Sample records for additional inductive power

  1. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less

  2. Technological inductive power transfer systems

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  3. Induction powered biological radiosonde

    NASA Technical Reports Server (NTRS)

    Fryer, T. B. (Inventor)

    1980-01-01

    An induction powered implanted monitor for epidurally measuring intracranial pressure and telemetering the pressure information to a remote readout is disclosed. The monitor utilizes an inductance-capacitance (L-C) oscillator in which the C comprises a variable capacitance transducer, one electrode of which is a small stiff pressure responsive diaphragm. The oscillator is isolated from a transmitting tank circuit by a buffer circuit and all electric components in the implanted unit except an input and an output coil are shielded by a metal housing.

  4. Resonant Inductive Power Transfer for Noncontact Launcher-Missile Interface

    DTIC Science & Technology

    2016-08-01

    implementation of a wireless power transfer system based on the concept of non-radiating inductive coupling. 14. SUBJECT TERMS Resonant Inductive Coupling... Wireless Power Transfer 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY...2 In contrast to the ideal transformer, wireless inductive power transfer assumes that the coils are no longer physically connected by an iron core

  5. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  6. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  7. Inductive High Power Transfer Technologies for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Tonchev, Anton T.

    2014-03-01

    Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.

  8. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  9. Development of a Low Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.

  10. Functional Dependence for Calculation of Additional Real-Power Losses in a Double-Wound Supply Transformer Caused by Unbalanced Active Inductive Load in a Star Connection with an Insulated Neutral

    ERIC Educational Resources Information Center

    Kostinskiy, Sergey S.; Troitskiy, Anatoly I.

    2016-01-01

    This article deals with the problem of calculating the additional real-power losses in double-wound supply transformers with voltage class 6 (10)/0,4 kV, caused by unbalanced active inductive load connected in a star connection with an insulated neutral. When solving the problem, authors used the theory of electric circuits, method of balanced…

  11. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  12. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  13. Modeling of power control schemes in induction cooking devices

    NASA Astrophysics Data System (ADS)

    Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone

    2005-06-01

    In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.

  14. An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications

    PubMed Central

    Lee, Seung Bae; Lee, Hyung-Min; Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam

    2014-01-01

    We present an inductively powered 32-channel wireless integrated neural recording (WINeR) system-on-a-chip (SoC) to be ultimately used for one or more small freely behaving animals. The inductive powering is intended to relieve the animals from carrying bulky batteries used in other wireless systems, and enables long recording sessions. The WINeR system uses time-division multiplexing along with a novel power scheduling method that reduces the current in unused low-noise amplifiers (LNAs) to cut the total SoC power consumption. In addition, an on-chip high-efficiency active rectifier with optimized coils help improve the overall system power efficiency, which is controlled in a closed loop to supply stable power to the WINeR regardless of the coil displacements. The WINeR SoC has been implemented in a 0.5-µm standard complementary metal–oxide semiconductor process, measuring 4.9 × 3.3 mm2 and consuming 5.85 mW at ± 1.5 V when 12 out of 32 LNAs are active at any time by power scheduling. Measured input-referred noise for the entire system, including the receiver located at 1.2 m, is 4.95 µVrms in the 1 Hz~10 kHz range when the system is inductively powered with 7-cm separation between aligned coils. PMID:23850753

  15. Position-insensitive long range inductive power transfer

    NASA Astrophysics Data System (ADS)

    Kwan, Christopher H.; Lawson, James; Yates, David C.; Mitcheson, Paul D.

    2014-11-01

    This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors.

  16. A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry

    PubMed Central

    Liu, Dake; Li, Min

    2017-01-01

    When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier) are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR) compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10−7, even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling. PMID:28767090

  17. A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry.

    PubMed

    Gong, Chen; Liu, Dake; Miao, Zhidong; Li, Min

    2017-08-02

    When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier) are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR) compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10 - 7 , even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling.

  18. Effect of different methods of pulse width modulation on power losses in an induction motor

    NASA Astrophysics Data System (ADS)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  19. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam

    2011-07-14

    Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for 13.56 MHz carrier frequency and 12 cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

  20. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  1. Design of a low parasitic inductance SiC power module with double-sided cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fei; Liang, Zhenxian; Wang, Fei

    In this paper, a low-parasitic inductance SiC power module with double-sided cooling is designed and compared with a baseline double-sided cooled module. With the unique 3D layout utilizing vertical interconnection, the power loop inductance is effectively reduced without sacrificing the thermal performance. Both simulations and experiments are carried out to validate the design. Q3D simulation results show a power loop inductance of 1.63 nH, verified by the experiment, indicating more than 60% reduction of power loop inductance compared with the baseline module. With 0Ω external gate resistance turn-off at 600V, the voltage overshoot is less than 9% of the busmore » voltage at a load of 44.6A.« less

  2. Power Quality Improvement in Induction Furnace by Harmonic Reduction Using Dynamic Voltage Restorer

    NASA Astrophysics Data System (ADS)

    Saggu, Tejinder Singh; Singh, Lakhwinder

    2016-06-01

    Induction furnaces are used in wide quantity under different capacities for annual production of around 25 million tons of iron and steel in India. It plays a vital role in various manufacturing processes around the world for melting different types of metal scraps i. e. Copper, Cast Iron, Aluminium, Steel, Brass, Bronze, Silicon, Gold, Silver etc. which are further used in many other industrial applications. The induction furnace causes a huge disturbance to the utility and nearby consumers during its operation due to its non-linear characteristics. This is a serious phenomenon responsible for power quality degradation in the power system. This paper presents methodology to improve the power quality degradation caused by induction furnace using Dynamic Voltage Restorer (DVR) which is a type of custom power device. The real time data has been taken from an industry employing induction furnace for production of ingots from scrap material. The experimental readings are measured using power quality analyser equipment. The simulation of whole plant is done by analysing this same data and the simulation results are compared with actual onsite results. Then, solution methodology using DVR is presented which revealed that the implementation of DVR is an effective solution for voltage sag mitigation and harmonics improvement in induction furnace.

  3. Power supplies for dual-frequency induction melting of metals

    NASA Astrophysics Data System (ADS)

    Lusgin, V. I.; Koptyakov, A. S.; Petrov, A. U.; Zinovev, K. A.; Kamaev, D. A.

    2018-02-01

    The article discusses the benefits of multi frequency induction melting in the production of synthetic cast iron, structural (electric circuit) principles of dual frequency Power supplies of melting systems. The ways of electric power regulation of low frequency and high frequency components of the current in the inductor sections of furnace are demonstrated, namely power rescheduling at the metal melting stage, alloying stage and decarburizing of synthetic cast iron.

  4. Modeling of a Stacked Power Module for Parasitic Inductance Extraction

    DTIC Science & Technology

    2017-09-15

    issues of heat dissipation, reliability, and parasitic inductance. An improved packaging approach has been proposed to simultaneously address each of...and mechanical attachments. The power devices in the resulting module design are stacked between copper layers with an integrated heat sink. By...stacking devices, the module’s parasitic inductance should be reduced, with concurrent improvement of reliability and heat dissipation, in comparison to

  5. Power Supply for Variable Frequency Induction Heating Using MERS Soft-Switching High Frequency Inverter

    NASA Astrophysics Data System (ADS)

    Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi

    Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.

  6. The Design of the 4-Megawatt Induction Heating Power Supply at AEDC

    DTIC Science & Technology

    1976-04-01

    AEDC-TR-76-26 p ’ t . ~ F i , .~ r),’, • #, THE DESIGN OF THE 4-MEGAWATT INDUCTION HEATING POWER SUPPLY AT AEDC PROPULSION WIND TUNNEL...NUMBER ]2 GOVT ACCESSION NO. [ AEDC-TR-76-26 4. T I T L E ( ~ d 5ubll l le) THE DESIGN OF THE 4-MEGAWATT INDUCTION HEATING POWER SUPPLY AT AEDC 7...e m and the supply of e l e c t r i c a l power to the o s c i l l a t o r were des igned by J. B. Carson , ARO, Inc. Ashley Bock, who was r

  7. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    NASA Astrophysics Data System (ADS)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  8. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  9. Toward a fully integrated neurostimulator with inductive power recovery front-end.

    PubMed

    Mounaïm, Fayçal; Sawan, Mohamad

    2012-08-01

    In order to investigate new neurostimulation strategies for micturition recovery in spinal cord injured patients, custom implantable stimulators are required to carry-on chronic animal experiments. However, higher integration of the neurostimulator becomes increasingly necessary for miniaturization purposes, power consumption reduction, and for increasing the number of stimulation channels. As a first step towards total integration, we present in this paper the design of a highly-integrated neurostimulator that can be assembled on a 21-mm diameter printed circuit board. The prototype is based on three custom integrated circuits fabricated in High-Voltage (HV) CMOS technology, and a low-power small-scale commercially available FPGA. Using a step-down approach where the inductive voltage is left free up to 20 V, the inductive power and data recovery front-end is fully integrated. In particular, the front-end includes a bridge rectifier, a 20-V voltage limiter, an adjustable series regulator (5 to 12 V), a switched-capacitor step-down DC/DC converter (1:3, 1:2, or 2:3 ratio), as well as data recovery. Measurements show that the DC/DC converter achieves more than 86% power efficiency while providing around 3.9-V from a 12-V input at 1-mA load, 1:3 conversion ratio, and 50-kHz switching frequency. With such efficiency, the proposed step-down inductive power recovery topology is more advantageous than its conventional step-up counterpart. Experimental results confirm good overall functionality of the system.

  10. Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.

  11. Efficient Power Network Analysis with Modeling of Inductive Effects

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Yu, Wenjian; Hong, Xianlong; Cheng, Chung-Kuan

    In this paper, an efficient method is proposed to accurately analyze large-scale power/ground (P/G) networks, where inductive parasitics are modeled with the partial reluctance. The method is based on frequency-domain circuit analysis and the technique of vector fitting [14], and obtains the time-domain voltage response at given P/G nodes. The frequency-domain circuit equation including partial reluctances is derived, and then solved with the GMRES algorithm with rescaling, preconditioning and recycling techniques. With the merit of sparsified reluctance matrix and iterative solving techniques for the frequency-domain circuit equations, the proposed method is able to handle large-scale P/G networks with complete inductive modeling. Numerical results show that the proposed method is orders of magnitude faster than HSPICE, several times faster than INDUCTWISE [4], and capable of handling the inductive P/G structures with more than 100, 000 wire segments.

  12. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  13. Inductance effects in the high-power transmitter crowbar system

    NASA Technical Reports Server (NTRS)

    Daeges, J.; Bhanji, A.

    1987-01-01

    The effective protection of a klystron in a high-power transmitter requires the diversion of all stored energy in the protected circuit through an alternate low-impedance path, the crowbar, such that less than 1 joule of energy is dumped into the klystron during an internal arc. A scheme of adding a bypass inductor in the crowbar-protected circuit of the high-power transmitter was tested using computer simulations and actual measurements under a test load. Although this scheme has several benefits, including less power dissipation in the resistor, the tests show that the presence of inductance in the portion of the circuit to be protected severely hampers effective crowbar operation.

  14. An assessment of inductive coupling roadway powered vehicles

    NASA Technical Reports Server (NTRS)

    Leschly, K. O.; Feinberg, A.; Heft, R.; Warren, G.

    1980-01-01

    The technical concept underlying the roadway powered vehicle system is the combination of an electrical power source embedded in the roadway and a vehicle-mounted power pickup that is inductively coupled to the roadway power source. The feasibility of such a system, implemented on a large scale was investigated. Factors considered included current and potential transportation modes and requirements, economics, energy, technology, social and institutional issues. These factors interrelate in highly complex ways, and a firm understanding of each of them does not yet exist. The study therefore was structured to manipulate known data in equally complex ways to produce a schema of options and useful questions that can form a basis for further, harder research. A dialectical inquiry technique was used in which two adversary teams, mediated by a third-party team, debated each factor and its interrelationship with the whole of the known information on the topic.

  15. Low-Radiation Cellular Inductive Powering of Rodent Wireless Brain Interfaces: Methodology and Design Guide.

    PubMed

    Soltani, Nima; Aliroteh, Miaad S; Salam, M Tariqus; Perez Velazquez, Jose Luis; Genov, Roman

    2016-08-01

    This paper presents a general methodology of inductive power delivery in wireless chronic rodent electrophysiology applications. The focus is on such systems design considerations under the following key constraints: maximum power delivery under the allowable specific absorption rate (SAR), low cost and spatial scalability. The methodology includes inductive coil design considerations within a low-frequency ferrite-core-free power transfer link which includes a scalable coil-array power transmitter floor and a single-coil implanted or worn power receiver. A specific design example is presented that includes the concept of low-SAR cellular single-transmitter-coil powering through dynamic tracking of a magnet-less receiver spatial location. The transmitter coil instantaneous supply current is monitored using a small number of low-cost electronic components. A drop in its value indicates the proximity of the receiver due to the reflected impedance of the latter. Only the transmitter coil nearest to the receiver is activated. Operating at the low frequency of 1.5 MHz, the inductive powering floor delivers a maximum of 15.9 W below the IEEE C95 SAR limit, which is over three times greater than that in other recently reported designs. The power transfer efficiency of 39% and 13% at the nominal and maximum distances of 8 cm and 11 cm, respectively, is maintained.

  16. Comparative evaluation of power factor impovement techniques for squirrel cage induction motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spee, R.; Wallace, A.K.

    1992-04-01

    This paper describes the results obtained from a series of tests of relatively simple methods of improving the power factor of squirrel-cage induction motors. The methods, which are evaluated under controlled laboratory conditions for a 10-hp, high-efficiency motor, include terminal voltage reduction; terminal static capacitors; and a floating'' winding with static capacitors. The test results are compared with equivalent circuit model predictions that are then used to identify optimum conditions for each of the power factor improvement techniques compared with the basic induction motor. Finally, the relative economic value, and the implications of component failures, of the three methods aremore » discussed.« less

  17. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  18. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.

    PubMed

    Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas

    2016-08-04

    Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.

  19. Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim Coils for Small Animal Imaging

    PubMed Central

    HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.

    2010-01-01

    High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157

  20. Reactive power generation in high speed induction machines by continuously occurring space-transients

    NASA Astrophysics Data System (ADS)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  1. About the Power Generation Confirmation of the Induction Motor and the Influence on the Islanding Detection Device

    NASA Astrophysics Data System (ADS)

    Igarashi, Hironobu; Sato, Takashi; Miyamoto, Kazunori; Kurokawa, Kousuke

    The photovoltaic generation system must have protection device and islanding detection devices to connect with utility line of the electric power company. It is regulated in the technological requirement guideline and the electric equipment technology standard that the country provides. The islanding detection device detected purpose install for blackout due to the accident occurrence of the earth fault and the short-circuit in the utility line. When the islanding detection device detects the power blackout, it is necessary to stop the photovoltaic generation system immediately. If the photovoltaic generation system is not stopped immediately, electricity comes to charge the utility power line very at risk. We had already known that the islanding detection device can't detect the islanding phenomenon, if is there the induction motor in the loads. Authors decided to investigate the influence that the induction motors gave to the islanding detection device. The result was the load condition that the induction motors changed generator the voltage is restraining. Moreover, it was clarified that the time of the islanding was long compared with the load condition of not changing into the state of the generator. The value changes into the reactance of the induction motors according to the frequency change after the supply of electric power line stops. The frequency after the supply of electric power line stops changes for the unbalance the reactive power by the effect of the power rate constancy control with PLL of the power conditioner. However, the induction motors is also to the changing frequency, makes amends for the amount of reactive power, and the change in the frequency after the supply of electric power line stops as a result is controlled. When the frequency changed after the supply of electric power line stopped, it was clarified of the action on the direction where it made amends from the change of the constant for the amount of an invalid electric power, and

  2. A Sub-millimeter, Inductively Powered Neural Stimulator

    PubMed Central

    Freeman, Daniel K.; O'Brien, Jonathan M.; Kumar, Parshant; Daniels, Brian; Irion, Reed A.; Shraytah, Louis; Ingersoll, Brett K.; Magyar, Andrew P.; Czarnecki, Andrew; Wheeler, Jesse; Coppeta, Jonathan R.; Abban, Michael P.; Gatzke, Ronald; Fried, Shelley I.; Lee, Seung Woo; Duwel, Amy E.; Bernstein, Jonathan J.; Widge, Alik S.; Hernandez-Reynoso, Ana; Kanneganti, Aswini; Romero-Ortega, Mario I.; Cogan, Stuart F.

    2017-01-01

    Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3) is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS) to ~0.25–0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3–0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response. PMID:29230164

  3. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  4. Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants.

    PubMed

    Yeon, Pyungwoo; Mirbozorgi, S Abdollah; Lim, Jaemyung; Ghovanloo, Maysam

    2017-12-01

    This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm 2 data-Tx/power-Rx coil is implemented using insulated bonding wire with diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was and in the air and tissue environments, respectively.

  5. An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2011-01-01

    We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666

  6. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35-μm 4-metal 2-poly standard CMOS process in 2.1 mm2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μF capacitors up to ±2 V in 420 μs, achieving a high measured charging efficiency of 82%. PMID:24678284

  7. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-10-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35- μ m 4-metal 2-poly standard CMOS process in 2.1 mm 2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μ F capacitors up to ±2 V in 420 μ s, achieving a high measured charging efficiency of 82%.

  8. High-kinetic inductance additive manufactured superconducting microwave cavity

    DOE PAGES

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; ...

    2017-11-13

    We present that investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, “3D printing,” opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. Additionally, we find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature ismore » in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.« less

  9. High-kinetic inductance additive manufactured superconducting microwave cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas

    We present that investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, “3D printing,” opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. Additionally, we find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature ismore » in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.« less

  10. Wireless Inductive Power Device Suppresses Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  11. Low and High-Power Inductive Pulsed Plasma Thruster Development Testing at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Martin, Adam K.; Greve, Christine M.; Riley, Daniel P.

    2017-01-01

    of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been

  12. Induction heating using induction coils in series-parallel circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James

    A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.

  13. Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment.

    PubMed

    Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas

    2015-01-01

    Inductive powering for implanted medical devices is a commonly employed technique, that allows for implants to avoid more dangerous methods such as the use of transcutaneous wires or implanted batteries. However, wireless powering in this way also comes with a number of difficulties and conflicting requirements, which are often met by using designs based on compromise. In particular, one aspect common to most inductive power links is that they are driven with a fixed frequency, which may not be optimal depending on factors such as coupling and load. In this paper, a method is proposed in which an inductive power link is driven by a frequency that is maintained at an optimum value f(opt), to ensure that the link is in resonance. In order to maintain this resonance, a phase tracking technique is employed at the primary side of the link; this allows for compensation of changes in coil separation and load. The technique is shown to provide significant improvements in maintained secondary voltage and efficiency for a range of loads when the link is overcoupled.

  14. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  15. Evaluation of induction motor performance using an electronic power factor controller

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.

  16. Flywheel induction motor-generator for magnet power supply in small fusion device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatakeyma, S., E-mail: hatakeyama.shoichi@torus.nr.titech.ac.jp; Yoshino, F.; Tsutsui, H.

    2016-04-15

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10–100 ms).

  17. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  18. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    NASA Astrophysics Data System (ADS)

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  19. Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.

  20. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  1. Analysis of synchronous and induction generators used at hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  2. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  3. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  4. Power module assembly with reduced inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko

    A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly.more » The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.« less

  5. Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  6. The ETA-2 induction linac as a high average power FEL driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.

    1989-10-16

    The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less

  7. Induction generators for Wind Energy Conversion Systems. Part I: review of induction generator with squirrel cage rotor. Part II: the Double Output Induction Generator (DOIG). Progress report, July-December 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayadev, T.S.

    1976-02-01

    The application of induction generators in Wind Energy Conversion Systems (WECS) is described. The conventional induction generator, which is an induction machine with a squirrel cage rotor, had been used in large wind power plants in Europe, but has not caught much attention until now by designers of large systems in this country. The induction generator with a squirrel cage rotor is described and useful design techniques to build induction generators for wind energy application are outlined. The Double Output Induction Generator (DOIG) - so called because power is fed into the grid from the stator, as well as themore » rotor is described. It is a wound rotor induction machine with power electronics to convert rotor slip frequency power to that of line frequency.« less

  8. Power factor improvement in three-phase networks with unbalanced inductive loads using the Roederstein ESTAmat RPR power factor controller

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.

    2018-01-01

    The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).

  9. DC switching regulated power supply for driving an inductive load

    DOEpatents

    Dyer, George R.

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  10. High-kinetic inductance additive manufactured superconducting microwave cavity

    NASA Astrophysics Data System (ADS)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  11. Optimal wireless receiver structure for omnidirectional inductive power transmission to biomedical implants.

