Sample records for additional methyl group

  1. Addition reaction of methyl cinnamate with 2-amino-4- nitrophenol

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Rakhman Wibowo, Fajar; Pranoto; Robingatun Isnaeni, Siti; Ratna Kumala Sari, Meiyanti; Handayani, Sekar

    2016-02-01

    A novel compound which have one N-H fragment and nitrophenyl group has been designed and synthesized from cinnamaldehyde. The reaction was conducted in 3 step reactions to give the final product. Firstly, cinnamaldehyde was converted into cinnamic acid, which was then esterified with methyl alcohol to obtained methyl cinnamate. The last step was the addition reaction between methyl cinnamate and 2-amino-4-nitrophenol to give a cinnamaldehyde derivative, namely methyl-3-(2-hidroksi-5-nitrophenyl amino)-3- phenylpropanoate.

  2. Thermal coefficients of the methyl groups within ubiquitin

    PubMed Central

    Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan

    2012-01-01

    Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336

  3. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoelke, M.S.; Casper, J.M.; Ordal, G.W.

    1990-02-05

    The addition of attractant to Bacillus subtilis briefly exposed to radioactive methionine causes an increase of labeling of the methyl-accepting chemotaxis proteins. The addition of attractant to cells radiolabeled for longer times shows no change in the extent of methylation. Therefore, the increase in labeling for the briefly labeled cells is due to an increased turnover of methyl groups caused by attractant. All amino acids gave enhanced turnover. This turnover lasted for a prolonged time, probably spanning the period of smooth swimming caused by the attractant addition. Repellent did not affect the turnover when added alone or simultaneously with attractant.more » Thus, for amino acid attractants, the turnover is probably the excitatory signal, which is seen to extend long into or throughout the adaptation period, not just at the start of it.« less

  4. N-METHYL GROUPS IN BACTERIAL LIPIDS

    PubMed Central

    Goldfine, Howard; Ellis, Martha E.

    1964-01-01

    Goldfine, Howard (Harvard Medical School, Boston, Mass.), and Martha E. Ellis. N-methyl groups in bacterial lipids. J. Bacteriol. 87:8–15. 1964.—The ability of bacteria to synthesize lecithin was examined by measuring the incorporation of the methyl group of methionine into the water-soluble moieties obtained on acid hydrolysis of bacterial lipids. Of 21 species examined, mostly of the order Eubacteriales, only 2, Agrobacterium radiobacter and A. rhizogenes, incorporated the methyl group of methionine into lipid-bound choline. Evidence was also obtained for the formation of lipid-bound N-methylethanolamine and N,N′-dimethylethanolamine in these two organisms. Two other species, Clostridium butyricum and Proteus vulgaris, incorporated the methyl group of methionine into lipid-bound N-methylethanolamine, but did not appear to be able to further methylate these lipids to form lecithin. The results of this study lend further strength to the generalization that bacteria, with the exception of the genus Agrobacterium, are unable to synthesize lecithin. PMID:14102879

  5. Maternal Methyl-Group Donor Intake and Global DNA (Hydroxy)Methylation before and during Pregnancy.

    PubMed

    Pauwels, Sara; Duca, Radu Corneliu; Devlieger, Roland; Freson, Kathleen; Straetmans, Dany; Van Herck, Erik; Huybrechts, Inge; Koppen, Gurdun; Godderis, Lode

    2016-08-06

    It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxyl)methylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring's Epigenome) study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxy)methylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline) using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxy)methylation levels were highest pre-pregnancy and at weeks 18-22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04) and hydroxymethylation (p = 0.04). A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxy)methylation percentage in weeks 11-13 and weeks 18-22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxy)methylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy.

  6. Maternal Methyl-Group Donor Intake and Global DNA (Hydroxy)Methylation before and during Pregnancy

    PubMed Central

    Pauwels, Sara; Duca, Radu Corneliu; Devlieger, Roland; Freson, Kathleen; Straetmans, Dany; Van Herck, Erik; Huybrechts, Inge; Koppen, Gurdun; Godderis, Lode

    2016-01-01

    It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxyl)methylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring’s Epigenome) study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxy)methylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline) using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxy)methylation levels were highest pre-pregnancy and at weeks 18–22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04) and hydroxymethylation (p = 0.04). A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxy)methylation percentage in weeks 11–13 and weeks 18–22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxy)methylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy. PMID:27509522

  7. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    PubMed

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  8. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  9. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation.

    PubMed

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; A S Langie, Sabine; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-02

    Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were enrolled in the MAternal Nutrition and Offspring's Epigenome (MANOE) study. The intake of methyl-group donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid supplementation more than 6 months before conception compared with 3-6 months before conception (34.6 ± 6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA methylation as compared with stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P = 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current advice.

  10. Methyl group reorientation under ligand binding probed by pseudocontact shifts.

    PubMed

    Lescanne, Mathilde; Ahuja, Puneet; Blok, Anneloes; Timmer, Monika; Akerud, Tomas; Ubbink, Marcellus

    2018-06-02

    Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.

  11. Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent.

    PubMed

    Herrera, Marvin Ustaris; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki

    2013-12-01

    The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Methyl group transfer upon gas phase decomposition of protonated methyl benzoate and similar compounds.

    PubMed

    Frański, Rafał; Gierczyk, Błażej; Zalas, Maciej; Jankowski, Wojciech; Hoffmann, Marcin

    2018-05-01

    Gas phase decompositions of protonated methyl benzoate and its conjugates have been studied by using electrospray ionization-collision induced dissociation-tandem mass spectrometry. Loss of CO 2 molecule, thus transfer of methyl group, has been observed. In order to better understand this process, the theoretical calculations have been performed. For methyl benzoate conjugates, it has been found that position of substituent affects the loss of CO 2 molecule, not the electron donor/withdrawing properties of the substituent. Therefore, electrospray ionization-mass spectrometry in positive ion mode may be useful for differentiation of isomers of methyl benzoate conjugates. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Distributions of methyl group rotational barriers in polycrystalline organic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckmann, Peter A., E-mail: pbeckman@brynmawr.edu, E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298

    We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements,more » on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 2–12 kJ mol{sup −1} range.« less

  14. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins.

    PubMed

    Mas, Guillaume; Crublet, Elodie; Hamelin, Olivier; Gans, Pierre; Boisbouvier, Jérôme

    2013-11-01

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  15. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  16. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive.

    PubMed

    Baba, Toshiaki; Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups ( p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.

  17. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive

    PubMed Central

    Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC. PMID:27981048

  18. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis.

    PubMed

    Laffaire, Julien; Everhard, Sibille; Idbaih, Ahmed; Crinière, Emmanuelle; Marie, Yannick; de Reyniès, Aurelien; Schiappa, Renaud; Mokhtari, Karima; Hoang-Xuan, Khê; Sanson, Marc; Delattre, Jean-Yves; Thillet, Joëlle; Ducray, François

    2011-01-01

    Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.

  19. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis

    PubMed Central

    Laffaire, Julien; Everhard, Sibille; Idbaih, Ahmed; Crinière, Emmanuelle; Marie, Yannick; de Reyniès, Aurelien; Schiappa, Renaud; Mokhtari, Karima; Hoang-Xuan, Khê; Sanson, Marc; Delattre, Jean-Yves; Thillet, Joëlle; Ducray, François

    2011-01-01

    Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis. PMID:20926426

  20. Role of methyl group number on SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2015-11-01

    Substitution of methyl groups onto the aromatic ring determines the SOA formation from the aromatic hydrocarbon precursor. This study links the number of methyl groups on the aromatic ring to SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions (HC / NO > 10 ppb C : ppb). Aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests as more methyl groups are attached on the aromatic ring, SOA products from these aromatic hydrocarbons become less oxidized per mass/carbon.

  1. Wave Properties of a Methyl Group under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Bernatowicz, Piotr; Szymański, Sławomir

    2002-06-01

    Liquid-phase NMR studies on hindered rotation of methyl group in a 9-methyltriptycene derivative are reported where the standard, classical jump model of the methyl dynamics proves inadequate. On the other hand, accurate reproduction of the observed NMR line shape effects is afforded by the use of a recent quantum mechanical model in which the relevant methyl dynamics are described in terms of two quantum rate (coherence-damping) processes, characterized by two different rate constants. For ambient temperatures, such a direct evidence of the quantum nature of a rate process generally believed to be classical seems to have no precedence in the literature.

  2. Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced liver injury.

    PubMed

    Osna, Natalia A; Feng, Dan; Ganesan, Murali; Maillacheruvu, Priya F; Orlicky, David J; French, Samuel W; Tuma, Dean J; Kharbanda, Kusum K

    2016-10-14

    To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage. Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted. Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol. To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage.

  3. Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced liver injury

    PubMed Central

    Osna, Natalia A; Feng, Dan; Ganesan, Murali; Maillacheruvu, Priya F; Orlicky, David J; French, Samuel W; Tuma, Dean J; Kharbanda, Kusum K

    2016-01-01

    AIM To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage. METHODS Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted. RESULTS Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol. CONCLUSION To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage. PMID:27784962

  4. Is there an attractive interaction between two methyl groups?

    NASA Astrophysics Data System (ADS)

    Zhuo, Hong-Ying; Jiang, Li-Xia; Li, Qing-Zhong; Li, Wen-Zuo; Cheng, Jian-Bo

    2014-07-01

    A weak interaction was found between the two methyl groups in the complexes of XCH3-CH3BH2 (X = F, CN, NO2, HCO, and SOCH3), where the former methyl group acts as a Lewis acid and the latter one as a Lewis base. This directional interaction has small interaction energy, accompanied with some small changes in geometry and spectroscopy. Stronger Lewis acids FYH3 (Y = Si, Ge, and Sn) as well as Lewis bases CH3BeH and CH3MgH were compared. Dispersion energy is the major source of attraction and electrostatic contribution grows up to exceed dispersion energy for stronger interactions.

  5. Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2016-02-01

    Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO > 10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from monocyclic aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low-NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from monocyclic aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests that, as more methyl groups are attached on the aromatic ring, SOA products from these monocyclic aromatic hydrocarbons become less oxidized per mass/carbon on the basis of SOA yield or chemical composition.

  6. Methylation of inorganic arsenic in different mammalian species and population groups.

    PubMed

    Vahter, M

    1999-01-01

    Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents

  7. Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12

    PubMed Central

    Ragsdale, Stephen W.

    2011-01-01

    This review focuses on the reaction mechanism of enzymes that use B12 and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B12 and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B12-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B12 macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B12 is generated and maintained. PMID:18804699

  8. Effect of methyl groups on conformational properties of small ionized comb-like polyelectrolytes at the atomic level.

    PubMed

    Zhao, Hongxia; Liu, Jiaping; Ran, Qianping; Yang, Yong; Shu, Xin

    2017-03-01

    Comb-like polycarboxylate ether (PCE) molecules with different content of methyl groups substituted on backbone and different location of methyl groups substituted on the side chains, respectively, were designed and were studied in explicit salt solutions by all-atom molecular dynamics simulations. Methyl groups substituted on the backbone of PCE have a great effect on the conformation of PCE. Stiffness of charged backbone was not only affected by the rotational freedom but also the electrostatic repulsion between the charged COO - groups. The interaction of counterions (Na + ) with COO - groups for PCE3 (with part of AA substituted by MAA on the backbone) was stronger and the screen effect was great, which decided the smaller size of PCE3. The interaction between water and COO - groups was strong regardless of the content of AA substituted by MAA on the backbone. The effect of methyl groups substituted on the different location of side chains on the conformation of PCE was less than that of methyl groups substituted on the backbone. The equilibrium sizes of the four PCE molecules with methyl groups substituted on the side chains were similar. Graphical Abstract Effect of methyl groups on conformational properties of small ionized comb-like polyelectrolytes at the atomic level.

  9. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  10. Influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane

    NASA Astrophysics Data System (ADS)

    Zhong, Mi; Liu, Qi-Jun; Qin, Han; Jiao, Zhen; Zhao, Feng; Shang, Hai-Lin; Liu, Fu-Sheng; Liu, Zheng-Tang

    2017-06-01

    First-principles calculations were employed to investigate the influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane. The obtained structural parameters based on the GGA-PB E +G calculations are in good agreement with theoretical and experimental data. The rotation of methyl group appears under pressure, which influences the mechanical, thermal properties and sensitivity of solid NM. The anisotropy of elasticity, sound velocity and Debye temperature under pressure have been shown, which are related to the thermal properties of solid NM. The enhanced sensitivity with the increasing pressure has been discussed and the change of the most likely transition path is associated with methyl group.

  11. Role of cholesterol 10-methyl group and effect of "extra" 14-methyl group on silkworm growth and development.

    PubMed

    Mamiya, M; Takahashi, K; Eguchi, S; Morisaki, M

    1989-07-01

    In order to establish the functional importance of the 10-methyl group of cholesterol and the planarity of the steroid ring, silkworms (Bombyx mori) were reared on an artificial diet containing 19-norcholesterol (1), 14 alpha-methylcholesterol (3) or 19,19-difluorocholesterol (2). The former two sterols (1 and 3) only partially satisfied the silkworm sterol requirement; growth and development were seriously retarded. The fluorinated sterol (2) was much more deleterious and was totally inadequate in meeting the sterol requirement.

  12. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    NASA Astrophysics Data System (ADS)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  13. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.

    PubMed

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  14. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications.

    PubMed

    Barat, Ana; Ruskin, Heather J; Byrne, Annette T; Prehn, Jochen H M

    2015-11-23

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  15. Novel methyl transfer during chemotaxis in Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoelke, M.S.; Kirby, J.R.; Ordal, G.W.

    1989-06-27

    If Bacillus subtilis is incubated in radioactive methionine in the absence of protein synthesis, the methyl-accepting chemotaxis proteins (MCPs) become radioactively methylated. If the bacteria are further incubated in excess nonradioactive methionine (cold-chased) and then given the attractant aspartate, the MCPs lose about half of their radioactivity due to turnover, in which lower specific activity methyl groups from S-adenosylmethionine (AdoMet) replace higher specific activity ones. Due to the cold-chase, the specific activity of the AdoMet pool is reduced at least 2-fold. If, later, the attractant is removed, higher specific activity methyl groups return to the MCPs. Thus, there must existmore » an unidentified methyl carrier than can reversibly receive methyl groups from the MCPs. In a similar experiment, labeled cells were transferred to a flow cell and exposed to addition and removal of attractant and of repellent. All four kinds of stimuli were found to cause methanol production. Bacterial with maximally labeled MCPs were exposed to many cycles of addition and removal of attractant; the maximum amount of radioactive methanol was evolved on the third, not the first, cycle. This result suggests that there is a precursor-product relationship between methyl groups on the MCPs and on the unidentified carrier, which might be the direct source of methanol. However, since no methanol was produced when a methyltransferase mutant, whose MCPs were unmethylated, was exposed to addition and removal of attractant or repellent, the methanol must ultimately derive from methylated MCPs.« less

  16. Low-temperature methyl group dynamics of hexamethylbenzene in crystalline and glassy matrices as studied by 2H NMR

    NASA Astrophysics Data System (ADS)

    Börner, K.; Diezemann, G.; Rössler, E.; Vieth, H. M.

    1991-07-01

    2H NMR spectra of hexamethylbenzene (HMB) in protonated crystalline and amorphous matrices at low temperatures are presented. All spectra reveal lineshape changes which can be attributed to methyl group tunnelling. Compared to neat HMB, a drastic increase of the tunnelling frequency is found for all systems. This indicates that the hindering potential originates predominantly from intermolecular forces. We studied the temperature dependence of these spectra and the spin-lattice relaxation in order to exclude a distribution of motional correlation times describing a thermally activated process. In addition, we find a distortion of the methyl tetrahedron.

  17. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    PubMed Central

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  18. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype. PMID:27600244

  19. Implementing a noise protected logical qubit in methyl groups via microwave irradiation

    NASA Astrophysics Data System (ADS)

    Annabestani, Razieh; Cory, David G.

    2018-02-01

    We propose a proof-of-principle experiment to encode one logical qubit in noise protected subspace of three identical spins in a methyl group. The symmetry analysis of the wavefunction shows that this fermionic system exhibits a symmetry correlation between the spatial degree of freedom and the spin degree of freedom. We show that one can use this correlation to populate the noiseless subsystem by relying on the interaction between the electric dipole moment of the methyl group with a circularly polarized microwave field. Logical gates are implemented by controlling both the intensity and phase of the applied field.

  20. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  1. Influence of methyl and propyl groups on the vibrational spectra of two imidazolium ionic liquids and their non-ionic precursors

    NASA Astrophysics Data System (ADS)

    Haddad, Boumediene; Mokhtar, Drai; Goussem, Mimanne; Belarbi, El-habib; Villemin, Didier; Bresson, Serge; Rahmouni, Mustapha; Dhumal, Nilesh R.; Kim, Hyung J.; Kiefer, Johannes

    2017-04-01

    Imidazolium-based ionic liquids (ILs) are usually synthesized using non-ionic imidazole compounds as precursors. While the ILs have been extensively studied in the past, the precursors was not paid much attention to. The structural analysis of the precursors, however, may offer an opportunity to better understand the behavior of the ionic compounds of interest. In this paper, a comparative study of two ionic liquids and their imidazole precursors is presented. The precursors 1-methylimidazole [1-MIM] and 1,2-dimethylimidazole [1,2-DMIM] are compared in order to explain the influences of the methyl group at the C(2) position (methylation). Since the imidazole compounds are non-ionic, the spectroscopic properties of [1-MIM] and [1,2-DMIM] are not affected by cation-anion interactions. In addition, the products obtained by alkylation using propyl iodide leading to the corresponding IL compounds 1-methyl-3-propylimidazolium iodide [1-MPrIM+][I-] and 1,2-dimethyl-3-propylimidazolium iodide [1,2-DMPrIM+][I-] were studied. For this purpose, vibrational spectroscopy in terms of FT-Raman and FTIR in the wavenumber range from [45 to 3500 cm-1] and from [600 to 4000 cm-1], respectively, was performed. Moreover, to aid the spectral assignment, density functional theory (DFT) calculations were carried out. The aim was to investigate the vibrational structure, to understand the effects of the propyl group at the N(3) and of the methyl group at the C(2) position, and to analyze the resulting cation-anion interactions. The data indicate that the iodide ion predominantly interacts with the C(2)sbnd H group via hydrogen bonding. Upon methylation, the C(4/5)sbnd H moiety becomes the main interaction site. However, an interaction takes place only with one of the two hydrogen atoms resulting in a split of the initially degenerate CH stretching modes.

  2. DNA methylation and methylation polymorphism in ecotypes of Jatropha curcas L. using methylation-sensitive AFLP markers.

    PubMed

    Mastan, Shaik G; Rathore, Mangal S; Bhatt, Vacha D; Chikara, J; Ghosh, A

    2014-12-01

    We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas.

  3. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  4. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding.

    PubMed

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-07-26

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3.

  5. Side Group Addition to the PAH Coronene by UV Photolysis in Cosmic Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Elsila, Jamie E.; Dworkin, Jason P.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Ultraviolet photolysis of various ice mixtures at low temperature and pressure caused the addition of amino (-NH2), methyl (-CH3), methoxy (-OCH3), and cyano (-CN) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C22H12). The implications of these results for interstellar and meteoritic chemistry are discussed. Previously only simple PAH photo-oxidation had been reported. This work represents the first experimental evidence that ice photochemistry may have contributed to aromatics bearing carbon and nitrogen containing side groups that are detected in primitive meteorites and interplanetary dust particles. Furthermore, these results suggest a wider range of modified PAHs should be expected in interstellar lees and materials predating solar system formation.

  6. Diastereoselective Additions of Allylmetal Reagents to Free and Protected syn-α,β-Dihydroxyketones Enable Efficient Synthetic Routes to Methyl Trioxacarcinoside A

    PubMed Central

    Smaltz, Daniel J.; Švenda, Jakub

    2012-01-01

    Two routes to the 2,6-dideoxysugar methyl trioxacarcinoside A are described. Each was enabled by an apparent α-chelation-controlled addition of an allylmetal reagent to a ketone substrate containing a free α-hydroxyl group and a β-hydroxyl substituent, either free or protected as the corresponding di-tert-butylmethyl silyl ether. Both routes provide practical access to gram-quantities of trioxacarcinose A in a form suitable for glycosidic coupling reactions. PMID:22404560

  7. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures

    PubMed Central

    Galanter, Joshua M; Gignoux, Christopher R; Oh, Sam S; Torgerson, Dara; Pino-Yanes, Maria; Thakur, Neeta; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Avila, Pedro C; Brigino-Buenaventura, Emerita; LeNoir, Michael A; Meade, Kelly; Serebrisky, Denise; Rodríguez-Cintrón, William; Kumar, Rajesh; Rodríguez-Santana, Jose R; Seibold, Max A; Borrell, Luisa N; Burchard, Esteban G; Zaitlen, Noah

    2017-01-01

    Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation. DOI: http://dx.doi.org/10.7554/eLife.20532.001 PMID:28044981

  8. Synthesis of chlorophyll-a derivatives methylated in the 3-vinyl group and their intrinsic site energy.

    PubMed

    Tamiaki, Hitoshi; Tsuji, Kazuki; Kuno, Masaki; Kimura, Yuki; Watanabe, Hiroaki; Miyatake, Tomohiro

    2016-07-01

    Wittig reaction of methyl pyropheophorbide-d possessing the 3-formyl group gave readily methyl pyropheophorbides-a bearing a variety of 3-alkenyl groups as semi-synthetic models of chlorophyll-a. The 3-substituents rotated around the C3-C3(1) bond from the coplanar conformation with the chlorin π-system, moving the redmost visible absorption maxima to a shorter wavelength. The model experiments showed that natural chlorophyll-a carrying the 3-vinyl group would take a similar rotamer to control its intrinsic site energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.

    PubMed

    Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A

    2017-09-01

    We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique

    NASA Astrophysics Data System (ADS)

    Peng, Chong; Sui, Zhenghong; Zhou, Wei; Hu, Yiyi; Mi, Ping; Jiang, Minjie; Li, Xiaodong; Ruan, Xudong

    2018-06-01

    Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.

  11. Electrochemical biosensing strategies for DNA methylation analysis.

    PubMed

    Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-08-15

    DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  13. Metal-free annulation of arenes with 2-aminopyridine derivatives: the methyl group as a traceless non-chelating directing group.

    PubMed

    Manna, Srimanta; Matcha, Kiran; Antonchick, Andrey P

    2014-07-28

    A novel annulation reaction between 2-aminopyridine derivatives and arenes under metal-free conditions is described. The presented intermolecular transformation provided straightforward access to the important pyrido[1,2-a]benzimidazole scaffold under mild reaction conditions. The unprecedented application of the methyl group of methylbenzenes as a traceless, non-chelating, and highly regioselective directing group is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Aberrant DNA methylation patterns in diabetic nephropathy

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate whether global levels of DNA methylation status were associated with albuminuria and progression of diabetic nephropathy in a case-control study of 123 patients with type 2 diabetes- 53 patients with albuminuria and 70 patients without albuminuria. Methods The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood mononuclear cells to determine individual global DNA methylation status in two groups. Results Global DNA methylation levels were significantly higher in patients with albuminuria compared with those in normal range of albuminuria (p = 0.01). There were significant differences in global levels of DNA methylation in relation to albuminuria (p = 0.028) and an interesting pattern of increasing global levels of DNA methylation in terms of albuminuria severity. In patients with micro- and macro albuminuria, we found no significant correlations between global DNA methylation levels and duration of diabetes (p > 0.05). In both sub groups, there were not significant differences between global DNA methylation levels with good and poor glycaemic control (p > 0.05). In addition, in patients with albuminuria, no differences in DNA methylation levels were observed between patients with and without other risk factors including age, gender, hypertension, dyslipidaemia and obesity. Conclusions These data may be helpful in further studies to develop novel biomarkers and new strategies for clinical care of patients at risk of diabetic nephropathy. PMID:25028646

  15. Structure-activity relationships of sandalwood odorants: synthesis and odour of methyl-beta-santalol.

    PubMed

    Buchbauer, G; Zechmeister-Machhart, F; Weiss-Greiler, P; Wolschann, P

    1997-04-01

    The synthesis and odour properties of the new santalol analogue, methyl-beta-santalol, are described. The additional methyl group adjacent to the hydroxyl function of the standard molecule, beta-santalol, deprives the new compound of the sandalwood note. The synthesis and the odour evaluation of this compound supports the proposed model for sandalwood fragrance as it shows that the methyl group located at the osmophoric center prevents association of the molecule with the hypothetical receptor.

  16. Metabolic Interfaces of Mercury Methylation Proteins in Desulfovibrio sp. ND132

    NASA Astrophysics Data System (ADS)

    Wall, J. D.; Bridou, R.; Smith, S. D.; Mok, K.; Widner, F.; Johs, A.; Parks, J.; Pierce, E. M.; Elias, D. A.; Gilmour, C. C.; Taga, M.

    2015-12-01

    Two genes necessary for microbial production of the neurotoxin methylmercury have been identified; hgcA encoding a corrinoid methyltransferase and hgcB, a ferredoxin-like protein. To date, all microbes possessing orthologs of these genes that have been tested are capable of methylating mercury; whereas, organisms lacking hgcA and hgcB are not. Also of interest is the observation that confirmed mercury-methylating microbes are all considered anaerobes although not members of a specific phylogenetic group. They are found scattered in the genomes of methanogens, Firmicutes, and Deltaproteobacteria. Methylation has not been demonstrated to provide protection of the microbes to mercury exposure. To determine the source of evolutionary pressure for acquisition and maintenance of these genes, we are seeking to understand whether there is a second function of the proteins. We are seeking evidence for the metabolic source(s) of the methyl group and for competing reactions. We have found that deletion of the metH gene encoding a tetrahydrofolate methyltransferase in Desulfovibrio sp. ND132 decreases the mercury methylation capacity by ca. 95%, consistent with an interpretation that this enzyme is involved in the pathway for the methyl group for HgcA. In addition, the corrinoid present in HgcA and the MetH of ND132 is strictly dependent on nicotinate nucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase encoded by the cobT gene, linking methionine biosynthesis with mercury methylation at a second level. Additional methyl transferases have not been found to be necessary for this function. While earlier evidence was provided for an involvement of the CO dehydrogenase/acetylCoA synthase, this enzyme is not universally present in methylating strains unlike the pathway for methionine synthesis.

  17. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    PubMed

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  18. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  19. Identification of Differentially Methylated Sites with Weak Methylation Effects

    PubMed Central

    Tran, Hong; Zhu, Hongxiao; Wu, Xiaowei; Kim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Haak, David C.; Westwood, James H.; Zhang, Liqing

    2018-01-01

    Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with

  20. Structural and Kinetic Evidence for an Extended Hydrogen-Bonding Network in Catalysis of Methyl Group Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doukov,T.; Hemmi, H.; Drennan, C.

    The methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO{sub 2} fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH{sub 3}-H{sub 4}folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH{sub 3}-H{sub 4}folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead,more » an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH{sub 3}-H{sub 4}folate binding. An N199A variant exhibits only {approx}20-fold weakened affinity for CH{sub 3}-H{sub 4}folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.« less

  1. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS...

  2. Protein Arginine Methylation in Mammals: Who, What, and Why

    PubMed Central

    Bedford, Mark T.; Clarke, Steven G.

    2012-01-01

    The covalent marking of proteins by methyl group addition to arginine residues can promote their recognition by binding partners or can modulate their biological activity. A small family of gene products that catalyze such methylation reactions in eukaryotes (PRMTs) work in conjunction with a changing cast of associated subunits to recognize distinct cellular substrates. These reactions display many of the attributes of reversible covalent modifications such as protein phosphorylation or protein lysine methylation; however, it is unclear to what extent protein arginine demethylation occurs. Physiological roles for protein arginine methylation have been established in signal transduction, mRNA splicing, transcriptional control, DNA repair, and protein translocation. PMID:19150423

  3. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society

  4. Methyl group conformation and hydrogen bonds in proteins determined by neutron protein crystallography

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Atsushi; Shibata, Kouji; Tanaka, Ichiro; Niimura, Nobuo

    2009-02-01

    Using 'Hydrogen and Hydration in Proteins Data Base' (HHDB) that catalogs all H atom positions in biological macromolecules and in hydration water molecules that have been determined thus far by neutron macromolecular crystallography, methyl group conformation and hydrogen bonds (H.B.) in proteins are explored. It is found that most of the methyl groups belong to the stable staggered conformation but 11% of them seemed to be close to the eclipsed conformation. And geometrical consideration has been done for H.B. involved in α-helices. 125 H.B. were identified as donors for acceptor C dbnd O in the main chain α-helix. For these H.B., it is found that co-linear H.B. were rare, that hydrogen atoms seen from acceptors C dbnd O can localize upon certain arrangements, that H.B. are not parallel to the helix axis but rather inclined to C-terminal direction, and that hydrogen atoms except water are located inside, not outside of cylinders which the backbones of α-helices form.

  5. Effect of pressure on bilayer phase behavior of N-methylated di-O-hexadecylphosphatidylethanolamines: relevance of head-group modification on the bilayer interdigitation.

    PubMed

    Goto, Masaki; Aoki, Yuya; Tamai, Nobutake; Matsuki, Hitoshi

    2017-12-01

    The phase transitions of N-methylated di-O-hexadecylphosphatidylethanolamines (DHPE, DH-N-methyl-PE (DHMePE) and DH-N,N-dimethyl-PE (DHMe 2 PE)) were observed by differential scanning calorimetry (DSC) and fluorometry under atmospheric pressure and by light-transmittance measurements under high pressure. The DSC thermograms showed that the N-methylated DHPE bilayers underwent the phase transition from the gel phase to the liquid crystalline (L α ) phase under atmospheric pressure. The gel phase was identified by fluorometry as the lamellar gel (L β ) phase, and not interdigitated gel (L β I) phase. The gel/L α transition temperature increased with pressure while decreased stepwise with increasing polar head-group size. This stepwise depression of the transition temperature may be caused by the inverse-proportional hydrogen-bonding capabilities of the head-group to the head-group size. The thermodynamic quantities of the gel/L α transition were comparable for the N-methylated DHPE bilayers. The pressure-induced L β I phase was not found in these bilayers although the bilayer of di-O-hexadecylphosphatidylcholine (DHPC), which is a kind of N-methylated DHPEs, forms the L β I phase only by hydration under atmospheric pressure. Taking into account that the bilayers of diacyl-homologs of N-methylated DHPEs, N-methylated dipalmitoyl-PEs except for dipalmitoylphosphatidylcholine (DPPC), do not form the L β I phase in the whole pressure range investigated but the DPPC bilayer forms the L β I phase under high pressure, we can say that the interdigitation requires weaker interaction between large-sized head groups like the bulky choline group. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Three-Dimensional Mapping of Microenvironmental Control of Methyl Rotational Barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hembree, William I; Baudry, Jerome Y

    2011-01-01

    Sterical (van der Waals-induced) rotational barriers of methyl groups are investigated theoretically, using ab initio and empirical force field calculations, for various three-dimensional microenvironmental conditions around the methyl group rotator of a model neopentane molecule. The destabilization (reducing methyl rotational barriers) or stabilization (increasing methyl rotational barriers) of the staggered conformation of the methyl rotator depends on a combination of microenvironmental contributions from (i) the number of atoms around the rotator, (ii) the distance between the rotator and the microenvironmental atoms, and (iii) the dihedral angle between the stator, rotator, and molecular environment around the rotator. These geometrical criteria combinemore » their respective effects in a linearly additive fashion, with no apparent cooperative effects, and their combination in space around a rotator may increase, decrease, or leave the rotator s rotational barrier unmodified. This is exemplified in a geometrical analysis of the alanine dipeptide crystal where microenvironmental effects on methyl rotators barrier of rotation fit the geometrical mapping described in the neopentane model.« less

  7. Methylation of zebularine investigated using density functional theory calculations.

    PubMed

    Selvam, Lalitha; Chen, Fang Fang; Wang, Feng

    2011-07-30

    Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1-(β-D-ribofuranosyl)-2-pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1-(β-D-ribofuranosyl)-5-methyl-2-pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital-based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. Copyright © 2011 Wiley Periodicals, Inc.

  8. NMR lineshape equations for hindered methyl group: a comparison of the semi-classical and quantum mechanical models

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    2003-09-01

    The semiclassical and quantum mechanical NMR lineshape equations for a hindered methyl group are compared. In both the approaches, the stochastic dynamics can be interpreted in terms of a progressive symmetrization of the spin density matrix. However, the respective ways of achieving the same limiting symmetry can be remarkably different. From numerical lineshape simulations it is inferred that in the regime of intermediate exchange, where the conventional theory predicts occurrence of a single Lorentzian, the actual spectrum can have nontrivial features. This observation may open new perspectives in the search for nonclassical effects in the stochastic behavior of methyl groups in liquid-phase NMR.

  9. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  10. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    PubMed

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  11. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    PubMed

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Aberrant Methylation-Mediated Suppression of APAF1 in Myelodysplastic Syndrome.

    PubMed

    Zaker, Farhad; Nasiri, Nahid; Amirizadeh, Naser; Razavi, Seyed Mohsen; Yaghmaie, Marjan; Teimoori-Toolabi, Ladan; Maleki, Ali; Bakhshayesh, Masoumeh

    2017-04-01

    Background: Myelodysplastic syndromes (MDSs) include a diverse group of clonal bone marrow disorders characterized by ineffective hematopoiesis and pancytopenia. It was found that down regulation of APAF1, a putative tumor suppressor gene (TSG), leads to resistance to chemotherapy and disease development in some cancers. In this study, we investigated the relation of APAF1 methylation status with its expression and clinicopathological factors in myelodysplastic syndrome (MDS) patients. Materials and Methods: Methylation Sensitive-High Resolution Melting Curve Analysis (MS-HRM) was employed in studying the methylation of CpG islands in the APAF1promoter region in MDS. Gene expression was analyzed by using real time RT-PCR. Results: 42.6% of patient samples were methylated in promoter region of APAF1analyzed, while methylation of the gene was not seen in controls (P<0.05). Methylation of APAF1was significantly associated with the suppression of its mRNA expression (P=0.00). The methylation status of APAF1in advanced-stage MDS patients (80%) was significantly higher than that of the early-stage MDS patients (28.2%) (P=0.001). The difference in frequency of hypermethylatedAPAF1 gene was significant between good (37.5%) and poor (85.71%) cytogenetic risk groups (P=0.043). In addition, a higher frequency of APAF1hypermethylation was observed in higher-risk MDS group (69.2%) compared to lower-risk MDS group (34.14%) (P=0.026). Conclusion: Our study indicated that APAF1hypermethylation in MDS was associated to high-risk disease classified according to the IPSS, WHO and cytogenetic risk.

  13. Influence of methyl functional groups on the stability of cubane carbon cage

    NASA Astrophysics Data System (ADS)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2016-07-01

    We present a quantum-chemical study to elucidate the structure, energetics and stability of isolated polymethylcubane molecules C8H8-q(CH3)q. The results obtained by means of originally developed nonorthogonal tight-binding approach are in good agreement with the existed experimental data for solid octamethylcubane C8(CH3)8. The isomerization mechanisms for polymethylcubane family are studied in detail and the minimum energy barriers' heights preventing the decomposition are calculated. The temperature dependence of octamethylcubane molecule lifetime to the decomposition moment was determined by direct molecular dynamics simulation. It is shown that methyl groups destabilize the cubic carbon cage, but less than nitro groups.

  14. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH 3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH 2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H eliminationmore » to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr 3+ cations.« less

  15. Structure, function and carcinogenicity of metabolites of methylated and non-methylated polycyclic aromatic hydrocarbons: a comprehensive review.

    PubMed

    Flesher, James W; Lehner, Andreas F

    2016-01-01

    The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.

  16. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... § 300.308 Additional group members. The determination of whether a child suspected of having a specific...

  17. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... § 300.308 Additional group members. The determination of whether a child suspected of having a specific...

  18. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... § 300.308 Additional group members. The determination of whether a child suspected of having a specific...

  19. DNA methylation-based variation between human populations.

    PubMed

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  20. Sequential Aldol Condensation – Transition Metal-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    PubMed Central

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-01-01

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1′-spirobiindane-7,7′-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. PMID:21417359

  1. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  2. Phenylethylamine N-methylation by human brain preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosnaim, A.D.; Callaghan, O.H.; Wolf, M.E.

    Alterations in the brain metabolism of biogenic amines has been postulated to play a role in the pathophysiology of several psychiatric disorders. There is some evidence suggesting schizogenic properties for some abnormal neuroamine methylated derivatives. The authors now report that postmortem human brain preparations, obtained from the putamen and thalamus, convert phenylethylamine (PEA) to its behaviorally active derivative N-methyl PEA, a reaction which is carried out by the 100,000 xg supernatant (in presence of 1 x 10 /sup -5/M pargyline) and enhanced by the addition of NADPH. PEA N-methylation occurred in schizophrenics as well as in sex and age matchedmore » controls. The formation of increased amounts of (/sup 3/H-) or (/sup 14/C-) N-methyl PEA when incubating either cold amine and /sup 3/H-SAM or 1-/sup 14/C PEA and cold SAM, respectively, indicates that SAM is a methyl group donor in this reaction. They will discuss the physiological and pharmacological implications of these results.« less

  3. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    PubMed

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Equivalence of the Methyl Groups in Puckered 3,3-DIMETHYL Oxetane

    NASA Astrophysics Data System (ADS)

    Macario, Alberto; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    The spectroscopic study of molecules with large amplitude vibrations have led to reconsider the concept of molecular structure. Sometimes identifying definite bond lengths and angles is not enough to reproduce the experimental data so one must have information on the large amplitude molecular vibration potential energy function and dynamics. 3,3-dimethyloxetane (DMO) has non-planar ring equilibrium configuration and a double minimum potential function for ring-puckering with a barrier of 47 cm-1. The observation of endocyclic 13C and 18O monosubstituted isotopologues allow to conclude that the ring is puckered. However an interesting feature was observed for the 13C substitutions at the methyl carbon atoms. While two different axial and equatorial 13C-methyl groups spectra are predicted from a rigid non-planar ring DMO model, only one species was found. The observed rotational transitions appear at a frequency close to the average of the frequencies predicted for each isotopologue. The observed lines have the same intensity as that found for the 13C_α isotopomer and double that that found for the 13C_β isotopomer.^c This behaviour evidences that the two methyl groups of DMO are equivalent as could be expected for a planar ring. In this work we show how consideration of the potential function and the path for ring puckering motion to calculate the proper kinetic energy terms allow to reproduce the experimental results. Ab initio computations at the CCSD/6-311++G(d,p) level, tested on related systems, have been done for this purpose. J. A. Duckett, T. L. Smithson, and H. Wieser, J. Mol. Spectrosc. 1978, 69 , 159; J. Mol. Struct. 1979, 56, 157 J. C. López, A. G. Lesarri, R. M. Villamañán and J. L. Alonso, J. Mol. Spectrosc. 1990, 141, 231 R. Sánchez, S. Blanco, A. Lesarri, J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2005, 7, 1157

  5. Spectroscopic studies of STZ-induced methylated-DNA in both in vivo and in vitro conditions

    NASA Astrophysics Data System (ADS)

    Bathaie, S. Z.; Sedghgoo, F.; Jafarnejad, A.; Farzami, B.; Khayatian, M.

    2008-12-01

    Alkylating agents after formation of DNA adduct not only posses their harmful role on living cells but also can transfer this information to the next generation. Different techniques have been introduced to study the alkylated DNA, most of which are specific and designed for investigation of specific target DNA. But the exact differences between spectroscopic and functional properties of alkylated DNA are not seen in the literature. In the present study DNA was methylated using streptozotocin (STZ) by both in vitro and in vivo protocols, then methylated-DNA was investigated by various techniques. Our results show that (1) the binding of ethidium bromide as an intercalating dye decreases to methylated-DNA in comparison with normal DNA, (2) CD spectra of methylated-DNA show changes including a decrease in the positive band at 275 nm and a shift from 258 nm crossover to a longer wavelength, which is caused by reduction of water around it, due to the presence of additional hydrophobic methyl groups, (3) the stability of methylated-DNA against DTAB as a denaturant is decreased and (4) the enzyme-like activity of methylated-DNA in an electron transfer reaction is reduced. In conclusion, additional methyl groups not only protrude water around DNA, but also cause the loss of hydrogen bonding, loosening of conformation, preventing desired interactions and thus normal function of DNA.

  6. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    PubMed

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  7. Engineering of bacterial methyl ketone synthesis for biofuels.

    PubMed

    Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.

  8. Relationship between methylation status of RASSF2A gene promoter and endometriosis-associated ovarian cancer.

    PubMed

    Xia, Y; Xiong, N; Huang, Y

    2018-01-01

    Relationship between the methylation status of the RASSF2A gene promoter and endometriosis-associated ovarian cancer (EAOC) was explored. Between January 2013 and January 2016, tissue samples were collected from 30 patients diagnosed with ovarian endometriosis cyst (EC group), 30 patients diagnosed with ovarian endometrial adenocarcinoma (OEA group) and 30 patients diagnosed with ovarian clear cell carcinoma (OCC group). Additionally, 30 cases of normal endometrium tissues were collected for the control group. The methylation status of the RASSF2A promoter was evaluated by combined bisulfite restriction enzyme analysis (COBRA). RT-PCR was used to detect the expression level of RASSF2A mRNA in tissues. Relationship between methylation status and RASSF2A mRNA expression level and the patient age, tumor clinical stage, tumor grading and pathological type were analyzed. Results showed that in the OEA and OCC groups, the methylation degrees of the RASSF2A promoter were obviously higher than that of the other two groups. The expression level of RASSF2A mRNA in the OEA and OCC groups was lower than that of the other two groups. The methylation degree of the RASSF2A promoter was related to clinical staging and grading. No relationship between the methylation degree of the RASSF2A promoter and patient’s age and the pathological type of the tissue was detected. We concluded that the methylation status of the RASSF2A gene promoter could be considered an excellent indicator for early detection of ovarian cancers.

