Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E. E-mail: sylvain.guiriec@lpta.in2p3.f E-mail: ohno@astro.isas.jaxa.j
2010-06-20
We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E{sub peak} = 3.9 {+-} 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 {+-} 0.03 that dominates the emission below {approx}20 keV and above {approx}100 MeV. The onset of the high-energy spectral component appears to be delayed by {approx}0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5{sup +5.8}{sub -2.6} GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, {Gamma}{approx_gt} 1200, using simple {gamma}{gamma} opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the {approx}100 keV-few MeV flux. Stricter high confidence estimates imply {Gamma} {approx_gt} 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
NASA Astrophysics Data System (ADS)
Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Dermer, C. D.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.
2010-06-01
We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ≈20 keV and above ≈100 MeV. The onset of the high-energy spectral component appears to be delayed by ~0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5+5.8 -2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γgsim 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈100 keV-few MeV flux. Stricter high confidence estimates imply Γ >~ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
NASA Astrophysics Data System (ADS)
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin; Li, Xiaocan
2014-10-01
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density and when the system size is sufficiently large. The power law slope approaches ``-1'' for closed systems and gets softer when particle loss from the acceleration region is included. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection. We demonstrate that both continuous inflow and Fermi-type acceleration lead to the power-law distributions. Finally, we discuss the role of particle anisotropy in particle acceleration during magnetic reconnection. The work shows that hard power-law distributions are a common feature in relativistic magnetic reconnection region, which may be important for explaining the high-energy emissions in systems like pulsars, jets from black holes, and gamma-ray bursts.
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-10
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection. PMID:25375716
NASA Astrophysics Data System (ADS)
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-01
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ≡B2/(4πnmec2)>1 and when the system size is sufficiently large. In the limit σ≫1, the spectral index approaches p=1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.
A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4
Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram; Psaltis, Dimitrios; Bachetti, Matteo; Barret, Didier; Christensen, Finn E.; Hailey, Charles J.; Kaspi, Victoria M.; Miller, Jon M.; Stern, Daniel; Wik, Daniel R.; Zhang, William W.; Wilms, Jörn
2014-12-20
The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.
Evidence for two hard X-ray components in double power-law fits to the 1980 June 7 flare
NASA Technical Reports Server (NTRS)
Smith, Dean F.; Orwig, Larry E.
1988-01-01
The June 7, 1980 flare at 0312 UT was analyzed with double power-law fits on the basis of SMM hard X-ray burst spectrometer data. The flare is found to consist of seven peaks of characteristic time scale of about 8 sec followed by seven valleys which may contain significant peak components because of overlap. It is suggested that the possibility of thermal spectra for the peaks is unlikely. An investigation of the double power-law parameters through the third and fourth peaks revealed a hysteresis effect in the fourth peak. The present results have been interpreted in terms of a trap plus precipitation model.
The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries
NASA Technical Reports Server (NTRS)
Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.
2010-01-01
We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.
NASA Astrophysics Data System (ADS)
Cai, Zhenning; Torrilhon, Manuel
2015-08-01
A sequence of approximate linear collision models for hard-sphere and inverse-power-law gases is introduced. These models are obtained by expanding the linearized Boltzmann collision operator into series, and a practical algorithm is proposed for evaluating the coefficients in the series. The sequence is proven to be convergent to the linearized Boltzmann operator, and it established a connection between the Shakhov model and the linearized collision model. The convergence is demonstrated by solving the spatially homogeneous Boltzmann equation. By observing the magnitudes of the coefficients, simpler models are developed through removing small entries in the coefficient matrices.
NASA Astrophysics Data System (ADS)
Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.
2013-11-01
We explore the nonequilibrium dynamics of a two-dimensional trapped Bose-Einstein condensate excited by a moving red-detuned laser potential. The trap is a combination of a general power-law potential cutoff by a hard wall box potential. The red laser potential is allowed to exit the box potential, leaving the system in a highly nonequilibrium state. This is crucial since the red laser potential squeezes the BEC trapped inside it against the hard wall-boundary at this instant, paving the way for the creation of a shock wave. Once the red laser potential has left the box potential, the Hamiltonian of the system becomes time-independent and the total energy stabilizes. Our systems are simulated by the time-dependent Gross-Ptiaevskii Equation which is numerically solved by the split-step Crank-Nicolson method in real time. It is found that the value at which the total energy stabilizes in the transient stage of the simulation is largely controlled by the initialization process. Before the red laser potential leaves the trap, when the Hamiltonian of the system is still time-dependent, oscillations in the total energy occur if the system is initialized adiabatically by application of a gradually growing and moving red laser potential. If this laser potential is not moving, yet fully present in the initialization process, these oscillations are not observed in the transient stage of the simulation. In addition, the system displays oscillations in the root-mean-square radius of the trapped cloud. The amplitudes of these radial oscillations continue even after the red laser potential leaves the box potential and are used to explore the deviation of the nonstationary states from the corresponding ground states. It is demonstrated that the geometry of the power law potential influences the amplitude of these radial oscillations, reducing them and bringing the systems closer to an equilibrium state. We then argue that by going to tighter trapping geometries, it is not
Power Law Distribution in Education
NASA Astrophysics Data System (ADS)
Gupta, Hari M.; Campanha, José R.; Chavarette, Fábio R.
We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study-day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects are due to the nature of the subjects themselves. Further and better study, teaching and economical conditions are more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.
NASA Astrophysics Data System (ADS)
Hong, Byoung Hee; Lee, Kyoung Eun; Lee, Jae Woo
2007-01-01
We consider the scaling behaviors for fluctuations of the number of Korean firms bankrupted in the period from 1 August 2002 to 28 October 2003. We observe a power law for the distribution of the number of the bankrupted firms. The Pareto exponent is close to unity. We also consider the daily increments of the number of firms bankrupted. The probability distribution of the daily increments for the firms bankrupted follows the Gaussian distribution in central part and has a fat tail. The tail parts of the probability distribution of the daily increments for the firms bankrupted follow a power law.
Power laws and macroeconomic fluctuations
NASA Astrophysics Data System (ADS)
Gaffeo, Edoardo; Gallegati, Mauro; Giulioni, Gianfranco; Palestrini, Antonio
2003-06-01
We study the duration distribution of recessions and recoveries occurred in a pool of industrialized countries during the last 120 years. We find that for recessions the duration is distributed according to a power law, and that the power exponent is virtually invariant as we split up the time span into sub-periods. The evidence regarding the duration of recoveries is mixed, however.
Density functional for ternary non-additive hard sphere mixtures.
Schmidt, Matthias
2011-10-19
Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. PMID:21946780
Hidden power law patterns in the top European football leagues
NASA Astrophysics Data System (ADS)
Da Silva, Sergio; Matsushita, Raul; Silveira, Eliza
2013-11-01
Because sports are stylized combat, sports may follow power laws similar to those found for wars, individual clashes, and acts of terrorism. We show this fact for football (soccer) by adjusting power laws that show a close relationship between rank and points won by the clubs participating in the latest seasons of the top fifteen European football leagues. In addition, we use Shannon entropy for gauging league competitive balance. As a result, we are able to rank the leagues according to competitiveness.
Power-law distributions in noisy dynamical systems
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Guichardaz, Robin; Pradas, Marc; Pumir, Alain
2015-09-01
We consider a dynamical system which is non-autonomous, has a stable attractor and which is perturbed by an additive noise. We establish that under some quite typical conditions, the intermittent fluctuations from the attractor have a probability distribution with power-law tails. We show that this results from a stochastic cascade of amplification of fluctuations due to transient periods of instability. The exponent of the power-law is interpreted as a negative fractal dimension, and is explicitly determined, using numerics or perturbation expansion, in the case of a model of colloidal particles in one-dimension.
Power law in random multiplicative processes with spatio-temporal correlated multipliers
NASA Astrophysics Data System (ADS)
Morita, Satoru
2016-02-01
It is well known that random multiplicative processes generate power-law probability distributions. We study how the spatio-temporal correlation of the multipliers influences the power-law exponent. We investigate two sources of the time correlation: the local environment and the global environment. In addition, we introduce two simple models through which we analytically and numerically show that the local and global environments yield different trends in the power-law exponent.
Power law inflation with electromagnetism
Luo, Xianghui; Isenberg, James
2013-07-15
We generalize Ringström’s global future causal stability results (Ringström 2009) [11] for certain expanding cosmological solutions of the Einstein-scalar field equations to solutions of the Einstein–Maxwell-scalar field system. In particular, after noting that the power law inflationary spacetimes (M{sup n+1},g{sup -hat}, ϕ{sup -hat}) considered by Ringström (2009) in [11] are solutions of the Einstein–Maxwell-scalar field system (with exponential potential) as well as of the Einstein-scalar field system (with the same exponential potential), we consider (nonlinear) perturbations of initial data sets of these spacetimes which include electromagnetic perturbations as well as gravitational and scalar perturbations. We show that if (as in Ringström (2009) [11]) we focus on pairs of relatively scaled open sets U{sub R{sub 0}}⊂U{sub 4R{sub 0}} on an initial slice of (M{sup n+1},g{sup -hat}), and if we choose a set of perturbed data which on U{sub 4R{sub 0}} is sufficiently close to that of (M{sup n+1},g{sup -hat},ϕ{sup -hat}, A{sup -hat} = 0), then in the maximal globally hyperbolic spacetime development (M{sup n+1},g,ϕ,A) of this data via the Einstein–Maxwell-scalar field equations, all causal geodesics emanating from U{sub R{sub 0}} are future complete (just as in (M{sup n+1},g{sup -hat})). We also verify that, in a certain sense, the future asymptotic behavior of the fields in the spacetime developments of the perturbed data sets does not differ significantly from the future asymptotic behavior of (M{sup n+1},g{sup -hat}, ϕ{sup -hat}, A{sup -hat} = 0). -- Highlights: •We prove stability of expanding solutions of the Einstein–Maxwell-scalar field equations. •All nearby solutions are geodesically complete. •The topology of the initial slice is irrelevant to our stability results.
Power Law Decay in High Intensity Turbulence
NASA Astrophysics Data System (ADS)
Koster, Timothy; Puga, Alejandro; Nguyen, Baolong; Larue, John
2015-11-01
In the study reported herein, the region where the power decay law is applicable for active grid generated turbulence is found by an iterative approach which determines the largest range where the ratio of the dissipation from the power law and the dissipation from the temporal velocity derivative are unity. The square of the Taylor microscale, as noted by Batchelor (1953), is linearly related to downstream distance relative to the virtual origin and can be used in a straightforward manner to find the virtual origin. The fact that the decay of downstream velocity variance is described by a power law is shown to imply power law behavior for various other parameters such as the dissipation, the integral length scale, the Taylor microscale, the Kolmogorov microscale and the Taylor Reynolds number and that there is an algebraic relationship between the various power law exponents. Results are presented for various mean velocities to show the decay exponent as a function of the Taylor Reynolds number.
Power Law Distributions in Two Community Currencies
NASA Astrophysics Data System (ADS)
Kichiji, N.; Nishibe, M.
2007-07-01
The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.
Power law models of stock indices
NASA Astrophysics Data System (ADS)
Tse, Man Kit
Viewing the stock market as a self-organized system, Sornette and Johansen introduced physics-based models to study the dynamics of stock market crashes from the perspective of complex systems. This involved modeling stock market Indices using a mathematical power law exhibiting log-periodicity as the system approaches a market crash, which acts like a critical point in a thermodynamic system. In this dissertation, I aim to investigate stock indices to determine whether or not they exhibit log-periodic oscillations, according to the models proposed by Sornette, as they approach a crash. In addition to analyzing stock market crashes in the frequency domain using the discrete Fourier transform and the Lomb-Scargle periodogram, I perform a detailed analysis of the stock market crash models through parameter estimation and model testing. I find that the probability landscapes have a complex topography and that there is very little evidence that these phase transition-based models accurately describe stock market crashes.
Hierarchical networks, power laws, and neuronal avalanches
NASA Astrophysics Data System (ADS)
Friedman, Eric J.; Landsberg, Adam S.
2013-03-01
We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions—even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.
Power-Law Tails from Dynamical Comptonization in Converging Flows
NASA Astrophysics Data System (ADS)
Turolla, Roberto; Zane, Silvia; Titarchuk, Lev
2002-09-01
The effects of bulk motion Comptonization on the spectral formation in a converging flow onto a black hole are investigated. The problem is tackled by means of both a fully relativistic, angle-dependent transfer code and a semianalytical, diffusion approximation method. We find that a power-law high-energy tail is a ubiquitous feature in converging flows and that the two approaches produce consistent results at large enough accretion rates when photon diffusion holds. Our semianalytical approach is based on an expansion in eigenfunctions of the diffusion equation. Contrary to previous investigations based on the same method, we find that although the power-law tail at extremely large energies is always dominated by the flatter spectral mode, the slope of the hard X-ray portion of the spectrum is dictated by the second mode and it approaches Γ=3 at large accretion rates, irrespective of the model parameters. The photon index in the tail is found to be largely independent on the spatial distribution of soft seed photons when the accretion rate is either quite low (<~5 in Eddington units) or sufficiently high (>~10). On the other hand, the spatial distribution of source photons controls the photon index at intermediate accretion rates, when Γ switches from the first to the second mode. Our analysis confirms that a hard tail with photon index Γ<3 is produced by the upscattering of primary photons onto infalling electrons if the central object is a black hole.
Universal power law for the spectrum of breaking Riemann waves
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry; Pelinovsky, Efim; Kartashova, Elena; Talipova, Tatiana
2014-05-01
The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation with arbitrary nonlinearity. This equation describe the long surface and internal wave in the coastal zone. The spectrum of spatial amplitudes at the breaking time has an power asymptotic decay with exponent - 4/3. This spectrum is formed by the singularity of the form like x1/3 in the wave shape at the breaking time. In addition, we demonstrate numerically that the universal power law is observed for long time in the range of small wave numbers if small dissipation or dispersion is accounted in the viscous Burgers or Korteweg-de Vries equations.
Power law analysis of the human microbiome.
Ma, Zhanshan Sam
2015-11-01
Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. PMID:26407082
Power laws governing epidemics in isolated populations
NASA Astrophysics Data System (ADS)
Rhodes, C. J.; Anderson, R. M.
1996-06-01
TEMPORAL changes in the incidence of measles virus infection within large urban communities in the developed world have been the focus of much discussion in the context of the identification and analysis of nonlinear and chaotic patterns in biological time series1-11. In contrast, the measles records for small isolated island populations are highly irregular, because of frequent fade-outs of infection12-14, and traditional analysis15 does not yield useful insight. Here we use measurements of the distribution of epidemic sizes and duration to show that regularities in the dynamics of such systems do become apparent. Specifically, these biological systems are characterized by well-defined power laws in a manner reminiscent of other nonlinear, spatially extended dynamical systems in the physical sciences16-19. We further show that the observed power-law exponents are well described by a simple lattice-based model which reflects the social interaction between individual hosts.
Zipf's law, power laws and maximum entropy
NASA Astrophysics Data System (ADS)
Visser, Matt
2013-04-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Relativity, nonextensivity, and extended power law distributions.
Silva, R; Lima, J A S
2005-11-01
A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory. PMID:16383791
Variational principle for the Pareto power law.
Chakraborti, Anirban; Patriarca, Marco
2009-11-27
A mechanism is proposed for the appearance of power-law distributions in various complex systems. It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation only uses a variational principle based on the Boltzmann entropy, without assumptions outside the framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general case through an exactly solvable mechanical model of a dimensionally heterogeneous system. PMID:20366128
Variational Principle for the Pareto Power Law
NASA Astrophysics Data System (ADS)
Chakraborti, Anirban; Patriarca, Marco
2009-11-01
A mechanism is proposed for the appearance of power-law distributions in various complex systems. It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation only uses a variational principle based on the Boltzmann entropy, without assumptions outside the framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general case through an exactly solvable mechanical model of a dimensionally heterogeneous system.
Fractal power law in literary English
NASA Astrophysics Data System (ADS)
Gonçalves, L. L.; Gonçalves, L. B.
2006-02-01
We present in this paper a numerical investigation of literary texts by various well-known English writers, covering the first half of the twentieth century, based upon the results obtained through corpus analysis of the texts. A fractal power law is obtained for the lexical wealth defined as the ratio between the number of different words and the total number of words of a given text. By considering as a signature of each author the exponent and the amplitude of the power law, and the standard deviation of the lexical wealth, it is possible to discriminate works of different genres and writers and show that each writer has a very distinct signature, either considered among other literary writers or compared with writers of non-literary texts. It is also shown that, for a given author, the signature is able to discriminate between short stories and novels.
Beyond the power law: Uncovering stylized facts in interbank networks
NASA Astrophysics Data System (ADS)
Vandermarliere, Benjamin; Karas, Alexei; Ryckebusch, Jan; Schoors, Koen
2015-06-01
We use daily data on bilateral interbank exposures and monthly bank balance sheets to study network characteristics of the Russian interbank market over August 1998-October 2004. Specifically, we examine the distributions of (un)directed (un)weighted degree, nodal attributes (bank assets, capital and capital-to-assets ratio) and edge weights (loan size and counterparty exposure). We search for the theoretical distribution that fits the data best and report the "best" fit parameters. We observe that all studied distributions are heavy tailed. The fat tail typically contains 20% of the data and can be mostly described well by a truncated power law. Also the power law, stretched exponential and log-normal provide reasonably good fits to the tails of the data. In most cases, however, separating the bulk and tail parts of the data is hard, so we proceed to study the full range of the events. We find that the stretched exponential and the log-normal distributions fit the full range of the data best. These conclusions are robust to (1) whether we aggregate the data over a week, month, quarter or year; (2) whether we look at the "growth" versus "maturity" phases of interbank market development; and (3) with minor exceptions, whether we look at the "normal" versus "crisis" operation periods. In line with prior research, we find that the network topology changes greatly as the interbank market moves from a "normal" to a "crisis" operation period.
Power law deformation of Wishart Laguerre ensembles of random matrices
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Vivo, Pierpaolo
2008-09-01
We introduce a one-parameter deformation of the Wishart-Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1,2 and 4. Our generalized model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N × M for all three values of β, in terms of the orthogonal polynomials of the standard Wishart-Laguerre ensembles. For large N in a certain double-scaling limit we obtain a generalized Marčenko-Pastur distribution on the macroscopic scale, and a generalized Bessel law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power law tails, where the microscopic limit depends on β and the difference M-N. In the limit where our parameter governing the power law goes to infinity we recover the correlations of the Wishart-Laguerre ensembles. To illustrate these findings, the generalized Marčenko-Pastur distribution is shown to be in very good agreement with empirical data from financial covariance matrices.
Analysis of transient flow and starting pressure gradient of power-law fluid in fractal porous media
NASA Astrophysics Data System (ADS)
Tan, Xiao-Hua; Li, Xiao-Ping; Zhang, Lie-Hui; Liu, Jian-Yi; Cai, Jianchao
2015-09-01
A transient flow model for power-law fluid in fractal porous media is derived by combining transient flow theory with the fractal properties of tortuous capillaries. Pressure changes of transient flow for power-law fluid in fractal porous media are related to pore fractal dimension, tortuosity fractal dimension and the power-law index. Additionally, the starting pressure gradient model of power-law fluid in fractal porous media is established. Good agreement between the predictions of the present model and that of the traditional empirical model is obtained, the sensitive parameters that influence the starting pressure gradient are specified and their effects on the starting pressure gradient are discussed.
Power-law Decay and the Ergodic-Nonergodic Transition in Simple Fluids
NASA Astrophysics Data System (ADS)
Spyridis, Paul; Mazenko, Gene F.
2014-02-01
It is well known that mode coupling theory (MCT) leads to a two-step power-law time decay in dense simple fluids. We show that much of the mathematical machinery used in the MCT analysis can be taken over to the analysis of the systematic theory developed in the Fundamental Theory of Statistical Particle Dynamics (Mazenko in Phys Rev E 81(6):061102, 2010). We show how the power-law exponents can be computed in the second-order approximation where we treat hard-sphere fluids with statics described by the Percus-Yevick solution.
Power-law creep and residual stresses in carbopol microgels
NASA Astrophysics Data System (ADS)
Lidon, Pierre; Manneville, Sebastien
We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.
Existence Theory for Stochastic Power Law Fluids
NASA Astrophysics Data System (ADS)
Breit, Dominic
2015-06-01
We consider the equations of motion for an incompressible non-Newtonian fluid in a bounded Lipschitz domain during the time interval (0, T) together with a stochastic perturbation driven by a Brownian motion W. The balance of momentum reads as where v is the velocity, the pressure and f an external volume force. We assume the common power law model and show the existence of martingale weak solution provided . Our approach is based on the -truncation and a harmonic pressure decomposition which are adapted to the stochastic setting.
Study on local resistance of non-Newtonian power law fluid in elbow pipes
NASA Astrophysics Data System (ADS)
Zhang, Hao; Xu, Tiantian; Zhang, Xinxin; Wang, Yuxiang; Wang, Yuancheng; Liu, Xueting
2016-06-01
This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing numerical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and different diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficient. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.
Spectra that behave like power-laws are not necessarily power-laws
NASA Astrophysics Data System (ADS)
Podesta, John J.
2016-02-01
It is shown that measured power spectral densities (spectra) that closely resemble power-law spectra may, in fact, have mathematical forms that are not power laws in the mathematical sense. If power spectral estimates show a good fit to a straight line on a log-log plot over a finite frequency range, that is not sufficient evidence to conclude that the mathematical form of the spectrum is, in fact, a power-law over that range. It is also pointed out that to accurately fit a power-law function to experimental data using linear least squares techniques in log-log space, as is often done in practice, it is essential that the data is uniformly distributed along the abscissa in log-space (in the stochastic sense) or, otherwise, the data must be linearly interpolated onto a uniform grid to ensure that the data employed in the fitting procedure is equally weighted along the abscissa. These two important points are not widely appreciated by researchers in the field and the pitfalls associated with commonly used fitting techniques are often overlooked in the analysis of solar wind data.
Universal Power Law Governing Pedestrian Interactions
NASA Astrophysics Data System (ADS)
Karamouzas, Ioannis; Skinner, Brian; Guy, Stephen J.
2014-12-01
Human crowds often bear a striking resemblance to interacting particle systems, and this has prompted many researchers to describe pedestrian dynamics in terms of interaction forces and potential energies. The correct quantitative form of this interaction, however, has remained an open question. Here, we introduce a novel statistical-mechanical approach to directly measure the interaction energy between pedestrians. This analysis, when applied to a large collection of human motion data, reveals a simple power-law interaction that is based not on the physical separation between pedestrians but on their projected time to a potential future collision, and is therefore fundamentally anticipatory in nature. Remarkably, this simple law is able to describe human interactions across a wide variety of situations, speeds, and densities. We further show, through simulations, that the interaction law we identify is sufficient to reproduce many known crowd phenomena.
Power-law parametrized quintessence model
Rahvar, Sohrab; Movahed, M. Sadegh
2007-01-15
We propose a simple power-law parametrized quintessence model with time-varying equation of state and obtain corresponding quintessence potential of this model. This model is compared with Supernova Type Ia (SNIa) Gold sample data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and structure formation from the 2dFGRS survey and put constrain on the parameters of model. The parameters from the best fit indicates that the equation of state of this model at the present time is w{sub 0}=-1.40{sub -0.65}{sup +0.40} at 1{sigma} confidence level. Finally we calculate the age of universe in this model and compare it with the age of old cosmological objects.
Power laws and fragility in flow networks☆
Shore, Jesse; Chu, Catherine J.; Bianchi, Matt T.
2015-01-01
What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence. PMID:26082568
Power Law Mapping in Human Area Perception
NASA Astrophysics Data System (ADS)
Longjas, Anthony; Legara, Erika Fille; Monterola, Christopher
We investigate how humans visually perceive and approximate area or space allocation through visual area experiments. The participants are asked to draw a circle concentric to the reference circle on the monitor screen using a computer mouse with area measurements relative to the area of the reference circle. The activity is repeated for triangle, square and hexagon. The area estimated corresponds to the area estimates of a participant (perceived) for a corresponding requested area to be drawn (stimulus). The area estimated fits very well (goodness of fit R2 > 0.97) to a power law given by r2α where r is the radius of the circle or the distance of the edge for triangle, square and hexagon. The power law fit demonstrates that for all shapes sampled, participants underestimated area for stimulus that are less than ~100% of the reference area and overestimated area for stimulus greater than ~100% of the reference area. The value of α is smallest for the circle (α∘ ≈ 1.33) and largest for triangle (α△ ≈ 1.56) indicating that in the presence of a reference area with the same shape, circle is perceived to be smallest among the figures considered when drawn bigger than the reference area, but largest when drawn smaller than the reference area. We also conducted experiments on length estimation and consistent with the results of Dehaene et al., Science 2008, we recover a linear relationship between the perceived length and the stimulus. We show that contrary to number mapping into space and/or length perception, human's perception of area is not corrected by the introduction of cultural interventions such as formal education.
Power-law spatial dispersion from fractional Liouville equation
Tarasov, Vasily E.
2013-10-15
A microscopic model in the framework of fractional kinetics to describe spatial dispersion of power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional differential equations for electrostatic potential in the media with power-law spatial dispersion are derived. The particular solutions of these equations for the electric potential of point charge in this media are considered.
Power law scaling in synchronization of brain signals depends on cognitive load
Tinker, Jesse; Velazquez, Jose Luis Perez
2014-01-01
As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task). There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa), which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviors. PMID:24822039
López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés
2013-04-28
The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited. A comparison is presented between the results derived previously using truncated virial expansions for three finite size ratios with those that one obtains with the same approach in the extreme case in which one of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical constants arising in the truncated series in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures. PMID:23635104
A Universal Power Law Governing Pedestrian Interactions
NASA Astrophysics Data System (ADS)
Karamouzas, Ioannis; Skinner, Brian; Guy, Stephen J.
2015-03-01
Human crowds often bear a striking resemblance to interacting particle systems, and this has prompted many researchers to describe pedestrian dynamics in terms of interaction forces and potential energies. The correct quantitative form of this interaction, however, has remained an open question. Here, we introduce a novel statistical-mechanical approach to directly measure the interaction energy between pedestrians. This analysis, when applied to a large collection of human motion data, reveals a simple power law interaction that is based not on the physical separation between pedestrians but on their projected time to a potential future collision, and is therefore fundamentally anticipatory in nature. Remarkably, this simple law is able to describe human interactions across a wide variety of situations, speeds and densities. We further show, through simulations, that the interaction law we identify is sufficient to reproduce many known crowd phenomena. Work at Argonne National Laboratory is supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. Work at the University of Minnesota is supported by MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing.
Piecewise power laws in individual learning curves.
Donner, Yoni; Hardy, Joseph L
2015-10-01
The notion that human learning follows a smooth power law (PL) of diminishing gains is well-established in psychology. This characteristic is observed when multiple curves are averaged, potentially masking more complex dynamics underpinning the curves of individual learners. Here, we analyzed 25,280 individual learning curves, each comprising 500 measurements of cognitive performance taken from four cognitive tasks. A piecewise PL (PPL) model explained the individual learning curves significantly better than a single PL, controlling for model complexity. The PPL model allows for multiple PLs connected at different points in the learning process. We also explored the transition dynamics between PL curve component pieces. Performance in later pieces typically surpassed that in earlier pieces, after a brief drop in performance at the transition point. The transition rate was negatively associated with age, even after controlling for overall performance. Our results suggest at least two processes at work in individual learning curves: locally, a gradual, smooth improvement, with diminishing gains within a specific strategy, which is modeled well as a PL; and globally, a discrete sequence of strategy shifts, in which each strategy is better in the long term than the ones preceding it. The piecewise extension of the classic PL of practice has implications for both individual skill acquisition and theories of learning. PMID:25711183
The power law as an emergent property.
Anderson, R B
2001-10-01
Recent work has shown that the power function, a ubiquitous characteristic of learning, memory, and sensation, can emerge from the arithmetic averaging of exponential curves. In the present study, the forgetting process was simulated via computer to determine whether power curves can result from the averaging of other types of component curves. Each of several simulations contained 100 memory traces that were made to decay at different rates. The resulting component curves were then arithmetically averaged to produce an aggregate curve for each simulation. The simulations varied with respect to the forms of the component curves: exponential, range-limited linear, range-limited logarithmic, or power. The goodness of the aggregate curve's fit to a power function relative to other functions increased as the amount of intercomponent slope variability increased, irrespective of component-curve type. Thus, the power law's ubiquity may reflect the pervasiveness of slope variability across component functions. Moreover, power-curve emergence may constitute a methodological artifact, an explanatory construct, or both, depending on the locus of the effect. PMID:11820749
Constraints on the tensor-to-scalar ratio for non-power-law models
Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M.P. E-mail: mb435@mrao.cam.ac.uk E-mail: mph@mrao.cam.ac.uk
2013-08-01
Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby and Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: r{sub LD} = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys.
Constraints on the tensor-to-scalar ratio for non-power-law models
NASA Astrophysics Data System (ADS)
Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M. P.
2013-08-01
Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby & Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: rLD = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys.
NASA Astrophysics Data System (ADS)
Dexter, Jason; Blaes, Omer
2014-03-01
We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of sqrt{7/3}˜eq 1.53. This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M ˜ 0.4-0.7.
Solitary and shock waves in discrete double power law materials
NASA Astrophysics Data System (ADS)
Herbold, Eric; Nesterenko, Vitali
2007-06-01
A novel strongly nonlinear metamaterial is composed using a periodic arrangement of toroidal rings between plates. The toroids are considered massless strongly nonlinear springs where the force versus displacement relationship is described by two additive power-law relationships. In these systems the nonlinearity is due to the dramatic change of the contact plane, which starts as an arbitrarily thin circle then increases in thickness with increasing compression. Solitary and shock waves are examined numerically and experimentally using three different types of polymer or rubber o-rings allowing mitigation of higher amplitude shock impulses in comparison with granular systems. In these systems a train of pulses can consist of two separate groups related to two strongly nonlinear regimes with different values of exponents, depending on the amplitude. In experiments two types of shock waves (monotonic or oscillatory) were observed depending on the type of o-rings.
Power-law confusion: You say incremental, I say differential
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.
1993-01-01
Power-law distributions are commonly used to describe the frequency of occurrences of crater diameters, stellar masses, ring particle sizes, planetesimal sizes, and meteoroid masses to name a few. The distributions are simple, and this simplicity has led to a number of misstatements in the literature about the kind of power-law that is being used: differential, cumulative, or incremental. Although differential and cumulative power-laws are mathematically trivial, it is a hybrid incremental distribution that is often used and the relationship between the incremental distribution and the differential or cumulative distributions is not trivial. In many cases the slope of an incremental power-law will be nearly identical to the slope of the cumulative power-law of the same distribution, not the differential slope. The discussion that follows argues for a consistent usage of these terms and against the oft-made implicit claim that incremental and differential distributions are indistinguishable.
Resurrecting power law inflation in the light of Planck results
Unnikrishnan, Sanil; Sahni, Varun E-mail: varun@iucaa.ernet.in
2013-10-01
It is well known that a canonical scalar field with an exponential potential can drive power law inflation (PLI). However, the tensor-to-scalar ratio in such models turns out to be larger than the stringent limit set by recent Planck results. We propose a new model of power law inflation for which the scalar spectra index, the tensor-to-scalar ratio and the non-gaussianity parameter f{sub N{sub L}{sup equil}} are in excellent agreement with Planck results. Inflation, in this model, is driven by a non-canonical scalar field with an inverse power law potential. The Lagrangian for our model is structurally similar to that of a canonical scalar field and has a power law form for the kinetic term. A simple extension of our model resolves the graceful exit problem which usually afflicts models of power law inflation.
Fractional power-law spatial dispersion in electrodynamics
Tarasov, Vasily E.; Trujillo, Juan J.
2013-07-15
Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s law and Debye’s screening for the media.
Power-law defect energy in a single-crystal gradient plasticity framework: a computational study
NASA Astrophysics Data System (ADS)
Bayerschen, E.; Böhlke, T.
2016-03-01
A single-crystal gradient plasticity model is presented that includes a power-law type defect energy depending on the gradient of an equivalent plastic strain. Numerical regularization for the case of vanishing gradients is employed in the finite element discretization of the theory. Three exemplary choices of the defect energy exponent are compared in finite element simulations of elastic-plastic tricrystals under tensile loading. The influence of the power-law exponent is discussed related to the distribution of gradients and in regard to size effects. In addition, an analytical solution is presented for the single slip case supporting the numerical results. The influence of the power-law exponent is contrasted to the influence of the normalization constant.
Pascal (Yang Hui) triangles and power laws in the logistic map
NASA Astrophysics Data System (ADS)
Velarde, Carlos; Robledo, Alberto
2015-04-01
We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic-band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties.
Power-law defect energy in a single-crystal gradient plasticity framework: a computational study
NASA Astrophysics Data System (ADS)
Bayerschen, E.; Böhlke, T.
2016-07-01
A single-crystal gradient plasticity model is presented that includes a power-law type defect energy depending on the gradient of an equivalent plastic strain. Numerical regularization for the case of vanishing gradients is employed in the finite element discretization of the theory. Three exemplary choices of the defect energy exponent are compared in finite element simulations of elastic-plastic tricrystals under tensile loading. The influence of the power-law exponent is discussed related to the distribution of gradients and in regard to size effects. In addition, an analytical solution is presented for the single slip case supporting the numerical results. The influence of the power-law exponent is contrasted to the influence of the normalization constant.
Modified power law equations for vertical wind profiles. [in investigation of windpower plant siting
NASA Technical Reports Server (NTRS)
Spera, D. A.; Richards, T. R.
1979-01-01
In an investigation of windpower plant siting, equations are presented and evaluated for a wind profile model which incorporates both roughness and wind speed effects, while retaining the basic simplicity of the Hellman power law. These equations recognize the statistical nature of wind profiles and are compatible with existing analytical models and recent wind profile data. Predictions of energy output based on the proposed profile equations are 10% to 20% higher than those made with the 1/7 power law. In addition, correlation between calculated and observed blade loads is significantly better at higher wind speeds when the proposed wind profile model is used than when a constant power model is used.
Magnetic characterization of HSLA steel by power-law decay exponents of Barkhausen emission signal
NASA Astrophysics Data System (ADS)
Tarafder, M.; Chattoraj, I.; Nasipuri, M.; Mitra, A.
2009-04-01
The general trend of magnetic behaviour of materials is that the mechanically hard materials are also magnetically hard. However for the high strength low alloy (HSLA) steel tempered at various aging temperatures, the correlation was reported as negative. The anomaly could not be explained by the magnetic parameters like RMS voltage calculated from the Barkhausen emission signal and the coercivity from the magnetic hysteresis loop. This paper reports another magnetic parameter known as power-law decay exponent which shows excellent correlation with the mechanical properties and thus explains the progressive evolution of the microstructural constituents in HSLA steel.
Thresholded Power law Size Distributions of Instabilities in Astrophysics
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.
2015-11-01
Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.
Correlations of Power-law Spectral and QPO Features In Black Hole Candidate Sources
NASA Technical Reports Server (NTRS)
Fiorito, Ralph; Titarchuk, Lev
2004-01-01
Recent studies have shown that strong correlations are observed between low frequency QPO s and the spectral power law index for a number of black hole candidate sources (BHCs), when these sources exhibit quasi-steady hard x-ray emission states. The dominant long standing interpretation of QPO's is that they are produced in and are the signature of the thermal accretion disk. Paradoxically, strong QPO's are present even in the cases where the thermal component is negligible. We present a model which identifies the origin of the QPO's and relates them directly to the properties of a compact coronal region which is bounded by the adjustment from Kepleriaa to sub-Kelperian inflow into the BH, and is primarily responsible for the observed power law spectrum. The model also predicts the relationship between high and low frequency QPO's and shows how BH's can be unique identified from observations of the soft states of NS's and BHC's.
Power-law distribution of family names in Japanese societies
NASA Astrophysics Data System (ADS)
Miyazima, Sasuke; Lee, Youngki; Nagamine, Tomomasa; Miyajima, Hiroaki
2000-04-01
We study the frequency distribution of family names. From a common data base, we count the number of people who share the same family name. This is the size of the family. We find that (i) the total number of different family names in a society scales as a power law of the population, (ii) the total number of family names of the same size decreases as the size increases with a power law and (iii) the relation between size and rank of a family name also shows a power law. These scaling properties are found to be consistent for five different regional communities in Japan.
Power-Law entropy corrected holographic dark energy model
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Jamil, Mubasher
2011-10-01
Among various scenarios to explain the acceleration of the universe expansion, the holographic dark energy (HDE) model has got a lot of enthusiasm recently. In the derivation of holographic energy density, the area relation of the black hole entropy plays a crucial role. Indeed, the power-law corrections to entropy appear in dealing with the entanglement of quantum fields in and out the horizon. Inspired by the power-law corrected entropy, we propose the so-called "power-law entropy-corrected holographic dark energy" (PLECHDE) in this Letter. We investigate the cosmological implications of this model and calculate some relevant cosmological parameters and their evolution. We also briefly study the so-called "power-law entropy-corrected agegraphic dark energy" (PLECADE).
Fractal ladder models and power law wave equations
Kelly, James F.; McGough, Robert J.
2009-01-01
The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816
Punctuated equilibrium and power law in economic dynamics
NASA Astrophysics Data System (ADS)
Gupta, Abhijit Kar
2012-02-01
This work is primarily based on a recently proposed toy model by Thurner et al. (2010) [3] on Schumpeterian economic dynamics (inspired by the idea of economist Joseph Schumpeter [9]). Interestingly, punctuated equilibrium has been shown to emerge from the dynamics. The punctuated equilibrium and Power law are known to be associated with similar kinds of biologically relevant evolutionary models proposed in the past. The occurrence of the Power law is a signature of Self-Organised Criticality (SOC). In our view, power laws can be obtained by controlling the dynamics through incorporating the idea of feedback into the algorithm in some way. The so-called 'feedback' was achieved by introducing the idea of fitness and selection processes in the biological evolutionary models. Therefore, we examine the possible emergence of a power law by invoking the concepts of 'fitness' and 'selection' in the present model of economic evolution.
Electric field in media with power-law spatial dispersion
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-04-01
In this paper, we consider electric fields in media with power-law spatial dispersion (PLSD). Spatial dispersion means that the absolute permittivity of the media depends on the wave vector. Power-law type of this dispersion is described by derivatives and integrals of non-integer orders. We consider electric fields of point charge and dipole in media with PLSD, infinite charged wire, uniformly charged disk, capacitance of spherical capacitor and multipole expansion for PLSD-media.
Intramolecular vibrational dephasing obeys a power law at intermediate times
Gruebele, M.
1998-01-01
Experimental intramolecular vibrational dephasing transients for several large organic molecules are reanalyzed. Fits to the experimental data, as well as full numerical quantum calculations with a factorized potential surface for all active degrees of freedom of fluorene indicate that power law decays, not exponentials, occur at intermediate times. The results support a proposal that power law decays describe vibrational dephasing dynamics in large molecules at intermediate times because of the local nature of energy flow. PMID:9600900
Singularity problems of the power law for modeling creep compliance
NASA Technical Reports Server (NTRS)
Dillard, D. A.; Hiel, C.
1985-01-01
An explanation is offered for the extreme sensitivity that has been observed in the power law parameters of the T300/934 graphite epoxy material systems during experiments to evaluate the system's viscoelastic response. It is shown that the singularity associated with the power law can explain the sensitivity as well as the observed variability in the calculated parameters. Techniques for minimizing errors are suggested.
KAPPA DISTRIBUTION MODEL FOR HARD X-RAY CORONAL SOURCES OF SOLAR FLARES
Oka, M.; Ishikawa, S.; Saint-Hilaire, P.; Krucker, S.; Lin, R. P.
2013-02-10
Solar flares produce hard X-ray emission, the photon spectrum of which is often represented by a combination of thermal and power-law distributions. However, the estimates of the number and total energy of non-thermal electrons are sensitive to the determination of the power-law cutoff energy. Here, we revisit an 'above-the-loop' coronal source observed by RHESSI on 2007 December 31 and show that a kappa distribution model can also be used to fit its spectrum. Because the kappa distribution has a Maxwellian-like core in addition to a high-energy power-law tail, the emission measure and temperature of the instantaneous electrons can be derived without assuming the cutoff energy. Moreover, the non-thermal fractions of electron number/energy densities can be uniquely estimated because they are functions of only the power-law index. With the kappa distribution model, we estimated that the total electron density of the coronal source region was {approx}2.4 Multiplication-Sign 10{sup 10} cm{sup -3}. We also estimated without assuming the source volume that a moderate fraction ({approx}20%) of electrons in the source region was non-thermal and carried {approx}52% of the total electron energy. The temperature was 28 MK, and the power-law index {delta} of the electron density distribution was -4.3. These results are compared to the conventional power-law models with and without a thermal core component.
Indentation of a Power Law Creeping Solid
NASA Astrophysics Data System (ADS)
Bower, A. F.; Fleck, N. A.; Needleman, A.; Ogbonna, N.
1993-04-01
The aim of this paper is to establish a rigorous theoretical basis for interpreting the results of hardness tests on creeping specimens. We investigate the deformation of a creeping half-space with uniaxial stress-strain behaviour dot{ɛ}=dot{ɛ}0(σ /σ 0)m, which is indented by a rigid punch. Both axisymmetric and plane indenters are considered. The shape of the punch is described by a general expression which includes most indenter profiles of practical importance. Two methods are used to solve the problem. The main results are found using a transformation method suggested by R. Hill. It is shown that the creep indentation problem may be reduced to a form which is independent of the geometry of the punch, and depends only on the material properties through m. The reduced problem consists of a nonlinear elastic half-space, which is indented to a unit depth by a rigid flat punch of unit radius (in the axisymmetric case), or unit semi-width (in the plane case). Exact solutions are given for m = 1 and m = ∞ . For m between these two limits, the reduced problem has been solved using the finite element method. The results enable the load on the indenter and the contact radius to be calculated in terms of the indentation depth and rate of penetration. The stress, strain and displacement fields in the half-space may also be deduced. The accuracy of the solution is demonstrated by comparing the results with full-field finite element calculations. The predictions of the theory are shown to be consistent with experimental observations of hardness tests on creeping materials reported in the literature.
Arif, Saqib; Ali, Tahira Mohsin; Ul Afzal, Qurat; Ahmed, Mubarik; Siddiqui, Asim Jamal; Hasnain, Abid
2014-06-01
The effects of water extractable pentosans (WEP) and water unextractable pentosans (WUP) on pasting properties in flours of eight different hard white spring wheat (HWSW) cultivars was studied. WEP and WUP isolated from a hard wheat flour were added to each of the cultivars at 1% and 2% level. The results indicated that WEP exhibited a pronounced effect on pasting properties as compared to WUP and variety. Univariate analysis of variance (ANOVA) was used to evaluate sources of variation. The variety significantly (P < 0.001) influenced all the pasting parameters. WUP caused significant (P < 0.001) variation in paste viscosities (except breakdown). WEP influenced more pronouncedly the hot paste, cold paste, breakdown and setback viscosities with F values-221.802, 214.286, 98.073 and 120.159, respectively. Variety-by-WEP interaction exhibited significant (P < 0.01) influence on pasting time, peak, hot paste and cold paste viscosities. Whereas, variety-by-WUP interaction only significantly (P < 0.001) influenced the pasting- time and -temperature. Duncan's test was used to analyze the significant difference (P < 0.05) within the variety. The results revealed that WUP did not induce significant (P < 0.05) influence on all the pasting parameters, whereas, WEP influenced significantly (P < 0.05) the paste viscosities of some of the varieties. It was also found that the addition of WEP remarkably reduced the setback, hot paste, cold paste viscosities and increased the breakdown viscosity in all cultivar flours. The effect of WEP was greater at higher level of supplementation on paste viscosities. PMID:24876638
Precise algorithm to generate random sequential addition of hard hyperspheres at saturation.
