Sample records for additional state variables

  1. The Variable Transition State in Polar Additions to Pi Bonds

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2010-01-01

    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  2. State-variable theories for nonelastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.Y.

    The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep withoutmore » relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.« less

  3. Automatic Welding Control Using a State Variable Model.

    DTIC Science & Technology

    1979-06-01

    A-A10 610 NAVEAL POSTGRADUATE SCH4O.M CEAY CA0/ 13/ SAUTOMATIC WELDING CONTROL USING A STATE VARIABLE MODEL.W()JUN 79 W V "my UNCLASSIFIED...taverse Drive Unit // Jbint Path /Fixed Track 34 (servomotor positioning). Additional controls of heave (vertical), roll (angular rotation about the

  4. Decreasing Cloudiness Over China: An Updated Analysis Examining Additional Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, D.P.

    2000-01-14

    As preparation of the IPCC's Third Assessment Report takes place, one of the many observed climate variables of key interest is cloud amount. For several nations of the world, there exist records of surface-observed cloud amount dating back to the middle of the 20th Century or earlier, offering valuable information on variations and trends. Studies using such databases include Sun and Groisman (1999) and Kaiser and Razuvaev (1995) for the former Soviet Union, Angel1 et al. (1984) for the United States, Henderson-Sellers (1986) for Europe, Jones and Henderson-Sellers (1992) for Australia, and Kaiser (1998) for China. The findings of Kaisermore » (1998) differ from the other studies in that much of China appears to have experienced decreased cloudiness over recent decades (1954-1994), whereas the other land regions for the most part show evidence of increasing cloud cover. This paper expands on Kaiser (1998) by analyzing trends in additional meteorological variables for Chi na [station pressure (p), water vapor pressure (e), and relative humidity (rh)] and extending the total cloud amount (N) analysis an additional two years (through 1996).« less

  5. Incorporating additional tree and environmental variables in a lodgepole pine stem profile model

    Treesearch

    John C. Byrne

    1993-01-01

    A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...

  6. Latent variable method for automatic adaptation to background states in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei

    2018-02-01

    Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.

  7. Bounds on internal state variables in viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1993-01-01

    A typical viscoplastic model will introduce up to three types of internal state variables in order to properly describe transient material behavior; they are as follows: the back stress, the yield stress, and the drag strength. Different models employ different combinations of these internal variables--their selection and description of evolution being largely dependent on application and material selection. Under steady-state conditions, the internal variables cease to evolve and therefore become related to the external variables (stress and temperature) through simple functional relationships. A physically motivated hypothesis is presented that links the kinetic equation of viscoplasticity with that of creep under steady-state conditions. From this hypothesis one determines how the internal variables relate to one another at steady state, but most importantly, one obtains bounds on the magnitudes of stress and back stress, and on the yield stress and drag strength.

  8. Testing quantum contextuality of continuous-variable states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, Gerard; Paternostro, Mauro; Paris, Matteo G. A.

    2011-06-15

    We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for anymore » two-mode state by using pseudospin observables and a generalized quasiprobability function.« less

  9. VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS

    PubMed Central

    Huang, Jian; Horowitz, Joel L.; Wei, Fengrong

    2010-01-01

    We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is “small” relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method. PMID:21127739

  10. Brainstem response and state-trait variables

    NASA Technical Reports Server (NTRS)

    Gilliland, Kirby

    1988-01-01

    A series of investigations are summarized from a personality research program that have relevance for mental state estimation. Of particular concern are those personality variables that are believed to have either a biological or perceptual basis and their relationship to human task performance and psychophysiology. These variables are among the most robust personality measures and include such dimensions as extraversion-introversion, sensation seeking, and impulsiveness. These dimensions also have the most distinct link to performance and psychophysiology. Through the course of many of these investigations two issues have emerged repeatedly: these personality dimensions appear to mediate mental state, and mental state appears to influence measures of performance or psychophysiology.

  11. Continuous-variable quantum network coding for coherent states

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Ke; Liu, Jian-wei

    2017-04-01

    As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.

  12. The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance

    PubMed Central

    Willatt, Stephanie E.; Cortese, Filomeno; Protzner, Andrea B.

    2017-01-01

    Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty), and within trial (fixation, post-stimulus, and post-response). We calculated variability with multiscale entropy (MSE), and additionally examined spectral power density (SPD) from electroencephalography (EEG) in children aged 8–14, and in adults aged 18–33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales) and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales). Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain. PMID:28750035

  13. A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.

    PubMed

    Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I

    2017-06-15

    Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.

  14. Conservative-variable average states for equilibrium gas multi-dimensional fluxes

    NASA Technical Reports Server (NTRS)

    Iannelli, G. S.

    1992-01-01

    Modern split component evaluations of the flux vector Jacobians are thoroughly analyzed for equilibrium-gas average-state determinations. It is shown that all such derivations satisfy a fundamental eigenvalue consistency theorem. A conservative-variable average state is then developed for arbitrary equilibrium-gas equations of state and curvilinear-coordinate fluxes. Original expressions for eigenvalues, sound speed, Mach number, and eigenvectors are then determined for a general average Jacobian, and it is shown that the average eigenvalues, Mach number, and eigenvectors may not coincide with their classical pointwise counterparts. A general equilibrium-gas equation of state is then discussed for conservative-variable computational fluid dynamics (CFD) Euler formulations. The associated derivations lead to unique compatibility relations that constrain the pressure Jacobian derivatives. Thereafter, alternative forms for the pressure variation and average sound speed are developed in terms of two average pressure Jacobian derivatives. Significantly, no additional degree of freedom exists in the determination of these two average partial derivatives of pressure. Therefore, they are simultaneously computed exactly without any auxiliary relation, hence without any geometric solution projection or arbitrary scale factors. Several alternative formulations are then compared and key differences highlighted with emphasis on the determination of the pressure variation and average sound speed. The relevant underlying assumptions are identified, including some subtle approximations that are inherently employed in published average-state procedures. Finally, a representative test case is discussed for which an intrinsically exact average state is determined. This exact state is then compared with the predictions of recent methods, and their inherent approximations are appropriately quantified.

  15. Glacier variability in the conterminous United States during the twentieth century

    USGS Publications Warehouse

    McCabe, Gregory J.; Fountain, Andrew G.

    2013-01-01

    Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.

  16. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, B.; Hummon, M.; Cochran, J.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minutemore » irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.« less

  17. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    NASA Technical Reports Server (NTRS)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  18. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State or...

  19. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  20. Variability common to first leaf dates and snowpack in the western conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Betancourt, Julio L.; Pederson, Gregory T.; Schwartz, Mark D.

    2013-01-01

    Singular value decomposition is used to identify the common variability in first leaf dates (FLDs) and 1 April snow water equivalent (SWE) for the western United States during the period 1900–2012. Results indicate two modes of joint variability that explain 57% of the variability in FLD and 69% of the variability in SWE. The first mode of joint variability is related to widespread late winter–spring warming or cooling across the entire west. The second mode can be described as a north–south dipole in temperature for FLD, as well as in cool season temperature and precipitation for SWE, that is closely correlated to the El Niño–Southern Oscillation. Additionally, both modes of variability indicate a relation with the Pacific–North American atmospheric pattern. These results indicate that there is a substantial amount of common variance in FLD and SWE that is related to large-scale modes of climate variability.

  1. On the use of internal state variables in thermoviscoplastic constitutive equations

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Beek, J. M.

    1985-01-01

    The general theory of internal state variables are reviewed to apply it to inelastic metals in use in high temperature environments. In this process, certain constraints and clarifications will be made regarding internal state variables. It is shown that the Helmholtz free energy can be utilized to construct constitutive equations which are appropriate for metallic superalloys. Internal state variables are shown to represent locally averaged measures of dislocation arrangement, dislocation density, and intergranular fracture. The internal state variable model is demonstrated to be a suitable framework for comparison of several currently proposed models for metals and can therefore be used to exhibit history dependence, nonlinearity, and rate as well as temperature sensitivity.

  2. Hispanic-White Differences in Lifespan Variability in the United States

    PubMed Central

    Lariscy, Joseph T.; Nau, Claudia; Firebaugh, Glenn; Hummer, Robert A.

    2016-01-01

    This study is the first to investigate whether and, if so, why Hispanics and non-Hispanic whites in the United States differ in the variability of their lifespans. Although Hispanics enjoy higher life expectancy than whites, very little is known about how lifespan variability—and thus uncertainty about length of life—differs by race/ethnicity. We use 2010 U.S. National Vital Statistics System data to calculate lifespan variance at ages 10 and older for Hispanics and whites, and then decompose the Hispanic-white variance difference into cause-specific spread, allocation, and timing effects. In addition to their higher life expectancy relative to whites, Hispanics also exhibit 7 % lower lifespan variability, with a larger gap among women than men. Differences in cause-specific incidence (allocation effects) explain nearly two-thirds of Hispanics’ lower lifespan variability, mainly because of the higher mortality from suicide, accidental poisoning, and lung cancer among whites. Most of the remaining Hispanic-white variance difference is due to greater age dispersion (spread effects) in mortality from heart disease and residual causes among whites than Hispanics. Thus, the Hispanic paradox—that a socioeconomically disadvantaged population (Hispanics) enjoys a mortality advantage over a socioeconomically advantaged population (whites)—pertains to lifespan variability as well as to life expectancy. Efforts to reduce U.S. lifespan variability and simultaneously increase life expectancy, especially for whites, should target premature, young adult causes of death—in particular, suicide, accidental poisoning, and homicide. We conclude by discussing how the analysis of Hispanic-white differences in lifespan variability contributes to our understanding of the Hispanic paradox. PMID:26682740

  3. State variable theories based on Hart's formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korhonen, M.A.; Hannula, S.P.; Li, C.Y.

    In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and futuremore » developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.« less

  4. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  5. The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.

    2015-12-01

    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.

  6. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  7. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1986-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.

  8. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    NASA Technical Reports Server (NTRS)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  9. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  10. Trend analysis of precipitation in Jharkhand State, India. Investigating precipitation variability in Jharkhand State

    NASA Astrophysics Data System (ADS)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2017-10-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  11. Bounded state variables and the calculus of variations

    NASA Technical Reports Server (NTRS)

    Hanafy, L. M.

    1972-01-01

    An optimal control problem with bounded state variables is transformed into a Lagrange problem by means of differentiable mappings which take some Euclidean space onto the control and state regions. Whereas all such mappings lead to a Lagrange problem, it is shown that only those which are defined as acceptable pairs of transformations are suitable in the sense that solutions to the transformed Lagrange problem will lead to solutions to the original bounded state problem and vice versa. In particular, an acceptable pair of transformations is exhibited for the case when the control and state regions are right parallelepipeds. Finally, a description of the necessary conditions for the bounded state problem which were obtained by this method is given.

  12. A regularized variable selection procedure in additive hazards model with stratified case-cohort design.

    PubMed

    Ni, Ai; Cai, Jianwen

    2018-07-01

    Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question. Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we investigate the properties of a regularized variable selection procedure in stratified case-cohort design under an additive hazards model with a diverging number of parameters. We establish the consistency and asymptotic normality of the penalized estimator and prove its oracle property. Simulation studies are conducted to assess the finite sample performance of the proposed method with a modified cross-validation tuning parameter selection methods. We apply the variable selection procedure to the ARIC study to demonstrate its practical use.

  13. Optimal control of singularly perturbed nonlinear systems with state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Corban, J. E.

    1990-01-01

    The established necessary conditions for optimality in nonlinear control problems that involve state-variable inequality constraints are applied to a class of singularly perturbed systems. The distinguishing feature of this class of two-time-scale systems is a transformation of the state-variable inequality constraint, present in the full order problem, to a constraint involving states and controls in the reduced problem. It is shown that, when a state constraint is active in the reduced problem, the boundary layer problem can be of finite time in the stretched time variable. Thus, the usual requirement for asymptotic stability of the boundary layer system is not applicable, and cannot be used to construct approximate boundary layer solutions. Several alternative solution methods are explored and illustrated with simple examples.

  14. Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable

    NASA Astrophysics Data System (ADS)

    Graves, Catherine E.; Dávila, Noraica; Merced-Grafals, Emmanuelle J.; Lam, Si-Ty; Strachan, John Paul; Williams, R. Stanley

    2017-03-01

    Applications of memristor devices are quickly moving beyond computer memory to areas of analog and neuromorphic computation. These applications require the design of devices with different characteristics from binary memory, such as a large tunable range of conductance. A complete understanding of the conduction mechanisms and their corresponding state variable(s) is crucial for optimizing performance and designs in these applications. Here we present measurements of low bias I-V characteristics of 6 states in a Ta/ tantalum-oxide (TaOx)/Pt memristor spanning over 2 orders of magnitude in conductance and temperatures from 100 K to 500 K. Our measurements show that the 300 K device conduction is dominated by a temperature-insensitive current that varies with non-volatile memristor state, with an additional leakage contribution from a thermally-activated current channel that is nearly independent of the memristor state. We interpret these results with a parallel conduction model of Mott hopping and Schottky emission channels, fitting the voltage and temperature dependent experimental data for all memristor states with only two free parameters. The memristor conductance is linearly correlated with N, the density of electrons near EF participating in the Mott hopping conduction, revealing N to be the dominant state variable for low bias conduction in this system. Finally, we show that the Mott hopping sites can be ascribed to oxygen vacancies, where the local oxygen vacancy density responsible for critical hopping pathways controls the memristor conductance.

  15. Variability of tornado occurrence over the continental United States since 1950

    NASA Astrophysics Data System (ADS)

    Guo, Li; Wang, Kaicun; Bluestein, Howard B.

    2016-06-01

    The United States experiences the most tornadoes of any country in the world. Given the catastrophic impact of tornadoes, concern has arisen regarding the variation in climatology of U.S. tornadoes under the changing climate. A recent study claimed that the temporal variability of tornado occurrence over the continental U.S. has increased since the 1970s. However, that study ignored the highly regionalized climatology of U.S. tornadoes. To address this issue, we examined the long-term trend of tornado temporal variability in each continental U.S. state. Based on the 64 year tornado records (1950-2013), we found that the trends in tornado temporal variability varied across the U.S., with only one third of the continental area or three out of 10 contiguous states (mostly from the Great Plains and Southeast, but where the frequency of occurrence of tornadoes is greater) displaying a significantly increasing trend. The other two-thirds area, where 60% of the U.S. tornadoes were reported (but the frequency of occurrence of tornadoes is less), however, showed a decreasing or a near-zero trend in tornado temporal variability. Furthermore, unlike the temporal variability alone, the combined spatial-temporal variability of U.S. tornado occurrence has remained nearly constant since 1950. Such detailed information on the climatological variability of U.S. tornadoes refines the claim of previous study and can be helpful for local mitigation efforts toward future tornado risks.

  16. Practical limitation for continuous-variable quantum cryptography using coherent States.

    PubMed

    Namiki, Ryo; Hirano, Takuya

    2004-03-19

    In this Letter, first, we investigate the security of a continuous-variable quantum cryptographic scheme with a postselection process against individual beam splitting attack. It is shown that the scheme can be secure in the presence of the transmission loss owing to the postselection. Second, we provide a loss limit for continuous-variable quantum cryptography using coherent states taking into account excess Gaussian noise on quadrature distribution. Since the excess noise is reduced by the loss mechanism, a realistic intercept-resend attack which makes a Gaussian mixture of coherent states gives a loss limit in the presence of any excess Gaussian noise.

  17. A CLIMATOLOGY OF WATER BUDGET VARIABLE FOR THE NORTHEASTERN UNITED STATES

    EPA Science Inventory

    A Climatology of Water Budget Variables for the Northeast United States (Leathers and Robinson 1995). Climatic division precipitation and temperature data are used to calculate water budget variables based on the Thornthwaite/Mather climatic water budget methodology. Two water b...

  18. Continuous-variable quantum key distribution with a leakage from state preparation

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim

    2017-12-01

    We address side-channel leakage in a trusted preparation station of continuous-variable quantum key distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols. The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state protocols.

  19. Variability and Limits of US State Laws Regulating Workplace Wellness Programs.

    PubMed

    Pomeranz, Jennifer L; Garcia, Andrea M; Vesprey, Randy; Davey, Adam

    2016-06-01

    We examined variability in state laws related to workplace wellness programs for public and private employers. We conducted legal research using LexisNexis and Westlaw to create a master list of US state laws that existed in 2014 dedicated to workplace wellness programs. The master list was then divided into laws focusing on public employers and private employers. We created 2 codebooks to describe the variables used to examine the laws. Coders used LawAtlas(SM) Workbench to code the laws related to workplace wellness programs. Thirty-two states and the District of Columbia had laws related to workplace wellness programs in 2014. Sixteen states and the District of Columbia had laws dedicated to public employers, and 16 states had laws dedicated to private employers. Nine states and the District of Columbia had laws that did not specify employer type. State laws varied greatly in their methods of encouraging or shaping wellness program requirements. Few states have comprehensive requirements or incentives to support evidence-based workplace wellness programs.

  20. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.