  9. In Search of the Perfect Photocage: Structure-Reactivity Relationships in meso-Methyl BODIPY Photoremovable Protecting Groups.

    PubMed

    Slanina, Tomáš; Shrestha, Pradeep; Palao, Eduardo; Kand, Dnyaneshwar; Peterson, Julie A; Dutton, Andrew S; Rubinstein, Naama; Weinstain, Roy; Winter, Arthur H; Klán, Petr

    2017-10-25

    A detailed investigation of the photophysical parameters and photochemical reactivity of meso-methyl BODIPY photoremovable protecting groups was accomplished through systematic variation of the leaving group (LG) and core substituents as well as substitutions at boron. Efficiencies of the LG release were evaluated using both steady-state and transient absorption spectroscopies as well as computational analyses to identify the optimal structural features. We find that the quantum yields for photorelease with this photocage are highly sensitive to substituent effects. In particular, we find that the quantum yields of photorelease are improved with derivatives with higher intersystem crossing quantum yields, which can be promoted by core heavy atoms. Moreover, release quantum yields are dramatically improved by boron alkylation, whereas alkylation in the meso-methyl position has no effect. Better LGs are released considerably more efficiently than poorer LGs. We find that these substituent effects are additive, for example, a 2,6-diiodo-B-dimethyl BODIPY photocage features quantum yields of 28% for the mediocre LG acetate and a 95% quantum yield of release for chloride. The high chemical and quantum yields combined with the outstanding absorption properties of BODIPY dyes lead to photocages with uncaging cross sections over 10 000 M -1 cm -1 , values that surpass cross sections of related photocages absorbing visible light. These new photocages, which absorb strongly near the second harmonic of an Nd:YAG laser (532 nm), hold promise for manipulating and interrogating biological and material systems with the high spatiotemporal control provided by pulsed laser irradiation, while avoiding the phototoxicity problems encountered with many UV-absorbing photocages. More generally, the insights gained from this structure-reactivity relationship may aid in the development of new highly efficient photoreactions.

  10. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous

  11. Additional conformer observed in the microwave spectrum of methyl vinyl ketone

    NASA Astrophysics Data System (ADS)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-05-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one). Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis resulted in V3 barrier heights of 433.8(1) and 376.6(2) cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species of both conformers were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  12. Introduction of a methyl group in alpha- or beta-position of 1-heteroarylethyl-4-phenylpiperazines affects their dopaminergic/serotonergic properties.

    PubMed

    Roglic, G; Andric, D; Kostic-Rajacic, S; Dukic, S; Soskic, V

    2001-12-01

    1-(2-Heteroarylalkyl)-4-phenylpiperazines containing methyl group in either the alpha- or the beta-position of the side alkyl chain were synthesized as racemic mixtures. They were evaluated for in vitro binding affinity at the D1 and D2 dopamine and 5-HT1A serotonin receptors using synaptosomal membranes of the bovine caudate nucleus and hippocampus, respectively, as a source of the corresponding receptors. Tritiated SCH 23390 (D1 receptor-selective), spiperone (D2 receptor-selective), and 8-OH-DPAT (5-HT1A receptor-selective) were employed as the radioligands. None of the new compounds expressed significant affinity for the D1 receptor. Introduction of the methyl group into the beta-position of the parent molecules increased the affinity for the D2 receptor (10b-13b), and decreased the affinity for the 5-HT1A receptor with the exception of imidazole (11b) which was a rather efficient displacer of 8-OH-DPAT. Most potent of the newly synthesized compounds in [3H]spiperone assay were compounds (+/-)6-[1-methyl-2- (4-phenylpiperazin-1-yl)-ethyl]-1,4-dihydroquinoxaline-2,3-dione (10b), Kd = 6.0 nM and (+/-)5-[1-methyl-2-(4-phenylpiperazin-1-yl)-ethyl]-1,3-dihydrobenzoimidazol- 2-thione (13b), Kd = 5.3 nM. However, compounds containing methyl group in alpha-position (10a-13a) of the parent molecules expressed a decreased affinity for the D2 receptor, while the affinity for the 5-HT1A receptor remained in the same range of concentrations as that of closely related achiral parent compounds (14-17) run in the same binding assays as references.

  13. Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.

    PubMed

    Thornton, Brett F; Horst, Axel; Carrizo, Daniel; Holmstrand, Henry

    2016-05-01

    Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    PubMed Central

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  15. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidi none to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  16. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  17. Identification of endometrial cancer methylation features using combined methylation analysis methods

    PubMed Central

    Trimarchi, Michael P.; Yan, Pearlly; Groden, Joanna; Bundschuh, Ralf; Goodfellow, Paul J.

    2017-01-01

    Background DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP) can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed. Methods Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA) were compared to MethylCap-seq data. Results Analysis of methylation in promoter CpG islands (CGIs) identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a “hypermethylator state.” High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA. Conclusion We identified a methylation signature for a

  18. Methylation of DNA

    PubMed Central

    Gold, Marvin; Gefter, Malcolm; Hausmann, Rudolph; Hurwitz, Jerard

    1966-01-01

    The methylated bases of DNA are formed by the transfer of the methyl group from S-adenosylmethionine to a polynucleotide acceptor. This transfer is catalyzed by highly specific enzymes which recognize a limited number of available sites in the DNA. The mechanism for the recognition is presently unknown. In some instances, there is evidence that other cellular components, such as lipopolysaccharides, can influence the methylation reaction. Certain bacteriophages induce new methylases upon infection of their hosts. Phage T3 is unique in establishing an environment in which methylation of neither the phage nor the host nucleic acid can occur. By superinfecting T3-infected cells with other phages, the latter can be obtained with methyl-deficient DNA. Although a great deal is known about the enzymology of the methylation reaction, and there appears to be a strong correlation between the in vitro and in vivo reactions, studies in which DNA is either supermethylated or totally unmethylated have not yielded any insight as to what the possible function of the methylated bases may be. PMID:5338563

  19. Complex methyl group and hydrogen-bonded proton motions in terms of the Arrhenius and Schrödinger equations.

    PubMed

    Latanowicz, L

    2008-01-01

    Equations for the temperature dependence of the spectral densities J(is)(m)(momega(I) +/-omega(T)), where m=1, 2, omega(I) and omega(T) are the resonance and tunnel splitting angular frequencies, in the presence of a complex motion, have been derived. The spin pairs of the protons or deuterons of the methyl group perform a complex motion consisting of three component motions. Two of them involve mass transportation over the barrier and through the barrier. They are characterized by k((H)) (Arrhenius) and k((T)) (Schrödinger) rate constants, respectively. The third motion causes fluctuations of the frequencies (nomega(I)+/-omega(T)) and it is related to the lifetime of the methyl spin at the energy level influenced by the rotor-bath interactions. These interactions induce rapid transitions, changing the symmetry of the torsional sublevels either from A to E or from E(a) to E(b). The correlation function for this third motion (k((omega)) rate constant) has been proposed by Müller-Warmuth et al. The spectral densities of the methyl group hindered rotation (k((H)), k((T)) and k((omega)) rate constants) differ from the spectral densities of the proton transfer (k((H)) and k((T)) rate constants) because three compound motions contribute to the complex motion of the methyl group. The recently derived equation [Formula: see text] , where [Formula: see text] and [Formula: see text] are the fraction and energy of particles with energies from zero to E(H), is taken into account in the calculations of the spectral densities. This equation follows from Maxwell's distribution of thermal energy. The spectral densities derived are applied to analyse the experimental temperature dependencies of proton and deuteron spin-lattice relaxation rate in solids containing the methyl group. A wide range of temperatures from zero Kelvin up to the melting point is considered. It has been established that the motion characterized by k((omega)) influences the spin-lattice relaxation up to the

  20. New Synthesis, Structure and Analgesic Properties of Methyl 1-R-4-Methyl-2,2-Dioxo-1H-2λ⁶,1-Benzothiazine-3-Carboxylates.

    PubMed

    Azotla-Cruz, Liliana; Lijanova, Irina V; Ukrainets, Igor V; Likhanova, Natalya V; Olivares-Xometl, Octavio; Bereznyakova, Natalya L

    2017-01-12

    According to the principles of the methodology of bioisosteric replacements a series of methyl 1-R-4-methyl-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylates has been obtained as potential analgesics. In addition, a fundamentally new strategy for the synthesis of compounds of this chemical class involving the introduction of N -alkyl substituent at the final stage in 2,1-benzothiazine nucleus already formed has been proposed. Using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry and X-ray diffraction analysis it has been proven that in the DMSO/K₂CO₃ system the reaction of methyl 4-methyl-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylate and alkyl halides leads to formation of N -substituted derivatives with good yields regardless of the structure of the alkylating agent. The peculiarities of NMR (¹Н and 13 С) spectra of the compounds synthesized, their mass spectrometric behavior and the spatial structure are discussed. In N -benzyl derivative the ability to form a monosolvate with methanol has been found. According to the results of the pharmacological testing conducted on the model of the thermal tail-flick it has been determined that replacement of 4-ОН-group in methyl 1-R-4-hydroxy-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylates for the methyl group is actually bioisosteric since all methyl 1-R-4-methyl-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylates synthesized demonstrated a statistically significant analgesic effect. The majority of the substances can inhibit the thermal pain response much more effective than piroxicam in the same dose. Under the same conditions as an analgesic the N- methyl-substituted analog exceeds not only piroxicam, but more active meloxicam as well. Therefore, it deserves in-depth biological studies on other experimental models.

  1. Clinical Significance of Retinoic Acid Receptor Beta Promoter Methylation in Prostate Cancer: A Meta-Analysis.

    PubMed

    Dou, MengMeng; Zhou, XueLiang; Fan, ZhiRui; Ding, XianFei; Li, LiFeng; Wang, ShuLing; Xue, Wenhua; Wang, Hui; Suo, Zhenhe; Deng, XiaoMing

    2018-01-01

    Retinoic acid receptor beta (RAR beta) is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa) remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues) were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR) and 95% confidence interval (CI) were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57). Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430). Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR) was relatively small (I2=11.3%, P=0.343). Although studies reported different rates for RAR beta promoter methylation in PCa tissues, the total analysis demonstrated that RAR beta promoter methylation

  2. A distinct group of CpG islands shows differential DNA methylation between replicas of the same cell line in vitro

    PubMed Central

    2013-01-01

    Background CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. Results We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. Conclusions Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics. PMID:24106769

  3. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation.

    PubMed

    Pusceddu, Irene; Herrmann, Markus; Kirsch, Susanne H; Werner, Christian; Hübner, Ulrich; Bodis, Marion; Laufs, Ulrich; Wagenpfeil, Stefan; Geisel, Jürgen; Herrmann, Wolfgang

    2016-08-01

    Deficiencies of folate, vitamins B12 and D are common age-related conditions. Vitamin B12 and folate are necessary for DNA methylation. Telomeres appear to be regulated by DNA methylation. Here, we study the effect of B vitamins supplementation on telomere length and global DNA methylation in a prospective study. In total, 60 elderly subjects were supplemented for 1 year with either vitamin B12, B6, folate, vitamin D and calcium (group A n = 31) or only vitamin D and calcium (group B n = 29). LINE-1 methylation, relative telomere length (T/S), vitamin B12, folate, homocysteine (tHcy) , 5-methyltetrahydrofolate (5-methylTHF), S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), cystathionine and vitamin D were quantified before and after supplementation. At baseline, tHcy was high, vitamin D was low, and T/S did not differ between groups A and B. Vitamin supplementation increased LINE-1 methylation in group A at site 317 but reduced LINE-1 methylation in group B at site 327. There was no correlation between T/S and LINE-1 methylation at baseline. Multiple backward regression analysis revealed baseline tHcy and 5-methylTHF are significant predictors of T/S. After supplementation in group B but not in group A, LINE-1 methylation correlated inversely with T/S, and LINE-1 methylation variation was an independent predictor of T/S variation. B vitamins decreased tHcy significantly in group A. Multiple backward regression analysis showed 5-methylTHF in group A and tHcy in group B were significant predictors for LINE-1 methylation. At baseline, the lower LINE-1 methylation observed in subjects with 5-methylTHF >10 nmol/l was in agreement with a reduced methyl group transfer due to a lower SAM formation. In group B, an increase in telomere length was correlated with lower LINE-1 methylation. Subjects with hyperhomocysteinemia >12 µmol/L had compared to those with normal tHcy a reduced LINE-1 methylation accompanied by a higher SAM and SAH (that inhibits

  4. Direct observation of vibrational energy dispersal via methyl torsions.

    PubMed

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  5. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    PubMed

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  6. Methylation-based classification of benign and malignant peripheral nerve sheath tumors.

    PubMed

    Röhrich, Manuel; Koelsche, Christian; Schrimpf, Daniel; Capper, David; Sahm, Felix; Kratz, Annekathrin; Reuss, Jana; Hovestadt, Volker; Jones, David T W; Bewerunge-Hudler, Melanie; Becker, Albert; Weis, Joachim; Mawrin, Christian; Mittelbronn, Michel; Perry, Arie; Mautner, Victor-Felix; Mechtersheimer, Gunhild; Hartmann, Christian; Okuducu, Ali Fuat; Arp, Mirko; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Heim, Stefanie; Paulus, Werner; Schittenhelm, Jens; Ahmadi, Rezvan; Herold-Mende, Christel; Unterberg, Andreas; Pfister, Stefan M; von Deimling, Andreas; Reuss, David E

    2016-06-01

    The vast majority of peripheral nerve sheath tumors derive from the Schwann cell lineage and comprise diverse histological entities ranging from benign schwannomas and neurofibromas to high-grade malignant peripheral nerve sheath tumors (MPNST), each with several variants. There is increasing evidence for methylation profiling being able to delineate biologically relevant tumor groups even within the same cellular lineage. Therefore, we used DNA methylation arrays for methylome- and chromosomal profile-based characterization of 171 peripheral nerve sheath tumors. We analyzed 28 conventional high-grade MPNST, three malignant Triton tumors, six low-grade MPNST, four epithelioid MPNST, 33 neurofibromas (15 dermal, 8 intraneural, 10 plexiform), six atypical neurofibromas, 43 schwannomas (including 5 NF2 and 5 schwannomatosis associated cases), 11 cellular schwannomas, 10 melanotic schwannomas, 7 neurofibroma/schwannoma hybrid tumors, 10 nerve sheath myxomas and 10 ganglioneuromas. Schwannomas formed different epigenomic subgroups including a vestibular schwannoma subgroup. Cellular schwannomas were not distinct from conventional schwannomas. Nerve sheath myxomas and neurofibroma/schwannoma hybrid tumors were most similar to schwannomas. Dermal, intraneural and plexiform neurofibromas as well as ganglioneuromas all showed distinct methylation profiles. Atypical neurofibromas and low-grade MPNST were indistinguishable with a common methylation profile and frequent losses of CDKN2A. Epigenomic analysis finds two groups of conventional high-grade MPNST sharing a frequent loss of neurofibromin. The larger of the two groups shows an additional loss of trimethylation of histone H3 at lysine 27 (H3K27me3). The smaller one retains H3K27me3 and is found in spinal locations. Sporadic MPNST with retained neurofibromin expression did not form an epigenetic group and most cases could be reclassified as cellular schwannomas or soft tissue sarcomas. Widespread immunohistochemical loss

  7. Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers.

    PubMed

    Benitez-Trinidad, Alma Betsaida; Medina-Díaz, Irma Martha; Bernal-Hernández, Yael Yvette; Barrón-Vivanco, Briscia Socorro; González-Arias, Cyndia Azucena; Herrera-Moreno, José Francisco; Alvarado-Cruz, Isabel; Quintanilla-Vega, Betzabet; Rojas-García, Aurora Elizabeth

    2018-03-01

    Recently a relationship has been reported between pesticide exposure and changes in global DNA methylation patterns. Urban sprayers are a particularly vulnerable population because of the high risk of pesticide exposure that their work implies. Therefore, the aim of this study was to estimate the changes in the Long Interspersed Nucleotide Element (LINE-1) in urban sprayers and its relationship with pesticide exposure. The study population consisted of 190 individuals stratified into three study groups: no occupational pesticide exposure; moderate exposure, and high exposure. Pesticide exposure and other external factors such as diet, lifestyle, and others were evaluated through a validated questionnaire, and the butyrylcholinesterase enzyme activity was evaluated spectrophotometrically and used as exposure biomarker. DNA methylation was evaluated by pyrosequencing on bisulfite-treated DNA. The results showed a significant decrease of %5mC in both the moderate- and high-exposure groups with respect to the non-exposed group (p < 0.05). In addition, alcohol intake was associated with a higher percentage of LINE- 1 methylation. In conclusion, our results suggest that occupational pesticide exposure and external factors appears to modify the DNA methylation pattern measured through LINE-1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does...

  9. [Gene promoter methylation in glucose-6-phosphate dehydrogenase deficiency].

    PubMed

    Xu, Dan-Dan; Wen, Fei-Qiu; Lv, Rong-Yu; Zhang, Min; Chen, Yun-Sheng; Chen, Xiao-Wen

    2016-05-01

    To investigate the features of methylation in the promoter region of glucose-6-phosphate dehydrogenase (G6PD) gene and the association between gene promoter methylation and G6PD deficiency. Fluorescent quantitative PCR was used to measure the mRNA expression of G6PD in 130 children with G6PD deficiency. Sixty-five children without G6PD deficiency served as the control group. The methylation-sensitive high-resolution melting curve analysis and bisulfite PCR sequencing were used to analyze gene promoter methylation in 22 children with G6PD deficiency and low G6PD mRNA expression. The G6PD gene promoter methylation was analyzed in 44 girls with normal G6PD mRNA expression (7 from G6PD deficiency group and 37 from control group). Twenty-two (16.9%) children with G6PD deficiency had relatively low mRNA expression of G6PD; among whom, 16 boys showed no methylation, and 6 girls showed partial methylation. Among the 44 girls with normal G6PD mRNA expression, 40 showed partial methylation, and 4 showed no methylation (1 case in the G6PD group and 3 cases in the control group). Gene promoter methylation is not associated with G6PD deficiency in boys. Girls have partial methylation or no methylation in the G6PD gene, suggesting that the methylation may be related to G6PD deficiency in girls.

  10. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    PubMed

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  11. DNA methylation-based reclassification of olfactory neuroblastoma.

    PubMed

    Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich

    2018-05-05

    Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of

  12. Roles of Distal and Genic Methylation in the Development of Prostate Tumorigenesis Revealed by Genome-wide DNA Methylation Analysis.

    PubMed

    Wang, Yao; Jadhav, Rohit Ramakant; Liu, Joseph; Wilson, Desiree; Chen, Yidong; Thompson, Ian M; Troyer, Dean A; Hernandez, Javier; Shi, Huidong; Leach, Robin J; Huang, Tim H-M; Jin, Victor X

    2016-02-29

    Aberrant DNA methylation at promoters is often linked to tumorigenesis. But many aspects of DNA methylation remain unexplored, including the individual roles of distal and gene body methylation, as well as their collaborative roles with promoter methylation. Here we performed a MBD-seq analysis on prostate specimens classified into low, high, and very high risk group based on Gleason score and TNM stages. We identified gene sets with differential methylation regions (DMRs) in Distal, TSS, gene body and TES. To understand the collaborative roles, TSS was compared with the other three DMRs, resulted in 12 groups of genes with collaborative differential methylation patterns (CDMPs). We found several groups of genes that show opposite methylation patterns in Distal and Genic regions compared to TSS region, and in general they are differentially expressed genes (DEGs) in tumors in TCGA RNA-seq data. IPA (Ingenuity Pathway Analysis) reveals AR/TP53 signaling network to be a major signaling pathway, and survival analysis indicates genes subsets significantly associated with prostate cancer recurrence. Our results suggest that DNA methylation in Distal and Genic regions also plays critical roles in contributing to prostate tumorigenesis, and may act either positively or negatively with TSSs to alter gene regulation in tumors.

  13. Protein arginine methylation: a prominent modification and its demethylation.

    PubMed

    Wesche, Juste; Kühn, Sarah; Kessler, Benedikt M; Salton, Maayan; Wolf, Alexander

    2017-09-01

    Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.

  14. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition.

    PubMed

    Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha

    2016-01-01

    Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.

  15. The role of cytosine methylation on charge transport through a DNA strand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jianqing, E-mail: jqqi@uw.edu; Anantram, M. P., E-mail: anantmp@uw.edu; Govind, Niranjan, E-mail: niri.govind@pnnl.gov

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance throughmore » the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.« less

  16. The role of cytosine methylation on charge transport through a DNA strand

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  17. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods.

    PubMed

    Dalbouha, S; Senent, M L; Komiha, N; Domínguez-Gómez, R

    2016-09-28

    Various astrophysical relevant molecules obeying the empirical formula C 2 H 3 NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH 3 NCO), methyl cyanate (CH 3 OCN), methyl fulminate (CH 3 ONC), and acetonitrile N-oxide (CH 3 CNO). A CH 3 CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH 3 CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C 3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  18. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods

    NASA Astrophysics Data System (ADS)

    Dalbouha, S.; Senent, M. L.; Komiha, N.; Domínguez-Gómez, R.

    2016-09-01

    Various astrophysical relevant molecules obeying the empirical formula C2H3NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH3NCO), methyl cyanate (CH3OCN), methyl fulminate (CH3ONC), and acetonitrile N-oxide (CH3CNO). A CH3CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH3CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  19. DNA methylation profiling of esophageal adenocarcinoma using Methylation Ligation-dependent Macroarray (MLM).

    PubMed

    Guilleret, Isabelle; Losi, Lorena; Chelbi, Sonia T; Fonda, Sergio; Bougel, Stéphanie; Saponaro, Sara; Gozzi, Gaia; Alberti, Loredana; Braunschweig, Richard; Benhattar, Jean

    2016-10-14

    Most types of cancer cells are characterized by aberrant methylation of promoter genes. In this study, we described a rapid, reproducible, and relatively inexpensive approach allowing the detection of multiple human methylated promoter genes from many tissue samples, without the need of bisulfite conversion. The Methylation Ligation-dependent Macroarray (MLM), an array-based analysis, was designed in order to measure methylation levels of 58 genes previously described as putative biomarkers of cancer. The performance of the design was proven by screening the methylation profile of DNA from esophageal cell lines, as well as microdissected formalin-fixed and paraffin-embedded (FFPE) tissues from esophageal adenocarcinoma (EAC). Using the MLM approach, we identified 32 (55%) hypermethylated promoters in EAC, and not or rarely methylated in normal tissues. Among them, 21promoters were found aberrantly methylated in more than half of tumors. Moreover, seven of them (ADAMTS18, APC, DKK2, FOXL2, GPX3, TIMP3 and WIF1) were found aberrantly methylated in all or almost all the tumor samples, suggesting an important role for these genes in EAC. In addition, dysregulation of the Wnt pathway with hypermethylation of several Wnt antagonist genes was frequently observed. MLM revealed a homogeneous pattern of methylation for a majority of tumors which were associated with an advanced stage at presentation and a poor prognosis. Interestingly, the few tumors presenting less methylation changes had a lower pathological stage. In conclusion, this study demonstrated the feasibility and accuracy of MLM for DNA methylation profiling of FFPE tissue samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The influence of addition of papain enzyme and Carboxyl Methyl Cellulose on the textural properties of Tofu

    NASA Astrophysics Data System (ADS)

    Faridah; Fachraniah; Arifien; Sari, C. M.

    2018-03-01

    Papain enzyme and carboxyl methyl cellulosa was used in tofu production as coagulant and thickener. Papain enzyme is a protease enzyme that can break proteins. Papain enzymeuseful as coagulant to replace acid and base coagulant. The goal of this study is to observe papain enzyme as coagulant and carboxyl methyl cellulose as thickener to increase characteristic of tofu. Tofu is from soy milk has been pasteurized at 70 °C with the addition of papain enzyme and carboxyl methly cellulose. The concenration of papain enzyme is varied such as 200, 400, 800, and 1000 ppm. After Temperature reachs at 90 °C, carboxyl methyl cellulosa is added in soy milk to produce tofu. This study focuses on introducing papain enzyme as coagulant as well as investigating its potential in improving tofu making process productivity. Further the present work attempts to determine the synergistic effect of combining CMC/enzyme in tofu characteristic. This research was conducted with soy milk pasteurized at 70 °C with increasing papain enzyme. Protein from tofu was determined by using Spectrophotometer UV-VIS Shimadzu UV-1800 type. The highest protein concentration of the papain enzyme was found in 1000 ppm with CMC concentration of 0.6% w/v and based on organoleptic tests that the adding CMC and enzyme papain does not effect the taste, smell, texture and color of tofu. The taste of tofu produced is similar to the taste of tofu in the market.

  1. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  2. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  3. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  4. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  5. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  6. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion.

    PubMed

    Willats, W G; Orfila, C; Limberg, G; Buchholt, H C; van Alebeek, G J; Voragen, A G; Marcus, S E; Christensen, T M; Mikkelsen, J D; Murray, B S; Knox, J P

    2001-06-01

    Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.

  7. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Methyl Substitution and Loss of H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP approach, in conjunction with the 4-31G basis set, is used to compute the harmonic frequencies of 1- and 2-methylnaphthalene, 1-, 2-, and 9-methylanthracene, and their cations. The IR spectra of the methyl substituted species are very similar to the parent spectra, except for the addition of the methyl C-H stretch at lower frequency than the aromatic C-H stretch. The loss of a single hydrogen from naphthalene, anthracene, and their cations is shown to have a very small effect on the IR spectra. Loss of a methyl hydrogen from 1- or 2-methylnaphthalene, or their cations, is shown to shift the side group C-H frequencies from below aromatic hydrogen stretching frequencies to above them. The loss of IT from 2-methylenenaphthalene shows only a small shift in the side group C-H stretching frequency.

  8. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  9. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer.

    PubMed

    Wu, Yu; Davison, Jerry; Qu, Xiaoyu; Morrissey, Colm; Storer, Barry; Brown, Lisha; Vessella, Robert; Nelson, Peter; Fang, Min

    2016-04-02

    To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.

  10. Rotational spectrum of 1,1-difluoroethane-argon: influence of the interaction with the Ar atom on the V 3 barrier to internal rotation of the methyl group

    NASA Astrophysics Data System (ADS)

    Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-01-01

    The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.

  11. The relationship between crystal structure and methyl and t-butyl group dynamics in van der Waals organic solids

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Paty, Carol; Allocco, Elizabeth; Herd, Maria; Kuranz, Carolyn; Rheingold, Arnold L.

    2004-03-01

    We report x-ray diffractometry in a single crystal of 2-t-butyl-4-methylphenol (TMP) and low-frequency solid state nuclear magnetic resonance (NMR) proton relaxometry in a polycrystalline sample of TMP. The x-ray data show TMP to have a monoclinic, P21/c, structure with eight molecules per unit cell and two crystallographically inequivalent t-butyl group (C(CH3)3) sites. The proton spin-lattice relaxation rates were measured between 90 and 310 K at NMR frequencies of 8.50, 22.5, and 53.0 MHz. The relaxometry data is fitted with two models characterizing the dynamics of the t-butyl groups and their constituent methyl groups, both of which are consistent with the determined x-ray structure. In addition to presenting results for TMP, we review previously reported x-ray diffractometry and low-frequency NMR relaxometry in two other van der Waals solids which have a simpler structure. In both cases, a unique model for the reorientational dynamics was found. Finally, we review a similar previously reported analysis in a van der Waals solid with a very complex structure in which case fitting the NMR relaxometry requires very many parameters and serves mainly as a flag for a careful x-ray diffraction study.

  12. QSPR/QSAR in N-[(dimethylamine)methyl] benzamides substituents groups influence upon electronic distribution and local anesthetics activity.

    PubMed

    Tavares, Leoberto Costa; do Amaral, Antonia Tavares

    2004-03-15

    It was determined, with a systematic mode, the carbonyl group frequency in the region of the infrared of N-[(dimethylamine)methyl] benzamides 4-substituted (set A) and their hydrochlorides (set B), that had its local anesthetical activity evaluated. The application of the Hammett equation considering the values of the absorption frequency of carbonyl group, nu(C=O,) using the electronic constants sigma, sigma(I), sigma(R), I and R leads to meaningful correlation. The nature and the contribution of substituent group electronic effects on the polarity of the carbonyl group was also analyzed. The use of the nu(C=O) as an experimental electronic parameter for QSPR studies was validated.

  13. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance.

    PubMed

    Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang

    2011-11-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits.

  14. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance*

    PubMed Central

    Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang

    2011-01-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits. PMID:22042659

  15. DNA methylation abnormalities in congenital heart disease.

    PubMed

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A

    2015-01-01

    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  16. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile.

    PubMed

    Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2017-05-01

    The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. DNA methylation epigenotype and clinical features of NRAS-mutation(+) colorectal cancer.

    PubMed

    Takane, Kiyoko; Akagi, Kiwamu; Fukuyo, Masaki; Yagi, Koichi; Takayama, Tadatoshi; Kaneda, Atsushi

    2017-05-01

    Sporadic colorectal cancer (CRC) is classified into several molecular subtypes. We previously established two groups of DNA methylation markers through genome-wide DNA methylation analysis to classify CRC into distinct subgroups: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME, respectively). HME CRC, also called CpG island methylator phenotype (CIMP)-high CRC, shows methylation of both Group 1 markers (CIMP markers) and Group 2 markers, while IME/CIMP-low CRC shows methylation of Group 2, but not of Group 1 markers, and LME CRC shows no methylation of either Group 1 or Group 2 markers. While BRAF- and KRAS-mutation(+) CRC strongly correlated with HME and IME, respectively, clinicopathological features of NRAS-mutation(+) CRC, including association with DNA methylation, remain unclear. To characterize NRAS-mutation(+) CRC, the methylation levels of 19 methylation marker genes (6 Group 1 and 13 Group 2) were analyzed in 61 NRAS-mutation(+) and 144 NRAS-mutation(-) CRC cases by pyrosequencing, and their correlation with clinicopathological features was investigated. Different from KRAS-mutation(+) CRC, NRAS-mutation(+) CRC significantly correlated with LME. NRAS-mutation(+) CRC showed significantly better prognosis than KRAS-mutation(+) CRC (P = 3 × 10 -4 ). NRAS-mutation(+) CRC preferentially occurred in elder patients (P = 0.02) and at the distal colon (P = 0.006), showed significantly less lymph vessel invasion (P = 0.002), and correlated with LME (P = 8 × 10 -5 ). DNA methylation significantly accumulated at the proximal colon. NRAS-mutation(+) CRC may constitute a different subgroup from KRAS-mutation(+) CRC, showing significant correlation with LME, older age, distal colon, and relatively better prognosis. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.

  19. Unraveling Additional O-Methylation Steps in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy (Eschscholzia californica).

    PubMed

    Purwanto, Ratmoyo; Hori, Kentaro; Yamada, Yasuyuki; Sato, Fumihiko

    2017-09-01

    California poppy (Eschscholzia californica), a member of the Papaveraceae family, produces many biologically active benzylisoquinoline alkaloids (BIAs), such as sanguinarine, macarpine and chelerythrine. Sanguinarine biosynthesis has been elucidated at the molecular level, and its biosynthetic genes have been isolated and used in synthetic biology approaches to produce BIAs in vitro. However, several genes involved in the biosynthesis of macarpine and chelerythrine have not yet been characterized. In this study, we report the isolation and characterization of a novel O-methyltransferase (OMT) involved in the biosynthesis of partially characterized BIAs, especially chelerythrine. A search of the RNA sequence database from NCBI and PhytoMetaSyn for the conserved OMT domain identified 68 new OMT-like sequences, of which the longest 22 sequences were selected based on sequence similarity. Based on their expression in cell lines with different macarpine/chelerythrine profiles, we selected three OMTs (G2, G3 and G11) for further characterization. G3 expression in Escherichia coli indicated O-methylation activity of the simple benzylisoquinolines, including reticuline and norreticuline, and the protoberberine scoulerine with dual regio-reactivities. G3 produced 7-O-methylated, 3'-O-methylated and dual O-methylated products from reticuline and norreticuline, and 9-O-methylated tetrahydrocolumbamine, 2-O-methylscoulerine and tetrahydropalmatine from scoulerine. Further enzymatic analyses suggested that G3 is a scoulerine-9-O-methyltransferase for the biosynthesis of chelerythrine in California poppy. In the present study, we discuss the physiological role of G3 in BIA biosynthesis. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data.

    PubMed

    Gaspar, John M; Hart, Ronald P

    2017-11-29

    DNA methylation is an epigenetic modification that is studied at a single-base resolution with bisulfite treatment followed by high-throughput sequencing. After alignment of the sequence reads to a reference genome, methylation counts are analyzed to determine genomic regions that are differentially methylated between two or more biological conditions. Even though a variety of software packages is available for different aspects of the bioinformatics analysis, they often produce results that are biased or require excessive computational requirements. DMRfinder is a novel computational pipeline that identifies differentially methylated regions efficiently. Following alignment, DMRfinder extracts methylation counts and performs a modified single-linkage clustering of methylation sites into genomic regions. It then compares methylation levels using beta-binomial hierarchical modeling and Wald tests. Among its innovative attributes are the analyses of novel methylation sites and methylation linkage, as well as the simultaneous statistical analysis of multiple sample groups. To demonstrate its efficiency, DMRfinder is benchmarked against other computational approaches using a large published dataset. Contrasting two replicates of the same sample yielded minimal genomic regions with DMRfinder, whereas two alternative software packages reported a substantial number of false positives. Further analyses of biological samples revealed fundamental differences between DMRfinder and another software package, despite the fact that they utilize the same underlying statistical basis. For each step, DMRfinder completed the analysis in a fraction of the time required by other software. Among the computational approaches for identifying differentially methylated regions from high-throughput bisulfite sequencing datasets, DMRfinder is the first that integrates all the post-alignment steps in a single package. Compared to other software, DMRfinder is extremely efficient and unbiased in

  1. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium methyl sulfate. 173.385 Section 173.385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in...

  2. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium methyl sulfate. 173.385 Section 173.385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in...

  3. Biodegradation of potential diesel oxygenate additives: dibutyl maleate (DBM), and tripropylene glycol methyl ether (TGME).

    PubMed

    Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W

    2003-08-01

    The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.

  4. Methylation of Werner syndrome protein is associated with the occurrence and development of invasive meningioma via the regulation of Myc and p53 expression.

    PubMed

    Li, Puxian; Hao, Shuyu; Bi, Zhiyong; Zhang, Junting; Wu, Zhen; Ren, Xiaohui

    2015-08-01

    The aim of the present study was to investigate the positive rate of Werner syndrome protein (WRN) methylation in meningioma patients, and further assess the association between WRN methylation and the occurrence of meningioma. A total of 56 consecutive meningioma patients and 26 healthy individuals were enrolled in the study. A methylation-specific polymerase chain reaction assay was performed to detect the positive rate of WRN methylation in the peripheral blood and tissue samples collected from the recruited subjects. In addition, western blot analysis was performed to determine the protein expression levels of WRN, Myc and p53 in the peripheral blood and tissue samples. The positive rate of WRN methylation in the peripheral blood of the meningioma group was increased when compared with the control group (P<0.05). In addition, the protein expression levels of WRN were significantly decreased in the peripheral blood and tissue samples collected from the individuals with a positive WRN methylation status (P<0.05), as compared with the samples without WRN methylation. Furthermore, the protein expression levels of Myc and p53 were increased in the peripheral blood and tissue samples that exhibited positive WRN methylation when compared with those without WRN methylation (P<0.05). Therefore, WRN methylation was demonstrated to be associated with the occurrence and development of invasive meningioma, possibly through the regulation of Myc and p53 expression.

  5. Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice.

    PubMed

    Ishii, Daisuke; Matsuzawa, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2014-01-01

    DNA methylation is one of the essential factors in the control of gene expression. Folic acid, methionine and choline (methyl donors)--all nutrients related to one-carbon metabolism--are known as important mediators of DNA methylation. A previous study has shown that long-term administration of a diet lacking in methyl donors caused global DNA hypermethylation in the brain (Pogribny et al., 2008). However, no study has investigated the effects of a diet lacking in methyl donors during the developmental period on emotional behaviors such as fear and anxiety-like behavior in association with gene expressions in the brain. In addition, it has not been elucidated whether a diet supplemented with methyl donors later in life can reverse these changes. Therefore, we examined the effects of methyl donor deficiency during the developmental period on fear memory acquisition/extinction and anxiety-like behavior, and the relevant gene expressions in the hippocampus in juvenile (6-wk) and adult (12-wk) mice. We found that juvenile mice fed a methyl-donor-deficient diet had impaired fear memory acquisition along with decreases in the gene expressions of Dnmt3a and Dnmt3b. In addition, reduced anxiety-like behavior with decreased gene expressions of Grin2b and Gabar2 was observed in both the methyl-donor-deficient group and the body-weight-matched food-restriction group. After being fed a diet supplemented with methyl donors ad libitum, adult mice reversed the alteration of gene expression of Dnmt3a, Dnmt3b, Grin2b and Gabar2, but anxiety-like behavior became elevated. In addition, impaired fear-memory formation was observed in the adult mice fed the methyl-donor-deficient diet during the developmental period. Our study suggested that developmental alterations in the one-carbon metabolic pathway in the brain could have effects on emotional behavior and memory formation that last into adulthood.

  6. Methyl Donor-Deficient Diet during Development Can Affect Fear and Anxiety in Adulthood in C57BL/6J Mice

    PubMed Central

    Ishii, Daisuke; Matsuzawa, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2014-01-01

    DNA methylation is one of the essential factors in the control of gene expression. Folic acid, methionine and choline (methyl donors)–all nutrients related to one-carbon metabolism–are known as important mediators of DNA methylation. A previous study has shown that long-term administration of a diet lacking in methyl donors caused global DNA hypermethylation in the brain (Pogribny et al., 2008). However, no study has investigated the effects of a diet lacking in methyl donors during the developmental period on emotional behaviors such as fear and anxiety-like behavior in association with gene expressions in the brain. In addition, it has not been elucidated whether a diet supplemented with methyl donors later in life can reverse these changes. Therefore, we examined the effects of methyl donor deficiency during the developmental period on fear memory acquisition/extinction and anxiety-like behavior, and the relevant gene expressions in the hippocampus in juvenile (6-wk) and adult (12-wk) mice. We found that juvenile mice fed a methyl-donor-deficient diet had impaired fear memory acquisition along with decreases in the gene expressions of Dnmt3a and Dnmt3b. In addition, reduced anxiety-like behavior with decreased gene expressions of Grin2b and Gabar2 was observed in both the methyl-donor-deficient group and the body-weight-matched food-restriction group. After being fed a diet supplemented with methyl donors ad libitum, adult mice reversed the alteration of gene expression of Dnmt3a, Dnmt3b, Grin2b and Gabar2, but anxiety-like behavior became elevated. In addition, impaired fear-memory formation was observed in the adult mice fed the methyl-donor-deficient diet during the developmental period. Our study suggested that developmental alterations in the one-carbon metabolic pathway in the brain could have effects on emotional behavior and memory formation that last into adulthood. PMID:25144567

  7. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    PubMed Central

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  8. Electronic spectra of 2- and 3-tolunitrile in the gas phase. I. A study of methyl group internal rotation via rovibronically resolved spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Santoyo, José Arturo; Álvarez-Valtierra, Leonardo, E-mail: leoav@fisica.ugto.mx; Wilke, Josefin

    2016-01-28

    Rotationally resolved fluorescence excitation spectra of the origin bands in the S{sub 1}←S{sub 0} transition of 2-tolunitrile (2TN) and 3-tolunitrile (3TN) have been recorded in the collision-free environment of a molecular beam. Analyses of these data provide the rotational constants of each molecule and the potential energy curves governing the internal rotation of the attached methyl groups in both electronic states. 2TN exhibits much larger barriers along this coordinate than 3TN. Interestingly, the electronic transition dipole moment in both molecules is markedly influenced by the position of the attached methyl group rather than the position of the cyano group; possiblemore » reasons for this intriguing behavior are discussed.« less

  9. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin.

    PubMed

    Feliciello, Isidoro; Parazajder, Josip; Akrap, Ivana; Ugarković, Durđica

    2013-05-01

    DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.

