza; Queirolo, Paola; Banuls-Roca, Jose; Garcia-Casado, Zaida; Vaysse, Amaury; Mohamdi, Hamida; Riazalhosseini, Yasser; Foglio, Mario; Jouenne, Fanélie; Hua, Xing; Hyland, Paula L.; Yin, Jinhu; Vallabhaneni, Haritha; Chai, Weihang; Minghetti, Paola; Pellegrini, Cristina; Ravichandran, Sarangan; Eggermont, Alexander; Lathrop, Mark; Peris, Ketty; Scarra, Giovanna Bianchi; Landi, Giorgio; Savage, Sharon A.; Sampson, Joshua N.; He, Ji; Yeager, Meredith; Goldin, Lynn R.; Demenais, Florence; Chanock, Stephen J.; Tucker, Margaret A.; Goldstein, Alisa M.; Liu, Yie; Landi, Maria Teresa

    2014-01-01

    Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin POT1 gene (g.7:124493086 C>T, Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere length and elevated fragile telomeres suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two other Italian families, yielding a frequency of POT1 variants comparable to that of CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in American and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations. PMID:24686846

  8. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  9. Genetic Variants Associated with Lipid Profiles in Chinese Patients with Type 2 Diabetes

    PubMed Central

    Xing, Xiaoyan; Zhang, Bo; Zhang, Xuelian; Hong, Jing; Yang, Wenying

    2015-01-01

    Dyslipidemia is a strong risk factor for cardiovascular disease among patients with type 2 diabetes (T2D). The aim of this study was to identify lipid-related genetic variants in T2D patients of Han Chinese ancestry. Among 4,908 Chinese T2D patients who were not taking lipid-lowering medications, single nucleotide polymorphisms (SNPs) in seven genes previously found to be associated with lipid traits in genome-wide association studies conducted in populations of European ancestry (ABCA1, GCKR, BAZ1B, TOMM40, DOCK7, HNF1A, and HNF4A) were genotyped. After adjusting for multiple covariates, SNPs in ABCA1, GCKR, BAZ1B, TOMM40, and HNF1A were identified as significantly associated with triglyceride levels in T2D patients (P < 0.05). The associations between the SNPs in ABCA1 (rs3890182), GCKR (rs780094), and BAZ1B (rs2240466) remained significant even after correction for multiple testing (P = 8.85×10−3, 7.88×10−7, and 2.03×10−6, respectively). BAZ1B (rs2240466) also was associated with the total cholesterol level (P = 4.75×10−2). In addition, SNP rs157580 in TOMM40 was associated with the low-density lipoprotein cholesterol level (P = 6.94×10−3). Our findings confirm that lipid-related genetic loci are associated with lipid profiles in Chinese patients with type 2 diabetes. PMID:26252223

  10. Common genetic variants associated with thyroid function may be risk alleles for Hashimoto's disease and Graves' disease.

    PubMed

    Campbell, Purdey; Brix, Thomas H; Wilson, Scott G; Ward, Lynley C; Hui, Jennie; Beilby, John P; Hegedüs, Laszlo; Walsh, John P

    2015-02-14

    Recent studies have identified common genetic variants associated with TSH, free T4 and thyroid peroxidase antibodies, but it is unclear whether these differ between patients with Hashimoto's disease and Graves' disease. To examine whether 11 common genetic variants differ between Graves' disease and Hashimoto's disease. We genotyped 11 common variants in a discovery cohort of 203 Australian patients with autoimmune thyroid disease (AITD). Two variants with significant or suggestive associations were analysed in a replication cohort of 384 Danish patients. For rs753760 (PDE10A), the minor allele frequency in Graves' disease and Hashimoto's disease was 0·38 vs. 0·23, respectively, (P = 6·42 × 10 -4 ) in the discovery cohort, 0·29 vs. 0·24 (P = 0·147) in the replication cohort and 0·32 vs. 0·24 in combined analysis (P = 0·0021; all analyses adjusted for sex). In healthy controls from Busselton, the frequency was 0·29, significantly different from Hashimoto's disease but not Graves' disease. For rs4889009 (MAF gene region), the frequency of the minor G-allele in Graves' disease and Hashimoto's disease was 0·48 vs. 0·36 (P = 0·0156) in the discovery cohort, 0·48 vs. 0·34 (P = 1·83 × 10 -4 ) in the replication cohort and 0·48 vs. 0·35 in the combined analysis (P = 7·53 × 10 -6 ); in controls, the frequency was 0·38, significantly different from Graves' disease but not Hashimoto's disease. After further adjustment for smoking, associations with rs4889009 remained significant, whereas those with rs753760 were not. Common variants in PDE10A and MAF gene regions may influence whether patients with AITD develop Graves' disease or Hashimoto's disease. © 2015 John Wiley & Sons Ltd.

  11. Differential effects of PCSK9 variants on risk of coronary disease and ischaemic stroke

    PubMed Central

    Hopewell, Jemma C; Malik, Rainer; Valdés-Márquez, Elsa; Worrall, Bradford B; Collins, Rory

    2018-01-01

    Abstract Aims PCSK9 genetic variants that have large effects on low-density lipoprotein cholesterol (LDL-C) and coronary heart disease (CHD) have prompted the development of therapeutic PCSK9-inhibition. However, there is limited evidence that PCSK9 variants are associated with ischaemic stroke (IS). Methods and results Associations of the loss-of-function PCSK9 genetic variant (rs11591147; R46L), and five additional PCSK9 variants, with IS and IS subtypes (cardioembolic, large vessel, and small vessel) were estimated in a meta-analysis involving 10 307 IS cases and 19 326 controls of European ancestry. They were then compared with the associations of these variants with LDL-C levels (in up to 172 970 individuals) and CHD (in up to 60 801 CHD cases and 123 504 controls). The rs11591147 T allele was associated with 0.5 mmol/L lower LDL-C level (P = 9 × 10−143) and 23% lower CHD risk [odds ratio (OR): 0.77, 95% confidence interval (CI): 0.69–0.87, P = 7 × 10−6]. However, it was not associated with risk of IS (OR: 1.04, 95% CI: 0.84–1.28, P = 0.74) or IS subtypes. Information from additional PCSK9 variants also indicated consistently weaker effects on IS than on CHD. Conclusion PCSK9 genetic variants that confer life-long lower PCSK9 and LDL-C levels appear to have significantly weaker, if any, associations with risk of IS than with risk of CHD. By contrast, similar proportional reductions in risks of IS and CHD have been observed in randomized trials of therapeutic PCSK9-inhibition. These findings have implications for our understanding of when Mendelian randomization can be relied upon to predict the effects of therapeutic interventions. PMID:29020353

  12. ANGPT2 Genetic Variant Is Associated with Trauma-associated Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio

    PubMed Central

    Meyer, Nuala J.; Li, Mingyao; Feng, Rui; Bradfield, Jonathan; Gallop, Robert; Bellamy, Scarlett; Fuchs, Barry D.; Lanken, Paul N.; Albelda, Steven M.; Rushefski, Melanie; Aplenc, Richard; Abramova, Helen; Atochina-Vasserman, Elena N.; Beers, Michael F.; Calfee, Carolyn S.; Cohen, Mitchell J.; Pittet, Jean-Francois; Christiani, David C.; O'Keefe, Grant E.; Ware, Lorraine B.; May, Addison K.; Wurfel, Mark M.; Hakonarson, Hakon; Christie, Jason D.

    2011-01-01

    Rationale: Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI. Objectives: To identify ALI risk variants after major trauma using a large-scale candidate gene approach. Methods: We performed a two-stage genetic association study. We derived findings in an African American cohort (n = 222) using a cardiopulmonary disease–centric 50K single nucleotide polymorphism (SNP) array. Genotype and haplotype distributions were compared between subjects with ALI and without ALI, with adjustment for clinical factors. Top performing SNPs (P < 10−4) were tested in a multicenter European American trauma-associated ALI case-control population (n = 600 ALI; n = 2,266 population-based control subjects) for replication. The ALI-associated genomic region was sequenced, analyzed for in silico prediction of function, and plasma was assayed by ELISA and immunoblot. Measurements and Main Results: Five SNPs demonstrated a significant association with ALI after adjustment for covariates in Stage I. Two SNPs in ANGPT2 (rs1868554 and rs2442598) replicated their significant association with ALI in Stage II. rs1868554 was robust to multiple comparison correction: odds ratio 1.22 (1.06–1.40), P = 0.0047. Resequencing identified predicted novel splice sites in linkage disequilibrium with rs1868554, and immunoblots showed higher proportion of variant angiopoietin-2 (ANG2) isoform associated with rs1868554T (0.81 vs. 0.48; P = 0.038). Conclusions: An ANGPT2 region is associated with both ALI and variation in plasma angiopoietin-2 isoforms. Characterization of the variant isoform and its genetic regulation may yield important insights about ALI pathogenesis and susceptibility. PMID:21257790

  13. Human Papillomavirus Type 16 Genetic Variants: Phylogeny and Classification Based on E6 and LCR

    PubMed Central

    Gheit, Tarik; Franceschi, Silvia; Vignat, Jerome; Burk, Robert D.; Sylla, Bakary S.; Tommasino, Massimo; Clifford, Gary M.

    2012-01-01

    Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages. PMID:22491459

  14. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR.

    PubMed

    Cornet, Iris; Gheit, Tarik; Franceschi, Silvia; Vignat, Jerome; Burk, Robert D; Sylla, Bakary S; Tommasino, Massimo; Clifford, Gary M

    2012-06-01

    Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages.

  15. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    PubMed

    Smith, Douglas R; Stanley, Christine M; Foss, Theodore; Boles, Richard G; McKernan, Kevin

    2017-01-01

    Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  16. New workflow for classification of genetic variants' pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID).

    PubMed

    Van Gijn, Marielle E; Ceccherini, Isabella; Shinar, Yael; Carbo, Ellen C; Slofstra, Mariska; Arostegui, Juan I; Sarrabay, Guillaume; Rowczenio, Dorota; Omoyımnı, Ebun; Balci-Peynircioglu, Banu; Hoffman, Hal M; Milhavet, Florian; Swertz, Morris A; Touitou, Isabelle

    2018-03-29

    Hereditary recurrent fevers (HRFs) are rare inflammatory diseases sharing similar clinical symptoms and effectively treated with anti-inflammatory biological drugs. Accurate diagnosis of HRF relies heavily on genetic testing. This study aimed to obtain an experts' consensus on the clinical significance of gene variants in four well-known HRF genes: MEFV , TNFRSF1A , NLRP3 and MVK . We configured a MOLGENIS web platform to share and analyse pathogenicity classifications of the variants and to manage a consensus-based classification process. Four experts in HRF genetics submitted independent classifications of 858 variants. Classifications were driven to consensus by recruiting four more expert opinions and by targeting discordant classifications in five iterative rounds. Consensus classification was reached for 804/858 variants (94%). None of the unsolved variants (6%) remained with opposite classifications (eg, pathogenic vs benign). New mutational hotspots were found in all genes. We noted a lower pathogenic variant load and a higher fraction of variants with unknown or unsolved clinical significance in the MEFV gene. Applying a consensus-driven process on the pathogenicity assessment of experts yielded rapid classification of almost all variants of four HRF genes. The high-throughput database will profoundly assist clinicians and geneticists in the diagnosis of HRFs. The configured MOLGENIS platform and consensus evolution protocol are usable for assembly of other variant pathogenicity databases. The MOLGENIS software is available for reuse at http://github.com/molgenis/molgenis; the specific HRF configuration is available at http://molgenis.org/said/. The HRF pathogenicity classifications will be published on the INFEVERS database at https://fmf.igh.cnrs.fr/ISSAID/infevers/. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Inherited NUDT15 Variant Is a Genetic Determinant of Mercaptopurine Intolerance in Children With Acute Lymphoblastic Leukemia

    PubMed Central

    Yang, Jun J.; Landier, Wendy; Yang, Wenjian; Liu, Chengcheng; Hageman, Lindsey; Cheng, Cheng; Pei, Deqing; Chen, Yanjun; Crews, Kristine R.; Kornegay, Nancy; Wong, F. Lennie; Evans, William E.; Pui, Ching-Hon; Bhatia, Smita; Relling, Mary V.

    2015-01-01

    Purpose Mercaptopurine (MP) is the mainstay of curative therapy for acute lymphoblastic leukemia (ALL). We performed a genome-wide association study (GWAS) to identify comprehensively the genetic basis of MP intolerance in children with ALL. Patients and Methods The discovery GWAS and replication cohorts included 657 and 371 children from two prospective clinical trials. MP dose intensity was a marker for drug tolerance and toxicities and was defined as prescribed dose divided by the planned protocol dose during maintenance therapy; its association with genotype was evaluated using a linear mixed-effects model. Results MP dose intensity varied by race and ethnicity and was negatively correlated with East Asian genetic ancestry (P < .001). The GWAS revealed two genome-wide significant loci associated with dose intensity: rs1142345 in TPMT (Tyr240Cys, present in *3A and *3C variants; P = 8.6 × 10−9) and rs116855232 in NUDT15 (P = 8.8 × 10−9), with independent replication. Patients with TT genotype at rs116855232 were exquisitely sensitive to MP, with an average dose intensity of 8.3%, compared with those with TC and CC genotypes, who tolerated 63% and 83.5% of the planned dose, respectively. The NUDT15 variant was most common in East Asians and Hispanics, rare in Europeans, and not observed in Africans, contributing to ancestry-related differences in MP tolerance. Of children homozygous for either TPMT or NUDT15 variants or heterozygous for both, 100% required ≥ 50% MP dose reduction, compared with only 7.7% of others. Conclusion We describe a germline variant in NUDT15 strongly associated with MP intolerance in childhood ALL, which may have implications for treatment individualization in this disease. PMID:25624441

  18. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia.

    PubMed

    Yang, Jun J; Landier, Wendy; Yang, Wenjian; Liu, Chengcheng; Hageman, Lindsey; Cheng, Cheng; Pei, Deqing; Chen, Yanjun; Crews, Kristine R; Kornegay, Nancy; Wong, F Lennie; Evans, William E; Pui, Ching-Hon; Bhatia, Smita; Relling, Mary V

    2015-04-10

    Mercaptopurine (MP) is the mainstay of curative therapy for acute lymphoblastic leukemia (ALL). We performed a genome-wide association study (GWAS) to identify comprehensively the genetic basis of MP intolerance in children with ALL. The discovery GWAS and replication cohorts included 657 and 371 children from two prospective clinical trials. MP dose intensity was a marker for drug tolerance and toxicities and was defined as prescribed dose divided by the planned protocol dose during maintenance therapy; its association with genotype was evaluated using a linear mixed-effects model. MP dose intensity varied by race and ethnicity and was negatively correlated with East Asian genetic ancestry (P < .001). The GWAS revealed two genome-wide significant loci associated with dose intensity: rs1142345 in TPMT (Tyr240Cys, present in *3A and *3C variants; P = 8.6 × 10(-9)) and rs116855232 in NUDT15 (P = 8.8 × 10(-9)), with independent replication. Patients with TT genotype at rs116855232 were exquisitely sensitive to MP, with an average dose intensity of 8.3%, compared with those with TC and CC genotypes, who tolerated 63% and 83.5% of the planned dose, respectively. The NUDT15 variant was most common in East Asians and Hispanics, rare in Europeans, and not observed in Africans, contributing to ancestry-related differences in MP tolerance. Of children homozygous for either TPMT or NUDT15 variants or heterozygous for both, 100% required ≥ 50% MP dose reduction, compared with only 7.7% of others. We describe a germline variant in NUDT15 strongly associated with MP intolerance in childhood ALL, which may have implications for treatment individualization in this disease. © 2015 by American Society of Clinical Oncology.