    PubMed

    Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John

    2018-03-01

    Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon

  1. The Effect of Three Cognitive Variables on Students' Understanding of the Particulate Nature of Matter and its Changes of State

    NASA Astrophysics Data System (ADS)

    Tsitsipis, Georgios; Stamovlasis, Dimitrios; Papageorgiou, George

    2010-05-01

    In this study, students' understanding of the structure of matter and its changes of state such as melting, evaporation, boiling, and condensation was investigated in relation to three cognitive variables: logical thinking (LTh), field dependence/independence, and convergence/divergence dimension. The study took place in Greece with the participation of 329 ninth-grade junior high school pupils (age 14-15). A stepwise multiple regression analysis revealed that all of the above-mentioned cognitive variables were statistically significant predictors of the students' achievement. Among the three predictors, LTh was found to be the most dominant. In addition, students' understanding of the structure of matter, along with the cognitive variables, was shown to have an effect on their understanding of the changes of states and on their competence to interpret these physical changes. Path analyses were implemented to depict these effects. Moreover, a theoretical analysis is provided that associates LTh and cognitive styles with the nature of mental tasks involved when learning the material concerning the particulate nature of matter and its changes of state. Implications for science education are also discussed.

  2. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect.

    PubMed

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.

  3. Pre-performance Physiological State: Heart Rate Variability as a Predictor of Shooting Performance.

    PubMed

    Ortega, E; Wang, C J K

    2018-03-01

    Heart rate variability (HRV) is commonly used in sport science for monitoring the physiology of athletes but not as an indicator of physiological state from a psychological perspective. Since HRV is established to be an indicator of emotional responding, it could be an objective means of quantifying an athlete's subjective physiological state before competition. A total of 61 sport shooters participated in this study, of which 21 were novice shooters, 19 were intermediate shooters, and 21 were advanced level shooters. HRV, self-efficacy, and use of mental skills were assessed before they completed a standard shooting performance task of 40 shots, as in a competition qualifying round. The results showed that HRV was significantly positively correlated with self-efficacy and performance and was a significant predictor of shooting performance. In addition, advanced shooters were found to have significantly lower average heart rate before shooting and used more self-talk, relaxation, imagery, and automaticity compared to novice and intermediate shooters. HRV was found to be useful in identifying the physiological state of an athlete before competing, and as such, coaches and athletes can adopt practical strategies to improve the pre-performance physiological state as a means to optimize performance.

  4. Quantum state engineering by a coherent superposition of photon subtraction and addition

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yong; Nha, Hyunchul

    2011-10-01

    We study a coherent superposition tâ+r↠of field annihilation and creation operator acting on continuous variable systems and propose its application for quantum state engineering. We propose an experimental scheme to implement this elementary coherent operation and discuss its usefulness to produce an arbitrary superposition of number states involving up to two photons.

  5. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect

    PubMed Central

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744

  6. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  7. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In what additional ways may funds be used under the State Programs and State Leadership Activities? In addition to...

  8. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In what additional ways may funds be used under the State Programs and State Leadership Activities? In addition to...

  9. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In what additional ways may funds be used under the State Programs and State Leadership Activities? In addition to...

  10. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In what additional ways may funds be used under the State Programs and State Leadership Activities? In addition to...

  11. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In what additional ways may funds be used under the State Programs and State Leadership Activities? In addition to...

  12. Squeezed states and Hermite polynomials in a complex variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S. Twareque, E-mail: twareque.ali@concordia.ca; Górska, K., E-mail: katarzyna.gorska@ifj.edu.pl; Horzela, A., E-mail: andrzej.horzela@ifj.edu.pl

    2014-01-15

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavormore » of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)].« less

  13. Quantum key distribution using continuous-variable non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  14. Use of heart rate variability differentiates between physical and psychological states

    USDA-ARS?s Scientific Manuscript database

    The major goal of animal welfare scientists is to determine when animals are experiencing a state of good welfare or poor welfare. The goal of this research was to determine if measures of heart rate variability can be used to differentiate whether animals are experiencing differing states of physi...

  15. Spatiotemporal predictions of soil properties and states in variably saturated landscapes

    NASA Astrophysics Data System (ADS)

    Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David

    2017-07-01

    Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.

  16. Documentation for the State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.

    2011-01-01

    Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.

  17. Correlated resistive/capacitive state variability in solid TiO2 based memory devices

    NASA Astrophysics Data System (ADS)

    Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis

    2017-05-01

    In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.

  18. Teleportation of Two-Mode Quantum State of Continuous Variables

    NASA Astrophysics Data System (ADS)

    Song, Tong-Qiang

    2004-03-01

    Using two Einstein-Podolsky-Rosen pair eigenstates |η> as quantum channels, we study the teleportation of two-mode quantum state of continuous variables. The project supported by Natural Science Foundation of Zhejiang Province of China and Open Foundation of Laboratory of High-Intensity Optics, Shanghai Institute of Optics and Fine Mechanics

  19. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  20. ADPROCLUS: a graphical user interface for fitting additive profile clustering models to object by variable data matrices.

    PubMed

    Wilderjans, Tom F; Ceulemans, Eva; Van Mechelen, Iven; Depril, Dirk

    2011-03-01

    In many areas of psychology, one is interested in disclosing the underlying structural mechanisms that generated an object by variable data set. Often, based on theoretical or empirical arguments, it may be expected that these underlying mechanisms imply that the objects are grouped into clusters that are allowed to overlap (i.e., an object may belong to more than one cluster). In such cases, analyzing the data with Mirkin's additive profile clustering model may be appropriate. In this model: (1) each object may belong to no, one or several clusters, (2) there is a specific variable profile associated with each cluster, and (3) the scores of the objects on the variables can be reconstructed by adding the cluster-specific variable profiles of the clusters the object in question belongs to. Until now, however, no software program has been publicly available to perform an additive profile clustering analysis. For this purpose, in this article, the ADPROCLUS program, steered by a graphical user interface, is presented. We further illustrate its use by means of the analysis of a patient by symptom data matrix.

  1. The SU(2) action-angle variables

    NASA Technical Reports Server (NTRS)

    Ellinas, Demosthenes

    1993-01-01

    Operator angle-action variables are studied in the frame of the SU(2) algebra, and their eigenstates and coherent states are discussed. The quantum mechanical addition of action-angle variables is shown to lead to a noncommutative Hopf algebra. The group contraction is used to make the connection with the harmonic oscillator.

  2. Comparison of heart rate variability between resting state and external-cuff-inflation-and-deflation state: a pilot study.

    PubMed

    Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun

    2015-10-01

    Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p  >  0.05). The corresponding HRV indices had significant positive correlation (all p  <  0.01) between the two states. None of the indices showed MAP-related change (all p  >  0.05) for either state. Besides, none of the indices showed HR-related change (all p  >  0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV

  3. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  4. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  5. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  6. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  7. 5 CFR 3101.111 - Additional rules for United States Secret Service employees. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Additional rules for United States Secret Service employees. [Reserved] 3101.111 Section 3101.111 Administrative Personnel DEPARTMENT OF THE....111 Additional rules for United States Secret Service employees. [Reserved] ...

  8. RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B; Neifeld, Mark A

    2016-12-01

    We theoretically investigate and experimentally demonstrate a RF-assisted four-state continuous-variable quantum key distribution (CV-QKD) system. Classical coherent detection is implemented with a simple digital phase noise cancelation scheme. In the proposed system, there is no need for frequency and phase locking between the quantum signals and the local oscillator laser. Moreover, in principle, there is no residual phase noise, and a mean excess noise of 0.0115 (in shot-noise units) can be acquired experimentally. In addition, the minimum transmittance of 0.45 is reached experimentally for secure transmission with commercial photodetectors, and the maximum secret key rate (SKR) of >12  Mbit/s can be obtained. The proposed RF-assisted CV-QKD system opens the door of incorporating microwave photonics into a CV-QKD system and improving the SKR significantly.

  9. Effect of several variables in the polymer toys additive migration to saliva.

    PubMed

    Noguerol-Cal, R; López-Vilariño, J M; González-Rodríguez, M V; Barral-Losada, L

    2011-09-30

    Capacity to migrate of a representative group of polymeric additives, dyes, antioxidants, hindered amine light stabilizers (HALS) or antistatics, from plastic toys to saliva was analyzed to protect children in their habits of sucking and biting. Most of target additives appear no-regulated in toys normative but adverse effects on human health of some of them have been demonstrated and their presence in others commercial articles normative has been included. In order to offer an effective and easy tool to perform these controls, migration tests by dynamic and static contact, followed by a preconcentration step by liquid-liquid extraction (LLE) and ultra performance liquid chromatographic analysis with ultraviolet-visible and evaporative light scattering detections (UPLC-UV/Vis-ELSD) have been optimized to evaluate the migrated amounts of the additives in saliva simulant. The detection limits of the migration methodologies were ranged from 8.68 × 10(-2) to 1.30 × 10(-3)mg migrated (L simulant)(-1). Influence of several variables on this mass transport, as time, temperature and friction, was also analyzed to achieve the most aggressive methodology to protect consumers. Migration of several studied additives, whose presence has been demonstrated in several purchased commercial toys, has been observed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Liang, Xian-Ting

    2005-11-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states. The project supported by the President Funds of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056

  11. Variability common to global sea surface temperatures and runoff in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2014-01-01

    Singular value decomposition (SVD) is used to identify the variability common to global sea surface temperatures (SSTs) and water-balance-modeled water-year (WY) runoff in the conterminous United States (CONUS) for the 1900–2012 period. Two modes were identified from the SVD analysis; the two modes explain 25% of the variability in WY runoff and 33% of the variability in WY SSTs. The first SVD mode reflects the variability of the El Niño–Southern Oscillation (ENSO) in the SST data and the hydroclimatic effects of ENSO on WY runoff in the CONUS. The second SVD mode is related to variability of the Atlantic multidecadal oscillation (AMO). An interesting aspect of these results is that both ENSO and AMO appear to have nearly equivalent effects on runoff variability in the CONUS. However, the relatively small amount of variance explained by the SVD analysis indicates that there is little covariation between runoff and SSTs, suggesting that SSTs may not be a viable predictor of runoff variability for most of the conterminous United States.

  12. 42 CFR 403.306 - Additional requirements for State systems-mandatory approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Additional requirements for State systems-mandatory approval. 403.306 Section 403.306 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State...

  13. Recent trends in the variability of halogenated trace gases over the United States

    NASA Astrophysics Data System (ADS)

    Hurst, Dale F.; Bakwin, Peter S.; Elkins, James W.

    1998-10-01

    Recent trends in the atmospheric variability of seven halogenated trace gases are determined from three years (November 1994 through October 1997) of hourly gas chromatographic measurements at a 610 m tower in North Carolina and 17 months (June 1996 through October 1997) of similar measurements at a 450 m tower in Wisconsin. Production of five of these gases, CCl3F (CFC-11), CCl2F2 (CFC-12), CCl2FCClF2 (CFC-113), CH3CCl3 (methyl chloroform), and CCl4 (carbon tetrachloride), is now strictly regulated in the United States and other developed countries under international legislation. C2Cl4 (tetrachloroethene) and SF6 (sulfur hexafluoride) are currently produced without restriction, but requests for voluntary cutbacks in C2Cl4 emissions have been made, at least in the United States. Atmospheric variability of these gases is examined at several sampling heights on the towers, but trends are deduced using only nighttime data at the top sampling level of each tower to minimize variability driven by local emissions and the diurnal cycle of the planetary boundary layer, leaving regional emissions as the main source of day-to-day variability. Significant downward trends are determined for CFC-12, CFC-113, CH3CCl3, and C2Cl4 variability at both towers, reflecting decreased emissions of these gases in two regions of the United States. Trends in CFC-11, CCl4, and SF6 variability at both towers are not significantly different from zero.

  14. Puffed-up but shaky selves: State self-esteem level and variability in narcissists.

    PubMed

    Geukes, Katharina; Nestler, Steffen; Hutteman, Roos; Dufner, Michael; Küfner, Albrecht C P; Egloff, Boris; Denissen, Jaap J A; Back, Mitja D

    2017-05-01

    Different theoretical conceptualizations characterize grandiose narcissists by high, yet fragile self-esteem. Empirical evidence, however, has been inconsistent, particularly regarding the relationship between narcissism and self-esteem fragility (i.e., self-esteem variability). Here, we aim at unraveling this inconsistency by disentangling the effects of two theoretically distinct facets of narcissism (i.e., admiration and rivalry) on the two aspects of state self-esteem (i.e., level and variability). We report on data from a laboratory-based and two field-based studies (total N = 596) in realistic social contexts, capturing momentary, daily, and weekly fluctuations of state self-esteem. To estimate unbiased effects of narcissism on the level and variability of self-esteem within one model, we applied mixed-effects location scale models. Results of the three studies and their meta-analytical integration indicated that narcissism is positively linked to self-esteem level and variability. When distinguishing between admiration and rivalry, however, an important dissociation was identified: Admiration was related to high (and rather stable) levels of state self-esteem, whereas rivalry was related to (rather low and) fragile self-esteem. Analyses on underlying processes suggest that effects of rivalry on self-esteem variability are based on stronger decreases in self-esteem from one assessment to the next, particularly after a perceived lack of social inclusion. The revealed differentiated effects of admiration and rivalry explain why the analysis of narcissism as a unitary concept has led to the inconsistent past findings and provide deeper insights into the intrapersonal dynamics of grandiose narcissism governing state self-esteem. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. COMBUSTION ADDITIVES FOR POLLUTION CONTROL - A STATE-OF-THE-ART REVIEW

    EPA Science Inventory

    The report is a state-of-the-art review of the potential of combustion-type fuel additives in reducing air pollutant emissions from oil and coal firing. It contains two complementary parts: a review of the relation of combustion mechanisms to additive action in controlling emissi...

  16. Increased variability of tornado occurrence in the United States.

    PubMed

    Brooks, Harold E; Carbin, Gregory W; Marsh, Patrick T

    2014-10-17

    Whether or not climate change has had an impact on the occurrence of tornadoes in the United States has become a question of high public and scientific interest, but changes in how tornadoes are reported have made it difficult to answer it convincingly. We show that, excluding the weakest tornadoes, the mean annual number of tornadoes has remained relatively constant, but their variability of occurrence has increased since the 1970s. This is due to a decrease in the number of days per year with tornadoes combined with an increase in days with many tornadoes, leading to greater variability on annual and monthly time scales and changes in the timing of the start of the tornado season. Copyright © 2014, American Association for the Advancement of Science.

  17. 75 FR 48353 - United States Pharmacopeial Convention; Filing of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ...] United States Pharmacopeial Convention; Filing of Food Additive Petition AGENCY: Food and Drug.... Pharmacopeial Convention has filed a petition proposing that the food additive regulations that incorporate by... that a food additive petition (FAP 0A4782) has been filed by U.S. Pharmacopeial Convention, 12601...

  18. A continuum state variable theory to model the size-dependent surface energy of nanostructures.

    PubMed

    Jamshidian, Mostafa; Thamburaja, Prakash; Rabczuk, Timon

    2015-10-14

    We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.

  19. Characterization of SiO2/SiC interface states and channel mobility from MOSFET characteristics including variable-range hopping at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hironori; Hirata, Kazuto

    2018-04-01

    The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14-350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm-2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V-1s-1 and was almost independent of temperature.

  20. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Boyd, Patricia T.

    2012-01-01

    Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.

  1. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  2. Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-02-15

    Annual and summertime trends towards increasingly variable values of the Palmer Drought Severity Index (PDSI) over a sub-decadal period (five years) were investigated within the contiguous United States between 1895 and the present. For the contiguous United States as a whole, there is a significant increasing trend in the five-year running minimum-maximum ranges for the annual PDSI (aPDSI5 yr(min|max, range)). During this time frame, the average aPDSI5 yr(min|max, range) has increased by about one full unit, indicating a substantial increase in drought variability over short time scales across the United States. The end members of the running aPDSI5 yr(min|max, range) highlight even more rapid changes in the drought index variability within the past 120 years. This increasing variability in the aPDSI5 yr(min|max, range) is driven primarily by changes taking place in the Pacific and Atlantic Ocean coastal climate regions, climate regions which collectively comprise one-third the area of the contiguous United States. Similar trends were found for the annual and summertime Palmer Hydrological Drought Index (PHDI), the Palmer Modified Drought Index (PMDI), and the Palmer Z Index (PZI). Overall, interannual drought patterns in the contiguous United States are becoming more extreme and difficult to predict, posing a challenge to agricultural and other water-resource related planning efforts. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantum error correction of continuous-variable states against Gaussian noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph, T. C.

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  4. Composable security proof for continuous-variable quantum key distribution with coherent States.

    PubMed

    Leverrier, Anthony

    2015-02-20

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  5. Deconstructed transverse mass variables

    DOE PAGES

    Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; ...

    2015-04-02

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. Here, we demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton,more » jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop-and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.« less

  6. Variability of wildland fire emissions across the contiguous United States

    Treesearch

    YongQiang Liu

    2004-01-01

    This study analyzes spatial and temporal variability of emissions from wildland fires across the contiguous US. The emissions are estimates based on a recently constructed dataset of historical fire records collected by multiple US governlnental agencies. Both wildfire and prescribed fires have the highest emissions over the Pacific coastal states. Prescribed fire...