Zhang, G; Torquato, S
2013-11-01
The study of the packing of hard hyperspheres in d-dimensional Euclidean space R^{d} has been a topic of great interest in statistical mechanics and condensed matter theory. While the densest known packings are ordered in sufficiently low dimensions, it has been suggested that in sufficiently large dimensions, the densest packings might be disordered. The random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time saturation limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for nearly saturated configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. U. Uche, and F. H. Stillinger, Phys. Rev. E 74, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space in a large simulation box using finite computational time with heretofore unattained precision and across the widest range of dimensions (2≤d≤8). We have also calculated the packing and covering densities, pair correlation function g(2)(r), and structure factor S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed "decorrelation" principle, and the degree of "hyperuniformity" (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the second moment of inertia of the average
Precise algorithm to generate random sequential addition of hard hyperspheres at saturation
NASA Astrophysics Data System (ADS)
Zhang, G.; Torquato, S.
2013-11-01
The study of the packing of hard hyperspheres in d-dimensional Euclidean space Rd has been a topic of great interest in statistical mechanics and condensed matter theory. While the densest known packings are ordered in sufficiently low dimensions, it has been suggested that in sufficiently large dimensions, the densest packings might be disordered. The random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time saturation limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for nearly saturated configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. U. Uche, and F. H. Stillinger, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.74.061308 74, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space in a large simulation box using finite computational time with heretofore unattained precision and across the widest range of dimensions (2≤d≤8). We have also calculated the packing and covering densities, pair correlation function g2(r), and structure factor S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed “decorrelation” principle, and the degree of “hyperuniformity” (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the
Statistical tests for power-law cross-correlated processes
NASA Astrophysics Data System (ADS)
Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene
2011-12-01
For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.
Statistical tests for power-law cross-correlated processes.
Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H Eugene
2011-12-01
For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρ(DCCA)(T,n), where T is the total length of the time series and n the window size. For ρ(DCCA)(T,n), we numerically calculated the Cauchy inequality -1 ≤ ρ(DCCA)(T,n) ≤ 1. Here we derive -1 ≤ ρ DCCA)(T,n) ≤ 1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρ(DCCA) within which the cross-correlations become statistically significant. For overlapping windows we numerically determine-and for nonoverlapping windows we derive--that the standard deviation of ρ(DCCA)(T,n) tends with increasing T to 1/T. Using ρ(DCCA)(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series. PMID:22304166
Power-law ansatz in complex systems: Excessive loss of information.
Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming
2015-12-01
The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring. PMID:26764792
Power-law ansatz in complex systems: Excessive loss of information
NASA Astrophysics Data System (ADS)
Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming
2015-12-01
The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.
Distortion of power law blinking with binning and thresholding
Amecke, Nicole; Heber, André; Cichos, Frank
2014-03-21
Fluorescence intermittency is a random switching between emitting (on) and non-emitting (off) periods found for many single chromophores such as semiconductor quantum dots and organic molecules. The statistics of the duration of on- and off-periods are commonly determined by thresholding the emission time trace of a single chromophore and appear to be power law distributed. Here we test with the help of simulations if the experimentally determined power law distributions can actually reflect the underlying statistics. We find that with the experimentally limited time resolution real power law statistics with exponents α{sub on/off} ≳ 1.6, especially if α{sub on} ≠ α{sub off} would not be observed as such in the experimental data after binning and thresholding. Instead, a power law appearance could simply be obtained from the continuous distribution of intermediate intensity levels. This challenges much of the obtained data and the models describing the so-called power law blinking.
PLMaddon: a power-law module for the Matlab SBToolbox.
Vera, Julio; Sun, Cheng; Oertel, Yvonne; Wolkenhauer, Olaf
2007-10-01
PLMaddon is a General Public License (GPL) software module designed to expand the current version of the SBToolbox (a Matlab toolbox for systems biology; www.sbtoolbox.org) with a set of functions for the analysis of power-law models, a specific class of kinetic models, set in ordinary differential equations (ODE) and in which the kinetic orders can have positive/negative non-integer values. The module includes functions to generate power-law Taylor expansions of other ODE models (e.g. Michaelis-Menten type models), as well as algorithms to estimate steady-states. The robustness and sensitivity of the models can also be analysed and visualized by computing the power-law's logarithmic gains and sensitivities. PMID:17495997
General 2.5 power law of metallic glasses.
Zeng, Qiaoshi; Lin, Yu; Liu, Yijin; Zeng, Zhidan; Shi, Crystal Y; Zhang, Bo; Lou, Hongbo; Sinogeikin, Stanislav V; Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Yang, Wenge; Wang, Weihua; Sheng, Hongwei; Mao, Ho-Kwang; Mao, Wendy L
2016-02-16
Metallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its "disordered" structure. Recently we found that under compression, the volume (V) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/q1). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce68Al10Cu20Co2 MG. This transition is, in effect, the equivalent of a continuous "composition" change of 4f-localized "big Ce" to 4f-itinerant "small Ce," indicating the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs. PMID:26831105
Statistical Models of Power-law Distributions in Homogeneous Plasmas
Roth, Ilan
2011-01-04
A variety of in-situ measurements in space plasmas point out to an intermittent formation of distribution functions with elongated tails and power-law at high energies. Power-laws form ubiquitous signature of many complex systems, plasma being a good example of a non-Boltzmann behavior for distribution functions of energetic particles. Particles, which either undergo mutual collisions or are scattered in phase space by electromagnetic fluctuations, exhibit statistical properties, which are determined by the transition probability density function of a single interaction, while their non-asymptotic evolution may determine the observed high-energy populations. It is shown that relaxation of the Brownian motion assumptions leads to non-analytical characteristic functions and to generalization of the Fokker-Planck equation with fractional derivatives that result in power law solutions parameterized by the probability density function.
Robust Statistical Detection of Power-Law Cross-Correlation
NASA Astrophysics Data System (ADS)
Blythe, Duncan A. J.; Nikulin, Vadim V.; Müller, Klaus-Robert
2016-06-01
We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram.
Power-law hereditariness of hierarchical fractal bones.
Deseri, Luca; Di Paola, Mario; Zingales, Massimiliano; Pollaci, Pietro
2013-12-01
In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ⩽ β ⩽1. The rheological behavior of the material has therefore been obtained, using the Boltzmann-Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related to the exponent of the power law. PMID:23836622
MHD micropumping of power-law fluids: A numerical solution
NASA Astrophysics Data System (ADS)
Moghaddam, Saied
2013-02-01
The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.
The power laws of nanoscale forces in ambient conditions
NASA Astrophysics Data System (ADS)
Chiesa, Matteo; Santos, Sergio; Lai, Chia-Yun
Power laws are ubiquitous in the physical sciences and indispensable to qualitatively and quantitatively describe physical phenomena. A nanoscale force law that accurately describes the phenomena observed in ambient conditions at several nm or fractions of a nm above a surface however is still lacking. Here we report a power law derived from experimental data and describing the interaction between an atomic force microscope AFM tip modelled as a sphere and a surface in ambient conditions. By employing a graphite surface as a model system the resulting effective power is found to be a function of the tip radius and the distance. The data suggest a nano to mesoscale transition in the power law that results in relative agreement with the distance-dependencies predicted by the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only
Power-law relations in random networks with communities.
Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S H
2016-07-01
Most random graph models are locally tree-like-do not contain short cycles-rendering them unfit for modeling networks with a community structure. We introduce the hierarchical configuration model (HCM), a generalization of the configuration model that includes community structures, while properties such as the size of the giant component, and the size of the giant percolating cluster under bond percolation can still be derived analytically. Viewing real-world networks as realizations of HCM, we observe two previously undiscovered power-law relations: between the number of edges inside a community and the community sizes, and between the number of edges going out of a community and the community sizes. We also relate the power-law exponent τ of the degree distribution with the power-law exponent of the community-size distribution γ. In the case of extremely dense communities (e.g., complete graphs), this relation takes the simple form τ=γ-1. PMID:27575143
General 2.5 power law of metallic glasses
Zeng, Qiaoshi; Lin, Yu; Liu, Yijin; Zeng, Zhidan; Shi, Crystal Y.; Zhang, Bo; Lou, Hongbo; Sinogeikin, Stanislav V.; Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Yang, Wenge; Wang, Weihua; Sheng, Hongwei; Mao, Ho-kwang; Mao, Wendy L.
2016-01-01
Metallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its “disordered” structure. Recently we found that under compression, the volume (V) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/q1). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce68Al10Cu20Co2 MG. This transition is, in effect, the equivalent of a continuous “composition” change of 4f-localized “big Ce” to 4f-itinerant “small Ce,” indicating the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs. PMID:26831105
Between disorder and order: A case study of power law
NASA Astrophysics Data System (ADS)
Cao, Yong; Zhao, Youjie; Yue, Xiaoguang; Xiong, Fei; Sun, Yongke; He, Xin; Wang, Lichao
2016-08-01
Power law is an important feature of phenomena in long memory behaviors. Zipf ever found power law in the distribution of the word frequencies. In physics, the terms order and disorder are Thermodynamic or statistical physics concepts originally and a lot of research work has focused on self-organization of the disorder ingredients of simple physical systems. It is interesting what make disorder-order transition. We devise an experiment-based method about random symbolic sequences to research regular pattern between disorder and order. The experiment results reveal power law is indeed an important regularity in transition from disorder to order. About these results the preliminary study and analysis has been done to explain the reasons.
Power-law relations in random networks with communities
NASA Astrophysics Data System (ADS)
Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.
2016-07-01
Most random graph models are locally tree-like—do not contain short cycles—rendering them unfit for modeling networks with a community structure. We introduce the hierarchical configuration model (HCM), a generalization of the configuration model that includes community structures, while properties such as the size of the giant component, and the size of the giant percolating cluster under bond percolation can still be derived analytically. Viewing real-world networks as realizations of HCM, we observe two previously undiscovered power-law relations: between the number of edges inside a community and the community sizes, and between the number of edges going out of a community and the community sizes. We also relate the power-law exponent τ of the degree distribution with the power-law exponent of the community-size distribution γ . In the case of extremely dense communities (e.g., complete graphs), this relation takes the simple form τ =γ -1 .
The power law distribution for lower tail cities in India
NASA Astrophysics Data System (ADS)
Devadoss, Stephen; Luckstead, Jeff; Danforth, Diana; Akhundjanov, Sherzod
2016-01-01
The city size distribution for lower tail cities has received scant attention because a small portion of the population lives in rural villages, particularly in developed countries, and data are not readily available for small cities. However, in developing countries much of the population inhabits rural areas. The purpose of this study is to test whether power law holds for small cities in India by using the most recent and comprehensive Indian census data for the year 2011. Our results show that lower tail cities for India do exhibit a power law.
Power-law creep from discrete dislocation dynamics.
Keralavarma, Shyam M; Cagin, T; Arsenlis, A; Benzerga, A Amine
2012-12-28
We report two-dimensional discrete dislocation dynamics simulations of combined dislocation glide and climb leading to "power-law" creep in a model aluminum crystal. The approach fully accounts for matter transport due to vacancy diffusion and its coupling with dislocation motion. The existence of quasiequilibrium or jammed states under the applied creep stresses enables observations of diffusion and climb over time scales relevant to power-law creep. The predictions for the creep rates and stress exponents fall within experimental ranges, indicating that the underlying physics is well captured. PMID:23368581
A consistency relation for power law inflation in DBI models
NASA Astrophysics Data System (ADS)
Spaliński, Michał
2007-07-01
Brane inflation in string theory leads to a new realization of power law inflation which can give rise to significant non-gaussianity. This can happen for any throat geometry if the scalar potential is appropriate. This Letter presents a consistency relation connecting the running of the nonlinearity parameter characterizing the non-gaussianity and the scalar and tensor indices. The relationship is valid assuming that the throat geometry and scalar potential support power law inflation, regardless of the level of non-gaussianity.
Cota, Wesley; Ferreira, Silvio C; Ódor, Géza
2016-03-01
We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff) and nonfluctuating (hard cutoff) most connected vertices. Logarithmic and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended regions of the control parameter space λ(1)<λ<λ(2), suggesting Griffiths effects, induced by the topological inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudothresholds is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions remain bounded at λ(2). We argue these to be signals of a smeared transition. However, in the thermodynamic limit the Griffiths effects loose their relevancy and have a conventional critical point at λ(c)=0. Since many real networks are composed by heterogeneous and weakly connected modules, the slow dynamics found in our analysis of independent and finite networks can play an important role for the deeper understanding of such systems. PMID:27078381
Weather-driven model indicative of spatiotemporal power laws.
Song, Weiguo; Zheng, Hongyang; Wang, Jian; Ma, Jian; Satoh, Kohyu
2007-01-01
In the traditional Drossel-Schwabl forest fire model (DS model), the frequency distributions of fire size and fire interval follow a power law and an exponential law, respectively. However, it is found that the frequency-interval distribution of actual forest fires is not exponential, but a power law with periodical fluctuations which may be caused by the daily cycle of weather parameters. Therefore, a weather driven forest fire model (WD model) is built considering actual hourly weather records, with which the fire igniting probability is calculated. The simulation results indicate that the frequency-interval distribution of the WD model agrees with that of actual forest fire data and, at the same time, the frequency-size distributions of the WD and the DS models are in accordance with each other. In the further analysis of the temporal property of weather data, it is found that the change of weather data also exhibits a power-law relation with periodic fluctuations, implying that the external driving from weather parameters is the essential reason for the power-law distribution of fire intervals. The results suggest that natural systems may be coupled with each other and that the decoupling of systems is important to identifying system characteristics. PMID:17358226
Power law corrections to BTZ black hole entropy
NASA Astrophysics Data System (ADS)
Singh, Dharm Veer
2015-11-01
We study the quantum scalar field in the background of BTZ black hole and evaluate the entanglement entropy of the nonvacuum states. The entropy is proportional to the area of event horizon for the ground state, but the area law is violated in the case of nonvacuum states (first excited state and mixed states) and the corrections scale as power law.
Power laws of wealth, market order volumes and market returns
NASA Astrophysics Data System (ADS)
Solomon, Sorin; Richmond, Peter
2001-10-01
Using the Generalized Lotka Volterra model adapted to deal with mutiagent systems we can investigate economic systems from a general viewpoint and obtain generic features common to most economies. Assuming only weak generic assumptions on capital dynamics, we are able to obtain very specific predictions for the distribution of social wealth. First, we show that in a ‘fair’ market, the wealth distribution among individual investors fulfills a power law. We then argue that ‘fair play’ for capital and minimal socio-biological needs of the humans traps the economy within a power law wealth distribution with a particular Pareto exponent α∼ {3}/{2}. In particular, we relate it to the average number of individuals L depending on the average wealth: α∼ L/( L-1). Then we connect it to certain power exponents characterizing the stock markets. We find that the distribution of volumes of the individual (buy and sell) orders follows a power law with similar exponent β∼α∼ {3}/{2}. Consequently, in a market where trades take place by matching pairs of such sell and buy orders, the corresponding exponent for the market returns is expected to be of order γ∼2 α∼3. These results are consistent with recent experimental measurements of these power law exponents (S. Maslov, M. Mills, Physica A 299 (2001) 234 for β; P. Gopikrishnan et al., Phys. Rev. E 60 (1999) 5305 for γ).
Electrokinetically modulated peristaltic transport of power-law fluids.
Goswami, Prakash; Chakraborty, Jeevanjyoti; Bandopadhyay, Aditya; Chakraborty, Suman
2016-01-01
The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields. PMID:26524260
Input-anticipating critical reservoirs show power law forgetting of unexpected input events.
Mayer, Norbert Michael
2015-05-01
Usually reservoir computing shows an exponential memory decay. This letter investigates under which circumstances echo state networks can show a power law forgetting. That means traces of earlier events can be found in the reservoir for very long time spans. Such a setting requires critical connectivity exactly at the limit of what is permissible according to the echo state condition. However, for general matrices, the limit cannot be determined exactly from theory. In addition, the behavior of the network is strongly influenced by the input flow. Results are presented that use certain types of restricted recurrent connectivity and anticipation learning with regard to the input, where power law forgetting can indeed be achieved. PMID:25774542
Effects of sorghum flour addition on chemical and rheological properties of hard white winter wheat
Technology Transfer Automated Retrieval System (TEKTRAN)
This study was carried out to investigate the chemical and rheological properties of different blends prepared using hard white winter wheat and whole or decorticated sorghum. Whole and decorticated sorghum were used to replace 5, 10, 15, and 20% of wheat flour. Wheat samples had higher protein, moi...
A spatial network explanation for a hierarchy of urban power laws
NASA Astrophysics Data System (ADS)
Andersson, Claes; Hellervik, Alexander; Lindgren, Kristian
2005-01-01
Power laws in socioeconomic systems are generally explained as being generated by multiplicative growth of aggregate objects. In this paper we formulate a model of geographic activity distribution with spatial correlations on the level of land lots where multiplicative growth is assumed to be dominant but not exclusive. The purpose is to retain the explanatory power of earlier models due to Simon, Gibrat and others while attaining some additional properties that are attractive for both empirical and modelling purposes. In this sense, the model presented here is a combination of the two factors that have been identified as central to urban evolution but rarely appear unified in the same model: transportation costs and multiplicative growth. The model is an elaboration of a previously reported complex network model of geographical land value evolution. We reproduce statistical properties of an empirical geographical distribution of land values on multiple hierarchical levels: land value per unit area, cluster areas, aggregated land value per cluster and cluster area/perimeter ratios. It is found that transportation effects are not strong enough to disturb the power law distribution of land values per unit area but strong enough to sort nodes to generate a new set of power laws on a higher level of aggregation. The main hypothesis is that all these relations can be understood as consequences of an underlying growing scale-free network of geographic economic interdependencies.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
Deviation from Power Law Behavior in Landslide Phenomenon
NASA Astrophysics Data System (ADS)
Li, L.; Lan, H.; Wu, Y.
2013-12-01
Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law
Diffusion with stochastic resetting at power-law times
NASA Astrophysics Data System (ADS)
Nagar, Apoorva; Gupta, Shamik
2016-06-01
What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ˜τ-(1 +α );α >0 ? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α <1 , to one that is time independent for α >1 . The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.
Lévy flights with power-law absorption
NASA Astrophysics Data System (ADS)
Cattivelli, Luca; Agliari, Elena; Sartori, Fabio; Cassi, Davide
2015-10-01
We consider a particle performing a stochastic motion on a one-dimensional lattice with jump lengths distributed according to a power law with exponent μ +1 . Assuming that the walker moves in the presence of a distribution a (x ) of targets (traps) depending on the spatial coordinate x , we study the probability that the walker will eventually find any target (will eventually be trapped). We focus on the case of power-law distributions a (x ) ˜x-α and we find that, as long as μ <α , there is a finite probability that the walker will never be trapped, no matter how long the process is. This result is shown via analytical arguments and numerical simulations which also evidence the emergence of slow searching (trapping) times in finite-size system. The extension of this finding to higher-dimensional structures is also discussed.
Diffusion with stochastic resetting at power-law times.
Nagar, Apoorva; Gupta, Shamik
2016-06-01
What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ∼τ^{-(1+α)};α>0? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α<1, to one that is time independent for α>1. The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment. PMID:27415186
Power-law distribution in Japanese racetrack betting
NASA Astrophysics Data System (ADS)
Ichinomiya, Takashi
2006-08-01
Gambling is one of the basic economic activities that humans indulge in. An investigation of gambling activities provides deep insights into the economic actions of people and sheds lights on the study of econophysics. In this paper we present an analysis of the distribution of the final odds of the races organized by the Japan Racing Association. The distribution of the final odds Po(x) indicates a clear power-law Po(x)∝1/x, where x represents the final odds. This power-law can be explained on the basis of the assumption that every bettor bets his money on the horse that appears to be the strongest in a race.
On estimating the exponent of power-law frequency distributions.
White, Ethan P; Enquist, Brian J; Green, Jessica L
2008-04-01
Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited. PMID:18481513
Power law relationships for rain attenuation and reflectivity
NASA Technical Reports Server (NTRS)
Devasirvatham, D. M. J.; Hodge, D. B.
1978-01-01
The equivalent reflectivity, specific attenuation and volumetric backscatter cross section of rain are calculated and tabulated at a number of frequencies from 1 to 500 GHz using classical Mie theory. The first two parameters are shown to be closely approximated as functions of rain rate by the power law aR to the b power. The a's and b's are also tabulated and plotted for convenient reference.
Power-law behavior in social and economical phenomena
NASA Astrophysics Data System (ADS)
Yamamoto, Keizo; Miyazima, Sasuke
2004-12-01
We have already found power-law behavior in various phenomena such as high-tax payer, population distribution, name distribution, passenger number at stations, student number in a university from high schools, and so on. We can explain why these phenomena show such interesting behaviors by doing simulations based on adequate models. We have come to the conclusion that there are fractal structures underlying those phenomena.
Power law distribution of dividends in horse races
NASA Astrophysics Data System (ADS)
Park, K.; Domany, E.
2001-02-01
We discovered that the distribution of dividends in Korean horse races follows a power law. A simple model of betting is proposed, which reproduces the observed distribution. The model provides a mechanism to arrive at the true underlying winning probabilities, which are initially unknown, in a self-organized collective fashion, through the dynamic process of betting. Numerical simulations yield excellent agreement with the empirical data.
Robust Statistical Detection of Power-Law Cross-Correlation
Blythe, Duncan A. J.; Nikulin, Vadim V.; Müller, Klaus-Robert
2016-01-01
We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram. PMID:27250630
Model selection for identifying power-law scaling.
Ton, Robert; Daffertshofer, Andreas
2016-08-01
Long-range temporal and spatial correlations have been reported in a remarkable number of studies. In particular power-law scaling in neural activity raised considerable interest. We here provide a straightforward algorithm not only to quantify power-law scaling but to test it against alternatives using (Bayesian) model comparison. Our algorithm builds on the well-established detrended fluctuation analysis (DFA). After removing trends of a signal, we determine its mean squared fluctuations in consecutive intervals. In contrast to DFA we use the values per interval to approximate the distribution of these mean squared fluctuations. This allows for estimating the corresponding log-likelihood as a function of interval size without presuming the fluctuations to be normally distributed, as is the case in conventional DFA. We demonstrate the validity and robustness of our algorithm using a variety of simulated signals, ranging from scale-free fluctuations with known Hurst exponents, via more conventional dynamical systems resembling exponentially correlated fluctuations, to a toy model of neural mass activity. We also illustrate its use for encephalographic signals. We further discuss confounding factors like the finite signal size. Our model comparison provides a proper means to identify power-law scaling including the range over which it is present. PMID:26774613
Decay Power Law in, High Intensity, Isotropic Turbulent Flow
NASA Astrophysics Data System (ADS)
Koster, Timothy; Puga, Alejandro; Larue, John
2014-11-01
In the study reported here, isotropy is determined using the measure proposed by George (1992), where isotropy corresponds to those downstream positions where the product of the Taylor Reynolds number and the skewness of the velocity derivative is a constant. Straight forward approach can be used which is based on the observation of Batchelor (1953), that the square of the Talor micorscale is linearly related to downstream distance relative to the virtual origin. The fact that the decay of downstream velocity variance is described by a power law is shown to imply power law behavior for various other parameters such as the dissipation, the integral length scale, the Taylor microscale, the Kolmogorov microscale and the Taylor Reynolds number and that there is an algebraic relationship between the various power law exponents. Results are presented for mean velocities of 6 and 8 m/s for the downstream decay of the parameters listed in the preceding. The corresponding values of the Taylor Reynolds number at the start of the isotropic region are 290 and 400, and the variance decay exponent and virtual origin are found to be respectively -1.707 and -1.298 and -27.95 and -5.757. The exponents in the decay law for the other parameters are found to be within +/- 3% of the expected values. University of California Irvine Research Funds.
Coalescence of Drops of a Power-law Fluid
NASA Astrophysics Data System (ADS)
Kamat, Pritish; Thete, Sumeet; Basaran, Osman
2014-11-01
Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .
Analysis of Indentation-Derived Power-Law Creep Response
NASA Astrophysics Data System (ADS)
Martinez, Nicholas J.; Shen, Yu-Lin
2016-03-01
The use of instrumented indentation to characterize power-law creep is studied by computational modeling. Systematic finite element analyses were conducted to examine how indentation creep tests can be employed to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant indentation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based materials as a model system. The simulated indentation-strain rate-creep stress relations were compared against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-load hold method. An expanded parametric analysis was then performed using the constant indentation-strain-rate method, taking into account a wide range of possible power-law creep parameters. The indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the findings serves as practical guidance for determining the uniaxial power-law creep response based on the indentation technique.
Estimation of shear modulus in media with power law characteristics.
Zhang, Wei; Holm, Sverre
2016-01-01
Shear wave propagation in tissue generated by the radiation force is usually modeled by either a lossless or a classical viscoelastic equation. However, experimental data shows power law behavior which is not consistent with those approaches. It is well known that fractional derivatives results in power laws, therefore a time fractional wave equation, the Caputo equation, which can be derived from the fractional Kelvin-Voigt stress and strain relation is tested. This equation is solved using the finite difference method with experimental parameters obtained from the existing literature. The equation is characterized by a fractional order which is also the power law exponent of the frequency dependent shear modulus. It is shown that for fractional order between 0 and 1, the equation gives smaller shear modulus than the classical model. The opposite situation applies for fractional order greater than 1. The numerical simulation also shows that the shear wave velocity method is only reliable for small losses. In our case, this is only for a small fractional order. Based on the published values of fractional order from other studies, there is therefore a chance for biased estimation of the shear modulus. PMID:26385841
On the power law of passive scalars in turbulence
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-11-01
It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.
Automated piecewise power-law modeling of biological systems.
Machina, Anna; Ponosov, Arkady; Voit, Eberhard O
2010-09-01
Recent trends suggest that future biotechnology will increasingly rely on mathematical models of the biological systems under investigation. In particular, metabolic engineering will make wider use of metabolic pathway models in stoichiometric or fully kinetic format. A significant obstacle to the use of pathway models is the identification of suitable process descriptions and their parameters. We recently showed that, at least under favorable conditions, Dynamic Flux Estimation (DFE) permits the numerical characterization of fluxes from sets of metabolic time series data. However, DFE does not prescribe how to convert these numerical results into functional representations. In some cases, Michaelis-Menten rate laws or canonical formats are well suited, in which case the estimation of parameter values is easy. However, in other cases, appropriate functional forms are not evident, and exhaustive searches among all possible candidate models are not feasible. We show here how piecewise power-law functions of one or more variables offer an effective default solution for the almost unbiased representation of uni- and multivariate time series data. The results of an automated algorithm for their determination are piecewise power-law fits, whose accuracy is only limited by the available data. The individual power-law pieces may lead to discontinuities at break points or boundaries between sub-domains. In many practical applications, these boundary gaps do not cause problems. Potential smoothing techniques, based on differential inclusions and Filippov's theory, are discussed in Appendix A. PMID:20060428
Robust Statistical Detection of Power-Law Cross-Correlation.
Blythe, Duncan A J; Nikulin, Vadim V; Müller, Klaus-Robert
2016-01-01
We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram. PMID:27250630
Spectrum of power laws for curved hand movements
Huh, Dongsung; Sejnowski, Terrence J.
2015-01-01
In a planar free-hand drawing of an ellipse, the speed of movement is proportional to the −1/3 power of the local curvature, which is widely thought to hold for general curved shapes. We investigated this phenomenon for general curved hand movements by analyzing an optimal control model that maximizes a smoothness cost and exhibits the −1/3 power for ellipses. For the analysis, we introduced a new representation for curved movements based on a moving reference frame and a dimensionless angle coordinate that revealed scale-invariant features of curved movements. The analysis confirmed the power law for drawing ellipses but also predicted a spectrum of power laws with exponents ranging between 0 and −2/3 for simple movements that can be characterized by a single angular frequency. Moreover, it predicted mixtures of power laws for more complex, multifrequency movements that were confirmed with human drawing experiments. The speed profiles of arbitrary doodling movements that exhibit broadband curvature profiles were accurately predicted as well. These findings have implications for motor planning and predict that movements only depend on one radian of angle coordinate in the past and only need to be planned one radian ahead. PMID:26150514
Non-power law behavior in fragmentation cascades
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.; Rafikov, Roman R.
2011-07-01
Collisions resulting in fragmentation are important in shaping the mass spectrum of minor bodies in the asteroid belt, the Kuiper Belt, and debris disks. Models of fragmentation cascades typically find that in steady-state, the solution for the particle mass distribution is a power law in the mass. However, previous studies have typically assumed that the mass of the largest fragment produced in a collision with just enough energy to shatter the target and disperse half its mass to infinity is directly proportional to the target mass. We show that if this assumption is not satisfied, then the power law solution for the steady-state particle mass distribution is modified by a multiplicative factor, which is a slowly varying function of the mass. We derive analytic solutions for this correction factor and confirm our results numerically. We find that this correction factor proves important when extrapolating over many orders of magnitude in mass, such as when inferring the number of large objects in a system based on infrared observations. In the course of our work, we have also discovered an unrelated type of non-power law behavior: waves can persist in the mass distribution of objects even in the absence of upper or lower cutoffs to the mass distribution or breaks in the strength law.
Scale Invariance in Landscape Evolution Models Using Stream Power Laws
NASA Astrophysics Data System (ADS)
Kwang, J. S.; Parker, G.
2014-12-01
Landscape evolution models (LEM) commonly utilize stream power laws to simulate river incision with formulations such as E = KAmSn, where E is a vertical incision rate [L/T], K is an erodibility constant [L1-2m/T], A is an upstream drainage area [L2], S is a local channel gradient [-], and m and n are positive exponents that describe the basin hydrology. In our reduced complexity model, the landscape approached equilibrium by balancing an incision rate with a constant, uniform, vertical rock uplift rate at every location in the landscape. From our simulations, for a combination of m and n, the landscape exhibited scale invariance. That is, regardless of the size and scale of the basin, the relief and vertical structure of the landscape remained constant. Therefore, the relief and elevation profile of the landscape at equilibrium were only dependent on the coefficients for erodibility and uplift and an equation that described how upstream area, A, increased as the length of a stream increased. In our analytical 1D models, we utilized two equations that described upslope area, (a) A = Bl, where B is the profile width [L], and l is the stream length from the ridge [L] and (b) A = Clh, Hack's Law, where C is a constant [L2-h] and h is a positive exponent. With these equations, (a) m = n and (b) hm = n resulted in scale invariance. In our numerical 2D models, the relationship between A and l was inherent in the actual structure of the drainage network. From our numerical 2D results, scale invariance occurred when 2m = n. Additionally, using reasonable values from the literature for exponents, n, m and h, resulted in singularities at the ridges in the landscape, which caused truncation error. In consequence, the elevation of the ridge increased as the number of grid cells in the domain increased in the numerical model, and the model was unable to converge. These singularities at the ridges appeared when (a) m ≥ n and (b) hm ≥ n in the analytical model and 2m ≥ n in
NASA Astrophysics Data System (ADS)
Stewart, Michael; Morgenstern, Uwe
2013-04-01
Understanding runoff generation is important for management of freshwater systems. Determining transit time distributions of streamwaters and how they change with discharge gives information on the flowpaths and recharge sources of streams - vital information for determining the responses of streams to stressors such as pollution, landuse change, or climate change. This work takes a first look at unique information on how transit time distributions change with discharge in some New Zealand catchments. Transit time distributions of streamwaters have been determined from tritium measurements on single samples in this work. This allows changes with stream discharge to be observed, in contrast to previous isotope studies which have given averaged transit time distributions based on series of samples. In addition, tritium reveals the wide spectrum of ages present in streams whereas oxygen-18 or chloride variations only show the younger ages (Stewart et al., 2010). It was found that the mean transit time (MTT) data could be reasonably represented by straight lines in log-log plots, indicating power law relationships between MTT and discharge. Similar power law behaviour has been observed for the rock forming elements such as silica in streamwaters (Godsey et al., 2009). Case studies are presented for two New Zealand catchments, both with volcanic ash substrates. Toenepi is a dairy catchment near Hamilton, which shows well-constrained power law relationships between MTT and discharge, and between silica concentration and discharge (Morgenstern et al., 2010). Baseflow MTTs vary from 2.5 to 157 years. Tutaeuaua is a pastoral farming catchment near Taupo. Results for nested catchments along the stream also show power law relationships for both MTT and silica with discharge. Streamwater MTTs vary from 1 to 11 years. The results indicate that (1) relatively old waters dominate many streams, (2) streamwater ages vary with discharge, and (3) age, like silica, varies according to
2015-01-01
Background Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. Objectives The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. Methods Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. Results All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R 2 values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). Conclusions This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns
Scaling, dimensional analysis, and hardness measurements
NASA Astrophysics Data System (ADS)
Cheng, Yang-Tse; Cheng, Che-Min; Li, Zhiyong
2000-03-01
Hardness is one of the frequently used concepts in tribology. For nearly one hundred years, indentation experiments have been performed to obtain the hardness of materials. Recent years have seen significant improvements in indentation equipment and a growing need to measure the mechanical properties of materials on small scales. However, questions remain, including what properties can be measured using instrumented indention techniques and what is hardness? We discuss these basic questions using dimensional analysis together with finite element calculations. We derive scaling relationships for loading and unloading curve, initial unloading slope, contact depth, and hardness. Hardness is shown to depend on elastic, as well as plastic properties of materials. The conditions for "piling-up" and "sinking-in" of surface profiles in indentation are obtained. The methods for estimating contact area are examined. The work done during indentation is also studied. A relationship between hardness, elastic modulus, and the work of indentation is revealed. This relationship offers a new method for obtaining hardness and elastic modulus. In addition, we demonstrate that stress-strain relationships may not be uniquely determined from loading/unloading curves alone using a conical or pyramidal indenter. The dependence of hardness on indenter geometry is also studied. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and "indentation size effect" is established.
Inflation in the generalized inverse power law scenario
Lu, Zhun
2013-11-01
We propose a single field inflationary model by generalizing the inverse power law potential from the intermediate model. We study the implication of our model on the primordial anisotropy of cosmological microwave background radiation. Specifically, we apply the slow-roll approximation to calculate the scalar spectral tilt n{sub s} and the tensor-to-scalar ratio r. The results are compared with the recent data measured by the Planck satellite. We find that by choosing proper values for the parameters, our model can well describe the Planck data.
Elastohydrodynamic analysis using a power law pressure-viscosity relation
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Zaretsky, E. V.
1973-01-01
An isothermal elastohydrodynamic (EHD) inlet analysis of the Grubin type which considers a power law pressure-viscosity relation and a finite pressure at the inlet edge of the Hertzian contact zone was performed. Comparisons made with published X-ray EHD film thickness data for a synthetic paraffinic oil and when conventional EHD theory showed that the present theory exhibits a slightly stronger film thickness load dependence than do previous isothermal EHD theories but far less than that exhibited by the measured data.
Power-law photoluminescence decay in quantum dots
Král, Karel; Menšík, Miroslav
2014-05-15
Some quantum dot samples show a long-time (power-law) behavior of their luminescence intensity decay. This effect has been recently explained as being due to a cooperation of many tunneling channels transferring electrons from small quantum dots with triplet exciton to quantum dots at which the electrons can recombine with the holes in the valence band states. In this work we show that the long-time character of the sample luminescence decay can also be caused by an intrinsic property of a single dot, namely, by a non-adiabatic effect of the electron occupation up-conversion caused by the electron-phonon multiple scattering mechanism.
Analytical Limit Distributions from Random Power-Law Interactions
NASA Astrophysics Data System (ADS)
Zaid, Irwin; Mizuno, Daisuke
2016-07-01
Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated.
Analysis of the proof test with power law assumptions
NASA Astrophysics Data System (ADS)
Hanson, Thomas A.
1994-03-01
Prooftesting optical fiber is required to assure a minimum strength over all lengths of fiber. This is done as the fiber is wound onto a spool by applying a tensile stress over a length of fiber as it passes a stress region. The failure of weak flaws assures a minimum strength of lengths that survive the test. Flaw growth is assumed to follow the power law. Distributions of initial flaw size are assumed to be of the Weibull type. Experimental data are presented to validate these assumptions.
Adhesion of nanoscale asperities with power-law profiles
NASA Astrophysics Data System (ADS)
Grierson, David S.; Liu, Jingjing; Carpick, Robert W.; Turner, Kevin T.
2013-02-01
The behavior of single-asperity micro- and nanoscale contacts in which adhesion is present is important for the performance of many small-scale mechanical systems and processes, such as atomic force microscopy (AFM). When analyzing such problems, the bodies in contact are often assumed to have paraboloidal shapes, thus allowing the application of the familiar Johnson-Kendall-Roberts (JKR), Derjaguin-Müller-Toporov (DMT), or Maugis-Dugdale (M-D) adhesive contact models. However, in many situations the asperities do not have paraboloidal shapes and, instead, have geometries that may be better described by a power-law function. An M-D-n analytical model has recently been developed to extend the M-D model to asperities with power-law profiles. We use a combination of M-D-n analytical modeling, finite element (FE) analysis, and experimental measurements to investigate the behavior of nanoscale adhesive contacts with non-paraboloidal geometries. Specifically, we examine the relationship between pull-off force, work of adhesion, and range of adhesion for asperities with power-law-shaped geometries. FE analysis is used to validate the M-D-n model and examine the effect of the shape of the adhesive interaction potential on the pull-off force. In the experiments, the extended M-D model is applied to analyze pull-off force measurements made on nanoscale tips that are engineered via gradual wear to have power-law shapes. The experimental and modeling results demonstrate that the range of the adhesive interaction is a crucial parameter when quantifying the adhesion of non-paraboloidal tips, quite different than the familiar paraboloidal case. The application of the M-D-n model to the experimental results yields an unusually large adhesion range of 4-5 nm, a finding we attribute to either the presence of long-range van der Waals forces or deviations from continuum theory due to atomic-scale roughness of the tips. Finally, an adhesion map to aid in analysis of pull-off force
Power laws, discontinuities and regional city size distributions
Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.
2008-01-01
Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux. ?? 2008.
Mobile hard substrata - An additional biodiversity source in a high latitude shallow subtidal system
NASA Astrophysics Data System (ADS)
Balazy, Piotr; Kuklinski, Piotr
2013-03-01
This study demonstrates the importance of a hard mobile substratum (hermit crab shells) for Arctic biodiversity. Based on previous observations from other geographic regions we hypothesized that this niche at high latitudes would support a higher biodiversity of epifauna than might be predicted from similar substrata. We test whether the hermit crab epifauna is specific to that substratum providing unique biodiversity components to the local community. From four study sites in Isfjorden (78°N), West Spitsbergen and two study sites in Northern Norway (69°N) we collected approximately 50 each of hermit crabs, gastropods and pebbles, of visually similar surface area using SCUBA diving. Hermit crab shells were colonized by a larger number of epifaunal species than either gastropods or pebbles, even when they were of a larger size. Among 87 taxa found on all the three substrata, 22 occurred only on hermit crab shells. Except for two study sites hermit crab shells also supported more individuals. This study shows that the contribution of shells carried by hermit crabs to high-latitude, shallow-subtidal diversity is higher than might be predicted by their surface area alone and that hermit crabs modify, maintain and create a unique habitat. This is the result of a number of factors interacting positively on the presence of epifauna including shell surface heterogeneity and the complex influence of the crab host.
A graph-dynamic model of the power law of practice and the problem-solving fan-effect.
Shrager, J; Hogg, T; Huberman, B A
1988-10-21
Numerous human learning phenomena have been observed and captured by individual laws, but no unified theory of learning has succeeded in accounting for these observations. A theory and model are proposed that account for two of these phenomena: the power law of practice and the problem-solving fan-effect. The power law of practice states that the speed of performance of a task will improve as a power of the number of times that the task is performed. The power law resulting from two sorts of problem-solving changes, addition of operators to the problem-space graph and alterations in the decision procedure used to decide which operator to apply at a particular state, is empirically demonstrated. The model provides an analytic account for both of these sources of the power law. The model also predicts a problem-solving fan-effect, slowdown during practice caused by an increase in the difficulty of making useful decisions between possible paths, which is also found empirically. PMID:3175664
Inference of Statistical Patterns in Complex Geosystems: Fitting Power-law Distributions.
NASA Astrophysics Data System (ADS)
Deluca, Anna; Corral, Alvaro
2014-05-01
Power-law distributions contain precious information about a large variety of physical processes. Although there are sound theoretical grounds for these distributions, the empirical evidence giving support to power laws has been traditionally weak. Recently, Clauset et al. have proposed a systematic method to find over which range (if any) a certain distribution behaves as a power law. However, their method fails to recognize true (simulated) power-law tails in some instances, rejecting the power-law hypothesis. Moreover, the method does not perform well when it is extended to power-law distributions with an upper truncation. We present an alternative procedure, valid for truncated as well as for non-truncated power-law distributions, based in maximum likelihood estimation, the Kolmogorov-Smirnov goodness-of-fit test, and Monte Carlo simulations. We will test the performance of our method on several empirical data which were previously analyzed with less systematic approaches.
Power Law Distributions of Patents as Indicators of Innovation
NASA Astrophysics Data System (ADS)
O'Neale, Dion; Hendy, Shaun
2013-03-01
The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Such figures however give an overly simplistic measure of innovation within a country. Here we present evidence that the distribution of patents amongst applicants within many countries is well-fitted to a power law distribution with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.
An inverse method for rheometry of power-law fluids
NASA Astrophysics Data System (ADS)
Hemaka Bandulasena, H. C.; Zimmerman, William B.; Rees, Julia M.
2011-12-01
This paper is concerned with the determination of the constitutive viscous parameters of dilute solutions of xanthan gum by means of an inverse method used in conjunction with finite element modeling of the governing system of partial differential equations. At low concentrations xanthan gum behaves as a shear-thinning, power-law non-Newtonian fluid. Finite element modeling is used to simulate the pressure-driven flow of xanthan gum solutions in a microchannel T-junction. As the flow is forced to turn the corner of the T-junction a range of shear rates, and hence viscosities, is produced. It is shown that the statistical properties of the velocity field are sensitive to the constitutive parameters of the power-law model. The inverse method is shown to be stable and accurate, with measurement error in the velocity field translating to small errors in the rheological parameter estimation. Due to the particular structure of the inverse map, the error propagation is substantially less than the estimate from the Hadamard criterion.