  10. Radical-mediated enzymatic methylation: a tale of two SAMS.

    PubMed

    Zhang, Qi; van der Donk, Wilfred A; Liu, Wen

    2012-04-17

    Methylation is an essential and ubiquitous reaction that plays an important role in a wide range of biological processes. Most biological methylations use S-adenosylmethionine (SAM) as the methyl donor and proceed via an S(N)2 displacement mechanism. However, researchers have discovered an increasing number of methylations that involve radical chemistry. The enzymes known to catalyze these reactions all belong to the radical SAM superfamily. This family of enzymes utilizes a specialized [4Fe-4S] cluster for reductive cleavage of SAM to yield a highly reactive 5'-deoxyadenosyl (dAdo) radical. Radical chemistry is then imposed on a variety of organic substrates, leading to a diverse array of transformations. Until recently, researchers had not fully understood how these enzymes employ radical chemistry to mediate a methyl transfer reaction. Sequence analyses reveal that the currently identified radical SAM methyltransferases (RSMTs) can be grouped into three classes, which appear distinct in protein architecture and mechanism. Class A RSMTs mainly include the rRNA methyltransferases RlmN and Cfr from various origins. As exemplified by Escherichia coli RlmN, these proteins have a single canonical radical SAM core domain that includes an (βα)(6) partial barrel most similar to that of pyruvate formate lyase-activase. The exciting recent studies on RlmN and Cfr are beginning to provide insights into the intriguing chemistry of class A RSMTs. These enzymes utilize a methylene radical generated on a unique methylated cysteine residue. However, based on the variety of substrates used by the other classes of RSMTs, alternative mechanisms are likely to be discovered. Class B RSMTs contain a proposed N-terminal cobalamin binding domain in addition to a radical SAM domain at the C-terminus. This class of proteins methylates diverse substrates at inert sp(3) carbons, aromatic heterocycles, and phosphinates, possibly involving a cobalamin-mediated methyl transfer process. Class

  11. Effects of Trophic Status on Mercury Methylation Pathways in Peatlands

    NASA Astrophysics Data System (ADS)

    Hines, M. E.; Zhang, L.; Sampath, S.; Hu, R.; Barkay, T.

    2014-12-01

    Methyl mercury (MeHg) is a bioaccumulative toxicant. It was believed to be produced by sulfate (SO4)- and iron- reducing bacteria (SRB and FeRB), but recent studies suggest that organisms that possess the gene cluster (hgcAB) can methylate Hg, which includes other microbial groups besides SRB and FeRB. Many areas known to accumulate high levels of MeHg are freshwater wetlands that lack sufficient electron acceptors to support the production of MeHg. To test the hypothesis that oligotrophic wetlands are able to methylate Hg by pathways that are not respiratory, peat was collected from three wetland sites in Alaska and three in Massachusetts that represented a trophic gradient. We determined rates of gas (CH4, CO2, H2) and LMW organic acid (formate, acetate, propionate, butyrate) formation, and rates of Hg methylation using the short-lived radioisotope 197Hg (half life 2.67 days). Two temperate sites exhibited strong terminal respiration (methanogenesis) and syntrophy, while the Alaskan sites and an oligotrophic temperate site exhibited low rates of both. Primary fermentation was an important process in the latter sites. Hg methylation was most active at the minerotrophic sites that exhibited active syntrophy and methanogenesis. Methylation decreased greatly in the presence of a methanogenic inhibitor and was stimulated by H2 indicating that methanogens and perhaps syntrophs were primary methylators. In the oligotrophic sites, the addition of SO4 stimulated methylation while a SO4 reduction inhibitor decreased methylation. There was no evidence of SO4 reduction in these samples suggesting that methylation was conducted by SRB that were metabolizing via fermentation and not SO4 reduction. While further studies are required to decipher the role of syntrophs including SRB varieties such as Syntrophobacter sp., these results indicate that fermentative bacteria may be able to significantly methylate Hg in wetlands that do not support anaerobic respiration.

  12. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    PubMed Central

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  13. Global DNA methylation as a possible biomarker for diabetic retinopathy.

    PubMed

    Maghbooli, Zhila; Hossein-nezhad, Arash; Larijani, Bagher; Amini, Manochehr; Keshtkar, Abbasali

    2015-02-01

    We evaluated whether global levels of DNA methylation status were associated with retinopathy as well as providing a predictive role of DNA methylation in developing retinopathy in a case-control study of 168 patients with type 2 diabetes. The 5-methylcytosine content was assessed by reversed-phase high-pressure liquid chromatography of peripheral blood leukocytes to determine an individual's global DNA methylation status in the two groups, either with or without retinopathy. The global DNA methylation levels were significantly higher in diabetic retinopathy patients compared with those in non-retinopathy patients (4.90 ± 0.12 vs. 4.22 ± 0.13, respectively; p = 0.001). There was a significant increasing trend in global DNA methylation levels in terms of progressing retinopathy (without retinopathy, 4.22 ± 0.13; non-proliferative diabetic retinopathy, 4.62 ± 0.17; proliferative diabetic retinopathy, 5.07 ± 0.21) (p = 0.006). Additionally, global DNA methylation independent of retinopathy risk factors, which include dyslipidaemia, hypertension, hyperglycaemia and duration of diabetes, was a predictive factor for retinopathy (OR = 1.53, p = 0.015). Global DNA methylation is modulated during or possibly before the primary stage of diabetes. This observation verifies the metabolic memory effect of hyperglycaemia in early stage of an aetiological process that leads to type 2 diabetes and its associated complications. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer.

    PubMed

    Ichimura, Norihisa; Shinjo, Keiko; An, Byonggu; Shimizu, Yasuhiro; Yamao, Kenji; Ohka, Fumiharu; Katsushima, Keisuke; Hatanaka, Akira; Tojo, Masayuki; Yamamoto, Eiichiro; Suzuki, Hiromu; Ueda, Minoru; Kondo, Yutaka

    2015-08-01

    Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P < 0.0001) colorectal cancers. This trend was also observed in colon polyps (CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer. ©2015 American Association for Cancer Research.

  15. Molecular dynamics of 17α- and 21-hydroxy progesterone studied by NMR. Relation between molecule conformation and height of the barrier for methyl group reorientations in steroid compounds

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.

    2005-01-01

    For the two steroid compounds 17αOH-progesterone and 21OH-progesterone, the activation energies of reorientations of the methyl groups have been determined. Their values together with results of the quantum chemical calculations permitted establishment of the sequence of the onset of the methyl group reorientations about the three-fold symmetry axis of the C-C bond. On the basis of the asymmetry parameters, the conformations of the hitherto studied pregnane derivatives and testosterone have been determined. It has been found that the conformation of ring A has dominant effect on the activation energies of the reorientation of C(19)H 3. The reorientation of the methyl group C(18)H 3 significantly depends on the conformation of the side chain 17β (torsional angle C(13)-C(17)-C(20)-O(20)) and the distance between C18 and O20. The study has proved that the 1H NMR method in combination with the quantum chemistry calculations and inelastic incoherent neutron scattering (IINS) are effective for prediction of the sequence of the methyl group reorientations about the three-fold symmetry axis.

  16. Electronic transport in methylated fragments of DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  17. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  18. Unique DNA methylome profiles in CpG island methylator phenotype colon cancers

    PubMed Central

    Xu, Yaomin; Hu, Bo; Choi, Ae-Jin; Gopalan, Banu; Lee, Byron H.; Kalady, Matthew F.; Church, James M.; Ting, Angela H.

    2012-01-01

    A subset of colorectal cancers was postulated to have the CpG island methylator phenotype (CIMP), a higher propensity for CpG island DNA methylation. The validity of CIMP, its molecular basis, and its prognostic value remain highly controversial. Using MBD-isolated genome sequencing, we mapped and compared genome-wide DNA methylation profiles of normal, non-CIMP, and CIMP colon specimens. Multidimensional scaling analysis revealed that each specimen could be clearly classified as normal, non-CIMP, and CIMP, thus signifying that these three groups have distinctly different global methylation patterns. We discovered 3780 sites in various genomic contexts that were hypermethylated in both non-CIMP and CIMP colon cancers when compared with normal colon. An additional 2026 sites were found to be hypermethylated in CIMP tumors only; and importantly, 80% of these sites were located in CpG islands. These data demonstrate on a genome-wide level that the additional hypermethylation seen in CIMP tumors occurs almost exclusively at CpG islands and support definitively that these tumors were appropriately named. When these sites were examined more closely, we found that 25% were adjacent to sites that were also hypermethylated in non-CIMP tumors. Thus, CIMP is also characterized by more extensive methylation of sites that are already prone to be hypermethylated in colon cancer. These observations indicate that CIMP tumors have specific defects in controlling both DNA methylation seeding and spreading and serve as an important first step in delineating molecular mechanisms that control these processes. PMID:21990380

  19. DNA motifs associated with aberrant CpG island methylation.

    PubMed

    Feltus, F Alex; Lee, Eva K; Costello, Joseph F; Plass, Christoph; Vertino, Paula M

    2006-05-01

    Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.

  20. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome.

    PubMed

    Azzi, Salah; Steunou, Virginie; Tost, Jörg; Rossignol, Sylvie; Thibaud, Nathalie; Das Neves, Cristina; Le Jule, Marilyne; Habib, Walid Abi; Blaise, Annick; Koudou, Yves; Busato, Florence; Le Bouc, Yves; Netchine, Irène

    2015-01-01

    The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Oxidation of Naphthenoaromatic and Methyl-Substituted Aromatic Compounds by Naphthalene 1,2-Dioxygenase

    PubMed Central

    Selifonov, S. A.; Grifoll, M.; Eaton, R. W.; Chapman, P. J.

    1996-01-01

    Oxidation of acenaphthene, acenaphthylene, and fluorene was examined with recombinant strain Pseudomonas aeruginosa PAO1(pRE695) expressing naphthalene dioxygenase genes cloned from plasmid NAH7. Acenaphthene underwent monooxygenation to 1-acenaphthenol with subsequent conversion to 1-acenaphthenone and cis- and trans-acenaphthene-1,2-diols, while acenaphthylene was dioxygenated to give cis-acenaphthene-1,2-diol. Nonspecific dehydrogenase activities present in the host strain led to the conversion of both of the acenaphthene-1,2-diols to 1,2-acenaphthoquinone. The latter was oxidized spontaneously to naphthalene-1,8-dicarboxylic acid. No aromatic ring dioxygenation products were detected from acenaphthene and acenaphthylene. Mixed monooxygenase and dioxygenase actions of naphthalene dioxygenase on fluorene yielded products of benzylic 9-monooxygenation, aromatic ring dioxygenation, or both. The action of naphthalene dioxygenase on a variety of methyl-substituted aromatic compounds, including 1,2,4-trimethylbenzene and isomers of dimethylnaphthalene, resulted in the formation of benzylic alcohols, i.e., methyl group monooxygenation products, which were subsequently converted to the corresponding carboxylic acids by dehydrogenase(s) in the host strain. Benzylic monooxygenation of methyl groups was strongly predominant over aromatic ring dioxygenation and essentially nonspecific with respect to the substitution pattern of the aromatic substrates. In addition to monooxygenating benzylic methyl and methylene groups, naphthalene dioxygenase behaved as a sulfoxygenase, catalyzing monooxygenation of the sulfur heteroatom of 3-methylbenzothiophene. PMID:16535238

  2. [p16 and MGMT gene methylation in sputum cells of uranium workers].

    PubMed

    Su, Shi-biao; Yang, Lu-jing; Zhang, Wei; Jin, Ya-li; Nie, Ji-hua; Tong, Jian

    2006-02-01

    To study the methylation of O-6-methylguanine-DNA methyltransferase (MGMT) and p16 gene in the sputum cells of radon-exposed population. To provide the experimental base for finding the molecular biomarker of the high risk population of the radon-induced lung cancer. 91 radon-exposed workers were divided into 4 groups, high dosage group (> 120 WLM), middle dosage group (between 60 and 120 WLM), low dosage group (between 30 and 60 WLB) and lower dosage group (between 2 and 30 WLM) according to the accumulated exposure dosage of the radon daughters. The abnormal methylation of p16 and MGMT gene in the sputum cells of the population in the four groups was detected with the methylation specific PCR (MSP). There was significantly upward trend for the p16 gene methylation rate (0.00%-20.00%), the MGMT gene methylation rate (0.00%-28.00%) and the total methylation rate (0.00%-40.00%) with the increase of the accumulated exposure dosage of the radon daughters (P < 0.01). The methylation of p16 and MGMT gene is related to the accumulate exposure dosage of the radon daughters.

  3. Multiresidue method for N-methyl carbamates and metabolite pesticide residues at the parts-per-billion level in selected representative commodities of fruit and vegetable crop groups.

    PubMed

    Podhorniak, Lynda V; Schenck, Frank J; Krynitsky, Alexander; Griffith, Francis

    2004-01-01

    A reversed-phase liquid chromatographic method with both fluorescence and mass spectrometric detection is presented for the determination of 13 parent N-methyl carbamate pesticides and their metabolites, as well as piperonyl butoxide, for a total of 24 compounds in selected fruits and vegetables. The commodities chosen were of special concern to the U.S. Environmental Protection Agency (EPA) because they had the least amount of monitoring data for dietary exposure estimates used in risk assessment. The method is based on a judicious selection of procedures from U.S. Food and Drug Administration sources such as the Pesticide Analytical Manual (Volume I), and Laboratory Information Bulletins, plus additional material from the chemical literature combined in a manner to recover the N-methyl carbamates and their metabolites at the 1 microg/kg or 1 part-per-billion level. The method uses an acetone extraction, followed by an aminopropyl solid-phase extraction cleanup. Determination of residues is by RP-LC, in which the liquid chromatograph is interfaced with either a fluorescence or a mass spectrometric detector. The method is designed so that a set of 6 samples can be prepared in 1 working day for overnight instrumental analysis. Recovery data are presented from analyses of selected commodities in some of EPA's fruit and vegetable crop groupings. A table listing relative retention times is presented for the N-methyl carbamates and their metabolites.

  4. Choline, Other Methyl-Donors and Epigenetics

    PubMed Central

    Zeisel, Steven H.

    2017-01-01

    Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases. PMID:28468239

  5. Choline, Other Methyl-Donors and Epigenetics.

    PubMed

    Zeisel, Steven

    2017-04-29

    Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.

  6. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    PubMed

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  7. Synthesis of methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Jain, R K; Dubey, R; Abbas, S A; Matta, K L

    1987-03-15

    Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.

  8. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  9. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.

    PubMed

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang

    2011-09-20

    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  10. Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation

    PubMed Central

    Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George

    2014-01-01

    Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714

  11. Structural Basis for Methyl Transfer by a Radical SAM Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boal, Amie K.; Grove, Tyler L.; McLaughlin, Monica I.

    2014-10-02

    The radical S-adenosyl-l-methionine (SAM) enzymes RlmN and Cfr methylate 23S ribosomal RNA, modifying the C2 or C8 position of adenosine 2503. The methyl groups are installed by a two-step sequence involving initial methylation of a conserved Cys residue (RlmN Cys{sup 355}) by SAM. Methyl transfer to the substrate requires reductive cleavage of a second equivalent of SAM. Crystal structures of RlmN and RlmN with SAM show that a single molecule of SAM coordinates the [4Fe-4S] cluster. Residue Cys{sup 355} is S-methylated and located proximal to the SAM methyl group, suggesting the SAM that is involved in the initial methyl transfermore » binds at the same site. Thus, RlmN accomplishes its complex reaction with structural economy, harnessing the two most important reactivities of SAM within a single site.« less

  12. [Epigenetic heredity (deoxyribonucleic acid methylation): Clinical context in neurodegenerative disorders and ATXN2 gene].

    PubMed

    Laffita-Mesa, José Miguel; Bauer, Peter

    2014-10-21

    Epigenetics is the group of changes in the phenotype which are related with the process independently of the primary DNA sequence. These changes are intimately related with changes in the gene expression level and its profile across the body. These are mediated by histone tail modifications, DNA methylation, micro-RNAs, with chromatin remodeling remaining as the foundation of epigenetic changes. DNA methylation involves the covalent addition of methyl group to cytosine of the DNA, which is mediated by methyltransferases enzymes. DNA methylation regulates gene expression by repressing transcription, while de-methylation activates gene transcription. Several human diseases are related with the epigenetic process: cancer, Alzheimer disease, stroke, Parkinson disease, and diabetes. We present here the basis of epigenetic inheritance and show the pathogenic mechanisms relating epigenetics in human diseases, specifically with regard to neurodegeneration. We discuss current concepts aimed at understanding the contribution of epigenetics to human neurodegenerative diseases. We also discuss recent findings obtained in our and other centers regarding the ATXN2 gene that causes spinocerebellar ataxia 2 and amyotrophic lateral sclerosis. Epigenetics play a pivotal role in the pathogenesis of human diseases and in several neurodegenerative disorders, and this knowledge will illuminate the pathways in the diagnostic and therapeutic field, which ultimately will be translated into the clinic context of neurodegenerative diseases. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  13. Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group.

    PubMed

    Chaurasia, Pankaj Kumar; Singh, Sunil Kumar; Bharati, Shashi Lata

    2014-01-01

    Now a day, laccases are the most promising enzymes in the area of biotechnology and synthesis. One of the best applications of laccases is the selective oxidation of aromatic methyl group to aldehyde group. Such transformations are valuable because it is difficult to stop the reaction at aldehyde stage. Chemical methods used for such biotransformations areexpensive and give poor yields. But, the laccase-catalyzed biotransformations of such type are non-expensive and yield is excellent. Authors have used crude laccase obtained from the liquid culture growth medium of fungal strain Coriolus versicolor MTCC-138 for the biotransformations of toluene, 3-nitrotoluene, and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde, and 4-chlorobenzaldehyde, respectively, instead of purified laccase because purification process requires much time and cost. This communication reports that crude laccase can also be used in the place of purified laccase as effective biocatalyst.

  14. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl chloride...

  15. Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer.

    PubMed

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Suemoto, Yuko; Meyerhardt, Jeffrey A; Fuchs, Charles S

    2007-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer. In contrast, a phenotype with less widespread promoter methylation (CIMP-low) has not been well characterised. O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and silencing have been associated with G>A mutations and microsatellite instability-low (MSI-low). To examine molecular correlates with MGMT methylation/silencing in colorectal cancer. Utilising MethyLight technology, we quantified DNA methylation in MGMT and eight other markers (a CIMP-diagnostic panel; CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) in 920 population-based colorectal cancers. Tumours with both MGMT methylation and loss were correlated positively with MSI-low (p = 0.02), CIMP-high (>or=6/8 methylated CIMP markers, p = 0.005), CIMP-low (1/8-5/8 methylated CIMP markers, p = 0.002, compared to CIMP-0 with 0/8 methylated markers), KRAS G>A mutation (p = 0.02), and inversely with 18q loss of heterozygosity (p = 0.0002). Tumours were classified into nine MSI/CIMP subtypes. Among the CIMP-low group, tumours with both MGMT methylation and loss were far more frequent in MSI-low tumours (67%, 12/18) than MSI-high tumours (5.6%, 1/18; p = 0.0003) and microsatellite stable (MSS) tumours (33%, 52/160; p = 0.008). However, no such relationship was observed among the CIMP-high or CIMP-0 groups. The relationship between MGMT methylation/silencing and MSI-low is limited to only CIMP-low tumours, supporting the suggestion that CIMP-low in colorectal cancer may be a different molecular phenotype from CIMP-high and CIMP-0. Our data support a molecular difference between MSI-low and MSS in colorectal cancer, and a possible link between CIMP-low, MSI-low, MGMT methylation/loss and KRAS mutation.

  16. Prognostic significance of promoter CpG island methylation of obesity-related genes in patients with nonmetastatic renal cell carcinoma.

    PubMed

    Mendoza-Pérez, Julia; Gu, Jian; Herrera, Luis A; Tannir, Nizar M; Zhang, Shanyu; Matin, Surena; Karam, Jose A; Wood, Christopher G; Wu, Xifeng

    2017-09-15

    Greater than 40% of renal cell carcinoma (RCC) cases in the United States are attributed to excessive body weight. Moreover, obesity also may be linked to RCC prognosis. However, the molecular mechanisms underlying these associations are unclear. In the current study, the authors evaluated the role of promoter methylation in obesity-related genes in RCC tumorigenesis and disease recurrence. Paired tumors (TU) and normal adjacent (N-Adj) tissues from 240 newly diagnosed and previously untreated white patients with RCC were examined. For the discovery phase, 63 RCC pairs were analyzed. An additional 177 RCC pairs were evaluated for validation. Pyrosequencing was used to determine CpG methylation in 20 candidate obesity-related genes. An independent data set from The Cancer Genome Atlas also was analyzed for functional validation. The association between methylation and disease recurrence was analyzed using multivariate Cox proportional hazards models and Kaplan-Meier survival analysis. Methylation in neuropeptide Y (NPY), leptin (LEP), and leptin receptor (LEPR) was significantly higher in TU compared with N-Adj tissues (P<.0001) in both the discovery and validation groups. High methylation in LEPR was associated with an increased risk of disease recurrence (hazard ratio, 3.15; 95% confidence interval, 1.23-8.07 [P = .02]). Patients with high methylation in LEPR had a shorter recurrence-free survival compared with patients in the low-methylation group (log-rank P = 2.25 × 10 -3 ). In addition, high LEPR methylation in TU was associated with more advanced features (P≤.05). Consistent with the findings of the current study, lower LEPR expression in TU compared with N-Adj tissues (P = 1.00 × 10 -3 ) was found in data from The Cancer Genome Atlas. Somatic alterations of promoter methylation in the NPY, LEP, and LEPR genes are involved in RCC tumorigenesis. Furthermore, LEPR methylation appears to be associated with RCC recurrence. Future research to

  17. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  18. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  19. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  20. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  1. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  2. Fully methylated, atomically flat (111) silicon surface

    NASA Astrophysics Data System (ADS)

    Fidélis, A.; Ozanam, F.; Chazalviel, J.-N.

    2000-01-01

    The atomically flat hydrogenated (111) silicon surface has been methylated by anodization in a Grignard reagent and the surface obtained characterized by infrared spectroscopy. 100% substitution of the hydrogen atoms by methyl groups is observed. The resulting surface exhibits preserved ordering and superior chemical stability.

  3. The Rotational Spectrum and Conformational Structures of Methyl Valerate

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.

  4. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder.

    PubMed

    Walker, Rosie May; Christoforou, Andrea Nikie; McCartney, Daniel L; Morris, Stewart W; Kennedy, Nicholas A; Morten, Peter; Anderson, Susan Maguire; Torrance, Helen Scott; Macdonald, Alix; Sussmann, Jessika Elizabeth; Whalley, Heather Clare; Blackwood, Douglas H R; McIntosh, Andrew Mark; Porteous, David John; Evans, Kathryn Louise

    2016-01-01

    Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to detect illness-related changes. As accumulating evidence suggests that altered DNA methylation confers risk for BD and MDD, we compared genome-wide methylation between (i) affected carriers of the linked haplotype (ALH) and married-in controls (MIs), (ii) well unaffected haplotype carriers (ULH) and MI, (iii) ALH and ULH and (iv) all haplotype carriers (LH) and MI. Nominally significant differences in DNA methylation were observed in all comparisons, with differences withstanding correction for multiple testing when the ALH or LH group was compared to the MIs. In both comparisons, we observed increased methylation at a locus in FANCI, which was accompanied by increased FANCI expression in the ALH group. FANCI is part of the Fanconi anaemia complementation (FANC) gene family, which are mutated in Fanconi anaemia and participate in DNA repair. Interestingly, several FANC genes have been implicated in psychiatric disorders. Regional analyses of methylation differences identified loci implicated in psychiatric illness by genome-wide association studies, including CACNB2 and the major histocompatibility complex. Gene ontology analysis revealed enrichment for methylation differences in neurologically relevant genes. Our results highlight altered DNA methylation as a potential mechanism by which the linked haplotype might confer risk for mood disorders. Differences in the phenotypic outcome of haplotype carriers might, in part, arise from additional changes in DNA methylation that converge on

  5. Kenaf methyl esters

    USDA-ARS?s Scientific Manuscript database

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  6. Differential DNA methylation and lymphocyte proportions in a Costa Rican high longevity region.

    PubMed

    McEwen, Lisa M; Morin, Alexander M; Edgar, Rachel D; MacIsaac, Julia L; Jones, Meaghan J; Dow, William H; Rosero-Bixby, Luis; Kobor, Michael S; Rehkopf, David H

    2017-01-01

    The Nicoya Peninsula in Costa Rica has one of the highest old-age life expectancies in the world, but the underlying biological mechanisms of this longevity are not well understood. As DNA methylation is hypothesized to be a component of biological aging, we focused on this malleable epigenetic mark to determine its association with current residence in Nicoya versus elsewhere in Costa Rica. Examining a population's unique DNA methylation pattern allows us to differentiate hallmarks of longevity from individual stochastic variation. These differences may be characteristic of a combination of social, biological, and environmental contexts. In a cross-sectional subsample of the Costa Rican Longevity and Healthy Aging Study, we compared whole blood DNA methylation profiles of residents from Nicoya ( n  = 48) and non-Nicoya (other Costa Rican regions, n  = 47) using the Infinium HumanMethylation450 microarray. We observed a number of differences that may be markers of delayed aging, such as bioinformatically derived differential CD8+ T cell proportions. Additionally, both site- and region-specific analyses revealed DNA methylation patterns unique to Nicoyans. We also observed lower overall variability in DNA methylation in the Nicoyan population, another hallmark of younger biological age. Nicoyans represent an interesting group of individuals who may possess unique immune cell proportions as well as distinct differences in their epigenome, at the level of DNA methylation.

  7. Uncovering the Protein Lysine and Arginine Methylation Network in Arabidopsis Chloroplasts

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391

  8. Rapid response to changing environments during biological invasions: DNA methylation perspectives.

    PubMed

    Huang, Xuena; Li, Shiguo; Ni, Ping; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2017-12-01

    Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation. © 2017 John Wiley & Sons Ltd.

  9. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).

    PubMed

    Zhang, J S; Stanforth, R S; Pehkonen, S O

    2007-02-01

    Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but

  10. Mercury Methylation in Alaskan Peatlands Spanning a Large Range of Trophic Structure

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, D. P.; Zhang, L.; Hines, M. E.; Barkay, T.; Schaefer, J.; Aiken, G.

    2015-12-01

    The process of mercury (Hg) methylation has long been recognized as a key area of research in order to understand spatial and temporal variability of toxic methylmercury (MeHg) on the landscape. Numerous factors affect MeHg production, the most important generally falling into those that affect inorganic Hg(II) bioavailability (e.g., Hg(II) concentration and ligand composition), and those that affect microbial community composition and activity. The principal goal of this project is to decipher the details of MeHg production in Alaskan peatlands exhibiting a range of trophic status, including those lacking in electron acceptors that support the traditional respiratory pathway of MeHg production (e.g., sulfate reduction). MeHg production is carried out by a diverse group of microorganisms that possess the gene cluster (hgcAB), including the well-studied sulfate and iron- reducing bacteria (SRB and FeRB). However, less well known bacteria also possess the hgcAB genes, including: syntrophs, methanogens, acetogens, and fermenters. Methylation and demethylation activities were determined by injecting trace levels of the stable isotope (198Hg and Me204Hg) into intact peat cores. In addition, the short-lived radioisotope 197Hg was used in laboratory incubations. Laboratory studies also included assays for changes in diagnostic gas concentrations (CH4, CO2, H2) and LMW organic acids (formate, acetate, propionate, butyrate) to infer specific microbial processes, and the use of genomics to confirm microbial assemblages and the presence/absence of hgcAB genes. Overall, we observed Hg methylation rates were greatest at minerotrophic sites with active syntrophy and methanogenesis. Methylation and demethylation rates corresponded significantly across sites. There was no evidence of SO4- reduction in these samples, and addition of SO4- did not stimulate methylation suggesting that methylation was conducted by SRB that were metabolizing syntrophically and/or by fermentation.

  11. Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions

    PubMed Central

    Wu, Hao; Zhang, Yi

    2014-01-01

    Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes. PMID:24439369

  12. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors.

    PubMed

    How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg

    2015-01-01

    Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.

  13. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    PubMed

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  14. MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults.

    PubMed

    Beach, Steven R H; Lei, Man Kit; Ong, Mei Ling; Brody, Gene H; Dogan, Meeshanthini V; Philibert, Robert A

    2017-09-01

    Smoking has been shown to have a large, reliable, and rapid effect on demethylation of AHRR, particularly at cg05575921, suggesting that methylation may be used as an index of cigarette consumption. Because the availability of methyl donors may also influence the degree of demethylation in response to smoking, factors that affect the activity of methylene tetrahydrofolate reductase (MTHFR), a key regulator of methyl group availability, may be of interest. In the current investigation, we examined the extent to which individual differences in methylation of MTHFR moderated the association between smoking and demethylation at cg05575921 as well as at other loci on AHRR associated with a main effect of smoking. Using a discovery sample (AIM, N = 293), and a confirmatory sample (SHAPE, N = 368) of young adult African Americans, degree of methylation of loci in the first exon of MTHFR was associated with amplification of the association between smoking and AHRR demethylation at cg05575921. However, genetic variation at a commonly studied MTHFR variant, C677T, did not influence cg05575921 methylation. The significant interaction between MTHFR methylation and the smoking-induced response at cg05575921 suggests a role for individual differences in methyl cycle regulation in understanding the effects of cigarette consumption on genome wide DNA methylation. © 2017 Wiley Periodicals, Inc.

  15. Methylation of the tryptophan hydroxylase‑2 gene is associated with mRNA expression in patients with major depression with suicide attempts.

    PubMed

    Zhang, Yuqi; Chang, Zaohuo; Chen, Jionghua; Ling, Yang; Liu, Xiaowei; Feng, Zhang; Chen, Caixia; Xia, Minghua; Zhao, Xingfu; Ying, Wang; Qing, Xu; Li, Guilin; Zhang, Changsong

    2015-08-01

    Tryptophan hydroxylase-2 (TPH2) contributes to alterations in the function of neuronal serotonin (5-HT), which are associated with various psychopathologies, including major depressive disorder (MDD) or suicidal behavior. The methylation of a single CpG site in the promoter region of TPH2 affects gene expression. Suicide and MDD are strongly associated and genetic factors are at least partially responsible for the variability in suicide risk. The aim of the present study was to investigate whether variations in TPH2 methylation in peripheral blood samples may predispose patients with MDD to suicide attempts. TPH2 mRNA expression levels differed significantly between 50 patients with MDD who had attempted suicide (MDD + suicide group) and 75 control patients with MDD (MDD group); TPH2 expression levels were significantly decreased (P=0.0005) in the patients who had attempted suicide. Furthermore, the frequency of TPH2 methylation was 36.0% in the MDD + suicide group, while it was 13.0% in the MDD group. The results of the present study demonstrated that methylation in the promoter region of TPH2 significantly affected the mRNA expression levels of TPH2, thus suggesting that methylation of the TPH2 promoter may silence TPH2 mRNA expression in MDD patients with or without suicidal behavior. In addition, there was a significant correlation between the methylation status of the TPH2 promoter and depression, hopelessness and cognitive impairment in the MDD + suicide group. In conclusion, the present study demonstrated that TPH2 expression was regulated by DNA methylation of the TPH2 promoter region in patients with MDD.

  16. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells.

    PubMed

    Arpón, A; Riezu-Boj, J I; Milagro, F I; Marti, A; Razquin, C; Martínez-González, M A; Corella, D; Estruch, R; Casas, R; Fitó, M; Ros, E; Salas-Salvadó, J; Martínez, J A

    2016-08-01

    Epigenetic processes, including DNA methylation, might be modulated by environmental factors such as the diet, which in turn have been associated with the onset of several diseases such as obesity or cardiovascular events. Meanwhile, Mediterranean diet (MedDiet) has demonstrated favourable effects on cardiovascular risk, blood pressure, inflammation and other complications related to excessive adiposity. Some of these effects could be mediated by epigenetic modifications. Therefore, the objective of this study was to investigate whether the adherence to MedDiet is associated with changes in the methylation status from peripheral blood cells. A subset of 36 individuals was selected within the Prevención con Dieta Mediterránea (PREDIMED)-Navarra study, a randomised, controlled, parallel trial with three groups of intervention in high cardiovascular risk volunteers, two with a MedDiet and one low-fat control group. Changes in methylation between baseline and 5 years were studied. DNA methylation arrays were analysed by several robust statistical tests and functional classifications. Eight genes related to inflammation and immunocompetence (EEF2, COL18A1, IL4I1, LEPR, PLAGL1, IFRD1, MAPKAPK2, PPARGC1B) were finally selected as changes in their methylation levels correlated with adherence to MedDiet and because they presented sensitivity related to a high variability in methylation changes. Additionally, EEF2 methylation levels positively correlated with concentrations of TNF-α and CRP. This report is apparently the first showing that adherence to MedDiet is associated with the methylation of the reported genes related to inflammation with a potential regulatory impact.

  17. (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins.

    PubMed

    Wu, Chin H; Das, Bibhuti B; Opella, Stanley J

    2010-02-01

    (13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    PubMed

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  19. Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects.

    PubMed

    Zoja, Carla; Corna, Daniela; Nava, Valeria; Locatelli, Monica; Abbate, Mauro; Gaspari, Flavio; Carrara, Fabiola; Sangalli, Fabio; Remuzzi, Giuseppe; Benigni, Ariela

    2013-03-15

    Bardoxolone methyl is an antioxidant inflammation modulator acting through induction of Keap1-Nrf2 pathway. Results from a recent phase IIb clinical trial reported that bardoxolone methyl was associated with improvement in the estimated glomerular filtration rate in patients with advanced chronic kidney disease and Type 2 diabetes. However, increases in albuminuria, serum transaminase, and frequency of adverse events were noted. We studied the effect of 3-mo treatment with RTA 405, a synthetic triterpenoid analog of bardoxolone methyl in Zucker diabetic fatty rats with overt Type 2 diabetes. Rats were treated from 3 mo of age with vehicle, RTA 405, ramipril, or RTA 405 plus ramipril. RTA 405 caused severe changes in food intake and diuresis with decline in body weight, worsening of dyslipidemia, and increase in blood pressure. Early elevation in serum transaminase was followed by liver injury. RTA 405 worsened proteinuria, glomerulosclerosis, and tubular damage. Ramipril was renoprotective, but when given with RTA 405 it was not able to limit its worsening effects. These data could be due to degradation products in the drug substance used, as disclosed by the company once the study was concluded. To overcome such a drawback, the company offered to test dh404, a variant of RTA 405, in Zucker diabetic fatty rats. The dh404 did not display beneficial effects on proteinuria, glomerulosclerosis, and interstitial inflammation. Rather, kidneys from three rats receiving dh404 showed the presence of a granulomatous and inflammatory process reminiscent of a pseudotumor. Altogether these data raise serious concerns on the use of bardoxolone analogs in Type 2 diabetic nephropathy.

  20. Protein methylation in pea chloroplasts. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. Onemore » methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.« less

  1. CpG Methylation Analysis—Current Status of Clinical Assays and Potential Applications in Molecular Diagnostics

    PubMed Central

    Sepulveda, Antonia R.; Jones, Dan; Ogino, Shuji; Samowitz, Wade; Gulley, Margaret L.; Edwards, Robin; Levenson, Victor; Pratt, Victoria M.; Yang, Bin; Nafa, Khedoudja; Yan, Liying; Vitazka, Patrick

    2009-01-01

    Methylation of CpG islands in gene promoter regions is a major molecular mechanism of gene silencing and underlies both cancer development and progression. In molecular oncology, testing for the CpG methylation of tissue DNA has emerged as a clinically useful tool for tumor detection, outcome prediction, and treatment selection, as well as for assessing the efficacy of treatment with the use of demethylating agents and monitoring for tumor recurrence. In addition, because CpG methylation occurs early in pre-neoplastic tissues, methylation tests may be useful as markers of cancer risk in patients with either infectious or inflammatory conditions. The Methylation Working Group of the Clinical Practice Committee of the Association of Molecular Pathology has reviewed the current state of clinical testing in this area. We report here our summary of both the advantages and disadvantages of various methods, as well as the needs for standardization and reporting. We then conclude by summarizing the most promising areas for future clinical testing in cancer molecular diagnostics. PMID:19541921

  2. Additional New Cytotoxic Triquinane-Type Sesquiterpenoids Chondrosterins K–M from the Marine Fungus Chondrostereum sp

    PubMed Central

    Huang, Lei; Lan, Wen-Jian; Deng, Rong; Feng, Gong-Kan; Xu, Qing-Yan; Hu, Zhi-Yu; Zhu, Xiao-Feng; Li, Hou-Jin

    2016-01-01

    By the method of 1H NMR prescreening and tracing the diagnostic proton signals of the methyl groups, three additional new triquinane-type sesquiterpenoids—chondrosterins K–M (1–3) and the known sesquiterpenoid anhydroarthrosporone (4)—were isolated from the marine fungus Chondrostereum sp. Their structures were elucidated on the basis of MS, 1D, and 2D NMR data. Chondrosterin K is a rare hirsutane sesquiterpenoid, in which a methyl group was migrated from C-2 to C-6 and has a double bond between C-2 and C-3. Compounds 1–3 showed significant cytotoxicities against various cancer cell lines in vitro. PMID:27571085

  3. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood.

    PubMed

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  4. Optical biosensing strategies for DNA methylation analysis.

    PubMed

    Nazmul Islam, Md; Yadav, Sharda; Hakimul Haque, Md; Munaz, Ahmed; Islam, Farhadul; Al Hossain, Md Shahriar; Gopalan, Vinod; Lam, Alfred K; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-06-15

    DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dynamic Alu Methylation during Normal Development, Aging, and Tumorigenesis

    PubMed Central

    Lu, Xuemei

    2014-01-01

    DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed. PMID:25243180

  6. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    PubMed

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  7. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite – a combined DFT/experimental study

    DOE PAGES

    Rasmussen, D. B.; Christensen, J. M.; Temel, B.; ...

    2017-01-23

    The reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite was studied theoretically with periodic density functional theory calculations including dispersion forces and experimentally in a fixed bed flow reactor at pressures between 10 and 100 bar, dimethyl ether concentrations in CO between 0.2 and 2.0%, and at a temperature of 438 K. The theoretical study showed that the reaction of CO with surface methyl groups, the rate-limiting step, is faster in the eight-membered side pockets than in the twelve-membered main channel of the zeolite; the subsequent reaction of dimethyl ether with surface acetyl to form methyl acetatemore » was demonstrated to occur with low energy barriers in both the side pockets and in the main channel. Here, the present analysis has thus identified a path, where the entire reaction occurs favourably on a single site within the side pocket, in good agreement with previous experimental studies. The experimental study of the reaction kinetics was consistent with the theoretically derived mechanism and in addition revealed that the methyl acetate product inhibits the reaction – possibly by sterically hindering the attack of CO on the methyl groups in the side pockets.« less

  8. Predictive value of CHFR and MLH1 methylation in human gastric cancer.

    PubMed

    Li, Yazhuo; Yang, Yunsheng; Lu, Youyong; Herman, James G; Brock, Malcolm V; Zhao, Po; Guo, Mingzhou

    2015-04-01

    Gastric carcinoma (GC) has one of the highest mortality rates of cancer diseases and has a high incidence rate in China. Palliative chemotherapy is the main treatment for advanced gastric cancer. It is necessary to compare the effectiveness and toxicities of different regimens. This study explores the possibility of methylation of DNA damage repair genes serving as a prognostic and chemo-sensitive marker in human gastric cancer. The methylation status of five DNA damage repair genes (CHFR, FANCF, MGMT, MLH1, and RASSF1A) was detected by nested methylation-specific PCR in 102 paraffin-embedded gastric cancer samples. Chi-square or Fisher's exact tests were used to evaluate the association of methylation status and clinic-pathological factors. The Kaplan-Meier method and Cox proportional hazards models were employed to analyze the association of methylation status and chemo-sensitivity. The results indicate that CHFR, MLH1, RASSF1A, MGMT, and FANCF were methylated in 34.3% (35/102), 21.6% (22/102), 12.7% (13/102), 9.8% (10/102), and 0% (0/102) of samples, respectively. No association was found between methylation of CHFR, MLH1, RASSF1A, MGMT, or FANCF with gender, age, tumor size, tumor differentiation, lymph node metastasis, and TNM stage. In docetaxel-treated gastric cancer patients, resistance to docetaxel was found in CHFR unmethylated patients by Cox proportional hazards model (HR 0.243, 95% CI, 0.069-0.859, p = 0.028), and overall survival is longer in the CHFR methylated group compared with the CHFR unmethylated group (log-rank, p = 0.036). In oxaliplatin-treated gastric cancer patients, resistance to oxaliplatin was found in MLH1 methylated patients (HR 2.988, 95% CI, 1.064-8.394, p = 0.038), and overall survival was longer in the MLH1 unmethylated group compared with the MLH1 methylated group (log-rank, p = 0.046). CHFR is frequently methylated in human gastric cancer, and CHFR methylation may serve as a docetaxel-sensitive marker. MLH1 methylation was

  9. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1830 Styrene-methyl methacrylate copolymers. Styrene-methyl... intended for use in contact with food, subject to the provisions of this section. (a) For the purpose of...

  10. DNA methylation in adult diffuse gliomas.

    PubMed

    LeBlanc, Veronique G; Marra, Marco A

    2016-11-01

    Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism.

    PubMed

    Lever, Michael; Slow, Sandy

    2010-06-01

    Betaine is an essential osmolyte and source of methyl groups and comes from either the diet or by the oxidation of choline. Its metabolism methylates homocysteine to methionine, also producing N,N-dimethylglycine. Betaine insufficiency is associated with the metabolic syndrome, lipid disorders and diabetes, and may have a role in vascular and other diseases. Betaine is important in development, from the pre-implantation embryo to infancy. Betaine supplementation improves animal and poultry health, but the effect of long-term supplementation on humans is not known, though reports that it improves athletic performance will stimulate further studies. Subsets of the population that may benefit from betaine supplementation could be identified by the laboratory, in particular those who excessively lose betaine through the urine. Plasma betaine is highly individual, in women typically 20-60 micromol/L and in men 25-75 micromol/L. Plasma dimethylglycine is typically <10 micromol/L. Urine betaine excretion is minimal, even following a large betaine dose. It is constant, highly individual and normally <35 mmol/mole creatinine. The preferred method of betaine measurement is by LC-MS/MS, which is rapid and capable of automation. Slower HPLC methods give comparable results. Proton NMR spectrometry is another option but caution is needed to avoid confusion with trimethylamine-N-oxide. 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Group Additivity Determination for Oxygenates, Oxonium Ions, and Oxygen-Containing Carbenium Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dellon, Lauren D.; Sung, Chun-Yi; Robichaud, David J.