  7. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  8. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  9. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA; Serafini, Alessio

    2006-03-15

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequalitymore » constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.« less

  10. Variability of Passing Grades in Undergraduate Nursing Education Programs in New York State.

    PubMed

    Reynolds, Diane

    2015-01-01

    The purpose of this descriptive study was to provide information about passing grades and their corresponding numeric grades for undergraduate nursing programs in New York State. An additional purpose was to report on differences in grading between faculty teaching in associate versus baccalaureate nursing programs, full-time versus adjunct faculty, and tenured versus nontenured faculty. There is a paucity of research on grade variability in undergraduate nursing programs. Three hundred eighty-four full-time and 96 adjunct faculty responded to an invitation to complete an online survey. Grades are not uniformly awarded across institutions. Passing grades ranged from 70 to 85 percent (C- to B+, respectively), with a mean of 74.79 percent. Wide variations in grades in different institutions across the country may undermine grade point average as a reliable measure of education, making it difficult to evaluate individual student performance.

  11. Technical options for processing additional light tight oil volumes within the United States

    EIA Publications

    2015-01-01

    This report examines technical options for processing additional LTO volumes within the United States. Domestic processing of additional LTO would enable an increase in petroleum product exports from the United States, already the world’s largest net exporter of petroleum products. Unlike crude oil, products are not subject to export limitations or licensing requirements. While this is one possible approach to absorbing higher domestic LTO production in the absence of a relaxation of current limitations on crude exports, domestic LTO would have to be priced at a level required to encourage additional LTO runs at existing refinery units, debottlenecking, or possible additions of processing capacity.

  12. Estimation of Hidden State Variables of the Intracranial System Using Constrained Nonlinear Kalman Filters

    PubMed Central

    Nenov, Valeriy; Bergsneider, Marvin; Glenn, Thomas C.; Vespa, Paul; Martin, Neil

    2007-01-01

    Impeded by the rigid skull, assessment of physiological variables of the intracranial system is difficult. A hidden state estimation approach is used in the present work to facilitate the estimation of unobserved variables from available clinical measurements including intracranial pressure (ICP) and cerebral blood flow velocity (CBFV). The estimation algorithm is based on a modified nonlinear intracranial mathematical model, whose parameters are first identified in an offline stage using a nonlinear optimization paradigm. Following the offline stage, an online filtering process is performed using a nonlinear Kalman filter (KF)-like state estimator that is equipped with a new way of deriving the Kalman gain satisfying the physiological constraints on the state variables. The proposed method is then validated by comparing different state estimation methods and input/output (I/O) configurations using simulated data. It is also applied to a set of CBFV, ICP and arterial blood pressure (ABP) signal segments from brain injury patients. The results indicated that the proposed constrained nonlinear KF achieved the best performance among the evaluated state estimators and that the state estimator combined with the I/O configuration that has ICP as the measured output can potentially be used to estimate CBFV continuously. Finally, the state estimator combined with the I/O configuration that has both ICP and CBFV as outputs can potentially estimate the lumped cerebral arterial radii, which are not measurable in a typical clinical environment. PMID:17281533

  13. A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-03-01

    In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.

  14. A CLIMATOLOGY OF WATER BUDGET VARIABLES FOR THE NORTHEAST UNITED STATES

    EPA Science Inventory

    This dataset provided only by the Northeast Regional Climatic Center is the basis for A Climatology of Water Budget Variables for the Northeast United States (Leathers and Robinson 1995). Climatic division precipitation and temperature data are used to calculate water budget vari...

  15. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  16. Accretion disc wind variability in the states of the microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.

    2012-03-01

    Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.

  17. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetzel, KD; Aldrich, LL; Trimboli, MS

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less

  18. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis.

    PubMed

    Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair.

    PubMed

    Lightsey, Harry M; Kantrowitz, David E; Swindell, Hasani W; Trofa, David P; Ahmad, Christopher S; Lynch, T Sean

    2018-02-01

    The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Cross-sectional study. Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises. Fifteen protocols (43%) required completion of

  20. 34 CFR 365.22 - What additional IL services may the State provide?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What additional IL services may the State provide? 365.22 Section 365.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION STATE INDEPENDENT LIVING...

  1. 34 CFR 365.22 - What additional IL services may the State provide?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What additional IL services may the State provide? 365.22 Section 365.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION STATE INDEPENDENT LIVING...

  2. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  3. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  4. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  5. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  6. 5 CFR 3101.110 - Additional rules for United States Customs Service employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Customs Service employees. 3101.110 Section 3101.110 Administrative Personnel DEPARTMENT OF THE TREASURY... rules for United States Customs Service employees. The following rules apply to the employees of the United States Customs Service and are in addition to §§ 3101.101 through 3101.104: (a) Prohibition on...

  7. 77 FR 2492 - United States Pharmacopeial Convention; Filing of Food Additive Petition; Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ..., and 180 [Docket No. FDA-2010-F-0320] United States Pharmacopeial Convention; Filing of Food Additive... Food and Drug Administration (FDA) is amending the filing notice for a food additive petition filed by the U.S. Pharmacopeial Convention requesting that the food additive regulations that incorporate by...

  8. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  9. General Method for Constructing Local Hidden Variable Models for Entangled Quantum States

    NASA Astrophysics Data System (ADS)

    Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.

    2016-11-01

    Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.

  10. A STATE-VARIABLE APPROACH FOR PREDICTING THE TIME REQUIRED FOR 50% RECRYSTALLIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. STOUT; ET AL

    2000-08-01

    It is important to be able to model the recrystallization kinetics in aluminum alloys during hot deformation. The industrial relevant process of hot rolling is an example of where the knowledge of whether or not a material recrystallizes is critical to making a product with the correct properties. Classically, the equations that describe the kinetics of recrystallization predict the time to 50% recrystallization. These equations are largely empirical; they are based on the free energy for recrystallization, a Zener-Holloman parameter, and have several adjustable exponents to fit the equation to engineering data. We have modified this form of classical theorymore » replacing the Zener-Hollomon parameter with a deformation energy increment, a free energy available to drive recrystallization. The advantage of this formulation is that the deformation energy increment is calculated based on the previously determined temperature and strain-rate sensitivity of the constitutive response. We modeled the constitutive response of the AA5182 aluminum using a state variable approach, the value of the state variable is a function of the temperature and strain-rate history of deformation. Thus, the recrystallization kinetics is a function of only the state variable and free energy for recrystallization. There are no adjustable exponents as in classical theory. Using this approach combined with engineering recrystallization data we have been able to predict the kinetics of recrystallization in AA5182 as a function of deformation strain rate and temperature.« less

  11. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    PubMed

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  12. Variability of human corticospinal excitability tracks the state of action preparation.

    PubMed

    Klein-Flügge, Miriam C; Nobbs, David; Pitcher, Julia B; Bestmann, Sven

    2013-03-27

    Task-evoked trial-by-trial variability is a ubiquitous property of neural responses, yet its functional role remains largely unclear. Recent work in nonhuman primates shows that the temporal structure of neural variability in several brain regions is task-related. For example, trial-by-trial variability in premotor cortex tracks motor preparation with increasingly consistent firing rates and thus a decline in variability before movement onset. However, whether noninvasive measures of the variability of population activity available from humans can similarly track the preparation of actions remains unknown. We tested this by using single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) to measure corticospinal excitability (CSE) at different times during action preparation. First, we established the basic properties of intrinsic CSE variability at rest. Then, during the task, responses (left or right button presses) were either directly instructed (forced choice) or resulted from a value decision (choice). Before movement onset, we observed a temporally specific task-related decline in CSE variability contralateral to the responding hand. This decline was stronger in fast-response compared with slow-response trials, consistent with data in nonhuman primates. For the nonresponding hand, CSE variability also decreased, but only in choice trials, and earlier compared with the responding hand, possibly reflecting choice-specific suppression of unselected actions. These findings suggest that human CSE variability measured by TMS over M1 tracks the state of motor preparation, and may reflect the optimization of preparatory population activity. This provides novel avenues in humans to assess the dynamics of action preparation but also more complex processes, such as choice-to-action transformations.

  13. State-variable analysis of non-linear circuits with a desk computer

    NASA Technical Reports Server (NTRS)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  14. The association between mood state and chronobiological characteristics in bipolar I disorder: a naturalistic, variable cluster analysis-based study.

    PubMed

    Gonzalez, Robert; Suppes, Trisha; Zeitzer, Jamie; McClung, Colleen; Tamminga, Carol; Tohen, Mauricio; Forero, Angelica; Dwivedi, Alok; Alvarado, Andres

    2018-02-19

    Multiple types of chronobiological disturbances have been reported in bipolar disorder, including characteristics associated with general activity levels, sleep, and rhythmicity. Previous studies have focused on examining the individual relationships between affective state and chronobiological characteristics. The aim of this study was to conduct a variable cluster analysis in order to ascertain how mood states are associated with chronobiological traits in bipolar I disorder (BDI). We hypothesized that manic symptomatology would be associated with disturbances of rhythm. Variable cluster analysis identified five chronobiological clusters in 105 BDI subjects. Cluster 1, comprising subjective sleep quality was associated with both mania and depression. Cluster 2, which comprised variables describing the degree of rhythmicity, was associated with mania. Significant associations between mood state and cluster analysis-identified chronobiological variables were noted. Disturbances of mood were associated with subjectively assessed sleep disturbances as opposed to objectively determined, actigraphy-based sleep variables. No associations with general activity variables were noted. Relationships between gender and medication classes in use and cluster analysis-identified chronobiological characteristics were noted. Exploratory analyses noted that medication class had a larger impact on these relationships than the number of psychiatric medications in use. In a BDI sample, variable cluster analysis was able to group related chronobiological variables. The results support our primary hypothesis that mood state, particularly mania, is associated with chronobiological disturbances. Further research is required in order to define these relationships and to determine the directionality of the associations between mood state and chronobiological characteristics.

  15. Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Markopoulos, N.; Calise, A. J.

    1993-01-01

    The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.

  16. Use of generalised additive models to categorise continuous variables in clinical prediction

    PubMed Central

    2013-01-01

    Background In medical practice many, essentially continuous, clinical parameters tend to be categorised by physicians for ease of decision-making. Indeed, categorisation is a common practice both in medical research and in the development of clinical prediction rules, particularly where the ensuing models are to be applied in daily clinical practice to support clinicians in the decision-making process. Since the number of categories into which a continuous predictor must be categorised depends partly on the relationship between the predictor and the outcome, the need for more than two categories must be borne in mind. Methods We propose a categorisation methodology for clinical-prediction models, using Generalised Additive Models (GAMs) with P-spline smoothers to determine the relationship between the continuous predictor and the outcome. The proposed method consists of creating at least one average-risk category along with high- and low-risk categories based on the GAM smooth function. We applied this methodology to a prospective cohort of patients with exacerbated chronic obstructive pulmonary disease. The predictors selected were respiratory rate and partial pressure of carbon dioxide in the blood (PCO2), and the response variable was poor evolution. An additive logistic regression model was used to show the relationship between the covariates and the dichotomous response variable. The proposed categorisation was compared to the continuous predictor as the best option, using the AIC and AUC evaluation parameters. The sample was divided into a derivation (60%) and validation (40%) samples. The first was used to obtain the cut points while the second was used to validate the proposed methodology. Results The three-category proposal for the respiratory rate was ≤ 20;(20,24];> 24, for which the following values were obtained: AIC=314.5 and AUC=0.638. The respective values for the continuous predictor were AIC=317.1 and AUC=0.634, with no statistically

  17. Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo

    2017-10-01

    Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non

  18. Four-State Continuous-Variable Quantum Key Distribution with Photon Subtraction

    NASA Astrophysics Data System (ADS)

    Li, Fei; Wang, Yijun; Liao, Qin; Guo, Ying

    2018-06-01

    Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \\hat {x} or \\hat {p} itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.

  19. Variability of perceptual multistability: from brain state to individual trait

    PubMed Central

    Kleinschmidt, Andreas; Sterzer, Philipp; Rees, Geraint

    2012-01-01

    Few phenomena are as suitable as perceptual multistability to demonstrate that the brain constructively interprets sensory input. Several studies have outlined the neural circuitry involved in generating perceptual inference but only more recently has the individual variability of this inferential process been appreciated. Studies of the interaction of evoked and ongoing neural activity show that inference itself is not merely a stimulus-triggered process but is related to the context of the current brain state into which the processing of external stimulation is embedded. As brain states fluctuate, so does perception of a given sensory input. In multistability, perceptual fluctuation rates are consistent for a given individual but vary considerably between individuals. There has been some evidence for a genetic basis for these individual differences and recent morphometric studies of parietal lobe regions have identified neuroanatomical substrates for individual variability in spontaneous switching behaviour. Moreover, disrupting the function of these latter regions by transcranial magnetic stimulation yields systematic interference effects on switching behaviour, further arguing for a causal role of these regions in perceptual inference. Together, these studies have advanced our understanding of the biological mechanisms by which the brain constructs the contents of consciousness from sensory input. PMID:22371620

  20. Distillation of mixed-state continuous-variable entanglement by photon subtraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shengli; Loock, Peter van

    2010-12-15

    We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible evenmore » for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.« less

  1. Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability

    PubMed Central

    Bastian, Mikaël; Sackur, Jérôme

    2013-01-01

    Research from the last decade has successfully used two kinds of thought reports in order to assess whether the mind is wandering: random thought-probes and spontaneous reports. However, none of these two methods allows any assessment of the subjective state of the participant between two reports. In this paper, we present a step by step elaboration and testing of a continuous index, based on response time variability within Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first show that increased response time variability predicts mind wandering. We then compute a continuous index of response time variability throughout full experiments and show that the temporal position of a probe relative to the nearest local peak of the continuous index is predictive of mind wandering. This suggests that our index carries information about the subjective state of the subject even when he or she is not probed, and opens the way for on-line tracking of mind wandering. Finally we proceed a step further and infer the internal attentional states on the basis of the variability of response times. To this end we use the Hidden Markov Model framework, which allows us to estimate the durations of on-task and off-task episodes. PMID:24046753

  2. The Effectiveness of Six Personality Variables in Predicting Success on the Nursing State Board Examination.

    ERIC Educational Resources Information Center

    Cusick, Patricia; Harckham, Laura D.

    A study was conducted to determine whether six personality variables, presently used in admissions decisions by a nursing school, were effective predictors of success on the State Board Examination (SBE), the nursing licensing examination. The personality variables were measured by subtests of the Personal Preference Schedule of the Psychological…

  3. Robust best linear estimator for Cox regression with instrumental variables in whole cohort and surrogates with additive measurement error in calibration sample.

    PubMed

    Wang, Ching-Yun; Song, Xiao

    2016-11-01

    Biomedical researchers are often interested in estimating the effect of an environmental exposure in relation to a chronic disease endpoint. However, the exposure variable of interest may be measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies an additive measurement error model, but it may not have repeated measurements. The subset in which the surrogate variables are available is called a calibration sample. In addition to the surrogate variables that are available among the subjects in the calibration sample, we consider the situation when there is an instrumental variable available for all study subjects. An instrumental variable is correlated with the unobserved true exposure variable, and hence can be useful in the estimation of the regression coefficients. In this paper, we propose a nonparametric method for Cox regression using the observed data from the whole cohort. The nonparametric estimator is the best linear combination of a nonparametric correction estimator from the calibration sample and the difference of the naive estimators from the calibration sample and the whole cohort. The asymptotic distribution is derived, and the finite sample performance of the proposed estimator is examined via intensive simulation studies. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Robust best linear estimator for Cox regression with instrumental variables in whole cohort and surrogates with additive measurement error in calibration sample

    PubMed Central

    Wang, Ching-Yun; Song, Xiao

    2017-01-01

    SUMMARY Biomedical researchers are often interested in estimating the effect of an environmental exposure in relation to a chronic disease endpoint. However, the exposure variable of interest may be measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies an additive measurement error model, but it may not have repeated measurements. The subset in which the surrogate variables are available is called a calibration sample. In addition to the surrogate variables that are available among the subjects in the calibration sample, we consider the situation when there is an instrumental variable available for all study subjects. An instrumental variable is correlated with the unobserved true exposure variable, and hence can be useful in the estimation of the regression coefficients. In this paper, we propose a nonparametric method for Cox regression using the observed data from the whole cohort. The nonparametric estimator is the best linear combination of a nonparametric correction estimator from the calibration sample and the difference of the naive estimators from the calibration sample and the whole cohort. The asymptotic distribution is derived, and the finite sample performance of the proposed estimator is examined via intensive simulation studies. The methods are applied to the Nutritional Biomarkers Study of the Women’s Health Initiative. PMID:27546625

  5. Quantum frequency up-conversion of continuous variable entangled states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pumpmore » field, making it a practical building block for quantum information processing and communication networks.« less

  6. State Space Model with hidden variables for reconstruction of gene regulatory networks.

    PubMed

    Wu, Xi; Li, Peng; Wang, Nan; Gong, Ping; Perkins, Edward J; Deng, Youping; Zhang, Chaoyang

    2011-01-01

    State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method, namely Expectation-Maximization, to infer regulatory relationships from microarray datasets. The hidden variables cannot be directly observed from experiments. How to determine the number of hidden variables has a significant impact on the accuracy of network inference. In this study, we used SSM to infer Gene regulatory networks (GRNs) from synthetic time series datasets, investigated Bayesian Information Criterion (BIC) and Principle Component Analysis (PCA) approaches to determining the number of hidden variables in SSM, and evaluated the performance of SSM in comparison with DBN. True GRNs and synthetic gene expression datasets were generated using GeneNetWeaver. Both DBN and linear SSM were used to infer GRNs from the synthetic datasets. The inferred networks were compared with the true networks. Our results show that inference precision varied with the number of hidden variables. For some regulatory networks, the inference precision of DBN was higher but SSM performed better in other cases. Although the overall performance of the two approaches is compatible, SSM is much faster and capable of inferring much larger networks than DBN. This study provides useful information in handling the hidden variables and improving the inference precision.