  19. The Impact of Ancestry and Common Genetic Variants on QT Interval in African Americans

    PubMed Central

    Smith, J. Gustav; Avery, Christy L.; Evans, Daniel S.; Nalls, Michael A.; Meng, Yan A.; Smith, Erin N.; Palmer, Cameron; Tanaka, Toshiko; Mehra, Reena; Butler, Anne M.; Young, Taylor; Buxbaum, Sarah G.; Kerr, Kathleen F.; Berenson, Gerald S.; Schnabel, Renate B.; Li, Guo; Ellinor, Patrick T.; Magnani, Jared W.; Chen, Wei; Bis, Joshua C.; Curb, J. David; Hsueh, Wen-Chi; Rotter, Jerome I.; Liu, Yongmei; Newman, Anne B.; Limacher, Marian C.; North, Kari E.; Reiner, Alexander P.; Quibrera, P. Miguel; Schork, Nicholas J.; Singleton, Andrew B.; Psaty, Bruce M.; Soliman, Elsayed Z.; Solomon, Allen J.; Srinivasan, Sathanur R.; Alonso, Alvaro; Wallace, Robert; Redline, Susan; Zhang, Zhu-Ming; Post, Wendy S.; Zonderman, Alan B.; Taylor, Herman A.; Murray, Sarah S.; Ferrucci, Luigi; Arking, Dan E.; Evans, Michele K.; Fox, Ervin R.; Sotoodehnia, Nona; Heckbert, Susan R.; Whitsel, Eric A.; Newton-Cheh, Christopher

    2013-01-01

    Background Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death (SCD) and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval. Methods and Results First, individual estimates of African and European ancestry were inferred from genome-wide single nucleotide polymorphism (SNP) data in seven population-based cohorts of African Americans (n=12 097) and regressed on measured QT interval from electrocardiograms. Second, imputation was performed for 2.8 million SNPs and a genome-wide association (GWA) study of QT interval performed in ten cohorts (n=13 105). There was no evidence of association between genetic ancestry and QT interval (p=0.94). Genome-wide significant associations (p<2.5×10−8) were identified with SNPs at two loci, upstream of the genes NOS1AP (rs12143842, p=2×10−15) and ATP1B1 (rs1320976, p=2×10−10). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low p-values (p<10−5) were observed for SNPs at several other loci previously identified in GWA studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF and PLN. Conclusions We observed no difference in duration of cardiac repolarization with global genetic indices of African ancestry. In addition, our GWA study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include African Americans. PMID:23166209

  20. Functional genetic variants within the SIRT2 gene promoter in type 2 diabetes mellitus.

    PubMed

    Liu, Tingting; Yang, Wentao; Pang, Shuchao; Yu, Shipeng; Yan, Bo

    2018-03-01

    Type 2 diabetes mellitus (T2D) is a common and complex metabolic diseases caused by interactions between environmental and genetic factors. Genome-wide association studies have identified more than 80 common genetic variants for T2D, which account for only ∼10% of the heritability of T2D cases. SIRT2, a member of NAD(+)-dependent class III deacetylases, is involved in genomic stability, metabolism, inflammation, oxidative stress and autophagy. In maintaining metabolic homeostasis, SIRT2 regulates adipocyte differentiation, fatty acid oxidation, gluconeogenesis, and insulin sensitivity. Thus, we hypothesized that DNA sequence variants (DSVs) in SIRT2 gene promoter may change SIRT2 levels, contributing to T2D. SIRT2 gene promoter was genetically and functionally analyzed in large cohorts of T2D patients (n = 365) and ethnic-matched controls (n = 358). A total of 18 DSVs, including 5 SNPs, were identified in this study. Four novel heterozygous DSVs (g.38900912G > T, g.38900561C > T, g.38900359C > T and g.38900237G > A) were identified in four T2D patients, three of which (g.38900912G > T, g.38900359C > T and g.38900237G > A) significantly increased the transcriptional activity of the SIRT2 gene promoter in cultured pancreatic beta cells (P < .01). Seven novel heterozygous DSVs were only found in controls, and one heterozygous deletion DSV and five SNPs were found in both T2D patients and controls, which did not significantly affect SIRT2 gene promoter activity (P > .05). Our findings suggested that the DSVs may increase SIRT2 gene promoter activity and SIRT2 levels, contributing to T2D development as a risk factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Genetic variant rs17225178 in the ARNT2 gene is associated with Asperger Syndrome.

    PubMed

    Di Napoli, Agnese; Warrier, Varun; Baron-Cohen, Simon; Chakrabarti, Bhismadev

    2015-01-01

    Autism Spectrum Conditions (ASC) are neurodevelopmental conditions characterized by difficulties in communication and social interaction, alongside unusually repetitive behaviours and narrow interests. Asperger Syndrome (AS) is one subgroup of ASC and differs from classic autism in that in AS there is no language or general cognitive delay. Genetic, epigenetic and environmental factors are implicated in ASC and genes involved in neural connectivity and neurodevelopment are good candidates for studying the susceptibility to ASC. The aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) gene encodes a transcription factor involved in neurodevelopmental processes, neuronal connectivity and cellular responses to hypoxia. A mutation in this gene has been identified in individuals with ASC and single nucleotide polymorphisms (SNPs) have been nominally associated with AS and autistic traits in previous studies. In this study, we tested 34 SNPs in ARNT2 for association with AS in 118 cases and 412 controls of Caucasian origin. P values were adjusted for multiple comparisons, and linkage disequilibrium (LD) among the SNPs analysed was calculated in our sample. Finally, SNP annotation allowed functional and structural analyses of the genetic variants in ARNT2. We tested the replicability of our result using the genome-wide association studies (GWAS) database of the Psychiatric Genomics Consortium (PGC). We report statistically significant association of rs17225178 with AS. This SNP modifies transcription factor binding sites and regions that regulate the chromatin state in neural cell lines. It is also included in a LD block in our sample, alongside other genetic variants that alter chromatin regulatory regions in neural cells. These findings demonstrate that rs17225178 in the ARNT2 gene is associated with AS and support previous studies that pointed out an involvement of this gene in the predisposition to ASC.

  2. Genetic Analyses of the NF1 Gene in Turkish Neurofibromatosis Type I Patients and Definition of three Novel Variants

    PubMed Central

    Ulusal, SD; Gürkan, H; Atlı, E; Özal, SA; Çiftdemir, M; Tozkır, H; Karal, Y; Güçlü, H; Eker, D; Görker, I

    2017-01-01

    Abstract Neurofibromatosis Type I (NF1) is a multi systemic autosomal dominant neurocutaneous disorder predisposing patients to have benign and/or malignant lesions predominantly of the skin, nervous system and bone. Loss of function mutations or deletions of the NF1 gene is responsible for NF1 disease. Involvement of various pathogenic variants, the size of the gene and presence of pseudogenes makes it difficult to analyze. We aimed to report the results of 2 years of multiplex ligation-dependent probe amplification (MLPA) and next generation sequencing (NGS) for genetic diagnosis of NF1 applied at our genetic diagnosis center. The MLPA, semiconductor sequencing and Sanger sequencing were performed in genomic DNA samples from 24 unrelated patients and their affected family members referred to our center suspected of having NF1. In total, three novel and 12 known pathogenic variants and a whole gene deletion were determined. We suggest that next generation sequencing is a practical tool for genetic analysis of NF1. Deletion/duplication analysis with MLPA may also be helpful for patients clinically diagnosed to carry NF1 but do not have a detectable mutation in NGS. PMID:28924536

  3. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder.

    PubMed

    Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng

    2018-05-16

    As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.

  4. Variants in the PRPF8 Gene are Associated with Glaucoma.

    PubMed

    Micheal, Shazia; Hogewind, Barend F; Khan, Muhammad Imran; Siddiqui, Sorath Noorani; Zafar, Saemah Nuzhat; Akhtar, Farah; Qamar, Raheel; Hoyng, Carel B; den Hollander, Anneke I

    2018-05-01

    Glaucoma is the cause of irreversible blindness worldwide. Mutations in six genes have been associated with juvenile- and adult-onset familial primary open angle glaucoma (POAG) prior to this report but they explain only a small proportion of the genetic load. The aim of the study is to identify the novel genetic cause of the POAG in the families with adult-onset glaucoma. Whole exome sequencing (WES) was performed on DNA of two affected individuals, and predicted pathogenic variants were evaluated for segregation in four affected and three unaffected Dutch family members by Sanger sequencing. We identified a pathogenic variant (p.Val956Gly) in the PRPF8 gene, which segregates with the disease in Dutch family. Targeted Sanger sequencing of PRPF8 in a panel of 40 POAG families (18 Pakistani and 22 Dutch) revealed two additional nonsynonymous variants (p.Pro13Leu and p.Met25Thr), which segregate with the disease in two other Pakistani families. Both variants were then analyzed in a case-control cohort consisting of Pakistani 320 POAG cases and 250 matched controls. The p.Pro13Leu and p.Met25Thr variants were identified in 14 and 20 cases, respectively, while they were not detected in controls (p values 0.0004 and 0.0001, respectively). Previously, PRPF8 mutations have been associated with autosomal dominant retinitis pigmentosa (RP). The PRPF8 variants associated with POAG are located at the N-terminus, while all RP-associated mutations cluster at the C-terminus, dictating a clear genotype-phenotype correlation.

  5. A common genetic variant in FOXP2 is associated with language-based learning (dis)abilities: Evidence from two Italian independent samples.

    PubMed

    Mozzi, Alessandra; Riva, Valentina; Forni, Diego; Sironi, Manuela; Marino, Cecilia; Molteni, Massimo; Riva, Stefania; Guerini, Franca R; Clerici, Mario; Cagliani, Rachele; Mascheretti, Sara

    2017-04-24

    Language-based Learning Disabilities (LLDs) encompass a group of complex, comorbid, and developmentally associated deficits in communication. Language impairment and developmental dyslexia (DD) represent the most recognized forms of LLDs. Substantial genetic correlations exist between language and reading (dis)abilities. Common variants in the FOXP2 gene were consistently associated with language- and reading-related neuropsychological and neuroanatomical phenotypes. We tested the effect of a FOXP2 common variant, that is, rs6980093 (A/G), on quantitative measures of language and reading in two independent Italian samples: a population-based cohort of 699 subjects (3-11 years old) and a sample of 572 children with DD (6-18 years old). rs6980093 modulates expressive language in the general population sample, with an effect on fluency scores. In the DD sample, the variant showed an association with the accuracy in the single word reading task. rs6980093 shows distinct genetic models of association in the two cohorts, with a dominant effect of the G allele in the general population sample and heterozygote advantage in the DD cohort. We provide preliminary evidence that rs6980093 associates with language and reading (dis)abilities in two independent Italian cohorts. rs6980093 is an intronic SNP, suggesting that it (or a linked variant) modulates phenotypic association via regulation of FOXP2 expression. Because FOXP2 brain expression is finely regulated, both temporally and spatially, it is possible that the two alleles at rs6980093 differentially modulate expression levels in a developmental stage- or brain area-specific manner. This might help explaining the heterozygote advantage effect and the different genetic models in the two cohorts. © 2017 Wiley Periodicals, Inc.

  6. Appetitive and reactive aggression are differentially associated with the STin2 genetic variant in the serotonin transporter gene.

    PubMed

    Hemmings, Sian Megan Joanna; Xulu, Khethelo; Sommer, Jessica; Hinsberger, Martina; Malan-Muller, Stefanie; Tromp, Gerard; Elbert, Thomas; Weierstall, Roland; Seedat, Soraya

    2018-04-30

    Appetitive aggression is a sub-category of instrumental aggression, characterised by the primary intrinsic enjoyment of aggressive activity. Aggression is heritable, and serotonergic and monoaminergic neurotransmitter systems have been found to contribute to the underlying molecular mechanisms. The aim of this study was to investigate the role that genetic variants in the serotonin transporter (SLC6A4) and monoamine oxidase A (MAOA) genes play in the aetiology of appetitive aggression in South African Xhosa males (n = 290). SLC6A4 5-HTTLPR, rs25531, and STin2 variants, as well as MAOA-uVNTR were investigated for their association with levels of appetitive aggression using Poisson regression analysis. The STin2 VNTR12 allele was found to be associated with increased levels of appetitive aggression (p = 0.003), but with decreased levels of reactive aggression (p = 7 × 10 -5 ). This study is the first to investigate genetic underpinnings of appetitive aggression in a South African population, with preliminary evidence suggesting that SCL6A4 STin2 variants play a role in its aetiology, and may also be important in differentiating between appetitive and reactive aggression. Although the results require replication, they shed some preliminary light on the molecular dichotomy that may underlie the two forms of aggression.

  7. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  8. A genetic variant of the anti-apoptotic protein Akt predicts natalizumab-induced lymphocytosis and post-natalizumab multiple sclerosis reactivation.

    PubMed

    Rossi, Silvia; Motta, Caterina; Studer, Valeria; Monteleone, Fabrizia; De Chiara, Valentina; Buttari, Fabio; Barbieri, Francesca; Bernardi, Giorgio; Battistini, Luca; Cutter, Gary; Stüve, Olaf; Salvetti, Marco; Centonze, Diego

    2013-01-01

    Multiple sclerosis (MS) patients discontinuing natalizumab treatment are at risk of disease reactivation. No clinical or surrogate parameters exist to identify patients at risk of post-natalizumab MS reactivation. To determine the role of natalizumab-induced lymphocytosis and of Akt polymorphisms in disease reactivation after natalizumab discontinuation. Peripheral leukocyte count and composition were monitored in 93 MS patients during natalizumab treatment, and in 56 of these subjects who discontinued the treatment. Genetic variants of the anti-apoptotic protein Akt were determined in all subjects because natalizumab modulates the apoptotic pathway and lymphocyte survival is regulated by the apoptotic cascade. Natalizumab-induced peripheral lymphocytosis protected from post-natalizumab MS reactivation. Subjects who relapsed or had magnetic resonance imaging (MRI) worsening after treatment cessation, in fact, had milder peripheral lymphocyte increases during the treatment, largely caused by less marked T cell increase. Furthermore, subjects carrying a variant of the gene coding for Akt associated with reduced anti-apoptotic efficiency (rs2498804T) had lower lymphocytosis and higher risk of disease reactivation. This study identified one functionally meaningful genetic variant within the Akt signaling pathway that is associated with both lymphocyte count and composition alterations during natalizumab treatment, and with the risk of disease reactivation after natalizumab discontinuation.

  9. A SImplified method for Segregation Analysis (SISA) to determine penetrance and expression of a genetic variant in a family.

    PubMed

    Møller, Pål; Clark, Neal; Mæhle, Lovise

    2011-05-01

    A method for SImplified rapid Segregation Analysis (SISA) to assess penetrance and expression of genetic variants in pedigrees of any complexity is presented. For this purpose the probability for recombination between the variant and the gene is zero. An assumption is that the variant of undetermined significance (VUS) is introduced into the family once only. If so, all family members in between two members demonstrated to carry a VUS, are obligate carriers. Probabilities for cosegregation of disease and VUS by chance, penetrance, and expression, may be calculated. SISA return values do not include person identifiers and need no explicit informed consent. There will be no ethical complications in submitting SISA return values to central databases. Values for several families may be combined. Values for a family may be updated by the contributor. SISA is used to consider penetrance whenever sequencing demonstrates a VUS in the known cancer-predisposing genes. Any family structure at hand in a genetic clinic may be used. One may include an extended lineage in a family through demonstrating the same VUS in a distant relative, and thereby identifying all obligate carriers in between. Such extension is a way to escape the selection biases through expanding the families outside the clusters used to select the families. © 2011 Wiley-Liss, Inc.

  10. Insights from human genetic studies of lung and organ fibrosis.

    PubMed

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  11. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches.

    PubMed

    Guidugli, Lucia; Shimelis, Hermela; Masica, David L; Pankratz, Vernon S; Lipton, Gary B; Singh, Namit; Hu, Chunling; Monteiro, Alvaro N A; Lindor, Noralane M; Goldgar, David E; Karchin, Rachel; Iversen, Edwin S; Couch, Fergus J

    2018-01-17

    Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ≥99% probability of pathogenicity, and 73 had ≥95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. A large scale analysis of genetic variants within putative miRNA binding sites in prostate cancer

    PubMed Central

    Stegeman, Shane; Amankwah, Ernest; Klein, Kerenaftali; O’Mara, Tracy A.; Kim, Donghwa; Lin, Hui-Yi; Permuth-Wey, Jennifer; Sellers, Thomas A.; Srinivasan, Srilakshmi; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Benlloch, Sara; Muir, Kenneth; Giles, Graham G.; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schleutker, Johanna; Nordestgaard, Børge G.; Travis, Ruth C.; Neal, David; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L.; Blot, William J.; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S.; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Teixeira, Manuel R.; Consortium, PRACTICAL; Spurdle, Amanda B.; Clements, Judith A.; Park, Jong Y.; Batra, Jyotsna

    2015-01-01

    Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies (GWAS) have identified 100 risk variants for prostate cancer, which can explain ~33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3′ UTR of genes predicted to affect miRNA binding (miRSNPs) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (p<2.3×10−5) with risk of prostate cancer, 10 of which were within the 7 genes previously not mapped by GWASs. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele whilst miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. Significance Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk. PMID:25691096

  13. Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard.

    PubMed

    Jing, Xia; Kay, Stephen; Marley, Thomas; Hardiker, Nicholas R; Cimino, James J

    2012-02-01

    The current volume and complexity of genetic tests, and the molecular genetics knowledge and health knowledge related to interpretation of the results of those tests, are rapidly outstripping the ability of individual clinicians to recall, understand and convey to their patients information relevant to their care. The tailoring of molecular genetics knowledge and health knowledge in clinical settings is important both for the provision of personalized medicine and to reduce clinician information overload. In this paper we describe the incorporation, customization and demonstration of molecular genetic data (mainly sequence variants), molecular genetics knowledge and health knowledge into a standards-based electronic health record (EHR) prototype developed specifically for this study. We extended the CCR (Continuity of Care Record), an existing EHR standard for representing clinical data, to include molecular genetic data. An EHR prototype was built based on the extended CCR and designed to display relevant molecular genetics knowledge and health knowledge from an existing knowledge base for cystic fibrosis (OntoKBCF). We reconstructed test records from published case reports and represented them in the CCR schema. We then used the EHR to dynamically filter molecular genetics knowledge and health knowledge from OntoKBCF using molecular genetic data and clinical data from the test cases. The molecular genetic data were successfully incorporated in the CCR by creating a category of laboratory results called "Molecular Genetics" and specifying a particular class of test ("Gene Mutation Test") in this category. Unlike other laboratory tests reported in the CCR, results of tests in this class required additional attributes ("Molecular Structure" and "Molecular Position") to support interpretation by clinicians. These results, along with clinical data (age, sex, ethnicity, diagnostic procedures, and therapies) were used by the EHR to filter and present molecular genetics

  14. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    PubMed Central

    2011-01-01

    Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to

  15. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder.