Influence of DBT reconstruction algorithm on power law spectrum coefficient
NASA Astrophysics Data System (ADS)
Vancamberg, Laurence; Carton, Ann-Katherine; Abderrahmane, Ilyes H.; Palma, Giovanni; Milioni de Carvalho, Pablo; Iordache, Rǎzvan; Muller, Serge
2015-03-01
In breast X-ray images, texture has been characterized by a noise power spectrum (NPS) that has an inverse power-law shape described by its slope β in the log-log domain. It has been suggested that the magnitude of the power-law spectrum coefficient β is related to mass lesion detection performance. We assessed β in reconstructed digital breast tomosynthesis (DBT) images to evaluate its sensitivity to different typical reconstruction algorithms including simple back projection (SBP), filtered back projection (FBP) and a simultaneous iterative reconstruction algorithm (SIRT 30 iterations). Results were further compared to the β coefficient estimated from 2D central DBT projections. The calculations were performed on 31 unilateral clinical DBT data sets and simulated DBT images from 31 anthropomorphic software breast phantoms. Our results show that β highly depends on the reconstruction algorithm; the highest β values were found for SBP, followed by reconstruction with FBP, while the lowest β values were found for SIRT. In contrast to previous studies, we found that β is not always lower in reconstructed DBT slices, compared to 2D projections and this depends on the reconstruction algorithm. All β values estimated in DBT slices reconstructed with SBP were larger than β values from 2D central projections. Our study also shows that the reconstruction algorithm affects the symmetry of the breast texture NPS; the NPS of clinical cases reconstructed with SBP exhibit the highest symmetry, while the NPS of cases reconstructed with SIRT exhibit the highest asymmetry.
Interfacial pattern formation in confined power-law fluids
NASA Astrophysics Data System (ADS)
Brandão, Rodolfo; Fontana, João V.; Miranda, José A.
2014-07-01
The interfacial pattern formation problem in an injection-driven radial Hele-Shaw flow is studied for the situation in which a Newtonian fluid of negligible viscosity displaces a viscous non-Newtonian power-law fluid. By utilizing a Darcy-law-like formulation, we tackle the fluid-fluid interface evolution problem perturbatively, and we derive second-order mode-coupling equations that describe the time evolution of the perturbation amplitudes. This allows us to investigate analytically how the non-Newtonian nature of the dislocated fluid determines the morphology of the emerging interfacial patterns. If the pushed fluid is shear-thinning, our results indicate the development of side-branching structures. On the other hand, if the displaced fluid is shear-thickening, one detects the formation of petal-like shapes, markedly characterized by strong tip-splitting events. Finally, a time-dependent injection protocol is presented that is able to restrain finger proliferation via side-branching and tip-splitting. This permits the emergence of symmetric n-fold interfacial shapes for which the number of fingers remains fixed as time progresses. This procedure generalizes existing controlling strategies for purely Newtonian flow circumstances to the case of a non-Newtonian, displaced power-law fluid.
Power Law Distributions of Patents as Indicators of Innovation
O’Neale, Dion R. J.; Hendy, Shaun C.
2012-01-01
The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries. PMID:23227144
Power-law distribution of gene expression fluctuations
NASA Astrophysics Data System (ADS)
Nacher, J. C.; Ochiai, T.
2008-09-01
Large-scale genomic technologies has opened new possibilities to infer gene regulatory networks from time series data. Here, we investigate the relationship between the dynamic information of gene expression in time series and the underlying network structure. First, our results show that the distribution of gene expression fluctuations (i.e., standard deviation) follows a power-law. This finding indicates that while most genes exhibit a relatively low variation in expression level, a few genes are revealed as highly variable genes. Second, we propose a stochastic model that explains the emergence of this power-law behavior. The model derives a relationship that connects the standard deviation (variance) of each node to its degree. In particular, it allows us to identify a global property of the underlying genetic regulatory network, such as the degree exponent, by only computing dynamic information. This result not only offers an interesting link to explore the topology of real systems without knowing the real structure but also supports earlier findings showing that gene networks may follow a scale-free distribution.
Power Laws in Real Estate Prices during Bubble Periods
NASA Astrophysics Data System (ADS)
Ohnishi, Takaaki; Mizuno, Takayuki; Shimizu, Chihiro; Watanabe, Tsutomu
How can we detect real estate bubbles? In this paper, we propose making use of information on the cross-sectional dispersion of real estate prices. During bubble periods, prices tend to go up considerably for some properties, but less so for others, so that price inequality across properties increases. In other words, a key characteristic of real estate bubbles is not the rapid price hike itself but a rise in price dispersion. Given this, the purpose of this paper is to examine whether developments in the dispersion in real estate prices can be used to detect bubbles in property markets as they arise, using data from Japan and the U.S. First, we show that the land price distribution in Tokyo had a power-law tail during the bubble period in the late 1980s, while it was very close to a lognormal before and after the bubble period. Second, in the U.S. data we find that the tail of the house price distribution tends to be heavier in those states which experienced a housing bubble. We also provide evidence suggesting that the power-law tail observed during bubble periods arises due to the lack of price arbitrage across regions.
Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems
NASA Astrophysics Data System (ADS)
Parolari, A.; Katul, G. G.; Porporato, A. M.
2015-12-01
The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.
Extended power-law scaling of heavy-tailed random fields or processes
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Riva, M.; Neuman, S. P.
2012-06-01
We analyze the scaling behaviors of two log permeability data sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm along two horizontal transects on a 21 m long outcrop of lower-shoreface bioturbated sandstone near Escalante, Utah. Order q sample structure functions of each data set scale as a power ξ (q) of separation scale or lag, s, over limited ranges of s. A procedure known as Extended Self-Similarity (ESS) extends this range to all lags and yields a nonlinear (concave) functional relationship between ξ (q) and q. Whereas the literature tends to associate extended and nonlinear power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a) ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian) truncated (additive, self-affine, monofractal) fractional Brownian motion (tfBm), the latter being unique in predicting a breakdown in power-law scaling at small and large lags, and (b) nonlinear power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent with samples from sub-Gaussian random fields or processes subordinated to tfBm, stemming from lack of ergodicity which causes sample moments to scale differently than do their ensemble counterparts. Here we (i) demonstrate that the above two data sets are consistent with sub-Gaussian random fields subordinated to tfBm and (ii) provide maximum likelihood estimates of parameters characterizing the corresponding Lévy stable subordinators and tfBm functions.
Optimal numerical flux of power-law fluids in some partially full pipes
NASA Astrophysics Data System (ADS)
Lefton, Lew; Wei, Dongming; Liu, Yu
2014-07-01
Consider the steady state pressure driven flow of a power-law fluid in a partially filled straight pipe. It is known that an increase in flux can be achieved for a fixed pressure by partially filling the pipe and having the remaining volume either void or filled with a less viscous, lubricating fluid. If the pipe has circular cross section, the fluid level which maximizes flux is the level which avoids contact with exactly 25% of the boundary. This result can be proved analytically for Newtonian fluids and has been verified numerically for certain non-Newtonian models. This paper provides a generalization of this work numerically to pipes with non-circular cross sections which are partially full with a power-law fluid. A simple and physically plausible geometric condition is presented which can be used to approximate the fluid level that maximizes flux in a wide range of pipe geometries. Additional increases in flux for a given pressure can be obtained by changing the shape of the pipe but leaving the perimeter fixed. This computational analysis of flux as a function of both fluid level and pipe geometry has not been considered to our knowledge. Fluxes are computed using a special discretization scheme, designed to uncover general properties which are only dependent on fluid level and/or pipe cross-sectional geometry. Computations use finite elements and take advantage of the variational structure inherent in the power-law model. A minimization technique for approximating the critical points of the associated non-linear energy functional is used. In particular, the numerical scheme for the non-linear partial differential equation has been proved to be convergent with known error estimates. The numerical results obtained in this work can be useful for designing pipes and canals for transportation of non-Newtonian fluids, such as those in chemical engineering and food processing engineering.
Shah-Khan, M.Z.
1981-10-01
Results of the research work show that the addition of 0.1% yttrium does not significantly change the mechanical properties of the AL1 alloy with temperature (even though the yttrium-doped samples did show a slight increase in yield stress and hardness for tests above 700/sup 0/C); the room temperature strength of the undoped AL1 alloy increases upon annealing at temperatures above 600/sup 0/C; and the room temperature uniform and fracture strains of the undoped AL1 alloy decrease upon annealing at temperatures above 600/sup 0/C.
Lifetimes of metastable ion clouds in a Paul trap: Power-law scaling
NASA Astrophysics Data System (ADS)
Weiss, D. K.; Nam, Y. S.; Blümel, R.
2016-04-01
It is well known that ions stored in a Paul trap, one of the most versatile tools in atomic, molecular, and optical (AMO) physics, may undergo a transition from a disordered cloud state to a geometrically well-ordered crystalline state, the Wigner crystal. In this paper we predict that close to the transition, the average lifetime τ¯m of the metastable cloud follows a power law, τ¯m˜(γ-γc) -β , where γc is the value of the damping constant at which the transition occurs. The exponent β depends on the trap control parameter q , but is independent of both the number of particles N stored in the trap and the trap control parameter a , which determines the shape (oblate, prolate, or spherical) of the ion cloud. In addition, we find that for given a and q , γc scales approximately like γc=C ln[ln(N ) ] +D as a function of N , where C and D are constants. Our predictions may be tested experimentally with equipment already available at many AMO laboratories. In addition to their importance in AMO trap physics, we also discuss possible applications of our results to other periodically driven many-particle systems, such as, e.g., particle accelerator beams, and, based on our trap results, conjecture that power laws characterize the phase transition to the Wigner crystal in all such systems.
Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements.
Schaal, S; Sternad, D
2001-01-01
The 2/3 power law, the nonlinear relationship between tangential velocity and radius of curvature of the end-effector trajectory, is thought to be a fundamental constraint of the central nervous system in the formation of rhythmic endpoint trajectories. However, studies on the 2/3 power law have been confined largely to planar drawing patterns of relatively small size. With the hypothesis that this strategy overlooks nonlinear effects that are constitutive in movement generation, the present experiments tested the validity of the power law in elliptical patterns that were not confined to a planar surface and which were performed by the unconstrained 7-degrees of freedom (DOF) arm, with significant variations in pattern size and workspace orientation. Data were recorded from five human subjects where the seven joint angles and the endpoint trajectories were analyzed. Additionally, an anthropomorphic 7-DOF robot arm served as a "control subject" whose endpoint trajectories were generated on the basis of the human joint angle data, modeled as simple harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power law is systematically violated with increasing pattern size, in both exponent and the goodness of fit. The origins of these violations can be explained analytically based on smooth, rhythmic trajectory formation and the kinematic structure of the human arm. We conclude that, in unconstrained rhythmic movements, the power law seems to be a by-product of a movement system that favors smooth trajectories, and that it is unlikely to serve as a primary movement-generating principle. Our data rather suggest that subjects employed smooth oscillatory pattern generators in joint space to realize the required movement patterns. PMID:11204414
Power laws and extreme values in antibody repertoires
NASA Astrophysics Data System (ADS)
Boyer, Sebastien; Biswas, Dipanwita; Scaramozzino, Natale; Kumar, Ananda Soshee; Nizak, Clément; Rivoire, Olivier
2015-03-01
Evolution by natural selection involves the succession of three steps: mutations, selection and proliferation. We are interested in describing and characterizing the result of selection over a population of many variants. After selection, this population will be dominated by the few best variants, with highest propensity to be selected, or highest ``selectivity.'' We ask the following question: how is the selectivity of the best variants distributed in the population? Extreme value theory, which characterizes the extreme tail of probability distributions in terms of a few universality class, has been proposed to describe it. To test this proposition and identify the relevant universality class, we performed quantitative in vitro experimental selections of libraries of >105 antibodies using the technique of phage display. Data obtained by high-throughput sequencing allows us to fit the selectivity distribution over more than two decades. In most experiments, the results show a striking power law for the selectivity distribution of the top antibodies, consistent with extreme value theory.
Power law tails in the Italian personal income distribution
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.
2005-05-01
We investigate the shape of the Italian personal income distribution using microdata from the Survey on Household Income and Wealth, made publicly available by the Bank of Italy for the years 1977-2002. We find that the upper tail of the distribution is consistent with a Pareto-power law type distribution, while the rest follows a two-parameter lognormal distribution. The results of our analysis show a shift of the distribution and a change of the indexes specifying it over time. As regards the first issue, we test the hypothesis that the evolution of both gross domestic product and personal income is governed by similar mechanisms, pointing to the existence of correlation between these quantities. The fluctuations of the shape of income distribution are instead quantified by establishing some links with the business cycle phases experienced by the Italian economy over the years covered by our dataset.
There is more than a power law in Zipf.
Cristelli, Matthieu; Batty, Michael; Pietronero, Luciano
2012-01-01
The largest cities, the most frequently used words, the income of the richest countries, and the most wealthy billionaires, can be all described in terms of Zipf's Law, a rank-size rule capturing the relation between the frequency of a set of objects or events and their size. It is assumed to be one of many manifestations of an underlying power law like Pareto's or Benford's, but contrary to popular belief, from a distribution of, say, city sizes and a simple random sampling, one does not obtain Zipf's law for the largest cities. This pathology is reflected in the fact that Zipf's Law has a functional form depending on the number of events N. This requires a fundamental property of the sample distribution which we call 'coherence' and it corresponds to a 'screening' between various elements of the set. We show how it should be accounted for when fitting Zipf's Law. PMID:23139862
Bubble coalescence in a power-law fluid
NASA Astrophysics Data System (ADS)
Kamat, Pritish; Thete, Sumeet; Basaran, Osman
2015-11-01
As two spherical gas bubbles in a liquid are slowly brought together, the liquid film or sheet between them drains and ultimately ruptures, forming a circular hole that connects them. The high curvature near the edge of the liquid sheet drives flow radially outward, causing the film to retract and the radius of the hole to increase with time. Recent experimental and theoretical work in this area has uncovered self-similarity and universal scaling regimes when two bubbles coalesce in a Newtonian fluid. Motivated by applications such as polymer and composites processing, food and drug manufacture, and aeration/deaeration systems where the liquids often exhibit deformation-rate thinning rheology, we extend the recent Newtonian studies to bubble coalescence in power-law fluids. In our work, we use a combination of thin-film theory and full 3D, axisymmetric computations to probe the dynamics in the aftermath of the singularity.
Optimized dynamical decoupling for power-law noise spectra
Pasini, S.; Uhrig, G. S.
2010-01-15
We analyze the suppression of decoherence by means of dynamical decoupling in the pure-dephasing spin-boson model for baths with power law spectra. The sequence of ideal pi pulses is optimized according to the power of the bath. We expand the decoherence function and separate the canceling divergences from the relevant terms. The proposed sequence is chosen to be the one minimizing the decoherence function. By construction, it provides the best performance. We analytically derive the conditions that must be satisfied. The resulting equations are solved numerically. The solutions are very close to the Carr-Purcell-Meiboom-Gill sequence for a soft cutoff of the bath while they approach the Uhrig dynamical-decoupling sequence as the cutoff becomes harder.
Economic demography in fuzzy spatial dilemmas and power laws
NASA Astrophysics Data System (ADS)
Fort, H.; Pérez, N.
2005-03-01
Adaptive agents, playing the iterated Prisoner's Dilemma (IPD) in a two-dimensional spatial setting and governed by Pavlovian strategies ("higher success-higher chance to stay"), are used to approach the problem of cooperation between self-interested individuals from a novel angle: We investigate the effect of different possible measures of success (MS) used by players to asses their performance in the game. These MS involve quantities such as: the player's utilities U, his cumulative score (or "capital") W, his neighborhood "welfare", etc. To handle an imprecise concept like "success" the agents use fuzzy logic. The degree of cooperation, the "economic demography" and the "efficiency" attained by the system depend dramatically on the MS. Specifically, patterns of "segregation" or "exploitation" are observed for some MS. On the other hand, power laws, that may be interpreted as signatures of critical self-organization (SOC), constitute a common feature for all the MS.
Deviations from uniform power law scaling in nonstationary time series
NASA Technical Reports Server (NTRS)
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
Analytical Limit Distributions from Random Power-Law Interactions.
Zaid, Irwin; Mizuno, Daisuke
2016-07-15
Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated. PMID:27472105
Exponential and power laws in public procurement markets
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav; Skuhrovec, Jiri
2012-07-01
We analyze for the first time a unique public procurement database, which includes information about a number of bidders for a contract, a final price, an identification of a winner and an identification of a contracting authority for each of more than 40000 public procurements in the Czech Republic between 2006 and 2011, focusing on the distributional properties of the variables of interest. We uncover several scaling laws —the exponential law for the number of bidders, and the power laws for the total revenues and total spendings of the participating companies, which even follows Zipf's law for the 100 most spending institutions. We propose an analogy between extensive and non-extensive systems in physics and the public procurement market situations. Through an entropy maximization, such analogy yields some interesting results and policy implications with respect to the Maxwell-Boltzmann and Pareto distributions in the analyzed quantities.
Power-law weighted networks from local attachments
NASA Astrophysics Data System (ADS)
Moriano, P.; Finke, J.
2012-07-01
This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of i) publications indexed by the Institute for Scientific Information from 1981 to 1997; ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.
Bootstrap Percolation in Power-Law Random Graphs
NASA Astrophysics Data System (ADS)
Amini, Hamed; Fountoulakis, Nikolaos
2014-04-01
A bootstrap percolation process on a graph is an "infection" process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least infected neighbours becomes infected and remains so forever. The parameter is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse this process in the case where the underlying graph is an inhomogeneous random graph, which exhibits a power-law degree distribution, and initially there are randomly infected nodes. The main focus of this paper is the number of vertices that will have been infected by the end of the process. The main result of this work is that if the degree sequence of the random graph follows a power law with exponent , where , then a sublinear number of initially infected vertices is enough to spread the infection over a linear fraction of the nodes of the random graph, with high probability. More specifically, we determine explicitly a critical function such that with the following property. Assuming that is the number of vertices of the underlying random graph, if , then the process does not evolve at all, with high probability as grows, whereas if , then there is a constant such that, with high probability, the final set of infected vertices has size at least . This behaviour is in sharp contrast with the case where the underlying graph is a random graph with . It follows from an observation of Balogh and Bollobás that in this case if the number of initially infected vertices is sublinear, then there is lack of evolution of the process. It turns out that when the maximum degree is , then depends also on . But when the maximum degree is , then.
Bose-Einstein condensation in dark power-law laser traps
NASA Astrophysics Data System (ADS)
Jaouadi, A.; Gaaloul, N.; Viaris de Lesegno, B.; Telmini, M.; Pruvost, L.; Charron, E.
2010-08-01
We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order ℓ allows for the exploration of a multitude of power-law trapping situations in one, two, and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasihomogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a “finger” or of a “hockey puck” in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of the same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.
Moduli of curve families and (quasi-)conformality of power-law entropies
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Nikos
2016-03-01
We present aspects of the moduli of curve families on a metric measure space which may prove useful in calculating, or in providing bounds to, non-additive entropies having a power-law functional form. We use as paradigmatic cases the calculations of the moduli of curve families for a cylinder and for an annulus in ℝn. The underlying motivation for these studies is that the definitions and some properties of the modulus of a curve family resembles those of the Tsallis entropy, when the latter is seen from a micro-canonical viewpoint. We comment on the origin of the conjectured invariance of the Tsallis entropy under Möbius transformations of the non-extensive (entropic) parameter. Needing techniques applicable to both locally Euclidean and fractal classes of spaces, we examine the behavior of the Tsallis functional, via the modulus, under quasi-conformal maps. We comment on properties of such maps and their possible significance for the dynamical foundations of power-law entropies.
Bose-Einstein condensation in dark power-law laser traps
Jaouadi, A.; Gaaloul, N.; Viaris de Lesegno, B.; Pruvost, L.; Telmini, M.; Charron, E.
2010-08-15
We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order l allows for the exploration of a multitude of power-law trapping situations in one, two, and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasihomogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a 'finger' or of a 'hockey puck' in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of the same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.
Power law statistics of force and acoustic emission from a slowly penetrated granular bed
NASA Astrophysics Data System (ADS)
Matsuyama, K.; Katsuragi, H.
2014-01-01
Penetration-resistant force and acoustic emission (AE) from a plunged granular bed are experimentally investigated through their power law distribution forms. An AE sensor is buried in a glass bead bed. Then, the bed is slowly penetrated by a solid sphere. During the penetration, the resistant force exerted on the sphere and the AE signal are measured. The resistant force shows power law relation to the penetration depth. The power law exponent is independent of the penetration speed, while it seems to depend on the container's size. For the AE signal, we find that the size distribution of AE events obeys power laws. The power law exponent depends on grain size. Using the energy scaling, the experimentally observed power law exponents are discussed and compared to the Gutenberg-Richter (GR) law.
Shape of gas flow paths causes power law tailing
NASA Astrophysics Data System (ADS)
Kawanishi, T.; Sakami, A.; Hayashi, Y.
2004-12-01
In soil and/or groundwater remediation, we often see prolonged tailings: continuous outflow of low concentration pollutants for very long time, and in many cases power low behavior of late-time time-concentration curves. We considered that this kind of tailing can be caused by the shape of the gaseous flow introduced in saturated/unsaturated porous media. When gas is introduced to porous media, like air-sparging or soil vapor extraction, the shape of the gas flow path would be tree-like, or to some extent "fractal." So, there would be a distribution of the distance that a solute would have to travel by diffusion before getting to a gas/water interface, and we might expect that the distribution of this "diffusion distance" would be power-law-like. In order to see if tailing can be caused by this mechanism, simple column experiments were carried out. A column, 64 mm in inner diameter and 240 mm in height, was prepared and was packed with 1mm diameter glass beads. Nitrogen gas containing 5 % CO2 and 5% He was supplied from the bottom of the column, and after the water in the column is approximately saturated with CO2, the sparging gas was changed to pure nitrogen. The CO2 and He concentrations in the effluent gas was monitored and recorded. As the result, we saw tailing: the double-log plots of the concentration vs. time relationship was practically linear, and the absolute value of the slope in the double-log charts were 1.28, 0.95 and 0.83 according to the gas flow rates of 40, 80 and 120 ml/min, respectively. Slope less than 1.00 showed that these tailings cannot be explained by Freundlich-type adsorption behavior. Model analysis showed that this power low time-concentration behavior with the slope of approximately -1.0 can be explained by the power law distribution of diffusion distance \\textit{a} with PDF p(\\textit{a}) proportional to \\textit{a}^{-1}.
Glitch observation and hard X-ray power law measurement in PSR J1119-6127
NASA Astrophysics Data System (ADS)
Archibald, R. F.; Tendulkar, S. P.; Scholz, P. A.; Kaspi, V. M.
2016-07-01
We report on Swift-XRT, NuSTAR and Fermi spectral and timing observations of PSR J1119-6127, a rotation-powered high magnetic field pulsar that showed a magnetar-like burst on 2016 July 28, 01:27:51 UT (ATel #9274, ATel #9282).
NASA Astrophysics Data System (ADS)
Rubinstein, Robert
2015-11-01
It is well known that collision models based on an assumed intermolecular potential (IPL, LJ, ...) can be successfully replaced by simplified surrogates (VHS, VSS, VS, ...) in DSMC calculations. But these surrogates only reproduce certain gross properties of the molecular model, for example, the temperature dependence of the viscosity; they do not approximate, and even mis-state, the details of the particle interactions. The success of the simplified models in problems at finite Knudsen number, where the Navier-Stokes approximation is not valid, may therefore seem surprising. To understand this success in a very special case, we showed that the first seven relaxation rates of the linearized Boltzmann equation for Maxwellian molecules are well approximated by the corresponding relaxation rates of its VHS surrogate. We will show that this analysis can be extended in somewhat less generality to IPL interactions, and to some extent to more realistic models including LJ. We believe that this analysis can help address the more general problem of identifying the properties of the collision model that dominate the predictions of the Boltzmann equation.
Reciprocity and the Emergence of Power Laws in Social Networks
NASA Astrophysics Data System (ADS)
Schnegg, Michael
Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.
There is More than a Power Law in Zipf
Cristelli, Matthieu; Batty, Michael; Pietronero, Luciano
2012-01-01
The largest cities, the most frequently used words, the income of the richest countries, and the most wealthy billionaires, can be all described in terms of Zipf’s Law, a rank-size rule capturing the relation between the frequency of a set of objects or events and their size. It is assumed to be one of many manifestations of an underlying power law like Pareto’s or Benford’s, but contrary to popular belief, from a distribution of, say, city sizes and a simple random sampling, one does not obtain Zipf’s law for the largest cities. This pathology is reflected in the fact that Zipf’s Law has a functional form depending on the number of events N. This requires a fundamental property of the sample distribution which we call ‘coherence’ and it corresponds to a ‘screening’ between various elements of the set. We show how it should be accounted for when fitting Zipf’s Law. PMID:23139862
Power law distributions and dynamic behaviour of stock markets
NASA Astrophysics Data System (ADS)
Richmond, P.
2001-04-01
A simple agent model is introduced by analogy with the mean field approach to the Ising model for a magnetic system. Our model is characterised by a generalised Langevin equation = F ϕ + G ϕ t where t is the usual Gaussian white noise, i.e.: t t' = 2Dδ t-t' and t = 0. Both the associated Fokker Planck equation and the long time probability distribution function can be obtained analytically. A steady state solution may be expressed as P ϕ = exp{ - Ψ ϕ - ln G(ϕ)} where Ψ ϕ = - F/ G dϕ and Z is a normalization factor. This is explored for the simple case where F ϕ = Jϕ + bϕ2 - cϕ3 and fluctuations characterised by the amplitude G ϕ = ϕ + ɛ when it readily yields for ϕ>>ɛ, a distribution function with power law tails, viz: P ϕ = exp{ 2bϕ-cϕ2 /D}. The parameter c ensures convergence of the distribution function for large values of ϕ. It might be loosely associated with the activity of so-called value traders. The parameter J may be associated with the activity of noise traders. Output for the associated time series show all the characteristics of familiar financial time series providing J < 0 and D | J|.
Consistency relation in power law G-inflation
Unnikrishnan, Sanil; Shankaranarayanan, S. E-mail: shanki@iisertvm.ac.in
2014-07-01
In the standard inflationary scenario based on a minimally coupled scalar field, canonical or non-canonical, the subluminal propagation of speed of scalar perturbations ensures the following consistency relation: r ≤ −8n{sub T}, where r is the tensor-to-scalar-ratio and n{sub T} is the spectral index for tensor perturbations. However, recently, it has been demonstrated that this consistency relation could be violated in Galilean inflation models even in the absence of superluminal propagation of scalar perturbations. It is therefore interesting to investigate whether the subluminal propagation of scalar field perturbations impose any bound on the ratio r/|n{sub T}| in G-inflation models. In this paper, we derive the consistency relation for a class of G-inflation models that lead to power law inflation. Within these class of models, it turns out that one can have r > −8n{sub T} or r ≤ −8n{sub T} depending on the model parameters. However, the subluminal propagation of speed of scalar field perturbations, as required by causality, restricts r ≤ −(32/3) n{sub T}.
Universal fractional noncubic power law for density of metallic glasses.
Zeng, Qiaoshi; Kono, Yoshio; Lin, Yu; Zeng, Zhidan; Wang, Junyue; Sinogeikin, Stanislav V; Park, Changyong; Meng, Yue; Yang, Wenge; Mao, Ho-Kwang; Mao, Wendy L
2014-05-01
As a fundamental property of a material, density is controlled by the interatomic distances and the packing of microscopic constituents. The most prominent atomistic feature in a metallic glass (MG) that can be measured is its principal diffraction peak position (q1) observable by x-ray, electron, or neutron diffraction, which is closely associated with the average interatomic distance in the first shell. Density (and volume) would naturally be expected to vary under compression in proportion to the cube of the one-dimensional interatomic distance. However, by using high pressure as a clean tuning parameter and high-resolution in situ techniques developed specifically for probing the density of amorphous materials, we surprisingly found that the density of a MG varies with the 5/2 power of q1, instead of the expected cubic relationship. Further studies of MGs of different compositions repeatedly produced the same fractional power law of 5/2 in all three MGs we investigated, suggesting a universal feature in MG. PMID:24856706
Folding of a finite length power law layer
NASA Astrophysics Data System (ADS)
Schmid, Daniel W.; Podladchikov, Yuri Y.; Marques, Fernando O.
2004-03-01
Folding of an isolated finite length power law layer embedded in a Newtonian viscous matrix is investigated and compared to conventional folding experiments where the layer is of infinite length or in direct contact with lateral boundaries. The approach employed is a combination of the complex potential method for the basic state and the thin plate approximation for the linear stability analysis and is verified by finite element models. The resulting theory reveals that the aspect ratio of a layer has a first-order influence on the development of folds. The aspect ratio competes with the effective viscosity contrast for dominant influence on the folding process. If the aspect ratio is substantially larger than the effective viscosity contrast, the conventional theories are applicable. In other situations, where the aspect ratio is smaller than the effective viscosity contrast, substantial corrections must be taken into account, which lead to a new folding mode that is mainly characterized by decreasing growth rates with increasing effective viscosity contrast (relative to the far-field shortening rate). This new folding mode helps explain the absence of large wavelength to thickness ratio folds in nature, which may be due to the limitations of aspect ratios rather than large effective viscosity contrasts.
Diffusion-limited aggregation with power-law pinning.
Hentschel, H G E; Popescu, M N; Family, F
2004-01-01
Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with a power-law decaying threshold for growth R(-gamma)(N) (where R(N) is the radius of the N-particle cluster). For gamma>1 the growth pattern is in the same universality class as diffusion limited aggregation (DLA), while for gamma<1 the resulting patterns have a lower fractal dimension D(gamma) than a DLA cluster due to the enhancement of growth at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs at gamma=1/2, significantly smaller than might be expected from the lower bound alpha(min) approximately 0.67 of multifractal spectrum of DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for D(gamma) both close to the breakdown of DLA universality class, i.e., gamma less, similar 1, and close to the pinning transition, i.e., gamma greater, similar 1/2. PMID:14995617
High-Energy X-Ray Timing Experiment Detections of Hard X-Ray Tails in Scorpius X-1
NASA Astrophysics Data System (ADS)
D'Amico, Flavio; Heindl, William A.; Rothschild, Richard E.; Gruber, Duane E.
2001-02-01
We report the detection of a nonthermal hard X-ray component from Sco X-1 based on the analysis of 20-220 keV spectra obtained with the High-Energy X-Ray Timing Experiment on board the Rossi X-Ray Timing Explorer satellite. We find that the addition of a power-law component to a thermal bremsstrahlung model is required to achieve a good fit in five of 16 observations analyzed. Using Proportional Counter Array data, we were able to track the movement of the source along the Z diagram, and we found that the presence of the hard X-ray tail is not confined to a specific Z position. However, we do observe an indication that the power-law index hardens with increasing M, as indicated from the position on the Z diagram. We find that the derived nonthermal luminosities are ~10% of that derived for the brightest of the atoll sources.
Kitahama, Yasutaka; Araki, Daichi; Yamamoto, Yuko S; Itoh, Tamitake; Ozaki, Yukihiro
2015-09-01
For single colloidal Ag nanoaggregates, covered with either large or small amounts of citrate anions, blinking surface-enhanced Raman scattering (SERS) of anionic thiacyanine was measured and analyzed by a truncated power law. The power law without and with an exponential function reproduces a probability distribution for bright and dark SERS events versus their duration times, respectively. On the Ag surface, except for junctions of the nanoaggregate with a large or small amount of the citrate anions, two-dimensional fast or one-dimensional slow random walk of the anionic thiacyanine, respectively, was estimated by the exponents and the truncation times in the power law for the dark SERS events. In addition, the power law exponents for the bright SERS events were derived to be of similar values, indicating a similar molecular random walk near the junction, which may be dominated evenly by a surface-plasmon-enhanced electromagnetic field on the same-sized Ag nanoaggregate. Thus, not only the bright SERS, but also the dark SERS molecular behaviour on the Ag surface was investigated by the truncated power law analysis. PMID:25571862
Power law signature of media exposure in human response waiting time distributions
NASA Astrophysics Data System (ADS)
Crane, Riley; Schweitzer, Frank; Sornette, Didier
2010-05-01
We study the humanitarian response to the destruction brought by the tsunami generated by the Sumatra earthquake of December 26, 2004, as measured by donations, and find that it decays in time as a power law ˜1/tα with α=2.5±0.1 . This behavior is suggested to be the rare outcome of a priority queuing process in which individuals execute tasks at a rate slightly faster than the rate at which new tasks arise. We believe this to be an empirical evidence documenting the recently predicted [G. Grinstein and R. Linsker, Phys. Rev. E 77, 012101 (2008)] regime, and provide additional independent evidence that suggests that this “highly attentive regime” arises as a result of the intense focus placed on this donation “task” by the media.
Molecular clouds have power-law probability distribution functions (not log-normal)
NASA Astrophysics Data System (ADS)
Alves, Joao; Lombardi, Marco; Lada, Charles
2015-08-01
We investigate the shape of the probability distribution of column densities (PDF) in molecular clouds. Through the use of low-noise, extinction-calibrated Planck-Herschel emission data for eight molecular clouds, we demonstrate that, contrary to common belief, the PDFs of molecular clouds are not described well by log-normal functions, but are instead power laws with exponents close to two and with breaks between AK≃0.1 and 0.2mag, so close to the CO self-shielding limit and not far from the transition between molecular and atomic gas. Additionally, we argue that the intrinsic functional form of the PDF cannot be securely determined below AK≃0.1mag, limiting our ability to investigate more complex models for the shape of the cloud PDF.
Numerical tools for obtaining power-law representations of heavy-tailed datasets
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.
2016-01-01
Many empirical datasets have highly skewed, non-Gaussian, heavy-tailed distributions, dominated by a relatively small number of data points at the high end of the distribution. Consistent with their role as stable distributions, power laws have frequently been proposed to model such datasets. However there are physical situations that require distributions with finite means. Such situations may call for power laws with high-end cutoffs. Here, I present a maximum-likelihood technique for determining an optimal cut-off power law to represent a given dataset. I also develop a new statistical test of the quality of fit. Results are demonstrated for a number of benchmark datasets. Non-power-law datasets can frequently be represented by power laws, but this is a trivial result unless the dataset spans a broad domain. Nevertheless, I demonstrate that there are non-power-law distributions, including broad log-normal distributions, whose tails can be fit to power laws over many orders of magnitude. Therefore, caution is called for whenever power laws are invoked to represent empirical data. Supplementary material in the form of one pdf file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2015-60452-3
Power-law tail probabilities of drainage areas in river basins
Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.
2003-01-01
The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.
NASA Astrophysics Data System (ADS)
Chen, Yanguang
2015-03-01
The difference between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. This paper is devoted to exploring the relationships between exponential laws and power laws from the angle of view of urban geography. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through a semi-moving average process of an exponential distribution. For the distributions defined in a one-dimension space (e.g. Zipf's law), the power exponent is 1; while for those defined in a two-dimension space (e.g. Clark's law), the power exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distributions. Third, it is the real power-law distributions that can be related with fractal dimension. This study discloses an inherent link between simplicity and complexity. In practice, maybe the result presented in this paper can be employed to distinguish the real power laws from spurious power laws (e.g. the fake Zipf distribution).
Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models.
Vera, Julio; Rath, Oliver; Balsa-Canto, Eva; Banga, Julio R; Kolch, Walter; Wolkenhauer, Olaf
2010-11-01
The investigation of the structure and dynamics of signal transduction systems through data-based mathematical models in ordinary differential equations or other paradigms has proven to be a successful approach in recent times. Extending this concept, we here analysed the use of kinetic models based on power-law terms with non-integer kinetic orders in the validation of hypotheses concerning regulatory structures in signalling systems. We integrated pre-existent biological knowledge, hypotheses and experimental quantitative data into a power-law model to validate the existence of certain regulatory loops in the Ras/Raf-1/MEK/ERK pathway, a MAPK pathway involved in the transduction of mitogenic and differentiation signals. Towards this end, samples of a human mammary epithelial cell line (MCF-10A) were used to obtain time-series data, characterising the behaviour of the system after epidermal growth factor stimulation in different scenarios of expression for the critical players of the system regarding the investigated loops (e.g., the inhibitory protein RKIP). The mathematical model was calibrated using a computational procedure that included: analysis of structural identifiability, global ranking of parameters to detect the most sensitivity ones towards the experimental setup, model calibration using global optimization methods to find the parameter values that better fit the data, and practical identifiability analysis to estimate the confidence in the estimated values for the parameters. The obtained model was used to perform computational simulations concerning the role of the investigated regulatory loops in the time response of the signalling pathway. Our findings suggest that the special regularity in the structure of the power-law terms make them suitable for a data-based validation of regulatory loops in signalling pathways. The model-based analysis performed identified RKIP as an actual inhibitor of the activation of the ERK pathway, but also suggested
NASA Astrophysics Data System (ADS)
Ata, Shingo; Murata, Masayuki; Gotoh, Yoshihiro
2003-08-01
Many services have recently been offered based on a peer-to-peer (P2P) communication model. Peers connect to each other and build an overlaid logical network and available services are communicated over this network. The robustness of the P2P network against frequent peer failure must be considered. This includes when the peers leave the network and this directly affects the stability of the entire logical network. Replication of the content is one of the most useful techniques to increase robustness. However, the overall effectiveness of replication is heavily dependent on the topology of the logical network. As topology of networks, including the Internet and P2P, follows a Power-Law distribution pattern, we first investigate the effect of the logical network topology (especially of the Power-Law characteristics) on replication methods. We use a search method called "n-walkers random walk" in which multiple queries move randomly across the P2P logical network. We use a "path replication method," to create replicas at all the intermediate nodes on the path between the requesting and responding nodes. Through simulations experiments, we observed that peers with a large number of degrees (e.g., degree > 10) make four times as many replicas as peers with a small number of degrees. In addition, replicas on large degree's peers are used ten times as frequently as those on peers with small degrees. Based on these observations, we propose a query forwarding method that considers the Power-Law property of the network topology in order to improve the performance of the P2P service. In our method the queries are transmitted with different probabilities, dependending on the degree of each adjacent node. Our simulation results show that our proposed method can greatly improve the query performance by considering the characteristics of Power-Law. Our method reduces the average hop count in finding replicas by up to 60% compared with the random forwarding method.
Do wealth distributions follow power laws? Evidence from ‘rich lists’
NASA Astrophysics Data System (ADS)
Brzezinski, Michal
2014-07-01
We use data on the wealth of the richest persons taken from the ‘rich lists’ provided by business magazines like Forbes to verify if the upper tails of wealth distributions follow, as often claimed, a power-law behaviour. The data sets used cover the world’s richest persons over 1996-2012, the richest Americans over 1988-2012, the richest Chinese over 2006-2012, and the richest Russians over 2004-2011. Using a recently introduced comprehensive empirical methodology for detecting power laws, which allows for testing the goodness of fit as well as for comparing the power-law model with rival distributions, we find that a power-law model is consistent with data only in 35% of the analysed data sets. Moreover, even if wealth data are consistent with the power-law model, they are usually also consistent with some rivals like the log-normal or stretched exponential distributions.
Fractal scaling and power-law landslide distribution in a micromodel of geomorphological evolution
NASA Astrophysics Data System (ADS)
Czirók, A.; Somfai, E.; Vicsek, T.
Recent analyses of geographical data have shown that mountains can be well described in terms of fractals, which raises the fundamental question about the mechanisms producing fractal surfaces in geomorphological evolution. Because the formation of mountain ranges takes place over an extremely long period of time, direct observations of erosion mechanisms are hardly feasible. Therefore, we expect that model experiments on the erosion of mountain ridges taking place on a limited time scale should contribute significantly to our understanding of the emergence of fractal structures in geomorphological phenomena. During the watering of an initially smooth ridge made of a mixture of silica sand and earthy soil the surface evolves into a shape analogous to actual mountain profiles with self-affine geometry. For the exponents describing, respectively, the spatial and the temporal scaling of the surface width, α=0.78+/-0.05 and β=0.8+/-0.06 have been obtained. The former value is in a very good agreement with α=0.8+/-0.1 calculated for genuine transect profiles. The processes in our micromodel can be well described in terms of self-organized criticality: The system evolves into a critical state, where surface roughening takes place due to power-law distributed landslides.
Power-Law Template for IR Point Source Clustering
NASA Technical Reports Server (NTRS)
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglass; Spergel, David N.; Staggs,Suzanne T.; Wollack, Edward
2011-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 < I < 2200), the Balloonborne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 microns; 1000 < I < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-Law Template for Infrared Point-Source Clustering
NASA Technical Reports Server (NTRS)
Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglas; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward
2012-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx < l approx < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 micron; 1000 approx < l approx < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.; Viero, Marco; Bond, J. Richard; Devlin, Mark J.; Reese, Erik D.; Halpern, Mark; Scott, Douglas; Hlozek, Renee; Marriage, Tobias A.; Spergel, David N.; Moodley, Kavilan; Wollack, Edward
2012-06-20
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
NASA Astrophysics Data System (ADS)
Dralle, D.; Karst, N.; Thompson, S. E.
2015-12-01
Multiple competing theories suggest that power law behavior governs the observed first-order dynamics of streamflow recessions - the important process by which catchments dry-out via the stream network, altering the availability of surface water resources and in-stream habitat. Frequently modeled as: dq/dt = -aqb, recessions typically exhibit a high degree of variability, even within a single catchment, as revealed by significant shifts in the values of "a" and "b" across recession events. One potential source of this variability lies in underlying, hard-to-observe fluctuations in how catchment water storage is partitioned amongst distinct storage elements, each having different discharge behaviors. Testing this and competing hypotheses with widely available streamflow timeseries, however, has been hindered by a power law scaling artifact that obscures meaningful covariation between the recession parameters, "a" and "b". Here we briefly outline a technique that removes this artifact, revealing intriguing new patterns in the joint distribution of recession parameters. Using long-term flow data from catchments in Northern California, we explore temporal variations, and find that the "a" parameter varies strongly with catchment wetness. Then we explore how the "b" parameter changes with "a", and find that measures of its variation are maximized at intermediate "a" values. We propose an interpretation of this pattern based on statistical mechanics, meaning "b" can be viewed as an indicator of the catchment "microstate" - i.e. the partitioning of storage - and "a" as a measure of the catchment macrostate (i.e. the total storage). In statistical mechanics, entropy (i.e. microstate variance, that is the variance of "b") is maximized for intermediate values of extensive variables (i.e. wetness, "a"), as observed in the recession data. This interpretation of "a" and "b" was supported by model runs using a multiple-reservoir catchment toy model, and lends support to the
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State.
Stoop, Ruedi; Gomez, Florian
2016-07-15
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information. PMID:27472144
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State
NASA Astrophysics Data System (ADS)
Stoop, Ruedi; Gomez, Florian
2016-07-01
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.