  7. 24 CFR 570.711 - State borrowers; additional requirements and application procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false State borrowers; additional requirements and application procedures. 570.711 Section 570.711 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING...

  8. 24 CFR 570.711 - State borrowers; additional requirements and application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true State borrowers; additional requirements and application procedures. 570.711 Section 570.711 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING...

  9. 24 CFR 570.711 - State borrowers; additional requirements and application procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false State borrowers; additional requirements and application procedures. 570.711 Section 570.711 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING...

  10. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    PubMed

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.

  11. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  12. Choice of Variables and Preconditioning for Time Dependent Problems

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Vatsa, Verr N.

    2003-01-01

    We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

  13. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  14. Effect of maternal position on fetal behavioural state and heart rate variability in healthy late gestation pregnancy

    PubMed Central

    Burgess, Wendy; McIntyre, Jordan P. R.; Gunn, Alistair J.; Lear, Christopher A.; Bennet, Laura; Mitchell, Edwin A.; Thompson, John M. D.

    2016-01-01

    Key points Fetal behavioural state in healthy late gestation pregnancy is affected by maternal position.Fetal state 1F is more likely to occur in maternal supine or right lateral positions.Fetal state 4F is less likely to occur when the woman lies supine or semi‐recumbent.Fetal state change is more likely when the woman is supine or semi‐recumbent.Fetal heart rate variability is affected by maternal position with variability reduced in supine and semi‐recumbent positions. Abstract Fetal behavioural states (FBS) are measures of fetal wellbeing. In acute hypoxaemia, the human fetus adapts to a lower oxygen consuming state with changes in the cardiotocograph and reduced fetal activity. Recent studies of late gestation stillbirth described the importance of sleep position in the risk of intrauterine death. We designed this study to assess the effects of different maternal positions on FBS in healthy late gestation pregnancies under controlled conditions. Twenty‐nine healthy women had continuous fetal ECG recordings under standardized conditions in four randomly allocated positions, left lateral, right lateral, supine and semi‐recumbent. Two blinded observers, assigned fetal states in 5 min blocks. Measures of fetal heart rate variability were calculated from ECG beat to beat data. Compared to state 2F, state 4F was less likely to occur when women were semi‐recumbent [odds ratio (OR) = 0.11, 95% confidence interval (95% CI) 0.02, 0.55], and supine (OR = 0.27, 95% CI 0.07, 1.10). State 1F was more likely on the right (OR = 2.36, 95% CI 1.11, 5.04) or supine (OR = 4.99, 95% CI 2.41, 10.43) compared to the left. State change was more likely when the mother was semi‐recumbent (OR = 2.17, 95% CI 1.19, 3.95) or supine (OR = 2.67, 95% CI 1.46, 4.85). There was a significant association of maternal position to mean fetal heart rate. The measures of heart rate variability (SDNN and RMSSD) were reduced in both semi‐recumbent and supine positions. In

  15. Effect of maternal position on fetal behavioural state and heart rate variability in healthy late gestation pregnancy.

    PubMed

    Stone, Peter R; Burgess, Wendy; McIntyre, Jordan P R; Gunn, Alistair J; Lear, Christopher A; Bennet, Laura; Mitchell, Edwin A; Thompson, John M D

    2017-02-15

    Fetal behavioural state in healthy late gestation pregnancy is affected by maternal position. Fetal state 1F is more likely to occur in maternal supine or right lateral positions. Fetal state 4F is less likely to occur when the woman lies supine or semi-recumbent. Fetal state change is more likely when the woman is supine or semi-recumbent. Fetal heart rate variability is affected by maternal position with variability reduced in supine and semi-recumbent positions. Fetal behavioural states (FBS) are measures of fetal wellbeing. In acute hypoxaemia, the human fetus adapts to a lower oxygen consuming state with changes in the cardiotocograph and reduced fetal activity. Recent studies of late gestation stillbirth described the importance of sleep position in the risk of intrauterine death. We designed this study to assess the effects of different maternal positions on FBS in healthy late gestation pregnancies under controlled conditions. Twenty-nine healthy women had continuous fetal ECG recordings under standardized conditions in four randomly allocated positions, left lateral, right lateral, supine and semi-recumbent. Two blinded observers, assigned fetal states in 5 min blocks. Measures of fetal heart rate variability were calculated from ECG beat to beat data. Compared to state 2F, state 4F was less likely to occur when women were semi-recumbent [odds ratio (OR) = 0.11, 95% confidence interval (95% CI) 0.02, 0.55], and supine (OR = 0.27, 95% CI 0.07, 1.10). State 1F was more likely on the right (OR = 2.36, 95% CI 1.11, 5.04) or supine (OR = 4.99, 95% CI 2.41, 10.43) compared to the left. State change was more likely when the mother was semi-recumbent (OR = 2.17, 95% CI 1.19, 3.95) or supine (OR = 2.67, 95% CI 1.46, 4.85). There was a significant association of maternal position to mean fetal heart rate. The measures of heart rate variability (SDNN and RMSSD) were reduced in both semi-recumbent and supine positions. In healthy late gestation pregnancy

  16. A model clarifying the role of mediators in the variability of mood states over time in people who stutter.

    PubMed

    Craig, Ashley; Blumgart, Elaine; Tran, Yvonne

    2015-06-01

    Elevated negative mood states such as social anxiety and depressive mood have been found in adults who stutter. Research is needed to assist in the development of a model that clarifies how factors like self-efficacy and social support contribute to the variability of negative mood states over time. Participants included 200 adults who stutter. A longitudinal design was employed to assess change in mood states over a period of five months. Hierarchical directed regression (path analysis) was used to determine contributory relationships between change in mood states and self-efficacy, social support, socio-demographic and stuttering disorder variables. Participants completed a comprehensive assessment regimen, including validated measures of mood states, perceived control (self-efficacy) and social support. Results confirmed that self-efficacy performs a protective role in the change in mood states like anxiety and depressive mood. That is, self-efficacy cushioned the impact of negative mood states. Social support was only found to contribute a limited protective influence. Socio-demographic variables had little direct impact on mood states, while perceived severity of stuttering also failed to contribute directly to mood at any time point. Mood was found to be influenced by factors that are arguably important for a person to cope and adjust adaptively to the adversity associated with fluency disorder. A model that explains how mood states are influenced over time is described. Implications of these results for managing adults who stutter with elevated negative mood states like social anxiety are discussed. The reader will be able to describe: (a) the method involved in hierarchical (directed) regression used in path analysis; (b) the variability of mood states over a period of five months; (c) the nature of the mediator relationship between factors like self-efficacy and social support and mood states like anxiety, and (d) the contribution to mood states of socio

  17. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Witzel, G.; Ghez, A. M.

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works withmore » conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.« less

  18. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  19. Relative roles of weather variables and change in human population in malaria: comparison over different states of India.

    PubMed

    Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala

    2014-01-01

    Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.

  20. Relative Roles of Weather Variables and Change in Human Population in Malaria: Comparison over Different States of India

    PubMed Central

    Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala

    2014-01-01

    Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510

  1. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  2. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis.

    PubMed

    Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen

    2016-04-25

    Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals.

  3. Sequential measurement of conjugate variables as an alternative quantum state tomography.

    PubMed

    Di Lorenzo, Antonio

    2013-01-04

    It is shown how it is possible to reconstruct the initial state of a one-dimensional system by sequentially measuring two conjugate variables. The procedure relies on the quasicharacteristic function, the Fourier transform of the Wigner quasiprobability. The proper characteristic function obtained by Fourier transforming the experimentally accessible joint probability of observing "position" then "momentum" (or vice versa) can be expressed as a product of the quasicharacteristic function of the two detectors and that unknown of the quantum system. This allows state reconstruction through the sequence (1) data collection, (2) Fourier transform, (3) algebraic operation, and (4) inverse Fourier transform. The strength of the measurement should be intermediate for the procedure to work.

  4. Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication Using Coherent States

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Guo, Ying

    2017-02-01

    A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.

  5. Distribution of Personal Income in Agriculture-Dependent Counties of Midwestern States: A Policy Variables Approach.

    ERIC Educational Resources Information Center

    Goreham, Gary A.; And Others

    Significant social, demographic, and economic changes have occurred in the North Central states since 1960. This document examines structural and policy variables related to distribution of income, during the years 1960-80 in the 397 counties defined as agriculture-dependent in 13 North Central states. Personal income distribution has been…

  6. When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions

    PubMed Central

    Bradbury, Andrew R. M.; Trinklein, Nathan D.; Wilkinson, Ian C.; Tandon, Atul K.; Anderson, Stephen; Bladen, Catherine L.; Jones, Brittany; Aldred, Shelley Force; Bestagno, Marco; Burrone, Oscar; Maynard, Jennifer; Ferrara, Fortunato; Görnemann, Janina; Glanville, Jacob; Wolf, Philipp; Frenzel, Andre; Wong, Julin; Koh, Xin Yu; Eng, Hui-Yan; Lane, David; Lefranc, Marie-Paule; Clark, Mike

    2018-01-01

    ABSTRACT Monoclonal antibodies are commonly assumed to be monospecific, but anecdotal studies have reported genetic diversity in antibody heavy chain and light chain genes found within individual hybridomas. As the prevalence of such diversity has never been explored, we analyzed 185 random hybridomas, in a large multicenter dataset. The hybridomas analyzed were not biased towards those with cloning difficulties or known to have additional chains. Of the hybridomas we evaluated, 126 (68.1%) contained no additional productive chains, while the remaining 59 (31.9%) contained one or more additional productive heavy or light chains. The expression of additional chains degraded properties of the antibodies, including specificity, binding signal and/or signal-to-noise ratio, as determined by enzyme-linked immunosorbent assay and immunohistochemistry. The most abundant mRNA transcripts found in a hybridoma cell line did not necessarily encode the antibody chains providing the correct specificity. Consequently, when cloning antibody genes, functional validation of all possible VH and VL combinations is required to identify those with the highest affinity and lowest cross-reactivity. These findings, reflecting the current state of hybridomas used in research, reiterate the importance of using sequence-defined recombinant antibodies for research or diagnostic use. PMID:29485921

  7. Analysis of watershed topography effects on summer precipitation variability in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, Dagbegnon C.; Singh, Vijay P.; Frauenfeld, Oliver W.

    2014-04-01

    With climate change, precipitation variability is projected to increase. The present study investigates the potential interactions between watershed characteristics and precipitation variability. The watershed is considered as a functional unit that may impact seasonal precipitation. The study uses historical precipitation data from 370 meteorological stations over the last five decades, and digital elevation data from regional watersheds in the southwestern United States. This domain is part of the North American Monsoon region, and the summer period (June-July-August, JJA) was considered. Based on an initial analysis for 1895-2011, the JJA precipitation accounts, on average, for 22-43% of the total annual precipitation, with higher percentages in the arid part of the region. The unique contribution of this research is that entropy theory is used to address precipitation variability in time and space. An entropy-based disorder index was computed for each station's precipitation record. The JJA total precipitation and number of precipitation events were considered in the analysis. The precipitation variability potentially induced by watershed topography was investigated using spatial regionalization combining principal component and cluster analysis. It was found that the disorder in precipitation total and number of events tended to be higher in arid regions. The spatial pattern showed that the entropy-based variability in precipitation amount and number of events gradually increased from east to west in the southwestern United States. Regarding the watershed topography influence on summer precipitation patterns, hilly relief has a stabilizing effect on seasonal precipitation variability in time and space. The results show the necessity to include watershed topography in global and regional climate model parameterizations.

  8. Interannual variability of ammonia concentrations over the United States: sources and implications

    NASA Astrophysics Data System (ADS)

    Schiferl, Luke D.; Heald, Colette L.; Van Damme, Martin; Clarisse, Lieven; Clerbaux, Cathy; Coheur, Pierre-François; Nowak, John B.; Neuman, J. Andrew; Herndon, Scott C.; Roscioli, Joseph R.; Eilerman, Scott J.

    2016-09-01

    The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008-2012). We find that the model generally underrepresents the ammonia concentration near large source regions (by 26 % at surface sites) and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. This work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.

  9. Quantum correlations for bipartite continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang

    2018-04-01

    Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.

  10. Attribution of Trends and Variability in Surface Ozone over the United States

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie

    2013-01-01

    Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.

  11. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-01-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  13. Climate change/variability science and adaptive strategies for state and regional transportation decision making.

    DOT National Transportation Integrated Search

    2010-04-01

    The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...

  14. Deconstructing sub-clinical psychosis into latent-state and trait variables over a 30-year time span.

    PubMed

    Rössler, Wulf; Hengartner, Michael P; Ajdacic-Gross, Vladeta; Haker, Helene; Angst, Jules

    2013-10-01

    Our aim was to deconstruct the variance underlying the expression of sub-clinical psychosis symptoms into portions associated with latent time-dependent states and time-invariant traits. We analyzed data of 335 subjects from the general population of Zurich, Switzerland, who had been repeatedly measured between 1979 (age 20/21) and 2008 (age 49/50). We applied two measures of sub-clinical psychosis derived from the SCL-90-R, namely schizotypal signs (STS) and schizophrenia nuclear symptoms (SNS). Variance was decomposed with latent state-trait analysis and associations with covariates were examined with generalized linear models. At ages 19/20 and 49/50, the latent states underlying STS accounted for 48% and 51% of variance, whereas for SNS those estimates were 62% and 50%. Between those age classes, however, expression of sub-clinical psychosis was strongly associated with stable traits (75% and 89% of total variance in STS and SNS, respectively, at age 27/28). Latent states underlying variance in STS and SNS were particularly related to partnership problems over almost the entire observation period. STS was additionally related to employment problems, whereas drug-use was a strong predictor of states underlying both syndromes at age 19/20. The latent trait underlying expression of STS and SNS was particularly related to low sense of mastery and self-esteem and to high depressiveness. Although most psychosis symptoms are transient and episodic in nature, the variability in their expression is predominantly caused by stable traits. Those time-invariant and rather consistent effects are particularly influential around age 30, whereas the occasion-specific states appear to be particularly influential at ages 20 and 50. © 2013.

  15. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruifang; Lassen, Mikael; Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby

    2010-07-15

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variablemore » entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.« less

  16. Personality Traits and Socio-Demographic Variables as Correlates of Counselling Effectiveness of Counsellors in Enugu State, Nigeria

    ERIC Educational Resources Information Center

    Onyekuru, Bruno U.; Ibegbunam, Josephat

    2015-01-01

    Quality personality traits and socio-demographic variables are essential elements of effective counselling. This correlational study investigated personality traits and socio-demographic variables as predictors of counselling effectiveness of counsellors in Enugu State. The instruments for data collection were Personality Traits Assessment Scale…

  17. Variability and trends in runoff efficiency in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2016-01-01

    Variability and trends in water-year runoff efficiency (RE) — computed as the ratio of water-year runoff (streamflow per unit area) to water-year precipitation — in the conterminous United States (CONUS) are examined for the 1951 through 2012 period. Changes in RE are analyzed using runoff and precipitation data aggregated to United States Geological Survey 8-digit hydrologic cataloging units (HUs). Results indicate increases in RE for some regions in the north-central CONUS and large decreases in RE for the south-central CONUS. The increases in RE in the north-central CONUS are explained by trends in climate, whereas the large decreases in RE in the south-central CONUS likely are related to groundwater withdrawals from the Ogallala aquifer to support irrigated agriculture.

  18. Reinforcement learning state estimator.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2007-03-01

    In this study, we propose a novel use of reinforcement learning for estimating hidden variables and parameters of nonlinear dynamical systems. A critical issue in hidden-state estimation is that we cannot directly observe estimation errors. However, by defining errors of observable variables as a delayed penalty, we can apply a reinforcement learning frame-work to state estimation problems. Specifically, we derive a method to construct a nonlinear state estimator by finding an appropriate feedback input gain using the policy gradient method. We tested the proposed method on single pendulum dynamics and show that the joint angle variable could be successfully estimated by observing only the angular velocity, and vice versa. In addition, we show that we could acquire a state estimator for the pendulum swing-up task in which a swing-up controller is also acquired by reinforcement learning simultaneously. Furthermore, we demonstrate that it is possible to estimate the dynamics of the pendulum itself while the hidden variables are estimated in the pendulum swing-up task. Application of the proposed method to a two-linked biped model is also presented.