    PubMed

    Steinberg, Karyn Meltz; Ramachandran, Dhanya; Patel, Viren C; Shetty, Amol C; Cutler, David J; Zwick, Michael E

    2012-09-28

    Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3' UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects.

  16. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder

    PubMed Central

    2012-01-01

    Background Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. Methods We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. Results We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3’ UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. Conclusions These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects. PMID:23020841

  17. Functional relevance for type 1 diabetes mellitus-associated genetic variants by using integrative analyses.

    PubMed

    Qiu, Ying-Hua; Deng, Fei-Yan; Tang, Zai-Xiang; Jiang, Zhen-Huan; Lei, Shu-Feng

    2015-10-01

    Type 1 diabetes mellitus (type 1 DM) is an autoimmune disease. Although genome-wide association studies (GWAS) and meta-analyses have successfully identified numerous type 1 DM-associated susceptibility loci, the underlying mechanisms for these susceptibility loci are currently largely unclear. Based on publicly available datasets, we performed integrative analyses (i.e., integrated gene relationships among implicated loci, differential gene expression analysis, functional prediction and functional annotation clustering analysis) and combined with expression quantitative trait loci (eQTL) results to further explore function mechanisms underlying the associations between genetic variants and type 1 DM. Among a total of 183 type 1 DM-associated SNPs, eQTL analysis showed that 17 SNPs with cis-regulated eQTL effects on 9 genes. All the 9 eQTL genes enrich in immune-related pathways or Gene Ontology (GO) terms. Functional prediction analysis identified 5 SNPs located in transcription factor (TF) binding sites. Of the 9 eQTL genes, 6 (TAP2, HLA-DOB, HLA-DQB1, HLA-DQA1, HLA-DRB5 and CTSH) were differentially expressed in type 1 DM-associated related cells. Especially, rs3825932 in CTSH has integrative functional evidence supporting the association with type 1 DM. These findings indicated that integrative analyses can yield important functional information to link genetic variants and type 1 DM. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Monoamine Oxidase-A Genetic Variants and Childhood Abuse Predict Impulsiveness in Borderline Personality Disorder.

    PubMed

    Kolla, Nathan J; Meyer, Jeffrey; Sanches, Marcos; Charbonneau, James

    2017-11-30

    Impulsivity is a core feature of borderline personality disorder (BPD) and antisocial personality disorder (ASPD) that likely arises from combined genetic and environmental influences. The interaction of the low activity variant of the monoamine oxidase-A (MAOA-L) gene and early childhood adversity has been shown to predict aggression in clinical and non-clinical populations. Although impulsivity is a risk factor for aggression in BPD and ASPD, little research has investigated potential gene-environment (G×E) influences impacting its expression in these conditions. Moreover, G×E interactions may differ by diagnosis. Full factorial analysis of variance was employed to investigate the influence of monoamine oxidase-A (MAO-A) genotype, childhood abuse, and diagnosis on Barratt Impulsiveness Scale-11 (BIS-11) scores in 61 individuals: 20 subjects with BPD, 18 subjects with ASPD, and 23 healthy controls. A group×genotype×abuse interaction was present (F(2,49)=4.4, p =0.018), such that the interaction of MAOA-L and childhood abuse predicted greater BIS-11 motor impulsiveness in BPD. Additionally, BPD subjects reported higher BIS-11 attentional impulsiveness versus ASPD participants (t(1,36)=2.3, p =0.025). These preliminary results suggest that MAOA-L may modulate the impact of childhood abuse on impulsivity in BPD. Results additionally indicate that impulsiveness may be expressed differently in BPD and ASPD.

  19. Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases.

    PubMed

    Perry, John R B; Voight, Benjamin F; Yengo, Loïc; Amin, Najaf; Dupuis, Josée; Ganser, Martha; Grallert, Harald; Navarro, Pau; Li, Man; Qi, Lu; Steinthorsdottir, Valgerdur; Scott, Robert A; Almgren, Peter; Arking, Dan E; Aulchenko, Yurii; Balkau, Beverley; Benediktsson, Rafn; Bergman, Richard N; Boerwinkle, Eric; Bonnycastle, Lori; Burtt, Noël P; Campbell, Harry; Charpentier, Guillaume; Collins, Francis S; Gieger, Christian; Green, Todd; Hadjadj, Samy; Hattersley, Andrew T; Herder, Christian; Hofman, Albert; Johnson, Andrew D; Kottgen, Anna; Kraft, Peter; Labrune, Yann; Langenberg, Claudia; Manning, Alisa K; Mohlke, Karen L; Morris, Andrew P; Oostra, Ben; Pankow, James; Petersen, Ann-Kristin; Pramstaller, Peter P; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, William; Roden, Michael; Rudan, Igor; Rybin, Denis; Scott, Laura J; Sigurdsson, Gunnar; Sladek, Rob; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vivequin, Sidonie; Weedon, Michael N; Wright, Alan F; Hu, Frank B; Illig, Thomas; Kao, Linda; Meigs, James B; Wilson, James F; Stefansson, Kari; van Duijn, Cornelia; Altschuler, David; Morris, Andrew D; Boehnke, Michael; McCarthy, Mark I; Froguel, Philippe; Palmer, Colin N A; Wareham, Nicholas J; Groop, Leif; Frayling, Timothy M; Cauchi, Stéphane

    2012-05-01

    additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.

  20. Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

    PubMed Central

    Perry, John R. B.; Voight, Benjamin F.; Yengo, Loïc; Amin, Najaf; Dupuis, Josée; Ganser, Martha; Grallert, Harald; Navarro, Pau; Li, Man; Qi, Lu; Steinthorsdottir, Valgerdur; Scott, Robert A.; Almgren, Peter; Arking, Dan E.; Aulchenko, Yurii; Balkau, Beverley; Benediktsson, Rafn; Bergman, Richard N.; Boerwinkle, Eric; Bonnycastle, Lori; Burtt, Noël P.; Campbell, Harry; Charpentier, Guillaume; Collins, Francis S.; Gieger, Christian; Green, Todd; Hadjadj, Samy; Hattersley, Andrew T.; Herder, Christian; Hofman, Albert; Johnson, Andrew D.; Kottgen, Anna; Kraft, Peter; Labrune, Yann; Langenberg, Claudia; Manning, Alisa K.; Mohlke, Karen L.; Morris, Andrew P.; Oostra, Ben; Pankow, James; Petersen, Ann-Kristin; Pramstaller, Peter P.; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, William; Roden, Michael; Rudan, Igor; Rybin, Denis; Scott, Laura J.; Sigurdsson, Gunnar; Sladek, Rob; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vivequin, Sidonie; Weedon, Michael N.; Wright, Alan F.; Hu, Frank B.; Illig, Thomas; Kao, Linda; Meigs, James B.; Wilson, James F.; Stefansson, Kari; van Duijn, Cornelia; Altschuler, David; Morris, Andrew D.; Boehnke, Michael; McCarthy, Mark I.; Froguel, Philippe; Palmer, Colin N. A.; Wareham, Nicholas J.; Groop, Leif

    2012-01-01

    additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes. PMID:22693455

  1. Genetic tracking of the raccoon variant of rabies virus in eastern North America.

    PubMed

    Szanto, Annamaria G; Nadin-Davis, Susan A; Rosatte, Richard C; White, Bradley N

    2011-06-01

    To gain insight into the incursion of the raccoon variant of rabies into the raccoon population in three Canadian provinces, a collection of 192 isolates of the raccoon rabies virus (RRV) strain was acquired from across its North American range and was genetically characterized. A 516-nucleotide segment of the non-coding region between the G and L protein open reading frames, corresponding to the most variable region of the rabies virus genome, was sequenced. This analysis identified 119 different sequences, and phylogenetic analysis of the dataset supports the documented history of RRV spread. Three distinct geographically restricted RRV lineages were identified. Lineage 1 was found in Florida, Alabama and Georgia and appears to form the ancestral lineage of the raccoon variant of rabies. Lineage 2, represented by just two isolates, was found only in Florida, while the third lineage appears broadly distributed throughout the rest of the eastern United States and eastern Canada. In New York State, two distinct spatially segregated variants were identified; the one occupying the western and northern portions of the state was responsible for an incursion of raccoon rabies into the Canadian province of Ontario. Isolates from New Brunswick and Quebec form distinct, separate clusters, consistent with their independent origins from neighboring areas of the United States. The data are consistent with localized northward incursion into these three separate areas with no evidence of east-west viral movement between the three Canadian provinces. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease

    PubMed Central

    Schwerd, T.; Bryant, R. V.; Pandey, S.; Capitani, M.; Meran, L.; Cazier, J.-B.; Jung, J.; Mondal, K.; Parkes, M.; Mathew, CG; Fiedler, K.; McCarthy, D. J.; Sullivan, PB; Rodrigues, A.; Travis, SPL; Moore, C.; Sambrook, J.; Ouwehand, W. H.; Roberts, D. J.; Danesh, J.; Russell, R. K.; Wilson, D. C.; Kelsen, J. R.; Cornall, R.; Denson, L. A.; Kugathasan, S.; Knaus, U. G.; Goncalves Serra, E.; Anderson, C. A.; Duerr, R. H.; McGovern, D. P. B.; Cho, J.; Powrie, F.; Li, V. S. W.; Muise, A. M.; Uhlig, H. H.

    2017-01-01

    Genetic defects that affect intestinal epithelial barrier function can present with very early onset inflammatory bowel disease (VEOIBD). Using whole genome sequencing, a novel hemizygous defect in NOX1 encoding NAPDH oxidase 1 was identified in a patient with ulcerative colitis-like VEOIBD. Exome screening of 1,878 paediatric patients identified further seven male IBD patients with rare NOX1 mutations. Loss-of-function was validated in p.N122H and p.T497A, and to a lesser degree in p.Y470H, p.R287Q, p.I67M, p.Q293R as well as the previously described p.P330S and the common NOX1 SNP p.D360N (rs34688635) variant. The missense mutation p.N122H abrogated reactive oxygen species (ROS) production in cell lines, ex-vivo colonic explants and patient-derived colonic organoid cultures. Within colonic crypts, NOX1 constitutively generates a high level of ROS in the crypt lumen. Analysis of 9,513 controls and 11,140 IBD patients of non-Jewish European ancestry did not reveal an association between p.D360N and IBD. Our data suggest that loss-of-function variants in NOX1 do not cause a Mendelian disorder of high penetrance but are a context specific modifier. Our results implicate that variants in NOX1 change brush border ROS within colonic crypts at the interface between the epithelium and luminal microbes. PMID:29091079

  3. Meta-analysis of gene-level associations for rare variants based on single-variant statistics.

    PubMed

    Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu

    2013-08-08

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. [Epstein-Barr virus associated gastric carcinoma: the genetic alteration and the expression of CD44 variant].

    PubMed

    Chong, J M; Fukayama, M

    1997-02-01

    Epstein-Barr virus (EBV), a ubiquitous human herpes virus, was recently identified in 2-16% of gastric carcinomas. EBV-encoded small RNA was found in nearly all of the carcinoma cells even at the intramucosal stage. EBV in EBV associated gastric carcinoma (EBVaGC) is monoclonal based on Southern blot hybridization using probes adjacent to the unique terminal repeat of EBV-DNA. Furthermore, the genetic pathway of this carcinogenesis is different of EBVaGC: deletion of 5q and/or 17p and microsatellite instability are extremely rare in EBVaGC, in contrast to their high frequency in EBV-negative carcinomas. We also examined the relationship between the expression of CD44 variants and EBVaGC, and found the expression of CD44 variants was significantly correlated with EBV-etiology.

  5. Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development.

    PubMed

    Mueller, Kathryn L; Murray, Jeffrey C; Michaelson, Jacob J; Christiansen, Morten H; Reilly, Sheena; Tomblin, J Bruce

    2016-01-01

    Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population.

  6. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  7. Genetic literacy series: Primer part 2-Paradigm shifts in epilepsy genetics.

    PubMed

    Helbig, Ingo; Heinzen, Erin L; Mefford, Heather C

    2018-05-09

    This is the second of a 2-part primer on the genetics of the epilepsies within the Genetic Literacy Series of the Genetics Commission of the International League Against Epilepsy. In Part 1, we covered types of genetic variation, inheritance patterns, and their relationship to disease. In Part 2, we apply these basic principles to the case of a young boy with epileptic encephalopathy and ask 3 important questions: (1) Is the gene in question an established genetic etiology for epilepsy? (2) Is the variant in this particular gene pathogenic by established variant interpretation criteria? (3) Is the variant considered causative in the clinical context? These questions are considered and then answered for the clinical case in question. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  8. Common variant at 16p11.2 conferring risk of psychosis.

    PubMed

    Steinberg, S; de Jong, S; Mattheisen, M; Costas, J; Demontis, D; Jamain, S; Pietiläinen, O P H; Lin, K; Papiol, S; Huttenlocher, J; Sigurdsson, E; Vassos, E; Giegling, I; Breuer, R; Fraser, G; Walker, N; Melle, I; Djurovic, S; Agartz, I; Tuulio-Henriksson, A; Suvisaari, J; Lönnqvist, J; Paunio, T; Olsen, L; Hansen, T; Ingason, A; Pirinen, M; Strengman, E; Hougaard, D M; Orntoft, T; Didriksen, M; Hollegaard, M V; Nordentoft, M; Abramova, L; Kaleda, V; Arrojo, M; Sanjuán, J; Arango, C; Etain, B; Bellivier, F; Méary, A; Schürhoff, F; Szoke, A; Ribolsi, M; Magni, V; Siracusano, A; Sperling, S; Rossner, M; Christiansen, C; Kiemeney, L A; Franke, B; van den Berg, L H; Veldink, J; Curran, S; Bolton, P; Poot, M; Staal, W; Rehnstrom, K; Kilpinen, H; Freitag, C M; Meyer, J; Magnusson, P; Saemundsen, E; Martsenkovsky, I; Bikshaieva, I; Martsenkovska, I; Vashchenko, O; Raleva, M; Paketchieva, K; Stefanovski, B; Durmishi, N; Pejovic Milovancevic, M; Lecic Tosevski, D; Silagadze, T; Naneishvili, N; Mikeladze, N; Surguladze, S; Vincent, J B; Farmer, A; Mitchell, P B; Wright, A; Schofield, P R; Fullerton, J M; Montgomery, G W; Martin, N G; Rubino, I A; van Winkel, R; Kenis, G; De Hert, M; Réthelyi, J M; Bitter, I; Terenius, L; Jönsson, E G; Bakker, S; van Os, J; Jablensky, A; Leboyer, M; Bramon, E; Powell, J; Murray, R; Corvin, A; Gill, M; Morris, D; O'Neill, F A; Kendler, K; Riley, B; Craddock, N; Owen, M J; O'Donovan, M C; Thorsteinsdottir, U; Kong, A; Ehrenreich, H; Carracedo, A; Golimbet, V; Andreassen, O A; Børglum, A D; Mors, O; Mortensen, P B; Werge, T; Ophoff, R A; Nöthen, M M; Rietschel, M; Cichon, S; Ruggeri, M; Tosato, S; Palotie, A; St Clair, D; Rujescu, D; Collier, D A; Stefansson, H; Stefansson, K

    2014-01-01

    Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share genetic risk factors. In our previous genome-wide association study, meta-analysis and follow-up (totaling as many as 18 206 cases and 42 536 controls), we identified four loci showing genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia and bipolar disorder (psychosis) phenotype (addition of 7469 bipolar disorder cases, 1535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46 160 controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant association (rs4583255[T]; odds ratio=1.08; P=6.6 × 10(-11)). The new variant is located within a 593-kb region that substantially increases risk of psychosis when duplicated. In line with the association of the duplication with reduced body mass index (BMI), rs4583255[T] is also associated with lower BMI (P=0.0039 in the public GIANT consortium data set; P=0.00047 in 22 651 additional Icelanders).

  9. Using whole-exome sequencing to identify variants inherited from mosaic parents

    PubMed Central

    Rios, Jonathan J; Delgado, Mauricio R

    2015-01-01

    Whole-exome sequencing (WES) has allowed the discovery of genes and variants causing rare human disease. This is often achieved by comparing nonsynonymous variants between unrelated patients, and particularly for sporadic or recessive disease, often identifies a single or few candidate genes for further consideration. However, despite the potential for this approach to elucidate the genetic cause of rare human disease, a majority of patients fail to realize a genetic diagnosis using standard exome analysis methods. Although genetic heterogeneity contributes to the difficulty of exome sequence analysis between patients, it remains plausible that rare human disease is not caused by de novo or recessive variants. Multiple human disorders have been described for which the variant was inherited from a phenotypically normal mosaic parent. Here we highlight the potential for exome sequencing to identify a reasonable number of candidate genes when dominant disease variants are inherited from a mosaic parent. We show the power of WES to identify a limited number of candidate genes using this disease model and how sequence coverage affects identification of mosaic variants by WES. We propose this analysis as an alternative to discover genetic causes of rare human disorders for which typical WES approaches fail to identify likely pathogenic variants. PMID:24986828

  10. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    EPA Science Inventory

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...