    Bio-oil produced from biomass fast pyrolysis often requires catalytic upgrading to remove oxygen and acidic species over zeolite catalysts. The elementary reactions in the mechanism for this process involve carbenium and oxonium ions. In order to develop a detailed kinetic model for the catalytic upgrading of biomass, rate constants are required for these elementary reactions. The parameters in the Arrhenius equation can be related to thermodynamic properties through structure-reactivity relationships, such as the Evans-Polanyi relationship. For this relationship, enthalpies of formation of each species are required, which can be reasonably estimated using group additivity. However, the literature previously lacked groupmore » additivity values for oxygenates, oxonium ions, and oxygen-containing carbenium ions. In this work, 71 group additivity values for these types of groups were regressed, 65 of which had not been reported previously and six of which were newly estimated based on regression in the context of the 65 new groups. Heats of formation based on atomization enthalpy calculations for a set of reference molecules and isodesmic reactions for a small set of larger species for which experimental data was available were used to demonstrate the accuracy of the Gaussian-4 quantum mechanical method in estimating enthalpies of formation for species involving the moieties of interest. Isodesmic reactions for a total of 195 species were constructed from the reference molecules to calculate enthalpies of formation that were used to regress the group additivity values. The results showed an average deviation of 1.95 kcal/mol between the values calculated from Gaussian-4 and isodesmic reactions versus those calculated from the group additivity values that were newly regressed. Importantly, the new groups enhance the database for group additivity values, especially those involving oxonium ions.« less

  13. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking

    PubMed Central

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875

  14. Methyl Group Internal Rotation in the Pure Rotational Spectrum of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, II; Cooke, S. A.; Groner, P.

    2011-06-01

    We have used chirped pulse Fourier transform microwave spectroscopy to record the pure rotational spectrum of the title molecule. The spectrum was doubled owing to the internal rotation of the methyl group. The spectrum has been assigned and two approaches to the spectral analysis have been performed. In the first case, the A and E components were fit separately using a principal axis method with the SPFIT code of Pickett. In the second case, the A and E states were fit simultaneously using the ERHAM code. For a satisfactory analysis of the spectral data it has been found that the choice of Hamiltonian reduction, i.e. Watson A or S, is very important. The barrier to the internal rotation has been determined to be 261.1(8) Cm-1 and it will be compared to that of acetone and other halogenated acetone species recently studied in our laboratory.

  15. Increased functionality of methyl oleate using alkene metathesis

    USDA-ARS?s Scientific Manuscript database

    A series of alkene cross metathesis reactions were performed using a homogeneous ruthenium based catalyst. Using this technology, a variety of functional groups can be incorporated into the biobased starting material, methyl oleate. Trans-stilbene, styrene, methyl cinnamate and hexen-3-ol were all s...

  16. Methylation of nuclear proteins by dimethylnitrosamine and by methionine in the rat in vivo

    PubMed Central

    Turberville, C.; Craddock, V. M.

    1971-01-01

    1. The incorporation of methyl groups into histones from dimethylnitrosamine and from methionine was studied by injection of the labelled compounds, isolation of rat liver and kidney histones, and analysis of hydrolysates by column chromatography. 2. Labelled methionine gave rise to labelled ∈-N-methyl-lysine, di-∈-N-methyl-lysine and an amino acid presumed to be ω-N-methyl-arginine. 3. Administration of labelled dimethylnitrosamine gave rise to labelled S-methylcysteine, 1-methylhistidine, 3-methylhistidine and ∈-N-methyl-lysine derived from the alkylating metabolite of dimethylnitrosamine. In addition, labelled formaldehyde released by metabolism of dimethylnitrosamine leads to the formation of labelled S-adenosylmethionine, and hence to labelling of ∈-N-methyl-lysine, di-∈-N-methyl-lysine and ω-N-methylarginine by enzymic methylation. 4. The formation of ∈-N-methyl-lysine by alkylation of liver histones was confirmed by using doubly labelled dimethylnitrosamine to discriminate between direct chemical alkylation and enzymic methylation via S-adenosylmethionine. These experiments also suggested the possibility that methionine residues in the histones were alkylated to give methylmethionine sulphonium residues. 5. The extent of alkylation of liver histones was maximal at about 5h after dosing and declined between 5 and 24h. The methylated amino acids resulting from direct chemical alkylation were preferentially lost: this is ascribed to necrosis of the more highly alkylated cells. 6. Liver histones were about four times as alkylated as kidney histones; the extent of alkylation of liver histones was similar to that of liver total nuclear proteins. 7. Methyl methanesulphonate (120mg/kg) alkylated liver histones to a greater extent than did dimethylnitrosamine. Diethylnitrosamine also alkylated liver histones. 8. The results are discussed with regard to the possible effects of alkylation on histone function, and the possible role of histone alkylation in

  17. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis.

    PubMed

    Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E

    2017-03-01

    The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR 0 ) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR 0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2- 2 H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP + in the presence of redox-inactive, recombinant NanKR1 0 or NanKR5 0 , from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR7 0 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR 0 -catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2- 2 H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR 0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR 0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.

  18. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis

    PubMed Central

    Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E.

    2017-01-01

    The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly-generated, transiently-formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations. PMID:28157306

  19. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.

    PubMed

    de Zeeuw, Dick; Akizawa, Tadao; Audhya, Paul; Bakris, George L; Chin, Melanie; Christ-Schmidt, Heidi; Goldsberry, Angie; Houser, Mark; Krauth, Melissa; Lambers Heerspink, Hiddo J; McMurray, John J; Meyer, Colin J; Parving, Hans-Henrik; Remuzzi, Giuseppe; Toto, Robert D; Vaziri, Nosratola D; Wanner, Christoph; Wittes, Janet; Wrolstad, Danielle; Chertow, Glenn M

    2013-12-26

    Although inhibitors of the renin-angiotensin-aldosterone system can slow the progression of diabetic kidney disease, the residual risk is high. Whether nuclear 1 factor (erythroid-derived 2)-related factor 2 activators further reduce this risk is unknown. We randomly assigned 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (estimated glomerular filtration rate [GFR], 15 to <30 ml per minute per 1.73 m(2) of body-surface area) to bardoxolone methyl, at a daily dose of 20 mg, or placebo. The primary composite outcome was end-stage renal disease (ESRD) or death from cardiovascular causes. The sponsor and the steering committee terminated the trial on the recommendation of the independent data and safety monitoring committee; the median follow-up was 9 months. A total of 69 of 1088 patients (6%) randomly assigned to bardoxolone methyl and 69 of 1097 (6%) randomly assigned to placebo had a primary composite outcome (hazard ratio in the bardoxolone methyl group vs. the placebo group, 0.98; 95% confidence interval [CI], 0.70 to 1.37; P=0.92). In the bardoxolone methyl group, ESRD developed in 43 patients, and 27 patients died from cardiovascular causes; in the placebo group, ESRD developed in 51 patients, and 19 patients died from cardiovascular causes. A total of 96 patients in the bardoxolone methyl group were hospitalized for heart failure or died from heart failure, as compared with 55 in the placebo group (hazard ratio, 1.83; 95% CI, 1.32 to 2.55; P<0.001). Estimated GFR, blood pressure, and the urinary albumin-to-creatinine ratio increased significantly and body weight decreased significantly in the bardoxolone methyl group, as compared with the placebo group. Among patients with type 2 diabetes mellitus and stage 4 chronic kidney disease, bardoxolone methyl did not reduce the risk of ESRD or death from cardiovascular causes. A higher rate of cardiovascular events with bardoxolone methyl than with placebo prompted termination of the

  20. Additive Bilingualism, Schooling, and Special Education: A Minority Group Perspective.

    ERIC Educational Resources Information Center

    Landry, R.

    1987-01-01

    The effect of schooling on the acquisition of an additive type of bilingualism is examined, focusing on additive bilingualism's relation to the ethnolinguistic vitality of linguistic groups and contributions of individual networks of linguistic contacts. A special and regular education merger without domination by a single cultural perspective is…

  1. Analysis of DNA methylation level by methylation-sensitive amplification polymorphism in half smooth tongue sole ( Cynoglossus semilaevis) subjected to salinity stress

    NASA Astrophysics Data System (ADS)

    Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju

    2017-04-01

    Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.

  2. Understanding the relationship between DNA methylation and histone lysine methylation☆

    PubMed Central

    Rose, Nathan R.; Klose, Robert J.

    2014-01-01

    DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929

  3. Group Additivity in Ligand Binding Affinity: An Alternative Approach to Ligand Efficiency.

    PubMed

    Reynolds, Charles H; Reynolds, Ryan C

    2017-12-26

    Group additivity is a concept that has been successfully applied to a variety of thermochemical and kinetic properties. This includes drug discovery, where functional group additivity is often assumed in ligand binding. Ligand efficiency can be recast as a special case of group additivity where ΔG/HA is the group equivalent (HA is the number of non-hydrogen atoms in a ligand). Analysis of a large data set of protein-ligand binding affinities (K i ) for diverse targets shows that in general ligand binding is distinctly nonlinear. It is possible to create a group equivalent scheme for ligand binding, but only in the context of closely related proteins, at least with regard to size. This finding has broad implications for drug design from both experimental and computational points of view. It also offers a path forward for a more general scheme to assess the efficiency of ligand binding.

  4. Methylenetetrahydrofolate Reductase Modulates Methyl Metabolism and Lignin Monomer Methylation in Maize.

    PubMed

    Wu, Zhenying; Ren, Hao; Xiong, Wangdan; Roje, Sanja; Liu, Yuchen; Su, Kunlong; Fu, Chunxiang

    2018-05-30

    The brown midrib2 (bm2) mutant of maize, with a modified lignin composition, contains a mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. We here show that a MITE transposon insertion caused downregulation of MTHFR with accompanying decrease in 5-methyl-THF and increase in 5, 10-methylene-THF and THF in the bm2 mutant. Furthermore, MTHFR mutation did not change the content of SAM, the methyl group donor involved in the biosynthesis of guaiacyl (G) and syringyl (S) lignins, but increased the level of S-adenosyl homocysteine (SAH), the de-methylation product of SAM. Moreover, competitive inhibition of the maize caffeoyl CoA O-methyltransferase (CCoAOMT) and caffeic acid O-methyltransferase (COMT) enzyme activities by SAH was found, suggesting that SAH/SAM ratio rather than SAM concentration regulates the transmethylation reactions of lignin intermediates. Phenolic profiling revealed that caffeoyl alcohol glucose derivatives accumulated in the mutant, indicating impaired 3-O-methylation of monolignols. A remarkable increase in the unusual catechyl (C) lignin determined in the mutant demonstrates that MTHFR downregulation mainly affects G lignin biosynthesis, consistent with the observation that CCoAOMT is more sensitive to SAH inhibition than COMT. This study which uncovered a novel regulatory mechanism in lignin biosynthesis and may offer an effective approach to utilize lignocellulosic feedstocks in future.

  5. Pyrrolidone - a new solvent for the methylation of humic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1975-01-01

    In the past, humic acid has been methylated by suspending it in a solution of diazomethane in diethyl ether, and degrading the partly methylated humic acid to release those parts of the molecule that were methylated. Only small fragments of the molecule have been identified by this technique. In the procedure described here the humic acid is dissolved in 2-pyrrolidone and methylated by the addition of diazomethane in diethyl ether and ethanol to the solution. Because the humic acid is completely dissolved in the reaction medium, disaggregation of the humic acid particles takes place and much more complete methylation is obtained. The methylated products may be fractionated by countercurrent distribution and analyzed by mass spectrometry.

  6. Aquatic toxicity of nine aircraft deicer and anti-icer formulations and relative toxicity of additive package ingredients alkylphenol ethoxylates and 4,5-methyl-1H-henzotriazoles.

    PubMed

    Corsi, Steven R; Geis, Steven W; Loyo-Rosales, Jorge E; Rice, Clifford P

    2006-12-01

    Characterization of the effects of aircraft deicer and anti-icer fluid (ADAF) runoff on aquatic organisms in receiving streams is a complex issue because the identities of numerous toxic additives are proprietary and not publicly available. Most potentially toxic and endocrine disrupting effects caused by ADAF are due to the numerous additive package ingredients which vary among manufacturers and types of ADAF formulation. Toxicity investigations of nine ADAF formulations indicate that endpoint concentrations for formulations of different manufacturers are widely variable. Type IV ADAF (anti-icers) are more toxic than Type I (deicers) for the four organisms tested (Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Selenastrum capricornutum). Acute toxicity endpoint concentrations ranged from 347 to 7700 mg/L as ADAF for Type IV and from 1550 to 45,100 mg/L for Type I formulations. Chronic endpoint concentrations ranged from 70 to 1300 mg/L for Type IV and from 37 to 18,400 mg/L for Type I formulations. Alkylphenol ethoxylates and tolyltriazoles are two known classes of additives. Nonylphenol, nonylphenol ethoxylates, octylphenol, octylphenol ethoxylates, and 4,5-methyl-1H-benzotriazoles were quantified in the nine ADAF formulations, and toxicity tests were conducted with nonylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Toxicity units computed for glycol and these additives, with respect to toxicity of the ADAF formulations, indicate that a portion of ADAF toxicity can be explained by the known additives and glycols, but much of the toxicity is due to unidentified additives.

  7. Methylation matters

    PubMed Central

    Costello, J.; Plass, C.

    2001-01-01

    DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer PMID:11333864

  8. Effect of Methylation on Local Mechanics and Hydration Structure of DNA.

    PubMed

    Teng, Xiaojing; Hwang, Wonmuk

    2018-04-24

    Cytosine methylation affects mechanical properties of DNA and potentially alters the hydration fingerprint for recognition by proteins. The atomistic origin for these effects is not well understood, and we address this via all-atom molecular dynamics simulations. We find that the stiffness of the methylated dinucleotide step changes marginally, whereas the neighboring steps become stiffer. Stiffening is further enhanced for consecutively methylated steps, providing a mechanistic origin for the effect of hypermethylation. Steric interactions between the added methyl groups and the nonpolar groups of the neighboring nucleotides are responsible for the stiffening in most cases. By constructing hydration maps, we found that methylation also alters the surface hydration structure in distinct ways. Its resistance to deformation may contribute to the stiffening of DNA for deformational modes lacking steric interactions. These results highlight the sequence- and deformational-mode-dependent effects of cytosine methylation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Promoter methylation in head and neck tumorigenesis.

    PubMed

    Stephen, Josena K; Chen, Kang Mei; Havard, Shaleta; Harris, Glynis; Worsham, Maria J

    2012-01-01

    In addition to genetic alterations of gains and losses, epigenetic events of promoter methylation appear to further undermine a destabilized genomic repertoire in squamous head and neck carcinoma (HNSCC). This chapter provides an overview of frequently methylated tumor suppressor genes in benign head and neck papillomas, primary HNSCC tumors, and HNSCC cell lines and their relevance as epigenetic markers in head and neck tumorigenesis.

  10. Mössbauer spectroscopic characterization of iron methyl pyropheophorbide a and its derivatives

    NASA Astrophysics Data System (ADS)

    Inoue, H.; Soeda, K.; Akahori, H.; Nonomura, Y.; Yoshioka, N.

    1994-12-01

    Two kinds of iron chlorophylls, i.e. (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct, were prepared and characterized by57Fe Mössbauer spectroscopy. (Methyl pyropheophorbide a)iron(III) chloride gave an asymmetric quadrupole-split doublet typical of high-spin iron(III) chlorophylls, while its bis-pyridine adduct showed a symmetric quadrupole-split doublet characteristic of low-spin iron(II) chlorophylls. The isomer shift and quadrupole splitting obtained for (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct have led to the following conclusions. The substitution of the bulky phytyl group for the methyl group hardly affects the electronic state of the iron(II,III) ion, but the elimination of the methoxycarbonyl group increases the planarity of the macrocyclic chlorin ligand.

  11. N-(/sup 11/C)-methyl-p-substituted phentermine analogs as potential brain blood flow agents for positron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizuka, H.; Elmaleh, D.R.; Boudreaux, G.J.

    The addition of a methyl group to the ..cap alpha..-position of amphetamine increases both the lipophilicity of the agent and its resistance to metabolism by monoamine oxidase. In addition, since tritium substituted phenteramine analog studies suggested that the p-halo phentermines had a greater concentration in the brain and prolonged retention time, the authors evaluated the biological behavior of positron labeled ..cap alpha..-methylamphetamine (phenteramine) in rats, dogs and monkeys. The N-(/sup 11/C) methyl analogs of p-chloro (I) and p-fluoro (II) phentermines were prepared by methylation of their primary amines using /sup 11/Ch/sub 3/I. Biodistribution studies in rats shows brain uptake ismore » in the range of 1% dose/gr at 5 and 15 min for both agents. The activity in blood and eyes is low. Sequential images of the dogs' brain over 1 hour revealed a clearance of <15%. Images of the monkey brain were also obtained using a MGH positron camera PCR-I.« less

  12. Progression of Prostate Carcinogenesis and Dietary Methyl Donors: Temporal Dependence

    PubMed Central

    Shabbeer, Shabana; Williams, Simon A.; Simons, Brian W.; Herman, James G.; Carducci, Michael A.

    2011-01-01

    Insufficient dose of dietary methyl groups are associated with a host of conditions ranging from neural tube defects to cancer. On the other hand, it is not certain what effect excess dietary methyl groups could have on cancer. This is especially true for prostate cancer (PCa), a disease that is characterized by increasing DNA methylation changes with increasing grade of the cancer. In this three-part study in animals, we look at (i) the effect of excess methyl donors on the growth rate of PCa in vivo, (ii) the ability of 5-aza-2'-deoxycytidine, a demethylating agent, to demethylate in the presence of excess dietary methyl donors and (iii) the effect of in utero feeding of excess methyl donors to the later onset of PCa. The results show that when mice are fed a dietary excess of methyl donors, we do not see (i) an increase in the growth rate of DU-145 and PC-3 xenografts in vivo, or (ii) interference in the ability of 5-aza-2'-deoxycytidine to demethylate the promoters of Androgen Receptor or Reprimo of PCa xenografts but (iii) a protective effect on the development of higher grades of PCa in the “Hi-myc” mouse model of PCa which were fed the increased methyl donors in utero. We conclude that the impact of dietary methyl donors on PCa progression depends upon the timing of exposure to the dietary agents. When fed before the onset of cancer, i.e. in utero, excess methyl donors can have a protective effect on the progression of cancer. PMID:22139053

  13. [Effects of aluminium chloride on the methylation of app in hippocampal of rats].

    PubMed

    Yang, Xiaojuan; Yuan, Yuzhou; Niu, Qiao

    2016-05-01

    To study the effect of aluminum chloride on amyloid precursor protein ( APP ) promoter methylation and the content of amyloid beta-protein (Abeta) in hippocampus of rats. Forty male SPF grade SD rats were divided into four groups: control group (0.9% NaCl), 10 mg/kg AlCl3 group, 20 mg/kg AlCl3 group, and 30 mg/kg AlCl3 group, respectively. After treatment for 8 weeks, the APP methylation level and expressions of APP mRNA was detected by methylation specific PCR and quantitative real time PCR, respectively. The content of APP and Abeta were detected with enzym-linked immunosorbent assay (ELISA). With the increase of the content of aluminium chloride, the escape latency were significantly prolong (P < 0.05), numbers of traversing flat in AlCl3 20 mg/kg and AlCl3 30 mg/kg group high and were significantly decreased (P < 0.05), the methylation level of APP contaminated by AlCl3 were decreased (chi2 = 27.61, P < 0.05), the level of APP methylation in 30 mg/kg AlCl3 group was lower than three groups (P < 0.01). With the increase of aluminium chloride, the level of APP methylation were decreased (chi2 = 19.08, P < 0.01). With the increase of the content of aluminium chloride, the methylation level of APP treated with 20 mg/kg AlCl3 and 30 mg/kg AlCl3 were decreased compared with control group (P < 0.05), the level of APP methylation in 30 mg/kg AlCl3 group was lower than 10mg/kg AlCl3 group (P < 0.05), the APP mRNA expression level in AlCl3 group was of statistical significance compared to the control group (F = 8.973, P < 0.05), the level of APP mRNA in 30 mg/kg AlCl3 were higher than 10 mg/kg AlCl3 (P < 0.05). Compared with the control group, the content of APP and Abeta in hippocampus of AlCl3 group were increased (F = 11.14, P = 0. 032, F = 17.82, P = 0.018), and 30 mg/kg AlCl3 group were higher than 10 mg/kg AlCl3 (P < 0.05), the content of APP in 20 mg/kg AlCl3 group were higher than 10 mg/kg AlCl3 (P < 0.05). The result of immunohistochemistry revealed that the

  14. Observation of CH⋅⋅⋅π Interactions between Methyl and Carbonyl Groups in Proteins.

    PubMed

    Perras, Frédéric A; Marion, Dominique; Boisbouvier, Jérôme; Bryce, David L; Plevin, Michael J

    2017-06-19

    Protein structure and function is dependent on myriad noncovalent interactions. Direct detection and characterization of these weak interactions in large biomolecules, such as proteins, is experimentally challenging. Herein, we report the first observation and measurement of long-range "through-space" scalar couplings between methyl and backbone carbonyl groups in proteins. These J couplings are indicative of the presence of noncovalent C-H⋅⋅⋅π hydrogen-bond-like interactions involving the amide π network. Experimentally detected scalar couplings were corroborated by a natural bond orbital analysis, which revealed the orbital nature of the interaction and the origins of the through-space J couplings. The experimental observation of this type of CH⋅⋅⋅π interaction adds a new dimension to the study of protein structure, function, and dynamics by NMR spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus.

    PubMed

    Tomizawa, H; Matsuzawa, D; Ishii, D; Matsuda, S; Kawai, K; Mashimo, Y; Sutoh, C; Shimizu, E

    2015-03-01

    DNA methylation is one of the essential factors in the control of gene expression. Alteration of the DNA methylation pattern has been linked to various neurological, behavioral and neurocognitive dysfunctions. Recent studies have pointed out the importance of epigenetics in brain development and functions including learning and memory. Nutrients related to one-carbon metabolism are known to play important roles in the maintenance of genomic DNA methylation. Previous studies have shown that the long-term administration of a diet lacking essential one-carbon nutrients such as methionine, choline and folic acid (methyl donors) caused global DNA hypermethylation in the brain. Therefore, the long-term feeding of a methyl-donor-deficient diet may cause abnormal brain development including learning and memory. To confirm this hypothesis, 3-week-old mice were maintained on a folate-, methionine- and choline-deficient (FMCD) or control (CON) diet for 3 weeks. We found that the methyl-donor deficiency impaired both novel object recognition and fear extinction after 3 weeks of treatment. The FMCD group showed spontaneous recovery of fear that differed from that in CON. In addition, we found decreased Gria1 gene expression and specific CpG hypermethylation of the Gria1 promoter region in the FMCD hippocampus. Our data suggest that a chronic dietary lack of methyl donors in the developmental period affects learning, memory and gene expressions in the hippocampus. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway

    PubMed Central

    Obeid, Rima

    2013-01-01

    Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available. PMID:24022817

  17. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma

    PubMed Central

    Olar, Adriana; Wani, Khalida M; Wilson, Charmaine D; Zadeh, Gelareh; DeMonte, Franco; Jones, David TW; Pfister, Stefan M; Sulman, Erik P; Aldape, Kenneth D

    2017-01-01

    Meningioma is the most common primary brain tumor and carries a substantial risk of local recurrence. Methylation profiles of meningioma and their clinical implications are not well understood. We hypothesized that aggressive meningiomas have unique DNA methylation patterns that could be used to better stratify patient management. Samples (n=140) were profiled using the Illumina HumanMethylation450 BeadChip. Unsupervised modeling on a training set (n=89) identified 2 molecular methylation subgroups of meningioma (MM) with significantly different recurrence free survival (RFS) times between the groups: a prognostically unfavorable subgroup (MM-UNFAV) and a prognostically favorable subgroup (MM-FAV). This finding was validated in the remaining 51 samples and led to a baseline meningioma methylation classifier (bMMC) defined by 283 CpG loci (283-bMMC). To further optimize a recurrence predictor, probes subsumed within the baseline classifier were subject to additional modeling using a similar training/validation approach, leading to a 64-CpG loci meningioma methylation predictor (64-MMP). After adjustment for relevant clinical variables [WHO grade, mitotic index, Simpson grade, sex, location, and copy number aberrations (CNA)] multivariable analyses for RFS showed that the baseline methylation classifier was not significant (p=0.0793). The methylation predictor however was significantly associated with tumor recurrence (p<0.0001). CNA were extracted from the 450k intensity profiles. Tumor samples in the MM-UNFAV subgroup showed an overall higher proportion of CNAs compared to the MM-FAV subgroup tumors and the CNAs were complex in nature. CNAs in the MM-UNFAV subgroup included recurrent losses of 1p, 6q, 14q and 18q, and gain of 1q, all of which were previously identified as indicators of poor outcome. In conclusion, our analyses demonstrate robust DNA methylation signatures in meningioma that correlate with CNAs and stratify patients by recurrence risk. PMID:28130639

  18. Excess of Methyl Donor in the Perinatal Period Reduces Postnatal Leptin Secretion in Rat and Interacts with the Effect of Protein Content in Diet

    PubMed Central

    Giudicelli, Fanny; Brabant, Anne-Laure; Grit, Isabelle; Parnet, Patricia; Amarger, Valérie

    2013-01-01

    Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring. PMID:23840890

  19. Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet.

    PubMed

    Giudicelli, Fanny; Brabant, Anne-Laure; Grit, Isabelle; Parnet, Patricia; Amarger, Valérie

    2013-01-01

    Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring.

  20. Bardoxolone Methyl in Type 2 Diabetes and Stage 4 Chronic Kidney Disease

    PubMed Central

    de Zeeuw, Dick; Akizawa, Tadao; Audhya, Paul; Bakris, George L.; Chin, Melanie; Christ-Schmidt, Heidi; Goldsberry, Angie; Houser, Mark; Krauth, Melissa; Heerspink, Hiddo J. Lambers; McMurray, John J.; Meyer, Colin J.; Parving, Hans-Henrik; Remuzzi, Giuseppe; Toto, Robert D.; Vaziri, Nosratola D.; Wanner, Christoph; Wittes, Janet; Wrolstad, Danielle; Chertow, Glenn M.

    2015-01-01

    BACKGROUND Although inhibitors of the renin–angiotensin–aldosterone system can slow the progression of diabetic kidney disease, the residual risk is high. Whether nuclear 1 factor (erythroid-derived 2)–related factor 2 activators further reduce this risk is unknown. METHODS We randomly assigned 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (estimated glomerular filtration rate [GFR], 15 to <30 ml per minute per 1.73 m2 of body-surface area) to bardoxolone methyl, at a daily dose of 20 mg, or placebo. The primary composite outcome was end-stage renal disease (ESRD) or death from cardiovascular causes. RESULTS The sponsor and the steering committee terminated the trial on the recommendation of the independent data and safety monitoring committee; the median follow-up was 9 months. A total of 69 of 1088 patients (6%) randomly assigned to bardoxolone methyl and 69 of 1097 (6%) randomly assigned to placebo had a primary composite outcome (hazard ratio in the bardoxolone methyl group vs. the placebo group, 0.98; 95% confidence interval [CI], 0.70 to 1.37; P = 0.92). In the bardoxolone methyl group, ESRD developed in 43 patients, and 27 patients died from cardiovascular causes; in the placebo group, ESRD developed in 51 patients, and 19 patients died from cardiovascular causes. A total of 96 patients in the bardoxolone methyl group were hospitalized for heart failure or died from heart failure, as compared with 55 in the placebo group (hazard ratio, 1.83; 95% CI, 1.32 to 2.55; P<0.001). Estimated GFR, blood pressure, and the urinary albumin-to-creatinine ratio increased significantly and body weight decreased significantly in the bardoxolone methyl group, as compared with the placebo group. CONCLUSIONS Among patients with type 2 diabetes mellitus and stage 4 chronic kidney disease, bardoxolone methyl did not reduce the risk of ESRD or death from cardiovascular causes. A higher rate of cardiovascular events with bardoxolone methyl

  1. Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation

    PubMed Central

    LITT, Michael; QIU, Yi; HUANG, Suming

    2017-01-01

    Synopsis PRMTs (protein arginine N-methyltransferases) specifically modify the arginine residues of key cellular and nuclear proteins as well as histone substrates. Like lysine methylation, transcriptional repression or activation is dependent upon the site and type of arginine methylation on histone tails. Recent discoveries imply that histone arginine methylation is an important modulator of dynamic chromatin regulation and transcriptional controls. However, under the shadow of lysine methylation, the roles of histone arginine methylation have been under-explored. The present review focuses on the roles of histone arginine methylation in the regulation of gene expression, and the interplays between histone arginine methylation, histone acetylation, lysine methylation and chromatin remodelling factors. In addition, we discuss the dynamic regulation of arginine methylation by arginine demethylases, and how dysregulation of PRMTs and their activities are linked to human diseases such as cancer. PMID:19220199

  2. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  3. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.

    PubMed

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications.

  4. Liver receptor homolog-1 is a critical determinant of methyl-pool metabolism

    USDA-ARS?s Scientific Manuscript database

    Balance of labile methyl groups (choline, methionine, betaine, and folate) is important for normal liver function. Quantitatively, a significant use of labile methyl groups is in the production of phosphatidylcholines (PCs), which are ligands for the nuclear liver receptor homolog-1 (LRH-1). We stud...

  5. Hydrogen bond docking site competition in methyl esters

    NASA Astrophysics Data System (ADS)

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-01

    The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.

  6. Mechanisms of Hg(II) uptake and methylation in methylating bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, Francois M. M.

    2016-10-14

    The goal of this project was to understand the critical factors which control the availability and transport of Hg(II) into cells, a first step in the production of the neurotoxin, methylmercury. Specifically, this research focused on understanding the mechanism of bacterial mercury uptake and how mercury speciation affects the specificity and kinetics of mercury transport. Our research has shown that Hg(II) uptake in three different iron and sulfate-reducing proteobacteria occurs by the following mechanism (1) : Hg(II) uptake is an active transport process requiring energy, (2) it is dependent upon the structure of the Hg binding ligand, and (3) itmore » is mediated by a heavy metal transporter such as one which transports the essential metal, Zn(II). In order to determine whether this mechanism extends to more diverse phylogenetic groups, we have begun examining Hg(II) uptake and bioavailability in two representative Hg methylating strains within the Firmicutes. These organisms have remarkably different membrane structures distinct from the Proteobacteria. Our results show low uptake rates in these two species of Firmicutes relative to the previously characterized Proteobacteria. This may explain the low methylation rates and yields observed in these organisms. Most surprisingly, however, these organisms appear to take up Hg(II) passively, as the addition of a protonophore failed to reduce Hg(II) uptake in these organisms. This is quite different to what has been observed previously for the Proteobacteria and suggests a different mechanism for Hg(II) uptake in the Firmicutes. We are continuing to understand and describe Hg(II) uptake in these organisms. A manuscript is expected to be submitted on this research in June 2016.« less

  7. Histone deacetylation, as opposed to promoter methylation, results in epigenetic BIM silencing and resistance to EGFR TKI in NSCLC.

    PubMed

    Zhao, Mingchuan; Zhang, Yishi; Li, Jiayu; Li, Xuefei; Cheng, Ningning; Wang, Qi; Cai, Weijing; Zhao, Chao; He, Yayi; Chang, Jianhua; Zhou, Caicun

    2018-01-01

    Drug resistance remains a major challenge in epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. Bcl-2-like protein 11 (BIM), a B-cell lymphoma 2 family pro-apoptotic protein, is a prime target for specific anti-cancer therapeutics. However, the epigenetic regulation of BIM in non-small cell lung cancer (NSCLC) cell lines and patients with NSCLC in association with EGFR-TKI resistance requires investigation. Methylation-specific PCR (MSP), pyrosequencing, and nested quantitative (q)-MSP were conducted to explore the methylation status of BIM in NSCLC cell lines. In addition, the methylation profile of BIM in patients with NSCLC was assessed by nested q-MSP using circulating free DNA. Cell lines, treated with methylation inhibitor 5-Aza-2'-deoxycytidine (AZA) or histone deacetylation inhibitor trichostatin A (TSA) prior to gefitinib treatment, were examined for BIM gene expression and resistance to gefitinib. All cell lines used in the present study presented with hypo-methylated BIM . Treatment with AZA had no effect on BIM RNA expression in PC9 cells or the gefitinib-resistant cell lines PC9/R and PC9/G2, nor did it reverse their resistance to gefitinib. In contrast, TSA treatment produced the opposite result. In the present study, 25 (78.1%) patients with hypo-methylated BIM and 7 patients (21.9%) with partial or hyper-methylated BIM were identified. The clinicopathological data revealed a random hypo-methylated BIM distribution amongst patients with NSCLC. In the overall study group and EGFR mutant group, hypo-methylated BIM carriers presented with no significant differences in progression free survival compared with patients with partial or hyper-methylated BIM . All cell lines in the present study and the majority of patients with NSCLC carried hypo-methylated BIM . Histone deacetylation, as opposed to promoter methylation, may contribute to the epigenetic silencing of BIM and lead to EGFR TKI resistance in NSCLC.

  8. Abundance of genes involved in mercury methylation in oceanic environments

    NASA Astrophysics Data System (ADS)

    Palumbo, A. V.; Podar, M.; Gilmour, C. C.; Brandt, C. C.; Brown, S. D.; Crable, B. R.; Weighill, D.; Jacobson, D. A.; Somenahally, A. C.; Elias, D. A.

    2016-02-01

    The distribution and diversity of genes involved in mercury methylation in oceanic environments is of interest in determining the source of mercury in ocean environments and may have predictive value for mercury methylation rates. The highly conserved hgcAB genes involved in mercury methylation provide an avenue for evaluating the genetic potential for mercury methylation. The genes are sporadically present in a few diverse groups of bacteria and Archaea including Deltaproteobacteria, Firmicutes and Archaea and of over 7000 sequenced species they are only present in about 100 genomes. Examination of sequence data from methylators and non-methylators indicates that these genes are associated with other genes involved in metal transformations and transport. We examined hgcAB presence in over 3500 microbial metagenomes (from all environments) and found the hgcAB genes were present in anaerobic oceanic environments but not in aerobic layers of the open ocean. The genes were common in sediments from marine, coastal and estuarine sources as well as polluted environments. The genes were rare, found in 7 of 138 samples, in metagenomes from the pelagic water column including profiles though the oxygen minimum zone. Other oxic and sub-oxic coastal waters also demonstrated a lack of hgcAB genes including the OMZ in the Eastern North Pacific Ocean. There were some unique hgcA like unique sequences found in metagenomes from depth in the Pacific and Southern Atlantic Ocean. Coastal "dead zone" waters may be important sources of MeHg as the hgcAB genes were abundant in the anoxic waters of a stratified fjord. The genes were absent in microbiomes from vertebrates but were in invertebrate microbiomes However, oceanic species were underrepresented in these samples. Climate change could provide an additional flux of MeHg to the oceans as we found the most abundant representation of hgcAB genes in arctic permafrost. Thus warming could increase flux of methyl mercury to arctic waters.

  9. Detection of changes in DNA methylation induced by different doses of ground-base ion radiation in rice(oryza sativa L.)

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei; Wen, Bin

    Spaceflight represents a very complex environmental condition with highly ionizing radiations (HZE). To further investigate the incentives of ion effects in space environment, we performed on-ground simulated HZE particle radiations to rice seeds with different cumulative doses (0Gy, 0.01Gy, 0.02Gy, 0.1Gy, 0.2Gy, 1Gy , 2Gy, 5Gy, 20Gy ). Using Methylation-Sensitive Amplification Polymorphism (MSAP) analysis technology, differential polymorphism sites of DNA methylation of seedlings were analysed and acquired. The results showed that changes of methylation and demethylation on CCGG sites had taken place after irradiated treatments in all doses. It was noted that there was a stimulating effect in low-dose radiation ≤1 Gy. The minimum proportion of DNA methylation polymorphism level was 3.15% in 0.1Gy, whereas the maximum proportion was 9.87% in 2Gy, interestingly the proportion reduced with radiation doses increased, suggesting the dosage effects of radiation. We further found that the CG site tended to have a higher proportion of cytosine methylation alterations than CNG site in six of the eight dose groups. The results also indicated that different dose treatment groups showed various frequencies of methylation variation patterns: The type of CG hypermethylation was higher than CG hypormethylation in four low-dose groups (<≤2 Gy) ,whereas the result presented the opposite trends in all high-dose groups(>≥1 Gy). In addition, the type of CNG hypormethylation was obviously higher than the CNG hypermethylation in seven dose groups. This result indicated that the methylation variation patterns caused by radiation had site preferences. To investigate the mechanisms of sequences underlying alterations in DNA methylation after ion irradiation, we isolated, cloned and sequenced a subset of bands which showed obvious mutational bias. BLAST analysis indicated that many sequences showed significant homology to known function genes, most of which were related to resistance

  10. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  11. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection.

    PubMed

    Wang, Yu; Chen, Pei-Min; Liu, Rong-Bin

    2018-01-15

    This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required.

  12. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effectmore » of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two

  13. Polymethylated [Fe(η6-arene)2]2+ dications: methyl-group rearrangements and application of the EINS mechanism.

    PubMed

    Štíbr, Bohumil; Bakardjiev, Mario; Hájková, Zuzana; Holub, Josef; Padělková, Zdenka; Růžička, Aleš; Kennedy, John D

    2011-06-14

    Reactions between the methylated arenes ArMe(n) [where ArMe(n) = C(6)Me(n)H((6-n)), and n = 1-6] and FeCl(2) in heptane at 90 °C in the presence of anhydrous AlCl(3) give, for the arenes with n = 1-5, extensive isomerisations and disproportionations involving the methyl groups on the arene rings, and the formation of mixtures of [Fe(ArMe(n))(2)](2+) dications that defy separation into pure species. GC-MS studies of AlCl(3)/mesitylene and AlCl(3)/durene reactions in the absence of FeCl(2) (90 °C, 2 h) allow quantitative assessments of the rearrangements, and the EINS mechanism (electrophile-induced nucleophilic substitution) is applied to rationalise the phenomena. By contrast, ArMe(n) / FeCl(2) /AlCl(3) reactions in heptane for 24-36 h at room-temperature proceed with no rearrangements, allowing the synthesis of the complete series of pure [Fe(ArMen)](2+) cations in yields of 48-71%. The pure compounds are characterised by (1)H NMR spectroscopy and electrospray-ionization mass-spectrometry (ESI-MS), and the structures of [Fe(m-xylene)(2)][PF(6)](2) and [Fe(durene)(2)][PF(6)](2) are established by single-crystal X-ray diffraction analyses.

  14. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei

    2005-06-01

    We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.

  15. Does anesthetic additivity imply a similar molecular mechanism of anesthetic action at N-methyl-D-aspartate receptors?

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2011-03-01

    Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.

  16. Curcumin modulates DNA methylation in colorectal cancer cells.

    PubMed

    Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E; Boland, C Richard; Goel, Ajay

    2013-01-01

    -CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical.

  17. Curcumin Modulates DNA Methylation in Colorectal Cancer Cells

    PubMed Central

    Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E.; Boland, C. Richard; Goel, Ajay

    2013-01-01

    -specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical. PMID:23460897

  18. Is the Fungus Magnaporthe Losing DNA Methylation?

    PubMed Central

    Ikeda, Ken-ichi; Van Vu, Ba; Kadotani, Naoki; Tanaka, Masaki; Murata, Toshiki; Shiina, Kohta; Chuma, Izumi; Tosa, Yukio; Nakayashiki, Hitoshi

    2013-01-01

    The long terminal repeat retrotransposon, Magnaporthe gypsy-like element (MAGGY), has been shown to be targeted for cytosine methylation in a subset of Magnaporthe oryzae field isolates. Analysis of the F1 progeny from a genetic cross between methylation-proficient (Br48) and methylation-deficient (GFSI1-7-2) isolates revealed that methylation of the MAGGY element was governed by a single dominant gene. Positional cloning followed by gene disruption and complementation experiments revealed that the responsible gene was the DNA methyltransferase, MoDMT1, an ortholog of Neurospora crassa Dim-2. A survey of MAGGY methylation in 60 Magnaporthe field isolates revealed that 42 isolates from rice, common millet, wheat, finger millet, and buffelgrass were methylation proficient while 18 isolates from foxtail millet, green bristlegrass, Japanese panicgrass, torpedo grass, Guinea grass, and crabgrass were methylation deficient. Phenotypic analyses showed that MoDMT1 plays no major role in development and pathogenicity of the fungus. Quantitative polymerase chain reaction analysis showed that the average copy number of genomic MAGGY elements was not significantly different between methylation-deficient and -proficient field isolates even though the levels of MAGGY transcript were generally higher in the former group. MoDMT1 gene sequences in the methylation-deficient isolates suggested that at least three independent mutations were responsible for the loss of MoDMT1 function. Overall, our data suggest that MoDMT1 is not essential for the natural life cycle of the fungus and raise the possibility that the genus Magnaporthe may be losing the mechanism of DNA methylation on the evolutionary time scale. PMID:23979580

  19. Methylation pattern of IFNG in periapical granulomas and radicular cysts.

    PubMed

    Campos, Kelma; Gomes, Carolina Cavaliéri; de Fátima Correia-Silva, Jeane; Farias, Lucyana Conceição; Fonseca-Silva, Thiago; Bernardes, Vanessa Fátima; Pereira, Cláudia Maria; Gomez, Ricardo Santiago

    2013-04-01

    Interferon-γ plays an important role in the pathogenesis of periapical lesions, and the methylation of IFNG has been associated with transcriptional inactivation. The purpose of the present study was to investigate IFNG promoter methylation in association with gene transcription and protein levels in periapical granulomas and radicular cysts. Methylation-specific polymerase chain reaction was used to assess the DNA methylation pattern of the IFNG gene in 16 periapical granulomas and 13 radicular cyst samples. The transcription levels of IFNG mRNA were verified by quantitative real-time polymerase chain reaction, and protein expression was evaluated by immunohistochemistry. All the periapical lesion samples exhibited partial or total methylation of the IFNG gene. In addition, an increased methylation profile was found in radicular cysts compared with periapical granulomas. Increased IFNG mRNA expression was observed in the partially methylated periapical lesion samples relative to the samples that were completely methylated. The present study provides the first evidence of the possible impact of IFNG methylation on IFNG transcription in periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency

    PubMed Central

    Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey

    2015-01-01

    We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180

  1. NGSmethDB 2017: enhanced methylomes and differential methylation

    PubMed Central

    Lebrón, Ricardo; Gómez-Martín, Cristina; Carpena, Pedro; Bernaola-Galván, Pedro; Barturen, Guillermo; Hackenberg, Michael; Oliver, José L.