  19. Analyzing State and Private School Students' Achievement Goal Orientation Levels in Terms of Some Variables

    ERIC Educational Resources Information Center

    Türkçapar, Ünal

    2015-01-01

    The purpose of this study is to investigate the state and private school students' achievement goal orientation levels in terms of some variables. Quantitative survey method was used in this study. Study group in this research consists of 201 students who are studying at state and private school in Kahramanmaras during the 2014-2015 academic year.…

  20. Solid-state non-volatile electronically programmable reversible variable resistance device

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni (Inventor); Thakoor, Sarita (Inventor); Daud, Taher (Inventor); Thakoor, Aniklumar P. (Inventor)

    1989-01-01

    A solid-state variable resistance device (10) whose resistance can be repeatedly altered by a control signal over a wide range, and which will remain stable after the signal is removed, is formed on an insulated layer (14), supported on a substrate (12) and comprises a set of electrodes (16a, 16b) connected by a layer (18) of material, which changes from an insulator to a conductor upon the injection of ions, covered by a layer (22) of material with insulating properties which permit the passage of ions, overlaid by an ion donor material (20). The ion donor material is overlaid by an insulating layer (24) upon which is deposited a control gate (26) located above the contacts. In a preferred embodiment, the variable resistance material comprises WO.sub.3, the ion donor layer comprises Cr.sub.2 O.sub.3, and the layers sandwiching the ion donor layer comprise silicon monoxide. When a voltage is applied to the gate, the resistance between the electrode contacts changes, decreasing with positive voltage and increasing with negative voltage.

  1. Quantum anonymous voting with unweighted continuous-variable graph states

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Zeng, Guihua

    2016-08-01

    Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.

  2. The Impact of Investments in Additional Preparation on Unified State Exam Results

    ERIC Educational Resources Information Center

    Prakhov, Ilya Arkadyevich

    2015-01-01

    The paper proposes a model of educational strategies for college entrants that makes it possible to assess the investment efficiency in additional preparation as evidenced by the Unified State Exam [USE] scores. It was found that college entrants still use traditional forms of preparation despite the new institutional admission conditions at…

  3. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  4. Impact of climate variability on runoff in the north-central United States

    USGS Publications Warehouse

    Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.

    2014-01-01

    Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.

  5. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  6. Characterization of Nighttime Light Variability over the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.

    2015-12-01

    Severe meteorological events such as thunderstorms, tropical cyclones and winter ice storms often produce prolonged, widespread power outages affecting large populations and regions. The spatial impact of these events can extend from relatively rural, small towns (i.e. November 17, 2013 Washington, IL EF-4 tornado) to a series of adjoined states (i.e. April 27, 2011 severe weather outbreak) to entire regions (i.e. 2012 Hurricane Sandy) during their lifespans. As such, affected populations can vary greatly, depending on the event's intensity, location and duration. Actions taken by disaster response agencies like FEMA, the American Red Cross and NOAA to provide support to communities during the recovery process need accurate and timely information on the extent and location(s) of power disruption. This information is often not readily available to these agencies given communication interruptions, independent storm damage reports and other response-inhibiting factors. VIIRS DNB observations which provide daily, nighttime measurements of light sources can be used to detect and monitor power outages caused by these meteorological disaster events. To generate such an outage product, normal nighttime light variability must be analyzed and understood at varying spatial scales (i.e individual pixels, clustered land uses/covers, entire city extents). The southeastern portion of the United States serves as the study area in which the mean, median and standard deviation of nighttime lights are examined over numerous temporal periods (i.e. monthly, seasonally, annually, inter-annually). It is expected that isolated pixels with low population density (rural) will have tremendous variability in which an outage "signal" is difficult to detect. Small towns may have more consistent lighting (over a few pixels), making it easier to identify outages and reductions. Finally, large metropolitan areas may be the most "stable" light source, but the entire area may rarely experience a

  7. Unified Static and Dynamic Recrystallization Model for the Minerals of Earth's Mantle Using Internal State Variable Model

    NASA Astrophysics Data System (ADS)

    Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.

    2017-12-01

    In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic

  8. Continuous operation of four-state continuous-variable quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2016-10-01

    We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.

  9. Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira

    2016-09-01

    In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

  10. Association between heart rate variability and fluctuations in resting-state functional connectivity

    PubMed Central

    Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin

    2012-01-01

    Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859

  11. Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.

    2014-01-01

    This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.

  12. Drivers of Variability in Public-Supply Water Use Across the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Worland, Scott C.; Steinschneider, Scott; Hornberger, George M.

    2018-03-01

    This study explores the relationship between municipal water use and an array of climate, economic, behavioral, and policy variables across the contiguous U.S. The relationship is explored using Bayesian-hierarchical regression models for over 2,500 counties, 18 covariates, and three higher-level grouping variables. Additionally, a second analysis is included for 83 cities where water price and water conservation policy information is available. A hierarchical model using the nine climate regions (product of National Oceanic and Atmospheric Administration) as the higher-level groups results in the best out-of-sample performance, as estimated by the Widely Available Information Criterion, compared to counties grouped by urban continuum classification or primary economic activity. The regression coefficients indicate that the controls on water use are not uniform across the nation: e.g., counties in the Northeast and Northwest climate regions are more sensitive to social variables, whereas counties in the Southwest and East North Central climate regions are more sensitive to environmental variables. For the national city-level model, it appears that arid cities with a high cost of living and relatively low water bills sell more water per customer, but as with the county-level model, the effect of each variable depends heavily on where a city is located.

  13. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  14. Variable-density thinning for parks and reserves: An experimental case study at Humboldt Redwoods State Park, California

    Treesearch

    Christopher R. Keyes; Thomas E. Perry; Jesse F. Plummer

    2010-01-01

    Variable-density thinning is emerging as a valuable tool for the silvicultural promotion of old-growth conditions in second-growth forests of the Pacific Coast. This paper reports on an experimental variable-density thinning prescription applied between 2006 and 2007 at north coastal California’s Humboldt Redwoods State Park. The prescription strategy relied on known...

  15. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    PubMed

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  17. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.

    PubMed

    Kraus, Dominic; Naros, Georgios; Guggenberger, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza

    2018-02-07

    Standard brain stimulation protocols modify human motor cortex excitability by modulating the gain of the activated corticospinal pathways. However, the restoration of motor function following lesions of the corticospinal tract requires also the recruitment of additional neurons to increase the net corticospinal output. For this purpose, we investigated a novel protocol based on brain state-dependent paired associative stimulation.Motor imagery (MI)-related electroencephalography was recorded in healthy males and females for brain state-dependent control of both cortical and peripheral stimulation in a brain-machine interface environment. State-dependency was investigated with concurrent, delayed, and independent stimulation relative to the MI task. Specifically, sensorimotor event-related desynchronization (ERD) in the β-band (16-22 Hz) triggered peripheral stimulation through passive hand opening by a robotic orthosis and transcranial magnetic stimulation to the respective cortical motor representation, either synchronously or subsequently. These MI-related paradigms were compared with paired cortical and peripheral input applied independent of the brain state. Cortical stimulation resulted in a significant increase in corticospinal excitability only when applied brain state-dependently and synchronously to peripheral input. These gains were resistant to a depotentiation task, revealed a nonlinear evolution of plasticity, and were mediated via the recruitment of additional corticospinal neurons rather than via synchronization of neuronal firing. Recruitment of additional corticospinal pathways may be achieved when cortical and peripheral inputs are applied concurrently, and during β-ERD. These findings resemble a gating mechanism and are potentially important for developing closed-loop brain stimulation for the treatment of hand paralysis following lesions of the corticospinal tract. SIGNIFICANCE STATEMENT The activity state of the motor system influences the

  18. Human variability in mercury toxicokinetics and steady state biomarker ratios.

    PubMed

    Bartell, S M; Ponce, R A; Sanga, R N; Faustman, E M

    2000-10-01

    Regulatory guidelines regarding methylmercury exposure depend on dose-response models relating observed mercury concentrations in maternal blood, cord blood, and maternal hair to developmental neurobehavioral endpoints. Generalized estimates of the maternal blood-to-hair, blood-to-intake, or hair-to-intake ratios are necessary for linking exposure to biomarker-based dose-response models. Most assessments have used point estimates for these ratios; however, significant interindividual and interstudy variability has been reported. For example, a maternal ratio of 250 ppm in hair per mg/L in blood is commonly used in models, but a 1990 WHO review reports mean ratios ranging from 140 to 370 ppm per mg/L. To account for interindividual and interstudy variation in applying these ratios to risk and safety assessment, some researchers have proposed representing the ratios with probability distributions and conducting probabilistic assessments. Such assessments would allow regulators to consider the range and like-lihood of mercury exposures in a population, rather than limiting the evaluation to an estimate of the average exposure or a single conservative exposure estimate. However, no consensus exists on the most appropriate distributions for representing these parameters. We discuss published reviews of blood-to-hair and blood-to-intake steady state ratios for mercury and suggest statistical approaches for combining existing datasets to form generalized probability distributions for mercury distribution ratios. Although generalized distributions may not be applicable to all populations, they allow a more informative assessment than point estimates where individual biokinetic information is unavailable. Whereas development and use of these distributions will improve existing exposure and risk models, additional efforts in data generation and model development are required.

  19. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  20. Variable input observer for state estimation of high-rate dynamics

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Cao, Liang; Laflamme, Simon; Dodson, Jacob

    2017-04-01

    High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input space as the event unfolds. When systems experience high-rate dynamics, rapid changes in the system occur. To investigate the VIO's potential, a VIO-based neuro-observer is constructed and studied using experimental data collected from a laboratory impact test. Results demonstrate that the input space is unique to different impact conditions, and that adjusting the input space throughout the dynamic event produces better estimations than using a traditional fixed input space strategy.

  1. Heart Rate Variability – a Tool to Differentiate Positive and Negative Affective States in Pigs?

    USDA-ARS?s Scientific Manuscript database

    The causal neurophysiological processes, such as autonomic nervous system activity, that mediate behavioral and physiological reactivity to an environment have largely been ignored. Heart rate variability (HRV) analysis is a clinical diagnostic tool used to assess affective states (stressful and ple...

  2. The effect of solute additions on the steady-state creep behavior of dispersion-strengthened aluminum.

    NASA Technical Reports Server (NTRS)

    Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.

    1971-01-01

    The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.

  3. Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Huang, Duan; Huang, Peng; Zeng, Guihua

    2018-02-01

    We propose a long-distance continuous-variable quantum key distribution (CVQKD) with a four-state protocol using non-Gaussian state-discrimination detection. A photon subtraction operation, which is deployed at the transmitter, is used for splitting the signal required for generating the non-Gaussian operation to lengthen the maximum transmission distance of the CVQKD. Whereby an improved state-discrimination detector, which can be deemed as an optimized quantum measurement that allows the discrimination of nonorthogonal coherent states beating the standard quantum limit, is applied at the receiver to codetermine the measurement result with the conventional coherent detector. By tactfully exploiting the multiplexing technique, the resulting signals can be simultaneously transmitted through an untrusted quantum channel, and subsequently sent to the state-discrimination detector and coherent detector, respectively. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance up to hundreds of kilometers. Furthermore, by taking the finite-size effect and composable security into account we obtain the tightest bound of the secure distance, which is more practical than that obtained in the asymptotic limit.

  4. Event triggered state estimation techniques for power systems with integrated variable energy resources.

    PubMed

    Francy, Reshma C; Farid, Amro M; Youcef-Toumi, Kamal

    2015-05-01

    For many decades, state estimation (SE) has been a critical technology for energy management systems utilized by power system operators. Over time, it has become a mature technology that provides an accurate representation of system state under fairly stable and well understood system operation. The integration of variable energy resources (VERs) such as wind and solar generation, however, introduces new fast frequency dynamics and uncertainties into the system. Furthermore, such renewable energy is often integrated into the distribution system thus requiring real-time monitoring all the way to the periphery of the power grid topology and not just the (central) transmission system. The conventional solution is two fold: solve the SE problem (1) at a faster rate in accordance with the newly added VER dynamics and (2) for the entire power grid topology including the transmission and distribution systems. Such an approach results in exponentially growing problem sets which need to be solver at faster rates. This work seeks to address these two simultaneous requirements and builds upon two recent SE methods which incorporate event-triggering such that the state estimator is only called in the case of considerable novelty in the evolution of the system state. The first method incorporates only event-triggering while the second adds the concept of tracking. Both SE methods are demonstrated on the standard IEEE 14-bus system and the results are observed for a specific bus for two difference scenarios: (1) a spike in the wind power injection and (2) ramp events with higher variability. Relative to traditional state estimation, the numerical case studies showed that the proposed methods can result in computational time reductions of 90%. These results were supported by a theoretical discussion of the computational complexity of three SE techniques. The work concludes that the proposed SE techniques demonstrate practical improvements to the computational complexity of

  5. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  6. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    NASA Astrophysics Data System (ADS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  7. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uribe, Eva C; Sandoval, M Analisa; Sandoval, Marisa N

    2009-01-01

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to accessmore » to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.« less

  8. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    NASA Astrophysics Data System (ADS)

    Rivera Almeyda, Oscar G.

    In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure

  9. Variability and trends in dry day frequency and dry event length in the southwestern United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Legates, David R.; Lins, Harry F.

    2010-01-01

    Daily precipitation from 22 National Weather Service first-order weather stations in the southwestern United States for water years 1951 through 2006 are used to examine variability and trends in the frequency of dry days and dry event length. Dry events with minimum thresholds of 10 and 20 consecutive days of precipitation with less than 2.54 mm are analyzed. For water years and cool seasons (October through March), most sites indicate negative trends in dry event length (i.e., dry event durations are becoming shorter). For the warm season (April through September), most sites also indicate negative trends; however, more sites indicate positive trends in dry event length for the warm season than for water years or cool seasons. The larger number of sites indicating positive trends in dry event length during the warm season is due to a series of dry warm seasons near the end of the 20th century and the beginning of the 21st century. Overall, a large portion of the variability in dry event length is attributable to variability of the El Niño–Southern Oscillation, especially for water years and cool seasons. Our results are consistent with analyses of trends in discharge for sites in the southwestern United States, an increased frequency in El Niño events, and positive trends in precipitation in the southwestern United States.

  10. Scaling cosmology with variable dark-energy equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, David R.; Velten, Hermano; Zimdahl, Winfried, E-mail: drodriguez-ufes@hotmail.com, E-mail: velten@physik.uni-bielefeld.de, E-mail: winfried.zimdahl@pq.cnpq.br

    2012-06-01

    Interactions between dark matter and dark energy which result in a power-law behavior (with respect to the cosmic scale factor) of the ratio between the energy densities of the dark components (thus generalizing the ΛCDM model) have been considered as an attempt to alleviate the cosmic coincidence problem phenomenologically. We generalize this approach by allowing for a variable equation of state for the dark energy within the CPL-parametrization. Based on analytic solutions for the Hubble rate and using the Constitution and Union2 SNIa sets, we present a statistical analysis and classify different interacting and non-interacting models according to the Akaikemore » (AIC) and the Bayesian (BIC) information criteria. We do not find noticeable evidence for an alleviation of the coincidence problem with the mentioned type of interaction.« less

  11. Tropical Pacific Mean State and ENSO Variability across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.; Marcantonio, F.; Bianchi, T. S.

    2017-12-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is the largest natural interannual signal in the Earth's climate system and has widespread effects on global climate that impact millions of people worldwide. A series of recent research studies predict an increase in the frequency of extreme El Niño and La Niña events as Earth's climate continues to warm. In order for climate scientists to forecast how ENSO will evolve in response to global warming, it is necessary to have accurate, comprehensive records of how the system has naturally changed in the past, especially across past abrupt warming events. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale warming events of the last ice age. This study aims to reconstruct changes in the tropical Pacific mean state and ENSO variability across Marine Isotope Stage 3 from a sediment core recovered from the Eastern Equatorial Pacific cold tongue (MV1014-02-17JC, 0°10.8' S, 85°52.0' W, 2846 m water depth). In this region, thermocline temperatures are significantly correlated to ENSO variability - thus, we analyzed Mg/Ca ratios in the thermocline dwelling foraminifera Neogloboquadrina dutertrei as a proxy for thermocline temperatures in the past. Bulk ( 50 tests/sample) foraminifera Mg/Ca temperatures are used to reconstruct long-term variability in the mean state, while single shell ( 1 test/sample, 60 samples) Mg/Ca analyses are used to assess thermocline temperature variance. Based on our refined age model, we find that thermocline temperature increases of up to 3.5°C occur in-step with interstadial warming events recorded in Greenland ice cores. Cooler thermocline temperatures prevail during stadial intervals and Heinrich Events. This suggests that interstadials were more El-Niño like, while stadials and Heinrich Events were more La-Niña like. These temperature changes are compared to new records of dust flux

  12. Additional security features for optically variable foils

    NASA Astrophysics Data System (ADS)

    Marshall, Allan C.; Russo, Frank

    1998-04-01

    For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.

  13. Physiological state characterization by clustering heart rate, heart rate variability and movement activity information.

    PubMed

    Bidargaddi, Niranjan; Sarela, Antti; Korhonen, Ilkka

    2008-01-01

    The objective is to identify whether it is possible to discriminate between normal and abnormal physiological state based on heart rate (HR), heart rate variability (HRV) and movement activity information in subjects with cardiovascular complications. HR, HRV and movement information were obtained from cardiac patients over a period of 6 weeks using an ambulatory activity and single lead ECG monitor. By applying k-means clustering on HR, HRV and movement information obtained from cardiac patients, we obtained 3 clusters in inactive state and one cluster in active state. Two clusters in inactive state characterized by - a) high HR and low HRV b) low HRV and low HR, could be inferred as pathological with abnormal autonomic function. Further, activity information was significant in differentiating between the normal cluster found in active and an abnormal cluster found in inactive states, both with low HRV. This indicates that the activity information must be taken into account while interpreting HR and HRV information.

  14. Analyzing Variability in Ebola-Related Controls Applied to Returned Travelers in the United States

    PubMed Central

    Siedner, Mark J.; Stoto, Michael A.