Two universal physical principles shape the power-law statistics of real-world networks
Lorimer, Tom; Gomez, Florian; Stoop, Ruedi
2015-01-01
The study of complex networks has pursued an understanding of macroscopic behaviour by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex network generation. These principles together predict the generic emergence of deviations from ideal power laws, which were previously discussed away by reference to the thermodynamic limit. Our approach proposes a paradigm shift in the physics of complex networks, toward the use of power-law deviations to infer meso-scale structure from macroscopic observations. PMID:26202858
Focusing effect of radially power-law channel on an intense laser beam
NASA Astrophysics Data System (ADS)
Tang, Rong-An; Hong, Xue-Ren; Gao, Ji-Ming; Xue, Ju-Kui
2016-03-01
To study the focusing effect of the power-law channel, the evolution equation of the laser spot size is derived for the laser propagation in a radially power-law channel by using variational method. It is found that there exists a small critical region of the ratio of the initial laser spot size to the channel radius. Below the critical region, the laser power for constant spot size varies dramatically with the increase of the power-law exponent of the channel and so do other focusing behaviors. Quite opposite behaviors are observed above the critical region.
On the origin of power-law X-ray spectra of active galactic nuclei
NASA Technical Reports Server (NTRS)
Schlosman, I.; Shaham, J.; Shaviv, G.
1984-01-01
In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.
Anisotropic power-law solutions for a supersymmetry Dirac-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Do, Tuan Q.; Kao, W. F.
2016-04-01
A new set of Bianchi type I power-law expanding solutions is obtained for a supersymmetric Dirac-Born-Infeld (SDBI) theory coupled to a gauge field. Stability analysis is also performed to show that this set of power-law expanding solutions is stable. In particular, this set of power-law solutions provides an explicit example to the role played by the supersymmetry correction term. We also show by a general approach that any stable anisotropic solution of SDBI model will turn unstable when a phantom field is introduced. We also show that the result of the scalar perturbation indicates that the SDBI model is a realistic model.
Two universal physical principles shape the power-law statistics of real-world networks
NASA Astrophysics Data System (ADS)
Lorimer, Tom; Gomez, Florian; Stoop, Ruedi
2015-07-01
The study of complex networks has pursued an understanding of macroscopic behaviour by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex network generation. These principles together predict the generic emergence of deviations from ideal power laws, which were previously discussed away by reference to the thermodynamic limit. Our approach proposes a paradigm shift in the physics of complex networks, toward the use of power-law deviations to infer meso-scale structure from macroscopic observations.
Song, M.H.
1981-10-01
The effect of the addition of yttrium on the elevated temperature tensile properties and hardness of an Fe-34% Ni-12% Cr candidate LMFBR cladding and duct alloy was investigated. Tensile tests were performed from room temperature to 800/sup 0/C in 100/sup 0/C steps at strain rates of 2.2 x 10/sup -3/ and 2.2 x 10/sup -4/ sec/sup -1/. Hardness tests were performed from room temperature to 850/sup 0/C in 50/sup 0/C steps. The addition of 0.1% yttrium decreased the yield stress and ultimate tensile stress in the test temperature range employed. Hardness also decreased over this test temperature range. In tensile tests, dynamic strain aging behavior occurred both for the undoped and doped alloy in the temperature range from 200 to 600/sup 0/C and 300 to 600/sup 0/C for the lower and higher strain rate, respectively.
Restoring phase coherence in a one-dimensional superconductor using power-law electron hopping
NASA Astrophysics Data System (ADS)
Lobos, Alejandro M.; Tezuka, Masaki; García-García, Antonio M.
2013-10-01
In a one-dimensional (1D) superconductor, zero-temperature quantum fluctuations destroy phase coherence. Here we put forward a mechanism which can restore phase coherence: power-law hopping. We study a 1D attractive-U Hubbard model with power-law hopping using Abelian bosonization and density-matrix renormalization group (DMRG) techniques. The parameter that controls the hopping decay acts as the effective, noninteger spatial dimensionality deff. For real-valued hopping amplitudes we identify analytically a range of parameters for which power-law hopping suppresses fluctuations and restores superconducting long-range order for any deff>1, at zero temperature. A detailed DMRG analysis fully supports these findings. These results are also of direct relevance to quantum magnetism as our model can be mapped onto an S=1/2 XXZ spin chain with power-law decaying couplings, which can be studied experimentally with cold-ion-trap techniques.
Research on power-law acoustic transient signal detection based on wavelet transform
NASA Astrophysics Data System (ADS)
Han, Jian-hui; Yang, Ri-jie; Wang, Wei
2007-11-01
Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.
Tunable power law in the desynchronization events of coupled chaotic electronic circuits
Oliveira, Gilson F. de Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de
2014-03-15
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.
Emergence of Power-Law in Spatial Epidemics Using Cellular Automation
NASA Astrophysics Data System (ADS)
Li, Li; Sun, Gui-Quan; Jin, Zhen
We analyze a spatial susceptible-infected epidemic model using cellular automata and investigate the relations between the power-law distribution of patch sizes and the regime of invasion. The obtained results show that, when the invasion is in the form of coexistence of stable target and spiral wave, power-law will emerge, which may provide a new insight into the control of disease.
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
Teka, Wondimu; Stockton, David; Santamaria, Fidel
2016-03-01
We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron. PMID:26937967
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model
Teka, Wondimu; Stockton, David; Santamaria, Fidel
2016-01-01
We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron. PMID:26937967
Analytical time-domain Green’s functions for power-law media
Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.
2008-01-01
Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774
An exact thermodynamical model of power-law temperature time scaling
NASA Astrophysics Data System (ADS)
Zingales, Massimiliano
2016-02-01
In this paper a physical model for the anomalous temperature time evolution (decay) observed in complex thermodynamical system in presence of uniform heat source is provided. Measures involving temperatures T with power-law variation in time as T(t) ∝tβ with β ∈ R shows a different evolution of the temperature time rate T ˙ (t) with respect to the temperature time-dependence T(t) . Indeed the temperature evolution is a power-law increasing function whereas the temperature time rate is a power-law decreasing function of time. Such a behavior may be captured by a physical model that allows for a fast thermal energy diffusion close to the insulated location but must offer more resistance to the thermal energy flux as soon as the distance increases. In this paper this idea has been exploited showing that such thermodynamical system is represented by an heterogeneous one-dimensional distributed mass one with power-law spatial scaling of its physical properties. The model yields, exactly a power-law evolution (decay) of the temperature field in terms of a real exponent as T ∝tβ (or T ∝t-β) that is related to the power-law spatial scaling of the thermodynamical property of the system. The obtained relation yields a physical ground to the formulation of fractional-order generalization of the Fourier diffusion equation.
Power-law and intermediate inflationary models in f( T)-gravity
NASA Astrophysics Data System (ADS)
Rezazadeh, K.; Abdolmaleki, A.; Karami, K.
2016-01-01
We study inflation in the framework of f( T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f( T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f( T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f( T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f( T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V( ϕ) ∝ ϕ m but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f( T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V( ϕ) ∝ ϕ 4 which has special reheating properties, can be consistent with the Planck 2015 data in our f( T) scenario while it is ruled out in the standard inflationary scenario.
Why credit risk markets are predestined for exhibiting log-periodic power law structures
NASA Astrophysics Data System (ADS)
Wosnitza, Jan Henrik; Leker, Jens
2014-01-01
Recent research has established the existence of log-periodic power law (LPPL) patterns in financial institutions’ credit default swap (CDS) spreads. The main purpose of this paper is to clarify why credit risk markets are predestined for exhibiting LPPL structures. To this end, the credit risk prediction of two variants of logistic regression, i.e. polynomial logistic regression (PLR) and kernel logistic regression (KLR), are firstly compared to the standard logistic regression (SLR). In doing so, the question whether the performances of rating systems based on balance sheet ratios can be improved by nonlinear transformations of the explanatory variables is resolved. Building on the result that nonlinear balance sheet ratio transformations hardly improve the SLR’s predictive power in our case, we secondly compare the classification performance of a multivariate SLR to the discriminative powers of probabilities of default derived from three different capital market data, namely bonds, CDSs, and stocks. Benefiting from the prompt inclusion of relevant information, the capital market data in general and CDSs in particular increasingly outperform the SLR while approaching the time of the credit event. Due to the higher classification performances, it seems plausible for creditors to align their investment decisions with capital market-based default indicators, i.e., to imitate the aggregate opinion of the market participants. Since imitation is considered to be the source of LPPL structures in financial time series, it is highly plausible to scan CDS spread developments for LPPL patterns. By establishing LPPL patterns in governmental CDS spread trajectories of some European crisis countries, the LPPL’s application to credit risk markets is extended. This novel piece of evidence further strengthens the claim that credit risk markets are adequate breeding grounds for LPPL patterns.
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3
NASA Technical Reports Server (NTRS)
Smalheer, C. V.
1973-01-01
The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.
NASA Astrophysics Data System (ADS)
Rovatti, L.; Lemke, J. N.; Emami, A.; Stejskal, O.; Vedani, M.
2015-12-01
Fe-based hardfacing alloys containing high volume fraction of hard phases are a suitable material to be deposited as wear resistant thick coatings. In the case of alloys containing high amount of interstitial alloying elements, a key factor affecting the performance is dilution with the substrate induced by the coating process. The present research was focused on the analysis of V-bearing Fe-based alloys after calibrated carbon and vanadium additions (in the range from 3 to 5 wt.%) to a commercial Fe-C-B-Ni hardfacing alloy. Vanadium carbides with a petal-like morphology were observed in the high-V hypereutectic alloys allowing to reach hardness values above 700 HV. The solidification range shifted to higher temperatures with increasing amount of vanadium addition and in the case of hypereutectic alloys, the gap remains close to that of the original alloy. In the last step of the research, the microstructural evolution after dilution was analyzed by casting the V-rich alloys on a steel substrate. The dilution, caused by the alloying element diffusion and the local melting of the substrate, modified the microstructure and the hardness for a relevant volume fraction of the hardfacing alloys. In particular, the drop of interstitial elements induced the transition from the hypereutectic to the hypoeutectic microstructure and the formation of near-spherical V-rich carbides. Even after dilution, the hardness of the new alloys remained higher than that measured in the original Fe-C-B-Ni alloy.
A stable and robust calibration scheme of the log-periodic power law model
NASA Astrophysics Data System (ADS)
Filimonov, V.; Sornette, D.
2013-09-01
We present a simple transformation of the formulation of the log-periodic power law formula of the Johansen-Ledoit-Sornette (JLS) model of financial bubbles that reduces it to a function of only three nonlinear parameters. The transformation significantly decreases the complexity of the fitting procedure and improves its stability tremendously because the modified cost function is now characterized by good smooth properties with in general a single minimum in the case where the model is appropriate to the empirical data. We complement the approach with an additional subordination procedure that slaves two of the nonlinear parameters to the most crucial nonlinear parameter, the critical time tc, defined in the JLS model as the end of the bubble and the most probable time for a crash to occur. This further decreases the complexity of the search and provides an intuitive representation of the results of the calibration. With our proposed methodology, metaheuristic searches are not longer necessary and one can resort solely to rigorous controlled local search algorithms, leading to a dramatic increase in efficiency. Empirical tests on the Shanghai Composite index (SSE) from January 2007 to March 2008 illustrate our findings.
Apparent power-law distributions in animal movements can arise from intraspecific interactions
Breed, Greg A.; Severns, Paul M.; Edwards, Andrew M.
2015-01-01
Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight. PMID:25519992
Effects of power law primordial magnetic field on big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Yamazaki, Dai G.; Kusakabe, Motohiko
2012-12-01
Big bang nucleosynthesis (BBN) is affected by the energy density of a primordial magnetic field (PMF). For an easy derivation of constraints on models for PMF generations, we assume a PMF with a power law (PL) distribution in wave number defined with a field strength, a PL index, and maximum and minimum scales at a generation epoch. We then show a relation between PL-PMF parameters and the scale invariant (SI) strength of PMF for the first time. We perform a BBN calculation including PMF effects, and show abundances as a function of baryon to photon ratio η. The SI strength of the PMF is constrained from observational constraints on abundances of He4 and D. The minimum abundance of Li7/H as a function of η slightly moves to a higher Li7/H value at a larger η value when a PMF exists during BBN. We then discuss degeneracies between the PL-PMF parameters in the PMF effect. In addition, we assume a general case in which both the existence and the dissipation of PMF are possible. It is then found that an upper limit on the SI strength of the PMF can be derived from a constraint on He4 abundance, and that a lower limit on the allowed Li7 abundance is significantly higher than those observed in metal-poor stars.
NASA Astrophysics Data System (ADS)
Inglis, A. R.; Ireland, J.; Dominique, M.
2015-01-01
The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.
Inglis, A. R.; Ireland, J.; Dominique, M.
2015-01-10
The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.
Predicting the long tail of book sales: Unearthing the power-law exponent
NASA Astrophysics Data System (ADS)
Fenner, Trevor; Levene, Mark; Loizou, George
2010-06-01
The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.
NASA Astrophysics Data System (ADS)
Di Mauro, B.; Fava, F.; Frattini, P.; Camia, A.; Colombo, R.; Migliavacca, M.
2015-11-01
Monthly wildfire burned area frequency is here modeled with a power law distribution and scaling exponent across different European biomes are estimated. Data sets, spanning from 2000 to 2009, comprehend the inventory of monthly burned areas from the European Forest Fire Information System (EFFIS) and simulated monthly burned areas from a recent parameterization of a Land Surface Model (LSM), that is the Community Land Model (CLM). Power law exponents are estimated with a Maximum Likelihood Estimation (MLE) for different European biomes. The characteristic fire size (CFS), i.e. the area that most contributes to the total burned area, was also calculated both from EFFIS and CLM data set. We used the power law fitting and the CFS analysis to benchmark CLM model against the EFFIS observational wildfires data set available for Europe. Results for the EFFIS data showed that power law fittings holds for 2-3 orders of magnitude in the Boreal and Continental ecoregions, whereas the distribution of the Alpine, Atlantic are fitted only in the upper tail. Power law instead is not a suitable model for fitting CLM simulations. CLM benchmarking analysis showed that the model strongly overestimates burned areas and fails in reproducing size-frequency distribution of observed EFFIS wildfires. This benchmarking analysis showed that some refinements in CLM structure (in particular regarding the anthropogenic influence) are needed for predicting future wildfires scenarios, since the low spatial resolution of the model and differences in relative frequency of small and large fires can affect the reliability of the predictions.
Double Power Laws in the Event-integrated Solar Energetic Particle Spectrum
NASA Astrophysics Data System (ADS)
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.
2016-04-01
A double power law or a power law with exponential rollover at a few to tens of MeV nucleon‑1 of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon‑1 is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.
Non-Cubic Power-law Scaling of Density in Metallic Glasses (Invited)
NASA Astrophysics Data System (ADS)
Zeng, Q. C.; Kono, Y.; Lin, Y.; Zeng, Z.; Wang, J.; Sinogeikin, S. V.; Park, C.; Meng, Y.; Yang, W.; Mao, W. L.
2013-12-01
Understanding structure-property relationships and dimensionality plays a central role in materials science. A cubic power law relationship between the average interatomic distance and the global density is commonly expected in 'disordered' glasses and has been extensively employed in various measurements. However, this relationship has never been rigorously verified which challenges our understanding of glass materials. Here, by using high pressure as a tuning tool, we rigorously demonstrated that the density of metallic glass (MG) varies with the 2.5 power of its fundamental atomic-level length scale (the inverse of the principal diffraction peak position, 1/q1). This falls between the 3-dimensional density and 1-dimensional length instead of the expected cubic power-law relationship. We further demonstrated the 2.5 power-law is universally valid for MGs of different compositions, as well as the same MG at different pressures. This study includes high quality data from multiple techniques which provides compelling evidence of the non-cubic power-law scaling in MGs. It has important implications not only in the practical measurements of density, or any measurement involving a change in length scale under various environments by correcting the extensively employed cubic power-law, but also in understanding the real atomic packing in glasses by providing a critical new constraint on a structure-property relationship.
Self-similar nonequilibrium dynamics of a many-body system with power-law interactions.
Gutiérrez, Ricardo; Garrahan, Juan P; Lesanovsky, Igor
2015-12-01
The influence of power-law interactions on the dynamics of many-body systems far from equilibrium is much less explored than their effect on static and thermodynamic properties. To gain insight into this problem we introduce and analyze here an out-of-equilibrium deposition process in which the deposition rate of a given particle depends as a power law on the distance to previously deposited particles. This model draws its relevance from recent experimental progress in the domain of cold atomic gases, which are studied in a setting where atoms that are excited to high-lying Rydberg states interact through power-law potentials that translate into power-law excitation rates. The out-of-equilibrium dynamics of this system turns out to be surprisingly rich. It features a self-similar evolution which leads to a characteristic power-law time dependence of observables such as the particle concentration, and results in a scale invariance of the structure factor. Our findings show that in dissipative Rydberg gases out of equilibrium the characteristic distance among excitations-often referred to as the blockade radius-is not a static but rather a dynamic quantity. PMID:26764669
Self-similar nonequilibrium dynamics of a many-body system with power-law interactions
NASA Astrophysics Data System (ADS)
Gutiérrez, Ricardo; Garrahan, Juan P.; Lesanovsky, Igor
2015-12-01
The influence of power-law interactions on the dynamics of many-body systems far from equilibrium is much less explored than their effect on static and thermodynamic properties. To gain insight into this problem we introduce and analyze here an out-of-equilibrium deposition process in which the deposition rate of a given particle depends as a power law on the distance to previously deposited particles. This model draws its relevance from recent experimental progress in the domain of cold atomic gases, which are studied in a setting where atoms that are excited to high-lying Rydberg states interact through power-law potentials that translate into power-law excitation rates. The out-of-equilibrium dynamics of this system turns out to be surprisingly rich. It features a self-similar evolution which leads to a characteristic power-law time dependence of observables such as the particle concentration, and results in a scale invariance of the structure factor. Our findings show that in dissipative Rydberg gases out of equilibrium the characteristic distance among excitations—often referred to as the blockade radius—is not a static but rather a dynamic quantity.
NASA Astrophysics Data System (ADS)
Ormerod, Paul; Mounfield, Craig
2001-04-01
Power law distributions of macroscopic observables are ubiquitous in both the natural and social sciences. They are indicative of correlated, cooperative phenomena between groups of interacting agents at the microscopic level. In this paper, we argue that when one is considering aggregate macroeconomic data (annual growth rates in real per capita GDP in the seventeen leading capitalist economies from 1870 through to 1994) the magnitude and duration of recessions over the business cycle do indeed follow power law like behaviour for a significant proportion of the data (demonstrating the existence of cooperative phenomena amongst economic agents). Crucially, however, there are systematic deviations from this behaviour when one considers the frequency of occurrence of large recessions. Under these circumstances the power law scaling breaks down. It is argued that it is the adaptive behaviour of the agents (their ability to recognise the changing economic environment) which modifies their cooperative behaviour.
Two-phase flow in porous media: power-law scaling of effective permeability
NASA Astrophysics Data System (ADS)
Grøva, Morten; Hansen, Alex
2011-09-01
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed
2015-11-01
This paper deals with the boundary layer flow of nanofluid over power-law stretched surface. Analysis has been carried out in the presence of applied magnetic field and chemical reaction. Heat and mass transfer characteristics are studied using heat and mass convective conditions. The governing partial differential equations are transferred to the nonlinear ordinary differential equations. Convergent series solutions are obtained for fluid velocity, temperature and concentrations fields. Influences of pertinent parameters including Hartman number, thermal and concentration Biot numbers and chemical reaction parameters are discussed on the velocity, temperature and concentration profiles. Graphical result are presented and discussed. Computations for local Nusselt and Sherwood numbers are carried out. It is observed that the heat transfer rate is enhanced by increasing power-law index, thermal Biot number and chemical reaction parameter while mass transfer rate increases for power-law index and chemical reaction parameter.
Power-law X-ray and gamma-ray emission from relativistic thermal plasmas
NASA Technical Reports Server (NTRS)
Zdziarski, A. A.
1985-01-01
A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.
Phase diagram of power law and Lennard-Jones systems: Crystal phases
Travesset, Alex
2014-10-28
An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.
Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays
NASA Astrophysics Data System (ADS)
Sibatov, R. T.
2011-08-01
A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Cohen, Joel E.
2016-02-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from `outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
Power-law and exponential rank distributions: A panoramic Gibbsian perspective
Eliazar, Iddo
2015-04-15
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.
Statistical evidence for power law temporal correlations in exploratory behaviour of rats.
Yadav, Chetan K; Verma, Mahendra K; Ghosh, Subhendu
2010-01-01
Dynamics of exploratory behaviour of rats and home base establishment is investigated. Time series of instantaneous speed of rats was computed from their position during exploration. The probability distribution function (PDF) of the speed obeys a power law distribution with exponents ranging from 2.1 to 2.32. The PDF of the recurrence time of large speed also exhibits a power law, P(τ) ~ τ(⁻β) with β from 1.56 to 2.30. The power spectrum of the speed is in general agreement with the 1/f spectrum reported earlier. These observations indicate that the acquisition of spatial information during exploration is self-organized with power law temporal correlations. This provides a possible explanation for the home base behaviour of rats during exploration. The exploratory behaviour of rats resembles other systems exhibiting self-organized criticality, e.g., earthquakes, solar flares etc. PMID:20688133
Power-law decay of the view times of scientific courses on YouTube
NASA Astrophysics Data System (ADS)
Gao, Lingling
2012-11-01
The temporal power-law decay is one class of interesting decay processes, usually indicating a long-time correlation and benefiting for a system to perform functions in various time-scales. In this work, I collect the data of the view times versus lectures of some scientific courses on YouTube, according to some special principles. These data can reflect the dynamical property of the spontaneous learning behavior, influenced by the decay of learning interest. The view times versus lectures show an obviously power-law decay process. The power approximates to 1, a universal constant. This finding brings the learning process into the interesting power-law family. It will be of interest in the fields of the human dynamics, psychology and education.
Non-power law behavior of the radial profile of phase-space density of halos
Popolo, A. Del
2011-07-01
We study the pseudo phase-space density, ρ(r)/σ{sup 3}(r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ{sup 3}(r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ{sup 3}(r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ{sup 3}(r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)
Huang, Zhifu Xing, Jiandong; Lv, Liangliang
2013-01-15
The effects of tungsten additions of 0%, 1.12%, 2.04%, and 3.17% (in wt.%) on the morphology, fracture toughness and micro-hardness of Fe{sub 2}B in Fe-B-C cast alloy were investigated. The results indicate that, with the increase of tungsten addition, the morphology and distribution of Fe{sub 2}B have no change and a new W-containing phase, except the (Fe, W){sub 2}B with a certain tungsten solution, does not form, and that the fracture toughness of Fe{sub 2}B increases first and then decreases, while the hardness increases first and then has a little change. Compared with the fracture toughness (3.8 MPa{center_dot}m{sup 1/2}) of Fe{sub 2}B without tungsten addition, the toughness at 2.04 wt.% tungsten can be improved by about above 80% and achieves about 6.9 MPa{center_dot}m{sup 1/2}, and variation characteristics of hardness and toughness of Fe{sub 2}B were also testified by viewing the indentation marks and cracks on the Fe{sub 2}B, respectively. - Highlights: Black-Right-Pointing-Pointer Poor toughness of Fe2B decreases obviously the wear resistance of the alloy. Black-Right-Pointing-Pointer As W content increases, Fe2B's toughness increases first and then decreases. Black-Right-Pointing-Pointer As W content increases, Fe2B's hardness first increases and then has little change. Black-Right-Pointing-Pointer The toughness at 2.04 % W can be improved by above 80% more than that at 0% W.
One-Dimensional Quantum Liquids with Power-Law Interactions: The Luttinger Staircase
Dalmonte, M.; Pupillo, G.; Zoller, P.
2010-10-01
We study one-dimensional fermionic and bosonic gases with repulsive power-law interactions 1/|x|{sup {beta}}, with {beta}>1, in the framework of Tomonaga-Luttinger liquid (TLL) theory. We obtain an accurate analytical expression linking the TLL parameter to the microscopic Hamiltonian, for arbitrary {beta} and strength of the interactions. In the presence of a small periodic potential, power-law interactions make the TLL unstable towards the formation of a cascade of lattice solids with fractional filling, a 'Luttinger staircase'. Several of these quantum phases and phase transitions are realized with ground state polar molecules and weakly bound magnetic Feshbach molecules.
Time-dependent Kramers escape rate in overdamped system with power-law distribution
NASA Astrophysics Data System (ADS)
Zhou, Yanjun; Yin, Cangtao
2016-05-01
The probability distribution of Brownian particles moving in an overdamped complex system follows the generalized Smoluchowski equation, which can be rigorously proven that the exact time-dependent solution for this equation follows Tsallis form. Time-dependent escape rate in overdamped system with power-law distributions is then established based on the flux over population theory. The stationary state escape rate in overdamped system with power-law distribution which has been obtained before based on mean first passage time theory is recovered from time-dependent escape rate as time toward infinity.
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.
2015-12-30
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.
Evidence of microstructure evolution in solid elastic media based on a power law analysis
NASA Astrophysics Data System (ADS)
Scalerandi, M.; Idjimarene, S.; Bentahar, M.; El Guerjouma, R.
2015-05-01
Complex and consolidated granular media or microcracked composites and metals usually exhibit a high level of nonlinearity in their elastic response already at low amplitudes of excitation. To quantify it, a proper nonlinear indicator y is introduced and its dependence on the excitation amplitude x is studied. The dependence of y on x is found in experiments to be a power law. Here we show that the different power law exponents measured for different materials could be predicted by proper classes of discrete models. An application is presented to link the exponent evolution and the changes of the microstructure due to the progression of damage mechanically induced.
Broken Power-law Distributions from Low Coronal Compression Regions or Shocks
NASA Astrophysics Data System (ADS)
Schwadron, N. A.; Lee, M. A.; Gorby, M.; Lugaz, N.; Spence, H. E.; Desai, M.; Török, T.; Downs, C.; Linker, J.; Lionello, R.; Mikić, Z.; Riley, P.; Giacalone, J.; Jokipii, J. R.; Kota, J.; Kozarev, K.
2015-09-01
Coronal Mass Ejection (CME) expansion regions low in the corona (< 2 - 3 Rs) are highly efficient for the acceleration of energetic particles. Because the acceleration occurs over a finite spatial region, there is a regime where particles diffuse away and escape from the acceleration sites, leading to the formation of broken power-law distributions. This paper highlights recent results indicating that CME expansion and acceleration in the low corona may cause rapid particle acceleration and create large solar energetic particle events with broken power-law distributions.
Schlueter, E.M.; Zimmerman, R.W.; Cook, N.G.W.; Witherspoon, P.A.
1994-12-31
Perimeter-area power-law relationships of pores in five sedimentary rocks are determined from scanning electron photomicrographs of thin sections. These relationships for the pores of four sandstones were found to lie between 1.43 and 1.49, while that of an Indiana limestone was found to be 1.67. The authors discuss how the perimeter-area power-law relationship of pores, along with a pore-size distribution, can be used to estimate the hydraulic permeability.
Thermal distribution in high power optical devices with power-law thermal conductivity
NASA Astrophysics Data System (ADS)
Zhou, Chuanle; Grayson, M.
2012-01-01
We introduce a power-law approximation to model non-linear ranges of the thermal conductivity, and under this approximation derive a simple analytical expression for calculating the temperature profile in high power quantum cascade lasers and light emitting diodes. The thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is used as an example, having negative or positive power-law exponents depending on the thermal range of interest. The result is an increase or decrease in the temperature, respectively, relative to the uniform thermal conductivity assumption.
Transport coefficients in Lorentz plasmas with the power-law kappa-distribution
Jiulin, Du
2013-09-15
Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution.
Numerical Simulations of Power Law Heating Functions for Quiescent Loops: Stability and Observables
NASA Astrophysics Data System (ADS)
Martens, P. C.; Winter, H. D.; Munetsi-Mugomba, K.
2007-12-01
We present the numerical simulations of quiescent coronal loops with heating functions that are power law functions of pressure and temperature. These simulations are made using a time-dependent, 1D hydrodynamics code with heating functions that are treated as dynamic variables which are constantly re- evaluated during the loops' lifetimes. These numerical simulations provide a stability test for the analytical solutions formulated by Martens (2007, submitted) for the same heating functions. TRACE and XRT datasets are simulated to determine if present observables can provide adequate information to discriminate between power law heating functions.
Power Law Inflation and the Cosmic No Hair Theorem in Brane World
Paul, B. C.; Beesham, A.
2006-11-03
We study the cosmic no hair theorem for anisotropic Bianchi models that admit power law inflation with a scalar field in the framework of Brane world. The power law inflationary solution obtained here is driven by the curvature term in the modified field equation in Brane. It is found that all Bianchi models except Bianchi type IX, transit to an inflationary regime with vanishing anisotropy. We note that in the Brane world anisotropic universe isotropizes much faster than that in the general theory of relativity.
NASA Astrophysics Data System (ADS)
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.
2016-01-01
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law {γ }-α , with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. For large L and σ, the power-law index α approaches about 1.2.
Effect of Body Perturbations on Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold; Thornton, Philip R.
1959-01-01
Hypersonic-slender-body theory, in the limit as the free-stream Mach number becomes infinite, is used to find the effect of slightly perturbing the surface of slender two-dimensional and axisymmetric power law bodies, The body perturbations are assumed to have a power law variation (with streamwise distance downstream of the nose of the body). Numerical results are presented for (1) the effect of boundary-layer development on two dimensional and axisymmetric bodies, (2) the effect of very small angles of attack (on tow[dimensional bodies), and (3) the effect of blunting the nose of very slender wedges and cones.
NASA Astrophysics Data System (ADS)
Reed, William J.; Hughes, Barry D.
2002-12-01
We present a simple explanation for the occurrence of power-law tails in statistical distributions by showing that if stochastic processes with exponential growth in expectation are killed (or observed) randomly, the distribution of the killed or observed state exhibits power-law behavior in one or both tails. This simple mechanism can explain power-law tails in the distributions of the sizes of incomes, cities, internet files, biological taxa, and in gene family and protein family frequencies.
Giorgi, Maria Cecília Caldas; Aguiar, Flávio Henrique Baggio; Soares, Luís Eduardo Silva; Martin, Airton Abrahão; Liporoni, Priscila Christiane Suzy; Paulillo, Luís Alexandre Maffei Sartini
2012-01-01
Objective: The purpose of this study was to evaluate the degree of conversion (DC) using FT-Raman spectroscopy and the Knoop hardness (KHN) of composites cured by second and third-generation LED light curing-units (LCU), Radii Cal and Ultralume 5. Methods: Three composites (Filtek Supreme XT, Filtek Z350, and Esthet X) were selected for this study. KHN testing (n=10) was performed with 10 indentations for the top (T) and bottom (B) surfaces. For DC (n=10), both the T and B surfaces were analyzed. Results: For KHN, the three composites differed in hardens. There was a “LCU-surface” interaction, in which Radii Cal showed significantly greater hardens in the B surface. For DC, there was a “composite-surface-LCU” interaction. For the “composite” factor, there was no significant difference between the groups, except for Supreme XT-Radii Cal (T or B surfaces). For the “LCU” factor there was a significant difference for Supreme XT T surface, Ultralume 5 obtained a higher DC. For the Z350 T surface, a significant difference in the DC in which Radii Cal obtained better results. For the “surface” factor, all groups presented T surfaces with a higher DC than the B surfaces, the sole exceptions involved Esthet X-Radii Cal and Z350-Ultralume 5. Conclusion: Knowledge regarding composite composition and the characteristics of LCUs are important for effective polymerization. PMID:23077419
Does Stevens's Power Law for Brightness Extend to Perceptual Brightness Averaging?
ERIC Educational Resources Information Center
Bauer, Ben
2009-01-01
Stevens's power law ([Psi][infinity][Phi][beta]) captures the relationship between physical ([Phi]) and perceived ([Psi]) magnitude for many stimulus continua (e.g., luminance and brightness, weight and heaviness, area and size). The exponent ([beta]) indicates whether perceptual magnitude grows more slowly than physical magnitude ([beta] less…
Holographic f(T)-gravity model with power-law entropy correction
NASA Astrophysics Data System (ADS)
Karami, K.; Asadzadeh, S.; Abdolmaleki, A.; Safari, Z.
2013-10-01
Using the correspondence between the f(T)-gravity model and the holographic dark energy model with the power-law entropy correction, we reconstruct the holographic f(T)-gravity model with the power-law entropy correction. We fit the model parameters by using the latest observational data including type Ia supernovae, baryon acoustic oscillations, cosmic microwave background, and Hubble parameter data. We also check the viability of our model using a cosmographic analysis approach. Using the best-fit values of the model, we obtain the evolutionary behavior of the effective torsion equation-of-state parameter of the power-law entropy-corrected holographic f(T)-gravity model, as well as the deceleration parameter of the Universe. We also investigate different energy conditions in our model. Furthermore, we examine the validity of the generalized second law of gravitational thermodynamics. Finally, we point out the growth rate of the matter density perturbation in our model. We conclude that in the power-law entropy-corrected holographic f(T)-gravity model, the Universe begins a matter-dominated phase and approaches a de Sitter regime at late times, as expected. It also can justify the transition from the quintessence state to the phantom regime in the near past, as indicated by recent observations. Moreover, this model is consistent with current data, it passes the cosmographic test, and it fits the data of the growth factor as well as the ΛCDM model.
Thermodynamics of higher dimensional topological dilation black holes with a power-law Maxwell field
NASA Astrophysics Data System (ADS)
Zangeneh, M. Kord; Sheykhi, A.; Dehghani, M. H.
2015-02-01
In this paper, we extend the study on the nonlinear power-law Maxwell field to dilaton gravity. We introduce the (n +1 ) -dimensional action in which gravity is coupled to a dilaton and power-law nonlinear Maxwell field, and we obtain the field equations by varying the action. We construct a new class of higher dimensional topological black hole solutions of Einstein-dilaton theory coupled to a power-law nonlinear Maxwell field and investigate the effects of the nonlinearity of the Maxwell source as well as the dilaton field on the properties of the spacetime. Interestingly enough, we find that the solutions exist provided one assumes three Liouville-type potentials for the dilaton field, and in the case of the Maxwell field, one of the Liouville potentials vanishes. After studying the physical properties of the solutions, we compute the mass, charge, electric potential and temperature of the topological dilaton black holes. We also study the thermodynamics and thermal stability of the solutions and disclose the effects of the dilaton field and the power-law Maxwell field on the thermodynamics of these black holes. Finally, we comment on the dynamical stability of the obtained solutions in four dimensions.
Spatial and Temporal Stability of the Estimated Parameters of the Binary Power Law
Technology Transfer Automated Retrieval System (TEKTRAN)
The binary power law has become a standard approach for describing and quantifying spatial patterns of disease incidence and summarizing the spatial dynamics of disease over the course of an epidemic. However, the portability and temporal stability of parameter estimates of the binary form of the p...
Liouville-Type Theorems for Steady Flows of Degenerate Power Law Fluids in the Plane
NASA Astrophysics Data System (ADS)
Bildhauer, Michael; Fuchs, Martin; Zhang, Guo
2013-09-01
We extend the Liouville-type theorems of Gilbarg and Weinberger and of Koch, Nadirashvili, Seregin and Sverák valid for the stationary variant of the classical Navier-Stokes equations in 2 D to the degenerate power law fluid model.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Rino, Charles L.
2016-06-01
We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.
Realization of power law inflation & variants via variation of the strong coupling constant
NASA Astrophysics Data System (ADS)
AlHallak, M.; Chamoun, N.
2016-09-01
We present a model of power law inflation generated by variation of the strong coupling constant. We then extend the model to two varying coupling constants which leads to a potential consisting of a linear combination of exponential terms. Some variants of the latter may be self-consistent and can accommodate the experimental data of the Planck 2015 and other recent experiments.
Graph Structure in Three National Academic Webs: Power Laws with Anomalies.
ERIC Educational Resources Information Center
Thelwall, Mike; Wilkinson, David
2003-01-01
Explains how the Web can be modeled as a mathematical graph and analyzes the graph structures of three national university publicly indexable Web sites from Australia, New Zealand, and the United Kingdom. Topics include commercial search engines and academic Web link research; method-analysis environment and data sets; and power laws. (LRW)
Comments Regarding the Binary Power Law for Heterogeneity of Disease Incidence
Technology Transfer Automated Retrieval System (TEKTRAN)
The binary power law (BPL) has been successfully used to characterize heterogeneity (over dispersion or small-scale aggregation) of disease incidence for many plant pathosystems. With the BPL, the log of the observed variance is a linear function of the log of the theoretical variance for a binomial...
Fingering instability in the flow of a power-law fluid on a rotating disc
NASA Astrophysics Data System (ADS)
Arora, Akash; Doshi, Pankaj
2016-01-01
A computational study of the flow of a non-Newtonian power law fluid on a spinning disc is considered here. The main goal of this work is to examine the effect of non-Newtonian nature of the fluid on the flow development and associated contact line instability. The governing mass and momentum balance equations are simplified using the lubrication theory. The resulting model equation is a fourth order non-linear PDE which describes the spatial and temporal evolutions of film thickness. The movement of the contact line is modeled using a constant angle slip model. To solve this moving boundary problem, a numerical method is developed using a Galerkin/finite element method based approach. The numerical results show that the spreading rate of the fluid strongly depends on power law exponent n. It increases with the increase in the shear thinning character of the fluid (n < 1) and decreases with the increase in shear thickening nature of the fluid (n > 1). It is also observed that the capillary ridge becomes sharper with the value of n. In order to examine the stability of these ridges, a linear stability theory is also developed for these power law fluids. The dispersion relationship depicting the growth rate for a given wave number has been reported and compared for different power-law fluids. It is found that the growth rate of the instability decreases as the fluid becomes more shear thinning in nature, whereas it increases for more shear thickening fluids.
NASA Astrophysics Data System (ADS)
Shrivastava, Rajan; Malik, Chetan; Ghosh, Subhendu
2016-06-01
Open channel current noise in synthetic peptide S6 of KvAP channel was investigated in a voltage clamp experiment on bilayer lipid membrane (BLM). It was observed that the power spectral density (PSD) of the component frequencies follows power law with different slopes in different frequency ranges. In order to know the origin of the slopes PSD analysis was done with signal filtering. It was found that the first slope in the noise profile follows 1 / f pattern which exists at lower frequencies and has high amplitude current noise, while the second slope corresponds to 1 /f 2 - 3 pattern which exists at higher frequencies with low amplitude current noise. In addition, white noise was observed at very large frequencies. It was concluded that the plausible reason for the multiple power-law scaling is the existence of different modes of non-equilibrium ion transport through the S6 channel.
Propagation of Gravity Currents of non-Newtonian Power-Law Fluids in Porous Media
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2014-12-01
A comprehensive analytical and experimental framework is presented to describe gravity-driven motions of rheologically complex fluids through porous media. These phenomena are relevant in geophysical, environmental, industrial and biological applications. The fluid is characterized by an Ostwald-DeWaele constitutive equation with behaviour index n. The flow is driven by the release of fluid at the origin of an infinite porous domain. In order to represent several possible spreading scenarios, we consider: i) different domain geometries: plane, radial, and channelized, with the channel shape parameterized by k; ii) instantaneous or continuous injection, depending on the time exponent of the volume of fluid in the current, α; iii) horizontal or inclined impermeable boundaries. Systematic heterogeneity along the streamwise and/or transverse direction is added to the conceptualization upon considering a power-law permeability variation governed by two additional parameters ω and β. Scalings for current length and thickness are derived in self similar form coupling the modified Darcy's law accounting for the fluid rheology with the mass balance equation. The length, thickness, and aspect ratio of the current are studied as functions of model parameters; several different critical values of α emerge and govern the type of dependency, as well as the tendency of the current to accelerate or decelerate and become thicker or thinner at a given point. The asymptotic validity of the solutions is limited to certain ranges of model parameters. Experimental validation is performed under constant volume, constant and variable flux regimes in tanks/channels filled with transparent glass beads of uniform or variable diameter, using shear-thinning suspensions and Newtonian mixtures. The experimental results for the length and profile of the current agree well with the self-similar solutions at intermediate and late times.
Power-law distributions in economics: a nonextensive statistical approach (Invited Paper)
NASA Astrophysics Data System (ADS)
Duarte Queiros, Silvio M.; Anteneodo, Celia; Tsallis, Constantino
2005-05-01
The cornerstone of Boltzmann-Gibbs (BG) statistical mechanics is the Boltzmann-Gibbs-Jaynes-Shannon entropy SBG≡ -k sh dx f(x) ln f(x), where k is a positive constant and f(x) a probability density function. This theory has exibited, along more than one century, great success in the treatment of systems where short spatio/temporal correlations dominate. There are, however, anomalous natural and artificial systems that violate the basic requirements for its applicability. Different physical entropies, other than the standard one, appear to be necessary in order to satisfactorily deal with such anomalies. One of such entropies is Sq ≡ k (1-sh dx [f(x)]q)=(1-q) (with S1 = SBG), where the entropic index q is a real parameter. It has been proposed as the basis for a generalization, referred to as nonextensive statistical mechanics, of the BG theory. Sq shares with SBG four remarkable properties, namely concavity (8q > 0), Lesche-stability (8q > 0), finiteness of the entropy production per unit time (q 2 <), and additivity (for at least a compact support of q including q = 1). The simultaneous validity of these properties suggests that Sq is appropriate for bridging, at a macroscopic level, with classical thermodynamics itself. In the same natural way that exponential probability functions arise in the standard context, power-law tailed distributions, even with exponents out of the Levy range, arise in the nonextensive framework. In this review, we intend to show that many processes of interest in economy, for which fat-tailed probability functions are empirically observed, can be described in terms of the statistical mechanisms that underly the nonextensive theory.
The JKR-type adhesive contact problems for power-law shaped axisymmetric punches
NASA Astrophysics Data System (ADS)
Borodich, Feodor M.; Galanov, Boris A.; Suarez-Alvarez, Maria M.
2014-08-01
The JKR (Johnson, Kendall, and Roberts) and Boussinesq-Kendall models describe adhesive frictionless contact between two isotropic elastic spheres, and between a flat-ended axisymmetric punch and an elastic half-space respectively. However, the shapes of contacting solids may be more general than spherical or flat ones. In addition, the derivation of the main formulae of these models is based on the assumption that the material points within the contact region can move along the punch surface without any friction. However, it is more natural to assume that a material point that came to contact with the punch sticks to its surface, i.e. to assume that the non-slipping boundary conditions are valid. It is shown that the frictionless JKR model may be generalized to arbitrary convex, blunt axisymmetric body, in particular to the case of the punch shape being described by monomial (power-law) punches of an arbitrary degree d≥1. The JKR and Boussinesq-Kendall models are particular cases of the problems for monomial punches, when the degree of the punch d is equal to two or it goes to infinity respectively. The generalized problems for monomial punches are studied under both frictionless and non-slipping (or no-slip) boundary conditions. It is shown that regardless of the boundary conditions, the solution to the problems is reduced to the same dimensionless relations among the actual force, displacements and contact radius. The explicit expressions are derived for the values of the pull-off force and for the corresponding critical contact radius. Connections of the results obtained for problems of nanoindentation in the case of the indenter shape near the tip has some deviation from its nominal shape and the shape function can be approximated by a monomial function of radius, are discussed.