    2017-01-01

    The 2017 update of NGSmethDB stores whole genome methylomes generated from short-read data sets obtained by bisulfite sequencing (WGBS) technology. To generate high-quality methylomes, stringent quality controls were integrated with third-part software, adding also a two-step mapping process to exploit the advantages of the new genome assembly models. The samples were all profiled under constant parameter settings, thus enabling comparative downstream analyses. Besides a significant increase in the number of samples, NGSmethDB now includes two additional data-types, which are a valuable resource for the discovery of methylation epigenetic biomarkers: (i) differentially methylated single-cytosines; and (ii) methylation segments (i.e. genome regions of homogeneous methylation). The NGSmethDB back-end is now based on MongoDB, a NoSQL hierarchical database using JSON-formatted documents and dynamic schemas, thus accelerating sample comparative analyses. Besides conventional database dumps, track hubs were implemented, which improved database access, visualization in genome browsers and comparative analyses to third-part annotations. In addition, the database can be also accessed through a RESTful API. Lastly, a Python client and a multiplatform virtual machine allow for program-driven access from user desktop. This way, private methylation data can be compared to NGSmethDB without the need to upload them to public servers. Database website: http://bioinfo2.ugr.es/NGSmethDB. PMID:27794041

  2. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    PubMed

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  3. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    PubMed

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    include a consideration on how stable isotope studies assisted advancements in this subject area. For example, it has been shown that the methoxyl groups of lignin and pectin which together constitute the bulk of the C1 plant pool have a carbon isotope signature significantly depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs) are also highly depleted in 13C compared with Cn+1 VOCs. These observations suggest that the plant methoxyl pool is the predominant source of methyl halides released from senescent and dead plant litter. The distinct 13C depletion of plant methoxyl groups and naturally produced methyl halides may provide a helpful tool in constraining complex environmental processes and therefore improve our understanding of the global cycles of atmospheric methyl halides.

  5. DDMGD: the database of text-mined associations between genes methylated in diseases from different species.

    PubMed

    Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B

    2015-01-01

    Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus.

    PubMed

    Zhao, Ming; Zhou, Yin; Zhu, Bochen; Wan, Mengjie; Jiang, Tingting; Tan, Qiqun; Liu, Yan; Jiang, Juqing; Luo, Shuaihantian; Tan, Yixin; Wu, Haijing; Renauer, Paul; Del Mar Ayala Gutiérrez, Maria; Castillo Palma, Maria Jesús; Ortega Castro, Rafaela; Fernández-Roldán, Concepción; Raya, Enrique; Faria, Raquel; Carvalho, Claudia; Alarcón-Riquelme, Marta E; Xiang, Zhongyuan; Chen, Jinwei; Li, Fen; Ling, Guanghui; Zhao, Hongjun; Liao, Xiangping; Lin, Youkun; Sawalha, Amr H; Lu, Qianjin

    2016-11-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease with limited reliable diagnostic biomarkers. We investigated whether gene methylation could meet sensitivity and specificity criteria for a robust biomarker. IFI44L promoter methylation was examined using DNA samples from a discovery set including 377 patients with SLE, 358 healthy controls (HCs) and 353 patients with rheumatoid arthritis (RA). Two independent sets including 1144 patients with SLE, 1350 HCs, 429 patients with RA and 199 patients with primary Sjögren's syndrome (pSS) were used for validation. Significant hypomethylation of two CpG sites within IFI44L promoter, Site1 (Chr1: 79 085 222) and Site2 (Chr1: 79 085 250; cg06872964), was identified in patients with SLE compared with HCs, patients with RA and patients with pSS. In a comparison between patients with SLE and HCs included in the first validation cohort, Site1 methylation had a sensitivity of 93.6% and a specificity of 96.8% at a cut-off methylation level of 75.5% and Site2 methylation had a sensitivity of 94.1% and a specificity of 98.2% at a cut-off methylation level of 25.5%. The IFI44L promoter methylation marker was also validated in an European-derived cohort. In addition, the methylation levels of Site1 and Site2 within IFI44L promoter were significantly lower in patients with SLE with renal damage than those without renal damage. Patients with SLE showed significantly increased methylation levels of Site1 and Site2 during remission compared with active stage. The methylation level of IFI44L promoter can distinguish patients with SLE from healthy persons and other autoimmune diseases, and is a highly sensitive and specific diagnostic marker for SLE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  8. DNA methylation biomarkers for head and neck squamous cell carcinoma.

    PubMed

    Zhou, Chongchang; Ye, Meng; Ni, Shumin; Li, Qun; Ye, Dong; Li, Jinyun; Shen, Zhishen; Deng, Hongxia

    2018-06-21

    DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients.

  9. Emerging roles of lysine methylation on non-histone proteins.

    PubMed

    Zhang, Xi; Huang, Yaling; Shi, Xiaobing

    2015-11-01

    Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.

  10. Bardoxolone methyl and kidney function in CKD with type 2 diabetes.

    PubMed

    Pergola, Pablo E; Raskin, Philip; Toto, Robert D; Meyer, Colin J; Huff, J Warren; Grossman, Eric B; Krauth, Melissa; Ruiz, Stacey; Audhya, Paul; Christ-Schmidt, Heidi; Wittes, Janet; Warnock, David G

    2011-07-28

    Chronic kidney disease (CKD) associated with type 2 diabetes is the leading cause of kidney failure, with both inflammation and oxidative stress contributing to disease progression. Bardoxolone methyl, an oral antioxidant inflammation modulator, has shown efficacy in patients with CKD and type 2 diabetes in short-term studies, but longer-term effects and dose response have not been determined. In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned 227 adults with CKD (defined as an estimated glomerular filtration rate [GFR] of 20 to 45 ml per minute per 1.73 m(2) of body-surface area) in a 1:1:1:1 ratio to receive placebo or bardoxolone methyl at a target dose of 25, 75, or 150 mg once daily. The primary outcome was the change from baseline in the estimated GFR with bardoxolone methyl, as compared with placebo, at 24 weeks; a secondary outcome was the change at 52 weeks. Patients receiving bardoxolone methyl had significant increases in the mean (±SD) estimated GFR, as compared with placebo, at 24 weeks (with between-group differences per minute per 1.73 m(2) of 8.2±1.5 ml in the 25-mg group, 11.4±1.5 ml in the 75-mg group, and 10.4±1.5 ml in the 150-mg group; P<0.001). The increases were maintained through week 52, with significant differences per minute per 1.73 m(2) of 5.8±1.8 ml, 10.5±1.8 ml, and 9.3±1.9 ml, respectively. Muscle spasms, the most frequent adverse event in the bardoxolone methyl groups, were generally mild and dose-related. Hypomagnesemia, mild increases in alanine aminotransferase levels, and gastrointestinal effects were more common among patients receiving bardoxolone methyl. Bardoxolone methyl was associated with improvement in the estimated GFR in patients with advanced CKD and type 2 diabetes at 24 weeks. The improvement persisted at 52 weeks, suggesting that bardoxolone methyl may have promise for the treatment of CKD. (Funded by Reata Pharmaceuticals; BEAM ClinicalTrials.gov number, NCT00811889.).

  11. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    PubMed

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  12. ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer.

    PubMed

    Giannopoulou, Lydia; Mastoraki, Sophia; Buderath, Paul; Strati, Areti; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2018-05-25

    Estrogen receptor, coded by the ESR1 gene, is highly expressed in epithelial ovarian cancer. ESR1 gene is frequently methylated in many types of gynecological malignancies. However, only a few studies attempted to investigate the role of ESR1 methylation and its clinical significance in ovarian cancer so far. The aim of our study was to examine ESR1 methylation status in primary tumors and corresponding circulating tumor DNA of patients with high-grade serous ovarian cancer (HGSC). ESR1 methylation was detected by a highly specific and sensitive real-time methylation-specific PCR assay. Two groups of HGSC samples were analyzed: group A (n = 66 primary tumors) and group B (n = 53 primary tumors and 50 corresponding plasma samples). ESR1 was found methylated in both groups of primary tumors: in 32/66 (48.5%) of group A and in 15/53 (28.3%) of group B. 19/50 (38.0%) corresponding plasma samples of group B were also methylated for ESR1. A significant agreement for ESR1 methylation was observed between primary tumors and paired plasma ctDNA samples (P = 0.004). Interestingly, the presence of ESR1 methylation in primary tumor samples of group B was significantly correlated with a better overall survival (P = 0.027) and progression-free survival (P = 0.041). We report for the first time the presence of ESR1 methylation in plasma ctDNA of patients with HGSC. The agreement between ESR1 methylation in primary tumors and paired ctDNA is statistically significant. Our results indicate a correlation between the presence of ESR1 methylation and a better clinical outcome in HGSC patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Oxidative Addition and Reductive Elimination at Main-Group Element Centers.

    PubMed

    Chu, Terry; Nikonov, Georgii I

    2018-04-11

    Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.

  14. X-ray investigations of sulfur-containing fungicides. IV. 4'-[[Benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide.

    PubMed

    Wolf, W M

    2001-09-01

    The conformations of the two approximately isomorphous structures 4'-[[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide, C(22)H(18)ClN(3)O(4)S, and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide, C(23)H(21)N(3)O(5)S, are stabilized by resonance-assisted intramolecular hydrogen bonds linking the hydrazone moieties and sulfonyl groups. The stronger bond is observed in the former compound. The difference in electronic properties between the Cl atom and the methoxy group is too small to significantly alter the non-bonding interactions of the sulfonyl and beta-carbonyl groups.

  15. Ancestry Dependent DNA Methylation and Influence of Maternal Nutrition

    PubMed Central

    Mozhui, Khyobeni; Smith, Alicia K.; Tylavsky, Frances A.

    2015-01-01

    There is extensive variation in DNA methylation between individuals and ethnic groups. These differences arise from a combination of genetic and non-genetic influences and potential modifiers include nutritional cues, early life experience, and social and physical environments. Here we compare genome-wide DNA methylation in neonatal cord blood from African American (AA; N = 112) and European American (EA; N = 91) participants of the CANDLE Study (Conditions Affecting Neurocognitive Development and Learning in Early Childhood). Our goal is to determine if there are replicable ancestry-specific methylation patterns that may implicate risk factors for diseases that have differential prevalence between populations. To identify the most robust ancestry-specific CpG sites, we replicate our results in lymphoblastoid cell lines from Yoruba African and CEPH European panels of HapMap. We also evaluate the influence of maternal nutrition—specifically, plasma levels of vitamin D and folate during pregnancy—on methylation in newborns. We define stable ancestry-dependent methylation of genes that include tumor suppressors and cell cycle regulators (e.g., APC, BRCA1, MCC). Overall, there is lower global methylation in African ancestral groups. Plasma levels of 25-hydroxy vitamin D are also considerably lower among AA mothers and about 60% of AA and 40% of EA mothers have concentrations below 20 ng/ml. Using a weighted correlation analysis, we define a network of CpG sites that is jointly modulated by ancestry and maternal vitamin D. Our results show that differences in DNA methylation patterns are remarkably stable and maternal micronutrients can exert an influence on the child epigenome. PMID:25742137

  16. Structure analysis of geranyl pyrophosphate methyltransferase and the proposed reaction mechanism of SAM-dependent C-methylation.

    PubMed

    Ariyawutthiphan, Orapin; Ose, Toyoyuki; Minami, Atsushi; Shinde, Sandip; Sinde, Sandip; Tsuda, Muneya; Gao, Yong-Gui; Yao, Min; Oikawa, Hideaki; Tanaka, Isao

    2012-11-01

    In the typical isoprenoid-biosynthesis pathway, condensation of the universal C(5)-unit precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) occurs via the common intermediates prenyl pyrophosphates (C(10)-C(20)). The diversity of isoprenoids reflects differences in chain length, cyclization and further additional modification after cyclization. In contrast, the biosynthesis of 2-methylisonorneol (2-MIB), which is responsible for taste and odour problems in drinking water, is unique in that it primes the enzymatic methylation of geranyl pyrophosphate (GPP) before cyclization, which is catalyzed by an S-adenosyl-L-methionine-dependent methyltransferase (GPPMT). The substrate of GPPMT contains a nonconjugated olefin and the reaction mechanism is expected to be similar to that of the steroid methyltransferase (SMT) family. Here, structural analysis of GPPMT in complex with its cofactor and substrate revealed the mechanisms of substrate recognition and possible enzymatic reaction. Using the structures of these complexes, methyl-group transfer and the subsequent proton-abstraction mechanism are discussed. GPPMT and SMTs contain a conserved glutamate residue that is likely to play a role as a general base. Comparison with the reaction mechanism of the mycolic acid cyclopropane synthase (MACS) family also supports this result. This enzyme represented here is the first model of the enzymatic C-methylation of a nonconjugated olefin in the isoprenoid-biosynthesis pathway. In addition, an elaborate system to avoid methylation of incorrect substrates is proposed.

  17. Crystal structure of 2-bromo-3-di­methyl­amino-N,N,N′,N′,4-penta­methyl-4-(tri­methyl­sil­yloxy)pent-2-eneamidinium bromide

    PubMed Central

    Tiritiris, Ioannis; Kress, Ralf; Kantlehner, Willi

    2015-01-01

    The reaction of the ortho­amide 1,1,1-tris­(di­methyl­amino)-4-methyl-4-(tri­methyl­sil­yloxy)pent-2-yne with bromine in benzene, yields the title salt, C15H33BrN3OSi+·Br−. The C—N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double-bond character, pointing towards charge delocalization within the NCN plane. The C—Br bond length of 1.926 (5) Å is characteristic for a C—Br single bond. Additionally, there is a bromine–bromine inter­action [3.229 (3) Å] present involving the anion and cation. In the crystal, weak C—H⋯Br inter­actions between the methyl H atoms of the cation and the bromide ions are present. PMID:26870498

  18. Solvatochromic studies on 4-Bromomethyl-7-methyl coumarins

    NASA Astrophysics Data System (ADS)

    Khanapurmath, Netravati; Kulkarni, Manohar V.; Pallavi, L.; Yenagi, Jayashree; Tonannavar, Jagdish

    2018-05-01

    Non- and dinitro 4-bromomethyl-7-methyl coumarins and new mono- and trinitro 4-bromomethyl-7-methyl coumarins have been synthesized. Effect of nitro groups on the photophysical properties of the parent 4-bromomethyl-7-methyl coumarin has been reported. Their ground and excited state dipole moments have been estimated by solvatochromic method using nine solvents. A reasonable agreement has been observed between calculated and observed dipole moments. Reduction in dipole moment has been observed for mono- and dinitro compounds where as the trinitro compound was found to have higher dipole moment in the excited state.

  19. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).

    PubMed

    Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F

    2006-01-01

    Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.

  20. Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132.

    PubMed

    Zhao, Linduo; Chen, Hongmei; Lu, Xia; Lin, Hui; Christensen, Geoff A; Pierce, Eric M; Gu, Baohua

    2017-09-19

    Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.

  1. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    PubMed

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  2. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  3. Death-associated protein kinase promoter methylation correlates with clinicopathological and prognostic features in nonsmall cell lung cancer patients: A cohort study.

    PubMed

    Yang, Xiao-Yu; Zhang, Jun; Yu, Xiao-Ling; Zheng, Guo-Feng; Zhao, Fei; Jia, Xiao-Jing

    2018-01-01

    The objective was to study the correlation between death-associated protein kinase (DAPK) promoter methylation and the clinicopathological and prognostic features in nonsmall cell lung cancer (NSCLC) patients. A total of 117 NSCLC patients were recruited into our study between December 2012 and December 2014. Methylation-specific polymerase chain reaction was employed to detect the methylation status of DAPK in cancer tissues, peficancerous tissues, and serum samples of 117 NSCLC patients. In addition, serum samples of 115 healthy subjects were analyzed as controls. A literature search of English and Chinese databases, based on predefined criteria, identified published studies closely related to this study. Data were extracted, and meta-analysis was performed using STATA 12.0 software (STATA Corporation, College Station, TX, USA). Our study results showed that DAPK promoter methylation frequency was significantly higher in NSCLC tissues compared to peficancerous normal tissues (58.1% vs. 12.8%, χ 2 = 52.45, P < 0.001). When serum samples were compared, DAPK methylation frequency in NSCLC patients was higher than the control group (27.4% vs. 0, χ 2 = 37.07, P < 0.001). Our meta-analysis results demonstrated that DAPK methylation frequency was lower in tumor node metastasis (TNM) stage I-II compared to TNM stage III-IV (relative risk [RR] =0.87, 95% confidence interval [CI] =0.76-0.99, P = 0.041). DAPK promoter methylation frequency in NSCLC patients with lymph node metastasis was significantly higher compared to the patients with no metastases (RR = 1.26, 95% CI = 1.04-1.52, P = 0.020). Finally, the 5-year survival rate was lower in NSCLC patient group with high frequency of DAPK methylation, compared to the patient group with unmethylated DAPK (RR = 0.71, 95% CI = 0.56-0.89, P = 0.004). Our results showed that DAPK promoter methylation is tightly correlated with clinicopathological features of NSCLC and is associated with poor prognosis in patients.

  4. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    PubMed

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  5. DIPPR Project 871 For 1995 - Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, Tert-Amyl Methyl Ether, Trans-Crotonaldehyde, and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.

    2002-07-01

    Ideal-gas enthalpies of formation of methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol are reported. The standard energy of combustion and hence standard enthalpy of formation of each compound in the liquid phase has been measured using an oxygen rotating-bomb calorimeter without rotation. Vapor pressures were measured to a pressure limit of 270 kPa or the lower decomposition point for each of the six compounds using a twin ebulliometric apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperature (ambient to a maximum of 548 K). A differential scanningmore » calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. For methyl benzoate and tert-amyl methyl ether, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for each of the remaining compounds. The results of the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization (restricted to within {+-}50 K of the temperature region of the experimentally determined vapor pressures), and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied. Group-additivity parameters, useful in the application of the Benson gas-phase group-contribution correlations, were derived.« less

  6. [Correlation of genomic DNA methylation level with unexplained early spontaneous abortion].

    PubMed

    Chao, Yuan; Weng, Lidong; Zeng, Rong

    2014-10-01

    To investigate the correlation of genomic DNA methylation level with unexplained early spontaneous abortion and analyze the role of DNMT1, DNMT3A and DNMT3B. Forty-five villus samples from spontaneous abortion cases (with 33 maternal peripheral blood samples) and 44 villus samples from induced abortion (with 34 maternal peripheral blood samples) were examined with high-pressure liquid chromatography (HPLC) to measure the overall methylation level of the genomic DNA. The expressions of DNMT mRNAs were detected using fluorescence quantitative-PCR in the villus samples from 33 induced abortion cases and 30 spontaneous abortion cases. Genomic DNA methylation level was significantly lower in the villus in spontaneous abortion group than in induced abortion group (P<0.01), but similar in the maternal blood samples between the two groups (P>0.05). The mean mRNA expression levels of DNMT1 and DNMT3A in the villus were significantly lower in spontaneous abortion group than in induced abortion group (P<0.05), but DNMT3B expression showed no significant difference between them (P>0.05). Insufficient genomic DNA methylation in the villus does exist in human early spontaneous abortion, and this insufficiency is probably associated with down-regulated expressions of DNMT1 and DNMT3A.

  7. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma.

    PubMed

    Ye, Peng; Qu, Chang-Fa; Hu, Xue-Lin

    2016-05-01

    The aim of this study is to investigate IGF-1, IGF-1R, and IGFBP-3 methylations in esophageal carcinoma (EC) patients and their relationship with the development and prognosis of EC. This study population consisted of 264 patients (case group) whom EC radical resection was performed and 283 healthy individuals (control group). Methylation-specific PCR (MSP) detected the methylation status of IGF-1, IGF-1R, and IGFBP-3 in the peripheral blood in both groups. The expressions of IGF-1, IGF-1R, and IGFBP-3 in EC and adjacent normal tissues were detected by immunohistochemistry (IHC). The methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 in the case group were higher than those in the control group (all P < 0.05). Additionally, there were statistical significances for the methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 IGF-1 among patients of different clinicopathological features (all P < 0.05). The positive expression rates of IGF-1 and IGF-1R in EC were significantly higher than those in adjacent normal tissues (both P < 0.001), and the rate of IGFBP-3 in EC was significantly lower than that in adjacent normal tissues (P < 0.05). Correlation analysis showed that IGF-1 and IGF1R gene promoter methylation was positively correlated with the positive expressions of IGF-1 (r = 0.139, P = 0.024) and IGF-1R (r = 0.135, P = 0.028), while the IGFBP3 methylation was negatively correlated with the positive expression of IGFBP3 (r = -0.133, P = 0.031). The positive expressions of IGF-1, IGF-1R, and IGFBP-3 were related to different clinicopathological features (all P < 0.05). Cox multivariate analysis results showed that methylation status of IGF-1, IGF-1R, and IGF-1 + IGF1R + IGFBP3 ; expressions of IGF-1 and IGF-1R protein; infiltration depth; and lymph node metastasis (LNM) were independent factors of EC prognosis. Our study demonstrated that methylation of IGF-1

  8. Association between global leukocyte DNA methylation and cardiovascular risk in postmenopausal women.

    PubMed

    Ramos, Ramon Bossardi; Fabris, Vitor; Lecke, Sheila Bunecker; Maturana, Maria Augusta; Spritzer, Poli Mara

    2016-10-10

    Genetic studies to date have not provided satisfactory evidence regarding risk polymorphisms for cardiovascular disease (CVD). Conversely, epigenetic mechanisms, including DNA methylation, seem to influence the risk of CVD and related conditions. Because postmenopausal women experience an increase in CVD, we set out to determine whether global DNA methylation was associated with cardiovascular risk in this population. In this cross sectional study carried out in a university hospital, 90 postmenopausal women without prior CVD diagnosis (55.5 ± 4.9 years, 5.8 [3.0-10.0] years since menopause) were enrolled. DNA was extracted from peripheral leukocytes and global DNA methylation levels were obtained with an ELISA kit. Cardiovascular risk was estimated by the Framingham General Cardiovascular Risk Score (10-year risk) (FRS). Clinical and laboratory variables were assessed. Patients were stratified into two CVD risk groups: low (FRS: <10 %, n = 69) and intermediate/high risk (FRS ≥10 %, n = 21). Age, time since menopause, blood pressure, total cholesterol, and LDL-c levels were higher in FRS ≥10 % group vs. FRS <10 % group. BMI, triglycerides, HDL-c, HOMA-IR, glucose and hsC-reactive protein levels were similar in the two groups. Global DNA methylation (% 5mC) in the overall sample was 26.5 % (23.6-36.9). The FRS ≥10 % group presented lower global methylation levels compared with the FRS <10 % group: 23.9 % (20.6-29.1) vs. 28.8 % (24.3-39.6), p = 0.02. This analysis remained significant even after adjustment for time since menopause (p = 0.02). Our results indicate that lower global DNA methylation is associated with higher cardiovascular risk in postmenopausal women.

  9. NGSmethDB 2017: enhanced methylomes and differential methylation.

    PubMed

    Lebrón, Ricardo; Gómez-Martín, Cristina; Carpena, Pedro; Bernaola-Galván, Pedro; Barturen, Guillermo; Hackenberg, Michael; Oliver, José L

    2017-01-04

    The 2017 update of NGSmethDB stores whole genome methylomes generated from short-read data sets obtained by bisulfite sequencing (WGBS) technology. To generate high-quality methylomes, stringent quality controls were integrated with third-part software, adding also a two-step mapping process to exploit the advantages of the new genome assembly models. The samples were all profiled under constant parameter settings, thus enabling comparative downstream analyses. Besides a significant increase in the number of samples, NGSmethDB now includes two additional data-types, which are a valuable resource for the discovery of methylation epigenetic biomarkers: (i) differentially methylated single-cytosines; and (ii) methylation segments (i.e. genome regions of homogeneous methylation). The NGSmethDB back-end is now based on MongoDB, a NoSQL hierarchical database using JSON-formatted documents and dynamic schemas, thus accelerating sample comparative analyses. Besides conventional database dumps, track hubs were implemented, which improved database access, visualization in genome browsers and comparative analyses to third-part annotations. In addition, the database can be also accessed through a RESTful API. Lastly, a Python client and a multiplatform virtual machine allow for program-driven access from user desktop. This way, private methylation data can be compared to NGSmethDB without the need to upload them to public servers. Database website: http://bioinfo2.ugr.es/NGSmethDB. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and gray wolves

    PubMed Central

    Koch, Ilana Janowitz; Clark, Michelle M.; Thompson, Michael J.; Deere-Machemer, Kerry A.; Wang, Jun; Duarte, Lionel; Gnanadesikan, Gitanjali E.; McCoy, Eskender L.; Rubbi, Liudmilla; Stahler, Daniel R.; Pellegrini, Matteo; Ostrander, Elaine A.; Wayne, Robert K.; Sinsheimer, Janet S.; vonHoldt, Bridgett M.

    2015-01-01

    The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24,000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the gray wolf (C. lupus). PCA and model-based cluster analyses identified two primary groups, domestic versus wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hyper-methylation typical of purebred dogs when compared to wolves (59% and 58%, p<0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hyper-methylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H2 and h2>0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species. PMID:27112634

  11. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  12. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  13. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells

    PubMed Central

    Jin, Un-Ho; Cheng, Yating; Zhou, Beiyan

    2017-01-01

    Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKKβ phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF3DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF3DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor–derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors. PMID:28275049

  14. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells.

    PubMed

    Jin, Un-Ho; Cheng, Yating; Zhou, Beiyan; Safe, Stephen

    2017-05-01

    Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF 3 DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKK β phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF 3 DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF 3 DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor-derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta

    PubMed Central

    Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook

    2017-01-01

    Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934

  16. Protein carboxyl methylation increases in parallel with differentiation of neuroblastoma cells.

    PubMed

    Kloog, Y; Axelrod, J; Spector, I

    1983-02-01

    Cells of mouse neuroblastoma clone N1E-115 in the confluent phase of growth can catalyze the formation of endogenous protein carboxyl methyl esters, using a protein carboxyl methylase and membrane-bound methyl acceptor proteins. The enzyme is localized predominantly in the cytosol of the cells and has a molecular weight of about 20,000 daltons. Treatment of the cells with dimethylsulfoxide (DMSO) or hexamethylene-bisacetamide (HMBA), agents that induce morphological and electrophysiological differentiation, results in a marked increase in protein carboxyl methylase activity. Maximal levels are reached 6-7 days after exposure to the agents, a time course that closely parallels the development of electrical excitability mechanisms in these cells. Serum deprivation also causes neurite outgrowth but does not enhance electrical excitability or enzyme activity. The capacity of membrane-bound neuroblastoma protein(s) to be carboxyl methylated is increased by the differentiation procedures that have been examined. However, the increase in methyl acceptor proteins induced by DMSO or HMBA is the largest, and its time course parallels electrophysiological differentiation. In contrast, serum deprivation induced a small increase that reached maximal levels within 24 h. The data suggest that increased protein carboxyl methylation is a developmentally regulated property of neuroblastoma cells and that at least two groups of methyl acceptor proteins are induced during differentiation: a minor group related to morphological differentiation, and a major group that may be related to ionic permeability mechanisms of the excitable membrane.

  17. Effects of maternal folic acid supplementation on gene methylation and being small for gestational age.

    PubMed

    Qian, Y-Y; Huang, X-L; Liang, H; Zhang, Z-F; Xu, J-H; Chen, J-P; Yuan, W; He, L; Wang, L; Miao, M-H; Du, J; Li, D-K

    2016-10-01

    Being small for gestational age (SGA), a foetal growth abnormality, has a long-lasting impact on childhood health. Its aetiology and underlying mechanisms are not well understood. Underlying epigenetic changes of imprinted genes have emerged as a potential pathological pathway because they may be associated with growth, including SGA. As a common methyl donor, folic acid (FA) is essential for DNA methylation, synthesis and repair, and FA supplementation is widely recommended for women planning pregnancy. The present study aimed to investigate the inter-relationships among methylation levels of two imprinted genes [H19 differentially methylated regions (DMRs) and MEST DMRs], maternal FA supplementation and SGA. We conducted a case-control study. Umbilical cord blood was taken from 39 SGA infants and 49 controls whose birth weights are appropriate for gestational age (AGA). DNA methylation levels of H19 and MEST DMRs were determined by an analysis of mass array quantitative methylation. Statistically significantly higher methylation levels were observed at sites 7.8, 9 and 17.18 of H19 (P = 0.030, 0.016 and 0.050, respectively) in the SGA infants compared to the AGA group. In addition, the association was stronger in male births where the mothers took FA around conception at six H19 sites (P = 0.004, 0.005, 0.048, 0.002, 0.021 and 0.005, respectively). Methylation levels at H19 DMRs were higher in SGA infants compared to AGA controls. It appears that the association may be influenced by maternal peri-conception FA supplementation and also be sex-specific. © 2016 The British Dietetic Association Ltd.

  18. Carcinogenicity of 1-methyl-3(p-chlorophenyl)-1-nitrosourea and its 1-methyl trideuterated derivative in rats.

    PubMed

    Schreiber, D; Martin, J; Mendel, J

    1986-01-01

    The carcinogenic activity of 1-methyl-3(p-chlorophenyl)-1-nitrosourea (Cl-MPNU) and its 1-methyl trideuterated analog (Cl-MPNU-d3) was compared by intragastric administration to hooded rats of equimolar doses of both compounds. A 100% frequency of forestomach tumors was observed in both groups. However, the mean latency period of the animals treated with Cl-MPNU-d3 was significantly longer (P less than 0.01). The results suggest the occurrence of a deuterium isotope effect in nitrosoureas but not as distinct as in nitrosamines.

  19. Current trends in electrochemical sensing and biosensing of DNA methylation.

    PubMed

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. DNA methylation Landscape of body size variation in sheep.

    PubMed

    Cao, Jiaxue; Wei, Caihong; Liu, Dongming; Wang, Huihua; Wu, Mingming; Xie, Zhiyuan; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Lu, Jian; Liu, Ruizao; Zhang, Shifang; Du, Yongfei; Zhang, Hongping; Du, Lixin

    2015-10-16

    Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation - sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the "development process" (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.

  1. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection

    PubMed Central

    Wang, Yu; Chen, Pei-Min; Liu, Rong-Bin

    2018-01-01

    This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required. PMID:29375744

  2. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sukheung; Roberts, D.M.

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less

  3. Histone methylation and aging: Lessons learned from model systems

    PubMed Central

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  4. TOXICOLOGICAL INTERACTIONS OF CHLORPYRIFOS AND METHYL MERCURY IN THE AMPHIPOD, HYALELLA AZTECA

    EPA Science Inventory

    The mechanism of interaction between chlorpyrifos, an organo-phosphate insecticide, and methyl mercury, an organometal, was assessed utilizing the amphipod, Hyalella azteca. Previous studies have demonstrated that chlorpyrifos and methyl mercury interact additively, with survival...

  5. Abnormal DNA methylation may contribute to the progression of osteosarcoma.

    PubMed

    Chen, Xiao-Gang; Ma, Liang; Xu, Jia-Xin

    2018-01-01

    The identification of optimal methylation biomarkers to achieve maximum diagnostic ability remains a challenge. The present study aimed to elucidate the potential molecular mechanisms underlying osteosarcoma (OS) using DNA methylation analysis. Based on the GSE36002 dataset obtained from the Gene Expression Omnibus database, differentially methylated genes were extracted between patients with OS and controls using t‑tests. Subsequently, hierarchical clustering was performed to segregate the samples into two distinct clusters, OS and normal. Gene Ontology (GO) and pathway enrichment analyses for differentially methylated genes were performed using the Database for Annotation, Visualization and Integrated Discovery tool. A protein‑protein interaction (PPI) network was established, followed by hub gene identification. Using the cut‑off threshold of ≥0.2 average β‑value difference, 3,725 unique CpGs (2,862 genes) were identified to be differentially methylated between the OS and normal groups. Among these 2,862 genes, 510 genes were differentially hypermethylated and 2,352 were differentially hypomethylated. The differentially hypermethylated genes were primarily involved in 20 GO terms, and the top 3 terms were associated with potassium ion transport. For differentially hypomethylated genes, GO functions principally included passive transmembrane transporter activity, channel activity and metal ion transmembrane transporter activity. In addition, a total of 10 significant pathways were enriched by differentially hypomethylated genes; notably, neuroactive ligand‑receptor interaction was the most significant pathway. Based on a connectivity degree >90, 7 hub genes were selected from the PPI network, including neuromedin U (NMU; degree=103) and NMU receptor 1 (NMUR1; degree=103). Functional terms (potassium ion transport, transmembrane transporter activity, and neuroactive ligand‑receptor interaction) and hub genes (NMU and NMUR1) may serve as potential

  6. Viral genome methylation as an epigenetic defense against geminiviruses.

    PubMed

    Raja, Priya; Sanville, Bradley C; Buchmann, R Cody; Bisaro, David M

    2008-09-01

    Geminiviruses encapsidate single-stranded DNA genomes that replicate in plant cell nuclei through double-stranded DNA intermediates that associate with cellular histone proteins to form minichromosomes. Like most plant viruses, geminiviruses are targeted by RNA silencing and encode suppressor proteins such as AL2 and L2 to counter this defense. These related proteins can suppress silencing by multiple mechanisms, one of which involves interacting with and inhibiting adenosine kinase (ADK), a cellular enzyme associated with the methyl cycle that generates S-adenosyl-methionine, an essential methyltransferase cofactor. Thus, we hypothesized that the viral genome is targeted by small-RNA-directed methylation. Here, we show that Arabidopsis plants with mutations in genes encoding cytosine or histone H3 lysine 9 (H3K9) methyltransferases, RNA-directed methylation pathway components, or ADK are hypersensitive to geminivirus infection. We also demonstrate that viral DNA and associated histone H3 are methylated in infected plants and that cytosine methylation levels are significantly reduced in viral DNA isolated from methylation-deficient mutants. Finally, we demonstrate that Beet curly top virus L2- mutant DNA present in tissues that have recovered from infection is hypermethylated and that host recovery requires AGO4, a component of the RNA-directed methylation pathway. We propose that plants use chromatin methylation as a defense against DNA viruses, which geminiviruses counter by inhibiting global methylation. In addition, our results establish that geminiviruses can be useful models for genome methylation in plants and suggest that there are redundant pathways leading to cytosine methylation.

  7. Comprehensive Analysis of DNA Methylation in Head and Neck Squamous Cell Carcinoma Indicates Differences by Survival and Clinicopathologic Characteristics

    PubMed Central

    Colacino, Justin A.; Dolinoy, Dana C.; Duffy, Sonia A.; Sartor, Maureen A.; Chepeha, Douglas B.; Bradford, Carol R.; McHugh, Jonathan B.; Patel, Divya A.; Virani, Shama; Walline, Heather M.; Bellile, Emily; Terrell, Jeffrey E.; Stoerker, Jay A.; Taylor, Jeremy M. G.; Carey, Thomas E.; Wolf, Gregory T.; Rozek, Laura S.

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the eighth most commonly diagnosed cancer in the United States. The risk of developing HNSCC increases with exposure to tobacco, alcohol and infection with human papilloma virus (HPV). HPV-associated HNSCCs have a distinct risk profile and improved prognosis compared to cancers associated with tobacco and alcohol exposure. Epigenetic changes are an important mechanism in carcinogenic progression, but how these changes differ between viral- and chemical-induced cancers remains unknown. CpG methylation at 1505 CpG sites across 807 genes in 68 well-annotated HNSCC tumor samples from the University of Michigan Head and Neck SPORE patient population were quantified using the Illumina Goldengate Methylation Cancer Panel. Unsupervised hierarchical clustering based on methylation identified 6 distinct tumor clusters, which significantly differed by age, HPV status, and three year survival. Weighted linear modeling was used to identify differentially methylated genes based on epidemiological characteristics. Consistent with previous in vitro findings by our group, methylation of sites in the CCNA1 promoter was found to be higher in HPV(+) tumors, which was validated in an additional sample set of 128 tumors. After adjusting for cancer site, stage, age, gender, alcohol consumption, and smoking status, HPV status was found to be a significant predictor for DNA methylation at an additional 11 genes, including CASP8 and SYBL1. These findings provide insight into the epigenetic regulation of viral vs. chemical carcinogenesis and could provide novel targets for development of individualized therapeutic and prevention regimens based on environmental exposures. PMID:23358896

  8. Comprehensive analysis of DNA methylation in head and neck squamous cell carcinoma indicates differences by survival and clinicopathologic characteristics.

    PubMed

    Colacino, Justin A; Dolinoy, Dana C; Duffy, Sonia A; Sartor, Maureen A; Chepeha, Douglas B; Bradford, Carol R; McHugh, Jonathan B; Patel, Divya A; Virani, Shama; Walline, Heather M; Bellile, Emily; Terrell, Jeffrey E; Stoerker, Jay A; Taylor, Jeremy M G; Carey, Thomas E; Wolf, Gregory T; Rozek, Laura S

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the eighth most commonly diagnosed cancer in the United States. The risk of developing HNSCC increases with exposure to tobacco, alcohol and infection with human papilloma virus (HPV). HPV-associated HNSCCs have a distinct risk profile and improved prognosis compared to cancers associated with tobacco and alcohol exposure. Epigenetic changes are an important mechanism in carcinogenic progression, but how these changes differ between viral- and chemical-induced cancers remains unknown. CpG methylation at 1505 CpG sites across 807 genes in 68 well-annotated HNSCC tumor samples from the University of Michigan Head and Neck SPORE patient population were quantified using the Illumina Goldengate Methylation Cancer Panel. Unsupervised hierarchical clustering based on methylation identified 6 distinct tumor clusters, which significantly differed by age, HPV status, and three year survival. Weighted linear modeling was used to identify differentially methylated genes based on epidemiological characteristics. Consistent with previous in vitro findings by our group, methylation of sites in the CCNA1 promoter was found to be higher in HPV(+) tumors, which was validated in an additional sample set of 128 tumors. After adjusting for cancer site, stage, age, gender, alcohol consumption, and smoking status, HPV status was found to be a significant predictor for DNA methylation at an additional 11 genes, including CASP8 and SYBL1. These findings provide insight into the epigenetic regulation of viral vs. chemical carcinogenesis and could provide novel targets for development of individualized therapeutic and prevention regimens based on environmental exposures.

  9. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants.

    PubMed

    Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J

    2017-05-01

    The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.

  11. Choline nutrition programs brain development via DNA and histone methylation.

    PubMed

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2012-06-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption

  12. Choline nutrition programs brain development via DNA and histone methylation

    PubMed Central

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J.

    2017-01-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation – two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline

  13. Stress, burnout and depression: A systematic review on DNA methylation mechanisms.

    PubMed

    Bakusic, Jelena; Schaufeli, Wilmar; Claes, Stephan; Godderis, Lode

    2017-01-01

    Despite that burnout presents a serious burden for modern society, there are no diagnostic criteria. Additional difficulty is the differential diagnosis with depression. Consequently, there is a need to dispose of a burnout biomarker. Epigenetic studies suggest that DNA methylation is a possible mediator linking individual response to stress and psychopathology and could be considered as a potential biomarker of stress-related mental disorders. Thus, the aim of this review is to provide an overview of DNA methylation mechanisms in stress, burnout and depression. In addition to state-of-the-art overview, the goal of this review is to provide a scientific base for burnout biomarker research. We performed a systematic literature search and identified 25 pertinent articles. Among these, 15 focused on depression, 7 on chronic stress and only 3 on work stress/burnout. Three epigenome-wide studies were identified and the majority of studies used the candidate-gene approach, assessing 12 different genes. The glucocorticoid receptor gene (NR3C1) displayed different methylation patterns in chronic stress and depression. The serotonin transporter gene (SLC6A4) methylation was similarly affected in stress, depression and burnout. Work-related stress and depressive symptoms were associated with different methylation patterns of the brain derived neurotrophic factor gene (BDNF) in the same human sample. The tyrosine hydroxylase (TH) methylation was correlated with work stress in a single study. Additional, thoroughly designed longitudinal studies are necessary for revealing the cause-effect relationship of work stress, epigenetics and burnout, including its overlap with depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7.