    PubMed

    Gougheri, Hesam Sadeghi; Kiani, Mehdi

    2016-08-01

    In order to achieve omnidirectional inductive power transmission to biomedical implants, the use of several orthogonal coils in the receiver side (Rx) has been proposed in the past. In this paper, the optimal Rx structure for connecting three orthogonal Rx coils and the power management is found to achieve the maximum power delivered to the load (PDL) in the presence of any Rx coil tilting. Unlike previous works, in which a separate power management has been used for each coil to deliver power to the load, different resonant Rx structures for connecting three Rx coils to a single power management are studied. In simulations, connecting three Rx coils with the diameters of 3 mm, 3.3 mm, and 3.6 mm in series and resonating them with a single capacitor at the operation frequency of 100 MHz led to the maximum PDL for large loads when the implant was tilted for 45o. This optimal Rx structure achieves higher PDL in worst-case scenarios as well as reduces the number of power managements to only one.

  12. Control of electromagnetic stirring by power focusing in large induction crucible furnaces

    NASA Astrophysics Data System (ADS)

    Frizen, V. E.; Sarapulov, F. N.

    2011-12-01

    An approach is proposed for the calculation of the operating conditions of an induction crucible furnace at the final stage of melting with the power focused in various regions of melted metal. The calculation is performed using a model based on the method of detailed magnetic equivalent circuits. The combination of the furnace and a thyristor frequency converter is taken into account in modeling.

  13. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  14. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  15. Inductive sensor performance in partial discharges and noise separation by means of spectral power ratios.

    PubMed

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-02-19

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  16. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    PubMed Central

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-01-01

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674

  17. DC switching regulated power supply for driving an inductive load

    DOEpatents

    Dyer, G.R.

    1983-11-29

    A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.

  18. Solar fed DC-DC single ended primary inductance converter for low power applications

    NASA Astrophysics Data System (ADS)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  19. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    PubMed

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%.

  20. Coupling and power transfer efficiency enhancement of modular and array of planar coils using in-plane ring-shaped inner ferrites for inductive heating applications

    NASA Astrophysics Data System (ADS)

    Kilic, V. T.; Unal, E.; Demir, H. V.

    2017-07-01

    We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.

  1. A study on geometry effect of transmission coil for micro size magnetic induction coil

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  2. 50 MHz-10 GHz low-power resistive feedback current-reuse mixer with inductive peaking for cognitive radio receiver.

    PubMed

    Vitee, Nandini; Ramiah, Harikrishnan; Chong, Wei-Keat; Tan, Gim-Heng; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.

  3. Induction launcher design considerations

    NASA Technical Reports Server (NTRS)

    Driga, M. D.; Weldon, W. F.

    1989-01-01

    New concepts in the design of induction accelerators and their power supplies for space and military applications are discussed. Particular attention is given to a piecewise-rising-frequency power supply in which each elementary generator (normal compulsator or rising frequency generator) has a different base frequency. A preliminary design of a coaxial induction accelerator for a hypersonic real gas facility is discussed to illustrate the concepts described.

  4. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  5. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  6. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  7. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  8. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    PubMed

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.

  9. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook

    Correlations between the external discharge parameters (the driving frequency ω and the chamber dimension R) and plasma characteristics (the skin depth δ and the electron-neutral collision frequency ν{sub m}) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when δ≈0.38R for the dischargemore » condition at which ν{sub m}/ω≪1, while it occurs when δ≈√(2)√(ω/ν{sub m})R for the discharge condition at which ν{sub m}/ω≫1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.« less

  10. 50 CFR 453.06 - Additional Committee powers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS ENDANGERED SPECIES EXEMPTION PROCESS ENDANGERED SPECIES COMMITTEE § 453.06 Additional Committee powers. (a) Secure information. Subject...

  11. 50 CFR 453.06 - Additional Committee powers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS ENDANGERED SPECIES EXEMPTION PROCESS ENDANGERED SPECIES COMMITTEE § 453.06 Additional Committee powers. (a) Secure information. Subject...

  12. 50 CFR 453.06 - Additional Committee powers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS ENDANGERED SPECIES EXEMPTION PROCESS ENDANGERED SPECIES COMMITTEE § 453.06 Additional Committee powers. (a) Secure information. Subject...

  13. 50 CFR 453.06 - Additional Committee powers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS ENDANGERED SPECIES EXEMPTION PROCESS ENDANGERED SPECIES COMMITTEE § 453.06 Additional Committee powers. (a) Secure information. Subject...

  14. 50 CFR 453.06 - Additional Committee powers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS ENDANGERED SPECIES EXEMPTION PROCESS ENDANGERED SPECIES COMMITTEE § 453.06 Additional Committee powers. (a) Secure information. Subject...

  15. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  16. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  17. Control of power to an inductively heated part

    DOEpatents

    Adkins, Douglas R.; Frost, Charles A.; Kahle, Philip M.; Kelley, J. Bruce; Stanton, Suzanne L.

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  18. Control of power to an inductively heated part

    DOEpatents

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  19. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer

    PubMed Central

    Miao, Zhidong; Liu, Dake

    2017-01-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power. PMID:28763011

  20. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-08-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.

  1. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  2. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  3. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  4. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  5. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  6. The Study of Residual Voltage of Induction Motor and the Influence of Various Parameters on the Residual Voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Shuping; Zhao, Chen; Tan, Weipu

    2017-05-01

    The majority important load of industrial area is mainly composed of induction motor, it is more common that induction motor becomes sluggishness and even tripping due to the lose of power supply or other malfunction in the practical work. In this paper, space vector method is used to establish a reduced order model of induction motor, and then study the changes of motor electromagnetic after losing electricity. Based on motion equations of the rotor and magnetic flux conservation principle, it uses mathematical methods to deduce the expression of rotor current, rotor flux, the stator flux and the residual voltage of stator side. In addition, relying on thermal power plants, it uses the actual data of power plants, takes DIgsilent software to simulate the residual voltage of motor after losing electricity. analyses the influence on the residual voltage with the changes of the moment of inertia, load ratio, initial size of slip and the load characteristic of induction motor. By analysis of these, it has a more detailed understanding about the changes of residual voltage in practical application, in additional, it is more beneficial to put into standby power supply safely and effectively, moreover, reduce the influence of the input process to the whole system.

  7. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  8. A variable-speed, constant-frequency wind power generation scheme using a slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.

    This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.

  9. Computational models of an inductive power transfer system for electric vehicle battery charge

    NASA Astrophysics Data System (ADS)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  10. An inductively powered telemetry system for temperature, EKG, and activity monitoring

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Lund, G. F.; Williams, B. A.

    1978-01-01

    An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.

  11. An inductively powered telemetry system for temperature, EKG, and activity monitoring

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Lund, G. F.; Williams, B. A.

    1978-01-01

    An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, has recently been designed with the novel feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microwatt of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.

  12. Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acids.

    PubMed

    Zhu, Cui Xia; Hong, Feng

    2010-01-01

    In order to improve yields and to reduce the cost of oxalate decarboxylase (OxDC, EC 4.1.1.2), the induction of OxDC in the white-rot fungus Trametes versicolor was studied in this work. OxDC was induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture media. The results showed that all the acids could enhance OxDC expression. The activity of the acid-induced OxDC rose continuously. All of the OxDC volumetric activities induced by the inorganic acids were higher than 20.0 U/L and were two times higher than that obtained with oxalic acid. OxDC productivity was around 4.0 U*L(-1)*day(-1). The highest specific activity against total protein was 3.2 U/mg protein at day 8 after induction of sulfuric acid, and the specific activity against mycelial dry weight was 10.6 U/g at day 9 after induction of hydrochloric acid. The growth of mycelia was inhibited slightly when the pH values in culture media was around 2.5-3.0, while the growth was inhibited heavily when the pH was lower than 2.5.

  13. Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron

    NASA Astrophysics Data System (ADS)

    Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.

    2015-12-01

    The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.

  14. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system.

    PubMed

    Abiri, Parinaz; Abiri, Ahmad; Packard, René R Sevag; Ding, Yichen; Yousefi, Alireza; Ma, Jianguo; Bersohn, Malcolm; Nguyen, Kim-Lien; Markovic, Dejan; Moloudi, Shervin; Hsiai, Tzung K

    2017-07-21

    Pacemakers have existed for decades as a means to restore cardiac electrical rhythms. However, lead-related complications have remained a clinical challenge. While market-released leadless devices have addressed some of the issues, their pacer-integrated batteries cause new health risks and functional limitations. Inductive power transfer enables wireless powering of bioelectronic devices; however, Specific Absorption Rate and size limitations reduce power efficiency for biomedical applications. We designed a remote-controlled system in which power requirements were significantly reduced via intermittent power transfer to control stimulation intervals. In parallel, the cardiac component was miniaturized to facilitate intravascular deployment into the anterior cardiac vein. Given size constraints, efficiency was optimal via a circular receiver coil wrapped into a half-cylinder with a meandering tail. The pacemaker was epicardially tested in a euthanized pig at 60 beats per minute, 2 V amplitude, and 1 ms pulse width, restoring mean arterial pressure from 0 to 37 mmHg. Power consumption was 1 mW at a range of > 3 cm with no misalignment and at 2 cm with 45° displacement misalignment, 45° x-axis angular misalignment, or 45° y-axis angular misalignment. Thus, we demonstrated a remote-controlled miniaturized pacing system with low power consumption, thereby providing a basis for the next generation of wireless implantable devices.

  15. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  16. Flexible heating head for induction heating

    NASA Astrophysics Data System (ADS)

    Fox, Robert L.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris

    1993-11-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  17. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    PubMed

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Low-inductance bus lines

    NASA Technical Reports Server (NTRS)

    Kernick, A.

    1977-01-01

    Laminated bus strips and bifilar litz cable connectors for high-power rectifiers, thrisistors, and transistors provide low inductance and eliminate electromagnetic interference in high-power circuits. These techniques offer significant cost advantages because of ease of assembly and consistent high quality of product. Effectiveness makes general usage in static power conversion likely.

  19. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  20. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; Akers, Ronald R.

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those createdmore » using a resistive heated nozzle.« less

  1. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    PubMed

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  2. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  3. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-11-16

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.

  4. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions. PMID:25382898

  5. Modeling power flow in the induction cavity with a two dimensional circuit simulation

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Zou, Wenkang; Gong, Boyi; Jiang, Jihao; Chen, Lin; Wang, Meng; Xie, Weiping

    2017-02-01

    We have proposed a two dimensional (2D) circuit model of induction cavity. The oil elbow and azimuthal transmission line are modeled with one dimensional transmission line elements, while 2D transmission line elements are employed to represent the regions inward the azimuthal transmission line. The voltage waveforms obtained by 2D circuit simulation and transient electromagnetic simulation are compared, which shows satisfactory agreement. The influence of impedance mismatch on the power flow condition in the induction cavity is investigated with this 2D circuit model. The simulation results indicate that the peak value of load voltage approaches the maximum if the azimuthal transmission line roughly matches the pulse forming section. The amplitude of output transmission line voltage is strongly influenced by its impedance, but the peak value of load voltage is insensitive to the actual output transmission line impedance. When the load impedance raises, the voltage across the dummy load increases, and the pulse duration at the oil elbow inlet and insulator stack regions also slightly increase.

  6. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-10-01

    Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.

  7. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    prevent heating of the base of the chamber during use. A sapphire cylinder protects the coil against slag generated during an experiment. The induction coil is energized by a 6-kW water-cooled power supply operating at a frequency of 400 kHz. The induction coil is part of a parallel-tuned circuit, the tuning of which is used to adjust the coupling of power to the specimen. The chamber is mounted on a test stand along with pumps, valves, and plumbing for transferring pressurized gas into and out of the chamber. In addition to multiple video cameras aimed through the windows encircling the chamber, the chamber is instrumented with gauges for monitoring the progress of an experiment. One of the gauges is a dual-frequency infrared temperature transducer aimed at the specimen through one window. Chamber operation is achieved via a console that contains a computer running apparatus-specific software, a video recorder, and real-time video monitors. For safety, a blast wall separates the console from the test stand.

  8. Induction heating coupler

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Copeland, Carl E. (Inventor); Swaim, Robert J. (Inventor); Coultrip, Robert H. (Inventor); Johnston, David F. (Inventor); Phillips, W. Morris (Inventor); Johnson, Samuel D. (Inventor); Dinkins, James R. (Inventor); Buckley, John D. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece.

  9. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Ibrahim, Ahmed; Kiani, Mehdi

    2016-12-01

    Power transmission efficiency (PTE) has been the key parameter for wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. It has been suggested that for mm-sized implants increasing the power carrier frequency (f p ) of the WPT link to hundreds of MHz improves PTE. However, increasing f p significantly reduces the maximum allowable power that can be transmitted under the specific absorption rate (SAR) constraints. This paper presents a new figure-of-merit (FoM) and a design methodology for optimal WPT to mm-sized implants via inductive coupling by striking a balance between PTE and maximum delivered power under SAR constraints (P L,SAR ). First, the optimal mm-sized receiver (Rx) coil geometry is identified for a wide range of f p to maximize the Rx coil quality factor (Q). Secondly, the optimal transmitter (Tx) coil geometry and f p are found to maximize the proposed FoM under a low-loss Rx matched-load condition. Finally, proper Tx coil and tissue spacing is identified based on FoM at the optimal f p . We demonstrate that f p in order of tens of MHz still offer higher P L,SAR and FoM, which is key in applications that demand high power such as optogenetics. An inductive link to power a 1 mm 3 implant was designed based on our FoM and verified through full-wave electromagnetic field simulations and measurements using de-embedding method. In our measurements, an Rx coil with 1 mm diameter, located 10 mm inside the tissue, achieved PTE and P L,SAR of 1.4% and 2.2 mW at f p of 20 MHz, respectively.

  10. A low power on-chip class-E power amplifier for remotely powered implantable sensor systems

    NASA Astrophysics Data System (ADS)

    Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine

    2015-06-01

    This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.

  11. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  12. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less

  13. Icing-Protection Requirements for Reciprocating-Engine Induction System

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Rollin, Vern G; Mulholland, Donald R

    1950-01-01

    Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.

  14. Induction Based on Circumscription

    NASA Astrophysics Data System (ADS)

    Saito, Haruka; Inoue, Katsumi

    We investigate induction from the viewpoint of nonmonotonic reasoning. Induction we consider in this paper is descriptive induction. Hypotheses from descriptive induction have the weak property that they only describe rules with respect to the observations and do not realize an inductive leap. In this paper, we define a new form of descriptive induction with circumscription and the idea of explanation and show two procedures for computing it. The new descriptive induction is called circumscriptive induction. By deciding the roles of predicates in circumscription, we can intentionally minimize models of a given inductive problem. By adopting the idea of explanation, we can distinguish between background knowledge and observations. Additionally, we consider the relationship between the way of choosing the roles of predicates in computing circumscription and the property of hypotheses obtained by circumscriptive induction. It is shown that hypotheses from circumscriptive induction reflect a difference between background knowledge and observations and do not realize an inductive leap. We also investigate revision of hypotheses which is as important as generation of hypotheses. In a process of hypothesis revision, a difference between previous induction and circumscriptive induction is clearly characterised.

  15. Near-Field Inductive-Coupling Link to Power a Three-Dimensional Millimeter-Size Antenna for Brain Implantable Medical Devices.

    PubMed

    Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin

    2018-01-01

    Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9  three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated   in the pig's head and   in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).

  16. Inductive tuners for microwave driven discharge lamps

    DOEpatents

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  17. Low inductance power electronics assembly

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  18. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  19. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  20. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  1. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  2. Efficient Radio Frequency Inductive Discharges in Near Atmospheric Pressure Using Immittance Conversion Topology

    NASA Astrophysics Data System (ADS)

    Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu

    A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.

  3. Theory-based Bayesian models of inductive learning and reasoning.

    PubMed

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  4. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject.

    PubMed

    Kiani, Mehdi; Kwon, Ki Yong; Zhang, Fei; Oweiss, Karim; Ghovanloo, Maysam

    2011-01-01

    This paper presents in vivo experimental results for a closed loop wireless power transmission system to implantable devices on an awake behaving animal subject. In this system, wireless power transmission takes place across an inductive link, controlled by a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (TRF7960) operating at 13.56 MHz. Induced voltage on the implantable secondary coil is rectified, digitized by a 10-bit analog to digital converter, and transmitted back to the primary via back telemetry. Transmitter (Tx) and receiver (Rx) circuitry were mounted on the back of an adult rat with a nominal distance of ~7 mm between their coils. Our experiments showed that the closed loop system was able to maintain the Rx supply voltage at the designated 3.8 V despite changes in the coils' relative distance and alignment due to animal movements. The Tx power consumption changed between 410 ~ 560 mW in order to deliver 27 mW to the receiver. The open loop system, on the other hand, showed undesired changes in the Rx supply voltage while the Tx power consumption was constant at 660 mW.

  5. The development and testing of a linear induction motor being fed from the source with limited electric power

    NASA Astrophysics Data System (ADS)

    Tiunov, V. V.

    2018-02-01

    The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.

  6. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  7. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    NASA Astrophysics Data System (ADS)

    Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2016-12-01

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  8. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less

  9. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  10. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End

    PubMed Central

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2015-01-01

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP). PMID:27069422

  11. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.

    PubMed

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2016-01-15

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).

  12. Flexible heating head for induction heating apparatus and method

    NASA Astrophysics Data System (ADS)

    Coultrip, Robert H.; Copeland, Carl E.; Fox, Robert L.; Johnson, Samuel D., Jr.; Phillips, W. Morris; Buckley, John D.

    1991-10-01

    An induction heating head includes: a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil; a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit; and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  13. Flexible heating head for induction heating apparatus and method

    NASA Astrophysics Data System (ADS)

    Fox, Robert L.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris

    1991-10-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  14. Coherent inductive communications link for biomedical applications

    NASA Technical Reports Server (NTRS)

    Hogrefe, Arthur F. (Inventor); Radford, Wade E. (Inventor)

    1985-01-01

    A two-way coherent inductive communications link between an external transceiver and an internal transceiver located in a biologically implanted programmable medical device. Digitally formatted command data and programming data is transmitted to the implanted medical device by frequency shift keying the inductive communications link. Internal transceiver is powered by the inductive field between internal and external transceivers. Digitally formatted data is transmitted to external transceiver by internal transceiver amplitude modulating inductive field. Immediate verification of the establishment of a reliable communications link is provided by determining existence of frequency lock and bit phase lock between internal and external transceivers.

  15. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

    PubMed

    Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

    2016-10-01

    AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry.

  16. Investigation of self-excited induction generators for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Butterfield, C.P.; Sallan, J.

    2000-02-28

    The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less

  17. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    NASA Astrophysics Data System (ADS)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  18. XRF inductive bead fusion and PLC based control system

    NASA Astrophysics Data System (ADS)

    Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi

    2009-03-01

    In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.

  19. Clinical and subclinical effects of power brushing following experimental induction of biofilm overgrowth in subjects representing a spectrum of periodontal disease.

    PubMed

    Aspiras, Marcelo B; Barros, Silvana P; Moss, Kevin L; Barrow, David A; Phillips, Sherrill T; Mendoza, Luis; de Jager, Marko; Ward, Marilyn; Offenbacher, Steven

    2013-12-01

    Investigate short-term effects of power brushing following experimental induction of biofilm overgrowth in periodontal disease states. Overall, 175 subjects representing each of five biofilm-gingival interface (BGI) periodontal groups were enrolled in a single-blind, randomized study. After stent-induced biofilm overgrowth for 21 days subjects received either a manual or a power toothbrush to use during a 4 weeks resolution phase. At baseline and during induction and resolution, standard clinical parameters were measured. Subclinical parameters included multikine analysis of 13 salivary biomarkers and 16s Human Oral Microbe Identification Microarray (HOMIM) probe analysis of subgingival plaque samples. All groups exhibited significantly greater reductions in bleeding on probing (BOP) (p = 0.002), gingival index (GI) (p = 0.0007), pocket depth (PD) (p = 0.04) and plaque index (p = 0.001) with power brushing compared to manual. When BGI groups were combined to form a shallow PD (PD ≤ 3 mm) and a deep PD group (PD > 4 mm) power brushing reduced BOP and GI in subjects with both pocket depths. Power brushing significantly reduced IL-1β levels at resolution while changes in bacterial levels showed non-significant trends between both brushing modalities. Short-term changes in select clinical parameters and subclinical salivary biomarkers may be useful in assessing efficacy of power brushing interventions in a spectrum of periodontal disease states. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.

    PubMed

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-07-21

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.

  1. Induction heating coupler and annealer

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor); Johnston, David F. (Inventor); Swaim, Robert J. (Inventor); Dinkins, James R. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having- two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardly beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to a magnetic flux passing between the two ends of the pole piece.