  11. Nuclear Receptor Variants in Liver Disease

    PubMed Central

    Müllenbach, Roman; Weber, Susanne N.; Lammert, Frank

    2012-01-01

    This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic (“Mendelian”) liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment. PMID:22523693

  12. Family studies to find rare high risk variants in migraine.

    PubMed

    Hansen, Rikke Dyhr; Christensen, Anne Francke; Olesen, Jes

    2017-12-01

    Migraine has long been known as a common complex disease caused by genetic and environmental factors. The pathophysiology and the specific genetic susceptibility are poorly understood. Common variants only explain a small part of the heritability of migraine. It is thought that rare genetic variants with bigger effect size may be involved in the disease. Since migraine has a tendency to cluster in families, a family approach might be the way to find these variants. This is also indicated by identification of migraine-associated loci in classical linkage-analyses in migraine families. A single migraine study using a candidate-gene approach was performed in 2010 identifying a rare mutation in the TRESK potassium channel segregating in a large family with migraine with aura, but this finding has later become questioned. The technologies of next-generation sequencing (NGS) now provides an affordable tool to investigate the genetic variation in the entire exome or genome. The family-based study design using NGS is described in this paper. We also review family studies using NGS that have been successful in finding rare variants in other common complex diseases in order to argue the promising application of a family approach to migraine. PubMed was searched to find studies that looked for rare genetic variants in common complex diseases through a family-based design using NGS, excluding studies looking for de-novo mutations, or using a candidate-gene approach and studies on cancer. All issues from Nature Genetics and PLOS genetics 2014, 2015 and 2016 (UTAI June) were screened for relevant papers. Reference lists from included and other relevant papers were also searched. For the description of the family-based study design using NGS an in-house protocol was used. Thirty-two successful studies, which covered 16 different common complex diseases, were included in this paper. We also found a single migraine study. Twenty-three studies found one or a few family specific

  13. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    PubMed

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  14. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

    DOE PAGES

    Muchero, Wellington; Guo, Jianjun; Difazio, Stephen P.; ...

    2015-01-23

    We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcriptionmore » factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca 2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.« less

  15. Identification of rare genetic variants in Italian patients with dementia by targeted gene sequencing.

    PubMed

    Bartoletti-Stella, Anna; Baiardi, Simone; Stanzani-Maserati, Michelangelo; Piras, Silvia; Caffarra, Paolo; Raggi, Alberto; Pantieri, Roberta; Baldassari, Sara; Caporali, Leonardo; Abu-Rumeileh, Samir; Linarello, Simona; Liguori, Rocco; Parchi, Piero; Capellari, Sabina

    2018-06-01

    Genetics is intricately involved in the etiology of neurodegenerative dementias. The incidence of monogenic dementia among all neurodegenerative forms is unknown due to the lack of systematic studies and of patient/clinician access to extensive diagnostic procedures. In this study, we conducted targeted sequencing in 246 clinically heterogeneous patients, mainly with early-onset and/or familial neurodegenerative dementia, using a custom-designed next-generation sequencing panel covering 27 genes known to harbor mutations that can cause different types of dementia, in addition to the detection of C9orf72 repeat expansions. Forty-nine patients (19.9%) carried known pathogenic or novel, likely pathogenic, variants, involving both common (presenilin 1, presenilin 2, C9orf72, and granulin) and rare (optineurin, serpin family I member 1 and protein kinase cyclic adenosine monophosphate (cAMP)-dependent type I regulatory subunit beta) dementia-associated genes. Our results support the use of an extended next-generation sequencing panels as a quick, accurate, and cost-effective method for diagnosis in clinical practice. This approach could have a significant impact on the proportion of tested patients, especially among those with an early disease onset. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants.

    PubMed

    Malik, Rainer; Freilinger, Tobias; Winsvold, Bendik S; Anttila, Verneri; Vander Heiden, Jason; Traylor, Matthew; de Vries, Boukje; Holliday, Elizabeth G; Terwindt, Gisela M; Sturm, Jonathan; Bis, Joshua C; Hopewell, Jemma C; Ferrari, Michel D; Rannikmae, Kristiina; Wessman, Maija; Kallela, Mikko; Kubisch, Christian; Fornage, Myriam; Meschia, James F; Lehtimäki, Terho; Sudlow, Cathie; Clarke, Robert; Chasman, Daniel I; Mitchell, Braxton D; Maguire, Jane; Kaprio, Jaakko; Farrall, Martin; Raitakari, Olli T; Kurth, Tobias; Ikram, M Arfan; Reiner, Alex P; Longstreth, W T; Rothwell, Peter M; Strachan, David P; Sharma, Pankaj; Seshadri, Sudha; Quaye, Lydia; Cherkas, Lynn; Schürks, Markus; Rosand, Jonathan; Ligthart, Lannie; Boncoraglio, Giorgio B; Davey Smith, George; van Duijn, Cornelia M; Stefansson, Kari; Worrall, Bradford B; Nyholt, Dale R; Markus, Hugh S; van den Maagdenberg, Arn M J M; Cotsapas, Chris; Zwart, John A; Palotie, Aarno; Dichgans, Martin

    2015-05-26

    To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10(-20) for the CE score in MO). Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype. © 2015 American Academy of Neurology.

  17. A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression

    PubMed Central

    Knight, Helen M.; Pickard, Benjamin S.; Maclean, Alan; Malloy, Mary P.; Soares, Dinesh C.; McRae, Allan F.; Condie, Alison; White, Angela; Hawkins, William; McGhee, Kevin; van Beck, Margaret; MacIntyre, Donald J.; Starr, John M.; Deary, Ian J.; Visscher, Peter M.; Porteous, David J.; Cannon, Ronald E.; St Clair, David; Muir, Walter J.; Blackwood, Douglas H.R.

    2009-01-01

    Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders. PMID:19944402

  18. Allelic Variants of Complement Genes Associated with Dense Deposit Disease

    PubMed Central

    Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou

    2011-01-01

    The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901

  19. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    PubMed

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. Copyright © 2016, American Association for the Advancement of Science.

  20. A Common Missense Variant in the Neuregulin1 Gene is associated with Both Schizophrenia and Sudden Cardiac Death

    PubMed Central

    Huertas-Vazquez, Adriana; Teodorescu, Carmen; Reinier, Kyndaron; Uy-Evanado, Audrey; Chugh, Harpriya; Jerger, Katherine; Ayala, Jo; Gunson, Karen; Jui, Jonathan; Newton-Cheh, Christopher; Albert, Christine M.; Chugh, Sumeet S.

    2013-01-01

    Background Both schizophrenia and epilepsy have been linked to increased risk of sudden cardiac death (SCD). We hypothesized that DNA variants within genes previously associated with schizophrenia and epilepsy may contribute to an increased risk of SCD. Objective To investigate the contribution to SCD susceptibility of DNA variants previously implicated in schizophrenia and epilepsy. Methods From the ongoing Oregon Sudden Unexpected Death Study, comparisons were performed among 340 SCD cases presenting with ventricular fibrillation and 342 controls. We tested for association between 17 SNPs mapped to 14 loci previously implicated in schizophrenia and epilepsy using logistic regression, assuming additive, dominant and recessive genetic models. Results The minor allele of the non-synonymous SNP rs10503929 within the Neuregulin 1 gene (NRG1) was associated with SCD under all three investigated models, with the strongest association for the recessive genetic model (recessive P=4.01×10−5, OR= 4.04; additive P=2.84×10−7, OR= 1.9 and dominant P=9.01×10−6, OR= 2.06). To validate our findings, we further explored the association of this variant in the Harvard Cohort SCD study. The SNP rs10503929 was associated with an increased risk of SCD under the recessive genetic model (P=0.0005, OR= 2.7). This missense variation causes a methionine to threonine change and functional effects are currently unknown. Conclusions The observed association between a schizophrenia-related NRG1 variant and SCD may represent the first evidence of coexisting genetic susceptibility between two conditions that have an established clinical overlap. Further investigation is warranted to explore the molecular mechanisms of this variant in the pathogenesis of SCD. PMID:23524320

  1. Anticipation in a family with primary familial brain calcification caused by an SLC20A2 variant.

    PubMed

    Konno, Takuya; Blackburn, Patrick R; Rozen, Todd D; van Gerpen, Jay A; Ross, Owen A; Atwal, Paldeep S; Wszolek, Zbigniew K

    2018-04-11

    To describe a family with primary familial brain calcification (PFBC) due to SLC20A2 variant showing possible genetic anticipation. We conducted historical, genealogical, clinical, and radiologic studies of a family with PFBC. Clinical evaluations including neurological examination and head computed tomography (CT) scans of a proband and her father were performed. They provided additional information regarding other family members. To identify a causative gene variant, we performed whole-exome sequencing for the proband followed by segregation analysis in other affected members using direct sequencing. In this family, nine affected members were identified over four generations. The proband suffered from chronic daily headache including thunderclap headache. We identified an SLC20A2 (c.509delT, p.(Leu170*)) variant in three affected members over three generations. Interestingly, the age of onset became younger as the disease passed through successive generations, suggestive of genetic anticipation. For clinical purpose, it is important to consider thunderclap headache and genetic anticipation in PFBC caused by SLC20A2 variants. Further investigation is required to validate our observation. Copyright © 2018 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Association study between variants in LHCGR DENND1A and THADA with preeclampsia risk in Han Chinese populations.

    PubMed

    Zhang, Ya-Jie; Li, Lei; Wang, Zhen-Jing; Zhang, Xiao-Jing; Zhao, Han; Zhao, Yan; Wang, Xie-Tong; Li, Chang-Zhong; Wan, Ji-Peng

    2018-05-17

    To evaluate the association between preeclampsia and three single nucleotide polymorphisms (rs13405728 in LHCGR gene; rs13429458 in THADA gene, and rs2479106 in DENND1A gene) which were identified to be genetic variants of polycystic ovary syndrome (PCOS) by genome-wide association study in Han Chinese populations. A total of 784 northern Han Chinese women (378 controls and 406 cases) were genotyped for the three genetic variants by polymerase chain reaction and direct sequencing. Unconditional logistic regression analysis was used to adjust the impact of prepregnancy body mass index, primiparas, and maternal age. No significant difference was found in the allele frequencies of the three genetic variants between cases and controls (p > .05), but genotype frequency of the SNP rs2479106 was significantly differ between cases and controls when analyzed under recessive models (p = .02). There was also a substantial difference in the genotype frequencies of the SNP rs13429458 between cases and controls under additive models (p = .01). Genetic variants of PCOS (rs13405728 in LHCGR gene; rs13429458 in THADA gene and rs2479106 in DENND1A gene) may not be involved in the development of preeclampsia in Han Chinese women.

  3. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits

    PubMed Central

    Palmer, Cameron D.; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E.; Launer, Lenore J.; Nalls, Michael A.; Clark, Jeanne M.; Mitchell, Braxton D.; Shuldiner, Alan R.; Butler, Johannah L.; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M.; O'Donnell, Christopher J.; Sahani, Dushyant V.; Salomaa, Veikko; Schadt, Eric E.; Schwartz, Stephen M.; Siscovick, David S.; Voight, Benjamin F.; Carr, J. Jeffrey; Feitosa, Mary F.; Harris, Tamara B.; Fox, Caroline S.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%–27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10−8) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits. PMID:21423719

  4. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.

    PubMed

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun; Hernaez, Ruben; Kim, Lauren J; Palmer, Cameron D; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E; Launer, Lenore J; Nalls, Michael A; Clark, Jeanne M; Mitchell, Braxton D; Shuldiner, Alan R; Butler, Johannah L; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M; O'Donnell, Christopher J; Sahani, Dushyant V; Salomaa, Veikko; Schadt, Eric E; Schwartz, Stephen M; Siscovick, David S; Voight, Benjamin F; Carr, J Jeffrey; Feitosa, Mary F; Harris, Tamara B; Fox, Caroline S; Smith, Albert V; Kao, W H Linda; Hirschhorn, Joel N; Borecki, Ingrid B

    2011-03-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.

  5. Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer

    PubMed Central

    Guiducci, Candace; Segrè, Ayellet V.; McGee, Kate; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Gauthier-Villars, Marion; Sobol, Hagay; Longy, Michel; Frenay, Marc; GEMO Study Collaborators; Hogervorst, Frans B. L.; Rookus, Matti A.; Collée, J. Margriet; Hoogerbrugge, Nicoline; van Roozendaal, Kees E. P.; Piedmonte, Marion; Rubinstein, Wendy; Nerenstone, Stacy; Van Le, Linda; Blank, Stephanie V.; Caldés, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Arason, Adalgeir; Johannsson, Oskar T.; Barkardottir, Rosa B.; Devilee, Peter; Olopade, Olofunmilayo I.; Neuhausen, Susan L.; Wang, Xianshu; Fredericksen, Zachary S.; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Viel, Alessandra; Radice, Paolo; Phelan, Catherine M.; Narod, Steven; Rennert, Gad; Lejbkowicz, Flavio; Flugelman, Anath; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda E.; Montagna, Marco; D'Andrea, Emma; Friedman, Eitan; Laitman, Yael; Borg, Ake; Beattie, Mary; Ramus, Susan J.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Tim; Spurdle, Amanda B.; Chen, Xiaoqing; Holland, Helene; John, Esther M.; Hopper, John L.; Buys, Saundra S.; Daly, Mary B.; Southey, Melissa C.; Terry, Mary Beth; Tung, Nadine; Overeem Hansen, Thomas V.; Nielsen, Finn C.; Greene, Mark I.; Mai, Phuong L.; Osorio, Ana; Durán, Mercedes; Andres, Raquel; Benítez, Javier; Weitzel, Jeffrey N.; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Platte, Radka; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Walker, Lisa; Eason, Jacqueline; Barwell, Julian; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engert, Stefanie; Arnold, Norbert; Gadzicki, Dorothea; Dean, Michael; Gold, Bert; Klein, Robert J.; Couch, Fergus J.; Chenevix-Trench, Georgia; Easton, Douglas F.; Daly, Mark J.; Antoniou, Antonis C.; Altshuler, David M.; Offit, Kenneth

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10−5 and 39 SNPs had p-values<10−4. These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66–0.86, ) and for rs311499 was 0.72 (95% CI 0.61–0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18–1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer. PMID:21060860

  6. Association of Genetic Variants Related to Serum Calcium Levels With Coronary Artery Disease and Myocardial Infarction.

    PubMed

    Larsson, Susanna C; Burgess, Stephen; Michaëlsson, Karl

    2017-07-25

    Serum calcium has been associated with cardiovascular disease in observational studies and evidence from randomized clinical trials indicates that calcium supplementation, which raises serum calcium levels, may increase the risk of cardiovascular events, particularly myocardial infarction. To evaluate the potential causal association between genetic variants related to elevated serum calcium levels and risk of coronary artery disease (CAD) and myocardial infarction using mendelian randomization. The analyses were performed using summary statistics obtained for single-nucleotide polymorphisms (SNPs) identified from a genome-wide association meta-analysis of serum calcium levels (N = up to 61 079 individuals) and from the Coronary Artery Disease Genome-wide Replication and Meta-analysis Plus the Coronary Artery Disease Genetics (CardiogramplusC4D) consortium's 1000 genomes-based genome-wide association meta-analysis (N = up to 184 305 individuals) that included cases (individuals with CAD and myocardial infarction) and noncases, with baseline data collected from 1948 and populations derived from across the globe. The association of each SNP with CAD and myocardial infarction was weighted by its association with serum calcium, and estimates were combined using an inverse-variance weighted meta-analysis. Genetic risk score based on genetic variants related to elevated serum calcium levels. Co-primary outcomes were the odds of CAD and myocardial infarction. Among the mendelian randomized analytic sample of 184 305 individuals (60 801 CAD cases [approximately 70% with myocardial infarction] and 123 504 noncases), the 6 SNPs related to serum calcium levels and without pleiotropic associations with potential confounders were estimated to explain about 0.8% of the variation in serum calcium levels. In the inverse-variance weighted meta-analysis (combining the estimates of the 6 SNPs), the odds ratios per 0.5-mg/dL increase (about 1 SD) in genetically

  7. Genetic variants as ovarian cancer first-line treatment hallmarks: A systematic review and meta-analysis.

    PubMed

    Assis, Joana; Pereira, Carina; Nogueira, Augusto; Pereira, Deolinda; Carreira, Rafael; Medeiros, Rui

    2017-12-01

    The potential predictive value of genetic polymorphisms in ovarian cancer first-line treatment is inconsistently reported. We aimed to review ovarian cancer pharmacogenetic studies to update and summarize the available data and to provide directions for further research. A systematic review followed by a meta-analysis was conducted on cohort studies assessing the involvement of genetic polymorphisms in ovarian cancer first-line treatment response retrieved through a MEDLINE database search by November 2016. Studies were pooled and summary estimates and 95% confidence intervals (CI) were calculated using random or fixed-effects models as appropriate. One hundred and forty-two studies gathering 106871 patients were included. Combined data suggested that GSTM1-null genotype patients have a lower risk of death compared to GSTM1-wt carriers, specifically in advanced stages (hazard ratio (HR), 0.68; 95% CI, 0.48-0.97) and when submitted to platinum-based chemotherapy (aHR, 0.61; 95% CI, 0.39-0.94). ERCC1 rs11615 and rs3212886 might have also a significant impact in treatment outcome (aHR, 0.67; 95% CI, 0.51-0.89; aHR, 1.28; 95% CI, 1.01-1.63, respectively). Moreover, ERCC2 rs13181 and rs1799793 showed a distinct ethnic behavior (Asians: aHR, 1.41; 95% CI, 0.80-2.49; aHR, 1.07; 95% CI, 0.62-1.86; Caucasians: aHR, 0.10; 95% CI, 0.01-0.96; aHR, 0.18; 95% CI, 0.05-0.68, respectively). The definition of integrative predictive models should encompass genetic information, especially regarding GSTM1 homozygous deletion. Justifying additional pharmacogenetic investigation are variants in ERCC1 and ERCC2, which highlight the DNA Repair ability to ovarian cancer prognosis. Further knowledge could aid to understand platinum-treatment failure and to tailor chemotherapy strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dopamine Transporter Genetic Variants and Pesticides in Parkinson’s Disease