    PubMed

    Thweatt, Jennifer L; Ferlez, Bryan H; Golbeck, John H; Bryant, Donald A

    2017-01-27

    Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677 T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 7 1 -OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls." © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Computational Modeling Approach in Probing the Effects of Cytosine Methylation on the Transcription Factor Binding to DNA.

    PubMed

    Tenayuca, John; Cousins, Kimberley; Yang, Shumei; Zhang, Lubo

    2017-01-01

    Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Integrated analysis of DNA-methylation and gene expression using high-dimensional penalized regression: a cohort study on bone mineral density in postmenopausal women.

    PubMed

    Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine

    2018-03-07

    average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.

  17. The Distribution and Abundance of Mercury Methylating Microorganisms in Mid-Atlantic Wetlands

    NASA Astrophysics Data System (ADS)

    Santillan, E. F. U.; Gilmour, C. C.; Schwartz, G.; Christensen, G. A.; King, A. J.; Elias, D. A.

    2015-12-01

    The discovery of the genes responsible for microbial methylmercury production, hgcAB, has led to the identification of novel Hg methylators with diverse metabolisms including Fe and SO42- reducing bacteria, syntrophs, and methanogens. We recently developed DNA probes for hgcA in each group of methylators: Deltaproteobacteria, Firmicutes, and Archaea [Christensen, 2015]. In this study, we use the probes to determine quantity and distribution of hgcA+ organisms in mid-Atlantic marshes and sediments, and in Hg-contaminated wetland soils. We also analyze hgcA distribution over a 28-day soil slurry experiment designed to evaluate the impact of activated carbon on Hg methylation and demethylation [Gilmour, 2015]. Initial soils show Deltaproteobacteria comprise most hgcA+ organisms. Methanogens encompass >45% of the remaining methylators. The addition of SO42- to induce SO42- reducing conditions in slurries caused the number of hgcA+ Deltaproteobacteria to increase and the number of hgcA+ methanogens to decrease to >32%. In soils and slurries, Firmicutes were below detection, suggesting our Firmicute primers are either unrepresentative in natural samples, or that hgcA+ Firmicutes are rare. This observation is interesting as Firmicutes include organisms with divergent metabolisms, and their role in environmental methylation is still unknown. Slurries also show no correlation between hgcA abundance and Hg concentrations. We now plan to explore how hgcA abundance relates to Hg-methylation and electron acceptor availability. Our results offer initial insights into the natural distribution of hgcA, supporting the idea that the distribution of different methylators is related to electron acceptors and redox chemistry. Christensen, G., Wymore, AM, King, A, Pdar, M, Hurt Jur, RA, Santillan, EFU, Gilmour, CC, Brandt, CC, Brown, SD, Palumbo, AV, Elias, DA (2015), A Study of Mercury Methylation Genetics: Qualitative and Quantitative Analysis of hgcAB in Pure Culture, paper presented

  18. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    PubMed

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P < 0.05). Interestingly, the DNA methylation of the BDNF exon IX was significantly increased in the ZD group, compared with the ZA and PF groups, whereas the expression of the BDNF mRNA was decreased. In addition, the DNMT1 mRNA expression was significantly upregulated and DNMT3A was downregulated in the ZD group, but not in the ZA and PF groups. The learning and memory damage in offspring may be a result of the epigenetic changes of the BDNF genes in response to the zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  19. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. A pyrosequencing assay for the quantitative methylation analysis of the PCDHB gene cluster, the major factor in neuroblastoma methylator phenotype.

    PubMed

    Banelli, Barbara; Brigati, Claudio; Di Vinci, Angela; Casciano, Ida; Forlani, Alessandra; Borzì, Luana; Allemanni, Giorgio; Romani, Massimo

    2012-03-01

    Epigenetic alterations are hallmarks of cancer and powerful biomarkers, whose clinical utilization is made difficult by the absence of standardization and of common methods of data interpretation. The coordinate methylation of many loci in cancer is defined as 'CpG island methylator phenotype' (CIMP) and identifies clinically distinct groups of patients. In neuroblastoma (NB), CIMP is defined by a methylation signature, which includes different loci, but its predictive power on outcome is entirely recapitulated by the PCDHB cluster only. We have developed a robust and cost-effective pyrosequencing-based assay that could facilitate the clinical application of CIMP in NB. This assay permits the unbiased simultaneous amplification and sequencing of 17 out of 19 genes of the PCDHB cluster for quantitative methylation analysis, taking into account all the sequence variations. As some of these variations were at CpG doublets, we bypassed the data interpretation conducted by the methylation analysis software to assign the corrected methylation value at these sites. The final result of the assay is the mean methylation level of 17 gene fragments in the protocadherin B cluster (PCDHB) cluster. We have utilized this assay to compare the methylation levels of the PCDHB cluster between high-risk and very low-risk NB patients, confirming the predictive value of CIMP. Our results demonstrate that the pyrosequencing-based assay herein described is a powerful instrument for the analysis of this gene cluster that may simplify the data comparison between different laboratories and, in perspective, could facilitate its clinical application. Furthermore, our results demonstrate that, in principle, pyrosequencing can be efficiently utilized for the methylation analysis of gene clusters with high internal homologies.

  1. Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by G. sulfurreducens PCA and D. desulfuricans ND132

    DOE PAGES

    Zhao, Linduo; Chen, Hongmei; Lu, Xia; ...

    2017-08-14

    Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial Hg methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. Here, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under non-sulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hgmore » via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. Furthermore, these strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting cell Hg uptake and methylation. Additionally, DOM and glutathione decreased Hg sorption by G. sulfurreducens PCA, but not by D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. Finally, these observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.« less

  2. Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by G. sulfurreducens PCA and D. desulfuricans ND132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Linduo; Chen, Hongmei; Lu, Xia

    Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial Hg methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. Here, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under non-sulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hgmore » via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. Furthermore, these strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting cell Hg uptake and methylation. Additionally, DOM and glutathione decreased Hg sorption by G. sulfurreducens PCA, but not by D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. Finally, these observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.« less

  3. Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach.

    PubMed

    Cecchet, F; Lis, D; Caudano, Y; Mani, A A; Peremans, A; Champagne, B; Guthmuller, J

    2012-03-28

    The knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular, DFT calculations have been carried out on three classes of models for the aliphatic chains. The first class of models consists of aliphatic chains, containing from 3 to 12 carbon atoms, in which only one methyl group can freely vibrate, while the rest of the chain is frozen by a strong overweight of its C and H atoms. This enables us to localize the probed vibrational modes on the methyl group. In the second class, only one methyl group is frozen, while the entire remaining chain is allowed to vibrate. This enables us to analyse the influence of the aliphatic chain on the methyl stretching vibrations. Finally, the dodecanethiol (DDT) molecule is considered, for which the effects of two dielectrics, i.e. n-hexane and n-dodecane, are investigated. Moreover, DDT calculations are also carried out by using different exchange-correlation (XC) functionals in order to assess the DFT approximations. Using the DFT IR vectors and Raman tensors, the SFG spectrum of DDT has been simulated and the orientation of the methyl group has then been deduced and compared with that obtained using an analytical approach based on a bond additivity model. This analysis shows that when using DFT molecular properties, the predicted orientation of the terminal methyl group tends to converge as a function of the alkyl chain length and that the effects of the chain as well as of the dielectric environment are small. Instead, a more significant difference is observed when comparing the DFT-based results with those obtained from the analytical approach, thus indicating

  4. DNA Methylation and Hydroxymethylation Levels in Relation to Two Weight Loss Strategies: Energy-Restricted Diet or Bariatric Surgery.

    PubMed

    Nicoletti, Carolina Ferreira; Nonino, Carla Barbosa; de Oliveira, Bruno Affonso Parenti; Pinhel, Marcela Augusta de Souza; Mansego, Maria Luisa; Milagro, Fermin Ignacio; Zulet, Maria Angeles; Martinez, José Alfredo

    2016-03-01

    Weight loss can be influenced by genetic factors and epigenetic mechanisms that participate in the regulation of body weight. This study aimed to investigate whether the weight loss induced by two different obesity treatments (energy restriction or bariatric surgery) may affect global DNA methylation (LINE-1) and hydroxymethylation profile, as well as the methylation patterns in inflammatory genes. This study encompassed women from three differents groups: 1. control group (n = 9), normal weight individuals; 2. energy restriction group (n = 22), obese patients following an energy-restricted Mediterranean-based dietary treatment (RESMENA); and 3. bariatric surgery group (n = 14), obese patients underwent a hypocaloric diet followed by bariatric surgery. Anthropometric measurements and 12-h fasting blood samples were collected before the interventions and after 6 months. Lipid and glucose biomarkers, global hydroxymethylation (by ELISA), LINE-1, SERPINE-1, and IL-6 (by MS-HRM) methylation levels were assessed in all participants. Baseline LINE-1 methylation was associated with serum glucose levels whereas baseline hydroxymethylation was associated with BMI, waist circumference, total cholesterol, and triglycerides. LINE-1 and SERPINE-1 methylation levels did not change after weight loss, whereas IL-6 methylation increased after energy restriction and decreased in the bariatric surgery group. An association between SERPINE-1 methylation and weight loss responses was found. Global DNA methylation and hydroxymethylation might be biomarkers for obesity and associated comorbidities. Depending on the obesity treatment (diet or surgery), the DNA methylation patterns behave differently. Baseline SERPINE-1 methylation may be a predictor of weight loss values after bariatric surgery.

  5. Raman spectral evidence of methyl rotation in liquid toluene.

    PubMed

    Kapitán, Josef; Hecht, Lutz; Bour, Petr

    2008-02-21

    In order to rationalize subtle details in the liquid phase toluene Raman backscattering spectra, an analysis was performed based on a quantum-mechanical Hamiltonian operator comprising rotation of the methyl group and the angular dependence of vibrational frequencies and polarizability derivatives. The separation of the methyl torsion from the other vibrational motions appears to be necessary in order to explain relative intensity ratios of several bands and an anomalous broadening of spectral intensity observed at 1440 cm(-1). These results suggest that the CH3 group in the liquid phase rotates almost freely, similarly as in the gaseous phase, and that the molecule consequently exhibits effectively C(2v) point group symmetry. A classical description and an adiabatic separation of the methyl rotation from other molecular motion previously used in peptide models is not applicable to toluene because of a strong coupling with other vibrational motions. Density functional computations, particularly the BPW91 functional, provide reasonable estimates of harmonic frequencies and spectral intensities, as well as qualitatively correct fourth-order anharmonic corrections to the vibrational potential.

  6. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  7. Modeling DNA methylation by analyzing the individual configurations of single molecules

    PubMed Central

    Affinito, Ornella; Scala, Giovanni; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Avvedimento, Vittorio Enrico; Usiello, Alessandro; Chiariotti, Lorenzo; Cocozza, Sergio

    2016-01-01

    ABSTRACT DNA methylation is often analyzed by reporting the average methylation degree of each cytosine. In this study, we used a single molecule methylation analysis in order to look at the methylation conformation of individual molecules. Using D-aspartate oxidase as a model gene, we performed an in-depth methylation analysis through the developmental stages of 3 different mouse tissues (brain, lung, and gut), where this gene undergoes opposite methylation destiny. This approach allowed us to track both methylation and demethylation processes at high resolution. The complexity of these dynamics was markedly simplified by introducing the concept of methylation classes (MCs), defined as the number of methylated cytosines per molecule, irrespective of their position. The MC concept smooths the stochasticity of the system, allowing a more deterministic description. In this framework, we also propose a mathematical model based on the Markov chain. This model aims to identify the transition probability of a molecule from one MC to another during methylation and demethylation processes. The results of our model suggest that: 1) both processes are ruled by a dominant class of phenomena, namely, the gain or loss of one methyl group at a time; and 2) the probability of a single CpG site becoming methylated or demethylated depends on the methylation status of the whole molecule at that time. PMID:27748645

  8. Methyl-DEAE-dextran: a candidate biomaterial.

    PubMed

    Zambito, Ylenia; Baggiani, Andrea; Carelli, Vera; Serafini, Maria Francesca; Di Colo, Giacomo

    2004-01-01

    The full quaternisation of DEAE-dextran was successfully attempted and an application of the quaternised product was suggested. Commercial DEAE-dextran was reacted with iodomethane at 60 degrees C in the presence of NaOH. The raw product was purified by dialysis, during which the iodide ion was replaced by chloride. N-methylation and O-methylation resulted from the reaction. A second methylation step produced no further changes in the molecule. Alkalimetry indicated the absence of amino groups in the methylated polymer molecule, thus testifying to a complete quaternisation. N-acetylcysteine (AcCy) was neutralised with the polymer in the hydroxide form, thus obtaining the methyl DEAE-dextran salt of AcCy (Me-DEAE-dextran/AcCy), whereby an ophthalmic formulation for the treatment of the dry eye syndrome was prepared. For comparison, the neutral AcCy salt of commercial DEAE-dextran (DEAE-dextran/AcCy) was prepared. The AcCy content in Me-DEAE-dextran/AcCy was higher than in DEAE-dextran/AcCy (23 vs 13%), while the viscosity of a solution containing the salt concentration corresponding to the therapeutic AcCy concentration (4%w/v) was lower with the former compared to the latter salt (20.5 vs 23.9 mPa s). Both solutions were ipotonic (245 mOsm/kg), whereas the commercial Tirocular is strongly hypertonic (900 mOsm/kg) and irritant.

  9. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds.

    PubMed

    Banlaki, Zsofia; Cimarelli, Giulia; Viranyi, Zsofia; Kubinyi, Eniko; Sasvari-Szekely, Maria; Ronai, Zsolt

    2017-06-01

    A growing body of evidence highlights the relationship between epigenetics, especially DNA methylation, and population divergence as well as speciation. However, little is known about how general the phenomenon of epigenetics-wise separation of different populations is, or whether population assignment is, possible based on solely epigenetic marks. In the present study, we compared DNA methylation profiles between four different canine populations: three domestic dog breeds and their ancestor the gray wolf. Altogether, 79 CpG sites constituting the 65 so-called CpG units located in the promoter regions of genes affecting behavioral and temperamental traits (COMT, HTR1A, MAOA, OXTR, SLC6A4, TPH1, WFS1)-regions putatively targeted during domestication and breed selection. Methylation status of buccal cells was assessed using EpiTYPER technology. Significant inter-population methylation differences were found in 52.3% of all CpG units investigated. DNA methylation profile-based hierarchical cluster analysis indicated an unambiguous segregation of wolf from domestic dog. In addition, one of the three dog breeds (Golden Retriever) investigated also formed a separate, autonomous group. The findings support that population segregation is interrelated with shifts in DNA methylation patterns, at least in putative selection target regions, and also imply that epigenetic profiles could provide a sufficient basis for population assignment of individuals.

  10. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status.

    PubMed

    Kim, Jung H; Rhee, Ye-Y; Bae, Jeong-M; Kwon, Hyeong-J; Cho, Nam-Y; Kim, Mi J; Kang, Gyeong H

    2013-07-01

    Although the presence of MLH1 methylation in microsatellite-unstable colorectal cancer generally indicates involvement of the CpG island methylator phenotype (CIMP) in the development of the tumor, these two conditions do not always correlate. A minority of microsatellite-unstable colorectal cancers exhibit discordance between CIMP and MLH1 methylation statuses. However, the clinicopathological features of such microsatellite-unstable colorectal cancers with discrepant MLH1 methylation and CIMP statuses remain poorly studied. Microsatellite-unstable colorectal cancers (n=220) were analyzed for CIMP and MLH1 methylation statuses using the MethyLight assay. Based on the combinatorial CIMP and MLH1 methylation statuses, the microsatellite-unstable colorectal cancers were grouped into four subtypes (CIMP-high (CIMP-H) MLH1 methylation-positive (MLH1m+), CIMP-H MLH1 methylation-negative, CIMP-low/0 (CIMP-L/0) MLH1m+, and CIMP-L/0 MLH1 methylation-negative), which were compared in terms of their associations with clinicopathological and molecular features. The CIMP-L/0 MLH1 methylation-negative and CIMP-H MLH1m+ subtypes were predominant, comprising 63.6 and 24.1% of total microsatellite-unstable colorectal cancers, respectively. The discordant subtypes, CIMP-H MLH1 methylation-negative and CIMP-L/0 MLH1m+, were found in 5 and 7% of microsatellite-unstable colorectal cancers, respectively. The CIMP-H MLH1 methylation-negative subtype exhibited elevated incidence rates in male patients and was associated with larger tumor size, more frequent loss of MSH2 expression, increased frequency of KRAS mutation, and advanced cancer stage. The CIMP-L/0 MLH1m+ subtype was associated with onset at an earlier age, a predominance of MLH1 loss, and earlier cancer stage. None of the CIMP-L/0 MLH1m+ subtype patients succumbed to death during the follow-up. Our findings suggest that the discordant subtypes of colorectal cancers exhibit distinct clinicopathological and molecular features

  11. The effects of high dietary protein and nitrogen levels on the preformed methyl group requirement and methionine-induced growth depression in chicks.

    PubMed

    Pesti, G M; Benevenga, N J; Harper, A E; Sunde, M L

    1981-02-01

    The chick's choline and methionine requirements are both increased by high dietary protein level. Studies were conducted to test the hypothesis that the chicks' need for preformed methyl groups is increased by high protein diets (not methionine or choline per se). Chicks fed 25% isolated soybean protein (ISP) diets responded to methionine supplementation (162 vs 110 g gained in 14 days) but not to choline (119 g vs. 110 g), while those fed 50% ISP responded to either methionine (174 g vs. 126 g) or choline (181 g vs. 126 g) supplementation. Further, neither cystine nor homocystine could replace methionine in improving the growth of chicks fed the high protein diet. In other experiments, L-methionine and betaine HCl were found to alleviate the growth depression caused by excessive levels of L-glutamic acid. Excessive levels of L-methionine had a protective effect against growth depression caused by L-glutamate and diammonium citrate, and conversely, supplementary L-serine and sodium formate were not protective against glutamic acid- or arginine-induced growth depression. The results are consistent with the hypothesis that the preformed methyl group requirement is increased by high levels of dietary protein and excessive nitrogen from a single amino acid.

  12. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO), and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl, and n-butyl, using radical initiator. A staged addition of the lipid and the initiator was needed...

  13. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    PubMed Central

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807

  14. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    PubMed

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  15. Synthesis of methyl 3-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 3-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Dubey, R; Jain, R K; Abbas, S A; Matta, K L

    1987-08-01

    Methyl 2-O-benzyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha- D-mannopyranoside (4) and methyl 2-O-benzyl-3-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (6) were prepared from a common intermediate, namely, methyl 2-O-benzyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- mannopyranosyl)-alpha-D-mannopyranoside. On treatment with tert-butylchlorodiphenylsilane, in N,N-dimethylformamide in the presence of imidazole, 4 and 6 afforded methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (7), and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert- butyldiphenylsilyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8), respectively. Compound 8 was converted into its 2,3-O-isopropylidene derivative (9), and oxidation of 7 and 9 with pyridinium chlorochromate, and reduction of the resulting carbonyl intermediates gave methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-talopyranoside and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert-butyldiphe nylsilyl- 2,3-O-isopropylidene-alpha-D-talopyranosyl)-alpha-D-talopyranoside , respectively. Removal of the protecting groups furnished the title disaccharides.

  16. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naïve embryonic stem cells.

    PubMed

    Coluccio, Andrea; Ecco, Gabriela; Duc, Julien; Offner, Sandra; Turelli, Priscilla; Trono, Didier

    2018-02-26

    The KZFP/KAP1 (KRAB zinc finger proteins/KRAB-associated protein 1) system plays a central role in repressing transposable elements (TEs) and maintaining parent-of-origin DNA methylation at imprinting control regions (ICRs) during the wave of genome-wide reprogramming that precedes implantation. In naïve murine embryonic stem cells (mESCs), the genome is maintained highly hypomethylated by a combination of TET-mediated active demethylation and lack of de novo methylation, yet KAP1 is tethered by sequence-specific KZFPs to ICRs and TEs where it recruits histone and DNA methyltransferases to impose heterochromatin formation and DNA methylation. Here, upon removing either KAP1 or the cognate KZFP, we observed rapid TET2-dependent accumulation of 5hmC at both ICRs and TEs. In the absence of the KZFP/KAP1 complex, ICRs lost heterochromatic histone marks and underwent both active and passive DNA demethylation. For KAP1-bound TEs, 5mC hydroxylation correlated with transcriptional reactivation. Using RNA-seq, we further compared the expression profiles of TEs upon Kap1 removal in wild-type, Dnmt and Tet triple knockout mESCs. While we found that KAP1 represents the main effector of TEs repression in all three settings, we could additionally identify specific groups of TEs further controlled by DNA methylation. Furthermore, we observed that in the absence of TET proteins, activation upon Kap1 depletion was blunted for some TE integrants and increased for others. Our results indicate that the KZFP/KAP1 complex maintains heterochromatin and DNA methylation at ICRs and TEs in naïve embryonic stem cells partly by protecting these loci from TET-mediated demethylation. Our study further unveils an unsuspected level of complexity in the transcriptional control of the endovirome by demonstrating often integrant-specific differential influences of histone-based heterochromatin modifications, DNA methylation and 5mC oxidation in regulating TEs expression.

  17. DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation.

    PubMed

    Moon, Eun-Kyung; Hong, Yeonchul; Lee, Hae-Ahm; Quan, Fu-Shi; Kong, Hyun-Hee

    2017-04-01

    Encystation mediating cyst specific cysteine proteinase (CSCP) of Acanthamoeba castellanii is expressed remarkably during encystation. However, the molecular mechanism involved in the regulation of CSCP gene expression remains unclear. In this study, we focused on epigenetic regulation of gene expression during encystation of Acanthamoeba . To evaluate methylation as a potential mechanism involved in the regulation of CSCP expression, we first investigated the correlation between promoter methylation status of CSCP gene and its expression. A 2,878 bp of promoter sequence of CSCP gene was amplified by PCR. Three CpG islands (island 1-3) were detected in this sequence using bioinformatics tools. Methylation of CpG island in trophozoites and cysts was measured by bisulfite sequence PCR. CSCP promoter methylation of CpG island 1 (1,633 bp) was found in 8.2% of trophozoites and 7.3% of cysts. Methylation of CpG island 2 (625 bp) was observed in 4.2% of trophozoites and 5.8% of cysts. Methylation of CpG island 3 (367 bp) in trophozoites and cysts was both 3.6%. These results suggest that DNA methylation system is present in CSCP gene expression of Acanthamoeba . In addition, the expression of encystation mediating CSCP is correlated with promoter CpG island 1 hypomethylation.

  18. Characteristics of DNA methylation changes induced by traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-01-15

    Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4 h, 7 d, 14 d, or 28 d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1 μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Variation of long-chain 3-hydroxyacyl-CoA dehydrogenase DNA methylation in placenta of different preeclampsia-like mouse models].

    PubMed

    Han, Yiwei; Yang, Zi; Ding, Xiaoyan; Yu, Huan; Yi, Yanhong

    2015-10-01

    By detecting the variation of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) DNA methylation in preeclampsia-like mouse models generated by different ways, to explore the roles of multifactor and multiple pathways in preeclampsia pathogenesis on molecular basis. Established preeclampsia-like mouse models in different ways and divided into groups as follows: (1) Nw-nitro-L-arginine-methyl ester (L-NAME) group: wild-type pregnant mouse received subcutaneous injection of L-NAME; (2) lipopolysaccharide (LPS) group: wild-type pregnant mouse received intraperitoneal injection of LPS; (3) apolipoprotein C-III (ApoC3) group: ApoC3 transgenic pregnant mouse with dysregulated lipid metabolism received subcutaneous injection of L-NAME; (4) β2 glycoprotein I (β-2GPI) group: wild-type pregnant mouse received subcutaneous injection of β-2GPI. According to the first injection time (on day 3, 11, 16 respectively), the L-NAME, LPS and ApoC3 groups were further subdivided into: pre-implantation (PI) experimental stage, early gestation (EG) experimental stage, and late gestation (LG) experimental stage. β-2GPI group was only injected before implantation. LCHAD gene methylation levels in placental were detected in different experimental stage. Normal saline control groups were set within wild-type and ApoC3 transgenic pregnant mice simultaneously. (1) CG sites in LCHAD DNA: 45 CG sites were detected in the range of 728 bp before LCHAD gene transcription start site, the 5, 12, 13, 14, 15, 16, 19, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 43 CG sites were complex sites which contained two or more CG sequences, others were single site which contained one CG sequence. The 3, 5, 6, 11, 13, 14, 18, 28 sites in L-NAME, LPS, ApoC3 and β-2GPI groups showed different high levels of methylation; the 16, 25, 31, 42, 44 sites showed different low levels of methylation; other 32 sites were unmethylated. (2) Comparison of LCHAD gene methylation between different groups: the methylation levels

  20. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  1. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  2. Retracted: Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation, by L Wang, SG Zellmer, DM Printzenhoff and NA Castle. British Journal of Pharmacology, volume 172(20): 4905-4918, published in October 2015; DOI 10.1111/bph.13259.

    PubMed

    2018-07-01

    The above article, published by the British Journal of Pharmacology in October 2015 (https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.13259), has been retracted by agreement between the authors, the journal Editor in Chief and John Wiley & Sons Limited. The retraction has been agreed owing to the discovery of errors in the chemical structure of the synthetic compounds generated. The corrected structure is now available in the article PF-06526290 can both enhance and inhibit conduction through voltage gated sodium channels by L Wang, SG Zellmer, DM Printzenhoff and NA Castle, 2018, https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14338. Reference Wang L, Zellmer SG, Printzenhoff DM, Castle NA (2015). Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation. Br J Pharmacol 172: 4905-4918. https://doi.org/10.1111/bph.13259. © 2018 The British Pharmacological Society.

  3. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors.

    PubMed

    Amatruda, James F; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh; Frazier, A Lindsay; Poynter, Jenny N

    2013-06-27

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy.

  4. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism.

    PubMed

    Obeid, Rima; Awwad, Hussain M; Rabagny, Yannick; Graeber, Stefan; Herrmann, Wolfgang; Geisel, Juergen

    2016-03-01

    Elevated plasma concentrations of the gut bacteria choline metabolite trimethylamine N-oxide (TMAO) are associated with atherosclerosis. However, the determinants of TMAO in humans require additional assessment. We examined cardiometabolic risk factors and pathways associated with TMAO concentrations in humans. A total of 283 individuals (mean ± SD age: 66.7 ± 9.0 y) were included in this observational study. Plasma concentrations of trimethylamine, TMAO, choline, lipids, phospholipids, and methyl metabolites were measured. Study participants were divided into 4 groups by median concentrations of TMAO and choline (4.36 and 9.7 μmol/L, respectively). Compared with the group with TMAO and choline concentrations that were less than the median (n = 82), the group with TMAO and choline concentrations that were at least the median (n = 83) was older and had lower high-density lipoprotein (HDL) cholesterol, phospholipids, and methylation potential, higher creatinine, betaine, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM), and higher percentages of men and subjects with diabetes. The difference in plasma TMAO concentrations between men and women (7.3 ± 10.0 compared with 5.4 ± 5.6 μmol/L, respectively) was NS after adjustment for age and creatinine (P = 0.455). The TMAO:trimethylamine ratio was higher in men (P < 0.001). Diabetes was associated with significantly higher plasma TMAO concentration (8.6 ± 12.2 compared with 5.4 ± 5.2 μmol/L) even after adjustments. Sex and diabetes showed an interactive effect on trimethylamine concentrations (P = 0.010) but not on TMAO concentrations (P = 0.950). Positive determinants of TMAO in a stepwise regression model that applied to the whole group were SAH, trimethylamine, choline, and female sex, whereas plasma phosphatidylcholine was a negative determinant. High TMAO and choline concentrations are associated with an advanced cardiometabolic risk profile. Diabetes is related to higher plasma TMAO

  5. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial

    PubMed Central

    Crescenti, Anna; Solà, Rosa; Valls, Rosa M.; Caimari, Antoni; del Bas, Josep M.; Anguera, Anna; Anglés, Neus; Arola, Lluís

    2013-01-01

    DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d) for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs) from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase reductase (MTRR) genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001). Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process. Trial Registration Clinicaltrials.gov NCT00511420 and NCT00502047 PMID:23840361

  6. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial.

    PubMed

    Crescenti, Anna; Solà, Rosa; Valls, Rosa M; Caimari, Antoni; Del Bas, Josep M; Anguera, Anna; Anglés, Neus; Arola, Lluís

    2013-01-01

    DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d) for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs) from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase reductase (MTRR) genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001). Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process. Clinicaltrials.govNCT00511420 and NCT00502047.

  7. Methylation effect on the ohmic resistance of a poly-GC DNA-like chain

    NASA Astrophysics Data System (ADS)

    de Moura, F. A. B. F.; Lyra, M. L.; de Almeida, M. L.; Ourique, G. S.; Fulco, U. L.; Albuquerque, E. L.

    2016-10-01

    We determine, by using a tight-binding model Hamiltonian, the characteristic current-voltage (IxV) curves of a 5-methylated cytosine single strand poly-GC DNA-like finite segment, considering the methyl groups attached laterally to a random fraction of the cytosine basis. Striking, we found that the methylation significantly impacts the ohmic resistance (R) of the DNA-like segments, indicating that measurements of R can be used as a biosensor tool to probe the presence of anomalous methylation.

  8. Application of multiplex nested methylated specific PCR in early diagnosis of epithelial ovarian cancer.

    PubMed

    Wang, Bi; Yu, Lei; Yang, Guo-Zhen; Luo, Xin; Huang, Lin

    2015-01-01

    To explore the application of multiplex nested methylated specific polymerase chain reaction (PCR) in the early diagnosis of epithelial ovarian carcinoma (EOC). Serum and fresh tissue samples were collected from 114 EOC patients. RUNX3, TFPI2 and OPCML served as target genes. Methylation levels of tissues were assessed by multiplex nested methylated specific PCR, the results being compared with those for carcinoma antigen 125 (CA125). The serum free deoxyribose nucleic acid (DNA) methylation spectrum of EOC patients was completely contained in the DNA spectrum of cancer tissues, providing an accurate reflection of tumor DNA methylation conditions. Serum levels of CA125 and free DNA methylation in the EOC group were evidently higher than those in benign lesion and control groups (p<0.05). Patients with early EOC had markedly lower serum CA125 than those with advanced EOC (p<0.05), but there was no significant difference in free DNA methylation (p>0.05). The sensitivity, specificity and positive predicative value (PPV) of multiplex nested methylated specific PCR were significantly higher for detection of all patients and those with early EOC than those for CA125 (p<0.05). In the detection of patients with advanced EOC, the PPV of CA125 detection was obviously lower than that of multiplex nested methylated specific PCR (p>0.05), but there was no significant difference in sensitivity (p>0.05). Serum free DNA methylation can be used as a biological marker for EOC and multiplex nested methylated specific PCR should be considered for early diagnosis since it can accurately determine tumor methylation conditions.

  9. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator to the dia...

  10. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids–methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites–methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator was used to ...

  11. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and Drug...

  12. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and Drug...

  13. Histone lysine methylation: critical regulator of memory and behavior.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2013-01-01

    Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.

  14. Pervasive polymorphic imprinted methylation in the human placenta

    PubMed Central

    Hanna, Courtney W.; Peñaherrera, Maria S.; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E.; Kelsey, Gavin; Robinson, Wendy P.

    2016-01-01

    The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960

  15. Engineering ..beta..-Oxidation in Yarrowia lipolytica for Methyl Ketone Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez i Nogue, Violeta; Ramirez, Kelsey J; Singer, Christine

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal ..beta..-oxidation by chromosomal deletion of pot1 resulted in themore » biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones.« less

  16. Methylation analyses in liquid biopsy

    PubMed Central

    Lissa, Delphine

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Recent implementation of low-dose computed tomography (LDCT) screening is predicted to lead to diagnosis of lung cancer at an earlier stage, with survival benefit. However, there is still a pressing need for biomarkers that will identify individuals eligible for screening, as well as improve the diagnostic accuracy of LDCT. In addition, biomarkers for prognostic stratification of patients with early stage disease, and those that can be used as surrogates to monitor tumor evolution, will greatly improve clinical management. Molecular alterations found in the DNA of tumor cells, such as mutations, translocations and methylation, are reflected in DNA that is released from the tumor into the bloodstream. Thus, in recent years, circulating tumor DNA (ctDNA) has gained increasing attention as a noninvasive alternative to tissue biopsies and potential surrogate for the entire tumor genome. Activating gene mutations found in ctDNA have been proven effective in predicting response to targeted therapy. Analysis of ctDNA is also a valuable tool for longitudinal follow-up of cancer patients that does not require serial biopsies and may anticipate the acquisition of resistance. DNA methylation has also emerged as a promising marker for early detection, prognosis and real-time follow-up of tumor dynamics that is independent of the genomic composition of the primary tumor. This review summarizes the various investigational applications of methylated ctDNA in lung cancer reported to date. It also provides a brief overview of the technologies for analysis of DNA methylation in liquid biopsies, and the challenges that befall the implementation of methylated ctDNA into routine clinical practice. PMID:27826530

  17. Association of mitofusin 2 methylation and essential hypertension: a case-control study in a Chinese population.

    PubMed

    Jin, Fei; Li, Xiao; Wang, Zuoguang; Liu, Ya; Liu, Jielin; Sun, Dongdong; Jin, Yongxin; Wang, Shiqi; Wen, Shaojun; Wei, Yongxiang

    2018-06-07

    Mitofusin 2 (Mfn2), a gene that negatively regulates the proliferation of vascular smooth muscle cells (VSMCs), is expressed at low levels in the VSMCs of hypertensive patients. DNA methylation can inhibit gene expression. The purpose of this study was to investigate the relationship between Mfn2 methylation and essential hypertension (EH). After bioinformatics analysis, five EH patients and five normal control (NC) subjects were selected for methylation chip screening. Then, bisulfite DNA sequencing was used to analyze the methylation status of differentially methylated fragments of Mfn2 in 40 EH patients and 36 NC subjects. Mfn2 mRNA expression in the blood was detected by RT-qPCR. There were three CpG islands in the full length Mfn2 DNA sequence and some transcription factor binding sites in these regions, including Sp1, Ap2, GATA box, NF-κB, etc. The chip screening showed that only the third CpG island had a significantly high degree of methylation. Subsequent verification experiments found that the EH group had a significantly lower C base rate of methylation than the NC group (2.5% vs. 44.44%, P < 0.0001), but a similar CpG methylation rate (P > 0.05). RT-qPCR detection showed that the level of Mfn2 mRNA expression was significantly lower in the EH group than in the NC group (P = 0.013). Further association analysis showed that the level of Mfn2 methylation was associated with systolic blood pressure and diastolic blood pressure (r = -0.902, r = -0.713, respectively) but not the other indexes. The DNA methylation level of Mfn2 was significantly lower in hypertensive patients than in control subjects, which may be an independent risk factor for EH.

  18. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes.

    PubMed

    Gao, Xu; Thomsen, Hauke; Zhang, Yan; Breitling, Lutz Philipp; Brenner, Hermann

    2017-01-01

    Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set, n  = 581; validation set, n  = 368) and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active smoking exposure or all-cause mortality. Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative population studies related to smoking-related cancers and chronic diseases.

  19. Methylation of the chicken vitellogenin gene: influence of estradiol administration.

    PubMed Central

    Meijlink, F C; Philipsen, J N; Gruber, M; Ab, G

    1983-01-01

    The degree of methylation of the chicken vitellogenin gene has been investigated. Upon induction by administration of estradiol to a rooster, methyl groups at specific sites near the 5'-end of the gene are eliminated. The process of demethylation is slower than the activation of the gene. Demethylation is therefore probably not a prerequisite to gene transcription. At least two other sites in the coding region of the gene are methylated in the liver of estrogenized roosters, but not in the liver of a laying hen, where the gene is naturally active. Images PMID:6298743

  20. DRME: Count-based differential RNA methylation analysis at small sample size scenario.

    PubMed

    Liu, Lian; Zhang, Shao-Wu; Gao, Fan; Zhang, Yixin; Huang, Yufei; Chen, Runsheng; Meng, Jia

    2016-04-15

    Differential methylation, which concerns difference in the degree of epigenetic regulation via methylation between two conditions, has been formulated as a beta or beta-binomial distribution to address the within-group biological variability in sequencing data. However, a beta or beta-binomial model is usually difficult to infer at small sample size scenario with discrete reads count in sequencing data. On the other hand, as an emerging research field, RNA methylation has drawn more and more attention recently, and the differential analysis of RNA methylation is significantly different from that of DNA methylation due to the impact of transcriptional regulation. We developed DRME to better address the differential RNA methylation problem. The proposed model can effectively describe within-group biological variability at small sample size scenario and handles the impact of transcriptional regulation on RNA methylation. We tested the newly developed DRME algorithm on simulated and 4 MeRIP-Seq case-control studies and compared it with Fisher's exact test. It is in principle widely applicable to several other RNA-related data types as well, including RNA Bisulfite sequencing and PAR-CLIP. The code together with an MeRIP-Seq dataset is available online (https://github.com/lzcyzm/DRME) for evaluation and reproduction of the figures shown in this article. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    PubMed

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P< 0.01). The exposure group had a significantly lower methylation rate of the promoter region of APP gene than the control group (18.85% vs 25.49%, P=0.025), and the high-exposure group had a significantly lower methylation rate of the promoter region of APP gene than the low-exposure group (15.84% vs 21.85%, P<0.05). The exposure group had a significantly higher protein expression of APP in lymphocytes in peripheral blood than the control group (66.73 ng/ml vs 54.17 ng/ml, P<0.05); compared with the low-exposure group (65.39 ng/ml), the high-exposure group showed an increase in the protein expression of APP in lymphocytes in peripheral blood (67.22 ng/ml), but there was no significant difference between these two groups (P>0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP

  2. Mechanism for Prevention of Alcohol-Induced Liver Injury by Dietary Methyl Donors

    PubMed Central

    Powell, Christine L.; Bradford, Blair U.; Craig, Christopher Patrick; Tsuchiya, Masato; Uehara, Takeki; O’Connell, Thomas M.; Pogribny, Igor P.; Melnyk, Stepan; Koop, Dennis R.; Bleyle, Lisa; Threadgill, David W.; Rusyn, Ivan

    2010-01-01

    Alcohol-induced liver injury (ALI) has been associated with, among other molecular changes, abnormal hepatic methionine metabolism, resulting in decreased levels of S-adenosylmethionine (SAM). Dietary methyl donor supplements such as SAM and betaine mitigate ALI in animal models; however, the mechanisms of protection remain elusive. It has been suggested that methyl donors may act via attenuation of alcohol-induced oxidative stress. We hypothesized that the protective action of methyl donors is mediated by an effect on the oxidative metabolism of alcohol in the liver. Male C57BL/6J mice were administered a control high-fat diet or diet enriched in methyl donors with or without alcohol for 4 weeks using the enteral alcohol feeding model. As expected, attenuation of ALI and an increase in reduced glutathione:oxidized glutathione ratio were achieved with methyl donor supplementation. Interestingly, methyl donors led to a 35% increase in blood alcohol elimination rate, and while there was no effect on alcohol metabolism in the stomach, a profound effect on liver alcohol metabolism was observed. The catalase-dependent pathway of alcohol metabolism was induced, yet the increase in CYP2E1 activity by alcohol was blunted, which may be mitigating production of oxidants. Additional factors contributing to the protective effects of methyl donors in ALI were increased activity of low- and high-Km aldehyde dehydrogenases leading to lower hepatic acetaldehyde, maintenance of the efficient mitochondrial energy metabolism, and promotion of peroxisomal β-oxidation. Profound changes in alcohol metabolism represent additional important mechanism of the protective effect of methyl donors in ALI. PMID:20118189

  3. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors.

    PubMed

    Rechache, Nesrin S; Wang, Yonghong; Stevenson, Holly S; Killian, J Keith; Edelman, Daniel C; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A; Meltzer, Paul S; Kebebew, Electron

    2012-06-01

    It is not known whether there are any DNA methylation alterations in adrenocortical tumors. The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors.

  4. A lifelong exposure to a Western-style diet, but not aging, alters global DNA methylation in mouse colon

    PubMed Central

    Tammen, Stephanie A; Liu, Zhenhua; Friso, Simonetta

    2015-01-01

    BACKGROUND/OBJECTIVES Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns. PMID:26244073

  5. DNA methylation and healthy human aging.

    PubMed

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S

    2015-12-01

    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. [Association of etheno-DNA adduct and DNA methylation level among workers exposed to diesel engine exhaust].