NASA Astrophysics Data System (ADS)
Kim, JongChun; Paik, Kyungrock
2015-04-01
Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic
ERIC Educational Resources Information Center
Bruce, Susan; DiNatale, Patrice; Ford, Jeremiah
2008-01-01
According to even the most conservative estimates, at least a quarter of deaf children have additional disabilities. Most teacher preparation programs do not sufficiently prepare teacher candidates for the challenges posed by these children. This article describes a professional development effort to prepare in-service educators of the deaf to…
NASA Astrophysics Data System (ADS)
Naeem, Haider T.; Mohammed, Kahtan S.; Ahmad, Khairel R.
2015-10-01
The main object of this study is to investigate the effect of friction stir processing (FSP) on the microstructure and hardness of Al-Zn-Mg-Cu alloys that were produced via casting with the addition of 5 wt % nickel. Furthermore, a single-pass FSP with a rotational speed of 1500 rpm and a traveling speed of 40 mm/min was performed on the alloys. The FSP-treated cast alloys were homogenized, aged at 120°C for 24 h, retrogressed at 180°C for 30 min, and then re-aged at 120°C for 24 h. Microstructural evaluations via optical microscopy and scanning electron microscopy, as well as with energy dispersive X-ray spectroscopy were conducted. In addition, X-ray diffraction analysis was performed to detect the intermetallics and phases of the Al-Zn-Mg-Cu-Ni alloys. Before FSP, the microstructural observations indicated the presence of coarse Ni dispersed particles with a precipitate phase within the matrix. After FSP treatment, the grain refinement led to the uniform space distribution of Ni dispersed particles in the stir zone. The Vickers hardness values for the Al-Zn-Mg-Cu-Ni alloy increased after age tempering at T6 and retrogression and re-aging (RRA) treatment because of the increased precipitation and particles dispersity. The hardness of the Al-Zn-Mg-Cu-Ni alloy was enhanced after FSP and a series of heat treatments, especially the RRA process, because of the stirring action of the FSP tool, the grain refinement, the appearance of additional precipitates, and the refinement of dispersed Ni particles.
PLNoise: a package for exact numerical simulation of power-law noises
NASA Astrophysics Data System (ADS)
Milotti, Edoardo
2006-08-01
Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1<β⩽1. The algorithm has a well-behaved computational complexity, it produces a nearly perfect Gaussian noise, and its computational efficiency depends on the required degree of noise Gaussianity. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B
Bruce, Susan; DiNatale, Patrice; Ford, Jeremiah
2008-01-01
According to even the most conservative estimates, at least a quarter of deaf children have additional disabilities. Most teacher preparation programs do not sufficiently prepare teacher candidates for the challenges posed by these children. This article describes a professional development effort to prepare in-service educators of the deaf to work with students with additional disabilities. Over a 3-year period, teachers selected these in-service topics: etiologies, vision conditions, behavior, transition, sensory integration, seizures, alternate assessment, and instructional strategies. In-class consultation was requested for support in the areas of formal assessment instruments, behavior, and student performance. Elements of effective professional development programs, such as honoring teachers' choices about topics and participation, responding to teachers' immediate classroom concerns, and providing in-class follow-up support, facilitated the success of this effort. PMID:19146073
NASA Astrophysics Data System (ADS)
Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping
2016-05-01
The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.
Power laws and self-organized criticality in theory and nature
NASA Astrophysics Data System (ADS)
Marković, Dimitrije; Gros, Claudius
2014-03-01
Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Riva, M.; Neuman, S. P.
2012-09-01
We analyze the scaling behaviors of two field-scale log permeability data sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm along three horizontal transects on a 21 m long and 6 m high outcrop of the Upper Cretaceous Straight Cliffs Formation, including lower-shoreface bioturbated and cross-bedded sandstone near Escalante, Utah. Order q sample structure functions of each data set scale as a power ξ(q) of separation scale or lag, s, over limited ranges of s. A procedure known as extended self-similarity (ESS) extends this range to all lags and yields a nonlinear (concave) functional relationship between ξ(q) and q. Whereas the literature tends to associate extended and nonlinear power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a) ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian) truncated (additive, self-affine, monofractal) fractional Brownian motion (tfBm), the latter being unique in predicting a breakdown in power-law scaling at small and large lags, and (b) nonlinear power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent with samples from sub-Gaussian random fields or processes subordinated to tfBm or truncated fractional Gaussian noise (tfGn), stemming from lack of ergodicity which causes sample moments to scale differently than do their ensemble counterparts. Here we (i) demonstrate that the above two data sets are consistent with sub-Gaussian random fields subordinated to tfBm or tfGn and (ii) provide maximum likelihood estimates of parameters characterizing the corresponding Lévy stable subordinators and tf
NASA Astrophysics Data System (ADS)
Sato, Haruo
2016-01-01
Peak delay and envelope broadening of an S-wavelet with travel distance increasing are seen in short-period seismograms of small earthquakes. Those phenomena are results of scattering by random velocity inhomogeneities in the earth medium. As shown in sonic well-log data we may suppose that random velocity fluctuation has power-law spectra even in the seismic spectral range. As a simple mathematical model, we study how the envelope of a scalar wavelet varies in von Kármán-type random media, which have power-law spectra at large wavenumbers. Since the centre wavenumber of a wavelet is a unique scale in the power-law spectral range, using it as a reference, we divide the random media into the low-wavenumber spectral (long-scale) component and the high-wavenumber spectral (short-scale) component. For the wave propagation through the long-scale component of random media, we may apply the parabolic approximation to the wave equation. Using the Markov approximation, which is a stochastic extension of the phase screen method, we directly synthesize the energy density, which is the mean-square (MS) envelope of a wavelet in a given frequency band. The envelope duration increases according to the second power of travel distance. There is an additional factor, the wandering effect which increases the envelope duration according to the traveltime fluctuation. Wide angle scattering caused by the short-scale component of random media attenuates wave amplitude with travel distance increasing. We use the total scattering coefficient of the short-scale component as a measure of scattering attenuation per distance, which is well described by the Born approximation. Multiplying the exponential scattering attenuation factor by the MS envelope derived by the Markov approximation, we can synthesize the MS envelope reflecting all the spectral components of random media. When the random medium power spectra have a steep role-off at large wavenumbers, the envelope broadening is small and
NASA Astrophysics Data System (ADS)
Umansky, Moti; Weihs, Daphne
2012-08-01
parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.
NASA Astrophysics Data System (ADS)
Grayson, M.; Tsui, D. C.; Chang, A. M.; Pfeiffer, L. N.; West, K. W.
1997-03-01
We study current vs. voltage when tunneling into the edge of the FQHE around ν = 1/3 and 2/5 for samples of differing mobility. For voltages above the thermal voltage the device manifests the previously observed power law I-V behavior (A.M. Chang, L.N. Pfeiffer, K. West, Phys. Rev. Lett, 77, 2538 (1996)) which eventually saturates to the linear Hall conductance. The high mobility samples yield a power law exponent of α = 2.70 +/- 0.05 at ν = 1/3. Near ν = 1/3, the exponent varies roughly as σ_xy-1. The highest mobility sample fits a universal curve over 6 orders of magnitude in voltage scaled by the Kondo temperature. (C. Chamon, E. Fradkin, private communication) This characteristic covers the entire range from weak to strong coupling beyond the weak coupling scaling regime of Kane and Fisher. In contrast, samples with lower mobililty break off from this universal curve to a weaker power law, suggesting that another relevant energy scale comes into play. In addition, we will report observation of a resonance at ν = 1/3 which appears to exhibit an anomalous lineshape.
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav
2015-06-01
We study power-law correlations properties of the Google search queries for Dow Jones Industrial Average (DJIA) component stocks. Examining the daily data of the searched terms with a combination of the rescaled range and rescaled variance tests together with the detrended fluctuation analysis, we show that the searches are in fact power-law correlated with Hurst exponents between 0.8 and 1.1. The general interest in the DJIA stocks is thus strongly persistent. We further reinvestigate the cross-correlation structure between the searches, traded volume and volatility of the component stocks using the detrended cross-correlation and detrending moving-average cross-correlation coefficients. Contrary to the universal power-law correlations structure of the related Google searches, the results suggest that there is no universal relationship between the online search queries and the analyzed financial measures. Even though we confirm positive correlation for a majority of pairs, there are several pairs with insignificant or even negative correlations. In addition, the correlations vary quite strongly across scales.
Deposition from evaporating drops: Power laws and new morphologies in coffee stains
NASA Astrophysics Data System (ADS)
Freed-Brown, Julian E.
We investigate the structure of stains formed through evaporative deposition in sessile drops. Commonly, the deposited stain has a high surface density near the three phase contact line of the drying drop and much less solute in the bulk of the drop. This is known as the ``coffee ring effect'' and primarily arises due to contact line pinning. While many features of the stain depend on subtle physical phenomena within the drop, the coffee ring effect stands out as a robust feature that persists in many varied experimental realizations. In 2009, Witten predicted another robust feature of deposited stains: an asymptotic regime where a robust power law governs the fadeout profile of the stain into the interior of the drop. This power law is only controlled by geometric properties at a single point and the power does not vary along the contact line. We investigate the approach to this power law using numerical methods. For many evaporation profiles (including common experimental ones) the numerics show good agreement with the power law prediction. However, we demonstrate an intuitive scheme to construct evaporation profiles that subvert the power law prediction. We find that, in general, the approach to the power law cannot be known without full knowledge of the evaporation and height profile. We also extend this work in another way. We apply the basic arguments of the coffee ring effect to the case where the drop has a receding contact line. Here, we develop a new theoretical framework for deposition that has not previously been studied. In this context, the surface density profile can be directly calculated. Unlike a pinned contact line, receding contact lines push fluid into the interior of the drop. This effect can be overcome by strong evaporation near the contact line, but in general the intuition from contact line pinning is reversed. Following Witten's example, we find that the surface density of the stain near the center of the drop goes as eta ∝ rnu, where
NASA Astrophysics Data System (ADS)
Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit
2016-04-01
The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA‑b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from
NASA Astrophysics Data System (ADS)
Gu, R.; Ngan, A. H. W.
2013-06-01
It is by now well-known that micron-sized metallic crystals exhibit a smaller-being-stronger size effect: the yield strength σ varies with specimen size D approximately as a power-law σ˜D-m, and the exponent m has been found to vary within a range of ˜0.3-1.0 for different metals. However, little is known about why such a power-law comes into play, and what determines the actual value of the exponent m involved. This work shows that if the yield strength is determined by the Taylor interaction mechanism within the initial dislocation network, then for the size dependence of strength to be of the power-law relation observed, it is necessary for the mesh lengths L of the dislocation network to be power-law distributed, i.e. p(L)˜L-q. In such a case, the exponent m of the size effect is predicted to be inversely proportional to the sum of q the exponent of the mesh-length distribution and n the exponent of the dislocation velocity vs. stress law. To verify these predictions, compression experiments on aluminum micro-pillars with different pre-strains from 0% to 15% were carried out. The different pre-strains led to different initial dislocation networks, as well as different exponent m in the size dependence of strength. Box-counting analyses of transmission electron micrographs of the initial dislocation networks showed that the 2-D projected dislocation patterns were approximate fractals. On increasing pre-strain, the exponent m for the size dependence of strength was found to decrease while the fractal dimension of the initial dislocation patterns increased, thus verifying the inverse relationship between the two quantities. These findings show that the commonly observed power-law scaling of strength with size is due to an approximate power-law distribution of the initial dislocation mesh lengths, which also appears to be a robust feature in deformed metals. Furthermore, for a given metal, it is the exponent q of the initial mesh-length distribution which
Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R.; Itskovitz-Eldor, Joseph; Binah, Ofer
2013-01-01
Background The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell– derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell– derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. Methods and Results We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. Conclusions This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient’s own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers. PMID:22261196
Phase diagram of softly repulsive systems: the Gaussian and inverse-power-law potentials.
Prestipino, Santi; Saija, Franz; Giaquinta, Paolo V
2005-10-01
We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behaviors of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range of densities and temperatures, being ruled by the competition between the body-centered-cubic (bcc) and face-centered-cubic (fcc) crystalline structures and the fluid phase. We confirm the existence of a reentrant bcc phase in the phase diagram of the Gaussian-core model, just above the triple point. We also trace the bcc-fcc coexistence line of the inverse-power-law model as a function of the power exponent n and relate the common features in the phase diagrams of such systems to the softness degree of the interaction. PMID:16238377
Power-Law Entropy-Corrected HDE and NADE in Brans-Dicke Cosmology
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Karami, K.; Jamil, M.; Kazemi, E.; Haddad, M.
2012-06-01
Considering the power-law corrections to the black hole entropy, which appear in dealing with the entanglement of quantum fields inside and outside the horizon, the holographic energy density is modified accordingly. In this paper we study the power-law entropy-corrected holographic dark energy in the framework of Brans-Dicke theory. We investigate the cosmological implications of this model in detail. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution. As a result we find that this model can provide the present cosmic acceleration and even the equation of state parameter of this model can cross the phantom line w D =-1 provided the model parameters are chosen suitably.
Scalar field reconstruction of power-law entropy-corrected holographic dark energy
NASA Astrophysics Data System (ADS)
Ebrahimi, Esmaeil; Sheykhi, Ahmad
2011-10-01
A so-called 'power-law entropy-corrected holographic dark energy' (PLECHDE) was recently proposed to explain the dark energy (DE)-dominated universe. This model is based on the power-law corrections to black hole entropy that appear when dealing with the entanglement of quantum fields between the inside and the outside of the horizon. In this paper, we suggest a correspondence between the interacting PLECHDE and the tachyon, quintessence, K-essence and dilaton scalar field models of DE in a non-flat Friedmann-Robertson-Walker universe. Then, we reconstruct the potential terms accordingly, and present the dynamical equations that describe the evolution of the scalar field DE models.
Segmentation of genomic DNA through entropic divergence: Power laws and scaling
NASA Astrophysics Data System (ADS)
Azad, Rajeev K.; Bernaola-Galván, Pedro; Ramaswamy, Ramakrishna; Rao, J. Subba
2002-05-01
Genomic DNA is fragmented into segments using the Jensen-Shannon divergence. Use of this criterion results in the fragments being entropically homogeneous to within a predefined level of statistical significance. Application of this procedure is made to complete genomes of organisms from archaebacteria, eubacteria, and eukaryotes. The distribution of fragment lengths in bacterial and primitive eukaryotic DNAs shows two distinct regimes of power-law scaling. The characteristic length separating these two regimes appears to be an intrinsic property of the sequence rather than a finite-size artifact, and is independent of the significance level used in segmenting a given genome. Fragment length distributions obtained in the segmentation of the genomes of more highly evolved eukaryotes do not have such distinct regimes of power-law behavior.
Deviations from uniform power-law scaling due to exposure to high altitude
NASA Astrophysics Data System (ADS)
Posiewnik, A.
2002-12-01
A major challenge in biological physics is the analysis of time series that are typically highly nonstationary. Viswanathan et al. (Phys. Rev. E 55 (1) (1997) 845-899) using techniques based on the Fano factor and the Allan factor functions, as well as on detrended fluctuation analysis showed that the scaling properties of the dynamics of healthy physiological systems in normal conditions are more stable than those of pathological systems-there is underlying loss of uniform power-law scaling in disease. Here we test, using the same techniques as Viswanathan et al. (1997), the hypothesis that deviations from uniform power-law scaling, similar to those seen in heart failure and deep apnea syndrome occur also for healthy subjects under pathological conditions (hypoxaemic stress during exposure to high altitude, over 6000 m).
Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1973-01-01
The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.
Fluctuation in e-mail sizes weakens power-law correlations in e-mail flow
NASA Astrophysics Data System (ADS)
Matsubara, Yoshitsugu; Hieida, Yasuhiro; Tadaki, Shin-ichi
2013-09-01
Power-law correlations have been observed in packet flow over the Internet. The possible origin of these correlations includes demand for Internet services. We observe the demand for e-mail services in an organization, and analyze correlations in the flow and the sequence of send requests using a Detrended Fluctuation Analysis (DFA). The correlation in the flow is found to be weaker than that in the send requests. Four types of artificial flow are constructed to investigate the effects of fluctuations in e-mail sizes. As a result, we find that the correlation in the flow originates from that in the sequence of send requests. The strength of the power-law correlation decreases as a function of the ratio of the standard deviation of e-mail sizes to their average.
Flow structure for Power-Law fluids in lid-driven arc-shape cavities
NASA Astrophysics Data System (ADS)
Mercan, Hatice; Atalik, Kunt
2011-06-01
In this paper the lid-driven flow of a Power-Law fluid in arc-shape cavities is studied. Two different arc cavity cross sections are considered with arc angle ratios r = 1/2 and r = 1/3. The unsteady streamfunction-vorticity formulation is adopted together with a Power-Law constitutive relation. Body-fitted coordinate transformation is applied to generate orthogonal computational grids. The equations are discretized in space using a second order finite difference numerical method. Time integration is performed using fourth order Runge-Kutta explicit scheme. The combined effects of inertia, shear thinning/shear thickening and curved geometry on the vortical structure and velocity profiles are shown. The results are compared to Newtonian fluid case. It is found that under inertia, shear thinning effects lead to the early formation and growth of secondary vortices in the curved cavity, however shear thickening has an opposite effect.
Synchronization and plateau splitting of coupled oscillators with long-range power-law interactions
NASA Astrophysics Data System (ADS)
Kuo, Huan-Yu; Wu, Kuo-An
2015-12-01
We investigate synchronization and plateau splitting of coupled oscillators on a one-dimensional lattice with long-range interactions that decay over distance as a power law. We show that in the thermodynamic limit the dynamics of systems of coupled oscillators with power-law exponent α ≤1 is identical to that of the all-to-all coupling case. For α >1 , oscillatory behavior of the phase coherence appears as a result of single plateau splitting into multiple plateaus. A coarse-graining method is used to investigate the onset of plateau splitting. We analyze a simple oscillatory state formed by two plateaus in detail and propose a systematic approach to predict the onset of plateau splitting. The prediction of breaking points of plateau splitting is in quantitatively good agreement with numerical simulations.
Universal power-law and partial condensation in aggregation-chipping processes
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroshi; Ohtsuki, Toshiya
2010-06-01
The asymptotic behaviour of a distribution function P(X) for X clusters is investigated in aggregation-chipping processes, where aggregation and chipping off of a finite unit of size less than L take place simultaneously. Numerical simulations show that above a certain threshold ⟨X⟩c of an average cluster size, the system exhibits partial condensation where one condensed cluster coexists with a universal power-law distribution with the exponent -5/2 . The critical value ⟨X⟩c is calculated and turns out to increase monotonously with L . The z -transform technique is used to analyze the case L=2 in detail. Obtained results agree well with numerical ones. Finally, universality of the asymptotic power law is discussed for general cases. It becomes evident that universality holds as long as the size of chipped off unit is finite.
Two-phase power-law modeling of pipe flows displaying shear-thinning phenomena
Ding, Jianmin; Lyczkowski, R.W.; Sha, W.T.
1993-12-31
This paper describes work in modeling concentrated liquid-solids flows in pipes. COMMIX-M, a three-dimensional transient and steady-state computer program developed at Argonne National Laboratory, was used to compute velocities and concentrations. Based on the authors` previous analyses, some concentrated liquid-solids suspension flows display shear-thinning rather than Newtonian phenomena. Therefore, they developed a two-phase non-Newtonian power-law model that includes the effect of solids concentration on solids viscosity. With this new two-phase power-law solids-viscosity model, and with constitutive relationships for interfacial drag, virtual mass effect, shear lift force, and solids partial-slip boundary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated three-dimensional liquid-solids flows.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Pharr, G. M.
1989-01-01
Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.
A power-law distribution for tenure lengths of sports managers
NASA Astrophysics Data System (ADS)
Aidt, Toke S.; Leong, Bernard; Saslaw, William C.; Sgroi, Daniel
2006-10-01
We show that the tenure lengths for managers of sport teams follow a power law distribution with an exponent between 2 and 3. We develop a simple theoretical model which replicates this result. The model demonstrates that the empirical phenomenon can be understood as the macroscopic outcome of pairwise interactions among managers in a league, threshold effects in managerial performance evaluation, competitive market forces, and luck at the microscopic level.
Phenomenological Blasius-type friction equation for turbulent power-law fluid flows.
Anbarlooei, H R; Cruz, D O A; Ramos, F; Silva Freire, A P
2015-12-01
We propose a friction formula for turbulent power-law fluid flows, a class of purely viscous non-Newtonian fluids commonly found in applications. Our model is derived through an extension of the friction factor analysis based on Kolmogorov's phenomenology, recently proposed by Gioia and Chakraborty. Tests against classical empirical data show excellent agreement over a significant range of Reynolds number. Limits of the model are also discussed. PMID:26764803
Phenomenological Blasius-type friction equation for turbulent power-law fluid flows
NASA Astrophysics Data System (ADS)
Anbarlooei, H. R.; Cruz, D. O. A.; Ramos, F.; Silva Freire, A. P.
2015-12-01
We propose a friction formula for turbulent power-law fluid flows, a class of purely viscous non-Newtonian fluids commonly found in applications. Our model is derived through an extension of the friction factor analysis based on Kolmogorov's phenomenology, recently proposed by Gioia and Chakraborty. Tests against classical empirical data show excellent agreement over a significant range of Reynolds number. Limits of the model are also discussed.
The Power Laws of Violence against Women: Rescaling Research and Policies
Kappler, Karolin E.; Kaltenbrunner, Andreas
2012-01-01
Background Violence against Women –despite its perpetuation over centuries and its omnipresence at all social levels– entered into social consciousness and the general agenda of Social Sciences only recently, mainly thanks to feminist research, campaigns, and general social awareness. The present article analyzes in a secondary analysis of German prevalence data on Violence against Women, whether the frequency and severity of Violence against Women can be described with power laws. Principal Findings Although the investigated distributions all resemble power-law distributions, a rigorous statistical analysis accepts this hypothesis at a significance level of 0.1 only for 1 of 5 cases of the tested frequency distributions and with some restrictions for the severity of physical violence. Lowering the significance level to 0.01 leads to the acceptance of the power-law hypothesis in 2 of the 5 tested frequency distributions and as well for the severity of domestic violence. The rejections might be mainly due to the noise in the data, with biases caused by self-reporting, errors through rounding, desirability response bias, and selection bias. Conclusion Future victimological surveys should be designed explicitly to avoid these deficiencies in the data to be able to clearly answer the question whether Violence against Women follows a power-law pattern. This finding would not only have statistical implications for the processing and presentation of the data, but also groundbreaking consequences on the general understanding of Violence against Women and policy modeling, as the skewed nature of the underlying distributions makes evident that Violence against Women is a highly disparate and unequal social problem. This opens new questions for interdisciplinary research, regarding the interplay between environmental, experimental, and social factors on victimization. PMID:22768348
Logarithmic and power law input-output relations in sensory systems with fold-change detection.
Adler, Miri; Mayo, Avi; Alon, Uri
2014-08-01
Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling. PMID:25121598
Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information
NASA Technical Reports Server (NTRS)
Howell, L. W., Jr.
2003-01-01
A simple power law model consisting of a single spectral index, sigma(sub 2), is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index sigma(sub 2) greater than sigma(sub 1) above E(sub k). The maximum likelihood (ML) procedure was developed for estimating the single parameter sigma(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (Pl) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum- detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are stained in practice are investigated.
The Forbes 400, the Pareto power-law and efficient markets
NASA Astrophysics Data System (ADS)
Klass, O. S.; Biham, O.; Levy, M.; Malcai, O.; Solomon, S.
2007-01-01
Statistical regularities at the top end of the wealth distribution in the United States are examined using the Forbes 400 lists of richest Americans, published between 1988 and 2003. It is found that the wealths are distributed according to a power-law (Pareto) distribution. This result is explained using a simple stochastic model of multiple investors that incorporates the efficient market hypothesis as well as the multiplicative nature of financial market fluctuations.
Study of Entropy-corrected Logarithmic and Power-law Versions of Pilgrim Dark Energy
NASA Astrophysics Data System (ADS)
Saha, Pameli; Debnath, Ujjal
2016-03-01
In the present work, first, we have described pilgrim dark energy, entropy-corrected pilgrim dark energy for logarithmic and power law versions. Secondly, we have done the work on the aforementioned entropy-corrected versions by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble, event and conformal age of the universe. We have also made the analysis of w_{de}-w^' }_{de} and point out freezing region and thawing region in that plane.
NASA Astrophysics Data System (ADS)
Kowser, Md. A.; Mahiuddin, Md.
2014-11-01
In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.
Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
Comparison of generalized Reynolds and Navier Stokes equations for flow of a power law fluid
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Prekwas, A.; Braun, M. J.; Hendricks, R. C.
1987-01-01
This paper compares a finite element solution of a modified Reynolds equation with a finite difference solution of the Navier-Stokes equation for a power law fluid. Both the finite element and finite difference formulation are reviewed. Solutions to spiral flow in parallel and conical geometries are compared. Comparison with experimental results are also given. The effects of the assumptions used in the Reynolds equation are discussed.
A generalized power-law detection algorithm for humpback whale vocalizations.
Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Roch, Marie A; Hildebrand, John A
2012-04-01
Conventional detection of humpback vocalizations is often based on frequency summation of band-limited spectrograms under the assumption that energy (square of the Fourier amplitude) is the appropriate metric. Power-law detectors allow for a higher power of the Fourier amplitude, appropriate when the signal occupies a limited but unknown subset of these frequencies. Shipping noise is non-stationary and colored and problematic for many marine mammal detection algorithms. Modifications to the standard power-law form are introduced to minimize the effects of this noise. These same modifications also allow for a fixed detection threshold, applicable to broadly varying ocean acoustic environments. The detection algorithm is general enough to detect all types of humpback vocalizations. Tests presented in this paper show this algorithm matches human detection performance with an acceptably small probability of false alarms (P(FA) < 6%) for even the noisiest environments. The detector outperforms energy detection techniques, providing a probability of detection P(D) = 95% for P(FA) < 5% for three acoustic deployments, compared to P(FA) > 40% for two energy-based techniques. The generalized power-law detector also can be used for basic parameter estimation and can be adapted for other types of transient sounds. PMID:22501048
Frequency variations of solar radio zebras and their power-law spectra
NASA Astrophysics Data System (ADS)
Karlický, M.
2014-01-01
Context. During solar flares several types of radio bursts are observed. The fine striped structures of the type IV solar radio bursts are called zebras. Analyzing them provides important information about the plasma parameters of their radio sources. We present a new analysis of zebras. Aims: Power spectra of the frequency variations of zebras are computed to estimate the spectra of the plasma density variations in radio zebra sources. Methods: Frequency variations of zebra lines and the high-frequency boundary of the whole radio burst were determined with and without the frequency fitting. The computed time dependencies of these variations were analyzed with the Fourier method. Results: First, we computed the variation spectrum of the high-frequency boundary of the whole radio burst, which is composed of several zebra patterns. This power spectrum has a power-law form with a power-law index -1.65. Then, we selected three well-defined zebra-lines in three different zebra patterns and computed the spectra of their frequency variations. The power-law indices in these cases are found to be in the interval between -1.61 and -1.75. Finally, assuming that the zebra-line frequency is generated on the upper-hybrid frequency and that the plasma frequency ωpe is much higher than the electron-cyclotron frequency ωce, the Fourier power spectra are interpreted to be those of the electron plasma density in zebra radio sources.
Mobility of power-law and Carreau fluids through fibrous media.
Shahsavari, Setareh; McKinley, Gareth H
2015-12-01
The flow of generalized Newtonian fluids with a rate-dependent viscosity through fibrous media is studied, with a focus on developing relationships for evaluating the effective fluid mobility. Three methods are used here: (i) a numerical solution of the Cauchy momentum equation with the Carreau or power-law constitutive equations for pressure-driven flow in a fiber bed consisting of a periodic array of cylindrical fibers, (ii) an analytical solution for a unit cell model representing the flow characteristics of a periodic fibrous medium, and (iii) a scaling analysis of characteristic bulk parameters such as the effective shear rate, the effective viscosity, geometrical parameters of the system, and the fluid rheology. Our scaling analysis yields simple expressions for evaluating the transverse mobility functions for each model, which can be used for a wide range of medium porosity and fluid rheological parameters. While the dimensionless mobility is, in general, a function of the Carreau number and the medium porosity, our results show that for porosities less than ɛ≃0.65, the dimensionless mobility becomes independent of the Carreau number and the mobility function exhibits power-law characteristics as a result of the high shear rates at the pore scale. We derive a suitable criterion for determining the flow regime and the transition from a constant viscosity Newtonian response to a power-law regime in terms of a new Carreau number rescaled with a dimensionless function which incorporates the medium porosity and the arrangement of fibers. PMID:26764809
Tippett, Michael K.; Cohen, Joel E.
2016-01-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210
Decomposition of Heart Rate Variability Spectrum into a Power-Law Function and a Residual Spectrum
Kuo, Jane; Kuo, Cheng-Deng
2016-01-01
The power spectral density (PSD) of heart rate variability (HRV) contains a power-law relationship that can be obtained by plotting the logarithm of PSD against the logarithm of frequency. The PSD of HRV can be decomposed mathematically into a power-law function and a residual HRV (rHRV) spectrum. Almost all rHRV measures are significantly smaller than their corresponding HRV measures except the normalized high-frequency power (nrHFP). The power-law function can be characterized by the slope and Y-intercept of linear regression. Almost all HRV measures except the normalized low-frequency power have significant correlations with the Y-intercept, while almost all rHRV measures except the total power [residual total power (rTP)] do not. Though some rHRV measures still correlate significantly with the age of the subjects, the rTP, high-frequency power (rHFP), nrHFP, and low-/high-frequency power ratio (rLHR) do not. In conclusion, the clinical significances of rHRV measures might be different from those of traditional HRV measures. The Y-intercept might be a better HRV measure for clinical use because it is independent of almost all rHRV measures. The rTP, rHFP, nrHFP, and rLHR might be more suitable for the study of age-independent autonomic nervous modulation of the subjects. PMID:27314001
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
NASA Astrophysics Data System (ADS)
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-01-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns. PMID:25779306
Detection of two power-law tails in the probability distribution functions of massive GMCs
NASA Astrophysics Data System (ADS)
Schneider, N.; Bontemps, S.; Girichidis, P.; Rayner, T.; Motte, F.; André, Ph.; Russeil, D.; Abergel, A.; Anderson, L.; Arzoumanian, D.; Benedettini, M.; Csengeri, T.; Didelon, P.; Di Francesco, J.; Griffin, M.; Hill, T.; Klessen, R. S.; Ossenkopf, V.; Pezzuto, S.; Rivera-Ingraham, A.; Spinoglio, L.; Tremblin, P.; Zavagno, A.
2015-11-01
We report the novel detection of complex high column density tails in the probability distribution functions (PDFs) for three high-mass star-forming regions (CepOB3, MonR2, NGC 6334), obtained from dust emission observed with Herschel. The low column density range can be fitted with a lognormal distribution. A first power-law tail starts above an extinction (AV) of ∼6-14. It has a slope of α 1.3-2 for the &ρ ≈ r-α profile for an equivalent density distribution (spherical or cylindrical geometry), and is thus consistent with free-fall gravitational collapse. Above AV ∼40, 60, and 140, we detect an excess that can be fitted by a flatter power-law tail with α > 2. It correlates with the central regions of the cloud (ridges/hubs) of size ∼;1 pc and densities above 104 cm-3. This excess may be caused by physical processes that slow down collapse and reduce the flow of mass towards higher densities. Possible are: (1) rotation, which introduces an angular momentum barrier, (2) increasing optical depth and weaker cooling, (3) magnetic fields, (4) geometrical effects, and (5) protostellar feedback. The excess/second power-law tail is closely linked to high-mass star-formation though it does not imply a universal column density threshold for the formation of (high-mass) stars.
Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions
Gong Jingyu; Du Jiulin; Liu Zhipeng
2012-08-15
The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.
Tippett, Michael K; Cohen, Joel E
2016-01-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210
Comment on "Time needed to board an airplane: a power law and the structure behind it".
Bernstein, Noam
2012-08-01
Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)] recently showed that for a simple model for the boarding of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is less than 1. They note that this scaling leads to the prediction that the "back-to-front" strategy, where passengers are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to front once the previous group has found their seats, has a longer boarding time than would a single group. Here I extend their results to a larger number of passengers using a sampling approach and explore a scenario where the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show that the power law dependence on passenger numbers is different for large N and that there is a boarding time reduction for presorted groups, with a power law dependence on the number of presorted groups. PMID:23005813
Evidence of power-law flow in the Mojave desert mantle.
Freed, Andrew M; Bürgmann, Roland
2004-07-29
Studies of the Earth's response to large earthquakes can be viewed as large rock deformation experiments in which sudden stress changes induce viscous flow in the lower crust and upper mantle that lead to observable postseismic surface deformation. Laboratory experiments suggest that viscous flow of deforming hot lithospheric rocks is characterized by a power law in which strain rate is proportional to stress raised to a power, n (refs 2, 3). Most geodynamic models of flow in the lower crust and upper mantle, however, resort to newtonian (linear) stress-strain rate relations. Here we show that a power-law model of viscous flow in the mantle with n = 3.5 successfully explains the spatial and temporal evolution of transient surface deformation following the 1992 Landers and 1999 Hector Mine earthquakes in southern California. A power-law rheology implies that viscosity varies spatially with stress causing localization of strain, and varies temporally as stress evolves, rendering newtonian models untenable. Our findings are consistent with laboratory-derived flow law parameters for hot and wet olivine--the most abundant mineral in the upper mantle--and support the contention that, at least beneath the Mojave desert, the upper mantle is weaker than the lower crust. PMID:15282602
Second-order small-disturbance solutions for hypersonic flow over power-law bodies
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1975-01-01
Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.
High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2014-12-01
Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2013-12-01
Bessel integrals of type {int_0^infty {k^{μ+2}{e}^{-ak2-(b+{i} ω)k}j_l^{2} (pk)dk}} are studied, where the squared spherical Bessel function j {/l 2} is averaged with a modulated Gaussian power-law density. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. The averages can be calculated in closed form as finite Hankel series, which allow high-precision evaluation. In the case of integer power-law exponents μ, singularities emerge in the series coefficients, which requires ɛ expansion. The pole extraction and regularization of singular Hankel series is performed, for integer Gaussian power-law densities as well as for the special case of Kummer averages (a = 0 in the exponential of the integrand). The singular ɛ residuals are used to derive combinatorial identities (sum rules) for the rational Hankel coefficients, which serve as consistency checks in precision calculations of the integrals. Numerical examples are given, and the Hankel evaluation of Gaussian and Kummer averages is compared with their high-index Airy approximation over a wide range of integer Bessel indices l.
Mobility of power-law and Carreau fluids through fibrous media
NASA Astrophysics Data System (ADS)
Shahsavari, Setareh; McKinley, Gareth H.
2015-12-01
The flow of generalized Newtonian fluids with a rate-dependent viscosity through fibrous media is studied, with a focus on developing relationships for evaluating the effective fluid mobility. Three methods are used here: (i) a numerical solution of the Cauchy momentum equation with the Carreau or power-law constitutive equations for pressure-driven flow in a fiber bed consisting of a periodic array of cylindrical fibers, (ii) an analytical solution for a unit cell model representing the flow characteristics of a periodic fibrous medium, and (iii) a scaling analysis of characteristic bulk parameters such as the effective shear rate, the effective viscosity, geometrical parameters of the system, and the fluid rheology. Our scaling analysis yields simple expressions for evaluating the transverse mobility functions for each model, which can be used for a wide range of medium porosity and fluid rheological parameters. While the dimensionless mobility is, in general, a function of the Carreau number and the medium porosity, our results show that for porosities less than ɛ ≃0.65 , the dimensionless mobility becomes independent of the Carreau number and the mobility function exhibits power-law characteristics as a result of the high shear rates at the pore scale. We derive a suitable criterion for determining the flow regime and the transition from a constant viscosity Newtonian response to a power-law regime in terms of a new Carreau number rescaled with a dimensionless function which incorporates the medium porosity and the arrangement of fibers.
Point mobility of a cylindrical plate incorporating a tapered hole of power-law profile.
O'Boy, Daniel J; Bowyer, Elizabeth P; Krylov, Victor V
2011-06-01
The paper describes the results of experimental measurements of point mobility carried out on circular plates containing tapered holes of quadratic power-law profile with attached damping layers. The obtained results are compared to the developed numerical model, as a means of validation. The profiles of the tapered hole in the plates are designed to replicate near zero reflection of quasi-plane waves from a tapered hole in geometrical acoustics approximation, also known as acoustic black hole effect. The driving point mobility measurements are provided, showing a comparison of the results for a constant thickness circular plate, a constant thickness plate with a layer of damping film applied and a plate with a quadratic power-law profile machined into the center, which is tested with a thin layer of elastic damping material attached. The results indicate a substantial suppression of resonant peaks, agreeing with a numerical model, which is based on the analytical solution available for the vibration of a plate with a central quadratic power-law profile. The paper contains results for the case of free boundary conditions on all edges of the plates, with emphasis placed on the predictions of resonant frequencies and the amplitudes of vibration and loss factor. PMID:21682374
Cyclotron Maser Emission from Power-law Electrons with Strong Pitch-angle Anisotropy
NASA Astrophysics Data System (ADS)
Zhao, G. Q.; Feng, H. Q.; Wu, D. J.; Chen, L.; Tang, J. F.; Liu, Q.
2016-05-01
Energetic electrons with power-law spectra are commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of the X2 mode rapidly decreases with respect to the electron pitch-angle cosine μ 0 at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as μ 0 increases. Moreover, the O mode, as well as the X mode, can be the fastest growth mode, in terms of not only the plasma parameter but also the type of electron pitch-angle distribution. This result presents a significant extension of the recent researches on ECME driven by the lower energy cutoff of power-law electrons, in which the X mode is generally the fastest growth mode.
Comment on ``Time needed to board an airplane: A power law and the structure behind it''
NASA Astrophysics Data System (ADS)
Bernstein, Noam
2012-08-01
Frette and Hemmer [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.011130 85, 011130 (2012)] recently showed that for a simple model for the boarding of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is less than 1. They note that this scaling leads to the prediction that the “back-to-front” strategy, where passengers are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to front once the previous group has found their seats, has a longer boarding time than would a single group. Here I extend their results to a larger number of passengers using a sampling approach and explore a scenario where the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show that the power law dependence on passenger numbers is different for large N and that there is a boarding time reduction for presorted groups, with a power law dependence on the number of presorted groups.
NASA Astrophysics Data System (ADS)
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-03-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.
NASA Astrophysics Data System (ADS)
Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.
2014-09-01
We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
Kiflawi, Moshe; Mann, Ofri; Meekan, Mark G
2016-10-21
Taylor's Power Law for the temporal fluctuation in population size (TL) posits that the variance in abundance scales according to aM(b); where M is the mean abundance and a and b are the 'proportionality' and 'scaling' coefficients. As one of the few empirical rules in population ecology, TL has attracted substantial theoretical and empirical attention. Much of this attention focused on the scaling coefficient; particularly its ubiquitous deviation from the null value of 2. Here we present a line of reasoning that challenges the power-law interpretation of the empirical log-linear relationship between the mean and variance of population size. At the core of our reasoning is the proposition that populations vary not only with respect to M but also with respect to a; which leaves the log-linear relationship intact but forfeits its power-law interpretation. Using the stochastic logistic-growth model as an example, we show that ignoring among-population variation in a is akin to ignoring the variation in the intrinsic rate of growth (r). Accordingly, we show that the slope of the log-linear relationship (b) is a function of the among-population (co)variation in r and the carrying-capacity. We further demonstrate that local environmental stochasticity is sufficient to generate the full range of observed values of b, and that b can in fact be insensitive to substantial differences in the balance between variance-generating and stabilizing processes. PMID:27449788
Strain-rate Dependence of Power-law Creep and Folding of Rocks
NASA Astrophysics Data System (ADS)
Ord, A.; Hobbs, B. E.
2011-12-01
Kocks (1987) proposed how the kinetics of deformation associated with different stress levels results in different shear stress-shear strain rate behaviours, with a cross-over or threshold from thermally activated dislocation motion at low stresses to viscous glide at some critical shear stress. Cordier (pers. comm.; Carrez et al., 2010) clarified this transition at least for MgO through atomistic, single dislocation and Dislocation Dynamics calculations. These studies indicate that the power-law relations observed experimentally for deforming rocks may be different for geological strain-rates, in that rate laws may become relatively strain-rate insensitive at low strain-rates. This transition from power law behaviour with relatively small values of the stress exponent, N, (N = 1 to 5) to large values of N (N = 5 to 20) has important implications for the development of localised behaviour during deformation as has been demonstrated at the other end of the spectrum for high stresses by Schmalholz and Fletcher (2011). Since localisation of fold systems arises from softening of the tangential viscosity, large values of N mean that little softening occurs with changes in strain rate, and sinusoidal folds are expected. There is therefore a critical range of N-values where localised, natural looking, folds develop. We explore the implications for folding of linear viscous single layers embedded in power-law viscous materials with N that varies with the stress level. The strain-rate dependence of the power law parameters results in strongly localised, aperiodic folding as opposed to the fold styles that arise from the linear Biot theory of folding. Also developed are axial plane shear fabrics. These structures resemble natural ones more than those that arise from simple Newtonian viscous or power-law behaviour with constant N. The results show that new studies of folded rocks and associated axial plane structures in the field may give important information on the
Fujiyama, Toshifumi; Matsui, Chihiro; Takemura, Akimichi
2016-01-01
We propose a power-law growth and decay model for posting data to social networking services before and after social events. We model the time series structure of deviations from the power-law growth and decay with a conditional Poisson autoregressive (AR) model. Online postings related to social events are described by five parameters in the power-law growth and decay model, each of which characterizes different aspects of interest in the event. We assess the validity of parameter estimates in terms of confidence intervals, and compare various submodels based on likelihoods and information criteria. PMID:27505155
Fujiyama, Toshifumi; Matsui, Chihiro; Takemura, Akimichi
2016-01-01
We propose a power-law growth and decay model for posting data to social networking services before and after social events. We model the time series structure of deviations from the power-law growth and decay with a conditional Poisson autoregressive (AR) model. Online postings related to social events are described by five parameters in the power-law growth and decay model, each of which characterizes different aspects of interest in the event. We assess the validity of parameter estimates in terms of confidence intervals, and compare various submodels based on likelihoods and information criteria. PMID:27505155
NASA Astrophysics Data System (ADS)
Jiao, Chengru; Zheng, Liancun; Ma, Lianxi
2015-08-01
This paper studies the magnetohydrodynamic (MHD) thermosolutal Marangoni convection heat and mass transfer of power-law fluids driven by a power law temperature and a power law concentration which is assumed that the surface tension varies linearly with both the temperature and concentration. Heat and mass transfer constitutive equation is proposed based on N-diffusion proposed by Philip and the abnormal convection-diffusion model proposed by Pascal in which we assume that the heat diffusion depends non-linearly on both the temperature and the temperature gradient and the mass diffusion depends non-linearly on both the concentration and the concentration gradient with modified Fourier heat conduction for power law fluid. The governing equations are reduced to nonlinear ordinary differential equations by using suitable similarity transformations. Approximate analytical solution is obtained using homotopy analytical method (HAM). The transport characteristics of velocity, temperature and concentration fields are analyzed in detail.