    PubMed Central

    Ritz, Beate R.; Manthripragada, Angelika D.; Costello, Sadie; Lincoln, Sarah J.; Farrer, Matthew J.; Cockburn, Myles; Bronstein, Jeff

    2009-01-01

    Background Research suggests that independent and joint effects of genetic variability in the dopamine transporter (DAT) locus and pesticides may influence Parkinson’s disease (PD) risk. Materials Methods: In 324 incident PD patients and 334 population controls from our rural California case–control study, we genotyped rs2652510, rs2550956 (for the DAT 5′ clades), and the 3′ variable number of tandem repeats (VNTR). Using geographic information system methods, we determined residential exposure to agricultural maneb and paraquat applications. We also collected occupational pesticide use data. Employing logistic regression, we calculated odds ratios (ORs) for clade diplotypes, VNTR genotype, and number of susceptibility (A clade and 9-repeat) alleles and assessed susceptibility allele–pesticide interactions. Results PD risk was increased separately in DAT A clade diplotype carriers [AA vs. BB: OR = 1.66; 95% confidence interval (CI), 1.08–2.57] and 3′ VNTR 9/9 carriers (9/9 vs. 10/10: OR = 1.8; 95% CI, 0.96–3.57), and our data suggest a gene dosing effect. Importantly, high exposure to paraquat and maneb in carriers of one susceptibility allele increased PD risk 3-fold (OR = 2.99; 95% CI, 0.88–10.2), and in carriers of two or more alleles more than 4-fold (OR = 4.53; 95% CI, 1.70–12.1). We obtained similar results for occupational pesticide measures. Discussion Using two independent pesticide measures, we a) replicated previously reported gene–environment interactions between DAT genetic variants and occupational pesticide exposure in men and b) overcame previous limitations of nonspecific pesticide measures and potential recall bias by employing state records and computer models to estimate residential pesticide exposure. Conclusion Our results suggest that DAT genetic variability and pesticide exposure interact to increase PD risk. PMID:19590691

  9. Searching for missing heritability: Designing rare variant association studies

    PubMed Central

    Zuk, Or; Schaffner, Stephen F.; Samocha, Kaitlin; Do, Ron; Hechter, Eliana; Kathiresan, Sekar; Daly, Mark J.; Neale, Benjamin M.; Sunyaev, Shamil R.; Lander, Eric S.

    2014-01-01

    Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set. PMID:24443550

  10. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases

    PubMed Central

    Ahsan, Muhammad; Ek, Weronica E.; Karlsson, Torgny; Gyllensten, Ulf

    2017-01-01

    Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units’ change per 1% change in DNA methylation levels and up to four standard units’ change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease. PMID:28915241

  11. Post-mortem testing; germline BRCA1/2 variant detection using archival FFPE non-tumor tissue. A new paradigm in genetic counseling.

    PubMed

    Petersen, Annabeth Høgh; Aagaard, Mads Malik; Nielsen, Henriette Roed; Steffensen, Karina Dahl; Waldstrøm, Marianne; Bojesen, Anders

    2016-08-01

    Accurate estimation of cancer risk in HBOC families often requires BRCA1/2 testing, but this may be impossible in deceased family members. Previous, testing archival formalin-fixed, paraffin-embedded (FFPE) tissue for germline BRCA1/2 variants was unsuccessful, except for the Jewish founder mutations. A high-throughput method to systematically test for variants in all coding regions of BRCA1/2 in archival FFPE samples of non-tumor tissue is described, using HaloPlex target enrichment and next-generation sequencing. In a validation study, correct identification of variants or wild-type was possible in 25 out of 30 (83%) FFPE samples (age range 1-14 years), with a known variant status in BRCA1/2. No false positive was found. Unsuccessful identification was due to highly degraded DNA or presence of large intragenic deletions. In clinical use, a total of 201 FFPE samples (aged 0-43 years) were processed. Thirty-six samples were rejected because of highly degraded DNA or failed library preparation. Fifteen samples were investigated to search for a known variant. In the remaining 150 samples (aged 0-38 years), three variants known to affect function and one variant likely to affect function in BRCA1, six variants known to affect function and one variant likely to affect function in BRCA2, as well as four variants of unknown significance (VUS) in BRCA1 and three VUS in BRCA2 were discovered. It is now possible to test for germline BRCA1/2 variants in deceased persons, using archival FFPE samples from non-tumor tissue. Accurate genetic counseling is achievable in families where variant testing would otherwise be impossible.

  12. Post-mortem testing; germline BRCA1/2 variant detection using archival FFPE non-tumor tissue. A new paradigm in genetic counseling

    PubMed Central

    Petersen, Annabeth Høgh; Aagaard, Mads Malik; Nielsen, Henriette Roed; Steffensen, Karina Dahl; Waldstrøm, Marianne; Bojesen, Anders

    2016-01-01

    Accurate estimation of cancer risk in HBOC families often requires BRCA1/2 testing, but this may be impossible in deceased family members. Previous, testing archival formalin-fixed, paraffin-embedded (FFPE) tissue for germline BRCA1/2 variants was unsuccessful, except for the Jewish founder mutations. A high-throughput method to systematically test for variants in all coding regions of BRCA1/2 in archival FFPE samples of non-tumor tissue is described, using HaloPlex target enrichment and next-generation sequencing. In a validation study, correct identification of variants or wild-type was possible in 25 out of 30 (83%) FFPE samples (age range 1–14 years), with a known variant status in BRCA1/2. No false positive was found. Unsuccessful identification was due to highly degraded DNA or presence of large intragenic deletions. In clinical use, a total of 201 FFPE samples (aged 0–43 years) were processed. Thirty-six samples were rejected because of highly degraded DNA or failed library preparation. Fifteen samples were investigated to search for a known variant. In the remaining 150 samples (aged 0–38 years), three variants known to affect function and one variant likely to affect function in BRCA1, six variants known to affect function and one variant likely to affect function in BRCA2, as well as four variants of unknown significance (VUS) in BRCA1 and three VUS in BRCA2 were discovered. It is now possible to test for germline BRCA1/2 variants in deceased persons, using archival FFPE samples from non-tumor tissue. Accurate genetic counseling is achievable in families where variant testing would otherwise be impossible. PMID:26733283

  13. Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows.

    PubMed

    Gustavsson, F; Buitenhuis, A J; Johansson, M; Bertelsen, H P; Glantz, M; Poulsen, N A; Lindmark Månsson, H; Stålhammar, H; Larsen, L B; Bendixen, C; Paulsson, M; Andrén, A

    2014-01-01

    In selecting cows for higher milk yields and milk quality, it is important to understand how these traits are affected by the bovine genome. The major milk proteins exhibit genetic polymorphism and these genetic variants can serve as markers for milk composition, milk production traits, and technological properties of milk. The aim of this study was to investigate the relationships between casein (CN) genetic variants and detailed protein composition in Swedish and Danish dairy milk. Milk and DNA samples were collected from approximately 400 individual cows each of 3 Scandinavian dairy breeds: Swedish Red (SR), Danish Holstein (DH), and Danish Jersey (DJ). The protein profile with relative concentrations of α-lactalbumin, β-lactoglobulin, and α(S1)-, α(S2)-, κ-, and β-CN was determined for each milk sample using capillary zone electrophoresis. The genetic variants of the α(S1)- (CSN1S1), β- (CSN2), and κ-CN (CSN3) genes for each cow were determined using TaqMan SNP genotyping assays (Applied Biosystems, Foster City, CA). Univariate statistical models were used to evaluate the effects of composite genetic variants, α(S1)-β-κ-CN, on the protein profile. The 3 studied Scandinavian breeds differed from each other regarding CN genotypes, with DH and SR having similar genotype frequencies, whereas the genotype frequencies in DJ differed from the other 2 breeds. The similarities in genotype frequencies of SR and DH and differences compared with DJ were also seen in milk production traits, gross milk composition, and protein profile. Frequencies of the most common composite α(S1)-β-κ-CN genotype BB/A(2)A(2)/AA were 30% in DH and 15% in SR, and cows that had this genotype gave milk with lower relative concentrations of κ- and β-CN and higher relative concentrations of αS-CN, than the majority of the other composite genotypes in SR and DH. The effect of composite genotypes on relative concentrations of the milk proteins was not as pronounced in DJ. The

  14. Resequencing the susceptibility gene, ITGAM, identifies two functionally deleterious rare variants in systemic lupus erythematosus cases

    PubMed Central

    2014-01-01

    Introduction The majority of the genetic variance of systemic lupus erythematosus (SLE) remains unexplained by the common disease-common variant hypothesis. Rare variants, which are not detectable by genome-wide association studies because of their low frequencies, are predicted to explain part of this ”missing heritability.” However, recent studies identifying rare variants within known disease-susceptibility loci have failed to show genetic associations because of their extremely low frequencies, leading to the questioning of the contribution of rare variants to disease susceptibility. A common (minor allele frequency = 17.4% in cases) nonsynonymous coding variant rs1143679 (R77H) in ITGAM (CD11b), which forms half of the heterodimeric integrin receptor, complement receptor 3 (CR3), is robustly associated with SLE and has been shown to impair CR3-mediated phagocytosis. Methods We resequenced ITGAM in 73 SLE cases and identified two previously unidentified, case-specific nonsynonymous variants, F941V and G1145S. Both variants were genotyped in 2,107 and 949 additional SLE cases, respectively, to estimate their frequencies in a disease population. An in vitro model was used to assess the impact of F941V and G1145S, together with two nonsynonymous ITGAM polymorphisms, A858V (rs1143683) and M441T (rs11861251), on CR3-mediated phagocytosis. A paired two-tailed t test was used to compare the phagocytic capabilities of each variant with that of wild-type CR3. Results Both rare variants, F941V and G1145S, significantly impair CR3-mediated phagocytosis in an in vitro model (61% reduction, P = 0.006; 26% reduction, P = 0.0232). However, neither of the common variants, M441T and A858V, had an effect on phagocytosis. Neither rare variant was observed again in the genotyping of additional SLE cases, suggesting that there frequencies are extremely low. Conclusions Our results add further evidence to the functional importance of ITGAM in SLE pathogenesis through impaired

  15. Influence of GRIK4 genetic variants on the electroconvulsive therapy response.

    PubMed

    Minelli, Alessandra; Congiu, Chiara; Ventriglia, Mariacarla; Bortolomasi, Marco; Bonvicini, Cristian; Abate, Maria; Sartori, Riccardo; Gainelli, Giulio; Gennarelli, Massimo

    2016-07-28

    Several lines of evidence have shown the involvement of the glutamatergic system in the function of electroconvulsive therapy (ECT). In particular, patients with treatment resistant depression (TRD) and chronic depression have lower levels of glutamate/glutamine than controls, and ECT can reverse this deficit. Genetic factors might contribute to modulating the mechanisms underlying ECT. This study aimed to evaluate the relationship between three polymorphisms (rs1954787, rs4936554 and rs11218030) of the glutamate receptor ionotropic kainate 4 (GRIK4) gene and responsiveness to ECT treatment in a sample of one hundred individuals, TRD or depressive Bipolar Disorder patients resistant to pharmacological treatments. The results revealed that GRIK4 variants were significantly associated with the response to ECT. In particular, we found that patients carrying the G allele of the GRIK4 rs11218030 had a significantly poorer response to ECT (p=2.71×10(-4)), showing five times the risk of relapse after ECT compared to the AA homozygotes. Analogously, patients carrying the GG rs1954787 genotype and rs4936554A allele carriers presented a double risk of lack of response after ECT (p=0.013 and p=0.040, respectively). In conclusion, the current study provides new evidence, indicating that some GRIK4 variants modulate the response to ECT in patients with depression resistant to treatment, suggesting a role for kainate receptor modulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Statistical Physics of Population Genetics in the Low Population Size Limit

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder

    The understanding of evolutionary processes lends itself naturally to theory and computation, and the entire field of population genetics has benefited greatly from the influx of methods from applied mathematics for decades. However, in spite of all this effort, there are a number of key dynamical models of evolution that have resisted analytical treatment. In addition, modern DNA sequencing technologies have magnified the amount of genetic data available, revealing an excess of rare genetic variants in human genomes, challenging the predictions of conventional theory. Here I will show that methods from statistical physics can be used to model the distribution of genetic variants, incorporating selection and spatial degrees of freedom. In particular, a functional path-integral formulation of the Wright-Fisher process maps exactly to the dynamics of a particle in an effective potential, beyond the mean field approximation. In the small population size limit, the dynamics are dominated by instanton-like solutions which determine the probability of fixation in short timescales. These results are directly relevant for understanding the unusual genetic variant distribution at moving frontiers of populations.

  17. BRCA Share: A Collection of Clinical BRCA Gene Variants.

    PubMed

    Béroud, Christophe; Letovsky, Stanley I; Braastad, Corey D; Caputo, Sandrine M; Beaudoux, Olivia; Bignon, Yves Jean; Bressac-De Paillerets, Brigitte; Bronner, Myriam; Buell, Crystal M; Collod-Béroud, Gwenaëlle; Coulet, Florence; Derive, Nicolas; Divincenzo, Christina; Elzinga, Christopher D; Garrec, Céline; Houdayer, Claude; Karbassi, Izabela; Lizard, Sarab; Love, Angela; Muller, Danièle; Nagan, Narasimhan; Nery, Camille R; Rai, Ghadi; Revillion, Françoise; Salgado, David; Sévenet, Nicolas; Sinilnikova, Olga; Sobol, Hagay; Stoppa-Lyonnet, Dominique; Toulas, Christine; Trautman, Edwin; Vaur, Dominique; Vilquin, Paul; Weymouth, Katelyn S; Willis, Alecia; Eisenberg, Marcia; Strom, Charles M

    2016-12-01

    As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world. © 2016 WILEY PERIODICALS, INC.