    2015-01-01

    Public health authorities have adopted entry screening and subsequent restrictions on travelers from Ebola-affected West African countries as a strategy to prevent importation of Ebola virus disease (EVD) cases. We analyzed international, federal, and state policies—principally based on the policy documents themselves and media reports—to evaluate policy variability. We employed means-ends fit analysis to elucidate policy objectives. We found substantial variation in the specific approaches favored by WHO, CDC, and various American states. Several US states impose compulsory quarantine on a broader range of travelers or require more extensive monitoring than recommended by CDC or WHO. Observed differences likely partially resulted from different actors having different policy goals—particularly the federal government having to balance foreign policy objectives less salient to states. Further, some state-level variation appears to be motivated by short-term political goals. We propose recommendations to improve future policies, which include the following: (1) actors should explicitly clarify their objectives, (2) legal authority should be modernized and clarified, and (3) the federal government should consider preempting state approaches that imperil its goals. PMID:26348222

  15. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  16. Phenomenological model for transient deformation based on state variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, M S; Cho, C W; Alexopoulos, P

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known,more » tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.« less

  17. The Relationship Between Posttraumatic Growth and Psychosocial Variables in Survivors of State Terrorism and Their Relatives.

    PubMed

    Cárdenas-Castro, Manuel; Faúndez-Abarca, Ximena; Arancibia-Martini, Héctor; Ceruti-Mahn, Cristián

    2017-08-01

    The present study explores reports of growth in survivors and family members of victims of state terrorism ( N = 254) in Chile from 1973 to 1990. The results indicate the presence of reports of posttraumatic growth ( M = 4.69) and a positive and statistically significant correlation with variables related to the life impact of the stressful events ( r = .46), social sharing of emotions ( r = .32), deliberate rumination ( r = .37), positive reappraisal ( r = .35), reconciliation ( r = .39), spiritual practices ( r = .33), and meaning in life ( r = .51). The relationship between growth and forgiveness is not statistically significant. The variables that best predict posttraumatic growth are positive reappraisal (β = .28), life impact (β = .24), meaning in life β = .23), and reconciliation (β = .20). The forward-method hierarchical model indicates that these variables are significant predictors of growth levels, R 2 = .53, F(8, 210) = 30.08, p < .001. The results indicate that a large proportion of the victims of state terrorism manage to grow after these experiences, and the redefinition of meaning in life and the positive reappraisal of the traumatic experiences are the elements that make it possible to create a new narrative about the past.

  18. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    NASA Astrophysics Data System (ADS)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward

    2018-01-01

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.

  19. Qualitative Contrast between Knowledge-Limited Mixed-State and Variable-Resources Models of Visual Change Detection

    ERIC Educational Resources Information Center

    Nosofsky, Robert M.; Donkin, Chris

    2016-01-01

    We report an experiment designed to provide a qualitative contrast between knowledge-limited versions of mixed-state and variable-resources (VR) models of visual change detection. The key data pattern is that observers often respond "same" on big-change trials, while simultaneously being able to discriminate between same and small-change…

  20. The Use of Heart Rate Variability as a Novel Method to Differentiate between Affective States

    USDA-ARS?s Scientific Manuscript database

    The major goal of animal welfare scientists is to determine when animals are experiencing a state of good welfare or poor welfare. The goal of this research was to determine if measures of heart rate variability can be used to differentiate whether animals are experiencing ‘unpleasant’ versus ‘pleas...

  1. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

    NASA Astrophysics Data System (ADS)

    Sobolewski, Stanley John

    The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second

  2. A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.

    PubMed

    Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian

    2016-09-01

    Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  3. Sleep variability and cardiac autonomic modulation in adolescents – Penn State Child Cohort (PSCC) study

    PubMed Central

    Rodríguez-Colón, Sol M.; He, Fan; Bixler, Edward O.; Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Calhoun, Susan; Zheng, Zhi-Jie; Liao, Duanping

    2015-01-01

    Objective To investigate the effects of objectively measured habitual sleep patterns on cardiac autonomic modulation (CAM) in a population-based sample of adolescents. Methods We used data from 421 adolescents who completed the follow-up examination in the Penn State Children Cohort study. CAM was assessed by heart rate (HR) variability (HRV) analysis of beat-to-beat normal R-R intervals from a 39-h electrocardiogram, on a 30-min basis. The HRV indices included frequency domain (HF, LF, and LF/HF ratio), and time domain (SDNN, RMSSD, and heart rate or HR) variables. Actigraphy was used for seven consecutive nights to estimate nightly sleep duration and time in bed. The seven-night mean (SD) of sleep duration and sleep efficiency were used to represent sleep duration, duration variability, sleep efficiency, and efficiency variability, respectively. HF and LF were log-transformed for statistical analysis. Linear mixed-effect models were used to analyze the association between sleep patterns and CAM. Results After adjusting for major confounders, increased sleep duration variability and efficiency variability were significantly associated with lower HRV and higher HR during the 39-h, as well as separated by daytime and nighttime. For instance, a 1-h increase in sleep duration variability is associated with −0.14(0.04), −0.12(0.06), and −0.16(0.05) ms2 decrease in total, daytime, and nighttime HF, respectively. No associations were found between sleep duration, or sleep efficiency and HRV. Conclusion Higher habitual sleep duration variability and efficiency variability are associated with lower HRV and higher HR, suggesting that an irregular sleep pattern has an adverse impact on CAM, even in healthy adolescents. PMID:25555635

  4. Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Li, Renjie; Liao, Qin; Zhou, Jian; Huang, Duan

    2018-02-01

    Discrete modulation is proven to be beneficial to improving the performance of continuous-variable quantum key distribution (CVQKD) in long-distance transmission. In this paper, we suggest a construct to improve the maximal generated secret key rate of discretely modulated eight-state CVQKD using an optical amplifier (OA) with a slight cost of transmission distance. In the proposed scheme, an optical amplifier is exploited to compensate imperfection of Bob's apparatus, so that the generated secret key rate of eight-state protocol is enhanced. Specifically, we investigate two types of optical amplifiers, phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA), and thereby obtain approximately equivalent improved performance for eight-state CVQKD system when applying these two different amplifiers. Numeric simulation shows that the proposed scheme can well improve the generated secret key rate of eight-state CVQKD in both asymptotic limit and finite-size regime. We also show that the proposed scheme can achieve the relatively high-rate transmission at long-distance communication system.

  5. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  6. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. Wemore » analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.« less

  7. Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR.

    PubMed

    Apperley, David C; Forster, Angus H; Fournier, Romain; Harris, Robin K; Hodgkinson, Paul; Lancaster, Robert W; Rades, Thomas

    2005-11-01

    We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd.

  8. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  9. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less

  10. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    DOE PAGES

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; ...

    2018-01-21

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less

  11. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  12. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  13. Dataset of timberland variables used to assess forest conditions in two Southeastern United States' fuelsheds

    DOE PAGES

    Parish, Esther S.; Dale, Virginia H.; Tobin, Emma; ...

    2017-05-27

    The data presented in this article are related to the research article entitled “How is wood-based pellet production affecting forest conditions in the southeastern United States?” (Dale et al., 2017). This article describes how United States Forest Service (USFS) Forest Inventory and Analysis (FIA) data from multiple state inventories were aggregated and used to extract ten annual timberland variables for trend analysis in two case study bioenergy fuelshed areas. This dataset is made publically available to enable critical or extended analyses of changes in forest conditions, either for the fuelshed areas supplying the ports of Savannah, Georgia and Chesapeake, Virginia,more » or for other southeastern US forested areas contributing biomass to the export wood pellet industry.« less

  14. Dataset of timberland variables used to assess forest conditions in two Southeastern United States' fuelsheds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Esther S.; Dale, Virginia H.; Tobin, Emma

    The data presented in this article are related to the research article entitled “How is wood-based pellet production affecting forest conditions in the southeastern United States?” (Dale et al., 2017). This article describes how United States Forest Service (USFS) Forest Inventory and Analysis (FIA) data from multiple state inventories were aggregated and used to extract ten annual timberland variables for trend analysis in two case study bioenergy fuelshed areas. This dataset is made publically available to enable critical or extended analyses of changes in forest conditions, either for the fuelshed areas supplying the ports of Savannah, Georgia and Chesapeake, Virginia,more » or for other southeastern US forested areas contributing biomass to the export wood pellet industry.« less

  15. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is criticalmore » to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.« less

  16. Interannual Variability of Ammonia Concentrations over the United States: Sources and Implications for Inorganic Particulate Matter

    NASA Astrophysics Data System (ADS)

    Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.

    2015-12-01

    Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.

  17. Interannual Variability of Human Plague Occurrence in the Western United States Explained by Tropical and North Pacific Ocean Climate Variability

    PubMed Central

    Ari, Tamara Ben; Gershunov, Alexander; Tristan, Rouyer; Cazelles, Bernard; Gage, Kenneth; Stenseth, Nils C.

    2010-01-01

    Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950–2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents. PMID:20810830

  18. Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability.

    PubMed

    Ari, Tamara Ben; Gershunov, Alexander; Tristan, Rouyer; Cazelles, Bernard; Gage, Kenneth; Stenseth, Nils C

    2010-09-01

    Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950-2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents.

  19. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  20. Phenotypic Variability in Resting-State Functional Connectivity: Current Status

    PubMed Central

    Gordon, Evan M.

    2013-01-01

    Abstract We reviewed the extant literature with the goal of assessing the extent to which resting-state functional connectivity is associated with phenotypic variability in healthy and disordered populations. A large corpus of work has accumulated to date (125 studies), supporting the association between intrinsic functional connectivity and individual differences in a wide range of domains—not only in cognitive, perceptual, motoric, and linguistic performance, but also in behavioral traits (e.g., impulsiveness, risky decision making, personality, and empathy) and states (e.g., anxiety and psychiatric symptoms) that are distinguished by cognitive and affective functioning, and in neurological conditions with cognitive and motor sequelae. Further, intrinsic functional connectivity is sensitive to remote (e.g., early-life stress) and enduring (e.g., duration of symptoms) life experience, and it exhibits plasticity in response to recent experience (e.g., learning and adaptation) and pharmacological treatment. The most pervasive associations were observed with the default network; associations were also widespread between the cingulo-opercular network and both cognitive and affective behaviors, while the frontoparietal network was associated primarily with cognitive functions. Associations of somatomotor, frontotemporal, auditory, and amygdala networks were relatively restricted to the behaviors linked to their respective putative functions. Surprisingly, visual network associations went beyond visual function to include a variety of behavioral traits distinguished by affective function. Together, the reviewed evidence sets the stage for testing causal hypothesis about the functional role of intrinsic connectivity and augments its potential as a biomarker for healthy and disordered brain function. PMID:23294010

  1. Revisiting the leading drivers of Pacific coastal drought variability in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Cook, B.; Williams, P.; Mankin, J. S.; Seager, R.; Smerdon, J. E.; Singh, D.

    2017-12-01

    Coastal droughts simultaneously affecting California, Oregon, and Washington are rare, but have extensive and severe impacts (e.g., wildfire, agriculture). To better understand these events, we use historical observations to investigate: (1) drought variability along the Pacific Coast of the Contiguous United States and (2) years when extreme drought affects the entire coast. The leading pattern of cold-season (October-March) precipitation variability along the Pacific Coast favors spatially coherent moisture anomalies, accounts for >40% of the underlying variance, and is forced primarily by internal atmospheric dynamics. This contrasts with a much weaker dipole mode ( 20% of precipitation variability) characterized by anti-phased moisture anomalies across 40N and strong correlations with tropical Pacific sea surface temperatures (SSTs). Sixteen coastal-wide summer droughts occurred from 1895-2016 (clustering in the 1920s-1930s and post-2000), events most strongly linked with the leading precipitation mode and internal atmospheric variability. The frequency of landfalling atmospheric rivers south of 40N is sharply reduced during coastal droughts, but not north of this boundary where their frequency is more strongly influenced by the dipole. The lack of a consistent pattern of SST forcing during coastal droughts suggests little potential for skillful predictions of these events at the seasonal scale. However, their tendency to cluster in time and the impact of warming during recent droughts may help inform decadal and longer-term drought risks.

  2. The Analysis of Psychological Counselors' Work Satisfaction in Terms of Some Variables

    ERIC Educational Resources Information Center

    Özen, Yener

    2014-01-01

    In this research, it is investigated whether there are job satisfaction differences among school counselors working at private elementary schools, state elementary schools, and guidance and research centers in Izmir (Türkey). Additionally, the differences among the levels of job satisfaction are examined according to some demographic variables.…

  3. Spatiotemporal variability of snow depletion curves derived from SNODAS for the conterminous United States, 2004-2013

    USGS Publications Warehouse

    Driscoll, Jessica; Hay, Lauren E.; Bock, Andrew R.

    2017-01-01

    Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental-scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental-extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1-km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed-scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed-scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national-scale categorization of snowmelt processes.

  4. X-RAY VARIABILITY AND HARDNESS OF ESO 243-49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Servillat, Mathieu; Farrell, Sean A.; Lin Dacheng

    2011-12-10

    The ultraluminous X-ray (ULX) source ESO 243-49 HLX-1, which reaches a maximum luminosity of 10{sup 42} erg s{sup -1} (0.2-10 keV), currently provides the strongest evidence for the existence of intermediate-mass black holes (IMBHs). To study the spectral variability of the source, we conduct an ongoing monitoring campaign with the Swift X-ray Telescope (XRT), which now spans more than two years. We found that HLX-1 showed two fast rise and exponential decay type outbursts in the Swift XRT light curve with increases in the count rate of a factor {approx}40 separated by 375 {+-} 13 days. We obtained new XMM-Newtonmore » and Chandra dedicated pointings that were triggered at the lowest and highest luminosities, respectively. From spectral fitting, the unabsorbed luminosities ranged from 1.9 Multiplication-Sign 10{sup 40} to 1.25 Multiplication-Sign 10{sup 42} erg s{sup -1}. We confirm here the detection of spectral state transitions from HLX-1 reminiscent of Galactic black hole binaries (GBHBs): at high luminosities, the X-ray spectrum showed a thermal state dominated by a disk component with temperatures of 0.26 keV at most, and at low luminosities the spectrum is dominated by a hard power law with a photon index in the range 1.4-2.1, consistent with a hard state. The source was also observed in a state consistent with the steep power-law state, with a photon index of {approx}3.5. In the thermal state, the luminosity of the disk component appears to scale with the fourth power of the inner disk temperature, which supports the presence of an optically thick, geometrically thin accretion disk. The low fractional variability (rms of 9% {+-} 9%) in this state also suggests the presence of a dominant disk. The spectral changes and long-term variability of the source cannot be explained by variations of the beaming angle and are not consistent with the source being in a super-Eddington accretion state as is proposed for most ULX sources with lower luminosities. All this

  5. Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirandola, Stefano; Mancini, Stefano; Vitali, David

    2003-12-01

    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.

  6. Sports Participation and Social Personality Variable of Students in Secondary Schools in Central Senatorial District of Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Edim, M. E.; Odok, E. A.

    2015-01-01

    The main thrust of this study was to investigate sports participation and social personality variable of students in secondary schools in Central Senatorial District of Cross River State, Nigeria. To achieve the purpose of this study, one hypothesis was formulated to guide the study. Literature review was carried out according to the variable of…

  7. Comparison of heart rate variability and pulse rate variability detected with photoplethysmography

    NASA Astrophysics Data System (ADS)

    Rauh, Robert; Limley, Robert; Bauer, Rainer-Dieter; Radespiel-Troger, Martin; Mueck-Weymann, Michael

    2004-08-01

    This study compares ear photoplethysmography (PPG) and electrocardiogram (ECG) in providing accurate heart beat intervals for use in calculations of heart rate variability (HRV, from ECG) or of pulse rate variability (PRV, from PPG) respectively. Simultaneous measurements were taken from 44 healthy subjects at rest during spontaneous breathing and during forced metronomic breathing (6/min). Under both conditions, highly significant (p > 0.001) correlations (1.0 > r > 0.97) were found between all evaluated common HRV and PRV parameters. However, under both conditions the PRV parameters were higher than HRV. In addition, we calculated the limits of agreement according to Bland and Altman between both techniques and found good agreement (< 10% difference) for heart rate and standard deviation of normal-to-normal intervals (SDNN), but only moderate (10-20%) or even insufficient (> 20%) agreement for other standard HRV and PRV parameters. Thus, PRV data seem to be acceptable for screening purposes but, at least at this state of knowledge, not for medical decision making. However, further studies are needed before more certain determination can be made.

  8. Eating Habits and Food Additive Intakes Are Associated with Emotional States Based on EEG and HRV in Healthy Korean Children and Adolescents.