NASA Astrophysics Data System (ADS)
Liu, Hsing; Chen, Ying-Hsing; Lih, Jiann-Shing
2015-05-01
Empirical analysis on human mobility has caught extensive attentions due to the accumulated human dynamical data and the advance of data mining technique. But the results of related research still have to further investigate on some issues such as spatial scale. In this paper, we explore human mobility in greater Kaohsiung area by using long-term taxicabs' GPS data. The trip distance in our dataset exhibits exponential decay for short trips and power-law scaling for long trips. We propose an approach to investigate the possible mechanism of the power-law tail. Moreover, we utilize the method of simulation and random relinking trip path to explain the empirical observation. Our results show that the origin of power-law movement distribution may be largely due to the power-law population distribution.
NASA Astrophysics Data System (ADS)
Dralle, David; Karst, Nathaniel; Thompson, Sally E.
2015-11-01
The falling limb of the hydrograph—the streamflow recession—is frequently well approximated by power law functions, in the form dq/dt = -aqb, so that recessions are often characterized in terms of their power law parameters (a, b). The empirical determination and interpretation of the parameter a is typically biased by the presence of a ubiquitous mathematical artifact resulting from the scale-free properties of the power law function. This reduces the information available from recession parameter analysis and creates several heretofore unaddressed methodological "pitfalls." This letter outlines the artifact, demonstrates its genesis, and presents an empirical rescaling method to remove artifact effects from fitted recession parameters. The rescaling process reveals underlying climatic patterns obscured in the original data and, we suggest, could maximize the information content of fitted power laws.
New version of PLNoise: a package for exact numerical simulation of power-law noises
NASA Astrophysics Data System (ADS)
Milotti, Edoardo
2007-08-01
In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/f noises with 0<α⩽2. Here I extend the algorithm to generate 1/f noises with 2<α⩽4 (black noises). The method is exact in the sense that it produces a sampled process with a theoretically guaranteed range-limited power-law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.html Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler RAM: The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press
An Evaluation of Power Law Breakdown in Metals, Alloys, Dispersion Hardened Materials and Compounds
Lesuer, D.R.; Syn, C.K.; Sherby, O.D.
1999-10-20
Creep at high stresses often produces strain rates that exceed those that would be predicted by a power law relationship. In this paper, we examine available high stress creep data for pure metals, solid solution alloys, dispersion strengthened powder metallurgy materials and compounds for power law breakdown (PLB). The results show that, if PLB is observed, then the onset of PLB is generally observed at about {epsilon}/D{sub eff} = 10{sup 13} m{sup -2}, where D{sub eff} is the effective diffusion coefficient incorporating lattice and dislocation pipe diffusion. The common origins of PLB for the various systems studied can be found in the production of excess vacancies by plastic deformation. Anomalous behavior in two pure metals (nickel and tungsten) and a solid solution alloy (Fe-25Cr and Fe-26Cr-1Mo) has been analyzed and provides insight into this excess vacancy mechanism. In metal systems, the onset of PLB is related to a change in the nature of the subgrain structure developed. In the PLB region, subgrains become imperfect containing dislocation tangles adjacent to the sub-boundary, and dislocation cells are evident. The dislocation tangles and cells are the source of excess vacancies and increase the creep rate above that predicted from power law creep. If subgrains do not form then PLB is not observed. In solid solution alloys, in which the dominant deformation resistance results from the interaction of solute atoms with moving dislocations, excess vacancies influence the diffusion of these solute atoms. PLB is not observed in many systems. This is attributed either to the presence of a high equilibrium vacancy concentration (because of a low activation energy for vacancy formation) or to the inability to form subgrains.
Saichev, A; Sornette, D
2010-01-01
Empirical analyses show that after the update of a browser, or the publication of the vulnerability of a software, or the discovery of a cyber worm, the fraction of computers still using the older browser or software version, or not yet patched, or exhibiting worm activity decays as a power law approximately 1/t(alpha) with 0
NASA Astrophysics Data System (ADS)
Okin, Gregory; D'Odorico, Paolo
2013-04-01
Drylands are important ecosystems that cover about 40% of the Earth's land surface and provide goods and services for about 30% of the Earth's inhabitants. Dryland vegetation is almost universally patchy reflecting the resource limitation endemic to these areas and this patchiness unquestionably results from some type of self-organization. Understanding the function of these ecosystems is critical for their effective management and for understanding how they will be affected by changes in climate and land use as well as by invasion of non-native species. There are three main paradigms that have emerged in the literature to explain dryland ecosystem structure and dynamics. The connectivity paradigm posits that spatiotemporal patterns of vegetation observed in drylands are a result of the lateral movement of resources and disturbance along connected pathways. Other authors have examined the impact of local-scale interactions that give rise to large-scale patterns in the form of power law distributions of vegetation patches. Deviation from power law distributions as a sign of imminent, catastrophic change has been a common thread in this line of research. The sudden and often irreversible change observed in dryland ecosystems has led others to emphasize the importance of feedbacks that lead to the existence of alternative stable states and hysteresis in drylands. This latter view is closely aligned with the state-and-transition model approach. Here we show, through a series of conceptual and mathematical model arguments, that these three approaches - connectivity, power law distributions, and alternative stable states - can in many circumstances be considered equivalent. They are, in essence, different facets of a common set underlying processes. This transdisciplinary, integrated perspective should help understand how spatial processes interact to create pattern and patchiness in dryalnds as well as other ecosystems worldwide.
Effects of diversity and procrastination in priority queuing theory: The different power law regimes
NASA Astrophysics Data System (ADS)
Saichev, A.; Sornette, D.
2010-01-01
Empirical analyses show that after the update of a browser, or the publication of the vulnerability of a software, or the discovery of a cyber worm, the fraction of computers still using the older browser or software version, or not yet patched, or exhibiting worm activity decays as a power law ˜1/tα with 0<α≤1 over a time scale of years. We present a simple model for this persistence phenomenon, framed within the standard priority queuing theory, of a target task which has the lowest priority compared to all other tasks that flow on the computer of an individual. We identify a “time deficit” control parameter β and a bifurcation to a regime where there is a nonzero probability for the target task to never be completed. The distribution of waiting time T until the completion of the target task has the power law tail ˜1/t1/2 , resulting from a first-passage solution of an equivalent Wiener process. Taking into account a diversity of time deficit parameters in a population of individuals, the power law tail is changed into 1/tα , with αɛ(0.5,∞) , including the well-known case 1/t . We also study the effect of “procrastination,” defined as the situation in which the target task may be postponed or delayed even after the individual has solved all other pending tasks. This regime provides an explanation for even slower apparent decay and longer persistence.
Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model.
Qian, J; Luscombe, N M; Gerstein, M
2001-11-01
Global surveys of genomes measure the usage of essential molecular parts, defined here as protein families, superfamilies or folds, in different organisms. Based on surveys of the first 20 completely sequenced genomes, we observe that the occurrence of these parts follows a power-law distribution. That is, the number of distinct parts (F) with a given genomic occurrence (V) decays as F=aV(-b), with a few parts occurring many times and most occurring infrequently. For a given organism, the distributions of families, superfamilies and folds are nearly identical, and this is reflected in the size of the decay exponent b. Moreover, the exponent varies between different organisms, with those of smaller genomes displaying a steeper decay (i.e. larger b). Clearly, the power law indicates a preference to duplicate genes that encode for molecular parts which are already common. Here, we present a minimal, but biologically meaningful model that accurately describes the observed power law. Although the model performs equally well for all three protein classes, we focus on the occurrence of folds in preference to families and superfamilies. This is because folds are comparatively insensitive to the effects of point mutations that can cause a family member to diverge beyond detectable similarity. In the model, genomes evolve through two basic operations: (i) duplication of existing genes; (ii) net flow of new genes. The flow term is closely related to the exponent b and can accommodate considerable gene loss; however, we demonstrate that the observed data is reproduced best with a net inflow, i.e. with more gene gain than loss. Moreover, we show that prokaryotes have much higher rates of gene acquisition than eukaryotes, probably reflecting lateral transfer. A further natural outcome from our model is an estimation of the fold composition of the initial genome, which potentially relates to the common ancestor for modern organisms. Supplementary material pertaining to this work
NASA Astrophysics Data System (ADS)
Fujihara, Akihiro; Ohtsuki, Toshiya; Yamamoto, Hiroshi
2004-09-01
We consider stochastic processes where randomly chosen particles with positive quantities x,y(>0) interact and exchange the quantities asymmetrically by the rule x'=c{(1-a)x+by} , y'=d{ax+(1-b)y} (x⩾y) , where (0⩽)a,b(⩽1) and c,d(>0) are interaction parameters. Noninteger power-law tails in the probability distribution function of scaled quantities are analyzed in a similar way as in inelastic Maxwell models. A transcendental equation to determine the growth rate γ of the processes and the exponent s of the tails is derived formally from moment equations in Fourier space. In the case c=d or a+b=1(a≠0,1) , the first-order moment equation admits a closed form solution and γ and s are calculated analytically from the transcendental equation. It becomes evident that at c=d , exchange rate b of small quantities is irrelevant to power-law tails. In the case c≠d and a+b≠1 , a closed form solution of the first-order moment equation cannot be obtained because of asymmetry of interactions. However, the moment equation for a singular term formally forms a closed solution and possibility for the presence of power-law tails is shown. Continuity of the exponent s with respect to parameters a,b,c,d is discussed. Then numerical simulations are carried out and campared with the theory. Good agreement is achieved for both γ and s .
Bose-Einstein condensation with a finite number of particles in a power-law trap
Jaouadi, A.; Telmini, M.; Charron, E.
2011-02-15
Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number N of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation temperature T{sub c} in terms of a power series in x{sub 0}={epsilon}{sub 0}/k{sub B}T{sub c}, where {epsilon}{sub 0} denotes the zero-point energy of the trapping potential. This expression, which applies in Cartesian, cylindrical, and spherical power-law traps, is given analytically at infinite order. It is also given numerically for specific potential shapes as an expansion in powers of x{sub 0} up to the second order. We show that, for a harmonic trap, the well-known first-order shift of the critical temperature {Delta}T{sub c}/T{sub c{proportional_to}}N{sup -1/3} is inaccurate when N{<=}10{sup 5}, the next order (proportional to N{sup -1/2}) being significant. We also show that finite-size effects on the condensation temperature cancel out in a cubic trapping potential, e.g., V(r){proportional_to}r{sup 3}. Finally, we show that in a generic power-law potential of higher order, e.g., V(r){proportional_to}r{sup {alpha}} with {alpha}>3, the shift of the critical temperature becomes positive. This effect provides a large increase of T{sub c} for relatively small atom numbers. For instance, an increase of about +40% is expected with 10{sup 4} atoms in a V(r){proportional_to}r{sup 12} trapping potential.
Power-law dynamics in neuronal and behavioral data introduce spurious correlations.
Schaworonkow, Natalie; Blythe, Duncan A J; Kegeles, Jewgeni; Curio, Gabriel; Nikulin, Vadim V
2015-08-01
Relating behavioral and neuroimaging measures is essential to understanding human brain function. Often, this is achieved by computing a correlation between behavioral measures, e.g., reaction times, and neurophysiological recordings, e.g., prestimulus EEG alpha-power, on a single-trial-basis. This approach treats individual trials as independent measurements and ignores the fact that data are acquired in a temporal order. It has already been shown that behavioral measures as well as neurophysiological recordings display power-law dynamics, which implies that trials are not in fact independent. Critically, computing the correlation coefficient between two measures exhibiting long-range temporal dependencies may introduce spurious correlations, thus leading to erroneous conclusions about the relationship between brain activity and behavioral measures. Here, we address data-analytic pitfalls which may arise when long-range temporal dependencies in neural as well as behavioral measures are ignored. We quantify the influence of temporal dependencies of neural and behavioral measures on the observed correlations through simulations. Results are further supported in analysis of real EEG data recorded in a simple reaction time task, where the aim is to predict the latency of responses on the basis of prestimulus alpha oscillations. We show that it is possible to "predict" reaction times from one subject on the basis of EEG activity recorded in another subject simply owing to the fact that both measures display power-law dynamics. The same is true when correlating EEG activity obtained from different subjects. A surrogate-data procedure is described which correctly tests for the presence of correlation while controlling for the effect of power-law dynamics. PMID:25930148
NASA Astrophysics Data System (ADS)
Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.
2016-05-01
The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).
Langlois, Dominic; Cousineau, Denis; Thivierge, J P
2014-01-01
The coordination of activity amongst populations of neurons in the brain is critical to cognition and behavior. One form of coordinated activity that has been widely studied in recent years is the so-called neuronal avalanche, whereby ongoing bursts of activity follow a power-law distribution. Avalanches that follow a power law are not unique to neuroscience, but arise in a broad range of natural systems, including earthquakes, magnetic fields, biological extinctions, fluid dynamics, and superconductors. Here, we show that common techniques that estimate this distribution fail to take into account important characteristics of the data and may lead to a sizable misestimation of the slope of power laws. We develop an alternative series of maximum likelihood estimators for discrete, continuous, bounded, and censored data. Using numerical simulations, we show that these estimators lead to accurate evaluations of power-law distributions, improving on common approaches. Next, we apply these estimators to recordings of in vitro rat neocortical activity. We show that different estimators lead to marked discrepancies in the evaluation of power-law distributions. These results call into question a broad range of findings that may misestimate the slope of power laws by failing to take into account key aspects of the observed data. PMID:24580259
NASA Astrophysics Data System (ADS)
Langlois, Dominic; Cousineau, Denis; Thivierge, J. P.
2014-01-01
The coordination of activity amongst populations of neurons in the brain is critical to cognition and behavior. One form of coordinated activity that has been widely studied in recent years is the so-called neuronal avalanche, whereby ongoing bursts of activity follow a power-law distribution. Avalanches that follow a power law are not unique to neuroscience, but arise in a broad range of natural systems, including earthquakes, magnetic fields, biological extinctions, fluid dynamics, and superconductors. Here, we show that common techniques that estimate this distribution fail to take into account important characteristics of the data and may lead to a sizable misestimation of the slope of power laws. We develop an alternative series of maximum likelihood estimators for discrete, continuous, bounded, and censored data. Using numerical simulations, we show that these estimators lead to accurate evaluations of power-law distributions, improving on common approaches. Next, we apply these estimators to recordings of in vitro rat neocortical activity. We show that different estimators lead to marked discrepancies in the evaluation of power-law distributions. These results call into question a broad range of findings that may misestimate the slope of power laws by failing to take into account key aspects of the observed data.
NASA Astrophysics Data System (ADS)
Chae, Kyu-Hyun
2002-04-01
Fourier series solutions to the deflection and magnification by a family of three-dimensional cusped two-power-law ellipsoidal mass distributions are presented. The cusped two-power-law ellipsoidal mass distributions are characterized by inner and outer power-law radial indices and a break (or transition) radius. The model family includes mass models mimicking Jaffe, Hernquist, and η models and dark matter halo profiles from numerical simulations. The Fourier series solutions for the cusped two-power-law mass distributions are relatively simple and allow a very fast calculation, even for a chosen small fractional calculational error (e.g., 10-5). These results will be particularly useful for studying lensed systems that provide a number of accurate lensing constraints and for systematic analyses of large numbers of lenses. Subroutines employing these results for the two-power-law model and the results by Chae, Khersonsky, & Turnshek for the generalized single-power-law mass model are made publicly available.
NASA Astrophysics Data System (ADS)
Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.
2016-07-01
The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).
Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information
NASA Technical Reports Server (NTRS)
Howell, L. W.
2002-01-01
A simple power law model consisting of a single spectral index, a is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The Maximum likelihood (ML) procedure was developed for estimating the single parameter alpha(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (P1) consistency (asymptotically unbiased). (P2) efficiency asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only he ascertained by calculating the CRB for an assumed energy spectrum-detector response function combination, which can be quite formidable in practice. However. the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are attained in practice are investigated. The ML technique is then extended to estimate spectra information from
Crossover of two power laws in the anomalous diffusion of a two lipid membrane
Bakalis, Evangelos E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco E-mail: francesco.zerbetto@unibo.it; Venturini, Alessandro
2015-06-07
Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
Transition in the Flow of Power-Law Fluids through Isotropic Porous Media
NASA Astrophysics Data System (ADS)
Zami-Pierre, F.; de Loubens, R.; Quintard, M.; Davit, Y.
2016-08-01
We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability.
Crossover of two power laws in the anomalous diffusion of a two lipid membrane
NASA Astrophysics Data System (ADS)
Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco
2015-06-01
Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.
2015-12-30
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less
Laboratory constraints on chameleon dark energy and power-law fields
Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William; /Fermilab
2010-10-01
We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
Transport diffusion in one dimensional molecular systems: Power law and validity of Fick's law
NASA Astrophysics Data System (ADS)
Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Hu, Bambi; Zhong, Wei-rong
2015-10-01
The transport diffusion in one-dimensional molecular systems is investigated through non-equilibrium molecular dynamics and Monte Carlo methods. We have proposed the power law relationship of the transport diffusion coefficient with the temperature, the mass and the transport length, D* ∝ T*m*-1L*β, where β equals to 0.8 for small systems and zero for large systems. It is found that Fick's law is valid in long transport length but invalid in short transport length. Our results can provide a new perspective for understanding the microscopic mechanism of the molecular transport phenomena in low-dimensional systems.
Underdamped strain dynamics of a martensitic model with power-law interactions
NASA Astrophysics Data System (ADS)
Shankaraiah, N.; Puri, Sanjay; Shenoy, S. R.
2014-04-01
Focusing on conversion-time delays in athermal martensites, we present our results on underdamped strain dynamics of triple-well Landau free-energies with power-law anisotropic interactions for square-rectangle ferroelastic transition. After a temperature quench of 2% initial martensite seeds, the deterministic underdamped strain dynamics shows, interestingly, both fast conversions below a temperature and incubation delays above it, as in experiment and Monte Carlo simulations. On increasing damping constant, the fast conversions transform to incubation delays. Surprisingly, conversion-time delays have Vogel-Fulcher divergences as in Monte Carlo simulations. Microstructural evolutions are in good agreement with earlier studies.
Forces acting on a stationary sphere in power-law fluid flow near the wall
NASA Astrophysics Data System (ADS)
Bocharov, O. B.; Kushnir, D. Yu.
2016-01-01
The analysis and evaluation of the forces acting on the particle in a linear shear flow of power-law fluid (PLF) in the presence of the wall were performed. Using the results of a series of computations for a model problem with a spherical particle near a flat wall in the Reynolds number range of 0-200 and the distance to the wall from 0 to 20 particle diameters, the correlation formulas for calculating the coefficients of drag force and lift force were obtained. Special attention was paid to the behavior of the forces acting on the particle approaching the wall.
Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.
Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y
2016-08-12
We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability. PMID:27563969
Hysteresis and creep: Comparison between a power-law model and Kuhnen's model
NASA Astrophysics Data System (ADS)
Oliveri, Alberto; Stellino, Flavio; Parodi, Mauro; Storace, Marco
2016-04-01
In this paper we analyze some properties of a recently proposed model of hysteresis and creep (related to a circuit model, whose only nonlinear element is based on a power law) and compare it with the well-known Kuhnen's model. A first qualitative comparison relies on the analysis of the behavior of the elementary cell of each model. Their responses to step inputs (which allow to better evidence the creep effect) are analyzed and compared. Then, a quantitative comparison is proposed, based on the fitting performances of the two models on experimental data measured from a commercial piezoelectric actuator.
Power laws and self-similar behaviour in negative ionization fronts
NASA Astrophysics Data System (ADS)
Arrayás, Manuel; Fontelos, Marco A.; Trueba, José L.
2006-06-01
We study anode-directed ionization fronts in curved geometries. An electric shielding factor determines the behaviour of the electric field and the charged particle densities. From a minimal streamer model, a Burgers type equation which governs the dynamics of the electric shielding factor is obtained when electron diffusion is neglected. A Lagrangian formulation is then derived to analyse the ionization fronts. Power laws for the velocity and the amplitude of streamer fronts are found numerically and calculated analytically by using the shielding factor formulation. The phenomenon of geometrical diffusion is explained and clarified, and a universal self-similar asymptotic behaviour is derived.
NASA Astrophysics Data System (ADS)
Mercan, Kadir; Demir, Çiğdem; Civalek, Ömer
2016-01-01
In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
Self-similar rupture of thin free films of power-law fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh; Anthony, Christopher; Basaran, Osman A.; Doshi, Pankaj
2015-08-01
The rupture of a thin free film of a power-law fluid under the competing influences of destabilizing van der Waals pressure and stabilizing surface tension pressure is analyzed. In such a fluid, viscosity decreases with the deformation rate raised to the n -1 power where 0
Universal power-law decay of the impulse energy in granular protectors.
Hong, Jongbae
2005-03-18
Protecting a big impulse from outside is one of the important issues of our everyday life. A granular medium is often used as a protecting material. The impulse inside a granular medium is a solitary wave which may be confined temporarily to a particular region of the medium, which we call the granular container that plays the role of the protector. We find a universal power-law behavior in time for the leakage of the impulse energy confined inside various granular containers. PMID:15783526
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Assaf, Khudhair A.; Aly, Ayman A.
2013-10-01
In this work, we study the power-law and the logarithmic entropy corrected versions of the Ricci Dark Energy (RDE) model in the framework of the Brans-Dicke cosmology non-minimally coupled with a chameleon scalar field ϕ. Considering the presence of interaction between Dark Energy (DE) and Dark Matter (DM), we derived the expressions of some relevant cosmological parameters, i.e. the equation of state parameter ω D , the deceleration parameter q and the evolution of the energy density parameter \\varOmega'D.
An explanation for the universal 3.5 power-law observed in currency markets
NASA Astrophysics Data System (ADS)
Johnson, Nicholas A.; Johnson, Neil F.
We present a mathematical theory to explain a recent empirical finding in the Physics literature (Zhao et al., 2013) in which the distributions of waiting-times between discrete events were found to exhibit power-law tails with an apparent universal exponent: α ∼ 3.5 . This new theory provides the first ever qualitative and quantitative explanation of Zhao et al.'s surprising finding. It also provides a mechanistic description of the origin of the observed universality, assigning its cause to the emergence of dynamical feedback processes between evolving clusters of like-minded agents.
Fouka, M.; Ouichaoui, S.
2010-10-31
Synchrotron emission behind relativistic magnetic internal-external shocks in gamma-ray bursts cosmological explosions is assumed to be the basic emission mechanism for prompt and afterglow emissions. Inverse Compton from relativistic electrons can also have appreciable effects by upscattering initial synchrotron or blackbody photons or other photons fields up to GeV-TeV energies. For extreme physical conditions such as high magnetic fields (e.g., B>10{sup 5} Gauss) self-absorption is not negligible and can hardly affect spectra at least for the low energy range. In this paper we present calculations of the synchrotron power, P{sub {nu}}, and their asymptotic forms, generated by a power law relativistic electron distribution of type N{sub e}({gamma}) = C{gamma}{sup -p} with {gamma}{sub 1}<{gamma}<{gamma}{sub 2}, especially for finite values of the higher limit {gamma}{sub 2}. For this aim we defined the dimensionless parametric function Z{sub p}(x,{eta}) with x = {nu}/{nu}{sub 1} and {eta} = {gamma}{sub 2}/{gamma}{sub 1} so that P{sub {nu}{proportional_to}Zp}({nu}/{nu}{sub 1},{eta}), with {nu}{sub 1} = (3/4{pi}){gamma}{sub 1}{sup 2}qBsin{theta}/mc({theta} being the pitch angle). Asymptotic forms of this later are derived for three different frequency ranges, i.e., x<<1, 1<
Underestimating extreme events in power-law behavior due to machine-dependent cutoffs
NASA Astrophysics Data System (ADS)
Radicchi, Filippo
2014-11-01
Power-law distributions are typical macroscopic features occurring in almost all complex systems observable in nature. As a result, researchers in quantitative analyses must often generate random synthetic variates obeying power-law distributions. The task is usually performed through standard methods that map uniform random variates into the desired probability space. Whereas all these algorithms are theoretically solid, in this paper we show that they are subject to severe machine-dependent limitations. As a result, two dramatic consequences arise: (i) the sampling in the tail of the distribution is not random but deterministic; (ii) the moments of the sample distribution, which are theoretically expected to diverge as functions of the sample sizes, converge instead to finite values. We provide quantitative indications for the range of distribution parameters that can be safely handled by standard libraries used in computational analyses. Whereas our findings indicate possible reinterpretations of numerical results obtained through flawed sampling methodologies, they also pave the way for the search for a concrete solution to this central issue shared by all quantitative sciences dealing with complexity.
Nonuniversal power law scaling in the probability distribution of scientific citations
Peterson, George J.; Pressé, Steve; Dill, Ken A.
2010-01-01
We develop a model for the distribution of scientific citations. The model involves a dual mechanism: in the direct mechanism, the author of a new paper finds an old paper A and cites it. In the indirect mechanism, the author of a new paper finds an old paper A only via the reference list of a newer intermediary paper B, which has previously cited A. By comparison to citation databases, we find that papers having few citations are cited mainly by the direct mechanism. Papers already having many citations (“classics”) are cited mainly by the indirect mechanism. The indirect mechanism gives a power-law tail. The “tipping point” at which a paper becomes a classic is about 25 citations for papers published in the Institute for Scientific Information (ISI) Web of Science database in 1981, 31 for Physical Review D papers published from 1975–1994, and 37 for all publications from a list of high h-index chemists assembled in 2007. The power-law exponent is not universal. Individuals who are highly cited have a systematically smaller exponent than individuals who are less cited. PMID:20805513
Spectral function of the Tomonaga-Luttinger model revisited: Power laws and universality
NASA Astrophysics Data System (ADS)
Markhof, L.; Meden, V.
2016-02-01
We reinvestigate the momentum-resolved single-particle spectral function of the Tomonaga-Luttinger model. In particular, we focus on the role of the momentum dependence of the two-particle interaction V (q ) . Usually, V (q ) is assumed to be a constant and integrals are regularized in the ultraviolet "by hand" employing an ad hoc procedure. As the momentum dependence of the interaction is irrelevant in the renormalization group sense, this does not affect the universal low-energy properties of the model, e.g., exponents of power laws, if all energy scales are sent to zero. If, however, the momentum k is fixed away from the Fermi momentum kF, with |k - kF| setting a nonvanishing energy scale, the details of V (q ) start to matter. We provide strong evidence that any curvature of the two-particle interaction at small transferred momentum q destroys power-law scaling of the momentum-resolved spectral function as a function of energy. Even for |k - kF| much smaller than the momentum-space range of the interaction the spectral line shape depends on the details of V (q ) . The significance of our results for universality in the Luttinger liquid sense, for experiments on quasi-one-dimensional metals, and for recent results on the spectral function of one-dimensional correlated systems taking effects of the curvature of the single-particle dispersion into account ("nonlinear LL phenomenology") is discussed.
Couette flow of non-Newtonian power-law fluids in narrow eccentric annuli
Yang, L.; Chukwu, G.A.
1995-03-01
The analysis of the steady laminar Couette flow of non-Newtonian power-law fluids in a narrow eccentric cannulus is employed in this study to compute the surge or swab pressure encountered when running or pulling tubular goods in a liquid-filled borehole, respectively. Excessive surge pressure can fracture the formation, while uncontrolled swab pressure can result in well blowout. In this study, the eqs of motion are analytically solved and the solution of these eqs is presented in both dimensionless and graphical forms for a more general application to computing the surge or swab pressure. The family of curves is presented for different pipe/borehole eccentricity ratios and power-law fluid index values which span the range of typical drilling fluids. By employing the computed surge pressures, in combination with the family of curves, the maximum velocity at which the casing can be run in the hole without the danger of fracturing the formation can be obtained. The expected error in surge computation for a narrow concentric annulus represented by a slot, as a result of eccentricity, is evaluated. The results obtained from the these analyses will aid in proper design and optimization of drilling programs, especially in deviated holes.
Power-law optical conductivity from unparticles: Application to the cuprates
NASA Astrophysics Data System (ADS)
Limtragool, Kridsanaphong; Phillips, Philip
2015-10-01
We calculate the optical conductivity by using several models for unparticle or scale-invariant matter. Within a Gaussian action for unparticles that is gauged with Wilson lines, we find that the conductivity computed from the Kubo formalism with vertex corrections yields no nontrivial deviation from the free-theory result. This result obtains because, at the Gaussian level, unparticles are just a superposition of particle fields and hence any transport property must be consistent with free theory. Beyond the Gaussian approach, we adopt the continuous-mass formulation of unparticles and calculate the Drude conductivity directly. We show that unparticles in this context can be tailored to yield an algebraic conductivity that scales as ω-2 /3 with the associated phase angle between the imaginary and real parts of arctanσ/2σ1=60∘ , as is seen in the cuprates. Given the recent results [J. High Energy Phys. 4, 40 (2014), 10.1007/JHEP04(2014)040; J. High Energy Phys. 7, 24 (2015), 10.1007/JHEP07(2015)024; arXiv:1506.06769] that gravitational crystals lack a power-law optical conductivity, this constitutes the first consistent account of the ω-2 /3 conductivity and the phase angle seen in optimally doped cuprates. Our results indicate that, at each frequency in the scaling regime, excitations on all energy scales contribute. Hence, incoherence is at the heart of the power law in the optical conductivity in strongly correlated systems such as the cuprates.
Power-Law Behavior in Geometric Characteristics of Full Binary Trees
NASA Astrophysics Data System (ADS)
Paik, Kyungrock; Kumar, Praveen
2011-02-01
Natural river networks exhibit regular scaling laws in their topological organization. Here, we investigate whether these scaling laws are unique characteristics of river networks or can be applicable to general binary tree networks. We generate numerous binary trees, ranging from purely ordered trees to completely random trees. For each generated binary tree, we analyze whether the tree exhibits any scaling property found in river networks, i.e., the power-laws in the size distribution, the length distribution, the distance-load relationship, and the power spectrum of width function. We found that partially random trees generated on the basis of two distinct types of deterministic trees, i.e., deterministic critical and supercritical trees, show contrasting characteristics. Partially random trees generated on the basis of deterministic critical trees exhibit all power-law characteristics investigated in this study with their fitted exponents close to the values observed in natural river networks over a wide range of random-degree. On the other hand, partially random trees generated on the basis of deterministic supercritical trees rarely follow scaling laws of river networks.
Universal inverse power-law distribution for temperature and rainfall in the UK region
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-06-01
Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.
NASA Astrophysics Data System (ADS)
Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric
2013-04-01
In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.
The MLP distribution: a modified lognormal power-law model for the stellar initial mass function
NASA Astrophysics Data System (ADS)
Basu, Shantanu; Gil, M.; Auddy, Sayantan
2015-05-01
This work explores the mathematical properties of a distribution introduced by Basu & Jones (2004), and applies it to model the stellar initial mass function (IMF). The distribution arises simply from an initial lognormal distribution, requiring that each object in it subsequently undergoes exponential growth but with an exponential distribution of growth lifetimes. This leads to a modified lognormal with a power-law (MLP) distribution, which can in fact be applied to a wide range of fields where distributions are observed to have a lognormal-like body and a power-law tail. We derive important properties of the MLP distribution, like the cumulative distribution, the mean, variance, arbitrary raw moments, and a random number generator. These analytic properties of the distribution can be used to facilitate application to modelling the IMF. We demonstrate how the MLP function provides an excellent fit to the IMF compiled by Chabrier and how this fit can be used to quickly identify quantities like the mean, median, and mode, as well as number and mass fractions in different mass intervals.
So You Think the Crab is Described by a Power-Law Spectrum
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2008-01-01
X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.
Stochastic modeling of aphid population growth with nonlinear, power-law dynamics.
Matis, James H; Kiffe, Thomas R; Matis, Timothy I; Stevenson, Douglass E
2007-08-01
This paper develops a deterministic and a stochastic population size model based on power-law kinetics for the black-margined pecan aphid. The deterministic model in current use incorporates cumulative-size dependency, but its solution is symmetric. The analogous stochastic model incorporates the prolific reproductive capacity of the aphid. These models are generalized in this paper to include a delayed feedback mechanism for aphid death. Whereas the per capita aphid death rate in the current model is proportional to cumulative size, delayed feedback is implemented by assuming that the per capita rate is proportional to some power of cumulative size, leading to so-called power-law dynamics. The solution to the resulting differential equations model is a left-skewed abundance curve. Such skewness is characteristic of observed aphid data, and the generalized model fits data well. The assumed stochastic model is solved using Kolmogrov equations, and differential equations are given for low order cumulants. Moment closure approximations, which are simple to apply, are shown to give accurate predictions of the two endpoints of practical interest, namely (1) a point estimate of peak aphid count and (2) an interval estimate of final cumulative aphid count. The new models should be widely applicable to other aphid species, as they are based on three fundamental properties of aphid population biology. PMID:17306309
Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales
NASA Technical Reports Server (NTRS)
Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.
2006-01-01
The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.
Beyond power laws: a new approach for analyzing single molecule photoluminescence intermittency.
Riley, E A; Hess, C M; Whitham, P J; Reid, P J
2012-05-14
The photoluminescence intermittency (PI) exhibited by single emitters has been studied for over a decade. To date, the vast majority of PI analyses involve parsing the data into emissive and non-emissive events, constructing histograms of event durations, and fitting these histograms to either exponential or power law probability distributions functions (PDFs). Here, a new method for analyzing PI data is presented where the data are used directly to construct a cumulative distribution function (CDF), and maximum-likelihood estimation techniques are used to determine the best fit of a model PDF to the CDF. Statistical tests are then employed to quantitatively evaluate the hypothesis that the CDF (data) is represented by the model PDF. The analysis method is outlined and applied to PI exhibited by single CdSe∕CdS core-shell nanocrystals and the organic chromophore violamine R isolated in single crystals of potassium-acid phthalate. Contrary to previous studies, the analysis presented here demonstrates that the PI exhibited by these systems is not described by a power law. The analysis developed here is also used to quantify heterogeneity within PI data obtained from a collection of CdSe/CdS nanocrytals, and for the determination of statistically significant changes in PI accompanying perturbation of the emitter. In summary, the analysis methodology presented here provides a more statistically robust approach for analyzing PI data. PMID:22583301
Self-similar rupture of thin free films of power law fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet; Anthony, Christopher; Basaran, Osman; Doshi, Pankaj
2015-11-01
Rupture of a thin sheet (free film) of a power law fluid under the competing influences of destabilizing van der Waals pressure (vdWP) and stabilizing surface tension pressure (STP) is analyzed. In such a fluid, viscosity is not constant but decreases with the deformation rate raised to the n - 1 power where 0 < n <= 1 is the power law exponent (n = 1 for a Newtonian fluid). It is shown that when 1 > n > 6 / 7 , film rupture occurs under a balance between vdWP, inertial stress (IS), and viscous stress (VS), and the film thickness decreases as τ n / 3 and the lateral length scale as τ 1 - n / 2 where τ is time remaining to rupture. When n < 6 / 7 , the dominant balance changes so that VS becomes negligible and the film ruptures under the competition between vdWP, IS, and STP. In this new regime, film thickness and lateral length vary as τ 2 / 7 and τ 4 / 7.
NASA Technical Reports Server (NTRS)
Howell, Leonard W.
2002-01-01
The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate broken power law spectral parameters from real cosmic-ray data sets.
Power law scaling and ``Dragon-Kings'' in distributions of intraday financial drawdowns
NASA Astrophysics Data System (ADS)
Filimonov, Vladimir; Sornette, Didier
2015-05-01
We investigate the distributions of epsilon-drawdowns and epsilon-drawups of the most liquid futures financial contracts of the world at time scales of 30 seconds. The epsilon-drawdowns (resp. epsilon- drawups) generalise the notion of runs of negative (resp. positive) returns so as to capture the risks to which investors are arguably the most concerned with. Similarly to the distribution of returns, we find that the distributions of epsilon-drawdowns and epsilon-drawups exhibit power law tails, albeit with exponents significantly larger than those for the return distributions. This paradoxical result can be attributed to (i) the existence of significant transient dependence between returns and (ii) the presence of large outliers (dragon-kings) characterizing the extreme tail of the drawdown/drawup distributions deviating from the power law. The study of the tail dependence between the sizes, speeds and durations of drawdown/drawup indicates a clear relationship between size and speed but none between size and duration. This implies that the most extreme drawdown/drawup tend to occur fast and are dominated by a few very large returns. We discuss both the endogenous and exogenous origins of these extreme events.
THE POWER-LAW SPECTRA OF ENERGETIC PARTICLES DURING MULTI-ISLAND MAGNETIC RECONNECTION
Drake, J. F.; Swisdak, M.; Fermo, R. E-mail: swisdak@umd.edu
2013-01-20
Power-law distributions are a near-universal feature of energetic particle spectra in the heliosphere. Anomalous cosmic rays (ACRs), super-Alfvenic ions in the solar wind, and the hardest energetic electron spectra in flares all have energy fluxes with power laws that depend on energy E approximately as E {sup -1.5}. We present a new model of particle acceleration in systems with a bath of merging magnetic islands that self-consistently describes the development of velocity-space anisotropy parallel and perpendicular to the local magnetic field and includes the self-consistent feedback of pressure anisotropy on the merging dynamics. By including pitch-angle scattering we obtain an equation for the omnidirectional particle distribution f (v, t) that is solved in closed form to reveal v {sup -5} (corresponding to an energy flux varying as E {sup -1.5}) as a near-universal solution as long as the characteristic acceleration time is short compared with the characteristic loss time. In such a state, the total energy in the energetic particles reaches parity with the remaining magnetic free energy. More generally, the resulting transport equation can serve as the basis for calculating the distribution of energetic particles resulting from reconnection in large-scale inhomogeneous systems.
NASA Astrophysics Data System (ADS)
Hong, S. Lee; Bodfish, James W.; Newell, Karl M.
2006-03-01
We investigated the relationship between macroscopic entropy and microscopic complexity of the dynamics of body rocking and sitting still across adults with stereotyped movement disorder and mental retardation (profound and severe) against controls matched for age, height, and weight. This analysis was performed through the examination of center of pressure (COP) motion on the mediolateral (side-to-side) and anteroposterior (fore-aft) dimensions and the entropy of the relative phase between the two dimensions of motion. Intentional body rocking and stereotypical body rocking possessed similar slopes for their respective frequency spectra, but differences were revealed during maintenance of sitting postures. The dynamics of sitting in the control group produced lower spectral slopes and higher complexity (approximate entropy). In the controls, the higher complexity found on each dimension of motion was related to a weaker coupling between dimensions. Information entropy of the relative phase between the two dimensions of COP motion and irregularity (complexity) of their respective motions fitted a power-law function, revealing a relationship between macroscopic entropy and microscopic complexity across both groups and behaviors. This power-law relation affords the postulation that the organization of movement and posture dynamics occurs as a fractal process.
The US business cycle: power law scaling for interacting units with complex internal structure
NASA Astrophysics Data System (ADS)
Ormerod, Paul
2002-11-01
In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.
NASA Astrophysics Data System (ADS)
Pandya, Alex; Zhang, Zhaowei; Chandra, Mani; Gammie, Charles F.
2016-05-01
Synchrotron emission and absorption determine the observational appearances of many astronomical systems. In this paper, we describe a numerical scheme for calculating synchrotron emissivities and absorptivities in all four Stokes parameters for arbitrary gyrotropic electron distribution functions, building on earlier work by Leung, Gammie, and Noble. We use this technique to evaluate the emissivities and the absorptivities for a thermal (Maxwell–Jüttner), isotropic power-law, and an isotropic kappa distribution function. The latter contains a power-law tail at high particle energies that smoothly merges with a thermal core at low energies, as is characteristic of observed particle spectra in collisionless plasmas. We provide fitting formulae and error bounds on the fitting formulae for use in codes that solve the radiative transfer equation. The numerical method and the fitting formulae are implemented in a compact C library called symphony. We find that the kappa distribution has a source function that is indistinguishable from a thermal spectrum at low frequency and transitions to the characteristic self-absorbed synchrotron spectrum, \\propto {ν }5/2, at high frequency; the linear polarization fraction for a thermal spectrum is near unity at high frequency; and all distributions produce O(10%) circular polarization at low frequency for lines of sight sufficiently close to the magnetic field vector.
Transition from Exponential to Power Law Income Distributions in a Chaotic Market
NASA Astrophysics Data System (ADS)
Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo
Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.
Ruling out the power-law form of the scalar primordial spectrum
Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A. E-mail: arman@apctp.org E-mail: alstar@landau.ac.ru
2014-06-01
Combining Planck CMB temperature [1] and BICEP2 B-mode polarization data [2,3] we show qualitatively that, assuming inflationary consistency relation, the power-law form of the scalar primordial spectrum is ruled out at more than 3σ CL. This is an important finding, since the power-law form of the scalar primordial spectrum is one of the main assumptions of concordance model of cosmology and also a direct prediction of many inflationary scenarios. We show that a break or step in the form of the primordial scalar perturbation spectrum, similar to what we studied recently analyzing Planck data [4], can address both Planck and BICEP2 results simultaneously. Our findings also indicate that the data may require more flexibilities than what running of scalar spectral index can provide. Finally we show that an inflaton potential, originally appeared in [5], can generate both the step and the break model of scalar primordial spectrum in two different limits. The discussed potential is found to be favored by Planck data but marginally disfavored by BICEP2 results as it produces slightly lower amplitude of tensor primordial spectrum. Hence, if the tensor-to-scalar ratio (r) quoted by BICEP2 persists, it is of importance that we generate inflationary models with large r and at the same time provide suppression in scalar primordial spectrum at large scales.
Suzaku observations of two diffuse hard X-ray source regions, G22.0+0.0 and G23.5+0.1
NASA Astrophysics Data System (ADS)
Yamauchi, Shigeo; Sumita, Mayu; Bamba, Aya
2016-06-01
G22.0+0.0 and G23.5+0.1 are diffuse hard X-ray sources discovered in the ASCA Galactic Plane Survey. We present Suzaku results of spectral analysis for these sources. G22.0+0.0 is confirmed to be a largely extended emission. Its spectra were represented by a highly absorbed power-law model with a photon index of 1.7 ± 0.3 and a moderately absorbed thermal emission with a temperature of 0.34^{+0.11}_{-0.08}keV. The difference in the NH values between the two components suggests that the thermal component is unrelated to the power-law component and is a foreground emission located in the same line of sight. G23.5+0.1 is an extended source with a size of ˜3{^'.}5. Its spectra were fitted with an absorbed power-law model with a photon index of 2.4^{+0.5}_{-0.4}. The spatial and spectral properties show that both sources are candidates for old pulsar wind nebulae (PWNe). In addition to the extended sources, we analyzed spectra of three point sources found in the observed fields. Based on the spectral features, we discuss the origin of the sources.
Durand, O.; Soulard, L.
2013-11-21
Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.
Is a data set distributed as a power law? A test, with application to gamma-ray burst brightnesses
NASA Technical Reports Server (NTRS)
Wijers, Ralph A. M. J.; Lubin, Lori M.