  18. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    PubMed

    Ehret, Georg B; Munroe, Patricia B; Rice, Kenneth M; Bochud, Murielle; Johnson, Andrew D; Chasman, Daniel I; Smith, Albert V; Tobin, Martin D; Verwoert, Germaine C; Hwang, Shih-Jen; Pihur, Vasyl; Vollenweider, Peter; O'Reilly, Paul F; Amin, Najaf; Bragg-Gresham, Jennifer L; Teumer, Alexander; Glazer, Nicole L; Launer, Lenore; Zhao, Jing Hua; Aulchenko, Yurii; Heath, Simon; Sõber, Siim; Parsa, Afshin; Luan, Jian'an; Arora, Pankaj; Dehghan, Abbas; Zhang, Feng; Lucas, Gavin; Hicks, Andrew A; Jackson, Anne U; Peden, John F; Tanaka, Toshiko; Wild, Sarah H; Rudan, Igor; Igl, Wilmar; Milaneschi, Yuri; Parker, Alex N; Fava, Cristiano; Chambers, John C; Fox, Ervin R; Kumari, Meena; Go, Min Jin; van der Harst, Pim; Kao, Wen Hong Linda; Sjögren, Marketa; Vinay, D G; Alexander, Myriam; Tabara, Yasuharu; Shaw-Hawkins, Sue; Whincup, Peter H; Liu, Yongmei; Shi, Gang; Kuusisto, Johanna; Tayo, Bamidele; Seielstad, Mark; Sim, Xueling; Nguyen, Khanh-Dung Hoang; Lehtimäki, Terho; Matullo, Giuseppe; Wu, Ying; Gaunt, Tom R; Onland-Moret, N Charlotte; Cooper, Matthew N; Platou, Carl G P; Org, Elin; Hardy, Rebecca; Dahgam, Santosh; Palmen, Jutta; Vitart, Veronique; Braund, Peter S; Kuznetsova, Tatiana; Uiterwaal, Cuno S P M; Adeyemo, Adebowale; Palmas, Walter; Campbell, Harry; Ludwig, Barbara; Tomaszewski, Maciej; Tzoulaki, Ioanna; Palmer, Nicholette D; Aspelund, Thor; Garcia, Melissa; Chang, Yen-Pei C; O'Connell, Jeffrey R; Steinle, Nanette I; Grobbee, Diederick E; Arking, Dan E; Kardia, Sharon L; Morrison, Alanna C; Hernandez, Dena; Najjar, Samer; McArdle, Wendy L; Hadley, David; Brown, Morris J; Connell, John M; Hingorani, Aroon D; Day, Ian N M; Lawlor, Debbie A; Beilby, John P; Lawrence, Robert W; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Dreisbach, Albert W; Li, Yali; Young, J Hunter; Bis, Joshua C; Kähönen, Mika; Viikari, Jorma; Adair, Linda S; Lee, Nanette R; Chen, Ming-Huei; Olden, Matthias; Pattaro, Cristian; Bolton, Judith A Hoffman; Köttgen, Anna; Bergmann, Sven; Mooser, Vincent; Chaturvedi, Nish; Frayling, Timothy M; Islam, Muhammad; Jafar, Tazeen H; Erdmann, Jeanette; Kulkarni, Smita R; Bornstein, Stefan R; Grässler, Jürgen; Groop, Leif; Voight, Benjamin F; Kettunen, Johannes; Howard, Philip; Taylor, Andrew; Guarrera, Simonetta; Ricceri, Fulvio; Emilsson, Valur; Plump, Andrew; Barroso, Inês; Khaw, Kay-Tee; Weder, Alan B; Hunt, Steven C; Sun, Yan V; Bergman, Richard N; Collins, Francis S; Bonnycastle, Lori L; Scott, Laura J; Stringham, Heather M; Peltonen, Leena; Perola, Markus; Vartiainen, Erkki; Brand, Stefan-Martin; Staessen, Jan A; Wang, Thomas J; Burton, Paul R; Soler Artigas, Maria; Dong, Yanbin; Snieder, Harold; Wang, Xiaoling; Zhu, Haidong; Lohman, Kurt K; Rudock, Megan E; Heckbert, Susan R; Smith, Nicholas L; Wiggins, Kerri L; Doumatey, Ayo; Shriner, Daniel; Veldre, Gudrun; Viigimaa, Margus; Kinra, Sanjay; Prabhakaran, Dorairaj; Tripathy, Vikal; Langefeld, Carl D; Rosengren, Annika; Thelle, Dag S; Corsi, Anna Maria; Singleton, Andrew; Forrester, Terrence; Hilton, Gina; McKenzie, Colin A; Salako, Tunde; Iwai, Naoharu; Kita, Yoshikuni; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ueshima, Hirotsugu; Umemura, Satoshi; Eyheramendy, Susana; Meitinger, Thomas; Wichmann, H-Erich; Cho, Yoon Shin; Kim, Hyung-Lae; Lee, Jong-Young; Scott, James; Sehmi, Joban S; Zhang, Weihua; Hedblad, Bo; Nilsson, Peter; Smith, George Davey; Wong, Andrew; Narisu, Narisu; Stančáková, Alena; Raffel, Leslie J; Yao, Jie; Kathiresan, Sekar; O'Donnell, Christopher J; Schwartz, Stephen M; Ikram, M Arfan; Longstreth, W T; Mosley, Thomas H; Seshadri, Sudha; Shrine, Nick R G; Wain, Louise V; Morken, Mario A; Swift, Amy J; Laitinen, Jaana; Prokopenko, Inga; Zitting, Paavo; Cooper, Jackie A; Humphries, Steve E; Danesh, John; Rasheed, Asif; Goel, Anuj; Hamsten, Anders; Watkins, Hugh; Bakker, Stephan J L; van Gilst, Wiek H; Janipalli, Charles S; Mani, K Radha; Yajnik, Chittaranjan S; Hofman, Albert; Mattace-Raso, Francesco U S; Oostra, Ben A; Demirkan, Ayse; Isaacs, Aaron; Rivadeneira, Fernando; Lakatta, Edward G; Orru, Marco; Scuteri, Angelo; Ala-Korpela, Mika; Kangas, Antti J; Lyytikäinen, Leo-Pekka; Soininen, Pasi; Tukiainen, Taru; Würtz, Peter; Ong, Rick Twee-Hee; Dörr, Marcus; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Zelenika, Diana; Deloukas, Panos; Mangino, Massimo; Spector, Tim D; Zhai, Guangju; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Terzic, Janos; Kumar, M V Kranthi; Denniff, Matthew; Zukowska-Szczechowska, Ewa; Wagenknecht, Lynne E; Fowkes, F Gerald R; Charchar, Fadi J; Schwarz, Peter E H; Hayward, Caroline; Guo, Xiuqing; Rotimi, Charles; Bots, Michiel L; Brand, Eva; Samani, Nilesh J; Polasek, Ozren; Talmud, Philippa J; Nyberg, Fredrik; Kuh, Diana; Laan, Maris; Hveem, Kristian; Palmer, Lyle J; van der Schouw, Yvonne T; Casas, Juan P; Mohlke, Karen L; Vineis, Paolo; Raitakari, Olli; Ganesh, Santhi K; Wong, Tien Y; Tai, E Shyong; Cooper, Richard S; Laakso, Markku; Rao, Dabeeru C; Harris, Tamara B; Morris, Richard W; Dominiczak, Anna F; Kivimaki, Mika; Marmot, Michael G; Miki, Tetsuro; Saleheen, Danish; Chandak, Giriraj R; Coresh, Josef; Navis, Gerjan; Salomaa, Veikko; Han, Bok-Ghee; Zhu, Xiaofeng; Kooner, Jaspal S; Melander, Olle; Ridker, Paul M; Bandinelli, Stefania; Gyllensten, Ulf B; Wright, Alan F; Wilson, James F; Ferrucci, Luigi; Farrall, Martin; Tuomilehto, Jaakko; Pramstaller, Peter P; Elosua, Roberto; Soranzo, Nicole; Sijbrands, Eric J G; Altshuler, David; Loos, Ruth J F; Shuldiner, Alan R; Gieger, Christian; Meneton, Pierre; Uitterlinden, Andre G; Wareham, Nicholas J; Gudnason, Vilmundur; Rotter, Jerome I; Rettig, Rainer; Uda, Manuela; Strachan, David P; Witteman, Jacqueline C M; Hartikainen, Anna-Liisa; Beckmann, Jacques S; Boerwinkle, Eric; Vasan, Ramachandran S; Boehnke, Michael; Larson, Martin G; Järvelin, Marjo-Riitta; Psaty, Bruce M; Abecasis, Gonçalo R; Chakravarti, Aravinda; Elliott, Paul; van Duijn, Cornelia M; Newton-Cheh, Christopher; Levy, Daniel; Caulfield, Mark J; Johnson, Toby

    2011-09-11

    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

  19. Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects.

    PubMed

    Busch, Robert; Hobbs, Brian D; Zhou, Jin; Castaldi, Peter J; McGeachie, Michael J; Hardin, Megan E; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Yim, Jae-Joon; Kim, Woo Jin; Kim, Deog K; Agusti, Alvar; Make, Barry J; Crapo, James D; Calverley, Peter M; Donner, Claudio F; Lomas, David A; Wouters, Emiel F; Vestbo, Jørgen; Tal-Singer, Ruth; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A; Sparrow, David; Paré, Peter D; Levy, Robert D; Rennard, Stephen I; Beaty, Terri H; Hokanson, John; Silverman, Edwin K; Cho, Michael H

    2017-07-01

    The heritability of chronic obstructive pulmonary disease (COPD) cannot be fully explained by recognized genetic risk factors identified as achieving genome-wide significance. In addition, the combined contribution of genetic variation to COPD risk has not been fully explored. We sought to determine: (1) whether studies of variants from previous studies of COPD or lung function in a larger sample could identify additional associated variants, particularly for severe COPD; and (2) the impact of genetic risk scores on COPD. We genotyped 3,346 single-nucleotide polymorphisms (SNPs) in 2,588 cases (1,803 severe COPD) and 1,782 control subjects from four cohorts, and performed association testing with COPD, combining these results with existing genotyping data from 6,633 cases (3,497 severe COPD) and 5,704 control subjects. In addition, we developed genetic risk scores from SNPs associated with lung function and COPD and tested their discriminatory power for COPD-related measures. We identified significant associations between SNPs near PPIC (P = 1.28 × 10 -8 ) and PPP4R4/SERPINA1 (P = 1.01 × 10 -8 ) and severe COPD; the latter association may be driven by recognized variants in SERPINA1. Genetic risk scores based on SNPs previously associated with COPD and lung function had a modest ability to discriminate COPD (area under the curve, ∼0.6), and accounted for a mean 0.9-1.9% lower forced expiratory volume in 1 second percent predicted for each additional risk allele. In a large genetic association analysis, we identified associations with severe COPD near PPIC and SERPINA1. A risk score based on combining genetic variants had modest, but significant, effects on risk of COPD and lung function.

  20. Identification of missing variants by combining multiple analytic pipelines.

    PubMed

    Ren, Yingxue; Reddy, Joseph S; Pottier, Cyril; Sarangi, Vivekananda; Tian, Shulan; Sinnwell, Jason P; McDonnell, Shannon K; Biernacka, Joanna M; Carrasquillo, Minerva M; Ross, Owen A; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hudson, Matthew; Mainzer, Liudmila Sergeevna; Asmann, Yan W

    2018-04-16

    After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. Identification of the complete variant set from sequencing data is the prerequisite of genetic

  1. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.

    PubMed

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2014-10-20

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences

  2. Biochemical Analysis of Six Genetic Variants of Error-Prone Human DNA Polymerase ι Involved in Translesion DNA Synthesis

    PubMed Central

    2015-01-01

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1–445) proteins and DNA templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg2+ (but not with Mn2+), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg2+). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg2+ or Mn2+, except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The Δ1–25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg2+), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1–25 variant, was ∼7-fold stronger with 0.15 mM Mn2+ than with Mg2+. The results indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι, whereas the Δ1–25 variation selectively and substantially enhances the Mg2+-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and

  3. Nuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease.

    PubMed

    Brady, Graham F; Kwan, Raymond; Ulintz, Peter J; Nguyen, Phirum; Bassirian, Shirin; Basrur, Venkatesha; Nesvizhskii, Alexey I; Loomba, Rohit; Omary, M Bishr

    2018-05-01

    Nonalcoholic fatty liver disease (NAFLD) is becoming the major chronic liver disease in many countries. Its pathogenesis is multifactorial, but twin and familial studies indicate significant heritability, which is not fully explained by currently known genetic susceptibility loci. Notably, mutations in genes encoding nuclear lamina proteins, including lamins, cause lipodystrophy syndromes that include NAFLD. We hypothesized that variants in lamina-associated proteins predispose to NAFLD and used a candidate gene-sequencing approach to test for variants in 10 nuclear lamina-related genes in a cohort of 37 twin and sibling pairs: 21 individuals with and 53 without NAFLD. Twelve heterozygous sequence variants were identified in four lamina-related genes (ZMPSTE24, TMPO, SREBF1, SREBF2). The majority of NAFLD patients (>90%) had at least one variant compared to <40% of controls (P < 0.0001). When only insertions/deletions and changes in conserved residues were considered, the difference between the groups was similarly striking (>80% versus <25%; P < 0.0001). Presence of a lamina variant segregated with NAFLD independently of the PNPLA3 I148M polymorphism. Several variants were found in TMPO, which encodes the lamina-associated polypeptide-2 (LAP2) that has not been associated with liver disease. One of these, a frameshift insertion that generates truncated LAP2, abrogated lamin-LAP2 binding, caused LAP2 mislocalization, altered endogenous lamin distribution, increased lipid droplet accumulation after oleic acid treatment in transfected cells, and led to cytoplasmic association with the ubiquitin-binding protein p62/SQSTM1. Several variants in nuclear lamina-related genes were identified in a cohort of twins and siblings with NAFLD; one such variant, which results in a truncated LAP2 protein and a dramatic phenotype in cell culture, represents an association of TMPO/LAP2 variants with NAFLD and underscores the potential importance of the nuclear lamina in NAFLD

  4. Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent.

    PubMed

    Aminkeng, F; Ross, C J D; Rassekh, S R; Brunham, L R; Sistonen, J; Dube, M-P; Ibrahim, M; Nyambo, T B; Omar, S A; Froment, A; Bodo, J-M; Tishkoff, S; Carleton, B C; Hayden, M R

    2014-04-01

    There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n=372) and European (n=958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care.

  5. Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent

    PubMed Central

    Aminkeng, F; Ross, CJD; Rassekh, SR; Brunham, LR; Sistonen, J; Dube, M-P; Ibrahim, M; Nyambo, TB; Omar, SA; Froment, A; Bodo, J-M; Tishkoff, S; Carleton, BC; Hayden, MR

    2015-01-01

    There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n = 372) and European (n = 958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care. PMID:23588107

  6. Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat

    2016-02-01

    Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.

  7. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder.

    PubMed

    Zhang, JieXu; Chen, YanBo; Zhang, KeRang; Yang, Hong; Sun, Yan; Fang, Yue; Shen, Yan; Xu, Qi

    2010-11-01

    The genetic basis of major depressive disorder (MDD) has been explored extensively, but the mode of transmission of the disease has yet to be established. To better understand the mechanism by which the monoamine oxidase A (MAOA) gene may play a role in developing MDD, the present work examined the cis-phase interaction between genetic variants within the MAOA gene for the pathogenesis of MDD. A variable number tandem repeat (VNTR) and 19 single nucleotide polymorphisms (SNPs) within the gene were genotyped in 512 unrelated patients with MDD and 567 unrelated control subjects among a Chinese population. Quantitative real-time polymerase chain reaction analysis was applied to test the effect of genetic variants on expression of the MAOA gene in MDD. Neither the VNTR polymorphism nor seven informative SNPs showed allelic association with MDD, but the cis-acting interactions between the VNTR polymorphism and four individual SNPs were strongly associated with MDD risk, of which the VNTR-rs1465107 combination showed the strongest association (p = .000011). Quantitative real-time polymerase chain reaction analysis showed that overall relative quantity of MAOA messenger RNA was significantly higher in patients with MDD than in control subjects (fold change = 5.28, p = 1.7 × 10⁻⁷) and that in the male subjects carrying the VNTR-L, rs1465107-A, rs6323-G, rs2072743-A, or rs1137070-T alleles, expression of MAOA messenger RNA was significantly higher in the patient group than in the control group. The cis-phase interaction between the VNTR polymorphism and functional SNPs may contribute to the etiology of MDD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance.

    PubMed

    Hernandez, Dena G; Reed, Xylena; Singleton, Andrew B

    2016-10-01

    Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special

  9. Common genetic variants and subclinical atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Vargas, Jose D; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Rotter, Jerome I; Post, Wendy S; Polak, Joseph F; Budoff, Matthew J; Bluemke, David A

    2016-02-01

    Subclinical atherosclerosis (sCVD), measured by coronary artery calcium (CAC) and carotid intima media thickness (CIMT) is associated with cardiovascular disease (CVD). Genome-Wide Association Studies (GWAS) of sCVD and CVD have focused primarily on Caucasian populations. We hypothesized that these associations may differ in populations from distinct genetic backgrounds. The associations between sCVD and 66 single nucleotide polymorphisms (SNPs) from published GWAS of sCVD and CVD were tested in 8224 Multi-Ethnic Study of Atherosclerosis (MESA) and MESA Family participants [2329 Caucasians (EUA), 691 Chinese (CHN), 2482 African Americans (AFA), and 2012 Hispanic (HIS)] using an additive model adjusting for CVD risk factors, with SNP significance defined by a Bonferroni-corrected p < 7.6 × 10(-4) (0.05/66). In EUA there were significant associations for CAC with SNPs in 9p21 (rs1333049, P = 2 × 10(-9); rs4977574, P = 4 × 10(-9)), COL4A1 (rs9515203, P = 9 × 10(-6)), and PHACTR1 (rs9349379, P = 4 × 10(-4)). In HIS, CAC was associated with SNPs in 9p21 (rs1333049, P = 8 × 10(-5); rs4977574, P = 5 × 10(-5)), APOA5 (rs964184, P = 2 × 10(-4)), and ADAMTS7 (rs7173743, P = 4 × 10(-4)). There were no associations between CAC and 9p21 SNPs for AFA and CHN. Fine mapping of the 9p21 region revealed SNPs with robust associations with CAC in EUA and HIS but no significant associations in AFA and CHN. Our results suggest some shared genetic architecture for sCVD across ethnic groups, while also underscoring the possibility of novel variants and/or pathways in risk of CVD in ethnically diverse populations. Published by Elsevier Ireland Ltd.

  10. G908R NOD2 variant in a family with sarcoidosis.

    PubMed

    Besnard, Valérie; Calender, Alain; Bouvry, Diane; Pacheco, Yves; Chapelon-Abric, Catherine; Jeny, Florence; Nunes, Hilario; Planès, Carole; Valeyre, Dominique

    2018-03-20

    Sarcoidosis is a systemic disease characterized by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Exaggerated granulomatous reaction might be triggered in response to unidentified antigens in individuals with genetic susceptibility. The present study aimed to determine the genetic variants implicated in a familial case of sarcoidosis. Sarcoidosis presentation and history, NOD2 profile, NF-κB and cytokine production in blood monocytes/macrophages were evaluated in individuals from a family with late appearance of sarcoidosis. In the present study, we report a case of familial sarcoidosis with typical thoracic sarcoidosis and carrying the NOD2 2722G > C variant. This variant is associated with the presence of three additional SNPs for the IL17RA, KALRN and EPHA2 genes, which discriminate patients expressing the disease from others. Despite a decrease in NF-κB activity, IL-8 and TNF-A mRNA levels were increased at baseline and in stimulated conditions. Combination of polymorphisms in the NOD2, IL17RA, EPHA2 and KALRN genes could play a significant role in the development of sarcoidosis by maintaining a chronic pro-inflammatory status in macrophages.