    PubMed

    Kim, Jin Young; Kang, Hye Lim; Kim, Dae-Keun; Kang, Seung Wan; Park, Yoo Kyoung

    2017-07-01

    Recent study suggests that psychological issues and eating habits are closely related. In this study, we aimed to find the association between eating habits and intakes of artificial sweeteners with emotional states of schoolchildren using quantitatively analyzing objective biosignals. The study was conducted at the National Standard Reference Data Center for Korean EEG as a cross-sectional study. Three hundred eighteen healthy children who have not been diagnosed with neurologic or psychiatric disorders were evaluated (168 girls and 150 boys; mean age of 11.8 ± 3.6 years). Analysis indicators were a dietary intake checklist for children's nutrition-related behavior score (NBS), consisting of 19 items; food frequency questionnaires (FFQs), consisting of 76 items; the Child Depression Inventory (CDI); State-Trait Anxiety Inventory-State (STAI-S); State-Trait Anxiety Inventory-Trait (STAI-T); electroencephalograph (EEG); and heart rate variability (HRV). Higher scores on the CDI, STAI-S, and STAI-T indicate negative emotions, and these scores were significantly decreased from the first to the fourth quartiles. The HRV results showed that the standard deviation of all normal-to-normal (SDNN) intervals was significantly higher in the first quartile than in the fourth quartile (p < 0.05). The intakes of artificial sweeteners and processed foods such as hamburgers correlate with higher theta/beta ratios, and intakes of natural foods such as legumes and fruits correlate with lower theta/beta ratios (p < 0.05). From this result we confirmed a link between overall nutritional behavior, food additive intakes, and emotion in apparently healthy children and adolescents.

  9. Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.

    2017-12-01

    Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.

  10. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics

    PubMed Central

    Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.

    2016-01-01

    Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493

  11. An analysis of the relationship of seven selected variables to State Board Test Pool Examination performance of the University of Tennessee, Knoxville, College of Nursing.

    PubMed

    Sharp, T G

    1984-02-01

    The study was designed to determine whether any one of seven selected variables or a combination of the variables is predictive of performance on the State Board Test Pool Examination. The selected variables studied were: high school grade point average (HSGPA), The University of Tennessee, Knoxville, College of Nursing grade point average (GPA), and American College Test Assessment (ACT) standard scores (English, ENG; mathematics, MA; social studies, SS; natural sciences, NSC; composite, COMP). Data utilized were from graduates of the baccalaureate program of The University of Tennessee, Knoxville, College of Nursing from 1974 through 1979. The sample of 322 was selected from a total population of 572. The Statistical Analysis System (SAS) was designed to accomplish analysis of the predictive relationship of each of the seven selected variables to State Board Test Pool Examination performance (result of pass or fail), a stepwise discriminant analysis was designed for determining the predictive relationship of the strongest combination of the independent variables to overall State Board Test Pool Examination performance (result of pass or fail), and stepwise multiple regression analysis was designed to determine the strongest predictive combination of selected variables for each of the five subexams of the State Board Test Pool Examination. The selected variables were each found to be predictive of SBTPE performance (result of pass or fail). The strongest combination for predicting SBTPE performance (result of pass or fail) was found to be GPA, MA, and NSC.

  12. Genotypic variability-based genome-wide association study identifies non-additive loci HLA-C and IL12B for psoriasis.

    PubMed

    Wei, Wen-Hua; Massey, Jonathan; Worthington, Jane; Barton, Anne; Warren, Richard B

    2018-03-01

    Genome-wide association studies (GWASs) have identified a number of loci for psoriasis but largely ignored non-additive effects. We report a genotypic variability-based GWAS (vGWAS) that can prioritize non-additive loci without requiring prior knowledge of interaction types or interacting factors in two steps, using a mixed model to partition dichotomous phenotypes into an additive component and non-additive environmental residuals on the liability scale and then the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups genome widely. The vGWAS identified two genome-wide significant (P < 5.0e-08) non-additive loci HLA-C and IL12B that were also genome-wide significant in an accompanying GWAS in the discovery cohort. Both loci were statistically replicated in vGWAS of an independent cohort with a small sample size. HLA-C and IL12B were reported in moderate gene-gene and/or gene-environment interactions in several occasions. We found a moderate interaction with age-of-onset of psoriasis, which was replicated indirectly. The vGWAS also revealed five suggestive loci (P < 6.76e-05) including FUT2 that was associated with psoriasis with environmental aspects triggered by virus infection and/or metabolic factors. Replication and functional investigation are needed to validate the suggestive vGWAS loci.

  13. Recent changes in county-level corn yield variability in the United States from observations and crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially

  14. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2016-06-01

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.

  15. Contrasts in the Sensitivity of Community Calcification to Temporal Saturation State Variability Within Temperate and Tropical Marine Environments

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.

    2016-02-01

    Ongoing emissions of carbon dioxide (CO2) and invasion of part of this CO2 into the oceans are projected to lower the calcium carbonate saturation state. As a result, the ability of many marine organisms to calcify may be compromised, with significant impacts on ocean ecosystems throughout the 21st Century. In laboratory manipulations, calcifying organisms have exhibited reduced calcification under elevated pCO2 conditions. Consequently, in situ observations of the sensitivity of calcifying communities to natural saturation state variability are increasingly valued as they incorporate complex species interactions, and capture the carbonate chemistry conditions to which communities are acclimatized. Using intensive seawater sampling techniques we assess the community level sensitivity of calcification rates to natural temporal variability in the aragonite saturation state (Ωarag) at both a tropical coral reef and temperate intertidal study site. Both sites experiences large daily variation in Ωarag during low tide due to photosynthesis, respiration, and the time at which the sites are isolated from the open ocean. On hourly timescales, we find that community level rates of calcification have only a weak dependence on variability in Ωarag at the tropical study site. At the temperate study site, although limited Ωarag sensitivity is observed during the day, nighttime community calcification rates are found to be strongly influenced by variability in Ωarag, with greater dissolution rates at lower Ωarag levels. If the short-term sensitivity of community calcification to Ωarag described here is representative of the long-term sensitivity of marine ecosystems to ocean acidification, then one would expect temperate intertidal calcifying communities to be more vulnerable than tropical coral reef calcifying communities. In particular, reductions in net community calcification, in the temperate intertidal zone may be predominately due to the nocturnal impact of ocean

  16. 33 CFR 148.108 - What if a Federal or State agency or other interested party requests additional information?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... whether: (1) The information requested is essential for processing the license application; and (2) The... or other interested party requests additional information? 148.108 Section 148.108 Navigation and... requests additional information? (a) Any Federal or State agency or other interested person may recommend...

  17. 20 CFR 667.640 - What additional appeal processes or systems must a State have for the WIA program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What additional appeal processes or systems... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADMINISTRATIVE PROVISIONS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Grievance Procedures, Complaints, and State Appeals Processes § 667.640 What additional appeal...

  18. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  19. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  20. Effects of additional data on Bayesian clustering.

    PubMed

    Yamazaki, Keisuke

    2017-10-01

    Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    PubMed Central

    2010-01-01

    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations. PMID:21637591

  2. Motor Activity and Intra-Individual Variability According to Sleep-wake States in Preschool-aged Children with Iron-Deficiency Anemia in Infancy

    PubMed Central

    Angulo-Barroso, R.M.; Peirano, P.; Algarin, C.; Kaciroti, N.; Lozoff, B.

    2013-01-01

    Background A chronic or acute insult may affect the regulatory processes that guide motor and behavioral performance, leading to increased intra-individual variability (IIV). Increased variability is often interpreted as an indication of regulatory dysfunction. Iron plays an important role in the regulatory processes of the nervous system and affects motor activity. To our knowledge, no study has examined the long-lasting patterns and IIV of motor activity following iron-deficiency anemia in human infants. Aims This study compared 48-hour motor activity and variability in preschool-aged children with or without iron-deficiency anemia (IDA) in infancy. Methods Motor activity was recorded through actigraphs during two week-days in 47 4-year-old Chilean children (23 former IDA and 24 non-anemic in infancy). All were given oral iron as infants. Sleep-wake states were identified by means of automated software. The frequency of movement units per minute was determined for each waking/sleep state during the individual day and night periods; data were examined in blocks of 15 minutes. Analyses of mean frequency and duration and intra-individual variability were conducted using multivariate mixed models. Results For daytime sleep, former IDA children were more active without a difference in the total duration. They also spent less time awake throughout the individual day period. Motor activity intra-individual variability was higher in former IDA children. Conclusions The findings suggest that IDA in infancy sets the stage for long lasting dysfunction in the neural processes regulating sleep-wake states and spontaneous motor activity patterns. PMID:24041817

  3. Motor activity and intra-individual variability according to sleep-wake states in preschool-aged children with iron-deficiency anemia in infancy.

    PubMed

    Angulo-Barroso, R M; Peirano, P; Algarin, C; Kaciroti, N; Lozoff, B

    2013-12-01

    A chronic or acute insult may affect the regulatory processes that guide motor and behavioral performance, leading to increased intra-individual variability (IIV). Increased variability is often interpreted as an indication of regulatory dysfunction. Iron plays an important role in the regulatory processes of the nervous system and affects motor activity. To our knowledge, no study has examined the long-lasting patterns and IIV of motor activity following iron-deficiency anemia in human infants. This study compared 48-h motor activity and variability in preschool-aged children with or without iron-deficiency anemia (IDA) in infancy. Motor activity was recorded through actigraphs during two week-days in 47 4-year-old Chilean children (23 former IDA and 24 non-anemic in infancy). All were given oral iron as infants. Sleep-wake states were identified by means of automated software. The frequency of movement units per minute was determined for each waking/sleep state during the individual day and night periods; data were examined in blocks of 15 min. Analyses of mean frequency and duration and intra-individual variability were conducted using multivariate mixed models. For daytime sleep, former IDA children were more active without a difference in the total duration. They also spent less time awake throughout the individual day period. Motor activity intra-individual variability was higher in former IDA children. The findings suggest that IDA in infancy sets the stage for long lasting dysfunction in the neural processes regulating sleep-wake states and spontaneous motor activity patterns. © 2013.

  4. Suppression of chaos at slow variables by rapidly mixing fast dynamics

    NASA Astrophysics Data System (ADS)

    Abramov, R.

    2012-04-01

    One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.

  5. Additive Genetic Variability and the Bayesian Alphabet

    PubMed Central

    Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan

    2009-01-01

    The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397

  6. Bio-Social Variables as Predictors of Teacher Union Leaders' Adherence to Democratic Principles in Ogun State, Nigeria

    ERIC Educational Resources Information Center

    Fejoh, Johnson

    2016-01-01

    This study investigated the influence of bio-social variables - educational status, age and family socio-economic background on teacher union leaders' adherence to democratic principles in Ogun State of Nigeria. The study employed the ex-post-facto research design. Five hypotheses were generated and tested using an instrument titled "union…

  7. Race and Resting-State Heart Rate Variability in Brazilian Civil Servants and the Mediating Effects of Discrimination: An ELSA-Brasil Cohort Study.

    PubMed

    Kemp, Andrew H; Koenig, Julian; Thayer, Julian F; Bittencourt, Marcio S; Pereira, Alexandre C; Santos, Itamar S; Dantas, Eduardo M; Mill, José G; Chor, Dora; Ribeiro, Antonio L P; Benseñor, Isabela M; Lotufo, Paulo A

    2016-10-01

    African Americans are characterized by higher heart rate variability (HRV), a finding ostensibly associated with beneficial health outcomes. However, these findings are at odds with other evidence that blacks have worse cardiovascular outcomes. Here, we examine associations in a large cohort from the ELSA-Brasil study and determined whether these effects are mediated by discrimination. Three groups were compared on the basis of self-declared race: "black" (n = 2,020), "brown" (n = 3,502), and "white" (n = 6,467). Perceived discrimination was measured using a modified version of the Everyday Discrimination Scale. Resting-state HRV was extracted from 10-minute resting-state electrocardiograms. Racial differences in HRV were determined by regression analyses weighted by propensity scores, which controlled for potentially confounding variables including age, sex, education, and other health-related information. Nonlinear mediation analysis quantified the average total effect, comprising direct (race-HRV) and indirect (race-discrimination-HRV) pathways. Black participants displayed higher HRV relative to brown (Cohen's d = 0.20) and white participants (Cohen's d = 0.31). Brown relative to white participants also displayed a small but significantly higher HRV (Cohen's d = 0.14). Discrimination indirectly contributed to the effects of race on HRV. This large cohort from the Brazilian population shows that HRV is greatest in black, followed by brown, relative to white participants. The presence of higher HRV in these groups may reflect a sustained compensatory psychophysiological response to the adverse effects of discrimination. Additional research is needed to determine the health consequences of these differences in HRV across racial and ethnic groups.

  8. Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.

    PubMed

    Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M

    2018-05-30

    Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.

  9. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

    PubMed

    Chang, Catie; Glover, Gary H

    2010-03-01

    Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  10. Dimmable electronic ballasts by variable power density modulation technique

    NASA Astrophysics Data System (ADS)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  11. State of the art studies/FY87 : task 5 - increasing intersection capacity with additional through lanes

    DOT National Transportation Integrated Search

    1987-10-01

    A review of the literature and a state-of-the-practice survey were conducted of procedures relating to the addition of through lanes at intersections. The capacity and level of service change at the intersection is of interest, since the reduction in...

  12. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  13. An examination of the spatial variability of the United States surface water balance using the Budyko relationship for current and projected climates

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Abatzoglou, J. T.

    2017-12-01

    The spatial variability in the balance between surface runoff (Q) and evapotranspiration (ET) is critical for understanding water availability. The Budyko framework suggests that this balance is solely a function of aridity. Observed deviations from this framework for individual watersheds, however, can vary significantly, resulting in uncertainty in using the Budyko framework in ungauged catchments and under future climate and land use scenarios. Here, we model the spatial variability in the partitioning of precipitation into Q and ET using a set of climatic, physiographic, and vegetation metrics for 211 near-natural watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. Using a generalized additive model, we found that precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow explained 81.2% of the variability in ω. This ω model applied to the Budyko framework explained 97% of the spatial variability in long-term Q for an independent set of near-natural watersheds. The developed ω model was also used to estimate the entire CONUS surface water balance for both contemporary and mid-21st century conditions. The contemporary CONUS surface water balance compared favorably to more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western US. The Budyko framework using the modeled ω lends itself to an alternative approach for assessing the potential response of catchment water balance to climate change to complement other approaches.

  14. Optimization modeling of U.S. renewable electricity deployment using local input variables

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  15. Variability of Uncrossmatched Blood Use by Helicopter EMS Programs in the United States.

    PubMed

    Karl, Alyssa; Pham, Tiffany; Yanosky, Jeff D; Lubin, Jeffrey

    2016-01-01

    Some helicopter emergency medical services (HEMS) maintain an independent supply of blood for use during transport, although practice is variable and not well described. We aimed to characterize the blood-carrying practices by HEMS programs across the United States. Online surveys were sent to the leadership of the 261 HEMS programs nationwide listed in the 2011 Atlas and Database of Air Medical Services (ADAMS) database. We examined blood-carrying practices in aggregate, including typical transport time, proportion of scene transports, and local population density. A GIS (Geographic Information System) and multivariable logistic regression models were used to estimate the impact of characteristics of local practice on each program's decision to carry blood. A total of 235 (91%) programs responded to the survey, representing 857 of the 929 (92.2%) HEMS rotor wing aircraft nationwide. Fifty-nine (25.3%) programs independently carried blood. A higher proportion of interfacility transports (OR 1.023; 95% CI 1.010-1.036) and decreased local population density (OR 1.006; 95% CI 1.001-1.011) were associated with increased odds of carrying blood. Transport time (OR 1.006; 95% CI 0.991-1.020) and number of transports (OR 1.000; CI 1.000-1.000) were not associated with a program's blood carrying practices. There was no effect of local practices on a program's decision to carry blood (OR 1.002; 95% CI 0.980-1.026). There is great variability in the utilization of blood by HEMS programs in the United States. Programs that serve more rural areas and programs with a larger percentage of interfacility transports are more likely to independently carry blood.

  16. Additive effects of mean temperature, temperature variability, and chlorothalonil to red-eyed treefrog (Agalychnis callidryas) larvae.

    PubMed

    Alza, Carissa M; Donnelly, Maureen A; Whitfield, Steven M

    2016-12-01

    Amphibian populations are declining globally, and multiple anthropogenic stressors, including contamination by pesticides and shifting climates, are driving these declines. Climate change may increase average temperatures or increase temperature variability, either of which may affect the susceptibility of nontarget organisms to contaminants. Eight-day ecotoxicological assays were conducted with red-eyed treefrog (Agalychnis callidryas) larvae to test for additive and interactive effects of exposure to the fungicide chlorothalonil, average temperature, and temperature variability on tadpole growth and survival. Egg masses were collected from seasonal ponds at La Selva Biological Station in Costa Rica, and tadpoles were exposed to a series of chlorothalonil concentrations across a range of ecologically relevant mean temperatures (23.4-27.3 °C) and daily temperature fluctuations (1.1-9.9 °C). Survival was measured each day, and tadpole growth was measured at the end of each trial. Concentrations of chlorothalonil ≥60 µg/L reduced survival, although survival was not affected by mean temperature or daily temperature range, and there were no synergistic interactions between chlorothalonil and temperature regime on survival. Chlorothalonil suppressed tadpole growth at relatively low concentrations (∼15 µg/L). There were impacts of both average temperature and daily temperature range on tadpole growth, although there were no synergistic interactions between temperature regimes and chlorothalonil. The results should inform efforts to manage ecosystems impacted by multiple large-scale anthropogenic stressors as well as methods for the design of ecologically appropriate toxicology trials. Environ Toxicol Chem 2016;35:2998-3004. © 2016 SETAC. © 2016 SETAC.