1994-01-01
We present a method to determine whether an observed sample of data is drawn from a parent distribution that is pure power law. The method starts from a class of statistics which have zero expectation value under the null hypothesis, H(sub 0), that the distribution is a pure power law: F(x) varies as x(exp -alpha). We study one simple member of the class, named the `bending statistic' B, in detail. It is most effective for detection a type of deviation from a power law where the power-law slope varies slowly and monotonically as a function of x. Our estimator of B has a distribution under H(sub 0) that depends only on the size of the sample, not on the parameters of the parent population, and is approximated well by a normal distribution even for modest sample sizes. The bending statistic can therefore be used to test a set of numbers is drawn from any power-law parent population. Since many measurable quantities in astrophysics have distriibutions that are approximately power laws, and since deviations from the ideal power law often provide interesting information about the object of study (e.g., a `bend' or `break' in a luminosity function, a line in an X- or gamma-ray spectrum), we believe that a test of this type will be useful in many different contexts. In the present paper, we apply our test to various subsamples of gamma-ray burst brightness from the first-year Burst and Transient Source Experiment (BATSE) catalog and show that we can only marginally detect the expected steepening of the log (N (greater than C(sub max))) - log (C(sub max)) distribution.
Relaxation rates in the Maxwellian collision model and its variable hard sphere surrogate
NASA Astrophysics Data System (ADS)
Rubinstein, Robert
2015-08-01
The variable hard sphere and related models have proven to be accurate and computationally convenient replacements for the inverse power law model of classical kinetic theory in direct simulation Monte Carlo calculations. We attempt to provide theoretical support for this remarkable success by comparing the relaxation rates in the linearized Boltzmann equation for the Maxwellian collision model with those of its variable hard sphere surrogate. The comparison demonstrates that the linearized collision operator with variable hard sphere interactions can accurately approximate the linearized collision operator with Maxwellian inverse power law interactions under well-defined and broadly applicable conditions. Extensions of the analysis to the general inverse power law model and to more realistic intermolecular potentials are briefly discussed.
NASA Astrophysics Data System (ADS)
Waegele, Matthias M.; Gai, Feng
2011-03-01
The dependence of the melting temperature increase (ΔTm) of the protein ubiquitin on the volume fraction (φ) of several commonly used macromolecular crowding agents (dextran 6, 40, and 70 and ficoll 70) was quantitatively examined and compared to a recently developed theoretical crowding model, i.e., ΔTm ˜ (Rg/Rc)αφα/3. We found that in the current case this model correctly predicts the power-law dependence of ΔTm on φ but significantly overestimates the role of the size (i.e., Rc) of the crowding agent. In addition, we found that for ubiquitin the exponent α is in the range of 4.1-6.5, suggesting that the relation of α = 3/(3ν - 1) is a better choice for estimating α based on the Flory coefficient (ν) of the polypeptide chain. Taken together these findings highlight the importance of improving our knowledge and theoretical treatment of the microcompartmentalization of the commonly used model crowding agents.
Schmidt, Robert; Krasselt, Cornelius; Göhler, Clemens; von Borczyskowski, Christian
2014-04-22
The photoluminescence (PL) of single emitters like semiconductor quantum dots (QDs) shows PL intermittency, often called blinking. We explore the PL intensities of single CdSe/ZnS QDs in polystyrene (PS), on polyvenylalcohol (PVA), and on silicon oxide (SiOx) by the change-point analysis (CPA). By this, we relate results from the macrotime (sub-ms to 1000 s) and the microtime (0.1-100 ns) range to discrete PL intensities. We conclude that the intensity selected "on"-times in the ms range correspond to only a few (discrete) switching times, while the PL decays in the ns range are multiexponential even with respect to the same selected PL intensity. Both types of relaxation processes depend systematically on the PL intensity in course of a blinking time trace. The overall distribution of on-times does not follow a power law contrary to what has often been reported but can be compiled into 3-4 characteristic on-times. The results can be explained by the recently suggested multiple recombination centers model. Additionally, we can identify a well-defined QD state with a very low PL intensity above the noise level, which we assign to the strongly quenched exciton state. We describe our findings by a model of a hierarchical sequence of hole and electron trapping. Blinking events are the consequence of slow switching processes among these states and depend on the physicochemical properties of the heterogeneous nanointerface of the QDs. PMID:24580107
Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz
2011-12-10
We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.
Morales, Farisa Y.; Werner, M. W.; Bryden, G.; Stapelfeldt, K. R.; Beichman, C. A.; Grogan, K.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.; Chen, C. H.; Kenyon, S. J.; Moro-Martin, A.; Wolf, S.
2009-07-10
Using the Spitzer/Infrared Spectrograph (IRS) low-resolution modules covering wavelengths from 5 to 35 {mu}m, we observed 52 main-sequence A and late B type stars previously seen using Spitzer/Multiband Imaging Photometer (MIPS) to have excess infrared emission at 24 {mu}m above that expected from the stellar photosphere. The mid-IR excess is confirmed in all cases but two. While prominent spectral features are not evident in any of the spectra, we observed a striking diversity in the overall shape of the spectral energy distributions. Most of the IRS excess spectra are consistent with single-temperature blackbody emission, suggestive of dust located at a single orbital radius-a narrow ring. Assuming the excess emission originates from a population of large blackbody grains, dust temperatures range from 70 to 324 K, with a median of 190 K corresponding to a distance of 10 AU. Thirteen stars however, have dust emission that follows a power-law distribution, F {sub {nu}} = F {sub 0}{lambda}{sup {alpha}}, with exponent {alpha} ranging from 1.0 to 2.9. The warm dust in these systems must span a greater range of orbital locations-an extended disk. All of the stars have also been observed with Spitzer/MIPS at 70 {mu}m, with 27 of the 50 excess sources detected (signal-to-noise ratio > 3). Most 70 {mu}m fluxes are suggestive of a cooler, Kuiper Belt-like component that may be completely independent of the asteroid belt-like warm emission detected at the IRS wavelengths. Fourteen of 37 sources with blackbody-like fits are detected at 70 {mu}m. The 13 objects with IRS excess emission fit by a power-law disk model, however, are all detected at 70 {mu}m (four above, three on, and six below the extrapolated power law), suggesting that the mid-IR IRS emission and far-IR 70 {mu}m emission may be related for these sources. Overall, the observed blackbody and power-law thermal profiles reveal debris distributed in a wide variety of radial structures that do not appear to be
From Migmatites to Plutons: Power Law Relationships in the Evolution of Magmatic Bodies
NASA Astrophysics Data System (ADS)
Soesoo, Alvar; Bons, Paul D.
2015-07-01
Magma is generated by partial melting from micrometre-scale droplets at the source and may accumulate to form >100 km-scale plutons. Magma accumulation thus spans well over ten orders of magnitude in scale. Here we provide measurements of migmatitic leucosomes and granitic veins in drill cores from the Estonian Proterozoic basement and outcrops at Masku in SW Finland and Montemor-o-Novo, central Portugal. Despite the differences in size and number of measured leucosomes and magmatic veins, differences in host rock types and metamorphic grades, the cumulative width distribution of the studied magmatic leucosomes/veins follows a power law with exponents usually between 0.7 and 1.8. Published maps of the SE Australian Lachlan Fold Belt were used to investigate the distribution of granitoid pluton sizes. The granites occupy ca. 22 % of the 2.6 × 105 km2 area. The cumulative pluton area distributions show good power law distributions with exponents between 0.6 and 0.8 depending on pluton area group. Using the self-affine nature of pluton shapes, it is possible to estimate the total volume of magma that was expelled from the source in the 2.6 × 105 km2 map area, giving an estimated 0.8 km3 of magma per km2. It has been suggested in the literature that magma batches in the source merge to form ever-bigger batches in a self-organized way. This leads to a power law for the cumulative distribution of magma volumes, with an exponent m V between 1 for inefficient melt extraction, and 2/3 for maximum accumulation efficiency as most of the volume resides in the largest batches that can escape from the source. If m V ≥ 1, the mass of the magma is dominated by small batches; in case m = 2/3, about 50 % of all magma in the system is placed in a single largest batch. Our observations support the model that the crust develops a self-organized critical state during magma generation. In this state, magma batches accumulate in a non-continuous, step-wise manner to form ever
NASA Astrophysics Data System (ADS)
Akiba, M.; Tsujino, K.
2016-08-01
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p-n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.
Zhao, Xiaofeng; McGough, Robert J
2016-05-01
The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different causal and noncausal fractional partial differential equations. To demonstrate some of the similarities and differences that are observed in three related time-fractional partial differential equations, time-domain Green's functions are calculated numerically for the power law wave equation, the Szabo wave equation, and for the Caputo wave equation. These Green's functions are evaluated for water with a power law exponent of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of y = 1.139. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident very close to the source and that these causal and noncausal time-domain Green's functions converge to the same result away from the source. When noncausal time-domain Green's functions are convolved with a short pulse, no evidence of noncausal behavior remains in the time-domain, which suggests that these causal and noncausal time-fractional models are equally effective for these numerical calculations. PMID:27250193
NASA Astrophysics Data System (ADS)
Makinde, O. D.
2014-12-01
In this paper, the steady generalized axial Couette flow of Ostwald-de Waele power law reactive fluids between concentric cylindrical pipes is investigated. It is assumed that the outer cylinder is stationary and exchanges heat with the ambient surrounding following Newton's law of cooling, while the inner cylinder with isothermal surface is set in motion in the axial direction. The model nonlinear differential equations for the momentum and energy balance are obtained and tackled numerically using the shooting method coupled with the Runge-Kutta-Fehlberg integration technique. The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal criticality conditions are presented graphically and discussed quantitatively.
Validation of a power-law noise model for simulating small-scale breast tissue
Reiser, I.; Edwards, A.; Nishikawa, R. M.
2013-01-01
We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially-averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. PMID:23938858
The power law relation of spiral waves in the Belousov-Zhabotinsky reaction
NASA Astrophysics Data System (ADS)
Li, Yan; Bai, Shufeng; Ouyang, Qi
2000-12-01
The relationship of the period Ts and the wavelength λs of spiral waves with the control parameters is systematically studied with the Belousov-Zhabotinksy (BZ) reaction in a spatially extended quasi-two-dimensional system. Our experiments indicate that Ts and λs not only rely on the concentrations of sulfuric acid and sodium bromate, as indicated in the previous work [A. L. Belmonte, Q. Ouyang, and J. M. Flesselles, J. Phys. II 7, 1425 (1997)] but also have strong relation with the concentration of malonic acid (MA). With the influence of the concentration of MA taken into consideration, a revised power law of spiral waves is suggested, which is qualitatively in agreement with early works of numerical simulations and theoretical analysis.
Conductance statistics for the power-law banded random matrix model
Martinez-Mendoza, A. J.; Mendez-Bermudez, J. A.; Varga, Imre
2010-12-21
We study numerically the conductance statistics of the one-dimensional (1D) Anderson model with random long-range hoppings described by the Power-law Banded Random Matrix (PBRM) model. Within a scattering approach to electronic transport, we consider two scattering setups in absence and presence of direct processes: 2M single-mode leads attached to one side and to opposite sides of 1D circular samples. For both setups we show that (i) the probability distribution of the logarithm of the conductance T behaves as w(lnT){proportional_to}T{sup M2/2}, for T<<
Low prevalence, quasi-stationarity and power-law behavior in a model of contagion spreading
NASA Astrophysics Data System (ADS)
Montakhab, Afshin; Manshour, Pouya
2012-09-01
While contagion (information, infection, etc.) spreading has been extensively studied recently, the role of active local agents has not been fully considered. Here, we propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local probabilistic dynamics occurring at various nodes. Transmission occurs only after the quality-based fitness of the contagion has been evaluated by the local agent. We study such spreading dynamics on Erdös-Rényi as well as scale free networks. The model exhibits quality-dependent exponential time scales at early times leading to a slowly evolving quasi-stationary state. Low prevalence is seen for a wide range of contagion quality for arbitrary large networks. We also investigate the activity of nodes and find a power-law distribution with a robust exponent independent of network topology. These properties, while absent in standard theoretical models, are observed in recent empirical observations.
Holographic power-law traps for the efficient production of Bose-Einstein condensates
Bruce, Graham D.; Bromley, Sarah L.; Smirne, Giuseppe; Torralbo-Campo, Lara; Cassettari, Donatella
2011-11-15
We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a power law from a central maximum with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates (BECs) in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental parameters are used to verify the capability of this approach in producing larger BECs than by evaporative cooling alone.
The time-domain behavior of power-law noises. [of many geophysical phenomena
NASA Technical Reports Server (NTRS)
Agnew, Duncan C.
1992-01-01
The power spectra of many geophysical phenomena are well approximated by a power-law dependence on frequency or wavenumber. A simple expression for the root-mean-square variability of a process with such a spectrum over an interval of time or space is derived. The resulting expression yields the powerlaw time dependence characteristic of fractal processes, but can be generalized to give the temporal variability for more general spectral behaviors. The method is applied to spectra of crustal strain (to show what size of strain events can be detected over periods of months to seconds) and of sea level (to show the difficulty of extracting long-term rates from short records).
Dominance of the suppressed: Power-law size structure in tropical forests.
Farrior, C E; Bohlman, S A; Hubbell, S; Pacala, S W
2016-01-01
Tropical tree size distributions are remarkably consistent despite differences in the environments that support them. With data analysis and theory, we found a simple and biologically intuitive hypothesis to explain this property, which is the foundation of forest dynamics modeling and carbon storage estimates. After a disturbance, new individuals in the forest gap grow quickly in full sun until they begin to overtop one another. The two-dimensional space-filling of the growing crowns of the tallest individuals relegates a group of losing, slow-growing individuals to the understory. Those left in the understory follow a power-law size distribution, the scaling of which depends on only the crown area-to-diameter allometry exponent: a well-conserved value across tropical forests. PMID:26744402
Power-law entropy-corrected new holographic dark energy in Horava-Lifshitz cosmology
NASA Astrophysics Data System (ADS)
Borah, Bharat; Ansari, M.
2014-12-01
Purpose of this paper is to study power-law entropy-corrected holographic dark energy (PLECHDE) in the frame work of Horava-Lifshitz cosmology with Granda-Oliveros (G-O) IR-cutoff. Considering interacting and non-interacting scenario of PLECHDE with dark matter in a spatially non-flat universe, we investigate the cosmological implications of this model in detail. We obtain equation of state parameter, deceleration parameter and the evolution of dark energy density to explain the expansion of the universe. We also find out these parameters for Ricci scale. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of dark energy for law red-shifts.
NASA Astrophysics Data System (ADS)
Bianucci, M.
2016-01-01
This letter has two main goals. The first one is to give a physically reasonable explanation for the use of stochastic models for mimicking the apparent random features of the El Ninõ-Southern Oscillation (ENSO) phenomenon. The second one is to obtain, from the theory, an analytical expression for the equilibrium density function of the anomaly sea surface temperature, an expression that fits the data from observations well, reproducing the asymmetry and the power law tail of the histograms of the NIÑO3 index. We succeed in these tasks exploiting some recent theoretical results of the author in the field of the dynamical origin of the stochastic processes. More precisely, we apply this approach to the celebrated recharge oscillator model (ROM), weakly interacting by a multiplicative term, with a general deterministic complex forcing (Madden-Julian Oscillations, westerly wind burst, etc.), and we obtain a Fokker-Planck equation that describes the statistical behavior of the ROM.
Scalar field probes of power-law space-time singularities
NASA Astrophysics Data System (ADS)
Blau, Matthias; Frank, Denis; Weiss, Sebastian
2006-08-01
We analyse the effective potential of the scalar wave equation near generic space-time singularities of power-law type (Szekeres-Iyer metrics) and show that the effective potential exhibits a universal and scale invariant leading inverse square behaviour ~ x-2 in the ``tortoise coordinate'' x provided that the metrics satisfy the strict Dominant Energy Condition (DEC). This result parallels that obtained in [1] for probes consisting of families of massless particles (null geodesic deviation, a.k.a. the Penrose Limit). The detailed properties of the scalar wave operator depend sensitively on the numerical coefficient of the x-2-term, and as one application we show that timelike singularities satisfying the DEC are quantum mechanically singular in the sense of the Horowitz-Marolf (essential self-adjointness) criterion. We also comment on some related issues like the near-singularity behaviour of the scalar fields permitted by the Friedrichs extension.
Power law breakthrough curve tailing in a fracture: The role of advection
NASA Astrophysics Data System (ADS)
Fiori, Aldo; Becker, Matthew W.
2015-06-01
We offer an explanation of the strongly tailed solute breakthrough curve typically observed when a tracer test is conducted in fractured bedrock. In this example, we limit the model to a single planar fracture of varying aperture. Flow heterogeneity derives from variable fracture aperture, which implies variable transmissivity (T). The analysis employs a physically based model well-suited to strong heterogeneity and relies only upon advective transport. The purely advective model is able to explain a power-law trend of magnitude -2 to -3 in the breakthrough curve tail; a range that has been found in field tracer experiments. The principle cause of this trend is the comparatively slow transport in zones of small transmissivity (tight aperture). Slow advection occurs when either heterogeneity (variance of lnT) is strong or when the assumed heterogeneity distribution is non-Gaussian. Thus, we link breakthrough tailing to the statistical parameters for the transmissivity field.
On syntheses of the X-ray background with power-law sources
NASA Technical Reports Server (NTRS)
De Zotti, G.; Boldt, E. A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.; Cavaliere, A.; Danese, L.; Franceschini, A.
1982-01-01
The conditions under which the combined emission from power-law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low-luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit steeper spectra at higher energies.
On syntheses of the X-ray background with power-law sources
NASA Technical Reports Server (NTRS)
Dezotti, G.; Boldt, E. A.; Cavaliere, A.; Danese, L.; Franceschini, A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.
1981-01-01
The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies.
Exploring parameter constraints on quintessential dark energy: The inverse power law model
NASA Astrophysics Data System (ADS)
Yashar, Mark; Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael
2009-05-01
We report on the results of a Markov chain Monte Carlo analysis of an inverse power law (IPL) quintessence model using the Dark Energy Task Force (DETF) simulated data sets as a representation of future dark energy experiments. We generate simulated data sets for a ΛCDM background cosmology as well as a case where the dark energy is provided by a specific IPL fiducial model, and present our results in the form of likelihood contours generated by these two background cosmologies. We find that the relative constraining power of the various DETF data sets on the IPL model parameters is broadly equivalent to the DETF results for the w0-wa parametrization of dark energy. Finally, we gauge the power of DETF “stage 4” data by demonstrating a specific IPL model which, if realized in the universe, would allow stage 4 data to exclude a cosmological constant at better than the 3σ level.
NASA Astrophysics Data System (ADS)
Deschanel, S.; Vanel, L.; Godin, N.; Vigier, G.; Ciliberto, S.
2009-01-01
We discuss the results of a series of experiments performed on heterogeneous materials where we have measured the acoustic emission (AE) signals preceding macroscopic failure that correspond to precursory rupture events. We mainly focus on polyurethane foams whose heterogeneities (pores) constitute arrest points for microcracks. The released AE energy is always power law distributed independently of the material porosity, the loading history (creep and tensile) and the mechanical properties (from brittle to ductile with increasing temperature). This is also the case for time intervals between events except in tensile tests when the material is brittle. We also highlight two key physical behaviors. The first is the occurrence of a unique behavior for a cumulative number of events and the cumulative energy in creep tests. The second is that the statistical properties are more influenced by the mechanical behavior than the microstructure of the material. Finally we discuss the problems which are still open for connecting these results with theoretical modeling of AE.
NASA Astrophysics Data System (ADS)
Liu, Chao; Li, Rong
2016-09-01
An evolutionary prisoner's dilemma game (PDG) with players located on Barabási-Albert scale-free networks is studied. The impact of players' heterogeneous temporal activity pattern on the evolution of cooperation is investigated. To this end, the normal procedure that players update their strategies immediately after a round of game is discarded. Instead, players update strategies according to their assigned reproduction time, which follows a power-law distribution. We find that the temporal heterogeneity of players' activities facilitates the prosperity of cooperation, indicating the important role of hubs in the maintenance of cooperation on scale-free networks. When the reproduction time is assigned to individuals negatively related to their degrees, a fluctuation of the cooperation level with the increase of the exponent β is observed.
Architectures engender crises: The emergence of power laws in social networks
NASA Astrophysics Data System (ADS)
Tohmé, Fernando; Larrosa, Juan M. C.
2016-05-01
Recent financial crises posed a number of questions. The most salient were related to the cogency of derivatives and other sophisticated hedging instruments. One claim is that all those instruments rely heavily on the assumption that events in the world are guided by normal distributions while, instead, all the evidence shows that they actually follow fat-tailed power laws. Our conjecture is that it is the very financial architecture that engenders extreme events. Not on purpose but just because of its complexity. That is, the system has an internal connection structure that is able to propagate and enhance initially small disturbances. The final outcome ends up not being correlated with its triggering event. To support this claim, we appeal to the intuition drawn from the behavior of social networks. Most of the interesting cases constitute scale-free structures. In particular, we contend, those that arise from strategic decisions of the agents.
On syntheses of the X-ray background with power-law sources
NASA Astrophysics Data System (ADS)
De Zotti, G.; Boldt, E. A.; Cavaliere, A.; Danese, L.; Franceschini, A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.
1981-08-01
The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies.
On the Nonlinear Effects in Focused Ultrasound Beams with Frequency Power Law Attenuation
NASA Astrophysics Data System (ADS)
Jiménez, N.; Redondo, J.; Sánchez-Morcillo, V.; Iglesias, P. C.; Camarena, F.
When finite amplitude ultrasound propagation is considered, changes in spatial features of focused ultrasound beams can be observed. These nonlinear effects typically appear in thermoviscous fluids as focal displacements, beam-width variations or gain changes. However, in soft-tissue media, the frequency dependence of the attenuation doesn't obey a squared law. In this way, these complex media response leads to weak dispersion that prevents the cumulative processes of energy transfer to higher harmonics. In this work we explore the influence of different frequency power law attenuation responses and its influence on the self-defocusing effects in focused ultrasound beams. Thus, we numerically explore the spatial field distributions produced by low-Fresnel number devices and High Intensity Focused Ultrasound (HIFU) radiating trough different soft-tissue media.
NASA Astrophysics Data System (ADS)
Fan, Qingju; Wu, Yonghong
2015-08-01
In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.
Transport ac loss of elliptical thin strips with a power-law E(J) relation
NASA Astrophysics Data System (ADS)
Jia, Chen-Xi; Chen, Du-Xing; Li, Shuo; Fang, Jin
2015-10-01
The transport ac loss Q of an elliptical thin strip of critical current I c with a power-law relation E\\propto {J}n is accurately computed as a function of current amplitude I m and frequency f. The resulting Q({I}m) is normalized to q({i}m) following the Norris critical-state formula, and converted to {q}*({i}m*) at a critical frequency f c based on a transport scaling law. Having a set of {q}*({i}m*) at several values of n as a base, a general expression of {q}*({i}m*,n) is obtained, which can be used to easily calculate q({i}m) for any practical purposes.
Collision-dependent power law scalings in two dimensional gyrokinetic turbulence
Cerri, S. S. Bañón Navarro, A.; Told, D.; Jenko, F.
2014-08-15
Nonlinear gyrokinetics provides a suitable framework to describe short-wavelength turbulence in magnetized laboratory and astrophysical plasmas. In the electrostatic limit, this system is known to exhibit a free energy cascade towards small scales in (perpendicular) real and/or velocity space. The dissipation of free energy is always due to collisions (no matter how weak the collisionality), but may be spread out across a wide range of scales. Here, we focus on freely decaying two dimensional electrostatic turbulence on sub-ion-gyroradius scales. An existing scaling theory for the turbulent cascade in the weakly collisional limit is generalized to the moderately collisional regime. In this context, non-universal power law scalings due to multiscale dissipation are predicted, and this prediction is confirmed by means of direct numerical simulations.
NASA Technical Reports Server (NTRS)
Beltrametti, M.
1980-01-01
The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.
NASA Technical Reports Server (NTRS)
Howell, Leonard W.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The maximum likelihood procedure is developed for estimating the three spectral parameters of an assumed broken power law energy spectrum from simulated detector responses and their statistical properties investigated. The estimation procedure is then generalized for application to real cosmic-ray data. To illustrate the procedure and its utility, analytical methods were developed in conjunction with a Monte Carlo simulation to explore the combination of the expected cosmic-ray environment with a generic space-based detector and its planned life cycle, allowing us to explore various detector features and their subsequent influence on estimating the spectral parameters. This study permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2002-01-01
The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.
Onsager vortex formation in Bose-Einstein condensates in two-dimensional power-law traps
NASA Astrophysics Data System (ADS)
Groszek, Andrew J.; Simula, Tapio P.; Paganin, David M.; Helmerson, Kristian
2016-04-01
We study computationally dynamics of quantized vortices in two-dimensional superfluid Bose-Einstein condensates confined in highly oblate power-law traps. We have found that the formation of large-scale Onsager vortex clusters prevalent in steep-walled traps is suppressed in condensates confined by harmonic potentials. However, the shape of the trapping potential does not appear to adversely affect the evaporative heating efficiency of the vortex gas. Instead, the suppression of Onsager vortex formation in harmonic traps can be understood in terms of the energy of the vortex configurations. Furthermore, we find that the vortex-antivortex pair annihilation that underpins the vortex evaporative heating mechanism requires the interaction of at least three vortices. We conclude that experimental observation of Onsager vortices should be the most apparent in flat or inverted-bottom traps.
Modified Anderson orthogonality catastrophe power law in the presence of shell structure
NASA Astrophysics Data System (ADS)
Bandopadhyay, Swarnali; Hentschel, Martina
2011-01-01
We study Anderson orthogonality catastrophe (AOC) for parabolic quantum dots and focus on the effects of degeneracies, realized through the inherent shell structure of their energy levels that can be lifted through an external magnetic field, on the Anderson overlap. We find rich and interesting behaviors as a function of the strength and position of the perturbation, the system size, and the applied magnetic field. In particular, even for weak perturbations, we observe a pronounced AOC that is related to the degeneracy of energy levels. Most importantly, the power-law decay of the Anderson overlap as a function of the number of particles is modified in comparison to the metallic case due to the rearrangement of the energy-level shell structure. We support our analytical results by numerical calculations and also study the distribution of Anderson overlaps.
Unification of Small and Large Time Scales for Biological Evolution: Deviations from Power Law
NASA Astrophysics Data System (ADS)
Chowdhury, Debashish; Stauffer, Dietrich; Kunwar, Ambarish
2003-02-01
We develop a unified model that describes both “micro” and “macro” evolutions within a single theoretical framework. The ecosystem is described as a dynamic network; the population dynamics at each node of this network describes the “microevolution” over ecological time scales (i.e., birth, ageing, and natural death of individual organisms), while the appearance of new nodes, the slow changes of the links, and the disappearance of existing nodes accounts for the “macroevolution” over geological time scales (i.e., the origination, evolution, and extinction of species). In contrast to several earlier claims in the literature, we observe strong deviations from power law in the regime of long lifetimes.
Slow synaptic dynamics in a network: From exponential to power-law forgetting
NASA Astrophysics Data System (ADS)
Luck, J. M.; Mehta, A.
2014-09-01
We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modeled from the usual Hebbian perspective, while competition is modeled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal 1/t power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal 1/√t relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most original and important result of our present investigations.
Chaube, M. K.; Tripathi, D.; Bég, O. Anwar; Sharma, Shashi; Pandey, V. S.
2015-01-01
A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient, and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers, and so forth. PMID:27057132
Validation of a power-law noise model for simulating small-scale breast tissue
NASA Astrophysics Data System (ADS)
Reiser, I.; Edwards, A.; Nishikawa, R. M.
2013-09-01
We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided.
Power law classification scheme of time series correlations. On the example of G20 group
NASA Astrophysics Data System (ADS)
Miśkiewicz, Janusz
2013-05-01
A power law classification scheme (PLCS) of time series correlations is proposed. It is shown that PLCS provides the ability to classify nonlinear correlations and measure their stability. PLCS has been applied to gross domestic product (GDP) per capita of G20 members and their correlations analysed. It has been shown that the method does not only recognise linear correlations properly, but also allows to point out converging time series as well as to distinguish nonlinear correlations. PLCS is capable of crash recognition as it is shown in the Argentina example. Finally the strength of correlations and the stability of correlation matrices have been used to construct a minimum spanning tree (MST). The results were compared with those based on the ultrametric distance (UD). Comparing the structures of MST, UD and PLCS indicates that the latter one is more complicated, but better fits the expected economic relations within the G20.
Musical rhythm spectra from Bach to Joplin obey a 1/f power law
Levitin, Daniel J.; Chordia, Parag; Menon, Vinod
2012-01-01
Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5–1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities. PMID:22355125
Dipole-dipole interactions in optical lattices do not follow an inverse cube power law
NASA Astrophysics Data System (ADS)
Wall, M. L.; Carr, L. D.
2013-12-01
We study the effective dipole-dipole interactions in ultracold quantum gases on optical lattices as a function of asymmetry in confinement along the principal axes of the lattice. In particular, we study the matrix elements of the dipole-dipole interaction in the basis of lowest band Wannier functions which serve as a set of low-energy states for many-body physics on the lattice. We demonstrate that, for shallow lattices in quasi-reduced dimensional scenarios, the effective interaction between dipoles in an optical lattice is non-algebraic in the inter-particle separation at short to medium distance on the lattice scale and has a long-range power-law tail, in contrast to the pure power-law behavior of the dipole-dipole interaction in free space. The modifications to the free-space interaction can be sizable; we identify differences of up to 36% from the free-space interaction at the nearest-neighbor distance in quasi-one-dimensional arrangements. The interaction difference depends essentially on asymmetry in confinement, due to the d-wave anisotropy of the dipole-dipole interaction. Our results do not depend on statistics, applying to both dipolar Bose-Einstein condensates and degenerate Fermi gases. Using matrix product state simulations, we demonstrate that use of the correct lattice dipolar interaction leads to significant deviations from many-body predictions using the free-space interaction. Our results are relevant to up and coming experiments with ultracold heteronuclear molecules, Rydberg atoms and strongly magnetic atoms in optical lattices.
Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media
NASA Astrophysics Data System (ADS)
Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.
2016-05-01
Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm-3 ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1 - 100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{_turb}/p_{0} =23.07 (n_{_{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2M2))^{1.49}(n_{_{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.
Effective power-law dependence of Lyapunov exponents on the central mass in galaxies
NASA Astrophysics Data System (ADS)
Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.
2015-04-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L ∝ mp between the mean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p ≈ 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local `stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q ≈ 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x1 family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution ofx galaxies are discussed.
Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Hendriks, A Jan
2011-01-15
To perform life-cycle assessment studies, data on the production and use of the products is required. However, often only few data or measurements are available. Estimation of properties can be performed by applying scaling relationships. In many disciplines, they are used to either predict data or to search for underlying patterns, but they have not been considered in the context of product assessments hitherto. The goal of this study was to explore size scaling for commonly used energy conversion equipment, that is, boilers, engines, and generators. The variables mass M, fuel consumption Q, and costs C were related to power P. The established power-law relationships were M = 10(0.73.. 1.89)P(0.64.. 1.23) (R(2) ≥ 0.94), Q = 10(0.06.. 0.68)P(0.82.. 1.02) (R(2) ≥ 0.98) and C = 10(2.46.. 2.86)P(0.83.. 0.85) (R(2) ≥ 0.83). Mass versus power and costs versus power showed that none of the equipment types scaled isometrically, that is, with a slope of 1. Fuel consumption versus power scaled approximately isometrically for steam boilers, the other equipments scaled significantly lower than 1. This nonlinear scaling behavior induces a significant size effect. The power laws we established can be applied to scale the mass, fuel consumption and costs of energy conversion equipments up or down. Our findings suggest that empirical scaling laws can be used to estimate properties, particularly relevant in studies focusing on early product development for which generally only little information is available. PMID:21133374
Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media
NASA Astrophysics Data System (ADS)
Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.
2016-08-01
Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.
Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies
NASA Technical Reports Server (NTRS)
Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.
Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media
NASA Astrophysics Data System (ADS)
Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.
2016-08-01
Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media with uniform (and with stellar wind blown bubbles), power-law, and turbulent density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with $n(r) \\sim$ $r^{-2}$ (for $n(r) > n_{_{\\rm floor}}$) the amount of momentum injection is solely regulated by the background density $n_{_{\\rm floor}}$ and compares to $n_{_{\\rm uni}}$ = $n_{_{\\rm floor}}$. However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as $p_{_{\\rm turb}}/\\mathrm{p_{_{0}}}\\ =23.07\\, \\left(\\frac{n_{_{0,\\rm turb}}}{1\\,{\\rm cm}^{-3}}\\right)^{-0.12} + 0.82 (\\ln(1+b^{2}\\mathcal{M}^{2}))^{1.49}\\left(\\frac{n_{_{0,\\rm turb}}}{1\\,{\\rm cm}^{-3}}\\right)^{-1.6}$. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.
NASA Technical Reports Server (NTRS)
Poon, R. K. L.
1980-01-01
The paper presents an empirical study of the oxygen spectrum near 60 GHz with reference to its applicability to the remote sensing of the tropospheric and lower stratospheric temperature. It is demonstrated that the absorption coefficient of oxygen at 60 GHz can be fitted to the power law form with a relative rms error of about 8%. The power law form, when used in conjunction with the weighting function, permits the definition of some basic quantities in the passive remote sensing of the atmospheric temperature. It is shown how the power law form has been utilized in processing data from the Nimbus 5 microwave spectrometer experiment. The algorithm presented can be applied to spectrometer experiments at infrared frequencies.
A growth model for directed complex networks with power-law shape in the out-degree distribution
NASA Astrophysics Data System (ADS)
Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.
2015-01-01
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1.
A growth model for directed complex networks with power-law shape in the out-degree distribution.
Esquivel-Gómez, J; Stevens-Navarro, E; Pineda-Rico, U; Acosta-Elias, J
2015-01-01
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141
A growth model for directed complex networks with power-law shape in the out-degree distribution
Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.
2015-01-01
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141
Hughes, Timothy; Liberles, David A
2008-05-15
Genome sequencing has shown that the number of homologous gene families of a given size declines rapidly with family size. A power-law has been shown to provide the best mathematical description of this relationship. However, it remains unclear what evolutionary forces drive this observation. We use models of gene duplication, pseudogenisation and accumulation of replacement substitutions, which have been validated and parameterised using genomic data, to build a model of homologous gene evolution. We use this model to simulate the evolution of the distribution of gene family size and show that the power-law distribution is driven by the pseudogenisation rate's heterogeneity across gene families and its correlation within families. Moreover, we show that gene duplication and pseudogenisation are necessary and sufficient for the emergence of the power-law. PMID:18378100
NASA Astrophysics Data System (ADS)
Sachs, M. K.; Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Malamud, B. D.
2012-05-01
Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.
Gong Jingyu; Du Jiulin
2012-06-15
We study the secondary electron emissions induced by the impact of electrons on dust grains and the resulting dust charging processes in the nonequilibrium dusty plasma with power-law distributions. We derive new expressions of the secondary emitted electron flux and the dust charging currents that are generalized by the power-law q-distributions, where the nonlinear core functions are numerically studied for the nonextensive parameter q. Our numerical analyses show that the power-law q-distribution of the primary electrons has a significant effect on both the secondary emitted electron flux and the dust charging currents, and this effect depends strongly on the ratio of the electrostatic potential energy of the primary electrons at the dust grain's surface to the thermodynamic energy, implying that a competition in the dusty plasma between these two energies plays a crucial role in this novel effect.
NASA Astrophysics Data System (ADS)
Takahashi, Ryosuke; Okajima, Takaharu
2016-08-01
We investigated how stress relaxation mapping is quantified compared with the force modulation mapping of confluent epithelial cells using atomic force microscopy (AFM). Using a multi-frequency AFM technique, we estimated the power-law rheological behaviors of cells simultaneously in time and frequency domains. When the power-law exponent α was low (<0.1), the α values were almost the same in time and frequency domains. On the other hand, we found that at the high values (α > 0.1), α in the time domain was underestimated relative to that in the frequency domain, and the difference increased with α, whereas the cell modulus was overestimated in the time domain. These results indicate that power-law rheological parameters estimated by stress relaxation are sensitive to lag time during initial indentation, which is inevitable in time-domain AFM experiments.
Jovani, Roger; Serrano, David; Ursúa, Esperanza; Tella, José L.
2008-01-01
Background Departures from power law group size frequency distributions have been proposed as a useful tool to link individual behavior with population patterns and dynamics, although examples are scarce for wild animal populations. Methodology/Principal Findings We studied a population of Lesser kestrels (Falco naumanni) breeding in groups (colonies) from one to ca. 40 breeding pairs in 10,000 km2 in NE Spain. A 3.5 fold steady population increase occurred during the eight-year study period, accompanied by a geographical expansion from an initial subpopulation which in turn remained stable in numbers. This population instability was mainly driven by first-breeders, which are less competitive at breeding sites, being relegated to breed solitarily or in small colony sizes, and disperse farther than adults. Colony size frequency distributions shifted from an initial power law to a truncated power law mirroring population increase. Thus, we hypothesized that population instability was behind the truncation of the power law. Accordingly, we found a power law distribution through years in the initial subpopulation, and a match between the power law breakpoint (at ca. ten pairs) and those colony sizes from which the despotic behavior of colony owners started to impair the settlement of newcomers. Moreover, the instability hypothesis was further supported by snapshot data from another population of Lesser kestrels in SW Spain suffering a population decline. Conclusions/Significance Appropriate analysis of the scaling properties of grouping patterns has unraveled the link between local agonistic processes and large-scale (population) grouping patterns in a wild bird population. PMID:18431479
Effect of buoyancy-assisted flow on convection from an isothermal spheroid in power-law fluids
NASA Astrophysics Data System (ADS)
Gupta, Anoop K.; Chhabra, Rajendra Prasad
2016-05-01
In this work, the coupled momentum and energy equations have been solved to elucidate the effect of aiding-buoyancy on the laminar mixed-convection from a spheroidal particle in power-law media over wide ranges of the pertinent parameters: Richardson number, 0≤ Ri≤5; Reynolds number, 1≤ Re≤100; Prandtl number, 1≤ Pr≤100; power-law index, 0.3≤ n≤1.8, and aspect ratio, 0.2≤ e≤5 for the case of constant thermo-physical properties. New results for the velocity and temperature fields are discussed in terms of the streamline and isotherm contours, surface pressure and vorticity contours, drag coefficient, local and surface averaged Nusselt number. The effect of particle shape on the flow is seen to be more pronounced in the case of oblates ( e < 1) than that for prolates ( e > 1). The propensity for wake formation reduces with the rising values of power-law index, Richardson number and slenderness of the body shape ( e > 1). Also, the drag coefficient is seen to increase with the Richardson number and power-law index. All else being equal, the Nusselt number shows a positive dependence on the Richardson number and Reynolds number and an inverse dependence on the power-law index and aspect ratio of the spheroid. Limited results were also obtained by considering the exponential temperature dependence of the power-law consistency index. This factor can increase the values of the average Nusselt number by up to ~10-12% with reference to the corresponding values for the case of the constant thermo-physical properties under otherwise identical conditions. Finally, the present values of the Nusselt number have been consolidated in the form of Colburn j-factor as a function of the modified Reynolds and Prandtl numbers for each value of the aspect ratio ( e). The effect of the temperature dependent viscosity is included in this correlation in terms of a multiplication factor.
NASA Astrophysics Data System (ADS)
Garanina, O. S.; Romanovsky, M. Yu.
2015-06-01
A multi-parametric family of exponential distributions with various power law tails is introduced and is shown to describe adequately the known distributions of incomes and wealth as well as the recently measured distributions of new car sales. The three or four-parametric families are characterized by effective temperature in the exponential part, the power exponent in the power-law asymptotic part, the coefficient for the transition between the above two parts, and the starting value, if it is not equal to zero. Since the new car sales distributions are found to correspond to known distributions of incomes, the latter may be inferred from the former.
Jose, Prasanth P; Bagchi, Biman
2004-06-15
Recent Kerr relaxation experiments by Gottke et al. have revealed the existence of a pronounced temporal power law decay in the orientational relaxation near the isotropic-nematic phase transition (INPT) of nematogens of rather small aspect ratio, kappa (kappa approximately 3-4). We have carried out very long (50 ns) molecular dynamics simulations of model (Gay-Berne) prolate ellipsoids with aspect ratio 3 in order to investigate the origin of this power law. The model chosen is known to undergo an isotropic to nematic phase transition for a range of density and temperature. The distance dependence of the calculated angular pair correlation function correctly shows the emergence of a long range correlation as the INPT is approached along the density axis. In the vicinity of INPT, the single particle second rank orientational time correlation function exhibits power law decay, (t(-alpha)) with exponent alpha approximately 2/3. More importantly, we find the sudden appearance of a pronounced power-law decay in the collective part of the second rank orientational time correlation function at short times when the density is very close to the transition density. The power law has an exponent close to unity, that is, the correlation function decays almost linearly with time. At long times, the decay is exponential-like, as predicted by Landau-de Gennes mean field theory. Since Kerr relaxation experiments measure the time derivative of the collective second rank orientational pair correlation function, the simulations recover the near independence of the signal on time observed in experiments. In order to capture the microscopic essence of the dynamics of pseudonematic domains inside the isotropic phase, we introduce and calculate a dynamic orientational pair correlation function (DOPCF) obtained from the coefficients in the expansion of the distinct part of orientational van Hove time correlation function in terms of spherical harmonics. The DOPCF exhibits power law
A simple marriage model for the power-law behaviour in the frequency distributions of family names
NASA Astrophysics Data System (ADS)
Wu, Hao-Yun; Chou, Chung-I.; Tseng, Jie-Jun
2011-01-01
In many countries, the frequency distributions of family names are found to decay as a power law with an exponent ranging from 1.0 to 2.2. In this work, we propose a simple marriage model which can reproduce this power-law behaviour. Our model, based on the evolution of families, consists of the growth of big families and the formation of new families. Preliminary results from the model show that the name distributions are in good agreement with empirical data from Taiwan and Norway.
NASA Astrophysics Data System (ADS)
Grabski, Jakub Krzysztof; Kołodziej, Jan Adam
2016-06-01
In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.
ERIC Educational Resources Information Center
Quinn, Diana
2010-01-01
Purpose: The purpose of this paper is to examine current approaches to teaching used in academic development services and consider the diversity of their learners (academic faculty). Faculty engagement with teaching issues and innovations remains a concern for the higher education sector. The academic population contains large numbers of "hard to…
Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements
Mukherjee, Suvodip; Das, Santanu; Souradeep, Tarun; Joy, Minu E-mail: santanud@iucaa.ernet.in E-mail: tarun@iucaa.ernet.in
2015-01-01
Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass m{sub eff} for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation ν{sub t} and change in spectral index for scalar perturbation ν{sub st} to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of n{sub s}=0.96 by having a non-zero value of effective mass of the inflaton field m{sup 2}{sub eff}/H{sup 2}. The analysis with WP + Planck likelihood shows a non-zero detection of m{sup 2}{sub eff}/H{sup 2} with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m{sup 2}{sub eff}/H{sup 2} = −0.0237 ± 0.0135 which is consistent with zero.
The variation of the wind profile power-law exponent with respect to changes in surface roughness and atmospheric stability is depicted using the formulation of Nickerson and Smiley for specifying the vertical variations of the horizontal wind. The theoretical estimates of the po...