  2. Inductive discipline, parental expression of disappointed expectations, and moral identity in adolescence.

    PubMed

    Patrick, Renee B; Gibbs, John C

    2012-08-01

    Within the fields of socialization and moral development, the relationship of parenting to adolescents' sense of morality and self has been understudied. This study investigated the relationships between perceived parental disciplinary techniques and moral identity among early and middle adolescents. Participants included 93 (54% female) 5th, 8th and 10th graders, as well as their mothers. Students completed self-report measures concerning their mothers' disciplinary techniques and moral self-concept; mothers reported specifically on parental discipline frequency. The parental discipline measure was structured in terms of Hoffman's typology of induction, love withdrawal, and power assertion. Adolescents reported the frequency of their mothers' disciplinary techniques, as well as their perceptions (fairness or appropriateness evaluations, emotional reactions) concerning their mothers' most frequently used technique. Parental induction (orienting the transgressor to the plight of the victim) and expression of disappointed expectations were viewed as more appropriate and responded to with more positive emotion and guilt relative to other disciplinary techniques (e.g., power assertion). In addition, parental use of inductive discipline (including parental disappointment) during the adolescent years related to higher moral identity, defined in terms of the ascription of specifically moral (e.g., fair, kind) over non-moral (e.g., athletic, smart) qualities to the self. In contrast, love withdrawal and power assertion did not relate to moral identity. The findings suggest that parental expression of disappointed expectations, especially when perceived favorably, plays an important role in the formation of moral identity during the adolescent years.

  3. Preliminary results of Linear Induction Accelerator LIA-200

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-05-01

    Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.

  4. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  5. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Use of translabial three-dimensional power Doppler ultrasound for cervical assessment before labor induction.

    PubMed

    Esin, Sertac; Yirci, Bulent; Yalvac, Serdar; Kandemir, Omer

    2017-07-26

    To compare translabial three-dimensional (3D) power Doppler ultrasound with Bishop score and transvaginal ultrasound measurements for cervical assessment before induction of labor with dinoprostone or cervical ripening balloon. Translabial cervical volume and length, vascularization indices and transvaginal cervical length were measured. Results were compared among women who had vaginal delivery at 24 h or less and more than 24 h after the insertion of the dinoprostone vaginal insert or cervical ripening balloon and among women who had vaginal delivery and cesarean delivery for failure to go into labor or failure to progress. There was no correlation between the time to delivery after a ripening agent was applied and translabial cervical volume, translabial cervical length, vascularization index (VI), flow index (FI), vascularization flow index (VFI), transvaginal cervical length and Bishop scores. The ultrasonographic measurements were no different among women who had vaginal delivery at 24 h or less and more than 24 h and among women who had vaginal delivery and cesarean delivery for failure to go into labor or failure to progress. In this study, we failed to demonstrate the superiority of translabial 3D ultrasonography over Bishop score and transvaginal ultrasonography for predicting the success of induction of labor.

  7. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  8. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  9. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  10. From Inductive Reasoning to Proof

    ERIC Educational Resources Information Center

    Yopp, David A.

    2009-01-01

    Mathematical proof is an expression of deductive reasoning (drawing conclusions from previous assertions). However, it is often inductive reasoning (conclusions drawn on the basis of examples) that helps learners form their deductive arguments, or proof. In addition, not all inductive arguments generate more formal arguments. This article draws a…

  11. A robust low quiescent current power receiver for inductive power transmission in bio implants

    NASA Astrophysics Data System (ADS)

    Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin

    2017-05-01

    In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.

  12. Properties of inductive reasoning.

    PubMed

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  13. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    PubMed

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  14. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  15. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    PubMed Central

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  16. Modelling Of Chlorine Inductive Discharges

    NASA Astrophysics Data System (ADS)

    Chabert P.; Despiau-Pujo, E.

    2010-07-01

    III-V compounds such as GaAs, InP or GaN-based materials are increasingly important for their use in optoelectronic applications, especially in the telecommunications and light detection industries. Photonic devices including lasers, photodetectors or LEDs, require reliable etching processes characterized by high etch rate, profile control and low damage. Although many problems remain to be understood, inductively coupled discharges seem to be promising to etch such materials, using Cl2/Ar, Cl2/N2 and Cl2/H2 gas chemistries. Inductively coupled plasma (ICP) sources meet most of the requirements for efficient plasma processing such as high etch rates, high ion densities and low controllable ion energies. However, the presence of a negative ion population in the plasma alters the positive ion flux, reduces the electron density, changes the electron temperature, modifies the spatial structure of the discharge and can cause unstable operation. Several experimental studies and numerical simulation results have been published on inductively coupled Cl2/Ar plasmas but relatively few systematic comparisons of model predictions and experimental data have been reported in given reactor geometries under a wide range of op- erating conditions. Validation of numerical predictions is essential for chemically complex plasma processing and there is a need to benchmark the models with as many measurements as possible. In this paper, comparisons of 2D fluid simulations with experimental measurements of Ar/Cl2 plasmas in a low pressure ICP reactor are reported (Corr et al. 2008). The electron density, negative ion fraction and Cl atom density are investigated for various conditions of Ar/Cl2 ratio, gas pressure and applied RF power in H mode. Simulations show that the wall recombination coefficient of Cl atom (?) is a key parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for ? = 0

  17. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com; Academy of Scientific and Innovative Research

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gunmore » has been carried out in CST and TRAK codes.« less

  18. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  19. Lithium Dinitramide as an Additive in Lithium Power Cells

    NASA Technical Reports Server (NTRS)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  20. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  1. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  2. The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu

    2015-10-15

    In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less

  3. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  4. Induction Curing of Thiol-acrylate and Thiolene Composite Systems

    PubMed Central

    Ye, Sheng; Cramer, Neil B.; Stevens, Blake E.; Sani, Robert L.; Bowman, Christopher N.

    2011-01-01

    Induction curing is demonstrated as a novel type of in situ radiation curing that maintains most of the advantages of photocuring while eliminating the restriction of light accessibility. Induction curing is utilized to polymerize opaque composites comprised of thiol-acrylate and thiol-ene resins, nanoscale magnetic particles, and carbon nanotubes. Nanoscale magnetic particles are dispersed in the resin and upon exposure to the magnetic field, these particles lead to induction heating that rapidly initiates the polymerization. Heat transfer profiles and reaction kinetics of the samples are modeled during the reactions with varying induction heater power, species concentration, species type and sample thickness, and the model is compared with the experimental results. Thiol-ene polymerizations achieved full conversion between 1.5 minutes and 1 hour, depending on the field intensity and the composition, with the maximum reaction temperature decreasing from 146 – 87 °C when the induction heater power was decreased from 8 – 3 kW. The polymerization reactions of the thiol-acrylate system were demonstrated to achieve full conversion between 0.6 and 30 minutes with maximum temperatures from 139 to 86 °C. The experimental behavior was characterized and the temperature profile modeled for the thiol-acrylate composite comprised of sub100nm nickel particles and induction heater power in the range of 32 to 20 kW. A 9°C average deviation was observed between the modeling and experimental results for the maximum temperature rise. The model also was utilized to predict reaction temperatures and kinetics for systems with varying thermal initiator concentration, initiator half-life, monomer molecular weight and temperature gradients in samples with varying thickness, thereby demonstrating that induction curing represents a designable and tunable polymerization method. Finally, induction curing was utilized to cure thiol-acrylate systems containing carbon nanotubes where 1 wt

  5. Cl 2-based dry etching of the AlGaInN system in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cho, Hyun; Vartuli, C. B.; Abernathy, C. R.; Donovan, S. M.; Pearton, S. J.; Shul, R. J.; Han, J.

    1998-12-01

    Cl 2-Based inductively coupled plasmas with low additional d.c. self-biases (-100 V) produce convenient etch rates (500-1500 Å·min -1) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas (Ar, N 2, H 2), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl 2 in the discharge for all three mixtures and to have an increase (decrease) in etch rate with source power (pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

  6. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  7. Inductive storage for quasi-steady MPD thrusters

    NASA Technical Reports Server (NTRS)

    Clark, K. E.

    1978-01-01

    Experiments in which a quasi-steady MPD thruster is driven by a large inductor demonstrate the feasibility of using inductive energy storage to couple an intermittent high power plasma thruster to a lower power steady state supply, such as a thermionic converter. Switching between inductor charging and MPD thrusting phases of the current cycle occurs smoothly, with the voltage spike generated during switching sufficient to initiate the arc discharge in the thruster without an auxiliary starting circuit. Further, the current waveforms delivered by the inductor are of a shape suitable for the quasi-steady thrusting process, and they agree with analytical estimates, indicating that the interaction between the thruster impedance and the inductive source is dynamically stable.

  8. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  9. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  10. A model of annular linear induction pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momozaki, Yoichi

    2016-10-27

    The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply.  From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.

  11. Helping School Leaders Help New Teachers: A Tool for Transforming School-Based Induction

    ERIC Educational Resources Information Center

    Birkeland, Sarah; Feiman-Nemser, Sharon

    2012-01-01

    Ample research demonstrates the power of comprehensive induction to develop and retain new teachers. Education scholars generally agree on what powerful systems of induction include, yet few tools exist for guiding schools in creating such systems. Drawing on theory and practice, we have created such a tool. This article introduces the "Continuum…

  12. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  13. Induction as Knowledge Integration

    NASA Technical Reports Server (NTRS)

    Smith, Benjamin D.; Rosenbloom, Paul S.

    1996-01-01

    Two key issues for induction algorithms are the accuracy of the learned hypothesis and the computational resources consumed in inducing that hypothesis. One of the most promising ways to improve performance along both dimensions is to make use of additional knowledge. Multi-strategy learning algorithms tackle this problem by employing several strategies for handling different kinds of knowledge in different ways. However, integrating knowledge into an induction algorithm can be difficult when the new knowledge differs significantly from the knowledge the algorithm already uses. In many cases the algorithm must be rewritten. This paper presents Knowledge Integration framework for Induction (KII), a KII, that provides a uniform mechanism for integrating knowledge into induction. In theory, arbitrary knowledge can be integrated with this mechanism, but in practice the knowledge representation language determines both the knowledge that can be integrated, and the costs of integration and induction. By instantiating KII with various set representations, algorithms can be generated at different trade-off points along these dimensions. One instantiation of KII, called RS-KII, is presented that can implement hybrid induction algorithms, depending on which knowledge it utilizes. RS-KII is demonstrated to implement AQ-11, as well as a hybrid algorithm that utilizes a domain theory and noisy examples. Other algorithms are also possible.

  14. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    PubMed

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  15. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    PubMed Central

    Sathiyanarayanan, J. S.; Senthil Kumar, A.

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  16. A technical note about Phidel: a new software for evaluating magnetic induction field generated by power lines.

    PubMed

    Comelli, M; Benes, M; Bampo, A; Villalta, R

    2007-01-01

    The Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG, Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency's requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Phidel, an innovative software, tackles and works out all the above-mentioned problems. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in the GIS and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 muT bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003.

  17. Demonstration of Inductive Flux Saving by Transient CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2010-11-01

    Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  18. Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attridge, Paul; Bajekal, Sanjay; Klecka, Michael

    A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situmore » prognostics and diagnostics.« less

  19. Is Parent Disciplinary Behavior Enduring or Situational? A Multilevel Modeling Investigation of Individual and Contextual Influences on Power Assertive and Inductive Reasoning Behaviors

    ERIC Educational Resources Information Center

    Critchley, Christine R.; Sanson, Ann V.

    2006-01-01

    This research examined individual difference and contextual effects on the disciplinary behavior of a representative sample of 296 parents. Both the use of power assertion and inductive reasoning were found to be higher when the child's behavior violated a moral compared to a conventional principle, and in response to deliberate versus accidental…

  20. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  1. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  2. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  3. Pure Material Vapor Source by Induction Heating Evaporator for an Electron Cyclotron Resonance Ion Source

    NASA Astrophysics Data System (ADS)

    Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.

    2008-11-01

    Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.

  4. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  5. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    PubMed

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  6. Energy sweep compensation of induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J

    1990-09-12

    The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less

  7. Rotary transformer design with fixed magnetizing and/or leakage inductances

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; King, R. J.; Shamseddin, H.

    1985-01-01

    A design algorithm is considered for transformers that must transfer electric power across a rotating interface. Among other features, this procedure allows the designer to minimize either weight or losses for either a fixed magnetizing inductance or a fixed leakage inductance. Numerical results are included to indicate the design trade-offs between various parameters.

  8. Maximizing MST's inductive capability with a Bp programmable power supply

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.; Holly, D. J.; Jacobson, C. M.; McCollam, K. J.; Morin, J. C.; Sarff, J. S.; Squitieri, A.

    2016-10-01

    A major goal of the MST program is the advancement of inductive control for the development of both the RFP's fusion potential and, synergistically, the predictive capability of fusion science. This entails programmable power supplies (PPS's) for the Bt and Bp circuits. A Bt PPS is already in place, allowing advanced RFP operation and the production of tokamak plasmas, and a Bp PPS prototype is under construction. To explore some of the new capabilities to be provided by the Bp PPS, the existing Bt PPS has been temporarily connected to the Bp circuit. One key result is new-found access to very low Ip (20 kA) and very low Lundquist number, S (104). At this low S, simulation of RFP plasmas with the MHD code NIMROD is readily achievable, and work toward validation of extended MHD models using NIMROD is underway with direct comparisons to these MST plasmas. The full Bp PPS will also provide higher Ip and S than presently possible, allowing MST to produce plasmas with S spanning as much as five orders of magnitude, a dramatic extension of MST's capability. In these initial tests, the PPS has also increased five-fold MST's Ip flattop duration, to about 100 ms. This, coupled with the recently demonstrated PPS ability to drive large-amplitude sinusoidal oscillations in Ip, will allow tests of extended-duration oscillating field current drive, the goal of which is ac sustainment of a quasi-dc plasma current. Work supported by US DOE.

  9. Structured statistical models of inductive reasoning.

    PubMed

    Kemp, Charles; Tenenbaum, Joshua B

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

  10. Energy Efficiency Model for Induction Furnace

    NASA Astrophysics Data System (ADS)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  11. Experimental analysis and simulation calculation of the inductances of loosely coupled transformer

    NASA Astrophysics Data System (ADS)

    Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo

    2017-11-01

    The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.

  12. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    PubMed Central

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  13. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Two-stage electrostatic precipitator using induction charging

    NASA Astrophysics Data System (ADS)

    Takashima, Kazunori; Kohno, Hiromu; Katatani, Atsushi; Kurita, Hirofumi; Mizuno, Akira

    2018-05-01

    An electrostatic precipitator (ESP) without using corona discharge was investigated herein. The ESP employed a two-stage configuration, consisting of an induction charging-based particle charger and a parallel plate type particle collector. By applying a high voltage of several kV, under which no corona discharge was generated in the charger, particles were charged by induction due to contact with charger electrodes. The amount of charge on the charged particles increased with the applied voltage and turbulent air flow in the charger. Performance of the ESP equipped with the induction charger was investigated using ambient air. The removal efficiency for particles ranging 0.3 µm to 5 µm in diameter increased with applied voltage and turbulence intensity of gas flow in the charger when the applied voltage was sufficiently low not to generate corona discharge. This suggests that induction charging can be used for electrostatic precipitation, which can reduce ozone generation and power consumption significantly.

  15. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    DOEpatents

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  16. 3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 4. Plan no. 10,548. Scale 1/4 inch to the foot, elevations, and one inch to the foot, sections and details. April 30, 1945, last revised 6/19/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  17. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    NASA Astrophysics Data System (ADS)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  18. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control.

    PubMed

    Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W

    2011-10-01

    Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.

  19. Analysis of Power Supply Heating Effect during High Temperature Experiments Based on the Electromagnetic Steel Teeming Technology

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng

    2017-04-01

    For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.

  20. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing. Each engine, with all icing protection systems operating, must— (a) Operate throughout its flight power...

  1. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing. Each engine, with all icing protection systems operating, must— (a) Operate throughout its flight power...

  2. Low resistance, low-inductance power connectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony

    An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less

  3. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission.

    PubMed

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-12-14

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  4. Fundamentals of electric power conversion. Volume 2, Energy-efficient polyphase AC induction motors, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, S.D.

    1992-12-01

    Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size fro the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from applications, marketing, motor planning,more » or managerial perspective.« less

  5. A low power, on demand electrothermal valve for wireless drug delivery applications

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Sheybani, Roya; Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    We present a low power, on demand Parylene MEMS electrothermal valve. A novel Ω-shaped thermal resistive element requires low power (~mW) and enables rapid valve opening (~ms). Using both finite element analysis and valve opening experiments, a robust resistive element design for improved valve opening performance in water was obtained. In addition, a thermistor, as an inrush current limiter, was added into the valve circuit to provide variable current ramping. Wireless activation of the valve using RF inductive power transfer was demonstrated. PMID:20024057

  6. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  7. Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Reid, Terry V.

    2016-01-01

    One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.

  8. 4. FLOOR PLAN AND SECTIONS, ADDITION TO POWER HOUSE. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FLOOR PLAN AND SECTIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. Also includes plot plan at 1 inch to 100 feet. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 3. Plan no. 10,548. Scale 1/4 inch and h inch to the foot. April 30, 1945, last revised 6/22/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  9. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  10. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  11. Phased Array Focusing for Acoustic Wireless Power Transfer.

    PubMed

    Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan

    2018-01-01

    Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.

  12. Online Monitoring of Induction Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through amore » limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.« less

  13. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana.

    PubMed

    Deguchi, Tomonori; Itoh, Mariko; Urawa, Hiroko; Matsumoto, Tomohiro; Nakayama, Sohei; Kawasaki, Takashi; Kitano, Takeshi; Oda, Shoji; Mitani, Hiroshi; Takahashi, Taku; Todo, Takeshi; Sato, Junichi; Okada, Kiyotaka; Hatta, Kohei; Yuba, Shunsuke; Kamei, Yasuhiro

    2009-12-01

    Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR-LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR-LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.

  14. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, Albert; Swift, Gregory W.

    1985-01-01

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  15. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, A.; Swift, G.W.

    1984-06-13

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  16. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  17. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    NASA Astrophysics Data System (ADS)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  18. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission

    PubMed Central

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-01-01

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666

  19. Evaluation of quasi-square wave inverter as a power source for induction motors

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.

    1977-01-01

    The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.

  20. Elective induction of labor: part 2.

    PubMed

    Crosby, Warren

    2008-12-01

    The elective induction of labor has become commonplace, and many are concerned that the practice introduces risks for the woman and the fetus that would not be incurred if labor had been allowed to begin spontaneously. This second paper of a two-part communication reviews the risks and benefits of the elective induction of labor, and concludes that the risks of the induction of labor are few when the patient is properly screened medically and appropriately informed. The principal worry is a doubled risk of Cesarean delivery among primigravidas (not multiparas) in whom labor is electively induced. The benefits of selecting the date of delivery are powerful incentives for busy working women. But the benefits are primarily social, and add to the convenience of both the patient and her doctor. The risks, however, are medical, and are not confined to the pregnancy at risk. Appropriately informed consent is the key to balance the risks and benefits.

  1. Rapid induction bonding of composites, plastics, and metals

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.

    1991-01-01

    The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.

  2. Hyperventilation and photic stimulation are useful additions to a placebo-based suggestive seizure induction protocol in patients with psychogenic nonepileptic seizures.

    PubMed

    Popkirov, Stoyan; Grönheit, Wenke; Wellmer, Jörg

    2015-05-01

    The early and definitive diagnosis of psychogenic nonepileptic seizures is a common challenge in epileptology practice. Suggestive seizure induction is a valuable tool to aid the differentiation between epileptic and psychogenic nonepileptic seizures, especially when long-term video-EEG monitoring is inconclusive or unavailable. In this retrospective analysis, we compared the diagnostic yield of a classical, placebo-based induction protocol with that of an extended protocol that includes hyperventilation and photic stimulation as means of suggestion while also implementing more open, standardized patient information. We investigated whether the diversification of suggestive seizure induction has an effect on diagnostic yield and whether it preempts the administration of placebo. Data from 52 patients with confirmed psychogenic nonepileptic seizures were analyzed. While suggestive seizure induction using only placebo-based suggestion provoked a typical event in 13 of 20 patients (65%), the extended protocol was positive in 27 of 34 cases (84%); this improvement was not significant (p=0.11). Noninvasive suggestion techniques accounted for 78% of inductions, avoiding placebo administration in a majority of patients. Still, placebo remains an important part of suggestive seizure induction, responsible for 22% (6 out of 27) of successful inductions using our extended protocol. Our study demonstrates that the diversification of suggestive seizure induction is feasible and beneficial for both patients and diagnosticians. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Scaling and Systems Considerations in Pulsed Inductive Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Performance scaling in pulsed inductive thrusters is discussed in the context of previous experimental studies and modeling results. Two processes, propellant ionization and acceleration, are interconnected where overall thruster performance and operation are concerned, but they are separated here to gain physical insight into each process and arrive at quantitative criteria that should be met to address or mitigate inherent inductive thruster difficulties. The effects of preionization in lowering the discharge energy requirements relative to a case where no preionization is employed, and in influencing the location of the initial current sheet, are described. The relevant performance scaling parameters for the acceleration stage are reviewed, emphasizing their physical importance and the numerical values required for efficient acceleration. The scaling parameters are then related to the design of the pulsed power train providing current to the acceleration stage. The impact of various choices in pulsed power train and circuit topology selection are reviewed, paying special attention to how these choices mitigate or exacerbate switching, lifetime, and power consumption issues.