    PubMed

    Shen, M L; He, Z N; Zhang, X; Duan, H W; Niu, Y; Bin, P; Ye, M; Meng, T; Dai, Y F; Yu, S F; Chen, W; Zheng, Y X

    2017-06-06

    Objective: To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE). Methods: We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject. The urinary etheno-DNA adducts were detected using UPLC-MS/MS, including 1,N6-etheno-2'-deoxyadenosine (εdA) and 3,N4-etheno-2'-deoxycytidine(εdC). The DNA methylation levels of P16, RASSF1A, and MGMT were evaluated using bisulfite-pyrosequencing assay. The percentage of methylation was expressed as the 5-methylcytosine (5mC) over the sum of cytosines (%5mC). Spearman correlation and multiple linear regression were applied to analyze the association between etheno-DNA adducts and DNA methylation of P16, RASSF1A, and MGMT. Results: The median ( P (25)- P (75)) of urinary εdA level was 230.00 (98.04-470.91) pmol/g creatinine in DEE exposure group, and 102.10 (49.95-194.48) creatinine in control group. The level of εdA was higher in DEE exposure group than control group ( P< 0.001). DNA methylation levels of P16, RASSF1A and MGMT were 2.04±0.41, 2.19 (1.94-2.51), 2.22 (1.94-2.46)%5mC in exposure group, and 2.19±0.40, 2.41 (2.11-2.67), 2.44 (2.15-2.91)%5mC in control group. DNA methylation levels were lower in exposure group ( P values were 0.005, 0.002 and 0.001, respectively). Spearman correlation analysis showed that DNA methylation levels of P16, RASSF1A, and MGMT were negative associated with urinary εdA level ( r values were -0.155, -0.137, and -0.198, respectively, P< 0.05). No significant correlation was observed

  7. A biobased nitrogen-containing lubricant additive synthesized from expoxidized methyl oleate using an ionic liquid catalyst

    USDA-ARS?s Scientific Manuscript database

    Utilizing an epoxidation route, an aniline adduct was synthesized from methyl oleate. An ionic liquid, 1-methylimidazolium tetrafluoroborate, was found to be the key for this catalytic system. The reaction produces a product with the aniline incorporated into the fatty chain, at the 9(10) position, ...

  8. Freezing of Dynamics of a Methyl Group in a Protein Hydrophobic Core at Cryogenic Temperatures by Deuteron NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Ford, Joseph J.

    2010-03-31

    Proteins undergo a number of changes when their temperature is dropped from the physiological range to much lower values. One of the most well-known dynamical changes undergone by proteins in a solid state is a so-called protein glass-transition, which is a dynamic transition occurring at about 200-230K leading to a loss of biological activity.1,2 X-ray diffraction, neutron scattering studies, and dielectric spectroscopy, as well as evidence from NMR relaxation measurements, indicate freezing of slow collective modes of motion below the glass transition temperature.3-8 Various arguments have been presented that connect the transition to solvent participation.1,4,8-10 In addition to the solvent-relatedmore » modes that are frozen below the glass-transition temperature, there are anharmonic motions at temperatures below 200K which are likely to be dominated by methyl group dynamics down to about 100K.2,5,7 Recent neutron-scattering and NMR studies emphasize the role of these modes in low temperature dynamics. 2,5,7,11,12 One of the latest works on the subject by Bajaj et al.11 has reported a structural transition associated with dynamic processes in a solvent-free polypeptide. Thus, protein dynamics at low temperatures are complex and more studies are required to discern their pattern.« less

  9. Experimental and Theoretical Studies on Gas-Phase Fragmentation Reactions of Protonated Methyl Benzoate: Concomitant Neutral Eliminations of Benzene, Carbon Dioxide, and Methanol

    NASA Astrophysics Data System (ADS)

    Xia, Hanxue; Zhang, Yong; Attygalle, Athula B.

    2018-06-01

    Protonated methyl benzoate, upon activation, fragments by three distinct pathways. The m/z 137 ion for the protonated species generated by helium-plasma ionization (HePI) was mass-selected and subjected to collisional activation. In one fragmentation pathway, the protonated molecule generated a product ion of m/z 59 by eliminating a molecule of benzene (Pathway I). The m/z 59 ion (generally recognized as the methoxycarbonyl cation) produced in this way, then formed a methyl carbenium ion in situ by decarboxylation, which in turn evoked an electrophilic aromatic addition reaction on the benzene ring by a termolecular process to generate the toluenium cation (Pathway II). Moreover, protonated methyl benzoate undergoes also a methanol loss (Pathway III). However, it is not a simple removal of a methanol molecule after a protonation on the methoxy group. The incipient proton migrates to the ring and randomizes to a certain degree before a subsequent transfer of one of the ring protons to the alkoxy group for the concomitant methanol elimination. The spectrum recorded from deuteronated methyl benzoate showed two peaks at m/z 105 and 106 for the benzoyl cation at a ratio of 2:1, confirming the charge-imparting proton is mobile. However, the proton transfer from the benzenium intermediate to the methoxy group for the methanol loss occurs before achieving a complete state of scrambling. [Figure not available: see fulltext.

  10. Global DNA Methylation Changes in Nile Tilapia Gonads during High Temperature-Induced Masculinization

    PubMed Central

    Wang, Hui; Li, Ning

    2016-01-01

    In some fish species, high or low temperature can switch the sex determination mechanisms and induce fish sex reversal when the gonads are undifferentiated. During this high or low temperature-induced sex reversal, the expressions of many genes are altered. However, genome-wide DNA methylation changes in fish gonads after high or low temperature treatment are unclear. Herein, we compared the global DNA methylation changes in the gonads from control females (CF), control males (CM), high temperature-treated females (TF), and high temperature-induced males (IM) from the F8 family of Nile tilapia (Oreochromis niloticus) using methylated DNA immunoprecipitation sequencing. The DNA methylation level in CF was higher than that in CM for various chromosomes. Both females and males showed an increase in methylation levels on various chromosomes after high-temperature induction. We identified 64,438 (CF/CM), 63,437 (TF/IM), 98,675 (TF/CF), 235,270 (IM/CM) and 119,958 (IM/CF) differentially methylated regions (DMRs) in Nile tilapia gonads, representing approximately 0.70% (CF/CM), 0.69% (TF/IM), 1.07% (TF/CF), 2.56% (IM/CM), and 1.30% (IM/CF)of the length of the genome. A total of 89 and 65 genes that exhibited DMRs in their gene bodies and promoters were mapped to the Nile tilapia genome. Furthermore, more than half of the genes with DMRs in the gene body in CF/CM were also included in the IM/CM, TF/CF, TF/IM, and IM/CF groups. Additionally, many important pathways, including neuroactive ligand-receptor interaction, extracellular matrix-receptor interaction, and biosynthesis of unsaturated fatty acids were identified. This study provided an important foundation to investigate the molecular mechanism of high temperature-induced sex reversal in fish species. PMID:27486872

  11. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    PubMed Central

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-01-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782

  12. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    NASA Astrophysics Data System (ADS)

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-06-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  13. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    PubMed Central

    2010-01-01

    Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters), but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups) of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs) reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome. PMID:20497546

  14. Negative methylation status of Vimentin predicts improved prognosis in pancreatic carcinoma

    PubMed Central

    Zhou, Yi-Feng; Xu, Wei; Wang, Xia; Sun, Jin-Shan; Xiang, Jing-Jing; Li, Zhao-Shen; Zhang, Xiao-Feng

    2014-01-01

    AIM: To determine the existence of a potential relationship between the methylation state of the Vimentin gene and its prognostic value in pancreatic cancer. METHODS: Sixty-four primary tumor specimens and normal tissues were collected consecutively from pancreatic cancer patients during surgery at Hangzhou First People’s Hospital and Affiliated Hospital of the Logistics University of the Chinese People’s Armed Police Force. DNA was extracted from the samples and subsequently quantitative methylation-specific polymerase chain reaction was used to detect the Vimentin methylation status of the samples. All of the patients were followed up to December 2012. χ2 test, Kaplan-Meier survival and Cox regression statistical models were used. RESULTS: Out of 64 pancreatic cancer tissues, 21 were marked as Vimentin methylation-positive, and 43 were marked as Vimentin methylation-negative. The location of pancreatic carcinoma was related to the Vimentin methylation state. The pathological T staging (P < 0.001), adjuvant chemotherapy (P = 0.003) and the Vimentin methylation state (P = 0.037) were independent prognostic factors. CONCLUSION: In our study, Vimentin methylation status can predict the prognosis of pancreatic cancer patients. However, additional experiments and clinical trials are needed to accurately validate this observation. PMID:25278713

  15. DECISION-MAKING, SCIENCE AND GASOLINE ADDITIVES

    EPA Science Inventory


    Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as an oxygenated additive to meet requirements ...

  16. Variable Methylation Potential in Preterm Placenta: Implication for Epigenetic Programming of the Offspring.

    PubMed

    Khot, Vinita V; Chavan-Gautam, Preeti; Mehendale, Savita; Joshi, Sadhana R

    2017-06-01

    Children born preterm are reported to be at increased risk of developing noncommunicable diseases in later life. Altered placental DNA methylation patterns are implicated in fetal programming of adult diseases. Our earlier animal studies focus on micronutrients (folic acid, vitamin B 12 ) and long-chain polyunsaturated fatty acids (LCPUFAs) that interact in the 1 carbon cycle, thereby influencing methylation reactions. Our previous studies in women delivering preterm show altered plasma levels of micronutrients and lower plasma LCPUFA levels. We postulate that alterations in the micronutrient metabolism may affect the regulation of enzymes, methionine adenosyltransferase ( MAT2A), and SAH-hydrolase ( AHCY), involved in the production of methyl donor S-adenosylmethionine (SAM), thereby influencing the methylation potential (MP) in the placenta of women delivering preterm. The present study, therefore, examines the mRNA, protein levels of enzymes ( MAT2A and AHCY), SAM, S-adenosylhomocysteine (SAH) levels, and global DNA methylation levels from preterm (n = 73) and term (n = 73) placentae. The enzyme messenger RNA (mRNA) levels were analyzed by real-time quantitative polymerase chain reaction, protein levels by enzyme-linked immunosorbent assay, and SAM-SAH levels by high-performance liquid chromatography. The mRNA levels for MAT2A and AHCY are higher ( P < .05 for both) in the preterm group as compared to the term group. S-Adenosylmethionine and SAH levels were similar in both groups, although SAM:SAH ratio was lower ( P < .05) in the preterm group as compared to the term group. The global DNA methylation levels were higher ( P < .05) in women delivering small for gestation age infants as compared to women delivering appropriate for gestation age infants at term. Our data showing lower MP in the preterm placenta may have implications for the epigenetic programming of the developing fetus.

  17. Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer

    PubMed Central

    Nagasaka, Takeshi; Koi, Minoru; Kloor, Matthias; Gebert, Johannes; Vilkin, Alex; Nishida, Naoshi; Shin, Sung Kwan; Sasamoto, Hiromi; Tanaka, Noriaki; Matsubara, Nagahide; Boland, C. Richard; Goel, Ajay

    2008-01-01

    Background Colorectal cancers (CRCs) with the CpG island methylator phenotype (CIMP) often associate with epigenetic silencing of hMLH1 and an activating mutation in the BRAF gene. However, the current CIMP criteria are ambiguous, and often result in an underestimation of CIMP frequencies in CRCs. Since BRAF and KRAS belong to same signaling pathway, we hypothesized that not only mutations in BRAF, but mutant KRAS, may also associate with CIMP in CRC. Methods We determined the methylation status of a panel of 14 markers (7 canonical CIMP-related loci, and 7 new loci), MSI status, and BRAF/KRAS mutations in a cohort of 487 colorectal tissues that included both sporadic and Lynch syndrome patients. Results Methylation analysis of seven CIMP-related markers revealed that the mean number of methylated loci was highest in BRAF mutated CRCs [3.6], versus KRAS-mutated [1.2; P<0.0001] or BRAF/KRAS wild-type tumors [0.7; P<0.0001]. However, analyses with seven additional markers showed that the mean number of methylated loci in BRAF mutant tumors [4.4] was the same as in KRAS mutant CRCs [4.3; P=0.8610]. Although sporadic MSI-H tumors had the most average number of methylated markers [8.4], surprisingly Lynch syndrome CRCs also demonstrated frequent methylation [5.1]. Conclusions CIMP in CRC may result from activating mutations in either BRAF or KRAS, and the inclusion of additional methylation markers that correlate with mutant KRAS may help clarify CIMP in future studies. Additionally, aberrant DNA methylation is a common event not only in sporadic CRC, but also in Lynch syndrome CRCs. PMID:18435933

  18. Cytosine methylation effects on the repair of O6-methylguanines within CG dinucleotides.

    PubMed

    Guza, Rebecca; Ma, Linan; Fang, Qingming; Pegg, Anthony E; Tretyakova, Natalia

    2009-08-21

    O(6)-alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O(6)-methyldeoxyguanosine (O(6)-Me-dG) adducts placed within frequently mutated 5'-CG-3' dinucleotides of the p53 tumor suppressor gene. O(6)-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O(6)-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O(6)-Me-dG were affected by neighboring 5-methylcytosine ((Me)C) in a sequence-dependent manner. AGT repair of O(6)-Me-dG adducts placed within 5'-CG-3' dinucleotides of p53 codons 245 and 248 was hindered when (Me)C was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O(6)-Me-dG repair by AGT. The effects of (Me)C located immediately 5' and in the base paired position to O(6)-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that (Me)C influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.

  19. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  20. DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics.

    PubMed

    Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan

    2017-06-01

    Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.

  1. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    NASA Astrophysics Data System (ADS)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  2. Differential DNA Methylation Analysis without a Reference Genome.

    PubMed

    Klughammer, Johanna; Datlinger, Paul; Printz, Dieter; Sheffield, Nathan C; Farlik, Matthias; Hadler, Johanna; Fritsch, Gerhard; Bock, Christoph

    2015-12-22

    Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Cytosine methylation of sperm DNA in horse semen after cryopreservation.

    PubMed

    Aurich, Christine; Schreiner, Bettina; Ille, Natascha; Alvarenga, Marco; Scarlet, Dragos

    2016-09-15

    Semen processing may contribute to epigenetic changes in spermatozoa. We have therefore addressed changes in sperm DNA cytosine methylation induced by cryopreservation of stallion semen. The relative amount of 5-methylcytosine relative to the genomic cytosine content of sperm DNA was analyzed by ELISA. In experiment 1, raw semen (n = 6 stallions, one ejaculate each) was shock-frozen. Postthaw semen motility and membrane integrity were completely absent, whereas DNA methylation was similar in raw (0.4 ± 0.2%) and shock-frozen (0.3 ± 0.1%) semen (not significant). In experiment 2, three ejaculates per stallion (n = 6) were included. Semen quality and DNA methylation was assessed before addition of the freezing extender and after freezing-thawing with either Ghent (G) or BotuCrio (BC) extender. Semen motility, morphology, and membrane integrity were significantly reduced by cryopreservation but not influenced by the extender (e.g., total motility: G 69.5 ± 2.0, BC 68.4 ± 2.2%; P < 0.001 vs. centrifugation). Cryopreservation significantly (P < 0.01) increased the level of DNA methylation (before freezing 0.6 ± 0.1%, postthaw G 6.4 ± 3.7, BC 4.4 ± 1.5%; P < 0.01), but no differences between the freezing extenders were seen. The level of DNA methylation was not correlated to semen motility, morphology, or membrane integrity. The results demonstrate that semen processing for cryopreservation increases the DNA methylation level in stallion semen. We conclude that assessment of sperm DNA methylation allows for evaluation of an additional parameter characterizing semen quality. The lower fertility rates of mares after insemination with frozen-thawed semen may at least in part be explained by cytosine methylation of sperm-DNA induced by the cryopreservation procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Interaction of DRD4 Methylation and Phthalate Metabolites Affects Continuous Performance Test Performance in ADHD.

    PubMed

    Kim, Johanna Inhyang; Kim, Jae-Won; Shin, Inkyung; Kim, Bung-Nyun

    2018-05-01

    We investigated the interaction effect between the methylation of dopamine receptor D4 (DRD4) and phthalate exposure in ADHD on continuous performance test (CPT) variables. Urine concentrations of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-n-butyl phthalate (MBP) were tested. The methylation status was analyzed for CpG sites of DRD4. Multivariable linear regression models were applied to investigate the interaction effects of methylation and phthalate levels. There was a significant interaction effect of the methylation of CpG26 and CpG28 with the MEHHP level on omission errors in ADHD patients, but not in controls. The post hoc analysis revealed a significant correlation between the MEHHP concentration and omission errors in the methylated group, but not in the unmethylated group. The interaction between the methylation status of CpG sites of DRD4, particularly CpG26 and CpG28, and phthalate metabolite levels affects the attention level in ADHD patients.

  5. Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw.

    PubMed

    Polidoro, Silvia; Broccoletti, Roberto; Campanella, Gianluca; Di Gaetano, Cornelia; Menegatti, Elisa; Scoletta, Matteo; Lerda, Ennio; Matullo, Giuseppe; Vineis, Paolo; Berardi, Daniela; Scully, Crispian; Arduino, Paolo G

    2013-10-09

    Bisphosphonates are used in the treatment of hypocalcaemia, mainly in cancer and osteoporosis. Some patients experience adverse events, such as BP-related osteonecrosis of the jaw (BRONJ). DNA methylation plays a key role in gene regulation in many tissues, but its involvement in bone homeostasis is not well characterized, and no information is available regarding altered methylation in BRONJ. Using the Illumina Infinium HumanMethylation27 BeadChip assay, we performed an epigenome-wide association study in peripheral blood samples from 68 patients treated with nitrogenous BP, including 35 with BRONJ. Analysis of the estimated cumulative BP exposure distribution indicated that the exposure of the case group to BP was slightly higher than that of the control group; more severely affected cases (i.e., with BRONJ in both mandible and maxilla) were significantly more exposed to BP than were those with BRONJ only in the mandible or maxilla (one-sided Wilcoxon rank sum test, p=0.002). Logistic regression analysis confirmed the positive association between cumulative bisphosphonates exposure and risk of BRONJ (OR 1.015 per mg of cumulative exposure, 95% CI 1.004-1.032, p=0.036). Although no statistically significant differences were observed between case and control groups, methylation levels of probes mapping on three genes, ERCC8, LEPREL1 and SDC2, were strongly associated with cumulative BP exposure levels (p<1.31E-007). Enrichment analysis, combining differentially methylated genes with genes involved in the mevalonate pathway, showed that BP treatment can affect the methylation pattern of genes involved in extracellular matrix organization and inflammatory responses, leading to more frequent adverse effects such as BRONJ. Differences in DNA methylation induced by BP treatment could be involved in the pathogenesis of the bone lesion. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  7. Thermodynamic Characterization of DNA with 3-Deazaadenine and 3-Methyl-3-Deazaadenine Substitutions: The Effect of Placing a Hydrophobic Group in the Minor Groove of DNA

    PubMed Central

    Ganguly, Manjori; Wang, Ruo-Wen; Marky, Luis A.; Gold, Barry

    2010-01-01

    In many high-resolution structures of DNA there are ordered waters associated with the floor of the minor groove and extending outward in several layers. It is thought that this hydration structure, along with cations, reduces the Coulombic repulsion of the interstrand phosphates. In previous studies, the replacement of the 3-N atom of adenine with a C-H to afford 3-deazaadenine was shown to decrease the thermodynamic stability of DNA via a reduction in the enthalpic term. Using spectroscopic and calorimetric methods, we report herein a rigorous examination of the thermodynamics of DNA with 3-deazaadenine modifications, and report for the first time how the presence of a minor groove methyl group, i.e., 3-methyl-3-deazaadeine, affects DNA stability, hydration and cation binding. The methylation of adenine at the N3-position to yield N3-methyladenine represents an important reaction in the toxicity of many anticancer compounds. This minor groove lesion is unstable and cannot be readily studied in terms of its effect on DNA stability or structure. Our studies show that 3-methyl-3-deazaadenine, an isostere of N3-methyladenine, significantly destabilizes DNA (ΔΔG > 4 kcal•mol−1) due to a significant drop in the enthalpy (ΔH) term, which is associated with a lower hydration of the duplex relative to the unfolded state. PMID:20469878

  8. The Synthesis and Characterization of Tetrakis [(p - amino phenoxy) methyl] methane

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Zou, Qian

    2017-06-01

    In order to solve the shortcomings of the cured epoxy resin poor toughness, this paper proceeded from the structural design of curing agent to synthesize a special curing agent tetrakis [(p-aminophenoxy) methyl] methane which containing both Benzene ring and amino group. A Symmetric compound of tetrakis [(p - acetamidophenoxy) methyl] methane was prepared by using simple and easy to get pentaerythritoltetratosylate and acetaminophen for raw materials, after Williamson etherification reaction intermediates for synthesis of a symmetrical structure of the compound tetrakis [(p-acetamido phenoxy) methyl] methane, then hydrolysed under acidic conditions it can be tetrakis [(p-amino phenoxy) methyl] methane. The influence of reaction time, reaction temperature and reactant ratio to production yield of tetrakis [(p - acetamidophenoxy) methyl] methane was studied by orthogonal experiment of three factors and three levels, and get the optimal process parameters: the reaction time: 16 h, the reaction temperature: 170 °C, reactant ratio, 1:5. The Structure of tetrakis [(p - acetamidophenoxy) methyl] methane and tetrakis [(p-amino phenoxy) methyl] methane were characterized by infrared and 1H-NMR.

  9. Links between DNA methylation and nucleosome occupancy in the human genome.

    PubMed

    Collings, Clayton K; Anderson, John N

    2017-01-01

    DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.

  10. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.

    PubMed

    Hanko, Erik K R; Denby, Charles M; Sànchez I Nogué, Violeta; Lin, Weiyin; Ramirez, Kelsey J; Singer, Christine A; Beckham, Gregg T; Keasling, Jay D

    2018-05-28

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C 13 -C 23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Cigarette smoke induces methylation of the tumor suppressor gene NISCH

    PubMed Central

    Ostrow, Kimberly Laskie; Michalidi, Christina; Guerrero-Preston, Rafael; Hoque, Mohammad O.; Greenberg, Alissa; Rom, William; Sidransky, David

    2013-01-01

    We have previously identified a putative tumor suppressor gene, NISCH, whose promoter is methylated in lung tumor tissue as well as in plasma obtained from lung cancer patients. NISCH was observed to be more frequently methylated in smoker lung cancer patients than in non-smoker lung cancer patients. Here, we investigated the effect of tobacco smoke exposure on methylation of the NISCH gene. We tested methylation of NISCH after oral keratinocytes were exposed to mainstream and side stream cigarette smoke extract in culture. Methylation of the promoter region of the NISCH gene was also evaluated in plasma obtained from lifetime non-smokers and light smokers (< 20 pack/year), with and without lung tumors, and heavy smokers (20+ pack/year) without disease. Promoter methylation of NISCH was tested by quantitative fluorogenic real-time PCR in all samples. Promoter methylation of NISCH occurred after exposure to mainstream tobacco smoke as well as to side stream tobacco smoke in normal oral keratinocyte cell lines. NISCH methylation was also detected in 68% of high-risk, heavy smokers without detectable tumors. Interestingly, in light smokers, NISCH methylation was present in 69% of patients with lung cancer and absent in those without disease. Our pilot study indicates that tobacco smoke induces methylation changes in the NISCH gene promoter before any detectable cancer. Methylation of the NISCH gene was also found in lung cancer patients’ plasma samples. After confirming these findings in longitudinally collected plasma samples from high-risk populations (such as heavy smokers), examining patients for hypermethylation of the NISCH gene may aid in identifying those who should undergo additional screening for lung cancer. PMID:23503203

  12. Methylation oligonucleotide microarray: a novel tool to analyze methylation patterns

    NASA Astrophysics Data System (ADS)

    Hou, Peng; Ji, Meiju; He, Nongyao; Lu, Zuhong

    2003-04-01

    A new technique to analyze methylation patterns in several adjacent CpG sites was developed and reported here. We selected a 336bp segment of the 5"-untranslated region and the first exon of the p16Ink4a gene, which include the most densely packed CpG fragment of the islands containing 32 CpG dinucleotides, as the investigated target. The probes that include all types of methylation patterns were designed to fabricate a DNA microarray to determine the methylation patterns of seven adjacent CpG dinucleotides sites. High accuracy and reproducibility were observed in several parallel experiments. The results led us to the conclusion that the methylation oligonucleotide microarray can be applied as a novel and powerful tool to map methylation patterns and changes in multiple CpG island loci in a variety of tumors.

  13. High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion.

    PubMed

    Shiratori, Hiromi; Feinweber, Carmen; Knothe, Claudia; Lötsch, Jörn; Thomas, Dominique; Geisslinger, Gerd; Parnham, Michael J; Resch, Eduard

    2016-01-01

    DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50-80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.

  14. Identification of Methylated Genes Associated with Aggressive Bladder Cancer

    PubMed Central

    Marsit, Carmen J.; Houseman, E. Andres; Christensen, Brock C.; Gagne, Luc; Wrensch, Margaret R.; Nelson, Heather H.; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K.; Andrew, Angeline S.; Schned, Alan R.; Karagas, Margaret R.; Kelsey, Karl T.

    2010-01-01

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment. PMID:20808801

  15. Identification of methylated genes associated with aggressive bladder cancer.

    PubMed

    Marsit, Carmen J; Houseman, E Andres; Christensen, Brock C; Gagne, Luc; Wrensch, Margaret R; Nelson, Heather H; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K; Andrew, Angeline S; Schned, Alan R; Karagas, Margaret R; Kelsey, Karl T

    2010-08-23

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

  16. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  17. 40 CFR 180.123 - Inorganic bromide residues resulting from fumigation with methyl bromide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from fumigation with methyl bromide; tolerances for residues. 180.123 Section 180.123 Protection of... fumigation with methyl bromide; tolerances for residues. (a) General. (1) Tolerances are established for... result of fumigation of the processed food with methyl bromide or from such fumigation in addition to the...

  18. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  19. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  20. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  1. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  2. LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals

    PubMed Central

    Marques-Rocha, José Luiz; Milagro, Fermin I.; Mansego, Maria Luisa; Mourão, Denise Machado; Martínez, J. Alfredo; Bressan, Josefina

    2016-01-01

    Abstract With the goal of investigating if epigenetic biomarkers from white blood cells (WBC) are associated with dietary, anthropometric, metabolic, inflammatory and oxidative stress parameters in young and apparently healthy individuals. We evaluated 156 individuals (91 women, 65 men; age: 23.1±3.5 years; body mass index: 22.0±2.9 kg/m2) for anthropometric, biochemical and clinical markers, including some components of the antioxidant defense system and inflammatory response. DNA methylation of LINE-1, TNF-α and IL-6 and the expression of some genes related to the inflammatory process were analyzed in WBC. Adiposity was lower among individuals with higher LINE-1 methylation. On the contrary, body fat-free mass was higher among those with higher LINE-1 methylation. Individuals with higher LINE-1 methylation had higher daily intakes of calories, iron and riboflavin. However, those individuals who presented lower percentages of LINE-1 methylation reported higher intakes of copper, niacin and thiamin. Interestingly, the group with higher LINE-1 methylation had a lower percentage of current smokers and more individuals practicing sports. On the other hand, TNF-α methylation percentage was negatively associated with waist girth, waist-to-hip ratio and waist-to-stature ratio. Plasma TNF-α levels were lower in those individuals with higher TNF-α methylation. This study suggests that higher levels of LINE-1 and TNF-α methylation are associated with better indicators of adiposity status in healthy young individuals. In addition, energy and micronutrient intake, as well as a healthy lifestyle, may have a role in the regulation of DNA methylation in WBC and the subsequent metabolic changes may affect epigenetic biomarkers. PMID:26786189

  3. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort.

    PubMed

    Wilson, L E; Harlid, S; Xu, Z; Sandler, D P; Taylor, J A

    2017-01-01

    The relationship between obesity and chronic disease risk is well-established; the underlying biological mechanisms driving this risk increase may include obesity-related epigenetic modifications. To explore this hypothesis, we conducted a genome-wide analysis of DNA methylation and body mass index (BMI) using data from a subset of women in the Sister Study. The Sister Study is a cohort of 50 884 US women who had a sister with breast cancer but were free of breast cancer themselves at enrollment. Study participants completed examinations which included measurements of height and weight, and provided blood samples. Blood DNA methylation data generated with the Illumina Infinium HumanMethylation27 BeadChip array covering 27,589 CpG sites was available for 871 women from a prior study of breast cancer and DNA methylation. To identify differentially methylated CpG sites associated with BMI, we analyzed this methylation data using robust linear regression with adjustment for age and case status. For those CpGs passing the false discovery rate significance level, we examined the association in a replication set comprised of a non-overlapping group of 187 women from the Sister Study who had DNA methylation data generated using the Infinium HumanMethylation450 BeadChip array. Analysis of this expanded 450 K array identified additional BMI-associated sites which were investigated with targeted pyrosequencing. Four CpG sites reached genome-wide significance (false discovery rate (FDR) q<0.05) in the discovery set and associations for all four were significant at strict Bonferroni correction in the replication set. An additional 23 sites passed FDR in the replication set and five were replicated by pyrosequencing in the discovery set. Several of the genes identified including ANGPT4, RORC, SOCS3, FSD2, XYLT1, ABCG1, STK39, ASB2 and CRHR2 have been linked to obesity and obesity-related chronic diseases. Our findings support the hypothesis that obesity-related epigenetic

  4. Variation in Genomic Methylation in Natural Populations of Chinese White Poplar

    PubMed Central

    Ma, Kaifeng; Song, Yuepeng; Yang, Xiaohui; Zhang, Zhiyi; Zhang, Deqiang

    2013-01-01

    Background It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. Principal Findings On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001), respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu) to 1.211 (Shaanxi), and the coefficients of epigenetic differentiation (GST = 0.159) were assessed by Shannon’s diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. Conclusions Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5′-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match. PMID:23704963

  5. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  6. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types

    PubMed Central

    Chen, Yun-Ching; Margolin, Gennady

    2017-01-01

    Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844

  7. DNA methylation profiles of elderly individuals subjected to indentured childhood labor and trauma.

    PubMed

    Marinova, Zoya; Maercker, Andreas; Küffer, Andreas; Robinson, Mark D; Wojdacz, Tomasz K; Walitza, Susanne; Grünblatt, Edna; Burri, Andrea

    2017-02-27

    Childhood trauma is associated with increased vulnerability to mental and somatic disorders later in life. Epigenetic modifications such as DNA methylation are one potential mechanism through which such long-lasting impairments/consequences can be explained. The aim of the present study was to investigate whether childhood trauma is associated with long-term DNA methylation alterations in old age. We assessed genome-wide DNA methylation profiles in a cohort of former indentured child laborers ("Verdingkinder") who suffered severe childhood adversities (N = 30; M age = 75.9 years), and compared them to control group with similar demographic characteristics (N = 15, M age = 72.8 years). DNA was isolated from epithelial buccal cells and hybridized to the Illumina Infinium 450 k DNA methylation array, which provides coverage of 485,000 methylation sites. After accounting for batch effects, age, gender and multiple testing, 71 differentially methylated CpG positions were identified between the two groups. They were annotated among others to genes involved in neuronal projections and neuronal development. Some of the identified genes with differential methylation (DLG associated protein 2, mechanistic target of rapamycin) have previously been associated with traumatic stress. The results indicate specific epigenetic alterations in elderly individuals who were subjected to childhood adversities. Psychiatric and somatic comorbidities as well as differences in buccal epithelial cells proportion may contribute to the observed epigenetic differences.

  8. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    PubMed

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  9. [Research on mercury methylation by Geobacter sulfurreducens and its influencing factors].

    PubMed

    Zou, Yan; Si, You-Bin; Yan, Xue; Chen, Yan

    2012-09-01

    Mercury methylation by Geobacter sulfurreducens and the effects of environmental factors were studied under laboratory conditions. The results showed that G. sulfurreducens could grow well in the presence of low concentrations of mercuric chloride, but its growth was inhibited to a certain extent, mainly expressed in the prolonged lag phase. G. sulfurreducens could transform inorganic mercury into methylmercury, and this process was affected by many environmental factors. The efficiency of mercury methylation reached 38% under anaerobic conditions with 1 mg x L(-1) HgCl2 and 0.9% salinity at 35 degrees C, pH 6.0. Increasing the initial HgCl2 concentration or salinity in an appropriate manner improved mercury methylation, but the concentration of methylmercury reduced when the concentrations of HgCl2 and salinity were too high. The efficiency of mercury methylation increased with the increasing temperature in range of 4-35 degrees C. Weakly acidic environment was more beneficial to mercury methylation than acidic, neutral or alkaline conditions. In addition, the efficiency of mercury methylation was also affected by humic acid and cysteine. Humic acid inhibited mercury methyaltion, whereas cysteine could improve the efficiency of mercury methylation. This study provided a direct evidence for mercury methylation mediated by iron-reducing bacteria in the natural aquatic ecosystem.

  10. Differential DNA Methylation in Relation to Age and Health Risks of Obesity.

    PubMed

    Mansego, María Luisa; Milagro, Fermín I; Zulet, María Ángeles; Moreno-Aliaga, María J; Martínez, José Alfredo

    2015-07-24

    The aim of this study was to evaluate whether genome-wide levels of DNA methylation are associated with age and the health risks of obesity (HRO); defined according to BMI categories as "Low HRO" (overweight and class 1 obesity) versus "High HRO" (class 2 and class 3 obesity). Anthropometric measurements were assessed in a subsample of 48 volunteers from the Metabolic Syndrome Reduction in Navarra (RESMENA) study and 24 women from another independent study, Effects of Lipoic Acid and Eicosapentaenoic Acid in Human Obesity (OBEPALIP study). In the pooled population; the methylation levels of 55 CpG sites were significantly associated with age after Benjamini-Hochberg correction. In addition, DNA methylation of three CpG sites located in ELOVL2; HOXC4 and PI4KB were further negatively associated with their mRNA levels. Although no differentially methylated CpG sites were identified in relation to HRO after multiple testing correction; several nominally significant CpG sites were identified in genes related to insulin signaling; energy and lipid metabolism. Moreover, statistically significant associations between BMI or mRNA levels and two HRO-related CpG sites located in GPR133 and ITGB5 are reported. As a conclusion, these findings from two Spanish cohorts add knowledge about the important role of DNA methylation in the age-related regulation of gene expression. In addition; a relevant influence of age on DNA methylation in white blood cells was found, as well as, on a trend level, novel associations between DNA methylation and obesity.

  11. Profile analysis and prediction of tissue-specific CpG island methylation classes

    PubMed Central

    2009-01-01

    Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes

  12. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    PubMed

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  13. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  14. Methylation of hemoglobin to enhance flocculant performance

    USDA-ARS?s Scientific Manuscript database

    An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...

  15. 40 CFR 180.561 - Acibenzolar-S-methyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acibenzolar-S-methyl, in or on the following raw agricultural commodities. Commodity Parts per million Banana..., group 8 1.0 Vegetable, leafy, group 4 0.25 1 There are no United States registrations for banana. (2...

  16. 40 CFR 180.561 - Acibenzolar-S-methyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acibenzolar-S-methyl, in or on the following raw agricultural commodities. Commodity Parts per million Banana..., group 8 1.0 Vegetable, leafy, group 4 0.25 1 There are no United States registrations for banana. (2...

  17. 40 CFR 180.561 - Acibenzolar-S-methyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acibenzolar-S-methyl, in or on the following raw agricultural commodities. Commodity Parts per million Banana..., group 8 1.0 Vegetable, leafy, group 4 0.25 1 There are no United States registrations for banana. (2...

  18. Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle.

    PubMed

    Huang, Yong-Zhen; Zhang, Zi-Jing; He, Hua; Cao, Xiu-Kai; Song, Cheng-Chuang; Liu, Kun-Peng; Lan, Xian-Yong; Lei, Chu-Zhao; Qi, Xing-Lei; Bai, Yue-Yu; Chen, Hong

    2017-04-03

    DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.

  19. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  20. Methylation analysis of multiple genes in blood DNA of Alzheimer's disease and healthy individuals.

    PubMed

    Tannorella, Pierpaola; Stoccoro, Andrea; Tognoni, Gloria; Petrozzi, Lucia; Salluzzo, Maria Grazia; Ragalmuto, Alda; Siciliano, Gabriele; Haslberger, Alexander; Bosco, Paolo; Bonuccelli, Ubaldo; Migliore, Lucia; Coppedè, Fabio

    2015-07-23

    We collected blood DNA from 120 late-onset Alzheimer's disease (AD) patients and 115 healthy matched controls and analysed the methylation levels of genes involved in amyloid-beta peptide production (PSEN1 and BACE1), in DNA methylation (DNMT1, DNMT3A and DNMT3B), and in one-carbon metabolism (MTHFR), searching for correlation with age and gender, with biomarkers of one-carbon metabolism (plasma homocysteine, and serum folate and vitamin B12 levels), and with disease status (being healthy or having AD). We also evaluated the contribution of the APOE ϵ4 allele, the major late-onset AD genetic risk factor, to the studied gene methylation levels. All the genes showed low mean methylation levels (<5%) in both AD and control DNA, no difference between groups, and no correlation with the studied biomarkers, except for MTHFR that showed methylation levels ranging from 5% to 75%, and correlation with circulating biomarkers of one-carbon metabolism. However, mean MTHFR methylation levels were similar between groups (31.1% in AD and 30.7% in controls, P=0.58). Overall, present data suggest that none of the studied regions is differently methylated in blood DNA between AD and control subjects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    NASA Astrophysics Data System (ADS)

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-09-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and—although there are a small number of catalytic enantioselective conjugate allyl additions—related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  2. Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C=C Unsaturation on Reaction Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.

    2016-03-04

    Here we demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. Our results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order tomore » achieve comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less

  3. Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C=C Unsaturation on Reaction Selectivity

    DOE PAGES

    Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.; ...

    2016-02-02

    We demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. These results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order to achievemore » comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work then provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less

  4. DNA methylation analysis of phenotype specific stratified Indian population.

    PubMed

    Rotti, Harish; Mallya, Sandeep; Kabekkodu, Shama Prasada; Chakrabarty, Sanjiban; Bhale, Sameer; Bharadwaj, Ramachandra; Bhat, Balakrishna K; Dedge, Amrish P; Dhumal, Vikram Ram; Gangadharan, G G; Gopinath, Puthiya M; Govindaraj, Periyasamy; Joshi, Kalpana S; Kondaiah, Paturu; Nair, Sreekumaran; Nair, S N Venugopalan; Nayak, Jayakrishna; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Thangaraj, Kumarasamy; Patwardhan, Bhushan; Valiathan, Marthanda Varma Sankaran; Satyamoorthy, Kapaettu

    2015-05-08

    DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.

  5. Reaction product of pyrogallol with methyl linoleate and its antioxidant potential for biodiesel

    NASA Astrophysics Data System (ADS)

    Sutanto, H.; Ainny, L.; Lukman; Susanto, B. H.; Nasikin, M.

    2018-03-01

    The demand of biodiesel as an alternative fuel is increasing due to fossil fuel depletion. Biodiesel is a renewable diesel fuel in the form of fatty acid methyl ester or FAME as a result of an esterification of plant oils in a presence of catalyst. Compared to the conventional diesel fuel, biodiesel is more biodegradable, has higher lubricity, and lower toxic emissions. However, the high content of unsaturated fatty acid leads to a problem that biodiesel is prone to oxidation during storage period. This oxidation instability causes degradation of fuel quality and will affect engine performance. Pyrogallol and other phenolic derivatives have been used as the antioxidant additives to prevent biodiesel oxidation. As reported in many researches, pyrogallol is one of the best phenolic antioxidant. However, its low solubility in biodiesel needs an attention. Several reports indicate the increasing solubility of pyrogallol using molecule modification with the addition of alkyl groups to its benzene ring via electrophilic substitution. This paper discusses the idea about modification of pyrogallol molecule and methyl linoleate using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in order to increase its solubility in biodiesel while keeping its antioxidant property. Three responses were analyzed to examine the antioxidant activity: iodine value, viscosity, and color intensity. The result shown that the addition of 0.1% reaction product exhibit antioxidant activity in biodiesel.

  6. Clinicopathological and molecular stability and methylation analyses of gastric papillary adenocarcinoma.

    PubMed

    Uesugi, Noriyuki; Sugai, Tamotsu; Sugimoto, Ryo; Eizuka, Makoto; Fujita, Yasuko; Sato, Ayaka; Osakabe, Mitsumasa; Ishida, Kazuyuki; Koeda, Keisuke; Sasaki, Akira; Matsumoto, Takayuki

    2017-10-01

    The molecular alterations and pathological features of gastric papillary adenocarcinoma (GPA) remain unknown. We examined GPA samples and compared their molecular and pathological characteristics with those of gastric tubular adenocarcinoma (GTA). Additionally, we identified pathological and molecular features of GPA that vary with microsatellite stability. In the present study, samples from 63 GPA patients and 47 GTA patients were examined using a combination of polymerase chain reaction (PCR)-microsatellite assays and PCR-pyrosequencing in order to detect microsatellite instability (microsatellite instability, MSI; microsatellite stable, MSS), methylation status (low methylation, intermediate methylation and high methylation level), and chromosomal AI in multiple cancer-related loci. Additionally, the expression levels of TP53 and Her2 were evaluated using immunohistochemistry. GTA and GPA are statistically different in their frequency of pathological features, including mucinous, poorly differentiated and invasive micropapillary components. Clear genetic patterns differentiating GPA and GTA could not be identified with a hierarchical cluster analysis, but microsatellite stability was linked with TP53 and Her2 overexpression. Methylation status in GPA was also associated with the development of high microsatellite instability. However, no pathological differences were associated with microsatellite stability. We suggest that although molecular alterations in a subset of GPAs are closely associated with microsatellite stability, they play a minor role in GPA carcinogenesis. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  7. The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis

    PubMed Central

    Wang, Dan; Zhao, Jieyu; Bai, Yan; Ao, You; Guo, Changhong

    2017-01-01

    Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS–3C and CS–3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted–repeat transposable elements), LTR-retrotransposon WIS-1p and retrotransposon Gypsy, respectively. Overall, our results showed that DNA methylation could play a role in the Gc action. PMID:28796162

  8. The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis.

    PubMed

    Wang, Dan; Zhao, Jieyu; Bai, Yan; Ao, You; Guo, Changhong

    2017-08-10

    Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS-3C and CS-3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted-repeat transposable elements), LTR-retrotransposon WIS-1p and retrotransposon Gypsy , respectively. Overall, our results showed that DNA methylation could play a role in the Gc action.