  11. Genetic variants of cell cycle pathway genes predict disease-free survival of hepatocellular carcinoma.

    PubMed

    Liu, Shun; Yang, Tian-Bo; Nan, Yue-Li; Li, An-Hua; Pan, Dong-Xiang; Xu, Yang; Li, Shu; Li, Ting; Zeng, Xiao-Yun; Qiu, Xiao-Qiang

    2017-07-01

    Disruption of the cell cycle pathway has previously been related to development of human cancers. However, associations between genetic variants of cell cycle pathway genes and prognosis of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we evaluated the associations between 24 potential functional single nucleotide polymorphisms (SNPs) of 16 main cell cycle pathway genes and disease-free survival (DFS) of 271 HCC patients who had undergone radical surgery resection. We identified two SNPs, i.e., SMAD3 rs11556090 A>G and RBL2 rs3929G>C, that were independently predictive of DFS in an additive genetic model with false-positive report probability (FPRP) <0.2. The SMAD3 rs11556090G allele was associated with a poorer DFS, compared with the A allele [hazard ratio (HR) = 1.46, 95% confidential interval (95% CI) = 1.13-1.89, P = 0.004]; while the RBL2 rs3929 C allele was associated with a superior DFS, compared with the G allele (HR = 0.74, 95% CI = 0.57-0.96, P = 0.023). Additionally, patients with an increasing number of unfavorable genotypes (NUGs) of these loci had a significant shorter DFS (P trend  = 0.0001). Further analysis using receiver operating characteristic (ROC) curves showed that the model including the NUGs and known prognostic clinical variables demonstrated a significant improvement in predicting the 1-year DFS (P = 0.011). Moreover, the RBL2 rs3929 C allele was significantly associated with increased mRNA expression levels of RBL2 in liver tissue (P = 1.8 × 10 -7 ) and the whole blood (P = 3.9 × 10 -14 ). Our data demonstrated an independent or a joint effect of SMAD3 rs11556090 and RBL2 rs3929 in the cell cycle pathway on DFS of HCC, which need to be validated by large cohort and biological studies. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Genetic risk variants in African Americans with multiple sclerosis

    PubMed Central

    Isobe, Noriko; Gourraud, Pierre-Antoine; Harbo, Hanne F.; Caillier, Stacy J.; Santaniello, Adam; Khankhanian, Pouya; Maiers, Martin; Spellman, Stephen; Cereb, Nezih; Yang, SooYoung; Pando, Marcelo J.; Piccio, Laura; Cross, Anne H.; De Jager, Philip L.; Cree, Bruce A.C.; Hauser, Stephen L.

    2013-01-01

    Objectives: To assess the association of established multiple sclerosis (MS) risk variants in 3,254 African Americans (1,162 cases and 2,092 controls). Methods: Human leukocyte antigen (HLA)-DRB1, HLA-DQB1, and HLA-A alleles were typed by molecular techniques. Single nucleotide polymorphism (SNP) genotyping was conducted for 76 MS-associated SNPs and 52 ancestry informative marker SNPs selected throughout the genome. Self-declared ancestry was refined by principal component analysis of the ancestry informative marker SNPs. An ancestry-adjusted multivariate model was applied to assess genetic associations. Results: The following major histocompatibility complex risk alleles were replicated: HLA-DRB1*15:01 (odds ratio [OR] = 2.02 [95% confidence interval: 1.54–2.63], p = 2.50e-07), HLA-DRB1*03:01 (OR = 1.58 [1.29–1.94], p = 1.11e-05), as well as HLA-DRB1*04:05 (OR = 2.35 [1.26–4.37], p = 0.007) and the African-specific risk allele of HLA-DRB1*15:03 (OR = 1.26 [1.05–1.51], p = 0.012). The protective association of HLA-A*02:01 was confirmed (OR = 0.72 [0.55–0.93], p = 0.013). None of the HLA-DQB1 alleles were associated with MS. Using a significance threshold of p < 0.01, outside the major histocompatibility complex region, 8 MS SNPs were also found to be associated with MS in African Americans. Conclusion: MS genetic risk in African Americans only partially overlaps with that of Europeans and could explain the difference of MS prevalence between populations. PMID:23771490

  13. Genetic Misdiagnoses and the Potential for Health Disparities.

    PubMed

    Manrai, Arjun K; Funke, Birgit H; Rehm, Heidi L; Olesen, Morten S; Maron, Bradley A; Szolovits, Peter; Margulies, David M; Loscalzo, Joseph; Kohane, Isaac S

    2016-08-18

    For more than a decade, risk stratification for hypertrophic cardiomyopathy has been enhanced by targeted genetic testing. Using sequencing results, clinicians routinely assess the risk of hypertrophic cardiomyopathy in a patient's relatives and diagnose the condition in patients who have ambiguous clinical presentations. However, the benefits of genetic testing come with the risk that variants may be misclassified. Using publicly accessible exome data, we identified variants that have previously been considered causal in hypertrophic cardiomyopathy and that are overrepresented in the general population. We studied these variants in diverse populations and reevaluated their initial ascertainments in the medical literature. We reviewed patient records at a leading genetic-testing laboratory for occurrences of these variants during the near-decade-long history of the laboratory. Multiple patients, all of whom were of African or unspecified ancestry, received positive reports, with variants misclassified as pathogenic on the basis of the understanding at the time of testing. Subsequently, all reported variants were recategorized as benign. The mutations that were most common in the general population were significantly more common among black Americans than among white Americans (P<0.001). Simulations showed that the inclusion of even small numbers of black Americans in control cohorts probably would have prevented these misclassifications. We identified methodologic shortcomings that contributed to these errors in the medical literature. The misclassification of benign variants as pathogenic that we found in our study shows the need for sequencing the genomes of diverse populations, both in asymptomatic controls and the tested patient population. These results expand on current guidelines, which recommend the use of ancestry-matched controls to interpret variants. As additional populations of different ancestry backgrounds are sequenced, we expect variant

  14. Electrospray ionization mass analysis of normal and genetic variants of human serum albumin.

    PubMed

    Brennan, S O

    1998-11-01

    Both normal albumin (Al A) and genetically modified forms were isolated from six heterozygous subjects. Albumins from each individual were analyzed by electrospray ionization mass spectrometry (ESI MS), and the mass was compared with that predicted from the protein sequence. In all cases, the Al A was heterogeneous, with components of mass (+/- SE) 66463+/-4, 66586+/-3, and 66718+/-5 Da. Each genetic variant showed similar heterogeneity. The mass increase in Al Casebrook (2214 Da) was very close to that predicted (2205 Da) from protein and carbohydrate sequence analysis, whereas the increase in Al Redhill (2378 Da) was close to that expected (2392 Da) for an Arg-albumin with a disialylated N-linked biantennary oligosaccharide and an Ala-->Thr mutation. The circulating proalbumins, Christchurch and Blenheim, had mass increases of 748 and 756 Da, respectively, over Al A; in excellent agreement with theoretical values of 744 and 756. Clear shifts in mass were also detected for the point substitutions 177Cys-->Phe (44 Da), 1Asp-->Val (20 Da), and Arg-albumin (160 Da).

  15. Additive gene-environment effects on hippocampal structure in healthy humans.

    PubMed

    Rabl, Ulrich; Meyer, Bernhard M; Diers, Kersten; Bartova, Lucie; Berger, Andreas; Mandorfer, Dominik; Popovic, Ana; Scharinger, Christian; Huemer, Julia; Kalcher, Klaudius; Pail, Gerald; Haslacher, Helmuth; Perkmann, Thomas; Windischberger, Christian; Brocke, Burkhard; Sitte, Harald H; Pollak, Daniela D; Dreher, Jean-Claude; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Esterbauer, Harald; Pezawas, Lukas

    2014-07-23

    Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD). Copyright © 2014 the authors 0270-6474/14/349917-10$15.00/0.

  16. Temporal distribution and genetic variants in influenza A(H1N1)pdm09 virus circulating in Mexico, seasons 2012 and 2013.

    PubMed

    Canche-Pech, Jose Reyes; Conde-Ferraez, Laura; Puerto-Solis, Marylin; Gonzalez-Losa, Refugio; Granja-Pérez, Pilar; Villanueva-Jorge, Salha; Chan-Gasca, Maria; Gómez-Carballo, Jesus; López-Ochoa, Luisa; Jiménez-Delgadillo, Bertha; Rodríguez-Sánchez, Iram; Ramírez-Prado, Jorge; Ayora-Talavera, Guadalupe

    2017-01-01

    The 2012 and 2013 annual influenza epidemics in Mexico were characterized by presenting different seasonal patterns. In 2012 the A(H1N1)pdm09 virus caused a high incidence of influenza infections after a two-year period of low circulation; whereas the 2013 epidemic presented circulation of the A(H1N1)pdm09 virus throughout the year. We have characterized the molecular composition of the Hemagglutinin (HA) and Neuraminidase (NA) genes of the A(H1N1)pdm09 virus from both epidemic seasons, emphasizing the genetic characteristics of viruses isolated from Yucatan in Southern Mexico. The molecular analysis of viruses from the 2012 revealed that all viruses from Mexico were predominantly grouped in clade 7. Strikingly, the molecular characterization of viruses from 2013 revealed that viruses circulating in Yucatan were genetically different to viruses from other regions of Mexico. In fact, we identified the occurrence of two genetic variants containing relevant mutations at both the HA and NA surface antigens. There was a difference on the temporal circulation of each genetic variant, viruses containing the mutations HA-A141T / NA-N341S were detected in May, June and July; whereas viruses containing the mutations HA-S162I / NA-L206S circulated in August and September. We discuss the significance of these novel genetic changes.

  17. Temporal distribution and genetic variants in influenza A(H1N1)pdm09 virus circulating in Mexico, seasons 2012 and 2013

    PubMed Central

    Canche-Pech, Jose Reyes; Conde-Ferraez, Laura; Puerto-Solis, Marylin; Gonzalez-Losa, Refugio; Granja-Pérez, Pilar; Villanueva-Jorge, Salha; Chan-Gasca, Maria; Gómez-Carballo, Jesus; López-Ochoa, Luisa; Jiménez-Delgadillo, Bertha; Rodríguez-Sánchez, Iram; Ramírez-Prado, Jorge

    2017-01-01

    The 2012 and 2013 annual influenza epidemics in Mexico were characterized by presenting different seasonal patterns. In 2012 the A(H1N1)pdm09 virus caused a high incidence of influenza infections after a two-year period of low circulation; whereas the 2013 epidemic presented circulation of the A(H1N1)pdm09 virus throughout the year. We have characterized the molecular composition of the Hemagglutinin (HA) and Neuraminidase (NA) genes of the A(H1N1)pdm09 virus from both epidemic seasons, emphasizing the genetic characteristics of viruses isolated from Yucatan in Southern Mexico. The molecular analysis of viruses from the 2012 revealed that all viruses from Mexico were predominantly grouped in clade 7. Strikingly, the molecular characterization of viruses from 2013 revealed that viruses circulating in Yucatan were genetically different to viruses from other regions of Mexico. In fact, we identified the occurrence of two genetic variants containing relevant mutations at both the HA and NA surface antigens. There was a difference on the temporal circulation of each genetic variant, viruses containing the mutations HA-A141T / NA-N341S were detected in May, June and July; whereas viruses containing the mutations HA-S162I / NA-L206S circulated in August and September. We discuss the significance of these novel genetic changes. PMID:29220381

  18. Genetic variants of the gasdermin B gene associated with the development of aspirin-exacerbated respiratory diseases.

    PubMed

    Kim, Lyoung Hyo; Chang, HunSoo; Namgoong, Suhg; Kim, Ji On; Cheong, Hyun Sub; Lee, Seo-Gyeong; Park, Jong Sook; Baek, Ae Rin; Koo, So-My; Choi, Inseon S; Kim, Mi-Kyeong; Park, Hea-Sim; Park, Choon-Sik; Shin, Hyoung Doo

    2017-01-01

    Aspirin-exacerbated respiratory disease (AERD) is characterized by a severe and sudden asthma attack after aspirin ingestion in patients with asthma. We studied associations with six common single nucleotide polymorphisms (SNP) of the gasdermin B gene (GSDMB). DNA obtained from 572 patients with asthma (with AERD, n = 165; and with aspirin-tolerant asthma, n = 407) and 391 normal controls was subjected to genotyping of six SNPs of GSDMB. An association analysis between GSDMB variants and AERD, with a fall rate of the forced expiratory volume in the first second of expiration (FEV1), was performed by using logistic and regression models. Two SNPs in the intron (rs870830, rs7216389) showed significant associations with AERD (minimum p = 7.00 × 10-4 in the dominant model), even after Bonferroni correction (pcorr = 0.01 for the rs870830). Regression analysis of the genetic variants with FEV1 revealed significant associations with rs870830 and the haplotype 2 (pcorr = 4.71 × 10-4 for rs870830 and pcorr = 1.14 × 10-3 for haplotype 2, respectively). We found strong associations among GSDMB polymorphisms and the presence of AERD and FEV1 in Korean patients with asthma. Our findings indicated that genetic variations of GSDMB may be associated with the development of AERD and aspirin-induced bronchospasm.

  19. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    PubMed Central

    Foley, Samantha B.; Rios, Jonathan J.; Mgbemena, Victoria E.; Robinson, Linda S.; Hampel, Heather L.; Toland, Amanda E.; Durham, Leslie; Ross, Theodora S.

    2014-01-01

    Despite the potential of whole-genome sequencing (WGS) to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176) and those without (n = 82). Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500) in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS). Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF) variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks. PMID:26023681

  20. Disease-associated variants in different categories of disease located in distinct regulatory elements.

    PubMed

    Ma, Meng; Ru, Ying; Chuang, Ling-Shiang; Hsu, Nai-Yun; Shi, Li-Song; Hakenberg, Jörg; Cheng, Wei-Yi; Uzilov, Andrew; Ding, Wei; Glicksberg, Benjamin S; Chen, Rong

    2015-01-01

    The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are

  1. Disease-associated variants in different categories of disease located in distinct regulatory elements

    PubMed Central

    2015-01-01

    Background The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. Results In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that

  2. Lack of association between lipoprotein(a) genetic variants and subsequent cardiovascular events in Chinese Han patients with coronary artery disease after percutaneous coronary intervention.

    PubMed

    Li, Zhi-Gen; Li, Guang; Zhou, Ying-Ling; Chen, Zhu-Jun; Yang, Jun-Qing; Zhang, Ying; Sun, Shuo; Zhong, Shi-Long

    2013-08-27

    Elevated lipoprotein(a) [Lp(a)] levels predict cardiovascular events incidence in patients with coronary artery disease (CAD). Genetic variants in the rs3798220, rs10455872 and rs6415084 single-nucleotide polymorphisms (SNPs) in the Lp(a) gene (LPA) correlate with elevated Lp(a) levels, but whether these SNPs have prognostic value for CAD patients is unknown. The present study evaluated the association of LPA SNPs with incidence of subsequent cardiovascular events in CAD patients after percutaneous coronary intervention (PCI). TaqMan SNP genotyping assays were performed to detect the rs6415084, rs3798220 and rs10455872 genotypes in 517 Chinese Han patients with CAD after PCI. We later assessed whether there was an association of these SNPs with incidence of major adverse cardiovascular events (MACE: cardiac death, nonfatal myocardial infarction, ischemic stroke and coronary revascularization). Serum lipid profiles were also determined using biochemical methods. Only the rs6415084 variant allele was associated with higher Lp(a) levels [41.3 (20.8, 74.6) vs. 18.6 (10.3, 40.9) mg/dl, p < 0.001]. During a 2-year follow-up period, 102 patients suffered MACE, and Cox regression analysis demonstrated that elevated Lp(a) (≥30 mg/dl) levels correlated with increased MACE (adjusted HR, 1.69; 95% CI 1.13-2.53), but there was no association between LPA genetic variants (rs6415084 and rs3798220) and MACE incidence (p > 0.05). Our data did not support a relationship between genetic LPA variants (rs6415084 and rs3798220) and subsequent cardiovascular events after PCI in Chinese Han CAD patients.

  3. Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype

    PubMed Central

    Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu

    2015-01-01

    Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing

  4. Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk

    PubMed Central

    Jansen, Henning; Loley, Christina; Lieb, Wolfgang; Pencina, Michael J; Nelson, Christopher P; Kathiresan, Sekar; Peloso, Gina M; Voight, Benjamin F; Reilly, Muredach P; Assimes, Themistocles L; Boerwinkle, Eric; Hengstenberg, Christian; Laaksonen, Reijo; McPherson, Ruth; Roberts, Robert; Thorsteinsdottir, Unnur; Peters, Annette; Gieger, Christian; Rawal, Rajesh; Thompson, John R; König, Inke R; Vasan, Ramachandran S; Erdmann, Jeanette; Samani, Nilesh J; Schunkert, Heribert

    2015-01-01

    Background The mechanisms underlying the association between diabetes and coronary artery disease (CAD) risk are unclear. We aimed to assess this association by studying genetic variants that have been shown to associate with type 2 diabetes (T2DM). If the association between diabetes and CAD is causal, we expected to observe an association of these variants with CAD as well. Methods and Results We studied all genetic variants currently known to be associated with T2DM at a genome-wide significant level (p<5*10−8) in CARDIoGRAM, a genome-wide data-set of CAD including 22,233 CAD cases and 64,762 controls. Out of the 44 published T2DM SNPs 10 were significantly associated with CAD in CARDIoGRAM (OR>1, p<0.05), more than expected by chance (p=5.0*10−5). Considering all 44 SNPs, the average CAD risk observed per individual T2DM risk allele was 1.0076 (95% confidence interval (CI), 0.9973–1.0180). Such average risk increase was significantly lower than the increase expected based on i) the published effects of the SNPs on T2DM risk and ii) the effect of T2DM on CAD risk as observed in the Framingham Heart Study, which suggested a risk of 1.067 per allele (p=7.2*10−10 vs. the observed effect). Studying two risk scores based on risk alleles of the diabetes SNPs, one score using individual level data in 9856 subjects, and the second score on average effects of reported beta-coefficients from the entire CARDIoGRAM data-set, we again observed a significant - yet smaller than expected - association with CAD. Conclusions Our data indicate that an association between type 2 diabetes related SNPs and CAD exists. However, the effects on CAD risk appear to be by far lower than what would be expected based on the effects of risk alleles on T2DM and the effect of T2DM on CAD in the epidemiological setting. PMID:26074316

  5. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India.