  4. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  5. SCIMITAR: subject-carried implant monitoring inductive telemetric ambulatory reader for remote data acquisition from implanted orthopaedic prostheses.

    PubMed

    Hao, Shiying; Gorjon, Jose; Taylor, Stephen

    2014-03-01

    This work describes the functions of the external, portable part of a telemetry system for powering and interrogating implantable electrical devices built within orthopaedic implants for real-time data acquisition of strain, load, temperature, humidity and other relevant data (e.g. from inertial sensors). The system contains a battery powered inductive energiser and demodulator to remotely power the implant electronics and demodulate the signals transmitted from the implanted device. Due to the housing of the internal coil, sufficient inductive coupling is obtained between the external and internal tuned circuits to enable simultaneous power and data transmission over the same inductive link. The actual performance of this system when used with one specific implant was studied, and some correspondence made to the relevant theory. Performance factors relating to both power efficiency and data reconstruction were identified. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    PubMed

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  7. Induction of the mar operon by miscellaneous groceries.

    PubMed

    Rickard, A H; Lindsay, S; Lockwood, G B; Gilbert, P

    2004-01-01

    To investigate the potential of non-antibacterial consumer products to act as inducers of the multiple antibiotic resistance (mar) operon of Escherichia coli SPC105. Wells were cut into chemically defined agar medium (CDM) contained within Petri dishes. Molten agar slurries were prepared by mixing known quantities of 35 consumer products with molten CDM and these were pipetted into each well. Plates were overlaid with molten CDM (5 ml), containing 40 microg ml(-1) X-gal and approx. 1000 CFU ml(-1) of an overnight culture of E. coli SPC105 containing a chromosomal marOII::lacZ fusion. After incubation (37 degrees C, 24 h), plates were examined for zones of growth inhibition and the presence of a blue coloration, indicative of mar (marOII::lacZ) induction. Of the 35 products tested (nine herbs and spices, 19 food and drinks and seven household products), 24 (69%) of the items produced inhibitory zones and 22 (63%) of the items induced mar expression. Apple puree was inhibitory but did not induce marOII::lacZ. Mustard, chilli and garlic were shown to be powerful inducers of marOII::lacZ. Overall six products were shown to be powerful marOII::lacZ inducers. None of these made hygiene claims. In addition to induction by specific biocides and antibiotics, mar is induced by the exposure of bacteria to natural substances, many of which are common to a domiciliary setting. Concern that the overuse of antibacterials within consumer products might select for mar-mediated resistance is shortsighted and fails to recognize the ubiquity of inducers in our environment.

  8. Addition of Si-Containing Gases for Anisotropic Etching of III-V Materials in Chlorine-Based Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Gatilova, Lina; Bouchoule, Sophie; Patriarche, Gilles; Guilet, Stephane

    2011-08-01

    We discuss the possibility of obtaining high-aspect-ratio etching of InP materials in Cl2- and HBr-based inductively coupled plasmas (ICP) with the addition of Si-containing gases (SiH4 or SiCl4). A vertical and smooth etching profile is demonstrated in SiCl4/H2 plasma. The effect of adding of a small amount of SiH4 to a previously optimised Cl2/H2 chemistry is presented, and new SiH4/Cl2 and SiH4/HBr chemistries are proposed. Ex-situ energy-dispersive X-ray spectroscopy coupled to transmission electron microscopy (EDX-TEM) is used to analyze the composition of the thin passivation layer deposited on the etched sidewalls. We show that it consists of a Si-rich silicon oxide (Si/O˜1) in Cl2/H2/SiH4 chemistry, and is changed to nano-crystalline (nc-) Si in SiH4/Cl2 chemistry depending on the SiH4 percentage. Moreover, we show that deep anisotropic etching of InP independent of the electrode coverplate material can be obtained via a SiOx passivation mechanism with the addition of Si-containing gases.

  9. Induced electric fields in workers near low-frequency induction heating machines.

    PubMed

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2014-04-01

    Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. © 2013 Wiley Periodicals, Inc.

  10. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  11. Characterization of Inductive loop coupling in a Cyclotron Dee Structure

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling through a feed-line driven by an RF transmitter employing a triode or tetrode power tube. The transmitter's output network transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms. But the load-line is not a physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input. In addition, the transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of measuring the output impedance so that an additional compensating length of feed-line can be incorporated. But a wrong choice of overall feed-line length- even though correctly load-matched at the resonator's operating frequency- can result in a curious degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases substantially: a condition to be avoided!

  12. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  13. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  14. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  15. A solid-state controller for a wind-driven slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.; Leary, B. G.

    1984-08-01

    The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.

  16. Optimum Construction of Heating Coil for Domestic Induction Cooker

    NASA Astrophysics Data System (ADS)

    Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai

    2010-10-01

    The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.

  17. Push-pull switching power amplifier

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor)

    1980-01-01

    A true push-pull switching power amplifier is disclosed utilizing two dc-to-dc converters. Each converter is comprised of two inductances, one inductance in series with a DC source and the other inductor in series with the output load, and an electrical energy transferring device with storage capability, namely storage capacitance, with suitable switching means between the inductances to obtain DC level conversion, where the switching means allows bidirectional current (and power) flow, and the switching means of one dc-to-dc converter is driven by the complement of a square-wave switching signal for the other dc-to-dc converter for true push-pull operation. For reduction of current ripple, the inductances in each of the two converters may be coupled, and with proper design of the coupling, the ripple can be reduced to zero at either the input or the output, but preferably the output.

  18. Study of linear induction motor characteristics : the Mosebach model

    DOT National Transportation Integrated Search

    1976-05-31

    This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...

  19. Study of linear induction motor characteristics : the Oberretl model

    DOT National Transportation Integrated Search

    1975-05-30

    The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...

  20. Energy deposition into heavy gas plasma via pulsed inductive theta-pinch

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan Alan

    The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created. In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer. In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 mΩ and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J. In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.

  1. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  2. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  3. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.

    2006-07-15

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  4. Inductive reasoning.

    PubMed

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In a ceremony set beneath Space Shuttle Atlantis, veteran astronauts C. Michael Foale and Ellen Ochoa are inducted into the U.S. Astronaut Hall of Fame. Foale and Ochoa make up the 16th group of space shuttle astronauts to be inducted into the Hall of Fame, and their addition to the group brings the total number of inductees to 95. More than 20 legendary astronauts were on hand to welcome the inductees, including: Robert Cabana, Dan Brandenstein, Al Worden, Charlie Duke, Charles Bolden, Michael Coats, Robert Crippen, Rhea Seddon, and Fred Gregory.

  6. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  7. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  8. Three-phase inductive-coupled structures for contactless PHEV charging system

    NASA Astrophysics Data System (ADS)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  9. The Relationship between Mathematical Induction, Proposition Functions, and Implication Functions

    ERIC Educational Resources Information Center

    Andrew, Lane

    2010-01-01

    In this study, I explored the relationship between mathematical induction ability and proposition and implication functions through a mixed methods approach. Students from three universities (N = 78) and 6 classrooms completed a written assessment testing their conceptual and procedural capabilities with induction and functions. In addition, I…

  10. An analytical model for inductively coupled implantable biomedical devices with ferrite rods.

    PubMed

    Theilmann, P T; Asbeck, P M

    2009-02-01

    Using approximations applicable to near field coupled implants simplified expressions for the complex mutual inductance of coaxial aligned coils with and without a cylindrical ferrite rod are derived. Experimental results for ferrite rods of various sizes and permeabilities are presented to verify the accuracy of this expression. An equivalent circuit model for the inductive link between an implant and power coil is then presented and used to investigate how ferrite size, permeability and loss affect the power available to the implant device. Enhancements in coupling provided by high frequency, low permeability nickel zinc rods are compared with low frequency high permeability manganese zinc rods.

  11. Additive Manufactured Superconducting Cavities

    NASA Astrophysics Data System (ADS)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  12. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  13. Development of a high-power solid-state switch using static induction thyristors for a klystron modulator

    NASA Astrophysics Data System (ADS)

    Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro

    2015-01-01

    We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.

  14. Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.

    2010-01-01

    In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.

  15. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  16. Solar powered actuator with continuously variable auxiliary power control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.

  17. Fundamentals of electric power conversion. Volume 1, Operating characteristics and testing of AC induction motors, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, S.D.

    1992-12-01

    Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size from the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from an applications, marketing, motormore » planning, or managerial perspective.« less

  18. Method and device for determining bond separation strength using induction heating

    NASA Technical Reports Server (NTRS)

    Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)

    1994-01-01

    An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.

  19. PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin

    2018-03-01

    In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.

  20. Parametric measurements of the effect of in-duct orifice edge shape on its noise damping performance

    NASA Astrophysics Data System (ADS)

    Ji, Chenzhen; Zhao, Dan; Han, Nuomin; Li, Jing

    2016-12-01

    Acoustic liners perforated with thousands of millimeter-size orifices are widely used in aero-engines and gas turbine engines as an effective noise damper. In this work, experimental investigations of the acoustic damping effect of in-duct perforated orifices are performed on a cold-flow pipe. A mean flow (also known as bias flow) is applied and its flow rate is variable. Emphasis is placed on the effect of the orifice edge shape. For this, 16 in-duct orifices with different edge shapes and porosities are designed and manufactured by using 3D printing technology and conventional laser cutting technique. The damping effect of these in-duct orifices is characterized by using power absorption coefficient Δ and reflection coefficient χ from 100 to 1000 Hz. The performances of these orifices are found to be either improved or deteriorated, depending on (1) edge shape, (2) the ratio T/d of orifice thickness to its diameter, (3) the bias flow Mach number, (4) downstream pipe length Ld and (5) porosity η via varying either the number N or surface area Ao of the orifices. In addition, modifying orifice edge does not lead to an increase of power absorption at lower frequency (⩽ 700 Hz). However, as the frequency is increased, the orifice with square (S-type) edge is found to be associated with 10 percent more power absorption. It is interesting to find that T/d over the tested range (≤ 0.5) has little influence on its damping capacity. However, the mean bias flow Mach number Ma and porosity η are shown to play critical roles on determining the noise damping performance of these orifices. Maximum power absorption Δmax is found to occur at Ma ≈ 0.018, while the optimum porosity corresponding to Δmax is approximately 7 percent. The present parametric measurements shed light on the roles of orifice edge shape, porosity and mean flow on its noise damping capacity, and facilitate the design of effective perforated liners.

  1. Evaluation of linear induction motor characteristics : the Yamamura model

    DOT National Transportation Integrated Search

    1975-04-30

    The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...

  2. Mass sensitivity studies for an inductively driven railgun

    NASA Astrophysics Data System (ADS)

    Scanlon, J. J., III; Young, A. F.

    1991-01-01

    Those areas which result in substantial system mass reductions for an HPG (homopolar generator) driven EML (electromagnetic launcher) are identified. Sensitivity studies are performed by varying launch mass, peak acceleration, launcher efficiency, inductance gradient, injection velocity, barrel mass per unit length, fuel tankage and pump estimates, and component energy and power densities. Two major contributors to the system mass are the allowed number of shots per barrel versus the number required for the mission, and the barrel length. The effects of component performance parameters, such as friction coefficient, injection velocity, ablation coefficient, rail resistivity, armature voltage, peak acceleration, and inductance gradient on these two areas, are addressed.

  3. 22. DIABLO POWERHOUSE: COOLING WATER PUMPS (WESTINGHOUSE C.S. INDUCTION MOTORS), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DIABLO POWERHOUSE: COOLING WATER PUMPS (WESTINGHOUSE C.S. INDUCTION MOTORS), 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  4. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-03-14

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented.

  5. E-H heating mode transition in inductive discharges with different antenna sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: flower4507@hanyang.ac.kr; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas ofmore » 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.« less

  6. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  7. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application.more » With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.« less

  8. Association Between Low Trough Levels of Vedolizumab During Induction Therapy for Inflammatory Bowel Diseases and Need for Additional Doses Within 6 Months.

    PubMed

    Williet, Nicolas; Boschetti, Gilles; Fovet, Marion; Di Bernado, Thomas; Claudez, Pierre; Del Tedesco, Emilie; Jarlot, Camille; Rinaldi, Leslie; Berger, Anne; Phelip, Jean-Marc; Flourie, Bernard; Nancey, Stéphane; Paul, Stéphane; Roblin, Xavier

    2017-11-01

    We investigated whether serum trough levels of vedolizumab, a humanized monoclonal antibody against integrin α4β7, during the induction phase of treatment can determine whether patients will need additional doses (optimization of therapy) within the first 6 months. We conducted an observational study of 47 consecutive patients with Crohn's disease (CD; n = 31) or ulcerative colitis (UC; n = 16) who had not responded to 2 previous treatment regimens with antagonists of tumor necrosis factor and were starting therapy with vedolizumab at 2 hospitals in France, from June 2014 through April 2016. All patients were given a 300-mg infusion of vedolizumab at the start of the study, Week 2, Week 6, and then every 8 weeks; patients were also given corticosteroids during the first 4-6 weeks. Patients not in remission at Week 6 were given additional doses of vedolizumab at Week 10 and then every 4 weeks (extended therapy or optimization). Remission at Week 6 of treatment was defined as CD activity score below 150 points for patients with CD and a partial Mayo Clinic score of <3 points, without concomitant corticosteroids, for patients with UC. Blood samples were collected each week and serum levels of vedolizumab and antibodies against vedolizumab were measured using an enzyme-linked immunosorbent assay. Median trough levels of vedolizumab and interquartile ranges were compared using the nonparametric Mann-Whitney test. The primary objective was to determine whether trough levels of vedolizumab measured during the first 6 weeks of induction therapy associated with the need for extended treatment within the first 6 months. Based on response to therapy at Week 6, extended treatment was required for 30 of the 47 patients (23 patients with CD and 7 patients with UC). At Week 2, trough levels of vedolizumab for patients selected for extended treatment were 23.0 μg/mL (interquartile range, 14.0-37.0 μg/mL), compared with 42.5 μg/mL in patients who did not receive extended

  9. A Simulation Study on Optimal Design Parameters of 200V Class Induction Range using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Ohchi, Masashi; Furukawa, Tatsuya

    Induction heating has found a new feasibility in domestic appliances. Its application is known as an “induction range” or an “induction heating oven”. Conventional design schemes of them have depended on the experience and insight of designers. In the paper, the authors treat it as an electromagnetic device to investigate the mechanism of power dissipation using the Finite Element Method, where an impressed voltage supply is taken account of and the constant V/f condition is imposed for the constant impressed magnetic flux. Furthermore the authors will examine how to heat an aluminum pan and discuss the optimal frequency of a power supply.

  10. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE PAGES

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...

    2017-11-01

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  11. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  12. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  13. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  14. Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh

    2018-03-01

    The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.

  15. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    NASA Technical Reports Server (NTRS)

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to

  16. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials.

    PubMed

    Hills, Robert K; Castaigne, Sylvie; Appelbaum, Frederick R; Delaunay, Jacques; Petersdorf, Stephen; Othus, Megan; Estey, Elihu H; Dombret, Hervé; Chevret, Sylvie; Ifrah, Norbert; Cahn, Jean-Yves; Récher, Christian; Chilton, Lucy; Moorman, Anthony V; Burnett, Alan K

    2014-08-01

    Gemtuzumab ozogamicin was the first example of antibody-directed chemotherapy in cancer, and was developed for acute myeloid leukaemia. However, randomised trials in which it was combined with standard induction chemotherapy in adults have produced conflicting results. We did a meta-analysis of individual patient data to assess the efficacy of adding gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia. We searched PubMed for reports of randomised controlled trials published in any language up to May 1, 2013, that included an assessment of gemtuzumab ozogamicin given to adults (aged 15 years and older) in conjunction with the first course of intensive induction chemotherapy for acute myeloid leukaemia (excluding acute promyelocytic leukaemia) compared with chemotherapy alone. Published data were supplemented with additional data obtained by contacting individual trialists. The primary endpoint of interest was overall survival. We used standard meta-analytic techniques, with an assumption-free (or fixed-effect) method. We also did exploratory stratified analyses to investigate whether any baseline features predicted a greater or lesser benefit from gemtuzumab ozogamicin. We obtained data from five randomised controlled trials (3325 patients); all trials were centrally randomised and open label, with overall survival as the primary endpoint. The addition of gemtuzumab ozogamicin did not increase the proportion of patients achieving complete remission with or without complete peripheral count recovery (odds ratio [OR] 0·91, 95% CI 0·77-1·07; p=0·3). However, the addition of gemtuzumab ozogamicin significantly reduced the risk of relapse (OR 0·81, 0·73-0·90; p=0·0001), and improved overall survival at 5 years (OR 0·90, 0·82-0·98; p=0·01). At 6 years, the absolute survival benefit was especially apparent in patients with favourable cytogenetic characteristics (20·7%; OR 0·47, 0·31-0·73; p=0·0006), but was also

  17. Influence of Emotionally Charged Information on Category-Based Induction

    PubMed Central

    Zhu, Jennifer; Murphy, Gregory L.

    2013-01-01

    Categories help us make predictions, or inductions, about new objects. However, we cannot always be certain that a novel object belongs to the category we are using to make predictions. In such cases, people should use multiple categories to make inductions. Past research finds that people often use only the most likely category to make inductions, even if it is not certain. In two experiments, subjects read stories and answered questions about items whose categorization was uncertain. In Experiment 1, the less likely category was either emotionally neutral or dangerous (emotionally charged or likely to pose a threat). Subjects used multiple categories in induction when one of the categories was dangerous but not when they were all neutral. In Experiment 2, the most likely category was dangerous. Here, people used multiple categories, but there was also an effect of avoidance, in which people denied that dangerous categories were the most likely. The attention-grabbing power of dangerous categories may be balanced by a higher-level strategy to reject them. PMID:23372700

  18. Inductive electronegativity scale. Iterative calculation of inductive partial charges.

    PubMed

    Cherkasov, Artem

    2003-01-01

    A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.

  19. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  20. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  1. Method and graphs for the evaluation of air-induction systems

    NASA Technical Reports Server (NTRS)

    Brajnikoff, George B

    1953-01-01

    Graphs have been developed for rapid evaluation of air-induction systems from considerations of their aerodynamic-performance parameters in combination with power-plant characteristics. The graphs cover the range of supersonic Mach numbers to 3.0. Examples are presented for an air-induction system and engine combination of two Mach numbers and two altitudes in order to illustrate the method and application of the graphs. The examples show that jet-engine characteristics impose restrictions on the use of fixed inlets if the maximum net thrusts are to be realized at all flight conditions. (author)

  2. Modeling of induction-linac based free-electron laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jong, R.A.; Fawley, W.M.; Scharlemann, E.T.

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal atmore » the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices. 17 refs., 4 figs.« less

  3. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  4. Determination of fluorine and chlorine in geological materials by induction furnace pyrohydrolysis and standard-addition ion-selective electrode measurement.

    PubMed

    Rice, T D

    1988-03-01

    Fluorine and chlorine in geological materials are volatilized by pyrohydrolysis at about 1150 degrees in a stream of oxygen (1000 ml/min) plus steam in an induction furnace. The catalyst is a 7:2:1 mixture of silica gel, tungstic oxide and potassium dihydrogen phosphate. The sample/catalyst mixture is pyrohydrolysed in a re-usable alumina crucible (already containing four drops of 1 + 3 phosphoric acid) inserted in a silica-enclosed graphite crucible. The absorption solution is buffered at pH 6.5 and spiked with 1.6 mug of fluoride and 16 mug of chloride per g of solution, to ensure rapid and linear electrode response during subsequent standard-addition measurement. The simple plastic absorption vessel has 99.5% efficiency. The 3s limits of detection are 5-10 mug/g and 40-100 mug/g for fluorine and chlorine respectively. The procedure is unsuitable for determining chlorine in coal.

  5. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  6. Infrared Sensor-Based Temperature Control for Domestic Induction Cooktops

    PubMed Central

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  7. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  8. New Magneto-Inductive DC Magnetometer for Space Missions

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of < 100 cm3, and power consumption of about 5 mW. This system's noise levels are predicted to be about 100 pT /√Hz @ 1 Hz with a precision of about 100 pT. Due to the simple circuit design, lack of an analog-to-digital converter, and choice of oscillator, we anticipate that it will be extremely temperature stable and radiation tolerant. This presentation will describe the constellation mission enabling design, the development status and the testing results of this new magnetometer.