  9. New bis(alkythio) fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to mono-unsaturated fatty acid methyl esters is well-known for analytical purposes to determine the position of double bonds by mass spectrometry. In this work, the classical iodine-catalyzed reaction is expanded to other dialkyl disulfides (RSSR), ...

  10. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  11. VEZF1 Elements Mediate Protection from DNA Methylation

    PubMed Central

    Strogantsev, Ruslan; Gaszner, Miklos; Hair, Alan; Felsenfeld, Gary; West, Adam G.

    2010-01-01

    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state. PMID:20062523

  12. Genome-wide methylation analysis in Silver-Russell syndrome patients

    PubMed Central

    Böhm, S; Frost, JM; Puszyk, W; Abu-Amero, S; Stanier, P; Schulz, R; Moore, GE; Oakey, RJ

    2015-01-01

    Silver-Russell Syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7. We measured DNA methylation in 18 SRS patients at >485,000 CpG sites using DNA methylation microarrays. Using a novel bioinformatics methodology specifically designed to identify subsets of patients with a shared epimutation, we analysed methylation changes genome-wide as well as at known imprinted regions to identify SRS-associated epimutations. Our analysis identifies epimutations at the previously characterised domains of H19/IGF2 and at imprinted regions on chromosome 7, providing proof of principle that our methodology can detect DNA methylation changes at imprinted loci. In addition we discovered two novel epimutations associated with SRS and located at imprinted loci previously linked to relevant mouse and human phenotypes. We identify RB1 as an additional imprinted locus associated with SRS, with a region near the RB1 DMR hypermethylated in 13/18 (~70 %) patients. We also report 6/18 (~33 %) patients were hypermethylated at a CpG island near the ANKRD11 gene. We do not observe consistent cooccurrence of epimutations at multiple imprinted loci in single SRS individuals. SRS is clinically heterogeneous and the absence of multiple imprinted loci epimutations reflects the heterogeneity at the molecular level. Further stratification of SRS patients by molecular phenotypes might aid the identification of disease causes. PMID:25563730

  13. Folic acid and the methylation of homocysteine by Bacillus subtilis

    PubMed Central

    Salem, A. R.; Pattison, J. R.; Foster, M. A.

    1972-01-01

    1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes. PMID:4627401

  14. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes.

    PubMed

    Chen, Poyin; den Bakker, Henk C; Korlach, Jonas; Kong, Nguyet; Storey, Dylan B; Paxinos, Ellen E; Ashby, Meredith; Clark, Tyson; Luong, Khai; Wiedmann, Martin; Weimer, Bart C

    2017-02-01

    Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism. Listeria monocytogenes is the causative agent of listeriosis, a disease

  15. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola

    PubMed Central

    Provataris, Panagiotis; Meusemann, Karen; Niehuis, Oliver; Grath, Sonja; Misof, Bernhard

    2018-01-01

    Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects. PMID:29697817

  16. 2-Amino­pyrimidin-1-ium 4-methyl­benzene­sulfonate

    PubMed Central

    Tabatabaee, Masoumeh; Noozari, Najmeh

    2011-01-01

    In the crystal structure of the title compound, C4H6N3 +·C7H7O3S−, inter­molecular N—H⋯O hydrogen bonds link the cations and anions into chains along [100]. Additional stabilization is provided by weak C—H⋯O hydrogen bonds. An inter­molecular π–π stacking inter­action with a centroid–centroid distance of 3.6957 (7) Å is also observed. The H atoms of the methyl group were refined as disordered over two sets of sites with equal occupancies PMID:21754830

  17. Alteration in Methylation Pattern of Retinoblastoma 1 Gene Promotor Region in Intestinal Metaplasia with or without Helicobacter pylori and Gastric Cancer Patients.

    PubMed

    Boyacioglu, Seda Orenay; Kasap, Elmas; Yuceyar, Hakan; Korkmaz, Mehmet

    2016-01-01

    Helicobacter pylori, intestinal metaplasia (IM), and gene methylation play important roles in gastric carcinogenesis. However, the association among H. pylori infection, IM, gastric cancer (GC), and gene methylation is not fully understood. Cell cycle control involving retinoblastoma 1 (RB1) gene is one of the main regulatory pathways reported to be altered in gastric carcinogenesis. The purpose of this research is to assess the methylation status of RB1 gene in GC and IM with or without H. pylori infection, and to discuss the possible role of H. pylori-induced RB1 gene methylation in the mechanism of gastric carcinogenesis. The methylation profile of RB1 gene was analyzed by sodium bisulfite modification and methylation-specific PCR in GC (n = 24), IM patients with H. pylori positive (n = 20) and negative (n = 20), and control subjects (n = 20). According to methylation levels in RB1 gene; the high correlation values were detected between H. pylori positive-IM group and GC group, and between H. pylori positive-IM and H. pylori negative-IM groups (p < 0.05). No correlations between H. pylori negative-IM and GC groups and between GC and control groups were detected in methylation status of RB1 gene. High methylation levels in RB1 gene in H. pylori positive individuals may suggest an elevated risk of gastric cancer occurrence.

  18. Distinctive Klf4 mutants determine preference for DNA methylation status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Hideharu; Wang, Dongxue; Steves, Alyse N.

    Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resultedmore » in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.« less

  19. DNA methylation pattern of apoptosis-related genes in ameloblastoma.

    PubMed

    Costa, Sfs; Pereira, N B; Pereira, Kma; Campos, K; de Castro, W H; Diniz, M G; Gomes, C C; Gomez, R S

    2017-09-01

    DNA methylation is an important mechanism of gene control expression, and it has been poorly addressed in odontogenic tumours. On this basis, we aimed to assess the methylation pattern of 22 apoptosis-related genes in solid ameloblastomas. Ameloblastoma fresh samples (n = 10) and dental follicles (n = 8) were included in the study. The percentage fraction of methylated and unmethylated DNA promoter of 22 apoptosis-related genes was determined using enzymatic restriction digestion and quantitative real-time PCR (qPCR) array. The relative expressions of the genes that showed the most discrepant methylation profile between tumours and controls were analysed by reverse-transcription quantitative PCR (RT-qPCR). Lower methylation percentages of TNFRSF25 (47.2%) and BCL2L11 (33.2%) were observed in ameloblastomas compared with dental follicles (79.3% and 59.5%, respectively). The RT-qPCR analysis showed increased expression of BCL2L11 in ameloblastomas compared with dental follicles, in agreement with the methylation analysis results, while there was no difference between the expression levels of TNFRSF25 between both groups. On the basis of our results, the transcription of the apoptosis-related gene BCL2L11 is possibly regulated by promoter DNA methylation in ameloblastoma. The biological significance of this finding in ameloblastoma pathobiology remains to be clarified. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Microarray-based DNA methylation study of Ewing's sarcoma of the bone.

    PubMed

    Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo

    2014-10-01

    Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.

  1. 13C and 1H nuclear magnetic resonance of methyl-substituted acetophenones and methyl benzoates: steric hindrance and inhibited conjugation.

    PubMed

    Budesínský, Milos; Kulhánek, Jirí; Böhm, Stanislav; Cigler, Petr; Exner, Otto

    2004-10-01

    The 1H and 13C NMR spectra of 14 methyl-substituted acetophenones and 14 methyl-substituted methyl benzoates were assigned and interpreted with respect to the conformation of the C(ar)-C(O) bond. The substituent effects are proportional in the two series and can be divided into polar and steric: each has different effects on the 13C SCS of the individual atoms. In the case of C atoms C(O), C(1) and CH3(CO), the steric effects were quantitatively separated by comparing SCS in the ortho and para positions. The steric effects are proportional for the individual C atoms and also to steric effects estimated from other physical quantities. However, they do not depend simply on the angle of torsion phi of the functional group as anticipated hitherto. A better description distinguishes two classes of compounds: sterically not hindered or slightly hindered planar molecules and strongly sterically hindered, markedly non-planar. In order to confirm this reasoning without empirical correlations, the J(C,C) coupling constants were measured for three acetophenone derivatives labeled with 13C in the acetyl methyl group. The constants confirm unambiguously the conformation of 2-methylacetophenone; their zero values are in accord with the conformation of 2,6-dimethylacetophenone. The zero values in the unsubstituted acetophenone are at variance with previous erroneous report but all J(C,C) values are in accord with calculations at the B3LYP/6-311++G(2d,2p)//B3LYP/6-311+G(d,p) level. Copyright 2004 John Wiley & Sons, Ltd.

  2. DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.

    PubMed

    Albalat, Ricard; Martí-Solans, Josep; Cañestro, Cristian

    2012-03-01

    In vertebrates, DNA methylation is an epigenetic mechanism that modulates gene transcription, and plays crucial roles during development, cell fate maintenance, germ cell pluripotency and inheritable genome imprinting. DNA methylation might also play a role as a genome defense mechanism against the mutational activity derived from transposon mobility. In contrast to the heavily methylated genomes in vertebrates, most genomes in invertebrates are poorly or just moderately methylated, and the function of DNA methylation remains unclear. Here, we review the DNA methylation system in the cephalochordate amphioxus, which belongs to the most basally divergent group of our own phylum, the chordates. First, surveys of the amphioxus genome database reveal the presence of the DNA methylation machinery, DNA methyltransferases and methyl-CpG-binding domain proteins. Second, comparative genomics and analyses of conserved synteny between amphioxus and vertebrates provide robust evidence that the DNA methylation machinery of amphioxus represents the ancestral toolkit of chordates, and that its expansion in vertebrates was originated by the two rounds of whole-genome duplication that occurred in stem vertebrates. Third, in silico analysis of CpGo/e ratios throughout the amphioxus genome suggests a bimodal distribution of DNA methylation, consistent with a mosaic pattern comprising domains of methylated DNA interspersed with domains of unmethylated DNA, similar to the situation described in ascidians, but radically different to the globally methylated vertebrate genomes. Finally, we discuss potential roles of the DNA methylation system in amphioxus in the context of chordate genome evolution and the origin of vertebrates.

  3. Study on the relationship between the methylation of the MMP-9 gene promoter region and diabetic nephropathy.

    PubMed

    Yang, Xiao-Hui; Feng, Shi-Ya; Yu, Yang; Liang, Zhou

    2018-01-01

    This study aims to explore the relationship between the methylation of matrix metalloproteinase (MMP)-9 gene promoter region and diabetic nephropathy (DN) through the detection of the methylation level of MMP-9 gene promoter region in the peripheral blood of patients with DN in different periods and serum MMP-9 concentration. The methylation level of the MMP-9 gene promoter region was detected by methylation-specific polymerase chain reaction (MSP), and the content of MMP-9 in serum was determined by enzyme-linked immunosorbent assay (ELISA). Results of the statistical analysis revealed that serum MMP-9 protein expression levels gradually increased in patients in the simple diabetic group, early diabetic nephropathy group and clinical diabetic nephropathy group, compared with the control group; and the difference was statistically significant (P < 0.05). Compared with the control group, the methylation levels of MMP-9 gene promoter regions gradually decreased in patients in the simple diabetic group, early diabetic nephropathy group, and clinical diabetic nephropathy group; and the difference was statistically significant (P < 0.05). Furthermore, correlation analysis results indicated that the demethylation levels of the MMP-9 gene promoter region was positively correlated with serum protein levels, urinary albumin to creatinine ratio (UACR), urea and creatinine; and was negatively correlated with GFR. The demethylation of the MMP-9 gene promoter region may be involved in the occurrence and development of diabetic nephropathy by regulating the expression of MMP-9 protein in serum.

  4. Shotgun Bisulfite Sequencing of the Betula platyphylla Genome Reveals the Tree’s DNA Methylation Patterning

    PubMed Central

    Su, Chang; Wang, Chao; He, Lin; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. PMID:25514241

  5. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed

  6. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGES

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; ...

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  7. Identification of differentially methylated sites with weak methylation effect

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect dif...

  8. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial.

    PubMed

    Perfilyev, Alexander; Dahlman, Ingrid; Gillberg, Linn; Rosqvist, Fredrik; Iggman, David; Volkov, Petr; Nilsson, Emma; Risérus, Ulf; Ling, Charlotte

    2017-04-01

    Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA ( n = 17) or PUFA ( n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase ( FTO ), interleukin 6 ( IL6 ), insulin receptor ( INSR ), neuronal growth regulator 1 ( NEGR1 ), and proopiomelanocortin ( POMC )] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing ( ADIPOQ )] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 ( ACOX1 ) and FAT atypical cadherin 1 ( FAT1 )], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 ( FABP1 ), fatty acid binding protein 2 ( FABP2 ), melanocortin 2 receptor ( MC2R ), MC3R , PPARG coactivator 1 α ( PPARGC1A ), and tumor necrosis factor ( TNF ), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA

  9. Millimeter Wave Spectrum of Methyl Ketene and its Search in Orion

    NASA Astrophysics Data System (ADS)

    Bermúdez, Celina; Margulès, L.; Motiyenko, R. A.; Tercero, Belén; Cernicharo, Jose; Guillemin, J.-C.; Ellinger, Y.

    2017-06-01

    The knowledge of synthetic routes of complex organic molecules is still far to be fully understood. The creation of reliable models is particularly challenging. Hollis et al. pointed out that the observations of molecular isomers provides an excellent tool to evaluate the hypothesis of the synthetic pathways. In the group of isomers C_3H_4O that contains two unsaturations, the three most stable are cyclopropanone, propenal (also known as acrolein) and methyl ketene. Among these isomers, only propenal was tentatively detected in Sgr B2(N). Spectroscopic measurements of methyl ketene CH_3CHCO are limited to the microwave domain. We extended the measurements into millimeter waves in order to provide accurate frequency predictions suitable for astrophysical purposes. Methyl ketene has one more carbon atom than acetaldehyde (CH_3CHO) and in terms of rotational spectroscopy is quite similar to acetaldehyde. The analysis of the rotational spectrum of methyl ketene is complicated due to internal rotation of the methyl group, that is characterized by the barrier of intermediate height V_3 = 416 \\wn, and by quite large value of the coupling parameter ρ = 0.194. The spectroscopic results and the searches of methyl ketene in Orion will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS Hollis, J. M.; 2006, ApJ 642, 933 Hollis, J. M.; et al., 2006, ApJ 643, L25 Bak, B.; et al., 1966, J. Chez. Phys. 45, 883

  10. Effects of ethanol on methyl mercury toxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamashiro, H.; Arakaki, M.; Akagi, H.

    1986-01-01

    This study was designed to investigate the effect of different doses of ethanol on the morbidity, mortality, and distribution of mercury in the tissues of groups of rats treated orally once daily with methyl mercury chloride (MMC: 5 mg/kg d) for 10 consecutive days. Ethanol potentiated the toxicity of methyl mercury in terms of neurological manifestations (hindleg crossings and abnormal gait) and mortality. The magnitude of effect depended on the concentration of ethanol administered. The concentration of mercury in the kidney and brain also increased with the dose of ethanol given. These findings indicate that epidemiologic studies designed to evaluatemore » methyl mercury toxicity must take into account the multiple environmental burdens that can affect the population cumulatively and simultaneously.« less

  11. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    NASA Astrophysics Data System (ADS)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  12. CaMV-35S promoter sequence-specific DNA methylation in lettuce.

    PubMed

    Okumura, Azusa; Shimada, Asahi; Yamasaki, Satoshi; Horino, Takuya; Iwata, Yuji; Koizumi, Nozomu; Nishihara, Masahiro; Mishiba, Kei-ichiro

    2016-01-01

    We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.

  13. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    PubMed

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  14. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.

    PubMed

    Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James

    2018-02-01

    Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).

  15. A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology

    USGS Publications Warehouse

    McDonald, I.R.; Warner, K.L.; McAnulla, C.; Woodall, C.A.; Oremland, R.S.; Murrell, J.C.

    2002-01-01

    Methyl halide-degrading bacteria are a diverse group of organisms that are found in both terrestrial and marine environments. They potentially play an important role in mitigating ozone depletion resulting from methyl chloride and methyl bromide emissions. The first step in the pathway(s) of methyl halide degradation involves a methyltransferase and, recently, the presence of this pathway has been studied in a number of bacteria. This paper reviews the biochemistry and genetics of methyl halide utilization in the aerobic bacteria Methylobacterium chloromethanicum CM4T, Hyphomicrobium chloromethanicum CM2T, Aminobacter strain IMB-1 and Aminobacter strain CC495. These bacteria are able to use methyl halides as a sole source of carbon and energy, are all members of the α-Proteobacteria and were isolated from a variety of polluted and pristine terrestrial environments. An understanding of the genetics of these bacteria identified a unique gene (cmuA) involved in the degradation of methyl halides, which codes for a protein (CmuA) with unique methyltransferase and corrinoid functions. This unique functional gene, cmuA, is being used to develop molecular ecology techniques to examine the diversity and distribution of methyl halide-utilizing bacteria in the environment and hopefully to understand their role in methyl halide degradation in different environments. These techniques will also enable the detection of potentially novel methyl halide-degrading bacteria.

  16. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  17. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell.

    PubMed

    Xu, Jiawei; Bao, Xiao; Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-05-10

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS' and controls' granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS' and controls' granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls'. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology.

  18. Atypia and DNA methylation in nipple duct lavage in relation to predicted breast cancer risk.

    PubMed

    Euhus, David M; Bu, Dawei; Ashfaq, Raheela; Xie, Xian-Jin; Bian, Aihua; Leitch, A Marilyn; Lewis, Cheryl M

    2007-09-01

    Tumor suppressor gene (TSG) methylation is identified more frequently in random periareolar fine needle aspiration samples from women at high risk for breast cancer than women at lower risk. It is not known whether TSG methylation or atypia in nipple duct lavage (NDL) samples is related to predicted breast cancer risk. 514 NDL samples obtained from 150 women selected to represent a wide range of breast cancer risk were evaluated cytologically and by quantitative multiplex methylation-specific PCR for methylation of cyclin D2, APC, HIN1, RASSF1A, and RAR-beta2. Based on methylation patterns and cytology, NDL retrieved cancer cells from only 9% of breasts ipsilateral to a breast cancer. Methylation of >/=2 genes correlated with marked atypia by univariate analysis, but not multivariate analysis, that adjusted for sample cellularity and risk group classification. Both marked atypia and TSG methylation independently predicted abundant cellularity in multivariate analyses. Discrimination between Gail lower-risk ducts and Gail high-risk ducts was similar for marked atypia [odds ratio (OR), 3.48; P = 0.06] and measures of TSG methylation (OR, 3.51; P = 0.03). However, marked atypia provided better discrimination between Gail lower-risk ducts and ducts contralateral to a breast cancer (OR, 6.91; P = 0.003, compared with methylation OR, 4.21; P = 0.02). TSG methylation in NDL samples does not predict marked atypia after correcting for sample cellularity and risk group classification. Rather, both methylation and marked atypia are independently associated with highly cellular samples, Gail model risk classifications, and a personal history of breast cancer. This suggests the existence of related, but independent, pathogenic pathways in breast epithelium.

  19. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  20. 2-[3-Furyl(hydroxy)methyl]-2,3-dimethylcyclohexanone.

    PubMed

    García, Esther; Mendoza, Virgilio; Guzmán, José Agustín; Maldonado Graniel, Luis Angel; Hernández-Ortega, Simón

    2002-06-01

    Contribution No. 1750 of the Instituto de Quimica, UNAM, Mexico. In the molecule of the title compound, C(13)H(18)O(3), there is a syn relationship between the two vicinal methyl groups. The six-membered ring adopts a chair conformation, with one equatorial and two axial groups, and the furyl group is almost parallel to the ketone group. Intermolecular hydrogen bonds [O[bond]H...O[double bond]C 2.814 (3) A] form chains along [100].

  1. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  2. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  3. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  4. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    PubMed Central

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  5. Methylation of subtelomeric repeat D4Z4 in peripheral blood leukocytes is associated with biochemical recurrence in localized prostate cancer patients.

    PubMed

    Han, Yuyan; Xu, Junfeng; Kim, Jeri; Wu, Xifeng; Gu, Jian

    2017-08-01

    Global DNA methylation may affect chromosome structure and genomic stability and is involved in carcinogenesis. In this study, we aimed to investigate whether methylation of pericentromeric repeat NBL2 and subtelomeric repeat D4Z4 in peripheral blood was associated with the aggressiveness of prostate cancer (PCa). We measured the methylation status of different CpG sites of NBL2 and D4Z4 in 795 PCa patients and compared their methylation levels among patients with different Gleason Score at diagnosis. We then analyzed the association of the NBL2 and D4Z4 methylation with the risk of biochemical recurrence (BCR) in patients receiving radical prostatectomy or radiotherapy using a multivariate Cox proportional hazards model. In addition, we used the Kaplan-Meier survival function and log-rank tests to assess BCR-free survival associated with D4Z4 methylation. There was no significant difference in methylation level of NBL2 and D4Z4 between clinically defined aggressive and non-aggressive PCa at diagnosis. However, the methylation of D4Z4 was associated with BCR, while the methylation of NBL2 was not. In tertile analysis, patients in the highest tertile of D4Z4 methylation had an increased risk of BCR (HR = 2.17, 95% CI 1.36-3.48) compared to patients in the lower tertiles after adjustment of age, body mass index, smoking status, pack year, D'Amico risk groups and treatments. Among the four CpG sites in this region, the association was mostly attributable to the methylation of the second CpG site of D4Z4. These data suggest that higher methylation in D4Z4 was associated with worse prognosis of localized PCa patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: a pilot study.

    PubMed

    Kim, Youl-Ri; Kim, Jeong-Hyun; Kim, Mi Jeong; Treasure, Janet

    2014-01-01

    Recent studies in patients with anorexia nervosa suggest that oxytocin may be involved in the pathophysiology of anorexia nervosa. We examined whether there was evidence of variation in methylation status of the oxytocin receptor (OXTR) gene in patients with anorexia nervosa that might account for these findings. We analyzed the methylation status of the CpG sites in a region from the exon 1 to the MT2 regions of the OXTR gene in buccal cells from 15 patients and 36 healthy women using bisulfite sequencing. We further examined whether methylation status was associated with markers of illness severity or form. We identified six CpG sites with significant differences in average methylation levels between the patient and control groups. Among the six differentially methylated CpG sites, five showed higher than average methylation levels in patients than those in the control group (64.9-88.8% vs. 6.6-45.0%). The methylation levels of these five CpG sites were negatively associated with body mass index (BMI). BMI, eating disorders psychopathology, and anxiety were identified in a regression analysis as factors affecting the methylation levels of these CpG sites with more variation accounted for by BMI. Epigenetic misregulation of the OXTR gene may be implicated in anorexia nervosa, which may either be a mechanism linking environmental adversity to risk or may be a secondary consequence of the illness.

  7. Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways.

    PubMed

    Tan, Feng; Zhou, Chao; Zhou, Qiangwei; Zhou, Shaoli; Yang, Wenjing; Zhao, Yu; Li, Guoliang; Zhou, Dao-Xiu

    2016-07-01

    Plant DNA methylation that occurs at CG, CHG, and CHH sites (H = A, C, or T) is a hallmark of the repression of repetitive sequences and transposable elements (TEs). The rice (Oryza sativa) genome contains about 40% repetitive sequence and TEs and displays specific patterns of genome-wide DNA methylation. The mechanism responsible for the specific methylation patterns is unclear. Here, we analyzed the function of OsDDM1 (Deficient in DNA Methylation 1) and OsDRM2 (Deficient in DNA Methylation 1) in genome-wide DNA methylation, TE repression, small RNA accumulation, and gene expression. We show that OsDDM1 is essential for high levels of methylation at CHG and, to a lesser extent, CG sites in heterochromatic regions and also is required for CHH methylation that mainly locates in the genic regions of the genome. In addition to a large member of TEs, loss of OsDDM1 leads to hypomethylation and up-regulation of many protein-coding genes, producing very severe growth phenotypes at the initial generation. Importantly, we show that OsDRM2 mutation results in a nearly complete loss of CHH methylation and derepression of mainly small TE-associated genes and that OsDDM1 is involved in facilitating OsDRM2-mediated CHH methylation. Thus, the function of OsDDM1 and OsDRM2 defines distinct DNA methylation pathways in the bulk of DNA methylation of the genome, which is possibly related to the dispersed heterochromatin across chromosomes in rice and suggests that DNA methylation mechanisms may vary among different plant species. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  9. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves.

    PubMed

    Janowitz Koch, Ilana; Clark, Michelle M; Thompson, Michael J; Deere-Machemer, Kerry A; Wang, Jun; Duarte, Lionel; Gnanadesikan, Gitanjali E; McCoy, Eskender L; Rubbi, Liudmilla; Stahler, Daniel R; Pellegrini, Matteo; Ostrander, Elaine A; Wayne, Robert K; Sinsheimer, Janet S; vonHoldt, Bridgett M

    2016-04-01

    The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24 000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the grey wolf (Canis lupus). PCA and model-based cluster analyses identified two primary groups, domestic vs. wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hypermethylation typical of purebred dogs when compared to wolves (59% and 58%, P < 0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hypermethylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H(2) and h(2 ) > 0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species. © 2015 John Wiley & Sons Ltd.

  10. The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status

    PubMed Central

    Li, Dongming; Palanca, Ana Marie S; Won, So Youn; Gao, Lei; Feng, Ying; Vashisht, Ajay A; Liu, Li; Zhao, Yuanyuan; Liu, Xigang; Wu, Xiuyun; Li, Shaofang; Le, Brandon; Kim, Yun Ju; Yang, Guodong; Li, Shengben; Liu, Jinyuan; Wohlschlegel, James A; Guo, Hongwei; Mo, Beixin; Chen, Xuemei; Law, Julie A

    2017-01-01

    DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing. DOI: http://dx.doi.org/10.7554/eLife.19893.001 PMID:28452714

  11. Steric control of the asymmetric synthesis of N-substituted 2-methyl-4-piperidones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishina, G.V.; Potapov, V.M.; Abdulganeeva, S.A.

    Transmission of the iodomethylate of 1,2-dimethyl-4-piperidone by (S)-sec-butylamine gives 1-(S-sec-butyl)-2S-methyl-4-piperidone in 33% optical yield while transamination by (S)-1-methyl-2-phenylethylamine gives a 1:1 diastereomeric mixture of 1-(1-methyl-2-phenylethyl)-2-methyl-4-piperidone. The decrease in the optical yield is related to the facile opening of the piperidone ring at the C-N bond with subsequent recyclization. The /sup 13/C NMR data indicate that all the diastereomers of the 4-piperidones obtained are in the chain conformation with predominantly equatorial orientation of the methyl group at C/sub (2)/. The chiral optical properties were studied and the absolution configurations of the 4-piperidones obtained were established.

  12. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction.

    PubMed

    Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T

    2013-11-01

    Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. © 2013 American Society of Andrology and European Academy of Andrology.

  13. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation

    PubMed Central

    Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang

    2016-01-01

    DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183

  14. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl alcohol residues. 173.250 Section 173.250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents...

  15. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium methyl sulfate. 173.385 Section 173.385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION...

  16. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography.

    PubMed

    Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C

    2007-09-21

    A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.

  17. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale.

    PubMed

    Buhule, Olive D; Minster, Ryan L; Hawley, Nicola L; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T; Weeks, Daniel E

    2014-01-01

    Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After "removing" batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects.

  18. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale

    PubMed Central

    Buhule, Olive D.; Minster, Ryan L.; Hawley, Nicola L.; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T.; Weeks, Daniel E.

    2014-01-01

    Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Results: Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After “removing” batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Conclusion: Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects. PMID:25352862

  19. Robust Mercury Methylation across Diverse Methanogenic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmour, Cynthia C.; Bullock, Allyson L.; McBurney, Alyssa

    ABSTRACT. Methylmercury (MeHg) production was compared among nine cultured methanogenic archaea that containhgcAB, a gene pair that codes for mercury (Hg) methylation. The methanogens tested produced MeHg at inherently different rates, even when normalized to growth rate and Hg availability. Eight of the nine tested were capable of MeHg production greater than that of spent- and uninoculated-medium controls during batch culture growth.Methanococcoides methylutens, anhgcAB +strain with a fused gene pair, was unable to produce more MeHg than controls. Maximal conversion of Hg to MeHg through a full batch culture growth cycle for each species (exceptM. methylutens) ranged from 2 to >50%more » of the added Hg(II) or between 0.2 and 17 pmol of MeHg/mg of protein. Three of the species produced >10% MeHg. The ability to produce MeHg was confirmed in severalhgcAB +methanogens that had not previously been tested (Methanocella paludicolaSANAE,Methanocorpusculum bavaricum,Methanofollis liminatansGKZPZ, andMethanosphaerula palustrisE1-9c). Maximal methylation was observed at low sulfide concentrations (<100 μM) and in the presence of 0.5 to 5 mM cysteine. ForM. hollandica, the addition of up to 5 mM cysteine enhanced MeHg production and cell growth in a concentration-dependent manner. As observed for bacterial Hg methylators, sulfide inhibited MeHg production. An initial evaluation of sulfide and thiol impacts on bioavailability showed methanogens responding to Hg complexation in the same way as doDeltaproteobacteria. The mercury methylation rates of several methanogens rival those of the better-studied Hg-methylating sulfate- and iron-reducing Deltaproteobacteria. IMPORTANCE. Archaea, specifically methanogenic organisms, play a role in mercury methylation in nature, but their global importance to MeHg production and the subsequent risk to ecosystems are not known. Methanogenesis has been linked to Hg methylation in several natural habitats where methylmercury

  20. Robust Mercury Methylation across Diverse Methanogenic Archaea

    DOE PAGES

    Gilmour, Cynthia C.; Bullock, Allyson L.; McBurney, Alyssa; ...

    2018-04-10

    ABSTRACT. Methylmercury (MeHg) production was compared among nine cultured methanogenic archaea that containhgcAB, a gene pair that codes for mercury (Hg) methylation. The methanogens tested produced MeHg at inherently different rates, even when normalized to growth rate and Hg availability. Eight of the nine tested were capable of MeHg production greater than that of spent- and uninoculated-medium controls during batch culture growth.Methanococcoides methylutens, anhgcAB +strain with a fused gene pair, was unable to produce more MeHg than controls. Maximal conversion of Hg to MeHg through a full batch culture growth cycle for each species (exceptM. methylutens) ranged from 2 to >50%more » of the added Hg(II) or between 0.2 and 17 pmol of MeHg/mg of protein. Three of the species produced >10% MeHg. The ability to produce MeHg was confirmed in severalhgcAB +methanogens that had not previously been tested (Methanocella paludicolaSANAE,Methanocorpusculum bavaricum,Methanofollis liminatansGKZPZ, andMethanosphaerula palustrisE1-9c). Maximal methylation was observed at low sulfide concentrations (<100 μM) and in the presence of 0.5 to 5 mM cysteine. ForM. hollandica, the addition of up to 5 mM cysteine enhanced MeHg production and cell growth in a concentration-dependent manner. As observed for bacterial Hg methylators, sulfide inhibited MeHg production. An initial evaluation of sulfide and thiol impacts on bioavailability showed methanogens responding to Hg complexation in the same way as doDeltaproteobacteria. The mercury methylation rates of several methanogens rival those of the better-studied Hg-methylating sulfate- and iron-reducing Deltaproteobacteria. IMPORTANCE. Archaea, specifically methanogenic organisms, play a role in mercury methylation in nature, but their global importance to MeHg production and the subsequent risk to ecosystems are not known. Methanogenesis has been linked to Hg methylation in several natural habitats where methylmercury

  1. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    PubMed Central

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schröder, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinhäusel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer. PMID:26335606

  2. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance. © 2015 Wiley Periodicals, Inc.

  3. DNA Methylation and Cancer Diagnosis

    PubMed Central

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  4. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    PubMed

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  5. Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat

    PubMed Central

    Williams, Ben P.; Pignatta, Daniela; Henikoff, Steven; Gehring, Mary

    2015-01-01

    Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. PMID:25826366

  6. 78 FR 32157 - Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... assessment of exposures and risks associated with methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate follows... received and the nature of the adverse effects caused by methyl 5-(dimethylamino)-2-methyl-5- oxopentanoate... treatment with methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate. A Mammalian Erythrocyte Micronucleus Test...

  7. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    PubMed

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  11. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  12. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats.

    PubMed

    Stenzig, Justus; Schneeberger, Yvonne; Löser, Alexandra; Peters, Barbara S; Schaefer, Andreas; Zhao, Rong-Rong; Ng, Shi Ling; Höppner, Grit; Geertz, Birgit; Hirt, Marc N; Tan, Wilson; Wong, Eleanor; Reichenspurner, Hermann; Foo, Roger S-Y; Eschenhagen, Thomas

    2018-07-01

    Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes. Young male Wistar rats were subjected to PO by transverse aortic constriction (TAC) or to sham surgery. Rats from both groups received solvent or 12.5 mg/kg body weight of the non-nucleosidic DNMT inhibitor RG108, initiated on the day of the intervention. After 4 weeks, we analysed cardiac function by MRI, fibrosis with Sirius Red staining, gene expression by RNA sequencing and qPCR, and DNA methylation by reduced representation bisulphite sequencing (RRBS). RG108 attenuated the ~70% increase in heart weight/body weight ratio of TAC over sham to 47% over sham, partially rescued reduced contractility, diminished the fibrotic response and the downregulation of a set of genes including Atp2a2 (SERCA2a) and Adrb1 (beta1-adrenoceptor). RG108 was associated with significantly lower global DNA methylation in cardiomyocytes by ~2%. The differentially methylated pathways were "cardiac hypertrophy", "cell death" and "xenobiotic metabolism signalling". Among these, "cardiac hypertrophy" was associated with significant methylation differences in the group comparison sham vs. TAC, but not significant between sham+RG108 and TAC+RG108 treatment, suggesting that RG108 partially prevented differential methylation. However, when comparing TAC and TAC+RG108, the pathway cardiac hypertrophy was not significantly differentially methylated. DNMT inhibitor treatment is associated with attenuation of cardiac hypertrophy and moderate changes in cardiomyocyte DNA methylation. The

  13. Cysteine Inhibits Mercury Methylation by Geobacter sulfurreducens PCA Mutant Δ omcBESTZ

    DOE PAGES

    Lin, Hui; Lu, Xia; Liang, Liyuan; ...

    2015-04-21

    For cysteine enhances Hg uptake and methylation by Geobacter sulfurreducens PCA wild type (WT) strain in short-term assays. The prevalence of this enhancement in other strains remains poorly understood. We examined the influence of cysteine concentration on time-dependent Hg(II) reduction, sorption and methylation by PCA-WT and its c-type cytochrome-deficient mutant ( omcBESTZ) in phosphate buffered saline. Without cysteine, the mutant methylated twice as much Hg(II) as the PCA-WT, whereas addition of cysteine inhibited Hg methylation, regardless of the reaction time. PCA-WT, but, exhibited both time-dependent and cysteine concentration-dependent methylation. In 144 hour assay, nearly complete sorption of the Hg(II) bymore » PCA-WT occurred in the presence of 1 mM cysteine, resulting in our highest observed methylmercury production. Moreover, the chemical speciation modeling and experimental data suggest that uncharged Hg(II) species are more readily taken up, and that this uptake is kinetic limiting, thereby affecting Hg methylation by both mutant and WT.« less

  14. Cytosine Methylation Effects on the Repair of O6-Methylguanines within CG Dinucleotides*

    PubMed Central

    Guza, Rebecca; Ma, Linan; Fang, Qingming; Pegg, Anthony E.; Tretyakova, Natalia

    2009-01-01

    O6-Alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O6-alkylguanine DNA alkyltransferase (AGT), which transfers the O6-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O6-methyldeoxyguanosine (O6-Me-dG) adducts placed within frequently mutated 5′-CG-3′ dinucleotides of the p53 tumor suppressor gene. O6-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O6-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O6-Me-dG were affected by neighboring 5-methylcytosine (MeC) in a sequence-dependent manner. AGT repair of O6-Me-dG adducts placed within 5′-CG-3′ dinucleotides of p53 codons 245 and 248 was hindered when MeC was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O6-Me-dG repair by AGT. The effects of MeC located immediately 5′ and in the base paired position to O6-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that MeC influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT. PMID:19531487

  15. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guss, Adam M; Olson, Daniel G.; Caiazza, Nicky

    2012-01-01

    BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than themore » similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.« less

  16. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.

    PubMed

    Baur, Brittany; Bozdag, Serdar

    2016-01-01

    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.

  17. On the potential of models for location and scale for genome-wide DNA methylation data

    PubMed Central

    2014-01-01

    Background With the help of epigenome-wide association studies (EWAS), increasing knowledge on the role of epigenetic mechanisms such as DNA methylation in disease processes is obtained. In addition, EWAS aid the understanding of behavioral and environmental effects on DNA methylation. In terms of statistical analysis, specific challenges arise from the characteristics of methylation data. First, methylation β-values represent proportions with skewed and heteroscedastic distributions. Thus, traditional modeling strategies assuming a normally distributed response might not be appropriate. Second, recent evidence suggests that not only mean differences but also variability in site-specific DNA methylation associates with diseases, including cancer. The purpose of this study was to compare different modeling strategies for methylation data in terms of model performance and performance of downstream hypothesis tests. Specifically, we used the generalized additive models for location, scale and shape (GAMLSS) framework to compare beta regression with Gaussian regression on raw, binary logit and arcsine square root transformed methylation data, with and without modeling a covariate effect on the scale parameter. Results Using simulated and real data from a large population-based study and an independent sample of cancer patients and healthy controls, we show that beta regression does not outperform competing strategies in terms of model performance. In addition, Gaussian models for location and scale showed an improved performance as compared to models for location only. The best performance was observed for the Gaussian model on binary logit transformed β-values, referred to as M-values. Our results further suggest that models for location and scale are specifically sensitive towards violations of the distribution assumption and towards outliers in the methylation data. Therefore, a resampling procedure is proposed as a mode of inference and shown to diminish type I

  18. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas

    PubMed Central

    Everhard, Sibille; Tost, Jörg; Abdalaoui, Hafida El; Crinière, Emmanuelle; Busato, Florence; Marie, Yannick; Gut, Ivo G.; Sanson, Marc; Mokhtari, Karima; Laigle-Donadey, Florence; Hoang-Xuan, Khê; Delattre, Jean-Yves; Thillet, Joëlle

    2009-01-01

    The O6-methylguanine-DNA methyltransferase gene (MGMT) is methylated in several cancers, including gliomas. However, the functional role of cysteine-phosphate-guanine (CpG) island (CGI) methylation in MGMT silencing is still controversial. The aim of this study was to investigate whether MGMT CGI methylation correlates inversely with RNA expression of MGMT in glioblastomas and to determine the CpG region whose methylation best reflects the level of expression. The methylation level of CpG sites that are potentially related to expression was investigated in 54 glioblastomas by pyrosequencing, a highly quantitative method, and analyzed with respect to their MGMT mRNA expression status. Three groups of patients were identified according to the methylation pattern of all 52 analyzed CpG sites. Overall, an 85% rate of concordance was observed between methylation and expression (p < 0.0001). When analyzing each CpG separately, six CpG sites were highly correlated with expression (p < 0.0001), and two CpG regions could be used as surrogate markers for RNA expression in 81.5% of the patients. This study indicates that there is good statistical agreement between MGMT methylation and expression, and that some CpG regions better reflect MGMT expression than do others. However, if transcriptional repression is the key mechanism in explaining the higher chemosensitivity of MGMT-methylated tumors, a substantial rate of discordance should lead clinicians to be cautious when deciding on a therapeutic strategy based on MGMT methylation status alone. PMID:19224763

  19. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas.

    PubMed

    Everhard, Sibille; Tost, Jörg; El Abdalaoui, Hafida; Crinière, Emmanuelle; Busato, Florence; Marie, Yannick; Gut, Ivo G; Sanson, Marc; Mokhtari, Karima; Laigle-Donadey, Florence; Hoang-Xuan, Khê; Delattre, Jean-Yves; Thillet, Joëlle

    2009-08-01

    The O(6)-methylguanine-DNA methyltransferase gene (MGMT) is methylated in several cancers, including gliomas. However, the functional role of cysteine-phosphate-guanine (CpG) island (CGI) methylation in MGMT silencing is still controversial. The aim of this study was to investigate whether MGMT CGI methylation correlates inversely with RNA expression of MGMT in glioblastomas and to determine the CpG region whose methylation best reflects the level of expression. The methylation level of CpG sites that are potentially related to expression was investigated in 54 glioblastomas by pyrosequencing, a highly quantitative method, and analyzed with respect to their MGMT mRNA expression status. Three groups of patients were identified according to the methylation pattern of all 52 analyzed CpG sites. Overall, an 85% rate of concordance was observed between methylation and expression (p < 0.0001). When analyzing each CpG separately, six CpG sites were highly correlated with expression (p < 0.0001), and two CpG regions could be used as surrogate markers for RNA expression in 81.5% of the patients. This study indicates that there is good statistical agreement between MGMT methylation and expression, and that some CpG regions better reflect MGMT expression than do others. However, if transcriptional repression is the key mechanism in explaining the higher chemosensitivity of MGMT-methylated tumors, a substantial rate of discordance should lead clinicians to be cautious when deciding on a therapeutic strategy based on MGMT methylation status alone.

  20. Association of Childhood Chronic Physical Aggression with a DNA Methylation Signature in Adult Human T Cells

    PubMed Central

    Guillemin, Claire; Vitaro, Frank; Côté, Sylvana M.; Hallett, Michael; Tremblay, Richard E.; Szyf, Moshe

    2014-01-01

    Background Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity. Aims To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood. Methods We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays. Results In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome. Conclusions This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression. PMID:24691403