NOTE: Some power-law cosmological solutions derived from the 5D Brans-Dicke vacuum theory
NASA Astrophysics Data System (ADS)
Lee, Tae Hoon
2009-07-01
We solve vacuum field equations in five-dimensional Brans-Dicke gravity to find power-law growth for the cosmological scale factor, with the range of its parameter values extended by the Brans-Dicke field. We discuss its implications for the onset of late-time cosmic acceleration.
Interrelation of soft and hard X-ray emissions during solar flares. I - Observations
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.
1991-01-01
The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.
X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN
NASA Technical Reports Server (NTRS)
Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig
2007-01-01
The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.
NASA Astrophysics Data System (ADS)
Xu, Dandan; Sluse, Dominique; Schneider, Peter; Springel, Volker; Vogelsberger, Mark; Nelson, Dylan; Hernquist, Lars
2016-02-01
A power-law density model, i.e. ρ (r) ∝ r^{-γ ^' }}, has been commonly employed in strong gravitational lensing studies, including the so-called time-delay technique used to infer the Hubble constant H0. However, since the radial scale at which strong lensing features are formed corresponds to the transition from the dominance of baryonic matter to dark matter, there is no known reason why galaxies should follow a power law in density. The assumption of a power law artificially breaks the mass-sheet degeneracy, a well-known invariance transformation in gravitational lensing which affects the product of Hubble constant and time delay and can therefore cause a bias in the determination of H0 from the time-delay technique. In this paper, we use the Illustris hydrodynamical simulations to estimate the amplitude of this bias, and to understand how it is related to observational properties of galaxies. Investigating a large sample of Illustris galaxies that have velocity dispersion σSIE ≥ 160 km s-1 at redshifts below z = 1, we find that the bias on H0 introduced by the power-law assumption can reach 20-50 per cent, with a scatter of 10-30 per cent (rms). However, we find that by selecting galaxies with an inferred power-law model slope close to isothermal, it is possible to reduce the bias on H0 to ≲ 5 per cent and the scatter to ≲ 10 per cent. This could potentially be used to form less biased statistical samples for H0 measurements in the upcoming large survey era.
Cosmic histories of star formation and reionization: an analysis with a power-law approximation
Yu, Yun-Wei; Cheng, K.S.; Chu, M.C.; Yeung, S. E-mail: hrspksc@hku.hk E-mail: terryys@gmail.com
2012-07-01
With a simple power-law approximation of high-redshift (∼>3.5) star formation history, i.e., ρ-dot {sub *}(z)∝[(1+z)/4.5]{sup −α}, we investigate the reionization of intergalactic medium (IGM) and the consequent Thomson scattering optical depth for cosmic microwave background (CMB) photons. A constraint on the evolution index α is derived from the CMB optical depth measured by the Wilkinson Microwave Anisotropy Probe (WMAP) experiment, which reads α ≈ 2.18 lg N{sub γ}−3.89, where the free parameter N{sub γ} is the number of the escaped ionizing ultraviolet photons per baryon. At the same time, the redshift z{sub f} at which the IGM is fully ionized can also be expressed as a function of α as well as N{sub γ}. By further taking into account the implication of the Gunn-Peterson trough observations to quasars for the full reionization redshift, i.e., 6∼
Can log-periodic power law structures arise from random fluctuations?
NASA Astrophysics Data System (ADS)
Wosnitza, Jan Henrik; Leker, Jens
2014-05-01
Recent research has established log-periodic power law (LPPL) patterns prior to the detonation of the German stock index (DAX) bubble in 1998. The purpose of this article is to explore whether a Langevin equation extracted from real world data can generate synthetic time series with comparable LPPL structures. To this end, we first estimate the stochastic process underlying the DAX log-returns during the period from mid-1997 until end-2003. The employed data set contains about 3.93ṡ106 intraday DAX quotes at a sampling rate of 15 s. Our results indicate that the DAX log-returns can be described as a Markov process. As a consequence, a Langevin equation is derived. Based on this model equation, we run extensive simulations in order to generate 100 synthetic DAX trajectories each covering 3000 trading days. We find LPPL behavior in ten artificial time series. Moreover, we can establish a link between LPPL patterns and ensuing bubble bursts in seven synthetic 600-week windows. However, the LPPL components in most synthetic trajectories differ fundamentally from those LPPL structures that have previously been detected in real financial time series. Summarized, this paper demonstrates that LPPL structures are not necessarily the signature of imitative behavior among investors but can also stem from noise, even though the likelihood of this is extremely low. Thus, our findings confirm with high statistical confidence that the LPPL structures in the DAX development are rooted deeper than only in the random fluctuations of the German stock market.
Power-law Optical Conductivity from Unparticles: Application to the Cuprates
NASA Astrophysics Data System (ADS)
Limtragool, Kridsanaphong; Phillips, Philip
We calculate the optical conductivity using several models for unparticle or scale-invariant matter. Within a Gaussian action for unparticles that is gauged with Wilson lines, we find that the conductivity computed from the Kubo formalism with vertex corrections yields no non-trivial deviation from the free-theory result. This result obtains because at the Gaussian level, unparticles are just a superposition of particle fields and hence any transport property must be consistent with free theory. Beyond the Gaussian approach, we adopt the continuous mass formulation of unparticles and calculate the Drude conductivity directly. We show that unparticles in this context can be tailored to yield an algebraic conductivity that scales as ω - 2 / 3 with the associated phase angle between the imaginary and real parts of arctanσ2/σ1 =60° as is seen in the cuprates. Our results indicate that at each frequency in the scaling regime, excitations on all energy scales contribute. Hence, incoherence is at the heart of the power-law in the optical conductivity in strongly correlated systems such as the cuprates. We thank NSF DMR-1461952 for partial funding of this project. KL is supported by a scholarship from the Ministry of Science and Technology, Royal Thai Government. PP thanks the Guggenheim Foundation for a 2015-2016 Fellowship.
Observation of a power-law energy distribution in atom-ion hybrid system
NASA Astrophysics Data System (ADS)
Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee
2016-05-01
Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.
Power-law photoconductivity time decay in nanocrystalline TiO2 thin films
NASA Astrophysics Data System (ADS)
Comedi, D.; Heluani, S. P.; Villafuerte, M.; Arce, R. D.; Koropecki, R. R.
2007-12-01
The sub-band-gap excited photoconductivity (PC) time decay and the film structure of rf-sputter deposited nanocrystalline TiO2 thin films have been studied. Atomic force microscopy and x-ray diffraction measurements were used to assess roughness, crystalline structure and mean grain size of the films. Samples fabricated under different deposition conditions exhibit different microstructures and absolute PC, but similar persistent PC behaviour after switching off the light source. The very slow PC decay can be well represented by a function that is nearly constant for short times and decreases as a power law for times longer than about 100 s. This function is shown to be consistent with a rate equation characterized by a relaxation time that increases linearly with time. This behaviour, in turn, agrees with predictions of a previously reported model that assumes electron-hole recombination limited by carrier-density-dependent potential barriers associated with inhomogeneities. These results may have important implications on attempts to determine distributions of trap energies from PC decay curves in TiO2.
Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model
NASA Astrophysics Data System (ADS)
Ito, Yuta; Nishimura, Jun; Tsuchiya, Asato
2015-11-01
Recent studies on the Lorentzian version of the type IIB matrix model show that (3+1)D expanding universe emerges dynamically from (9+1)D space-time predicted by superstring theory. Here we study a bosonic matrix model obtained by omitting the fermionic matrices. With the adopted simplification and the usage of a large-scale parallel computer, we are able to perform Monte Carlo calculations with matrix size up to N = 512, which is twenty times larger than that used previously for the studies of the original model. When the matrix size is larger than some critical value N c ≃ 110, we find that (3+1)D expanding universe emerges dynamically with a clear large- N scaling property. Furthermore, the observed increase of the spatial extent with time t at sufficiently late times is consistent with a power-law behavior t 1/2, which is reminiscent of the expanding behavior of the Friedmann-Robertson-Walker universe in the radiation dominated era. We discuss possible implications of this result on the original supersymmetric model including fermionic matrices.
Interim Report on the Power Law Index of Interplanetary Suprathermal Ion Spectra
Hill, M. E.; Hamilton, D. C.
2010-12-30
There is a continuing debate about the applicability of the theory presented by Fisk and Gloeckler (FG) regarding the formation of suprathermal ion tails in phase space density vs. velocity spectra; in the solar wind frame the FG theory predicts a power law index of-5 (which is equivalent to a differential intensity vs. energy index of-1.5). There has also been uncertainty and perhaps misunderstanding regarding the extent to which such spectra are actually observed; i.e., is there really a significant preference for the -5 index? Here we report the results of an interim technique we use to analyze {approx}1-100 keV/nucleon interplanetary suprathermal H{sup +}, He{sup +}, and He{sup ++}, spectra measured at the Cassini spacecraft by the Charge Energy Mass Spectrometer (CHEMS) instrument of the Magnetospheric Imaging Instrument (MIMI) suite during the cruise to Saturn. We analyzed 18 active periods and report a mean index in the solar wind frame of 4.9{+-}0.4 for protons, 5.2{+-}0.5 for He{sup +}, and 4.7{+-}0.2 for alpha particles. MIMI/CHEMS offers much needed independent observations of heliospheric ions in the suprathermal energy range.
Cascade model of gamma-ray bursts: Power-law and annihilation-line components
NASA Technical Reports Server (NTRS)
Harding, A. K.; Sturrock, P. A.; Daugherty, J. K.
1988-01-01
If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.
Power-law entropy-corrected Ricci dark energy and dynamics of scalar fields
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Jamil, Mubasher; Myrzakulov, Ratbay; Majeed, Bushra
2012-10-01
Motivated by the holographic principle, it has previously been suggested that the dark energy (DE) density can be inversely proportional to the area A of the event horizon of the Universe. However, this kind of model would have a casuality problem. In this work, we study the power-law entropy-corrected holographic DE (PLECHDE) model in the non-flat Friedmann-Robertson-Walker universe, with the future event horizon replaced by the average radius of the Ricci scalar curvature. We derive the equation of state parameter ωΛ, the deceleration parameter q and the evolution of energy density parameter ΩD‧ in the presence of interaction between DE and dark matter. We consider the correspondence between our Ricci-PLECHDE model and the modified Chaplygin gas and the tachyon, K-essence, dilaton and quintessence scalar fields. The potential and dynamics of the scalar field models have been reconstructed according to the evolutionary behaviour of the interacting entropy-corrected holographic DE model.
Power-law distribution of fault slip-rates in southern California
NASA Astrophysics Data System (ADS)
Meade, Brendan J.
2007-12-01
The spatial partitioning of deformation in the continental crust and, in particular, at plate boundary zones is determined by the distribution of fault slip-rates. Analytic and numerical models of strain accumulation in the elastic upper crust have been divided into those that parameterize faulting as localized on a finite length fault system comprised of relatively few fast slip-rate faults, or as distributed throughout a continuum of relatively slow slip-rate faults. We demonstrate that in the southern California fault system, between the Pacific and North American plates, both geologically and geodetically constrained fault slip-rate catalogs obey a power-law frequency distribution. Using this empirically constrained scaling relationship we derive an analytic expression for the partitioning of potency accumulation rate, which determines the distribution and magnitude of slip localization. This model describes the kinematics of both micro-plate and continuum deformation models, and predicts that ~97% of the deformation in southern California is accommodated on faults slipping at >1 mm/yr which is consistent with models of continental deformation which explicitly represent a large though finite number of deforming structures.
Electroosmotic Flow of Power-Law Fluids in a Cylindrical Microcapillary
NASA Astrophysics Data System (ADS)
Saidi, M. H.; Babaie, Ashkan; Sadeghi, Arman; Center of Excellence in Energy Conversion Team
2012-11-01
In biological applications where most fluids are considered to be non-Newtonian, Newtonian law of viscosity looks insufficient for describing the flow characteristics. In the present work, the electroosmotic flow of power-law fluids in a circular micro tube is investigated. The Poisson-Boltzmann equation for electrical potential is solved numerically in the complete form without using the Debye-Hückel approximation. The physical model includes the Joule heating and viscous dissipation effects. Once the momentum and energy equations are solved numerically, a parametric study is done to investigate the effects of different parameters such as flow behavior index, wall zeta potential and the Debye-Hückel parameter on thermal and hydrodynamic characteristics of the flow. Results show that based on the value of viscous dissipation and the Debye-Hückel parameter the non-Newtonian characteristics of the flow can lead to significant changes regarding to Newtonian behaviors. The provided results in this study would lead to accurate prediction of temperature of biofluids in Lab-on-a-chip devices which is vital for retaining samples in a healthy condition.
A unified econophysics explanation for the power-law exponents of stock market activity
NASA Astrophysics Data System (ADS)
Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, Eugene
2007-08-01
We survey a theory (first sketched in Nature in 2003, then fleshed out in the Quarterly Journal of Economics in 2006) of the economic underpinnings of the fat-tailed distributions of a number of financial variables, such as returns and trading volume. Our theory posits that they have a common origin in the strategic trading behavior of very large financial institutions in a relatively illiquid market. We show how the fat-tailed distribution of fund sizes can indeed generate extreme returns and volumes, even in the absence of fundamental news. Moreover, we are able to replicate the individually different empirical values of the power-law exponents for each distribution: 3 for returns, 3/2 for volumes, 1 for the assets under management of large investors. Large investors moderate their trades to reduce their price impact; coupled with a concave price impact function, this leads to volumes being more fat-tailed than returns but less fat-tailed than fund sizes. The trades of large institutions also offer a unified explanation for apparently disconnected empirical regularities that are otherwise a challenge for economic theory.
Adjustment to Subtle Time Constraints and Power Law Learning in Rapid Serial Visual Presentation.
Shin, Jacqueline C; Chang, Seah; Cho, Yang Seok
2015-01-01
We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP) task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1) varied at three levels (70, 98, and 126 ms) randomly between trials or fixed within blocks of trials. Practice over 3 consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB), a decrement in target (T2) identification when presented 200-400 ms after another target (T1). Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal "power law" learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing. PMID:26635662
The profound impact of negative power law noise on statistical estimation.
Reinhardt, Victor S
2010-01-01
This paper investigates the profound impact of negative power law (neg-p) noise - that is, noise with a power spectral density L(p)(f) proportional variant | f |(p) for p < 0 - on the ability of practical implementations of statistical estimation or fitting techniques, such as a least squares fit (LSQF) or a Kalman filter, to generate valid results. It demonstrates that such negp noise behaves more like systematic error than conventional noise, because neg-p noise is highly correlated, non-stationary, non-mean ergodic, and has an infinite correlation time tau(c). It is further demonstrated that stationary but correlated noise will also cause invalid estimation behavior when the condition T > tau(c) is not met, where T is the data collection interval for estimation. Thus, it is shown that neg-p noise, with its infinite Tau(c), can generate anomalous estimation results for all values of T, except in certain circumstances. A covariant theory is developed explaining much of this anomalous estimation behavior. However, simulations of the estimation behavior of neg-p noise demonstrate that the subject cannot be fully understood in terms of covariant theory or mean ergodicity. It is finally conjectured that one must investigate the variance ergodicity properties of neg-p noise through the use of 4th order correlation theory to fully explain such simulated behavior. PMID:20040429
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
NASA Astrophysics Data System (ADS)
Zangeneh, M. Kord; Sheykhi, A.; Dehghani, M. H.
2015-10-01
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α >1, the solutions can encounter an unstable phase depending on the metric parameters.
NASA Astrophysics Data System (ADS)
Tang, Yong; Wu, Yue-Liang
2011-11-01
We perform an explicit one-loop calculation for the gravitational contributions to the two-, three- and four-point gauge Green's functions with paying attention to the quadratic divergences. It is shown for the first time in the diagrammatic calculation that the Slavnov-Taylor identities are preserved even if the quantum graviton effects are included at one-loop level, such a conclusion is independent of the choice of regularization schemes. We also present a regularization scheme independent calculation based on the gauge condition independent background field framework of Vilkovisky-DeWitt's effective action with focusing on both the quadratic divergence and quartic divergence that is not discussed before. With the harmonic gauge condition, the results computed by using the traditional background field method can consistently be recovered from the Vilkovisky-DeWitt's effective action approach by simply taking a limiting case, and are found to be the same as the ones yielded by the diagrammatic calculation. As a consequence, in all the calculations, the symmetry-preserving and divergent-behavior-preserving loop regularization method can consistently lead to a nontrivial gravitational contribution to the gauge coupling constant with an asymptotic free power-law running at one loop near the Planck scale.
NASA Astrophysics Data System (ADS)
Wosnitza, Jan Henrik; Denz, Cornelia
2013-09-01
We employ the log-periodic power law (LPPL) to analyze the late-2000 financial crisis from the perspective of critical phenomena. The main purpose of this study is to examine whether LPPL structures in the development of credit default swap (CDS) spreads can be used for default classification. Based on the different triggers of Bear Stearns’ near bankruptcy during the late-2000 financial crisis and Ford’s insolvency in 2009, this study provides a quantitative description of the mechanism behind bank runs. We apply the Johansen-Ledoit-Sornette (JLS) positive feedback model to explain the rise of financial institutions’ CDS spreads during the global financial crisis 2007-2009. This investigation is based on CDS spreads of 40 major banks over the period from June 2007 to April 2009 which includes a significant CDS spread increase. The qualitative data analysis indicates that the CDS spread variations have followed LPPL patterns during the global financial crisis. Furthermore, the univariate classification performances of seven LPPL parameters as default indicators are measured by Mann-Whitney U tests. The present study supports the hypothesis that discrete scale-invariance governs the dynamics of financial markets and suggests the application of new and fast updateable default indicators to capture the buildup of long-range correlations between creditors.
Exact, E = 0, classical and quantum solutions for general power-law oscillators
Nieto, M.M.; Daboul, J.
1994-07-01
For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = {minus}{gamma}/r{sup {nu}}, {gamma} > 0 and {minus}{infinity} < {nu} < {infinity}. When the angular momentum is non-zero, these solutions lead to the classical orbits {rho}(t) = [cos {mu}({var_phi}(t) {minus} {var_phi}{sub 0}(t))]{sup 1/{mu}}, with {mu} = {nu}/2 {minus} 1 {ne} 0. For {nu} > 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when {nu} > 2 the solutions are normalizable (bound), as in the classical case. Also, there are normalizable discrete, yet unbound, state which correspond to unbound classical particles which reach infinity in a finite time. These and other interesting comparisons to the classical system will be discussed.
Analysis of log-periodic power law singularity patterns in time series related to credit risk
NASA Astrophysics Data System (ADS)
Wosnitza, Jan Henrik; Sornette, Didier
2015-04-01
The log-periodic (super-exponential) power law singularity (LPPLS) has become a promising tool for predicting extreme behavior of self-organizing systems in natural sciences and finance. Some researchers have recently proposed to employ the LPPLS on credit risk markets. The review article at hand summarizes four papers in this field and shows how they are linked. After structuring the research questions, we collect the corresponding answers from the four articles. This eventually gives us an overall picture of the application of the LPPLS to credit risk data. Our literature review begins with grounding the view that credit default swap (CDS) spreads are hotbeds for LPPLS patterns and it ends up with drawing attention to the recently proposed alarm index for the prediction of institutional bank runs. By presenting a new field of application for the LPPLS, the reviewed strand of literature further substantiates the LPPLS hypothesis. Moreover, the results suggest that CDS spread trajectories belong to a different universality class than, for instance, stock prices.
Exact, E = 0, classical and quantum solutions for general power-law oscillators
NASA Technical Reports Server (NTRS)
Nieto, Michael Martin; Daboul, Jamil
1995-01-01
For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.
Power law scaling of the top Lyapunov exponent of a product of random matrices
Ravishankar, K.
1989-01-01
A sequence of i.i.d. matrix-valued random variables /X/sub n// x X/sub n/ = (/sub 0//sup 1/ /sub 1//sup d/) with probability p and X/sub n/ = (/sub c(var epsilon)//sup 1 + a(var epsilon)/ /sub 1 + a(var epsilon)//sup b(var epsilon)/) with probability 1 - p is considered. Let a(var epsilon) = a/sub 0/ var epsilon + o(var epsilon) = c/sub 0/ var epsilon + o(var epsilon) lim/sub var epsilon ..-->.. 0/ b(var epsilon) = 0, a/sub 0/, c/sub 0/, var epsilon > 0, and b(var epsilon) > 0 for all var epsilon > 0. It is shown that the top Lyapunov exponent of the matrix product X/sub n/X/sub n-1/... X/sub 1/, lambda = lim/sub n ..-->.. infinity/ (1/n)/n perpendicular to X/sub n/X/sub n-1/... X/sub i/ satisfies a power law with an exponent 1/2. That is, lim/sub var epsilon ..-->.. 0/(1n lambda/1n var epsilon) = 1/2.
A Recommended Procedure for Estimating the Cosmic Ray Spectral Parameter of a Simple Power Law
NASA Technical Reports Server (NTRS)
Howell, Leonard W.; Rose, M. Franklin (Technical Monitor)
2000-01-01
A simple power law model consisting of a single spectral index a(f(sub i)) is believed to be an adequate description of the galactic cosmic ray (GQ proton flux at energies below 1013 eV. Two procedures for estimating a(f(sub i)), referred as (1) the method of moments, and (2) maximum likelihood, are developed and their statistical performance compared. I concluded that the maximum likelihood procedure attains the most desirable statistical properties and is hence the recommended statistic estimation procedure for estimating a1. The maximum likelihood procedure is then generalized for application to a set of real cosmic ray data and thereby makes this approach applicable to existing cosmic ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic ray detector because they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose practical limits to the design envelope.
Interim Report on the Power Law Index of Interplanetary Suprathermal Ion Spectra
NASA Astrophysics Data System (ADS)
Hill, M. E.; Hamilton, D. C.
2010-12-01
There is a continuing debate about the applicability of the theory presented by Fisk and Gloeckler (FG) regarding the formation of suprathermal ion tails in phase space density vs. velocity spectra; in the solar wind frame the FG theory predicts a power law index of-5 (which is equivalent to a differential intensity vs. energy index of-1.5). There has also been uncertainty and perhaps misunderstanding regarding the extent to which such spectra are actually observed; i.e., is there really a significant preference for the -5 index? Here we report the results of an interim technique we use to analyze ~1-100 keV/nucleon interplanetary suprathermal H+, He+, and He++, spectra measured at the Cassini spacecraft by the Charge Energy Mass Spectrometer (CHEMS) instrument of the Magnetospheric Imaging Instrument (MIMI) suite during the cruise to Saturn. We analyzed 18 active periods and report a mean index in the solar wind frame of 4.9+/-0.4 for protons, 5.2+/-0.5 for He+, and 4.7+/-0.2 for alpha particles. MIMI/CHEMS offers much needed independent observations of heliospheric ions in the suprathermal energy range.
NASA Astrophysics Data System (ADS)
Costa, U. M. S.; Lyra, M. L.; Plastino, A. R.; Tsallis, C.
1997-07-01
Power-law sensitivity to initial conditions, characterizing the behavior of dynamical systems at their critical points (where the standard Liapunov exponent vanishes), is studied in connection with the family of nonlinear one-dimensional logisticlike maps xt+1=1-a\\|xt\\|z (z>1 00[Δx(t)/Δx(0)]=[1+(1-q)λqt]1/(1-q) (equal to eλ1t for q=1, and proportional, for large t, to t1/(1-q) for q≠1 q∈R is the entropic index appearing in the recently introduced nonextensive generalized statistics). The relation between the parameter q and the fractal dimension df of the onset-to-chaos attractor is revealed: q appears to monotonically decrease from 1 (Boltzmann-Gibbs, extensive, limit) to -∞ when df varies from 1 (nonfractal, ergodiclike, limit) to zero.
NASA Astrophysics Data System (ADS)
Lehsten, Veiko; Groot, William J.; Flannigan, Mike; George, Charles; Harmand, Peter; Balzter, Heiko
2014-01-01
are a major driver of ecosystem development and contributor to carbon emissions in boreal forests. We analyzed the contribution of fires of different fire size classes to the total burned area and suggest a novel fire characteristic, the characteristic fire size, i.e., the fire size class with the highest contribution to the burned area, its relation to bioclimatic conditions, and intra-annual and interannual variation. We used the Canadian National Fire Database (using data from 1960 to 2010) and a novel satellite-based burned area data set (2001 to 2011). We found that the fire size distribution is best explained by a normal distribution in log space in contrast to the power law-based linear fire area relationship which has prevailed in the literature so far. We attribute the difference to previous studies in the scale invariance mainly to the large extent of the investigated ecoregion as well as to unequal binning or limiting the range at which the relationship is analyzed; in this way we also question the generality of the scale invariance for ecoregions even outside the boreal domain. The characteristic fire sizes and the burned area show a weak correlation, indicating different mechanisms behind each feature. Fire sizes are found to depend markedly on the ecoregion and have increased over the last five decades for Canada in total, being most pronounced in the early season. In the late season fire size and area decreased, indicating an earlier start of the fire season.
Wright, Christopher K
2010-07-01
Although habitat networks show promise for conservation planning at regional scales, their spatiotemporal dynamics have not been well studied, especially in climate-sensitive landscapes. Here I use satellite remote sensing to compile wetland habitat networks from the Prairie Pothole Region (PPR) of North America. An ensemble of networks assembled across a hydrologic gradient from deluge to drought and a range of representative dispersal distances exhibits power-law scaling of important topological parameters. Prairie wetland networks are "meso-worlds" with mean topological distance increasing faster with network size than small-world networks, but slower than a regular lattice (or "large world"). This scaling implies rapid dispersal through wetland networks without some of the risks associated with "small worlds" (e.g., extremely rapid propagation of disease or disturbance). Retrospective analysis of wetland networks establishes a climatic envelope for landscape connectivity in the PPR, where I show that a changing climate might severely impact metapopulation viability and restrict long-distance dispersal and range shifts. More generally, this study demonstrates an efficient approach to conservation planning at a level of abstraction addressing key drivers of the global biodiversity crisis: habitat fragmentation and climatic change. PMID:20715611
Two-dimensional magnetic cluster growth with a power law interaction
NASA Astrophysics Data System (ADS)
Xu, Xiaojun; Wu, Yiqi; Ye, Gaoxiang
2008-03-01
A two-dimensional cluster model in which the morphology of clusters depends on power-law magnetic interactions that decay with distance r as a r- α law is introduced. The growth algorithm is a generalization of diffusion-limited aggregation (DLA) model. The particles with spin degree diffuse on a square lattice and each spin is allowed to flip under a Monte Carlo probability. The simulation shows that, for the antiferromagnetic coupling, the spins of the particles in clusters tend to be oriented alternately. For the ferromagnetic coupling, however, the spin distribution depends on the exponent α: for large value of α, domains with different sizes are observed in the clusters; while for small α, during the earlier stage of the growth process, the clusters exhibit approximately antiferromagnetic structure, then, in subsequent growth of the outer part of the clusters, the spin states of all particles are similar. The magnetization and system energy of the clusters as well as their evolutions with the growth parameters are also studied in detail.
Power Law Regression Analysis of Heat Flux Width in Type I ELMs
NASA Astrophysics Data System (ADS)
Stephens, C. D.; Makowski, M. A.; Leonard, A. W.; Osborne, T. H.
2014-10-01
In this project, a database of Type I ELM characteristics has been assembled and will be used to investigate possible dependencies of the heat flux width on physics and engineering parameters. At the edge near the divertor, high impulsive heat loads are imparted onto the surface. The impact of these ELMs can cause a reduction in divertor lifetime if the heat flux is great enough due to material erosion. A program will be used to analyze data, extract relevant, measurable quantities, and record the quantities in the table. Care is taken to accurately capture the complex space/time structure of the ELM. Then correlations between discharge and equilibrium parameters will be investigated. Power law regression analysis will be used to help determine the dependence of the heat flux width on these various measurable quantities and parameters. This will enable us to better understand the physics of heat flux at the edge. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US DOE under DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FC02-04ER54698.
Random sampling of skewed distributions implies Taylor's power law of fluctuation scaling.
Cohen, Joel E; Xu, Meng
2015-06-23
Taylor's law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species' population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)(b), a > 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared. PMID:25852144
Common origin of power-law tails in income distributions and relativistic gases
NASA Astrophysics Data System (ADS)
Modanese, G.
2016-01-01
Power-law tails are ubiquitous in income distributions and in the energy distributions of diluted relativistic gases. We analyze the conceptual link between these two cases. In economic interactions fat tails arise because the richest individuals enact some protection mechanisms ("saving propensity") which allow them to put at stake, in their interactions, only a small part of their wealth. In high-energy particle collisions something similar happens, in the sense that when particles with very large energy collide with slow particles, then as a sole consequence of relativistic kinematics (mass dilation), they tend to exchange only a small part of their energy; processes like the frontal collision of two identical particles, where the exchanged energy is 100%, are very improbable, at least in a diluted gas. We thus show how in two completely different systems, one of socio-economic nature and one of physical nature, a certain feature of the binary microscopic interactions leads to the same consequence in the macroscopic distribution for the income or respectively for the energy.
Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Myrzakulov, Ratbay; Hakobyan, Margarit; Movsisyan, Artashes
2015-03-01
In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density. Moreover, we obtained the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D given by the relation ω D ( z) = ω 0+ ω 1 z, we derived the expressions of both ω 0 and ω 1. We interestingly found that the expression of ω 0 is the same for both non-interacting and interacting case. The expression of ω 1 for the interacting case has strong dependence from the interacting parameter b 2. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of the EoS parameter.
Nematic phase in two-dimensional frustrated systems with power-law decaying interactions
NASA Astrophysics Data System (ADS)
Barci, Daniel G.; Ribeiro, Leonardo; Stariolo, Daniel A.
2013-06-01
We address the problem of orientational order in frustrated interaction systems as a function of the relative range of the competing interactions. We study a spin model Hamiltonian with short-range ferromagnetic interaction competing with an antiferromagnetic component that decays as a power law of the distance between spins, 1/rα. These systems may develop a nematic phase between the isotropic disordered and stripe phases. We evaluate the nematic order parameter using a self-consistent mean-field calculation. Our main result indicates that the nematic phase exists, at mean-field level, provided 0<α<4. We analytically compute the nematic critical temperature and show that it increases with the range of the interaction, reaching its maximum near α˜0.5. We also compute a coarse-grained effective Hamiltonian for long wavelength fluctuations. For 0<α<4 the inverse susceptibility develops a set of continuous minima at wave vectors |k⃗|=k0(α) which dictate the long-distance physics of the system. For α→4, k0→0, making the competition between interactions ineffective for greater values of α.
Wave-speed dispersion associated with an attenuation obeying a frequency power law.
Buckingham, Michael J
2015-11-01
An attenuation scaling as a power of frequency, |ω|(β), over an infinite bandwidth is neither analytic nor square-integrable, thus calling into question the application of the Kramers-Krönig dispersion relations for determining the frequency dependence of the associated phase speed. In this paper, three different approaches are developed, all of which return the dispersion formula for the wavenumber, K(ω). The first analysis relies on the properties of generalized functions and the causality requirement that the impulse response, k(t), the inverse Fourier transform of -iK(ω), must vanish for t < 0. Second, a wave equation is introduced that yields the phase-speed dispersion associated with a frequency-power-law attenuation. Finally, it is shown that, with minor modification, the Kramers-Krönig dispersion relations with no subtractions (the Plemelj formulas) do in fact hold for an attenuation scaling as |ω|(β), yielding the same dispersion formula as the other two derivations. From this dispersion formula, admissible values of the exponent β are established. Physically, the inadmissible values of β, which include all the integers, correspond to attenuation-dispersion pairs whose Fourier components cannot combine in such a way as to make the impulse response, k(t), vanish for t < 0. There is no upper or lower limit on the value that β may take. PMID:26627763
Contracting bubbles in Hele-Shaw cells with a power-law fluid
NASA Astrophysics Data System (ADS)
McCue, Scott W.; King, John R.
2011-02-01
The problem of bubble contraction in a Hele-Shaw cell is studied for the case in which the surrounding fluid is of power-law type. A small perturbation of the radially symmetric problem is first considered, focussing on the behaviour just before the bubble vanishes, it being found that for shear-thinning fluids the radially symmetric solution is stable, while for shear-thickening fluids the aspect ratio of the bubble boundary increases. The borderline (Newtonian) case considered previously is neutrally stable, the bubble boundary becoming elliptic in shape with the eccentricity of the ellipse depending on the initial data. Further light is shed on the bubble contraction problem by considering a long thin Hele-Shaw cell: for early times the leading-order behaviour is one-dimensional in this limit; however, as the bubble contracts its evolution is ultimately determined by the solution of a Wiener-Hopf problem, the transition between the long thin limit and the extinction limit in which the bubble vanishes being described by what is in effect a similarity solution of the second kind. This same solution describes the generic (slit-like) extinction behaviour for shear-thickening fluids, the interface profiles that generalize the ellipses that characterize the Newtonian case being constructed by the Wiener-Hopf calculation.
Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman
2014-03-01
We study the coupled effect of electrokinetic phenomena and fluid rheology in altering the induced streaming potential in narrow fluidic confinements, which is manifested by establishing a time periodic pressure-driven flow in presence of electrical double layer phenomenon. However, in sharp contrast with reported literature, we take into account nonelectrostatic ion-ion interactions toward estimating the same in addition to electrostatic interactions and steric effects. We employ power law based rheological model for estimating the induced streaming potential. We bring out an intricate interaction between nonelectrostatic interactions and fluid rheology on the concerned electrokinetic phenomena, bearing immense consequences toward designing of integrated lab-on-a-chip-based microdevices and nanodevices. PMID:24132646
Papadopoulos, Anthony
2009-01-01
The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined. PMID:19333397
Bubble motion through a generalized power-law fluid flowing in a vertical tube.
Mukundakrishnan, Karthik; Eckmann, David M; Ayyaswamy, P S
2009-04-01
Intravascular gas embolism may occur with decompression in space flight, as well as during cardiac and vascular surgery. Intravascular bubbles may be deposited into any end organ, such as the heart or the brain. Surface interactions between the bubble and the endothelial cells lining the vasculature result in serious impairment of blood flow and can lead to heart attack, stroke, or even death. To develop effective therapeutic strategies, there is a need for understanding the dynamics of bubble motion through blood and its interaction with the vessel wall through which it moves. Toward this goal, we numerically investigate the axisymmetric motion of a bubble moving through a vertical circular tube in a shear-thinning generalized power-law fluid, using a front-tracking method. The formulation is characterized by the inlet Reynolds number, capillary number, Weber number, and Froude number. The flow dynamics and the associated wall shear stresses are documented for a combination of two different inlet flow conditions (inlet Reynolds numbers) and three different effective bubble radii (ratio of the undeformed bubble radii to the tube radii). The results of the non-Newtonian model are then compared with that of the model assuming a Newtonian blood viscosity. Specifically, for an almost occluding bubble (effective bubble radius = 0.9), the wall shear stress and the bubble residence time are compared for both Newtonian and non-Newtonian cases. Results show that at low shear rates, for a given pressure gradient the residence time for a non-Newtonian flow is higher than that for a Newtonian flow. PMID:19426324
Generalized power-law stiffness model for nonlinear dynamics of in-plane cable networks
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice; Caracoglia, Luca
2013-04-01
Cross-ties are used for mitigating stay-cable vibration, induced by wind and wind-rain on cable-stayed bridges. In-plane cable networks are obtained by connecting the stays by transverse cross-ties. While taut-cable theory has been traditionally employed for simulating the dynamics of cable networks, the use of a nonlinear restoring-force discrete element in each cross-tie has been recently proposed to more realistically replicate the network vibration when snapping or slackening of the restrainer may be anticipated. The solution to the free-vibration dynamics can be determined by "equivalent linearization method". In an exploratory study by the authors a cubic-stiffness spring element, in parallel with a linear one, was used to analyze the restoring-force effect in a cross-tie on the nonlinear dynamics of two simplified systems. This preliminary investigation is generalized in this paper by considering a power-law stiffness model with a generic integer exponent and applied to a prototype network installed on an existing bridge. The study is restricted to the fundamental mode and some of the higher ones. A time-domain lumped-mass algorithm is used for validating the equivalent linearization method. For the prototype network with quadratic-stiffness spring and a positive stiffness coefficient, a stiffening effect is observed, with a ten percent increment in the equivalent frequency for the fundamental mode. Results also show dependency on vibration amplitude. For higher modes the equivalent nonlinear effects can be responsible for an alteration of the linear mode shapes and a transition from a "localized mode" to a "global mode".
NASA Astrophysics Data System (ADS)
Patnaik, Swagat; Biswal, Basudev; Nagesh Kumar, D.; Sivakumar, Bellie
2015-09-01
This study concerns the relationship between the power law recession coefficient k (in -dQ/dt = kQα, Q being discharge at the basin outlet) and past average discharge QN (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-QN relationship is characterized by the coefficient of determination R2N, which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R2N value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R2N in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R2N and their directions of influence. Our results indicate that R2N is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R2N and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R2N. Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics.
Global scale analysis of the stream power law parameters based on worldwide 10Be denudation rates
NASA Astrophysics Data System (ADS)
Harel, Marie-Alice; Mudd, Simon; Attal, Mikael
2015-04-01
The stream power law, expressed as E = KAmSn where E is erosion rate [LT-1], K is erodibility [T-1L(1-2m)], A is drainage area [L2], S is channel gradient [L/L] and m and n are constants, is the most widely used model for bedrock channel incision. Despite its simplicity and limitations, the model has proved useful for a large number of applications such as topographic evolution, knickpoint migration, palaeotopography reconstruction, and the determination of uplift patterns and rates. However, the unknown parameters K, m and n are often fixed arbitrarily or are based on assumptions about the physics of the erosion processes that are not always valid, which considerably alters the use and interpretation of the model. In this study, we compile published 10Be basin-wide erosion rates (n = 1335) in order to assess the m/n ratio (or concavity index), the slope exponent n and erodibility coefficient K using the integral method of channel profile analysis. These three parameters are calculated for 66 areas and allow for a global scale analysis in terms of climatic, tectonic and environmental settings. Our results suggest that (i) many sites are too noisy or do not have enough data to predict n and K with a satisfying level of confidence; (ii) the slope exponent is predominantly greater than one, meaning that the relationship between erosion rate and the channel gradient is non-linear, supporting the idea that incision is a threshold controlled process. Furthermore, a multi-regression analysis and the calculation of n and K using a reference concavity index m/n = 0.45 demonstrate that (iii) many intuitive or previously demonstrated local-scale trends, such as the correlation between erosion rate and climate, do not appear at a global scale.
Global Scale Analysis of the Stream Power Law Parameters based on Worldwide 10Be Denudation Rates
NASA Astrophysics Data System (ADS)
Harel, M. A.; Mudd, S. M.; Attal, M.
2015-12-01
The stream power law, expressed as E = KAmSn where E is erosion rate [LT-1], K is erodibility [T-1L(1-2m)], A is drainage area [L2], S is channel gradient [L/L] and m and n are constants, is the most widely used model for bedrock channel incision. Despite its simplicity and limitations, the model has proved useful for a large number of applications such as topographic evolution, knickpoint migration, palaeotopography reconstruction, and the determination of uplift patterns and rates. However, the unknown parameters K, m and n are often fixed arbitrarily or are based on assumptions about the physics of the erosion processes that are not always valid, which considerably alters the use and interpretation of the model. In this study, we compile published 10Be basin-wide erosion rates (N= 1423) in order to assess the m/n ratio (or concavity index), the slope exponent n and erodibility coefficient K using the integral method of channel profile analysis. These three parameters are calculated for 67 areas and allow for a global scale analysis in terms of climatic, tectonic and environmental settings. Our results suggest that (i) many sites are too noisy or do not have enough data to predict n and K with a satisfying level of confidence; (ii) the slope exponent is predominantly greater than one, meaning that the relationship between erosion rate and the channel gradient is non-linear, supporting the idea that incision is a threshold controlled process. Furthermore, a multi-regression analysis and the calculation of n and K using a reference concavity index m/n = 0.45 demonstrates that (iii) many intuitive or previously demonstrated local-scale trends, such as the correlation between erosion rate and climate, do not appear at a global scale.
The origin of tablet boudinage: Results from experiments using power-law rock analogs
NASA Astrophysics Data System (ADS)
Zulauf, J.; Zulauf, G.; Kraus, R.; Gutiérrez-Alonso, G.; Zanella, F.
2011-10-01
We used power-law viscous plasticine ( n = ca. 7) as a rock analog to simulate boudinage of rocks undergoing dislocation creep and brittle fracture. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent bulk pure flattening inside a less competent plasticine matrix. Computer tomographic analyses of the deformed samples revealed that boudinage results from an initial phase of viscous necking followed by tensile failure along the previously formed necks. The resulting boudins display a polygonal shape in plan-view and are referred to as 'tablet boudins' (in contrast to the square to rectangular shaped chocolate-tablet boudins). The ratio between the plan-view long and short axis, R, ranges from 1.2 to 2.6. The polygonal, non-isometric shape of the tablet boudins can be explained by the strong interaction of concentric and radial tensile fractures. With increasing layer thickness, Hi, the mean diameter of the boudin tablets, Wa, increases, while the number of boudins, N, decreases. Progressive finite strain results in a higher number of the boudins and a smaller mean diameter. The thickness of the boudins, Hf, is almost the same as the initial layer thickness, Hi, while the aspect ratio ( Wd = Wa / Hf) decreases with layer thickness and finite strain. The mean Wd values obtained from all experiments span from ca. 4 to ca. 11. Tablet boudins, described in the present paper, have yet not been described from natural outcrops. The reasons might be that pure flattening strain is not common in nature, and the characterization and evaluation of tablet boudins requires geometrical analysis in three dimensions, which is a difficult task when such structures occur in nature.
Brey, J Javier; Ruiz-Montero, M J
2015-01-01
The hydrodynamic part of the velocity autocorrelation function of a granular fluid in the homogeneous cooling state has been calculated by using mode-coupling theory for a finite system with periodic boundary conditions. The existence of the shearing instability, leading to a divergent behavior of the velocity flow fluctuations, is taken into account. A time region in which the velocity autocorrelation function exhibits a power-law decay, when time is measured by the number of collisions per particle, has been been identified. Also the explicit form of the exponential asymptotic long time decay has been obtained. The theoretical prediction for the power-law decay is compared with molecular dynamics simulation results, and a good agreement is found, after taking into account finite size corrections. The effects of approaching the shearing instability are also explored. PMID:25679614
NASA Astrophysics Data System (ADS)
Mo, Jie-Xiong; Li, Gu-Qiang; Xu, Xiao-Bao
2016-04-01
The effects of a power-law Maxwell field on the critical phenomena of higher dimensional dilaton black holes are probed in detail. We successfully derive the analytic solutions of the critical point and carry out some checks to ensure that these critical quantities are positive. It is shown that the constraint on the parameter α describing the strength of the coupling of the electromagnetic field and the scalar field turns out to be 0 <α2<1 , which is tighter than that in the nonextended phase space. It is also shown that these critical quantities and the ratio Pcvc/Tc are affected by the power-law Maxwell field. Moreover, critical exponents are found to coincide with those of other anti-de Sitter black holes, showing the powerful influence of mean field theory.