  9. Altitude-Wind-Tunnel Investigation of R-4360-18 Power-Plant Installation for XR60 Airplane. 3; Performance of Induction and Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Dupree, David T.; Hawkins, W. Kent

    1947-01-01

    A study has been made of the performance of the induction and the exhaust systems on the XR60 power-plant installation as part of an investigation conducted in the Cleveland altitude wind tunnel. Altitude flight conditions from 5000 to 30,000 feet were simulated for a range of engine powers from 750 to 3000 brake horsepower. Slipstream rotation prevented normal pressure recoveries in the right side of the main duct in the region of the right intercooler cooling-air duct inlet. Total-pressure losses in the charge-air flow between the turbosupercharger and the intercoolers were as high as 2.1 inches of mercury. The total-pressure distribution of the charge air at the intercooler inlets was irregular and varied as much as 1.0 inch of mercury from the average value at extreme conditions, Total-pressure surveys at the carburetor top deck showed a variation from the average value of 0.3 inch of mercury at take-off power and 0.05 inch of mercury at maximum cruising power, The carburetor preheater system increased the temperature of the engine charge air a maximum of about 82 F at an average cowl-inlet air temperature of 9 F, a pressure altitude of 5000 feet, and a brake horsepower of 1240.

  10. Auxiliary coil controls temperature of RF induction heater

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.

  11. Non-inductive current drive and transport in high βN plasmas in JET

    NASA Astrophysics Data System (ADS)

    Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors

    2009-05-01

    A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  12. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  13. A study of GaN-based LED structure etching using inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng

    2011-02-01

    GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).

  14. Fuel saver based on electromagnetic induction for automotive engine

    NASA Astrophysics Data System (ADS)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  15. Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction.

    PubMed

    Hsu, Che-Hao; Tsai, Ming-Ya; Huang, Go-Shine; Lin, Tso-Chou; Chen, Kuen-Pao; Ho, Shung-Tai; Shyu, Liang-Yu; Li, Chi-Yuan

    2012-03-01

    Beat-to-beat heart rate variability (HRV) is caused by the fluctuating balance of sympathetic and parasympathetic tone. The Poincaré plot has been used to evaluate HRV. In this study, we validate that this new method may qualitatively and quantitatively assess the sympathovagal fluctuation in patients during induction of anesthesia with sevoflurane. Twenty-eight young patients were allocated for the study. The patients received a tilt test and on the next day they sustained anesthesia induced with inhaled anesthetics. Electrocardiography signals from the patients were relayed to an analogue-digital converter. The Poincaré plot is quantified by measuring SD1, SD2, and SD1/SD2. Power spectral analyses were performed and LF, HF and HF/LF were calculated. The LF power and the SD2 of the Poincaré plot increased while subjects were tilt-up from the supine position. Additionally, a significant correlation were found between LF and SD2, HF and SD1 (p < 0.05), and LF/HF and SD2/SD1 (p < 0.01). Sevoflurane inhalation for 10 minutes had no effect on heart rate, but diminished LF, total power and SD1, SD2 of the Poincaré plot respectively. However, the LF, SD2 and LF/HF increased; the HF, SD1 and SD1/SD2 ratio decreased after intubation stimulation. Poincaré plot and power spectral analysis of HRV during tilt test and sevoflurane induction significantly correlate. Poincaré plot analysis is easier and more sensitive at evaluating the sympathovagal balance and observing the beat-to-beat HRV. Copyright © 2012. Published by Elsevier B.V.

  16. Metal Solidification Imaging Process by Magnetic Induction Tomography.

    PubMed

    Ma, Lu; Spagnul, Stefano; Soleimani, Manuchehr

    2017-11-06

    There are growing number of important applications that require a contactless method for monitoring an object surrounded inside a metallic enclosure. Imaging metal solidification is a great example for which there is no real time monitoring technique at present. This paper introduces a technique - magnetic induction tomography - for the real time in-situ imaging of the metal solidification process. Rigorous experimental verifications are presented. Firstly, a single inductive coil is placed on the top of a melting wood alloy to examine the changes of its inductance during solidification process. Secondly, an array of magnetic induction coils are designed to investigate the feasibility of a tomographic approach, i.e., when one coil is driven by an alternating current as a transmitter and a vector of phase changes are measured from the remaining of the coils as receivers. Phase changes are observed when the wood alloy state changes from liquid to solid. Thirdly, a series of static cold phantoms are created to represent various liquid/solid interfaces to verify the system performance. Finally, a powerful temporal reconstruction method is applied to realise real time in-situ visualisation of the solidification and the measurement of solidified shell thickness, a first report of its kind.

  17. Association of Labor Induction With Offspring Risk of Autism Spectrum Disorders

    PubMed Central

    Oberg, Anna Sara; D’Onofrio, Brian M.; Rickert, Martin E.; Hernandez-Diaz, Sonia; Ecker, Jeffrey L.; Almqvist, Catarina; Larsson, Henrik; Lichtenstein, Paul; Bateman, Brian T.

    2017-01-01

    IMPORTANCE Induction of labor is a frequently performed obstetrical intervention. It would thus be of great concern if reported associations between labor induction and offspring risk of autism spectrum disorders (ASD) reflected causal influence. OBJECTIVE To assess the associations of labor induction with ASD, comparing differentially exposed relatives (siblings and cousins discordant for induction). DESIGN, SETTING, AND PARTICIPANTS Follow-up of all live births in Sweden between 1992 and 2005, defined in the Medical Birth Register. The register was linked to population registers of familial relations, inpatient and outpatient visits, and education records. Diagnoses of ASD were from 2001 through 2013, and data were analyzed in the 2015–2016 year. EXPOSURES Induction of labor. MAIN OUTCOMES AND MEASURES Autism spectrum disorders identified by diagnoses from inpatient and outpatient records between 2001 and 2013. Hazard ratios (HRs) quantified the association between labor induction and offspring ASD. In addition to considering a wide range of measured confounders, comparison of exposure-discordant births to the same woman allowed additional control for all unmeasured factors shared by siblings. RESULTS The full cohort included 1 362 950 births, of which 22 077 offspring (1.6%) were diagnosed with ASD by ages 8 years through 21 years. In conventional models of the full cohort, associations between labor induction and offspring ASD were attenuated but remained statistically significant after adjustment for measured potential confounders (HR, 1.19; 95% CI, 1.13–1.24). When comparison was made within siblings whose births were discordant with respect to induction, thus accounting for all environmental and genetic factors shared by siblings, labor induction was no longer associated with offspring ASD (HR, 0.99; 95% CI, 0.88–1.10). CONCLUSIONS AND RELEVANCE In this nationwide sample of live births we observed no association between induction of labor and offspring

  18. Neural network based control of Doubly Fed Induction Generator in wind power generation

    NASA Astrophysics Data System (ADS)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  19. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine.

    PubMed

    Merino-Jimenez, Irene; Celorrio, Veronica; Fermin, David J; Greenman, John; Ieropoulos, Ioannis

    2017-02-01

    Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH 4 PO 4 ·6H 2 O) crystals naturally precipitate in urine, but this reaction can be enhanced by the introduction of additional magnesium. In this work, the effect of magnesium additives on the power output of the MFCs and on the catholyte generation is evaluated. Several magnesium sources including MgCl 2 , artificial sea water and a commercially available sea salts mixture for seawater preparation (SeaMix) were mixed with real fresh human urine in order to enhance struvite precipitation. The supernatant of each mixture was tested as a feedstock for the MFCs and it was evaluated in terms of power output and catholyte generation. The commercial SeaMix showed the best performance in terms of struvite precipitation, increasing the amount of struvite in the solid collected from 21% to 94%. Moreover, the SeaMix increased the maximum power performance of the MFCs by over 10% and it also changed the properties of the catholyte collected by increasing the pH, conductivity and the concentration of chloride ions. These results demonstrate that the addition of sea-salts to real urine is beneficial for both struvite recovery and electricity generation in MFCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  1. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    PubMed

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  2. Inductive Electron Heating Revisited

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.

    1996-11-01

    Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.

  3. Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies

    NASA Astrophysics Data System (ADS)

    Hang, N. Tran Thi; Lüdtke, U.

    2018-05-01

    The foundry industry worldwide commonly uses induction channel furnaces to heat and melt alloys. The operating frequency is one of the main issues when constructing an efficient channel furnace. It is possible to choose operating frequencies lower than 50 Hz using a modern IGBT power converter. This work shows the simulation results using ANSYS with the goal of finding the best electrical frequency necessary to operate the induction furnace. First, a two-dimensional model is used to calculate the efficiency depending on frequency. Then, the channel model is extended to a more realistic three-dimensional model. Finally, the influence of frequency, inductor profile, and several components of the induction channel furnace are discussed.

  4. Modeling, analysis, control and design application guidelines of Doubly Fed Induction Generator (DFIG) for wind power applications

    NASA Astrophysics Data System (ADS)

    Masaud, Tarek

    Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this

  5. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  6. Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2000-06-23

    The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at highmore » speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.« less

  7. Elective induction of labor.

    PubMed

    Moore, Lisa E; Rayburn, William F

    2006-09-01

    Induction of labor rates have more than doubled nationwide in the past 15 years. The increase in medically induced inductions was slower than the overall increase, suggesting that inductions for marginal or elective reasons rose more rapidly. Elective inductions seem to account for at least half of all inductions and 10% of all deliveries. Whether the experience of an elective induction is satisfactory to the patient, obstetrician, and intrapartum crew warrants more widespread attention. Cesarean rates are high for nulliparas undergoing an induction with an unfavorable cervix. Prospective studies are limited or nonexistent to recommend induction of labor for elective or marginal indications. Until more prospective work is performed, it will be difficult to evaluate the true impact of the elective induction of labor on population-wide cesarean delivery rates. Strategies for increased obstetrician awareness are proposed through practice guidelines and through clinical research trials.

  8. THE EFFECT OF ENDOCRINE CHANGES, OF IRRADIATION AND OF ADDITIONAL TREATMENT OF THE SKIN ON THE INDUCTION OF TUMOURS IN THE FEMALE GENITAL TRACT OF RATS BY CHEMICAL CARCINOGENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, C.P.; Glucksmann, A.

    1960-09-01

    Ovariectomy reduced the incidence of vaginal tumors after intravaginal application of 9,10-dimethyl-1,2benzanthracene (DMBA), and administration of oestrogen or of progesterone raised the incidence of tumors only slightly. Repeated whole-body exposures to x rays also lowered the rate of tumor incidence after painting and so to a lesser extent did repeated pelvic irradiation of virgin rats and the application of DMBA to an additional dorsal skin region. In surgical castrates adrenalectomy or repeated pelvic irradiation restored the level of tumor incidence to that of intact and pregnant rats. Three levels of vaginal tumor incidence were found, and the distribution of tumormore » types and the length of the average induction time varied with the level: at the lowest level there were only sarcomas, at the intermediate level fibromas and presarcomatous lesions were found in addition to the sarcomas; and at the highest level the incidence of sarcomas is increased and epithelial tumors appear. Tumor induction in the vulva is not affected by castration, radiation, or hormone treatment but varies at certain dose levels with the dose of the carcinogen. (auth)« less

  9. 5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.

    2014-01-01

    Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced

  10. Effect of calcium formate as an additive on desulfurization in power plants.

    PubMed

    Li, Zhenhua; Xie, Chunfang; Lv, Jing; Zhai, Ruiguo

    2018-05-01

    SO 2 in flue gas needs to be eliminated to alleviate air pollution. As the quality of coal decreases and environmental standard requirements become more stringent, the high-efficiency desulfurization of flue gas faces more and more challenges. As an economical and environmentally friendly solution, the effect of calcium formate as an additive on desulfurization efficiency in the wet flue gas desulfurization (WFGD) process was studied for the first time. Improvement of the desulfurization efficiency was achieved with limited change in pH after calcium formate was added into the reactor, and it was found to work better than other additives tested. The positive effects were further verified in a power plant, which showed that adding calcium formate could promote the dissolution of calcium carbonate, accelerate the growth of gypsum crystals and improve the efficiency of desulfurization. Thus, calcium formate was proved to be an effective additive and can potentially be used to reduce the amount of limestone slurry required, as well as the energy consumption and operating costs in industrial desulfurization. Copyright © 2017. Published by Elsevier B.V.

  11. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  12. Design optimization of transmitting antennas for weakly coupled magnetic induction communication systems

    PubMed Central

    2017-01-01

    This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463

  13. Kinetic Inductance Memory Cell and Architecture for Superconducting Computers

    NASA Astrophysics Data System (ADS)

    Chen, George J.

    Josephson memory devices typically use a superconducting loop containing one or more Josephson junctions to store information. The magnetic inductance of the loop in conjunction with the Josephson junctions provides multiple states to store data. This thesis shows that replacing the magnetic inductor in a memory cell with a kinetic inductor can lead to a smaller cell size. However, magnetic control of the cells is lost. Thus, a current-injection based architecture for a memory array has been designed to work around this problem. The isolation between memory cells that magnetic control provides is provided through resistors in this new architecture. However, these resistors allow leakage current to flow which ultimately limits the size of the array due to power considerations. A kinetic inductance memory array will be limited to 4K bits with a read access time of 320 ps for a 1 um linewidth technology. If a power decoder could be developed, the memory architecture could serve as the blueprint for a fast (<1 ns), large scale (>1 Mbit) superconducting memory array.

  14. Sexual intercourse for cervical ripening and induction of labour.

    PubMed

    Kavanagh, J; Kelly, A J; Thomas, J

    2001-01-01

    of labour is uncertain. Any future trials investigating sexual intercourse as a method of induction need to be of sufficient power to detect clinically relevant differences in standard outcomes. However, it may prove difficult to standardise sexual intercourse as an intervention to allow meaningful comparisons with other methods of induction of labour.

  15. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  16. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  17. Gravitational induction

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-11-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  18. Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, G.J.

    2001-10-29

    Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency.more » This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.« less

  19. Wireless power transfer electric vehicle supply equipment installation and validation tool

    DOEpatents

    Jones, Perry T.; Miller, John M.

    2015-05-19

    A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.

  20. Inductive reasoning 2.0.

    PubMed

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  1. Multifunctional Voltage Source Inverter for Renewable Energy Integration and Power Quality Conditioning

    PubMed Central

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity. PMID:25177725

  2. Comprehensive Teacher Induction: Linking Teacher Induction to Theory

    ERIC Educational Resources Information Center

    Keilwitz, Heather A.

    2014-01-01

    Teacher retention is a wide concern in education and in response school districts throughout the United States are developing more comprehensive teacher induction programs. Components of teacher induction programs that have assisted with successful teacher development include release time for teacher observation, assignment of a knowledgeable…

  3. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  4. Morning versus evening induction of labour for improving outcomes.

    PubMed

    Bakker, Jannet J H; van der Goes, Birgit Y; Pel, Maria; Mol, Ben Willem J; van der Post, Joris A M

    2013-02-28

    Induction of labour is a common intervention in obstetric practice. Traditionally, in most hospitals induction of labour with medication starts early in the morning, with the start of the working day for the day shift. In human and animal studies spontaneous onset of labour is proven to have a circadian rhythm with a preference for start of labour in the evening. Moreover, when spontaneous labour starts in the evening, the total duration of labour and delivery shortens and fewer obstetric interventions are needed. Based on these observations one might assume that starting induction of labour in the evening, in harmony with the circadian rhythm of natural birth, is more beneficial for both mother and child. To assess whether induction of labour starting in the evening, coinciding with the endogenous circadian rhythm, improves the outcome of labour compared with induction of labour starting in the early morning, organised to coincide with office hours. We contacted the Trials Search Co-ordinator to search the Cochrane Pregnancy and Childbirth Group's Trials Register (28 February 2012). In addition, we searched MEDLINE (1966 to 16 February 2012) and EMBASE (1980 to 16 February 2012). We included all published and unpublished randomised controlled trials. We excluded trials that employed quasi-random methods of treatment allocation. Two review authors independently assessed trials for inclusion and risk of bias. Two review authors independently extracted data. Data were checked for accuracy. Where necessary, we contacted study authors for additional information. The search resulted in 2693 articles that we screened on title and abstract for eligibility.Thirteen studies were selected for full text assessment. We included three randomised trials involving 1150 women. Two trials compared the administration of prostaglandins in the morning versus the evening in women with an unfavourable cervix, and one trial compared induction of labour in the morning versus the evening

  5. Improved power transfer to wearable systems through stretchable magnetic composites

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Bedair, S. S.

    2016-05-01

    The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

  6. Wireless Monitoring of Induction Machine Rotor Physical Variables

    PubMed Central

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; de Paiva, José Alvaro

    2017-01-01

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor. PMID:29156564

  7. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    PubMed

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  8. Observation of collisionless heating of low energy electrons in low pressure inductively coupled argon plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hyong; Lee, Hyo-Chang; Chung, Chin-Wook

    2008-12-01

    Collisionless heating of low energy electrons was observed in low pressure argon rf-biased inductively coupled plasmas (ICPs) by measurement of the electron energy distribution function (EEDF). When only capacitive power (bias) was supplied, the EEDF in the discharge was a bi-Maxwellian distribution with two electron groups. It was found that the low energy electrons were heated up significantly even with a little inductive power (<20 W) even when the discharge was in E mode. Due to the low gas pressure and low temperature of low energy electrons (close to the energy of the Ramsauer minimum), the collisional heating of low energy electrons appears to be negligible. Therefore, this effective heating of the low energy electrons showed a direct experimental evidence of the collisionless heating by inductive field. The significant heating of low energy electrons in E mode indicates that collisionless heating in the skin layer is an important electron heating mechanism of low pressure ICP even when the discharge is in E mode.

  9. Evaluation of half wave induction motor drive for use in passenger vehicles

    NASA Technical Reports Server (NTRS)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  10. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti

    PubMed Central

    Matko, Vojko; Milanović, Miro

    2014-01-01

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334

  11. Dissociation and serenity induction.

    PubMed

    Zoellner, Lori A; Sacks, Matthew B; Foa, Edna B

    2007-09-01

    Dissociation is a common experience during or immediately after a traumatic event; yet, most of the current knowledge regarding dissociation is retrospective in nature. The aim of the present study investigated a non-pharmacological method of dissociative induction with a clinical sample. Participants with PTSD and non-trauma exposed participants were randomly assigned to receive either a dissociative induction, or a serenity induction, based on modified Velten mood induction procedures. Participants receiving the dissociative induction reported higher state-dissociation than those receiving the serenity induction. The PTSD group reported greater state dissociation than the non-trauma exposed group, regardless of induction. State dissociation was related to trait dissociation, PTSD severity, and depression. The present results provide an initial demonstration of the viability for inducing state dissociation in the laboratory with a PTSD sample.

  12. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  13. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  14. Compact resonator on leather for nonradiative inductive power transfer and far-field data links

    NASA Astrophysics Data System (ADS)

    Monti, G.; Corchia, L.; De Benedetto, E.; Tarricone, L.

    2016-06-01

    In this paper, a wearable resonator suitable to be used for both power and data transmission is presented. The basic element is a complementary split ring resonator that has been optimized to operate both as a dipole-like antenna at 2.45 GHz and as the receiver of a resonant energy link operating at 915 MHz when coupled with an identical external resonator connected to a power source. Experimental data referring to a prototype fabricated by using a conductive adhesive fabric on a leather substrate are reported and discussed. With regard to the wireless resonant energy link (WREL), it is demonstrated that at 915 MHz, the RF-to-RF power transfer efficiency of the link is approximately 78.1%. As for the performance obtained when the resonator is used as an antenna, a gain of approximately -0.43 dB was obtained. Additionally, the performance of the proposed link when connected to a Power Management Unit (PMU) that converts the radio frequency (RF) energy received by the wearable resonator into DC energy that can be directly used for recharging a thin-film battery was also investigated. Experimental tests were performed in order to evaluate both the total efficiency of the wireless charger (i.e., the WREL link connected to the PMU) and the time necessary to recharge a THINERGY MEC201 battery. The obtained results demonstrate the feasibility of using the proposed WREL for implementing a battery charger; in particular, by providing an input power higher than 8 dBm, the time necessary to recharge the considered thin-film battery is shorter than 38 min.

  15. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee

    2015-04-01

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  16. Power Factor Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.

  17. Power Conditioning for High-Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  18. Power Conditioning for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  19. Assessment of the Microscreen phage-induction assay for screening hazardous wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houk, V.S.; DeMarini, D.M.