    PubMed

    Mohan, Viswanathan; Radha, Venkatesan; Nguyen, Thong T; Stawiski, Eric W; Pahuja, Kanika Bajaj; Goldstein, Leonard D; Tom, Jennifer; Anjana, Ranjit Mohan; Kong-Beltran, Monica; Bhangale, Tushar; Jahnavi, Suresh; Chandni, Radhakrishnan; Gayathri, Vijay; George, Paul; Zhang, Na; Murugan, Sakthivel; Phalke, Sameer; Chaudhuri, Subhra; Gupta, Ravi; Zhang, Jingli; Santhosh, Sam; Stinson, Jeremy; Modrusan, Zora; Ramprasad, V L; Seshagiri, Somasekar; Peterson, Andrew S

    2018-02-13

    Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.

  6. Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy.

    PubMed

    Iarossi, Giancarlo; Bertelli, Matteo; Maltese, Paolo Enrico; Gusson, Elena; Marchini, Giorgio; Bruson, Alice; Benedetti, Sabrina; Volpetti, Sabrina; Catena, Gino; Buzzonetti, Luca; Ziccardi, Lucia

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4 , LRP5 , TSPAN12 , and NDP . Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands ( NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.

  7. Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy

    PubMed Central

    Marchini, Giorgio; Volpetti, Sabrina; Catena, Gino

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family. PMID:28758032

  8. Genetic variants of adiponectin receptor 2 are associated with increased adiponectin levels and decreased triglyceride/VLDL levels in patients with metabolic syndrome.

    PubMed

    Broedl, Uli C; Lehrke, Michael; Fleischer-Brielmaier, Elisabeth; Tietz, Anne B; Nagel, Jutta M; Göke, Burkhard; Lohse, Peter; Parhofer, Klaus G

    2006-05-15

    Adiponectin acts as an antidiabetic, antiinflammatory and antiatherogenic adipokine. These effects are assumed to be mediated by the recently discovered adiponectin receptors AdipoR1 and AdipoR2. The purpose of this study was to determine whether variations in the AdipoR1 and AdipoR2 genes may contribute to insulin resistance, dyslipidemia and inflammation. We sequenced all seven coding exons of both genes in 20 unrelated German subjects with metabolic syndrome and tested genetic variants for association with glucose, lipid and inflammatory parameters. We identified three AdipoR2 variants (+795G/A, +870C/A and +963C/T) in perfect linkage disequilibrium (r2 = 1) with a minor allele frequency of 0.125. This haplotype was associated with higher plasma adiponectin levels and decreased fasting triglyceride, VLDL-triglyceride and VLDL-cholesterol levels. No association, however, was observed between the AdipoR2 SNP cluster and glucose metabolism. To our knowledge, this is the first study to identify an association between genetic variants of the adiponectin receptor genes and plasma adiponectin levels. Furthermore, our data suggest that AdipoR2 may play an important role in triglyceride/VLDL metabolism.

  9. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2.

    PubMed

    Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.

  10. Evaluation of 22 genetic variants with Crohn's disease risk in the Ashkenazi Jewish population: a case-control study.

    PubMed

    Peter, Inga; Mitchell, Adele A; Ozelius, Laurie; Erazo, Monica; Hu, Jianzhong; Doheny, Dana; Abreu, Maria T; Present, Daniel H; Ullman, Thomas; Benkov, Keith; Korelitz, Burton I; Mayer, Lloyd; Desnick, Robert J

    2011-05-06

    Crohn's disease (CD) has the highest prevalence among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Caucasian populations (NJ). We evaluated a set of well-established CD-susceptibility variants to determine if they can explain the increased CD risk in the AJ population. We recruited 369 AJ CD patients and 503 AJ controls, genotyped 22 single nucleotide polymorphisms (SNPs) at or near 10 CD-associated genes, NOD2, IL23R, IRGM, ATG16L1, PTGER4, NKX2-3, IL12B, PTPN2, TNFSF15 and STAT3, and assessed their association with CD status. We generated genetic scores based on the risk allele count alone and the risk allele count weighed by the effect size, and evaluated their predictive value. Three NOD2 SNPs, two IL23R SNPs, and one SNP each at IRGM and PTGER4 were independently associated with CD risk. Carriage of 7 or more copies of these risk alleles or the weighted genetic risk score of 7 or greater correctly classified 92% (allelic count score) and 83% (weighted score) of the controls; however, only 29% and 47% of the cases were identified as having the disease, respectively. This cutoff was associated with a >4-fold increased disease risk (p < 10e-16). CD-associated genetic risks were similar to those reported in NJ population and are unlikely to explain the excess prevalence of the disease in AJ individuals. These results support the existence of novel, yet unidentified, genetic variants unique to this population. Understanding of ethnic and racial differences in disease susceptibility may help unravel the pathogenesis of CD leading to new personalized diagnostic and therapeutic approaches.

  11. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants contributing to lipid levels and coronary artery disease

    PubMed Central

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J

    2017-01-01

    Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407

  12. A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk

    PubMed Central

    Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey

    2013-01-01

    Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861

  13. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.

    PubMed

    van der Harst, Pim; Verweij, Niek

    2018-02-02

    Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view

  14. Sequence variants in oxytocin pathway genes and preterm birth: a candidate gene association study

    PubMed Central

    2013-01-01

    Background Preterm birth (PTB) is a complex disorder associated with significant neonatal mortality and morbidity and long-term adverse health consequences. Multiple lines of evidence suggest that genetic factors play an important role in its etiology. This study was designed to identify genetic variation associated with PTB in oxytocin pathway genes whose role in parturition is well known. Methods To identify common genetic variants predisposing to PTB, we genotyped 16 single nucleotide polymorphisms (SNPs) in the oxytocin (OXT), oxytocin receptor (OXTR), and leucyl/cystinyl aminopeptidase (LNPEP) genes in 651 case infants from the U.S. and one or both of their parents. In addition, we examined the role of rare genetic variation in susceptibility to PTB by conducting direct sequence analysis of OXTR in 1394 cases and 1112 controls from the U.S., Argentina, Denmark, and Finland. This study was further extended to maternal triads (maternal grandparents-mother of a case infant, N=309). We also performed in vitro analysis of selected rare OXTR missense variants to evaluate their functional importance. Results Maternal genetic effect analysis of the SNP genotype data revealed four SNPs in LNPEP that show significant association with prematurity. In our case–control sequence analysis, we detected fourteen coding variants in exon 3 of OXTR, all but four of which were found in cases only. Of the fourteen variants, three were previously unreported novel rare variants. When the sequence data from the maternal triads were analyzed using the transmission disequilibrium test, two common missense SNPs (rs4686302 and rs237902) in OXTR showed suggestive association for three gestational age subgroups. In vitro functional assays showed a significant difference in ligand binding between wild-type and two mutant receptors. Conclusions Our study suggests an association between maternal common polymorphisms in LNPEP and susceptibility to PTB. Maternal OXTR missense SNPs rs4686302

  15. Genetic Variants of TPCN2 Associated with Type 2 Diabetes Risk in the Chinese Population

    PubMed Central

    Zhang, Yu; Fan, Xiaofang; Zhang, Ning; Zheng, Hui; Song, Yuping; Shen, Chunfang; Shen, Jiayi; Ren, Fengdong; Yang, Jialin

    2016-01-01

    Objective The aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population. Research Design and Methods The sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system. Results Ultimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype. Conclusions TPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms. PMID:26918892

  16. Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank.

    PubMed

    Gan, Wei; Walters, Robin G; Holmes, Michael V; Bragg, Fiona; Millwood, Iona Y; Banasik, Karina; Chen, Yiping; Du, Huaidong; Iona, Andri; Mahajan, Anubha; Yang, Ling; Bian, Zheng; Guo, Yu; Clarke, Robert J; Li, Liming; McCarthy, Mark I; Chen, Zhengming

    2016-07-01

    Genome-wide association studies (GWAS) have discovered many risk variants for type 2 diabetes. However, estimates of the contributions of risk variants to type 2 diabetes predisposition are often based on highly selected case-control samples, and reliable estimates of population-level effect sizes are missing, especially in non-European populations. The individual and cumulative effects of 59 established type 2 diabetes risk loci were measured in a population-based China Kadoorie Biobank (CKB) study of 93,000 Chinese adults, including >7,100 diabetes cases. Association signals were directionally consistent between CKB and the original discovery GWAS: of 56 variants passing quality control, 48 showed the same direction of effect (binomial test, p = 2.3 × 10(-8)). We observed a consistent overall trend towards lower risk variant effect sizes in CKB than in case-control samples of GWAS meta-analyses (mean 19-22% decrease in log odds, p ≤ 0.0048), likely to reflect correction of both 'winner's curse' and spectrum bias effects. The association with risk of diabetes of a genetic risk score, based on lead variants at 25 loci considered to act through beta cell function, demonstrated significant interactions with several measures of adiposity (BMI, waist circumference [WC], WHR and percentage body fat [PBF]; all p interaction < 1 × 10(-4)), with a greater effect being observed in leaner adults. Our study provides further evidence of shared genetic architecture for type 2 diabetes between Europeans and East Asians. It also indicates that even very large GWAS meta-analyses may be vulnerable to substantial inflation of effect size estimates, compared with those observed in large-scale population-based cohort studies. Details of how to access China Kadoorie Biobank data and details of the data release schedule are available from www.ckbiobank.org/site/Data+Access .

  17. Genetic bases of the nutritional approach to migraine.

    PubMed

    De Marchis, Maria Laura; Guadagni, Fiorella; Silvestris, Erica; Lovero, Domenica; Della-Morte, David; Ferroni, Patrizia; Barbanti, Piero; Palmirotta, Raffaele

    2018-03-08

    Migraine is a common multifactorial and polygenic neurological disabling disorder characterized by a genetic background and associated to environmental, hormonal and food stimulations. A large series of evidence suggest a strong correlation between nutrition and migraine and indicates several commonly foods, food additives and beverages that may be involved in the mechanisms triggering the headache attack in migraine-susceptible persons. There are foods and drinks, or ingredients of the same, that can trigger the migraine crisis as well as some foods play a protective function depending on the specific genetic sensitivity of the subject. The recent biotechnological advances have enhanced the identification of some genetic factors involved in onset diseases and the identification of sequence variants of genes responsible for the individual sensitivity to migraine trigger-foods. Therefore many studies are aimed at the analysis of polymorphisms of genes coding for the enzymes involved in the metabolism of food factors in order to clarify the different ways in which people respond to foods based on their genetic constitution. This review discusses the latest knowledge and scientific evidence of the role of gene variants and nutrients, food additives and nutraceuticals interactions in migraine.

  18. The effect of APOE and other common genetic variants on the onset of Alzheimer's disease and dementia: a community-based cohort study.

    PubMed

    van der Lee, Sven J; Wolters, Frank J; Ikram, M Kamran; Hofman, Albert; Ikram, M Arfan; Amin, Najaf; van Duijn, Cornelia M

    2018-05-01

    Alzheimer's disease is one of the most heritable diseases in elderly people and the most common type of dementia. In addition to the major genetic determinant of Alzheimer's disease, the APOE gene, 23 genetic variants have been associated with the disease. We assessed the effects of these variants and APOE on cumulative risk and age at onset of Alzheimer's disease and all-cause dementia. We studied incident dementia in cognitively healthy participants (aged >45 years) from the community-based Rotterdam Study, an ongoing prospective cohort study based in Rotterdam, the Netherlands, focusing on neurological, cardiovascular, endocrine, and ophthalmological disorders, and other diseases in elderly people. The Rotterdam Study comprises participants in three baseline cohorts (initiated in 1990, 2000, and 2006), who are re-invited to the research centre every 3-4 years, and continuously monitored by records from general practitioners and medical specialists. Cumulative incidence curves up to age 100 years were calculated for Alzheimer's disease and dementia, taking into account mortality as a competing event. These risk curves were stratified by APOE genotypes, tertiles of a weighted genetic risk score (GRS) of 23 Alzheimer's disease-associated genetic variants, and parental history of dementia. 12 255 of 14 926 participants (58·5% women) from the Rotterdam Study were included in this study. During a median follow-up of 11·0 years (IQR 4·9-15·9; 133 123 person years), 1609 participants developed dementia, of whom 1262 (78%) were classified as having Alzheimer's disease; 3310 people died of causes other than dementia. Both APOE and the GRS significantly modified the risks of Alzheimer's disease and dementia. There was evidence for a significant interaction between APOE genotypes and the GRS for the association with Alzheimer's disease (p=0·03) and dementia (p=0·04); the risk for carriers homozygous for APOE ε4 was modified most by the GRS. In carriers

  19. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data.

    PubMed

    Vasan, Ramachandran S; Glazer, Nicole L; Felix, Janine F; Lieb, Wolfgang; Wild, Philipp S; Felix, Stephan B; Watzinger, Norbert; Larson, Martin G; Smith, Nicholas L; Dehghan, Abbas; Grosshennig, Anika; Schillert, Arne; Teumer, Alexander; Schmidt, Reinhold; Kathiresan, Sekar; Lumley, Thomas; Aulchenko, Yurii S; König, Inke R; Zeller, Tanja; Homuth, Georg; Struchalin, Maksim; Aragam, Jayashri; Bis, Joshua C; Rivadeneira, Fernando; Erdmann, Jeanette; Schnabel, Renate B; Dörr, Marcus; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J; Greiser, Karin Halina; Levy, Daniel; Haritunians, Talin; Deckers, Jaap W; Stritzke, Jan; Lackner, Karl J; Völker, Uwe; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; O'Donnell, Christopher J; Heckbert, Susan R; Stricker, Bruno H; Ziegler, Andreas; Reffelmann, Thorsten; Redfield, Margaret M; Werdan, Karl; Mitchell, Gary F; Rice, Kenneth; Arnett, Donna K; Hofman, Albert; Gottdiener, John S; Uitterlinden, Andre G; Meitinger, Thomas; Blettner, Maria; Friedrich, Nele; Wang, Thomas J; Psaty, Bruce M; van Duijn, Cornelia M; Wichmann, H-Erich; Munzel, Thomas F; Kroemer, Heyo K; Benjamin, Emelia J; Rotter, Jerome I; Witteman, Jacqueline C; Schunkert, Heribert; Schmidt, Helena; Völzke, Henry; Blankenberg, Stefan

    2009-07-08

    Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease. To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples. Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n = 12 612 individuals of European ancestry; 55% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n = 4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10(-7) to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort. Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size. In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1%-3% of trait variance). We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their

  20. In vivo and in vitro binding of fatty acids to genetic variants of human serum albumin.

    PubMed

    Kragh-Hansen, U; Nielsen, H; Pedersen, A O

    1995-01-01

    The effect of genetic variation on the fatty-acid binding properties of human serum albumin was studied by two methods involving the use of sequenced albumin variants isolated from bisalbuminaemic persons. First, the amount of total fatty acid and of several individuals fatty acids bound to eighteen different variants and to their normal counterpart (Alb A) were determined by a gas-chromatographic micromethod. Pronounced effects on total fatty acid binding were found for the glycosylated variants Alb Redhill (modified in domain II) and Alb Casebrook (domain III) in which cases a 1.7- and 8.6-fold increment, respectively, was found. By contrast, Alb Malm0 (glycosylated in domain I) carried the same amount of fatty acid as Alb A. The fatty acid loads on three chain-termination variants were normal. Finally, eight albumins with single amino-acid substitutions bound normal amounts of fatty acid, whereas one bound increased (1.7-fold) and three albumins bound diminished amounts (0.5-0.6-fold). Information on nineteen individual fatty acids was also obtained. It was possible, based on the type of changes in their relative amounts, to group the fatty acids as follows: (a) = C6:0 - C14:0, (b) = C15:0 - C18:0, (c) = C16:1 - C18:1, and (d) a group composed of essential and conditionally essential fatty acids. For nine variants, in most cases modified in domain III, large changes in one or more of these groups were observed. The changes were not related to any changes in total fatty acid load. Second, the binding of laurate, as a representative of the group (a) fatty acids, to delipidated albumin preparations was studied at pH 7.4 by a kinetic dialysis technique. The first stoichiometric association constant for binding to Alb Redhill (0.7-fold) and Alb Casebrook (0.6-fold) was diminished as compared with binding to their corresponding Alb A, whereas binding to one chain-termination variant and three single amino-acid substitutions were all unaffected by the mutation.