    1987-09-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assaymore » detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less

  20. Initial Operation of the Miniaturized Inductively Heated Plasma Generator IPG6

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Herdrich, Georg; Laufer, Rene; Koch, Helmut; Gomringer, Chris; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell

    2012-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma wind tunnel facilities of similar type have been established using the inductively heated plasma source IPG6 which is based on proven IRS designs. The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160m^3/h in combination with a butterfly valve allows pressure control in a wide range. First experiments have been conducted with Air, O2 and N2 as working gases and volumetric flow rates of up to 14 L/min at pressures of a few 100 Pa, although pressures below 1 Pa are achievable at lower flow rates. The maximum tested electric power so far was 8 kW. Plasma powers and total pressures in the plasma jet have been obtained. In the near future the set up of additional diagnostics, the use of other gases (i.e. H2, He), and the integration of a dust particle accelerator are planned. The intended fields of research are basic investigation in thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. in fusion devices or during atmospheric entry of spacecraft.

  1. Voltage oriented control of self-excited induction generator for wind energy system with MPPT

    NASA Astrophysics Data System (ADS)

    Amieur, Toufik; Taibi, Djamel; Amieur, Oualid

    2018-05-01

    This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.

  2. Mechanism of fever induction in rabbits.

    PubMed Central

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  3. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  4. An inductance Fourier decomposition-based current-hysteresis control strategy for switched reluctance motors

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Qi, Ji; Jia, Meng

    2017-05-01

    Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.

  5. Status of experiments at LLNL on high-power X-band microwave generators

    NASA Astrophysics Data System (ADS)

    Houck, Timothy L.; Westenskow, Glen A.

    1994-05-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. We report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling-wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the `reacceleration experiment,' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented.

  6. Situational and structural variation in youth perceptions of maternal guilt induction.

    PubMed

    Rote, Wendy M; Smetana, Judith G

    2017-10-01

    Parental induction of empathy-related guilt plays an important role in children's moral development. However, guilt induction can also be psychologically controlling and detrimental for youth adjustment. This study provided a more nuanced view of parental guilt induction by examining how the nature of a child's misdeed and the structure and content of the parental guilt inductive statement impact children's perceptions of it. Using hypothetical vignettes, this study experimentally examined the impact of the type (domain) of child behavior, highlighted victim, and focus of parental criticism on 156 children's and early and middle adolescents' (age: Ms = 8.82, 12.11, and 15.84 years) perceptions of maternal guilt induction. Attributions of guilt and shame increased most for younger children, when mothers focused on indirect harm to themselves about personal issues, and when mothers criticized their child as a person (shame only). Youth evaluated guilt induction least positively for personal issues and when mothers criticized the child's personality while focusing on indirect harm to themselves. With age, youth were less accepting of maternal guilt induction and more likely to endorse negative and parent-centered intentions, especially for personal issues. Older youth also drew less distinction between guilt induction over multifaceted and personal issues. Guilt induction over moral issues was generally perceived most positively. Additional interactions also emerged. These findings suggest that the meaning and effects of guilt induction on children's development may depend on the way in which it is enacted. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Noise performance of magneto-inductive cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiltshire, M. C. K., E-mail: michael.wiltshire@imperial.ac.uk; Syms, R. R. A.

    2014-07-21

    Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during {sup 1}H MRI at 7more » T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables.« less

  8. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  9. Current interruption in inductive storage systems with inertial current source

    NASA Astrophysics Data System (ADS)

    Vitkovitsky, I. M.; Conte, D.; Ford, R. D.; Lupton, W. H.

    1980-03-01

    Utilization of inertial current source inductive storage with high power output requires a switch with short opening time. This switch must operate as a circuit breaker, i.e., be capable to carry the current for a time period characteristic of inertial systems, such as homopolar generators. For reasonable efficiency, its opening time must be fast to minimize the energy dissipated in downstream fuse stages required for any additional pulse compression. A switch that satisfies these criteria, as well as other requirements such as that for high voltage operation associated with high power output, is an explosively driven switch consisting of large number of gaps arranged in series. The performance of this switch in limiting and/or interrupting currents produced by large generators has been studied. Single switch modules were designed and tested for limiting the commutating current output of 1 MW, 60 Hz, generator and 500 KJ capacitor banks. Current limiting and commutation were evaluated, using these sources, for currents ranging up to 0.4 MA. The explosive opening of the switch was found to provide an effective first stage for further pulse compression. It opens in tens of microseconds, commutates current at high efficiency ( = 905) recovers very rapidly over a wide range of operating conditions.

  10. Induction-related cost of patients with acute myeloid leukaemia in France.

    PubMed

    Nerich, Virginie; Lioure, Bruno; Rave, Maryline; Recher, Christian; Pigneux, Arnaud; Witz, Brigitte; Escoffre-Barbe, Martine; Moles, Marie-Pierre; Jourdan, Eric; Cahn, Jean Yves; Woronoff-Lemsi, Marie-Christine

    2011-04-01

    The economic profile of acute myeloid leukaemia (AML) is badly known. The few studies published on this disease are now relatively old and include small numbers of patients. The purpose of this retrospective study was to evaluate the induction-related cost of 500 patients included in the AML 2001 trial, and to determine the explanatory factors of cost. "Induction" patient's hospital stay from admission for "induction" to discharge after induction. The study was performed from the French Public Health insurance perspective, restrictive to hospital institution costs. The average management of a hospital stay for "induction" was evaluated according to the analytical accounting of Besançon University Teaching Hospital and the French public Diagnosis-Related Group database. Multiple linear regression was used to search for explanatory factors. Only direct medical costs were included: treatment and hospitalisation. Mean induction-related direct medical cost was estimated at €41,852 ± 6,037, with a mean length of hospital stay estimated at 36.2 ± 10.7 days. After adjustment for age, sex and performance status, only two explanatory factors were found: an additional induction course and salvage course increased induction-related cost by 38% (± 4) and 15% (± 1) respectively, in comparison to one induction. These explanatory factors were associated with a significant increase in the mean length of hospital stay: 45.8 ± 11.6 days for 2 inductions and 38.5 ± 15.5 if the patient had a salvage course, in comparison to 32.9 ± 7.7 for one induction (P < 10⁻⁴). This result is robust and was confirmed by sensitivity analysis. Consideration of economic constraints in health care is now a reality. Only the control of length of hospital stay may lead to a decrease in induction-related cost for patients with AML.

  11. Induction Hardening of External Gear

    NASA Astrophysics Data System (ADS)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  12. Teacher Induction: A New Beginning. Papers from the National Commission on the Induction Process.

    ERIC Educational Resources Information Center

    Brooks, Douglas M., Ed.

    The following papers are included in this monograph that provides a synthesis on beginning teacher induction: (1) "Teacher Induction" (Leslie Huling-Austin); (2) "Local Induction Programs" (Ralph Kester and Mary Marockie); (3) "Statewide Teacher Induction Programs" (Parmalee Hawk and Shirley Robards); (4) "The…

  13. Induction annealing and subsequent quenching: effect on the thermoelectric properties of boron-doped nanographite ensembles.

    PubMed

    Xie, Ming; Lee, Chee Huei; Wang, Jiesheng; Yap, Yoke Khin; Bruno, Paola; Gruen, Dieter; Singh, Dileep; Routbort, Jules

    2010-04-01

    Boron-doped nanographite ensembles (NGEs) are interesting thermoelectric nanomaterials for high temperature applications. Rapid induction annealing and quenching has been applied to boron-doped NGEs using a relatively low-cost, highly reliable, laboratory built furnace to show that substantial improvements in thermoelectric power factors can be achieved using this methodology. Details of the design and performance of this compact induction furnace as well as results of the thermoelectric measurements will be reported here.

  14. Induction voidmeter

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Brewer, John

    1986-01-01

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge circuit, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; applying an AC excitation signal to said input branch; and detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  15. Induction voidmeter

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Brewer, J.

    1983-12-21

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; means for applying an AC excitation signal to said input branch; and means for detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  16. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  17. Fluid simulation of the bias effect in inductive/capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Ru; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, BE-2610 Antwerp; Gao, Fei

    Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6 A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitivemore » discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0–300 V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2 MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120 V at 2 MHz and 90 V at 27.12 MHz.« less

  18. Using Induction to Refine Information Retrieval Strategies

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Pell, Barney; Kedar, Smadar

    1994-01-01

    Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.

  19. Callus induction and flavonoid production on the immature seed of Stelechocarpus burahol

    NASA Astrophysics Data System (ADS)

    Habibah, N. A.; Moeljopawiro, S.; Dewi, K.; Indrianto, A.

    2018-03-01

    Stelechocarpus burahol [(Bl.) Hook. f. & Th.] is one of the medicinal plants. In vitro callus induction studies on S. burahol were carried out to determine phytohormone requirement for optimum callus induction. Immature seed explants were cultured on MS medium by adding different kinds and different concentrations of plant growth regulators (picloram and 2,4-D) under light and dark conditions. The results showed that callus formation was initiated on the 18,50th to the 55th days. The best condition for optimum callus induction was found on MS medium, which was supplemented with 7.5 mg/L picloram and was maintained in the dark condition. The callus induction varied from 60% to 100%. The callus that produced the highest flavonoid was grown on the medium with the addition of 10 mg/L of 2,4-D. In conclusion, the results represented a suitable medium for S.burahol callus induction.

  20. Power Balance Estimation in Long Duration Discharges on QUEST

    DOE PAGES

    Hanada, K.; Zushi, H.; Idei, H.; ...

    2016-10-28

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3–5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%–90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. Lastly, the power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magneticmore » configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.« less

  1. Power Balance Estimation in Long Duration Discharges on QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, K.; Zushi, H.; Idei, H.

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3–5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%–90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. Lastly, the power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magneticmore » configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.« less

  2. Conscious/Unconscious Dissociation Induction: Increasing Hypnotic Performance With "Resistant" Clients.

    PubMed

    Lankton, Stephen

    2016-10-01

    Milton H. Erickson promoted several approaches to psychotherapy using hypnosis. In the last decades of his life, his work moved away from the use of redundant suggestion and a predominance of direct suggestion in favor of indirect suggestion. In addition, he frequently employed a type of storytelling (that has come to be called therapeutic metaphor) to indirectly convey learning. Another change that occurred during the last decade was his definition of the cause of a symptom. However, there were two important areas of his work that he did not change during his career. These two components of his work he did not change were his definition of a cure and the importance of a naturalistic induction. This article concerns his naturalistic approach to hypnotic induction and especially his use of conscious/unconscious dissociation in the induction process and how indirect suggestion and therapeutic binds can be used to facilitate that type of induction and a cure.

  3. What conceptual spaces can do for Carnap's late inductive logic.

    PubMed

    Sznajder, Marta

    2016-04-01

    In the last published account of his late inductive logic, the Basic System of Inductive Logic, Rudolf Carnap introduced a new element to the systems of inductive logic, namely the so-called attribute spaces. These geometrical structures model the meanings of the predicates of the object language and have a similar structure as the conceptual spaces employed by cognitive scientists like Peter Gärdenfors. I show how the development of the theory of conceptual spaces helps us to see the addition of attribute spaces as a step forward in explicating the concept of confirmation. I discuss the differences and similarities of the two theories and investigate the possibilities for developing further connections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Slot Optimization Design of Induction Motor for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Shen, Yiming; Zhu, Changqing; Wang, Xiuhe

    2018-01-01

    Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.

  5. A fully analytic treatment of resonant inductive coupling in the far field

    NASA Astrophysics Data System (ADS)

    Sedwick, Raymond J.

    2012-02-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation.

  6. Reactive power compensator

    DOEpatents

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  7. Reactive Power Compensator.

    DOEpatents

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  8. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.

    PubMed

    Cannon, Edward O; Amini, Ata; Bender, Andreas; Sternberg, Michael J E; Muggleton, Stephen H; Glen, Robert C; Mitchell, John B O

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly (p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  9. Analysis of High Power IGBT Short Circuit Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less

  10. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  11. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100to900W and from 48to23kHz, respectively. The working pressure is about 10-4-10-3Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  12. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  13. [Mood induction procedures: a critical review].

    PubMed

    Gilet, A-L

    2008-06-01

    ée. Université de Nantes, Nantes] or combined inductions [Gilet AL. Etude des effets des humeurs positives et négatives sur l'organisation des connaissances en mémoire sémantique. Thèse de doctorat non publiée, Université de Nantes, Nantes, J Ment Imagery 19 (1995) 133-150]. In music or film clip inductions, subjects are asked to listen or view some mood-suggestive pieces of material determined by the experimenter according to standardized music or film sets [J Ment Imagery 19 (1995) 133-150, Cogn Emotion 7 (1993) 171-193] and selected to elicit target moods. According to many authors, these two mood induction procedures seem to be among the most effective manners to induce moods [Br J Psychol 85 (1994) 55-78, Eur J Soc Psychol 26 (1996) 557-580] in an individual or in a group setting [Jallais C. Effets des humeurs positives et négatives sur les structures de connaissances de type script. Thèse de doctorat non publiée. Université de Nantes, Nantes]. As it is believed that multiple inductions contribute additively to a mood [Am Psychol 36 (1981) 129-148], researchers proposed to combine two or more techniques at the same time. Thus, the Velten Mood Induction Procedure has been successively associated with the hypnosis mood induction procedure [J Pers Soc Psychol 42 (1982) 927-934], the music mood induction procedure [Behav Res Ther 21 (1983) 233-239, J Exp Soc Psychol 26 (1990) 465-480] or the imagination mood induction procedure [Br J Clin Psychol 21 (1982) 111-117]. Successful combinations of inductions usually use a first induction that occupies foreground attention and a second one that contributes to congruent background atmosphere. One of the most successful combined mood induction procedures has been developed by Mayer, Allen and Beauregard [J Ment Imagery 19 (1995) 133-150]. This technique associates guided imagery with music and is supposed to increase effectiveness of the induction. In the second part of this paper the aim is to present the usefulness of

  14. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  15. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus

    PubMed Central

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066

  16. Test Program for Evaluation of Variable Frequency Power Conditioners

    DOT National Transportation Integrated Search

    1973-08-01

    A test program is outlined for variable frequency power conditioners for 3-phase induction motors in vehicle propulsion applications. The Power Conditioner Unit (PCU) performance characteristics are discussed in some detail. Measurement methods, reco...

  17. Field-circuit analysis and measurements of a single-phase self-excited induction generator

    NASA Astrophysics Data System (ADS)

    Makowski, Krzysztof; Leicht, Aleksander

    2017-12-01

    The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.

  18. A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation

    PubMed Central

    Song, Shuwei; Zhao, Hong; Zheng, Xiaonan; Zhang, Hui; Wang, Ying; Han, Baozhong

    2018-01-01

    The role of a series of functionalized graphene additives in power cable insulation in suppressing the growth of electrical treeing and preventing the degradation of the polymer matrix has been investigated by density functional theory calculations. Bader charge analysis indicates that pristine, doped or defect graphene could effectively capture hot electrons to block their attack on cross-linked polyethylene (XLPE) because of the π–π conjugated unsaturated structures. Further exploration of the electronic properties in the interfacial region between the additives and XLPE shows that N-doped single-vacancy graphene, graphene oxide and B-, N-, Si- or P-doped graphene oxide have relatively strong physical interaction with XLPE to restrict its mobility and rather weak chemical activity to prevent the cleavage of the C–H or C–C bond, suggesting that they are all potential candidates as effective additives. The understanding of the features of functionalized graphene additives in trapping electrons and interfacial interaction will assist in the screening of promising additives as voltage stabilizers in power cables. PMID:29515821

  19. A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation.

    PubMed

    Song, Shuwei; Zhao, Hong; Zheng, Xiaonan; Zhang, Hui; Liu, Yang; Wang, Ying; Han, Baozhong

    2018-02-01

    The role of a series of functionalized graphene additives in power cable insulation in suppressing the growth of electrical treeing and preventing the degradation of the polymer matrix has been investigated by density functional theory calculations. Bader charge analysis indicates that pristine, doped or defect graphene could effectively capture hot electrons to block their attack on cross-linked polyethylene (XLPE) because of the π-π conjugated unsaturated structures. Further exploration of the electronic properties in the interfacial region between the additives and XLPE shows that N-doped single-vacancy graphene, graphene oxide and B-, N-, Si- or P-doped graphene oxide have relatively strong physical interaction with XLPE to restrict its mobility and rather weak chemical activity to prevent the cleavage of the C-H or C-C bond, suggesting that they are all potential candidates as effective additives. The understanding of the features of functionalized graphene additives in trapping electrons and interfacial interaction will assist in the screening of promising additives as voltage stabilizers in power cables.

  20. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2001-10-29

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitivemore » to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.« less

  1. The Study of Phase-shift Super-Frequency Induction Heating Power Supply

    NASA Astrophysics Data System (ADS)

    Qi, Hairun; Peng, Yonglong; Li, Yabin

    This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis

  2. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    PubMed

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  3. Rotary internal combustion engine with integrated supercharged fuel-air induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southard, A.A.

    This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less

  4. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  5. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  6. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    PubMed

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  7. Anovulation and ovulation induction

    PubMed Central

    Katsikis, I; Kita, M; Karkanaki, A; Prapas, N; Panidis, D

    2006-01-01

    Conventional treatment of normogonadotropic anovulatory infertility is ovulation induction using the antiestrogen clomiphene citrate, followed by follicle-stimulating hormone. Multiple follicle development, associated with ovarian hyperstimulation, and multiple pregnancy remain the major complications. Cumulative singleton and multiple pregnancy rate data after different induction treatments are needed. Newer ovulation induction interventions, such as insulin-sensitizing drugs, aromatase inhibitors and laparoscopic ovarian electrocoagulation, should be compared with conventional treatments. Ovulation induction efficiency might improve if patient subgroups with altered chances for success or complications with new or conventional techniques could be identified, using multivariate prediction models based on initial screening characteristics. This would make ovulation induction more cost-effective, safe and convenient, enabling doctors to advise patients on the most effective and patient-tailored treatment strategy. PMID:20351807

  8. Introducing AC Inductive Reactance with a Power Tool

    ERIC Educational Resources Information Center

    Bryant, Wesley; Baker, Blane

    2016-01-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…

  9. Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Sonke, Jeroen E; Salters, Vincent J M

    2007-08-03

    The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.

  10. When Induction Meets Memory: Evidence for Gradual Transition from Similarity-Based to Category-Based Induction

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Sloutsky, Vladimir M.

    2005-01-01

    The ability to perform induction appears early; however, underlying mechanisms remain unclear. Some argue that early induction is category based, whereas others suggest that early induction is similarity based. Category- and similarity-based induction should result in different memory traces and thus in different memory accuracy. Performing…

  11. Comparison of encryption techniques between chaos theory and password for wireless power transfer system: A review

    NASA Astrophysics Data System (ADS)

    Hussin, N. H.; Azizan, M. M.; Ali, A.; Albreem, M. A. M.

    2017-09-01

    This paper reviews the techniques used in Wireless power transfer (WPT). WPT is one of the most useful ways to transfer power. Based on power transfer distances, the WPT system can be divided into three categories, namely, near, medium, and far fields. Inductive coupling and capacitive coupling contactless techniques are used in the near-field WPT. Magnetic resonant coupling technique is used in the medium-field WPT. Electromagnetic radiation is used in the far-field WPT. In addition, energy encryption plays a major role in ensuring that power is transferred to the true receiver. Therefore, this paper reviews the energy encryption techniques in WPT system. A comparison between different technique shows that the distance, efficiency, and number of receivers are the main factors in selecting the suitable energy encryption technique.

  12. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  13. Wireless power and data transmission strategies for next-generation capsule endoscopes

    NASA Astrophysics Data System (ADS)

    Puers, R.; Carta, R.; Thoné, J.

    2011-05-01

    Capsular endoscopy is becoming increasingly popular as an alternative to traditional gastro-intestinal (GI) examination techniques. However, the breakthrough of these devices is hindered by the limited amount of power that can be stored in a tiny pill. Most commercial devices use two watch batteries that can only provide an average power of 25 mW for about 6 h, certainly not sufficient for advanced robotic features. A dedicated inductive powering system, operating at 1 MHz to limit the human body absorption, has been developed which was proven to support the transfer of over 300 mW. The system relies on a condensed set of orthogonal ferrite coils, embedded in the capsule, and an external unit based on a Helmholtz coil driven by a class E amplifier. Control data can be sent through the inductive link by modulating the power carrier, whereas a dedicated high data rate RF link is used to transfer the images from the capsule to the base station. Besides evaluating the compatibility with radio transmission, several demonstrators were assembled combining the wireless powering system with various locomotion strategies and LED illumination. This paper describes the design and implementation of the inductive powering system, its combination with data transmission techniques and the testing activity with other capsule-dedicated modules.

  14. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  15. Exploration of robust operating conditions in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tromp, John W.; Pomares, Mario; Alvarez-Prieto, Manuel; Cole, Amanda; Ying, Hai; Salin, Eric D.

    2003-11-01

    'Robust' conditions, as defined by Mermet and co-workers for inductively coupled plasma (ICP)-atomic emission spectrometry, minimize matrix effects on analyte signals, and are obtained by increasing power and reducing nebulizer gas flow. In ICP-mass spectrometry (MS), it is known that reduced nebulizer gas flow usually leads to more robust conditions such that matrix effects are reduced. In this work, robust conditions for ICP-MS have been determined by optimizing for accuracy in the determination of analytes in a multi-element solution with various interferents (Al, Ba, Cs, K, Na), by varying power, nebulizer gas flow, sample introduction rate and ion lens voltage. The goal of the work was to determine which operating parameters were the most important in reducing matrix effects, and whether different interferents yielded the same robust conditions. Reduction in nebulizer gas flow and in sample input rate led to a significantly decreased interference, while an increase in power seemed to have a lesser effect. Once the other parameters had been adjusted to their robust values, there was no additional improvement in accuracy attainable by adjusting the ion lens voltage. The robust conditions were universal, since, for all the interferents and analytes studied, the optimum was found at the same operating conditions. One drawback to the use of robust conditions was the slightly reduced sensitivity; however, in the context of 'intelligent' instruments, the concept of 'robust conditions' is useful in many cases.

  16. Prototype Solid State Induction Modulator for SLAC NLC

    NASA Astrophysics Data System (ADS)

    Cassel, R. L.; DeLamare, J. E.; Nguyen, M. N.; Pappas, G. C.; Cook, E.

    2002-08-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3muS at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3muS (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.

  17. A taxonomy of inductive problems.

    PubMed

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  18. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  19. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less

  20. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  1. Cost Modeling and Design of Field-Reversed Configuration Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Kirtley, David; Slough, John; Helion Team

    2017-10-01

    The Inductively Driven Liner (IDL) fusion concept uses the magnetically driven implosion of thin (0.5-1 mm) Aluminum hoops to magnetically compress a merged Field-Reversed Configuration (FRC) plasma to fusion conditions. Both the driver and the target have been studied experimentally and theoretically by researchers at Helion Energy, MSNW, and the University of Washington, demonstrating compression fields greater than 100 T and suitable fusion targets. In the presented study, a notional power plant facility using this approach will be described. In addition, a full cost study based on the LLNL Z-IFE and HYLIFE-II studies, the ARIES Tokamak concept, and RAND power plant studies will be described. Finally, the expected capital costs, development requirements, and LCOE for 50 and 500 MW power plants will be given. This analysis includes core FRC plant scaling, metallic liner recycling, radiation shielding, operations, and facilities capital requirements.

  2. Inductive Reasoning and Writing

    ERIC Educational Resources Information Center

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  3. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    PubMed

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  4. First-Year Undergraduate Induction: Who Attends and How Important Is Induction for First Year Attainment?

    ERIC Educational Resources Information Center

    Murtagh, S.; Ridley, A.; Frings, D.; Kerr-Pertic, S.

    2017-01-01

    The first year of study in higher education is a time of major transition for students. While the importance of induction has been widely demonstrated, there is evidence to suggest that not all students benefit equally from participation in induction. This study examined attendance rates at induction, the relationship between induction attendance…

  5. Additive Manufacturing Consolidation of Low-Cost Water Atomized Steel Powder Using Micro-Induction Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; U

    ORNL worked with Grid Logic Inc to demonstrate micro induction sintering (MIS) and binder decomposition of steel powders. It was shown that MIS effectively emits spatially confined electromagnetic energy that is directly coupled to metallic powders resulting in resistive heating of individual particles. The non-uniformity of particle morphology and distribution of the water atomized steel powders resulted in inefficient transfer of energy. It was shown that adhering the particles together using polymer binders resulted in more efficient coupling. Using the MIS processes, debinding and sintering could be done in a single step. When combined with another system, such as binder-jet,more » this could reduce the amount of required post-processing. An invention disclosure was filed on hybrid systems that use MIS to reduce the amount of required post-processing.« less

  6. Review: aromatase inhibitors for ovulation induction.

    PubMed

    Casper, Robert F; Mitwally, Mohamed F M

    2006-03-01

    For the last 40 yr, the first line of treatment for anovulation in infertile women has been clomiphene citrate (CC). CC is a safe, effective oral agent but is known to have relatively common antiestrogenic endometrial and cervical mucous side effects that could prevent pregnancy in the face of successful ovulation. In addition, there is a significant risk of multiple pregnancy with CC, compared with natural cycles. Because of these problems, we proposed the concept of aromatase inhibition as a new method of ovulation induction that could avoid many of the adverse effects of CC. The objective of this review was to describe the different physiological mechanisms of action for CC and aromatase inhibitors (AIs) and compare studies of efficacy for both agents for ovulation induction. We conducted a systematic review of all the published studies, both controlled and noncontrolled, comparing CC and AI treatment, either alone or in combination with gonadotropins, for ovulation induction or augmentation, identified through the Entrez-PubMed search engine. Because of the recent acceptance of the concept of using AIs for ovulation induction, few controlled studies were identified, and the rest of the studies were pilot or preliminary comparisons. Based on these studies, it appears that AIs are as effective as CC in inducing ovulation, are devoid of any antiestrogenic side effects, result in lower serum estrogen concentrations, and are associated with good pregnancy rates with a lower incidence of multiple pregnancy than CC. When combined with gonadotropins for assisted reproductive technologies, AIs reduce the dose of FSH required for optimal follicle recruitment and improve the response to FSH in poor responders. Preliminary evidence suggests that AIs may replace CC in the future because of similar efficacy with a reduced side effect profile. Although worldwide experience with AIs for ovulation induction is increasing, at present, definitive studies in the form of randomized

  7. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  8. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE PAGES

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...

    2017-04-18

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  9. Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia.

    PubMed

    Paulus, J A; Richardson, J S; Tucker, R D; Park, J B

    1996-04-01

    Ferromagnetic alloys heated by magnetic induction have been investigated as interstitial hyperthermia delivery implants for over a decade, utilizing low Curie temperatures to provide thermal self-regulation. The minimally invasive method is attractive for fractionated thermal treatment of tumors which are not easily heated by focused microwave or ultrasound techniques. Past analyses of ferromagnetic seeds by other authors depict poor experimental correlation with theoretical heating predictions. Improvements in computer hardware and commercially available finite element analysis software have simplified the analysis of inductively heated thermal seeds considerably. This manuscript examines end effects of finite length implants and nonlinear magnetic material properties to account for previous inconsistencies. Two alloys, Ni-28 wt% Cu (NiCu) and Pd-6.15 wt% Co (PdCo), were used for comparison of theoretical and experimental calorimetric results. Length to diameter (L/d) ratios of over 20 for cylindrical seeds are necessary for minimization of end effects. Magnetic properties tested for alloys of NiCu and PdCo illustrate considerable nonlinearity of these materials in field strength ranges used for induction heating. Field strength dependent magnetic permeabilities and calorimetric data illustrate that more detailed material information must be included to accurately estimate induction power loss for these implants.

  10. Evaluation of Noncontact Power Collection Techniques

    DOT National Transportation Integrated Search

    1972-07-01

    An evaluation is made of four basic noncontacting techniques of power collection which have possible applicability in future high speed ground transportation systems. The techniques considered include the electric arc, magnetic induction, electrostat...

  11. A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source

    NASA Astrophysics Data System (ADS)

    Rogers, Anthony; Kirchner, Don; Skiff, Fred

    2014-10-01

    Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.

  12. Burst mode FEL with the ETA-III induction linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C.J.; Allen, S.L.; Felker, B.

    1993-05-13

    Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less

  13. Combination induction plasma tube and current concentrator for introducing a sample into a plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

  14. Electrothermal feedback in kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Thomas, C. N.; Withington, S.; Goldie, D. J.

    2017-06-01

    In kinetic inductance detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the noise equivalent power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.

  15. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  16. Reactive Power Compensation Using an Energy Management System

    DTIC Science & Technology

    2014-09-01

    bulk power grid or independent of the grid in islanded mode using various DG sources ( photovoltaic panels, fuel cells, gas generators, batteries...developed in order to forecast the system’s response to both capacitive and inductive power demands on the grid. The process was then confirmed in a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited REACTIVE POWER

  17. Kinetic Inductance Photodetectors Based on Nonequilibrium Response in Superconducting Thin-Film Structures

    NASA Technical Reports Server (NTRS)

    Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.

    2001-01-01

    While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.

  18. A low-power noncoherent BPSK demodulator and clock recovery circuit for high-data-rate biomedical applications.

    PubMed

    Asgarian, Farzad; Sodagar, Amir M

    2009-01-01

    A novel noncoherent BPSK demodulator is presented for inductively powered biomedical devices. Differential Manchester encoding technique is used and data demodulation is based on pulse width measurement method. In addition to ultra low power consumption, high data rate without increasing the carrier frequency is achieved with the outstanding data-rate-to-carrier-frequency ratio of 100%. The proposed demodulator is especially appropriate for biomedical applications where high speed data transfer is required, e.g., cochlear implants and visual prostheses. The circuit is designed in a 0.18-mum standard CMOS technology and consumes as low as 232 microW@1.8V at a data rate of 10 Mbps.

  19. A high-power versatile wireless power transfer for biomedical implants.

    PubMed

    Jiang, Hao; Zhang, Jun Min; Liou, Shy Shenq; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2010-01-01

    Implantable biomedical actuators are highly desired in modern medicine. However, how to power up these biomedical implants remains a challenge since most of them need more than several hundreds mW of power. The air-core based radio-frequency transformer (two face-to-face inductive coils) has been the only non-toxic and non-invasive power source for implants for the last three decades [1]. For various technical constraints, the maximum delivered power is limited by this approach. The highest delivered power reported is 275 mW over 1 cm distance [2]. Also, the delivered power is highly vulnerable to the coils' geometrical arrangement and the electrical property of the medium around them. In this paper, a novel rotating-magnets based wireless power transfer that can deliver ∼10 W over 1 cm is demonstrated. The delivered power is significantly higher than the existing start-of-art. Further, the new method is versatile since there is no need to have the impedance matching networks that are highly susceptible to the operating frequency, the coil arrangement and the environment.

  20. Advancements in Kinetic Inductance Detector, Spectrometer, and Amplifier Technologies for Millimeter-Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Che, George

    The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments. I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all Super

  1. Design and Performance of the Antenna-Coupled Lumped-Element Kinetic Inductance Detector

    NASA Astrophysics Data System (ADS)

    Barry, P. S.; Doyle, S.; Hornsby, A. L.; Kofman, A.; Mayer, E.; Nadolski, A.; Tang, Q. Y.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Focal plane arrays consisting of low-noise, polarisation-sensitive detectors have made possible the pioneering advances in the study of the cosmic microwave background (CMB). To make further progress, the next generation of CMB experiments (e.g. CMB-S4) will require a substantial increase in the number of detectors compared to current instruments. Arrays of kinetic inductance detectors (KIDs) provide a possible path to realising such large-format arrays owing to their intrinsic multiplexing advantage and relative cryogenic simplicity. In this paper, we report on the design of a variant of the traditional KID design: the antenna-coupled lumped-element KID. A polarisation-sensitive twin-slot antenna placed behind an optimised hemispherical lens couples power onto a thin-film superconducting microstrip line. The power is then guided into the inductive section of an aluminium KID, where it is absorbed and modifies both the resonant frequency and quality factor of the KID. We present the various aspects of the design and preliminary results from the first set of seven-element prototype arrays and compare to the expected modelled performance.

  2. 18 CFR 1314.10 - Additional provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Additional provisions. 1314.10 Section 1314.10 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY BOOK-ENTRY PROCEDURES FOR TVA POWER SECURITIES ISSUED THROUGH THE FEDERAL RESERVE BANKS § 1314.10 Additional provisions...

  3. 18 CFR 1314.10 - Additional provisions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Additional provisions. 1314.10 Section 1314.10 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY BOOK-ENTRY PROCEDURES FOR TVA POWER SECURITIES ISSUED THROUGH THE FEDERAL RESERVE BANKS § 1314.10 Additional provisions...

  4. The voltage control for self-excited induction generator based on STATCOM

    NASA Astrophysics Data System (ADS)

    Yan, Dandan; Wang, Feifeng; Pan, Juntao; Long, Weijie

    2018-05-01

    The small independent induction generator can build up voltage under its remanent magnetizing and excitation capacitance, but it is prone to voltage sag and harmonic increment when running with load. Therefore, the controller for constant voltage is designed based on the natural coordinate system to adjust the static synchronous compensator (STATCOM), which provides two-way dynamic reactive power compensation for power generation system to achieve voltage stability and harmonic suppression. The control strategy is verified on Matlab/Sinmulik, and the results show that the STATCOM under the controller can effectively improve the load capacity and reliability of asynchronous generator.

  5. Development of fully non-inductive plasmas heated by medium and high-harmonic fast waves in the national spherical torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Poli, F.; Bertelli, N.; Harvey, R. W.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Phillips, C. K.; Raman, R.

    2015-12-01

    A major challenge for spherical tokamak development is to start-up and ramp-up the plasma current (Ip) without using a central solenoid. Experiments in the National Spherical Torus eXperiment (NSTX) demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a non-inductive Ip fraction, fNI ˜ 0.7. The discharge had an axial toroidal magnetic field (BT(0)) of 0.55 T, the maximum BT(0) available on NSTX. NSTX has undergone a major upgrade (NSTX-U), that will eventually allow the generation of BT(0) ≤ 1 T and Ip ≤ 2 MA plasmas. Full wave simulations of 30 MHz HHFW and medium harmonic fast wave (MHFW) heating in NSTX-U predict significantly reduced FW power loss in the plasma edge at the higher BT(0) achievable in NSTX-U. HHFW experiments will aim to generate stable, fNI ˜ 1, Ip = 300 kA H-mode plasmas and to ramp Ip from 250 to 400 kA with FW power. Time-dependent TRANSP simulations are used to develop non-inductive Ip ramp-up and sustainment using 30 MHz FW power. This paper presents results from these RF simulations and plans for developing non-inductive plasmas heated by FW power.

  6. Gli function is essential for motor neuron induction in zebrafish.

    PubMed

    Vanderlaan, Gary; Tyurina, Oksana V; Karlstrom, Rolf O; Chandrasekhar, Anand

    2005-06-15

    The Gli family of zinc-finger transcription factors mediates Hedgehog (Hh) signaling in all vertebrates. However, their roles in ventral neural tube patterning, in particular motor neuron induction, appear to have diverged across species. For instance, cranial motor neurons are essentially lost in zebrafish detour (gli1(-)) mutants, whereas motor neuron development is unaffected in mouse single gli and some double gli knockouts. Interestingly, the expression of some Hh-regulated genes (ptc1, net1a, gli1) is mostly unaffected in the detour mutant hindbrain, suggesting that other Gli transcriptional activators may be involved. To better define the roles of the zebrafish gli genes in motor neuron induction and in Hh-regulated gene expression, we examined these processes in you-too (yot) mutants, which encode dominant repressor forms of Gli2 (Gli2(DR)), and following morpholino-mediated knockdown of gli1, gli2, and gli3 function. Motor neuron induction at all axial levels was reduced in yot (gli2(DR)) mutant embryos. In addition, Hh target gene expression at all axial levels except in rhombomere 4 was also reduced, suggesting an interference with the function of other Glis. Indeed, morpholino-mediated knockdown of Gli2(DR) protein in yot mutants led to a suppression of the defective motor neuron phenotype. However, gli2 knockdown in wild-type embryos generated no discernable motor neuron phenotype, while gli3 knockdown reduced motor neuron induction in the hindbrain and spinal cord. Significantly, gli2 or gli3 knockdown in detour (gli1(-)) mutants revealed roles for Gli2 and Gli3 activator functions in ptc1 expression and spinal motor neuron induction. Similarly, gli1 or gli3 knockdown in yot (gli2(DR)) mutants resulted in severe or complete loss of motor neurons, and of ptc1 and net1a expression, in the hindbrain and spinal cord. In addition, gli1 expression was greatly reduced in yot mutants following gli3, but not gli1, knockdown, suggesting that Gli3 activator

  7. Educational Electrical Appliance Power Meter and Logger

    ERIC Educational Resources Information Center

    Nunn, John

    2013-01-01

    The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power…

  8. Serum free light chains in myeloma patients with an intact M-protein by immunofixation: potential roles for response assessment and prognosis during induction therapy with novel agents

    PubMed Central

    Mori, Sherry; Crawford, Brooke S; Roddy, Julianna VF; Phillips, Gary; Elder, Pat; Hofmeister, Craig C; Efebera, Yvonne; Benson, Don M

    2013-01-01

    The ascertainment of serum free light chain levels (sFLC) has been shown to be valuable in screening for the presence of plasma cell dyscrasia as well as for baseline prognosis in newly diagnosed patients. For patients with amyloidosis and those with oligo- or non-secretory multiple myeloma (MM), serial measurement of sFLC has also been shown to be valuable in monitoring disease status. However, in patients with a measureable, intact monoclonal protein by immunofixation (M protein), the serial measurement of sFLC remains undefined and is currently not recommended in professional guidelines. Herein, we provide data comparing sFLC to M protein as biomarkers of response in newly-diagnosed patients with MM undergoing induction therapy with the novel agents thalidomide, lenalidomide and/or bortezomib. We show that while M protein appears to outperform sFLC comparatively over the course of induction therapy, the addition of FLC to M-protein further informs the characterization of residual disease status post-induction. Moreover, sFLC at the time of stem cell mobilization appears to hold prognostic power for survival endpoints following HDC/SCT. These findings suggest potentially novel roles for sFLC in patients with MM with an intact M-protein receiving novel agent-based induction strategies followed by HDC/SCT. PMID:22028144

  9. Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges

    NASA Astrophysics Data System (ADS)

    Smalcerz, A.; Przylucki, R.

    2013-04-01

    The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.

  10. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  11. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1984-12-20

    heated array of Inductive energy storage is attractive in pulsed power 375-/am-diameter thoriated tungsten filaments. At a flia- applications because of...control system electrostatical- ly. It is positioned 0.6 cm above the control grid. The grids and cathode are connected to external power supplies through...energy storage density becomes even larger (by a factor of - 10). One should note that these comparisons do not account for power supplies , cooling

  12. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.

    2016-08-15

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less

  13. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  14. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

    PubMed

    Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G

    2017-10-01

    The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H 2 O 2 (2.5 mM) induced the expression of stx 2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H 2 O 2 H 2 O 2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H 2 O 2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the

  15. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food

    PubMed Central

    Fang, Yuan; Mercer, Ryan G.; McMullen, Lynn M.

    2017-01-01

    ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single

  16. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel

  17. Streamlined approach to mapping the magnetic induction of skyrmionic materials.

    PubMed

    Chess, Jordan J; Montoya, Sergio A; Harvey, Tyler R; Ophus, Colin; Couture, Simon; Lomakin, Vitaliy; Fullerton, Eric E; McMorran, Benjamin J

    2017-06-01

    Recently, Lorentz transmission electron microscopy (LTEM) has helped researchers advance the emerging field of magnetic skyrmions. These magnetic quasi-particles, composed of topologically non-trivial magnetization textures, have a large potential for application as information carriers in low-power memory and logic devices. LTEM is one of a very few techniques for direct, real-space imaging of magnetic features at the nanoscale. For Fresnel-contrast LTEM, the transport of intensity equation (TIE) is the tool of choice for quantitative reconstruction of the local magnetic induction through the sample thickness. Typically, this analysis requires collection of at least three images. Here, we show that for uniform, thin, magnetic films, which includes many skyrmionic samples, the magnetic induction can be quantitatively determined from a single defocused image using a simplified TIE approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Audiovisual aid viewing immediately before pediatric induction moderates the accompanying parents' anxiety.

    PubMed

    Berghmans, Johan; Weber, Frank; van Akoleyen, Candyce; Utens, Elisabeth; Adriaenssens, Peter; Klein, Jan; Himpe, Dirk

    2012-04-01

    Parents accompanying their child during induction of anesthesia experience stress. The impact of audiovisual aid (AVA) on parental state anxiety and assessment of the child's anxiety at induction have been studied previously but need closer scrutiny. One hundred and twenty parents whose children were scheduled for day-care surgery entered this randomized, controlled study. The intervention group (n = 60) was exposed to an AVA in the holding area. Parental anxiety was measured with the Spielberger State-Trait Anxiety Inventory and the Amsterdam Preoperative Anxiety and Information Scale (APAIS) at three time points: (i) on admission [T1]; (ii) in the holding area just before entering the operating theater [T2]; and (iii) after leaving [T3]. Additionally, at [T3], both parent and attending anesthetist evaluated the child's anxiety using a visual analogue scale. The anesthetist also filled out the Induction Compliance Checklist. On the state anxiety subscale, APAIS parental anxiety at T2 (P = 0.015) and T3 (P = 0.009) was lower in the AVA intervention group than in the control group. After induction, the child's anxiety rating by the anesthetist was significantly lower than by the parent, in both intervention and control groups. Preoperative AVA shown to parents immediately before induction moderates the increase in anxiety associated with the anesthetic induction of their child. Present results suggest that behavioral characteristics seem better predictors of child's anxiety during induction than anxiety ratings per se and that anesthetists are better than parents in predicting child's anxiety during induction. © 2011 Blackwell Publishing Ltd.

  19. Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates

    PubMed Central

    Luft, Caroline Di Bernardi; Bhattacharya, Joydeep

    2015-01-01

    Recent studies showed that the visceral information is constantly processed by the brain, thereby potentially influencing cognition. One index of such process is the heartbeat evoked potential (HEP), an ERP component related to the cortical processing of the heartbeat. The HEP is sensitive to a number of factors such as motivation, attention, pain, which are associated with higher levels of arousal. However, the role of arousal and its associated brain oscillations on the HEP has not been characterized, yet it could underlie the previous findings. Here we analysed the effects of high- (HA) and low-arousal (LA) induction on the HEP. Further, we investigated the brain oscillations and their role in the HEP in response to HA and LA inductions. As compared to LA, HA was associated with a higher HEP and lower alpha oscillations. Interestingly, individual differences in the HEP modulation by arousal induction were correlated with alpha oscillations. In particular, participants with higher alpha power during the arousal inductions showed a larger HEP in response to HA compared to LA. In summary, we demonstrated that arousal induction affects the cortical processing of heartbeats; and that the alpha oscillations may modulate this effect. PMID:26503014

  20. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming.

    PubMed

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2015-05-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed.

  1. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming

    PubMed Central

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2014-01-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed. PMID:26052168

  2. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  3. Applications of rule-induction in the derivation of quantitative structure-activity relationships.

    PubMed

    A-Razzak, M; Glen, R C

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  4. Applications of rule-induction in the derivation of quantitative structure-activity relationships

    NASA Astrophysics Data System (ADS)

    A-Razzak, Mohammed; Glen, Robert C.

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  5. Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard

    Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a largermore » reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.« less

  6. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  7. Inductive Reasoning: A Training Approach

    ERIC Educational Resources Information Center

    Klauer, Karl Josef; Phye, Gary D.

    2008-01-01

    Researchers have examined inductive reasoning to identify different cognitive processes when participants deal with inductive problems. This article presents a prescriptive theory of inductive reasoning that identifies cognitive processing using a procedural strategy for making comparisons. It is hypothesized that training in the use of the…

  8. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    NASA Astrophysics Data System (ADS)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  9. Wind-energy recovery by a static Scherbius induction generator

    NASA Astrophysics Data System (ADS)

    Smith, G. A.; Nigim, K. A.

    1981-11-01

    The paper describes a technique for controlling a doubly fed induction generator driven by a windmill, or other form of variable-speed prime mover, to provide power generation into the national grid system. The secondary circuit of the generator is supplied at a variable frequency from a current source inverter which for test purposes is rated to allow energy recovery, from a simulated windmill, from maximum speed to standstill. To overcome the stability problems normally associated with doubly fed machines a novel signal generator, which is locked in phase with the rotor EMF, controls the secondary power to provide operation over a wide range of subsynchronous and supersynchronous speeds. Consideration of power flow enables the VA rating of the secondary power source to be determined as a function of the gear ratio and online operating range of the system. A simple current source model is used to predict performance which is compared with experimental results. The results indicate a viable system, and suggestions for further work are proposed.

  10. Modeling and simulation of a hybrid ship power system

    NASA Astrophysics Data System (ADS)

    Doktorcik, Christopher J.

    2011-12-01

    Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.

  11. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  12. Research on low-temperature anodic bonding using induction heating

    NASA Astrophysics Data System (ADS)

    Chen, Mingxiang; Yi, Xinjian; Yuan, Liulin; Liu, Sheng

    2006-04-01

    This paper presents a new low temperature silicon-glass anodic bonding process using induction heating. Anodic bonding between silicon and glass (Pyrex 7740) has been achieved at temperature below 300 °C and almost bubble-free interfaces have been obtained. A 1KW 400KHz power supply is used to induce heat in graphite susceptors (simultaneously as the high-voltage electrodes of anodic bonding), which conduct heat to the bonding pair and permanently join the pair in 5 minutes. The results of pull tests indicate a bonding strength of above 5.0MPa for induction heating, which is greater than the strength for resistive heating at the same temperature. The fracture mainly occurs across the interface or inside the glass other than in the interface when the bonding temperature is over 200 °C Finally, the interfaces are examined and analyzed by scanning electron microscopy (SEM) and the bonding mechanisms are discussed.

  13. A sensorimotor theory of temporal tracking and beat induction.

    PubMed

    Todd, N P McAngus; Lee, C S; O'Boyle, D J

    2002-02-01

    In this paper, we develop a theory of the neurobiological basis of temporal tracking and beat induction as a form of sensory-guided action. We propose three principal components for the neurological architecture of temporal tracking: (1) the central auditory system, which represents the temporal information in the input signal in the form of a modulation power spectrum; (2) the musculoskeletal system, which carries out the action and (3) a controller, in the form of a parieto-cerebellar-frontal loop, which carries out the synchronisation between input and output by means of an internal model of the musculoskeletal dynamics. The theory is implemented in the form of a computational algorithm which takes sound samples as input and synchronises a simple linear mass-spring-damper system to simulate audio-motor synchronisation. The model may be applied to both the tracking of isochronous click sequences and beat induction in rhythmic music or speech, and also accounts for the approximate Weberian property of timing.

  14. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  15. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  16. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  17. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  18. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  19. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2more » inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.« less

  20. Anesthetic induction with guaifenesin and propofol in adult horses.

    PubMed

    Brosnan, Robert J; Steffey, Eugene P; Escobar, André; Palazoglu, Mine; Fiehn, Oliver

    2011-12-01

    To evaluate whether guaifenesin can prevent adverse anesthetic induction events caused by propofol and whether a guaifenesin-propofol induction combination has brief cardiovascular effects commensurate with rapid drug washout. 8 healthy adult horses. Guaifenesin was administered IV for 3 minutes followed by IV injection of a bolus of propofol (2 mg/kg). Additional propofol was administered if purposeful movement was detected. Anesthesia was maintained for 2 hours with isoflurane or sevoflurane at 1.2 times the minimum alveolar concentration with controlled normocapnic ventilation. Normotension was maintained via a dobutamine infusion. Plasma concentrations of propofol and guaifenesin were measured every 30 minutes. Mean ± SD guaifenesin and propofol doses inducing anesthesia in half of the horses were 73 ± 18 mg/kg and 2.2 ± 0.3 mg/kg, respectively. No adverse anesthetic induction events were observed. By 70 minutes, there was no significant temporal change in the dobutamine infusion rate required to maintain normotension for horses anesthetized with isoflurane or sevoflurane. Mean plasma guaifenesin concentrations were 122 ± 30 μM, 101 ± 33 μM, 93 ± 28 μM, and 80 ± 24 μM at 30, 60, 90, and 120 minutes after anesthetic induction, respectively. All plasma propofol concentrations were below the limit of quantitation. Guaifenesin prevented adverse anesthetic induction events caused by propofol. Guaifenesin (90 mg/kg) followed by propofol (3 mg/kg) should be sufficient to immobilize > 99% of calm healthy adult horses. Anesthetic drug washout was rapid, and there was no change in inotrope requirements after anesthesia for 70 minutes.

  1. Description of a 20 kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  2. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  3. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  4. DBD tranformerless power supplies: impact of the parasitic capacitances on the power transfer.

    NASA Astrophysics Data System (ADS)

    Diop, M. A.; Belinger, A.; Piquet, H.

    2017-04-01

    A new transformerless power supply for DBD application is presented here. The power supply is built with 10kV SiC MOSFET. This high voltage switches allow holding the high voltage required by the DBD. An analytical study of the converter’s operation is presented to deduce the power transmitted to the DBD. A comparison between the experimental and theoretical electrical waveforms is shown. The experimental waveforms are particularly affected by all the parasitic capacitances. When all the switches are in OFF state, oscillations cause over-voltages across the switches. An analysis of the effect of each capacitance is presented and demonstrates that the parasitic capacitances of the switches and of the inductance play a key role in the actual power transfer.

  5. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  6. TRANSP-based Trajectory Optimization of the Current Profile Evolution to Facilitate Robust Non-inductive Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Wehner, William; Schuster, Eugenio; Poli, Francesca

    2016-10-01

    Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.

  7. Cost-Effectiveness of Antibody-Based Induction Therapy in Deceased Donor Kidney Transplantation in the United States.

    PubMed

    Gharibi, Zahra; Ayvaci, Mehmet U S; Hahsler, Michael; Giacoma, Tracy; Gaston, Robert S; Tanriover, Bekir

    2017-06-01

    Induction therapy in deceased donor kidney transplantation is costly, with wide discrepancy in utilization and a limited evidence base, particularly regarding cost-effectiveness. We linked the United States Renal Data System data set to Medicare claims to estimate cumulative costs, graft survival, and incremental cost-effectiveness ratio (ICER - cost per additional year of graft survival) within 3 years of transplantation in 19 450 deceased donor kidney transplantation recipients with Medicare as primary payer from 2000 to 2008. We divided the study cohort into high-risk (age > 60 years, panel-reactive antibody > 20%, African American race, Kidney Donor Profile Index > 50%, cold ischemia time > 24 hours) and low-risk (not having any risk factors, comprising approximately 15% of the cohort). After the elimination of dominated options, we estimated expected ICER among induction categories: no-induction, alemtuzumab, rabbit antithymocyte globulin (r-ATG), and interleukin-2 receptor-antagonist. No-induction was the least effective and most costly option in both risk groups. Depletional antibodies (r-ATG and alemtuzumab) were more cost-effective across all willingness-to-pay thresholds in the low-risk group. For the high-risk group and its subcategories, the ICER was very sensitive to the graft survival; overall both depletional antibodies were more cost-effective, mainly for higher willingness to pay threshold (US $100 000 and US $150 000). Rabbit ATG appears to achieve excellent cost-effectiveness acceptability curves (80% of the recipients) in both risk groups at US $50 000 threshold (except age > 60 years). In addition, only r-ATG was associated with graft survival benefit over no-induction category (hazard ratio, 0.91; 95% confidence interval, 0.84-0.99) in a multivariable Cox regression analysis. Antibody-based induction appears to offer substantial advantages in both cost and outcome compared with no-induction. Overall, depletional induction (preferably r

  8. Analysis on the power and efficiency in wireless power transfer system via coupled magnetic resonances

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie

    2018-06-01

    The analysis of characteristics of the power and efficiency in wireless power transmission (WPT) system is the theoretical basis of magnetic coupling resonant wireless power transmission (MCR-WPT) technology. The electromagnetic field theory was employed to study the variation of the coupling degree of the two electromagnetic coils with the parameters of the coils. The equivalent circuit was used to analyze the influence of different factors on the transmission power and efficiency of the WPT system. The results show that there is an optimal radius ratio between the two coils, which makes the mutual inductance of the coils the largest. Moreover, when the WPT system operates in the under-coupling state, the transmission power of the system drops sharply, and there is a frequency splitting of the power when in the over-coupling state.

  9. Automation of experimental research of waveguide paths induction soldering

    NASA Astrophysics Data System (ADS)

    Tynchenko, V. S.; Petrenko, V. E.; Kukartsev, V. V.; Tynchenko, V. V.; Antamoshkin, O. A.

    2018-05-01

    The article presents an automated system of experimental studies of the waveguide paths induction soldering process. The system is a part of additional software for a complex of automated control of the technological process of induction soldering of thin-walled waveguide paths from aluminum alloys, expanding its capabilities. The structure of the software product, the general appearance of the controls and the potential application possibilities are presented. The utility of the developed application by approbation in a series of field experiments was considered and justified. The application of the experimental research system makes it possible to improve the process under consideration, providing the possibility of fine-tuning the control regulators, as well as keeping the statistics of the soldering process in a convenient form for analysis.

  10. Simulation of a large size inductively coupled plasma generator and comparison with experimental data

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Yu, Yuanyuan

    2018-01-01

    A two-dimensional axisymmetric inductively coupled plasma (ICP) model with its implementation in the COMSOL (Multi-physics simulation software) platform is described. Specifically, a large size ICP generator filled with argon is simulated in this study. Distributions of the number density and temperature of electrons are obtained for various input power and pressure settings and compared. In addition, the electron trajectory distribution is obtained in simulation. Finally, using experimental data, the results from simulations are compared to assess the veracity of the two-dimensional fluid model. The purpose of this comparison is to validate the veracity of the simulation model. An approximate agreement was found (variation tendency is the same). The main reasons for the numerical magnitude discrepancies are the assumption of a Maxwellian distribution and a Druyvesteyn distribution for the electron energy and the lack of cross sections of collision frequencies and reaction rates for argon plasma.

  11. Auto-induction for high level production of biologically active reteplase in Escherichia coli.

    PubMed

    Fathi-Roudsari, Mehrnoosh; Maghsoudi, Nader; Maghsoudi, Amirhossein; Niazi, Sepideh; Soleiman, Morvarid

    2018-06-07

    Reteplase is a third generation tissue plasminogen activator (tPA) with a modified structure and prolonged half-life in comparison to native tPA. As a non-glycosylated protein, reteplase is expressed in Escherichia coli. Due to presence of several disulfide bonds, high level production of reteplase is complicated and needs extra steps for conversion to biologically active form. Auto-induction represents a method for high-yield growth of bacterial cells and higher expression of recombinant proteins. Here we have tried to optimize the auto-induction procedure for soluble and active expression of reteplase in E. coli. Results showed that using auto-induction strategy at 37 °C, Rosetta-gami (DE3) had the highest level of active and soluble reteplase production in comparison to E. coli strains BL21 (DE3), and Shuffel T7. Temperature dominantly affected the level of active reteplase production. Decreasing the temperature to 25 and 18 °C increased the level of active reteplase by 20 and 60%, respectively. The composition of auto-induction medium also dramatically changed the active production of reteplase in cytoplasm. Using higher enriched auto-induction medium, super broth base including trace elements, significantly increased biologically active reteplase by 30%. It is demonstrated here that auto-induction is a powerful method for expression of biologically active reteplase in oxidative cytoplasm of Rosetta-gami. Optimizing expression condition by decreasing temperature and using an enriched auto-induction medium resulted in at least three times higher level of active reteplase production. Production of correctly folded and active reteplase in spite of its complex structure helps for removal of inefficient and cumbersome step of refolding. Copyright © 2018. Published by Elsevier Inc.

  12. An exposure-response analysis based on rifampin suggests CYP3A4 induction is driven by AUC: an in vitro investigation.

    PubMed

    Chang, Cheng; Yang, Xin; Fahmi, Odette A; Riccardi, Keith A; Di, Li; Obach, R Scott

    2017-08-01

    1. Induction is an important mechanism contributing to drug-drug interactions. It is most commonly evaluated in the human hepatocyte assay over 48-h or 72-h incubation period. However, whether the overall exposure (i.e. Area Under the Curve (AUC) or C ave ) or maximum exposure (i.e. C max ) of the inducer is responsible for the magnitude of subsequent induction has not been thoroughly investigated. Additionally, in vitro induction assays are typically treated as static systems, which could lead to inaccurate induction potency estimation. Hence, European Medicines Agency (EMA) guidance now specifies quantitation of drug levels in the incubation. 2. This work treated the typical in vitro evaluation of rifampin induction as an in vivo system by generating various target engagement profiles, measuring free rifampin concentration over 3 d of incubation and evaluating the impact of these factors on final induction response. 3. This rifampin-based analysis demonstrates that the induction process is driven by time-averaged target engagement (i.e. AUC-driven). Additionally, depletion of rifampin in the incubation medium over 3 d as well as non-specific/specific binding were observed. 4. These findings should help aid the discovery of clinical candidates with minimal induction liability and further expand our knowledge in the quantitative translatability of in vitro induction assays.

  13. Characteristics of n-GaN After Cl2/Ar and Cl2/N2 Inductively Coupled Plasma Etching

    NASA Astrophysics Data System (ADS)

    Han, Yan-Jun; Xue, Song; Guo, Wen-Ping; Sun, Chang-Zheng; Hao, Zhi-Biao; Luo, Yi

    2003-10-01

    A systematic study on the effect of inductively coupled plasma (ICP) etching on n-type GaN is presented. The optical and electrical properties and surface stoichiometry of n-type GaN are evaluated using room-temperature photoluminescence (PL) and current-voltage (I-V) characteristic measurements, and X-ray photoelectron spectroscopy (XPS), respectively. Investigation of the effect of additive gas (N2 and Ar) and RF power on these characteristics has also been carried out. It is shown that the decrease in the O/Ga ratio after ICP etching can suppress the deterioration of the near-band-edge emission intensity. Furthermore, N vacancy (VN) with a shallow donor nature and Ga vacancy (VGa) with a deep acceptor nature are generated after ICP etching upon the addition of Ar and N2 to Cl2 plasma, respectively. Lower ohmic contact resistance could be obtained when VN or ion-bombardment-induced defect is dominant at the surface. Improved etching conditions have been obtained based on these results.

  14. Methods for assessing pre-induction cervical ripening

    PubMed Central

    Ezebialu, Ifeanyichukwu U; Eke, Ahizechukwu C; Eleje, George U; Nwachukwu, Chukwuemeka E

    2015-01-01

    readily available and affordable in resource-poor settings where the sequelae of labour and its management is prevalent. The evidence in this review is based on two studies that enrolled a small number of women and there is insufficient evidence to support the use of TVUS over the standard digital vaginal assessment in pre-induction cervical ripening. Further adequately powered RCTs involving TVUS and the Bishop score and including other methods of pre-induction cervical ripening assessment are warranted. Such studies need to address uterine rupture, perinatal mortality, optimal cut-off value of the cervical length and Bishop score to classify women as having favourable or unfavourable cervices and cost should be included as an outcome. PLAIN LANGUAGE SUMMARY Methods for assessing pre-induction cervical ripening, the ability of the cervix to open in response to spontaneous uterine contractions In this review, researchers from The Cochrane Collaboration examined a comparison between the Bishop score and any other method for checking pre-induction cervical ripening in women admitted for induction of labour. The Bishop score is the traditional method of determining the readiness of the cervix to open (dilate) before labour induction. It also assesses the position, softening and shortening of the cervix, and the location of the presenting part of the baby. After searching for relevant trials up to 31 March 2015, we included two randomised controlled trials that recruited 234 pregnant women. What are the methods for pre-induction softening of the neck of womb and why is it important to soften the neck of womb before induction of labour? Induction of labour is the non-natural process of starting labour in a pregnant woman after the age the baby is more likely to survive following delivery, when there is no clear evidence of serious onset of labour and the membranes covering the baby are unruptured. Induction of labour may be needed because of a problem in the mother, or her

  15. A wireless power transmission system for implantable devices in freely moving rodents.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June

    2014-08-01

    Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.

  16. An explosively driven high-power microwave pulsed power system.

    PubMed

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  17. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  18. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  19. Planarian D-amino acid oxidase is involved in ovarian development during sexual induction.

    PubMed

    Maezawa, Takanobu; Tanaka, Hiroyuki; Nakagawa, Haruka; Ono, Mizuki; Aoki, Manabu; Matsumoto, Midori; Ishida, Tetsuo; Horiike, Kihachiro; Kobayashi, Kazuya

    2014-05-01

    To elucidate the molecular mechanisms underlying switching from asexual to sexual reproduction, namely sexual induction, we developed an assay system for sexual induction in the hermaphroditic planarian species Dugesia ryukyuensis. Ovarian development is the initial and essential step in sexual induction, and it is followed by the formation of other reproductive organs, including the testes. Here, we report a function of a planarian D-amino acid oxidase, Dr-DAO, in the control of ovarian development in planarians. Asexual worms showed significantly more widespread expression of Dr-DAO in the parenchymal space than did sexual worms. Inhibition of Dr-DAO by RNAi caused the formation of immature ovaries. In addition, we found that feeding asexual worms 5 specific D-amino acids could induce the formation of immature ovaries that are similar to those observed in Dr-DAO knockdown worms, suggesting that Dr-DAO inhibits the formation of immature ovaries by degrading these D-amino acids. Following sexual induction, Dr-DAO expression was observed in the ovaries. The knockdown of Dr-DAO during sexual induction delayed the maturation of the other reproductive organs, as well as ovary. These findings suggest that Dr-DAO acts to promote ovarian maturation and that complete sexual induction depends on the production of mature ovaries. We propose that Dr-DAO produced in somatic cells prevents the onset of sexual induction in the asexual state, and then after sexual induction, the female germ cells specifically produce Dr-DAO to induce full maturation. Therefore, Dr-DAO produced in somatic and female germline cells may play different roles in sexual induction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    PubMed

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.