  17. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de

    2016-06-21

    Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less

  18. Effect of normal impurities on anisotropic superconductors with variable density of states

    NASA Astrophysics Data System (ADS)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  19. Definitions of state variables and state space for brain-computer interface : Part 2. Extraction and classification of feature vectors.

    PubMed

    Freeman, Walter J

    2007-06-01

    The hypothesis is proposed that the central dynamics of the action-perception cycle has five steps: emergence from an existing macroscopic brain state of a pattern that predicts a future goal state; selection of a mesoscopic frame for action control; execution of a limb trajectory by microscopic spike activity; modification of microscopic cortical spike activity by sensory inputs; construction of mesoscopic perceptual patterns; and integration of a new macroscopic brain state. The basis is the circular causality between microscopic entities (neurons) and the mesoscopic and macroscopic entities (populations) self-organized by axosynaptic interactions. Self-organization of neural activity is bidirectional in all cortices. Upwardly the organization of mesoscopic percepts from microscopic spike input predominates in primary sensory areas. Downwardly the organization of spike outputs that direct specific limb movements is by mesoscopic fields constituting plans to achieve predicted goals. The mesoscopic fields in sensory and motor cortices emerge as frames within macroscopic activity. Part 1 describes the action-perception cycle and its derivative reflex arc qualitatively. Part 2 describes the perceptual limb of the arc from microscopic MSA to mesoscopic wave packets, and from these to macroscopic EEG and global ECoG fields that express experience-dependent knowledge in successive states. These macroscopic states are conceived to embed and control mesoscopic frames in premotor and motor cortices that are observed in local ECoG and LFP of frontoparietal areas. The fields sampled by ECoG and LFP are conceived as local patterns of neural activity in which trajectories of multiple spike activities (MSA) emerge that control limb movements. Mesoscopic frames are located by use of the analytic signal from the Hilbert transform after band pass filtering. The state variables in frames are measured to construct feature vectors by which to describe and classify frame patterns

  20. Interest of analyses of heart rate variability in the prevention of fatigue states in senior runners.

    PubMed

    Leti, Thomas; Bricout, Véronique A

    2013-01-01

    The use of heart rate variability (HRV) in the management of sport training is a practice which tends to spread, especially in order to prevent the occurrence of fatigue states. To estimate the HRV parameters obtained using a heart rate recording, according to different exercise impacts, and to make the link with the appearance of subjective fatigue. Ten senior runners, aged 51±5 years, were each monitored over a period of 12 weeks in different conditions: (i) after a resting period, (ii) after a day with training, (iii) after a day of competition and (iv) after a rest day. They also completed three questionnaires, to assess fatigue (SFMS), profile of mood states (POMS) and quality of sleep. The HRV indices (heart rate, LF (n.u.), HF (n.u.) and LF/HF) were significantly altered with the competitive impact, shifting toward a sympathetic predominance. After rest and recovery nights, the LF (n.u.) increased significantly with the competitive impact (62.1±15.2 and 66.9±11.6 vs. 76.0±10.7; p<0.05 respectively) whereas the HF (n.u.) decreased significantly (37.9±15.2 and 33.1±11.6 vs. 24.0±10.7; p<0.05 respectively). Positive correlations were found between fatigue and frequency domain indices and between fatigue and training impact. Autonomic nervous system modulation-fatigue relationships were significant, suggesting the potential use of HRV in follow-up and control of training. Furthermore, the addition of questionnaires constitutes complementary tools that allow to achieve a greater relevance and accuracy of the athletes' fitness and results. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Detection of quantum steering in multipartite continuous-variable Greenberger-Horne-Zeilinger-like states

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Xiang, Yu; He, Qiongyi; Gong, Qihuang

    2015-01-01

    The multipartite entangled state has drawn broad attention for both foundations of quantum mechanics and applications in quantum information processing. Here, we study the spatially separated N -partite continuous-variable Greenberger-Horne-Zeilinger-like states, which can be produced by a linear optical network with squeezed light and N -1 beamsplitters. We investigate the properties of multipartite Einstein-Podolsky-Rosen steering possessed by those states, and find that the steering of a given quantum mode is allowed when not less than half of the modes within the states take part in the steering group. This is certified by the detection of the correlation between position and momentum quadratures of the steered mode and a combination of quadratures of other modes inside the steering group. The steering is evidenced by the high correlation where the steering group can infer the quadratures of the steered mode to high precision, i.e., below the quantum limit for the position and momentum quadratures of the steered quantum mode. We also examine the influence of inefficiency on the multipartite steering, and derive the threshold of the loss tolerance. Furthermore, we discuss the collective N -partite steering induced by the asymmetric loss on beams, which exists when a given quantum mode can only be steered by all the remaining N -1 modes collaboratively. The present multipartite steering correlation may have potential applications in certain quantum information tasks where the issue of trust is important, such as one-sided device-independent quantum secret sharing.

  2. Body temperature variability (Part 2): masking influences of body temperature variability and a review of body temperature variability in disease.

    PubMed

    Kelly, Gregory S

    2007-03-01

    This is the second of a two-part review on body temperature variability. Part 1 discussed historical and modern findings on average body temperatures. It also discussed endogenous sources of temperature variability, including variations caused by site of measurement; circadian, menstrual, and annual biological rhythms; fitness; and aging. Part 2 reviews the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can be a significant source of body temperature variability. Body temperature variability findings in disease states are also reviewed.

  3. Operator’s Manual for Variable Weight, Variable C.G. Helmet Simulator

    DTIC Science & Technology

    1981-09-01

    fdoestify by block nufber) - A variable weight, variable CG helmet simulator has been designed to measure the effect of US Army headgear on muscle...any variable weights in the boxes, is 2.5 lb, slightly less than the weight of most quality crash helmets made by reputable manufacturers. The addition...of variable weights to the boxes can alter the center of gravity to simulate the effect of equipment attached to the out- side of a helmet. The

  4. Evaluating the underlying factors behind variable rate debt.

    PubMed

    McCue, Michael J; Kim, Tae Hyun Tanny

    2007-01-01

    Recent trends show a greater usage of variable rate debt among health care bond issues. In 2004, 63.4% of the total health care bonds issued were variable rate compared with 30.6% in 1995 (Fitch Ratings, 2005). The purpose of this study is to gain a better understanding of the underlying factors, credit spread, issue characteristics, and issuer factors behind why hospitals and health system borrowers select variable rate debt compared with fixed rate debt. From 2000 to 2004, this study sampled 230 newly issued tax-exempt bonds issued by acute care hospitals and health care systems that included both variable and fixed rate debt issues. Using a logistic regression model, hospitals with variable rate debt issues were assigned a value of 1, whereas hospitals with fixed rate debt issues were assigned a value of 0. This study found a positive association between bond insurance and variable rate debt and a negative association between callable feature and variable rate debt. Facilities located in certificate-of-need states that possessed higher case mix acuity, earned higher profit margins, generated higher debt service coverage, and held less debt were more likely to issue variable rate debt. Overall, hospital managers and board members of hospitals possessing a strong financial performance have an interest in utilizing variable rate debt to lower their cost of capital. In addition, this outcome may also reflect that investment bankers are doing a better job in educating senior hospital management about the interest rate savings benefit of variable rate compared with fixed rate debt.

  5. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    PubMed

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  6. Variability of hydrological droughts in the conterminous United States, 1951 through 2014

    USGS Publications Warehouse

    Austin, Samuel H.; Wolock, David M.; Nelms, David L.

    2018-02-22

    Spatial and temporal variability in the frequency, duration, and severity of hydrological droughts across the conterminous United States (CONUS) was examined using monthly mean streamflow measured at 872 sites from 1951 through 2014. Hydrological drought is identified as starting when streamflow falls below the 20th percentile streamflow value for 3 consecutive months and ending when streamflow remains above the 20th percentile streamflow value for 3 consecutive months. Mean drought frequency for all aggregated ecoregions in CONUS is 16 droughts per 100 years. Mean drought duration is 5 months, and mean drought severity is 39 percent on a scale ranging from 0 percent to 100 percent (with 100% being the most severe). Hydrological drought frequency is highest in the Western Mountains aggregated ecoregion and lowest in the Eastern Highlands, Northeast, and Southeast Plains aggregated ecoregions. Hydrological drought frequencies of 17 or more droughts per 100 years were found for the Central Plains, Southeast Coastal Plains, Western Mountains, and Western Xeric aggregated ecoregions. Drought duration and severity indicate spatial variability among the sites, but unlike drought frequency, do not show coherent spatial patterns. A comparison of an older period (1951–82) with a recent period (1983–2014) indicates few sites have statistically significant changes in drought frequency, drought duration, or drought severity at a 95-percent confidence level.

  7. Extremality of Gaussian quantum states.

    PubMed

    Wolf, Michael M; Giedke, Geza; Cirac, J Ignacio

    2006-03-03

    We investigate Gaussian quantum states in view of their exceptional role within the space of all continuous variables states. A general method for deriving extremality results is provided and applied to entanglement measures, secret key distillation and the classical capacity of bosonic quantum channels. We prove that for every given covariance matrix the distillable secret key rate and the entanglement, if measured appropriately, are minimized by Gaussian states. This result leads to a clearer picture of the validity of frequently made Gaussian approximations. Moreover, it implies that Gaussian encodings are optimal for the transmission of classical information through bosonic channels, if the capacity is additive.

  8. Variable spectra of active galaxies

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1988-01-01

    The analysis of EXOSAT spectra of active galaxies are presented. The objects examined for X-ray spectral variability were MR 2251-178 and 3C 120. The results of these investigations are described, as well as additional results on X-ray spectral variability related to EXOSAT observations of active galaxies. Additionally, the dipping X-ray source 4U1624-49 was also investigated.

  9. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  10. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  11. 42 CFR 493.645 - Additional fee(s) applicable to approved State laboratory programs and laboratories issued a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS General Administration § 493.645 Additional fee(s) applicable to approved State laboratory programs and... laboratory programs and laboratories issued a certificate of accreditation, certificate of waiver, or...

  12. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers

    PubMed Central

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  13. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States.

    PubMed

    Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon

    2018-05-18

    We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  14. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-01

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  15. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.

    PubMed

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-03

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  16. [The intelligence quotient and malnutrition. Iron deficiency and the lead concentration as confusing variables].

    PubMed

    Vega-Franco, L; Mejía, A M; Robles, B; Moreno, L; Pérez, Y

    1991-11-01

    This study gave us the opportunity to know the roles iron deficiency and the presence of lead in blood play, as confounding variables, in relation to the state of malnutrition and the intellect of those children. A sample of 169 school children were classified according to their state of nutrition, their condition in reference to serum iron and lead concentrations. In addition, their intelligence was evaluated. The results confirmed that those children with lower weights and heights registered lesser points of intelligence; in fact, iron deficiency cancels out the difference in favor of those taller and weighing more. Lead did not contribute as a confounding variable, but more than half of the children showed possible toxic levels of this metal.

  17. Fourier decomposition pulmonary MRI using a variable flip angle balanced steady-state free precession technique.

    PubMed

    Corteville, D M R; Kjïrstad, Å; Henzler, T; Zöllner, F G; Schad, L R

    2015-05-01

    Fourier decomposition (FD) is a noninvasive method for assessing ventilation and perfusion-related information in the lungs. However, the technique has a low signal-to-noise ratio (SNR) in the lung parenchyma. We present an approach to increase the SNR in both morphological and functional images. The data used to create functional FD images are usually acquired using a standard balanced steady-state free precession (bSSFP) sequence. In the standard sequence, the possible range of the flip angle is restricted due to specific absorption rate (SAR) limitations. Thus, using a variable flip angle approach as an optimization is possible. This was validated using measurements from a phantom and six healthy volunteers. The SNR in both the morphological and functional FD images was increased by 32%, while the SAR restrictions were kept unchanged. Furthermore, due to the higher SNR, the effective resolution of the functional images was increased visibly. The variable flip angle approach did not introduce any new transient artifacts, and blurring artifacts were minimized. Both a gain in SNR and an effective resolution gain in functional lung images can be obtained using the FD method in conjunction with a variable flip angle optimized bSSFP sequence. © 2014 Wiley Periodicals, Inc.

  18. Direct state tomography using continuous variable measuring device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xuanmin, E-mail: zhuxuanmin@xidian.edu.cn; Wei, Qun

    Compared with the conventional quantum state tomography (QST), the efficiency of the direct state tomography (DST) using weak value is very low. However, DST is easily manipulated in experiments. We modify the direct state tomography by using coupling-deformed observables. The modified direct state measurement is valid for arbitrarily large measurement strength. The optimal measurement strengths are obtained to attain the highest efficiency. The efficiency of DST is significantly improved in the modified strategy, and the reconstructed state has no inherent bias. The state reconstruction strategy investigated in this paper might be useful in actual experiments.

  19. Variability in opioid prescribing for children undergoing ambulatory surgery in the United States.

    PubMed

    Van Cleve, William C; Grigg, Eliot B

    2017-09-01

    We attempted to describe the opioid prescribing patterns for ambulatory pediatric surgery in the United States from 2007 to 2014. Retrospective database review. Operating room ambulatory encounters as determined by the Truven Health Marketscan Commercial Claims and Encounters database. A total of 929,874 ambulatory surgical encounters were identified in patients <18years of age and, of these, 439,286 encounters generated an analgesic prescription. N/A MEASUREMENTS: The analgesic prescription was described in terms of the type of opioid along with the inclusion of acetaminophen and/or NSAIDs. The probability of receiving a post-operative analgesic prescription increased with age, ranging from 18.2% of infants to 71.7% of teens. Acetaminophen with codeine (APAP/C) was the most common drug for infants (63.8%), while acetaminophen with hydrocodone (APAP/H) was the most common analgesic prescription for teens (53.6%). APAP/C and APAP/H were the predominant drugs used for all procedure types. Substantial variability in analgesic prescribing at the level of the procedure performed, both in terms of the probability of receiving a prescription and in which drugs were prescribed. We observed significant age and procedure-based variability in opioid prescribing following pediatric ambulatory surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The need to consider temporal variability when modelling exchange at the sediment-water interface

    USGS Publications Warehouse

    Rosenberry, Donald O.

    2011-01-01

    Most conceptual or numerical models of flows and processes at the sediment-water interface assume steady-state conditions and do not consider temporal variability. The steady-state assumption is required because temporal variability, if quantified at all, is usually determined on a seasonal or inter-annual scale. In order to design models that can incorporate finer-scale temporal resolution we first need to measure variability at a finer scale. Automated seepage meters that can measure flow across the sediment-water interface with temporal resolution of seconds to minutes were used in a variety of settings to characterize seepage response to rainfall, wind, and evapotranspiration. Results indicate that instantaneous seepage fluxes can be much larger than values commonly reported in the literature, although seepage does not always respond to hydrological processes. Additional study is needed to understand the reasons for the wide range and types of responses to these hydrologic and atmospheric events.

  1. Data for first NASA Atmospheric Variability Experiment (AVE 1). Part 1: Data tabulation. [rawindsonde data for eastern United States

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Smith, O. E.

    1973-01-01

    A tablulation is given of rawinsonde data for NASA's first Atmospheric Variability Experiment (AVE 1) conducted during the period February 19-22, 1964. Methods of data handling and processing, and estimates of error magnitudes are also given. Data taken on the AVE 1 project in 1964 enabled an analysis of a large sector of the eastern United States on a fine resolution time scale. This experiment was run in February 1964, and data were collected as a wave developed in the East Gulf on a frontal system which extended through the eastern part of the United States. The primary objective of AVE 1 was to investigate the variability of parameters in space and over time intervals of three hours, and to integrate the results into NASA programs which require this type of information. The results presented are those from one approach, and represent only a portion of the total research effort that can be accomplished.

  2. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  3. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Treesearch

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  4. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dsilva, Carmeline J., E-mail: cdsilva@princeton.edu; Talmon, Ronen, E-mail: ronen.talmon@yale.edu; Coifman, Ronald R., E-mail: coifman@math.yale.edu

    2013-11-14

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certainmore » simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.« less

  5. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    NASA Astrophysics Data System (ADS)

    Dsilva, Carmeline J.; Talmon, Ronen; Rabin, Neta; Coifman, Ronald R.; Kevrekidis, Ioannis G.

    2013-11-01

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certain simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.

  6. Habitat and Vegetation Variables Are Not Enough When Predicting Tick Populations in the Southeastern United States

    PubMed Central

    Trout Fryxell, R. T.; Moore, J. E.; Collins, M. D.; Kwon, Y.; Jean-Philippe, S. R.; Schaeffer, S. M.; Odoi, A.; Kennedy, M.; Houston, A. E.

    2015-01-01

    Two tick-borne diseases with expanding case and vector distributions are ehrlichiosis (transmitted by Amblyomma americanum) and rickettiosis (transmitted by A. maculatum and Dermacentor variabilis). There is a critical need to identify the specific habitats where each of these species is likely to be encountered to classify and pinpoint risk areas. Consequently, an in-depth tick prevalence study was conducted on the dominant ticks in the southeast. Vegetation, soil, and remote sensing data were used to test the hypothesis that habitat and vegetation variables can predict tick abundances. No variables were significant predictors of A. americanum adult and nymph tick abundance, and no clustering was evident because this species was found throughout the study area. For A. maculatum adult tick abundance was predicted by NDVI and by the interaction between habitat type and plant diversity; two significant population clusters were identified in a heterogeneous area suitable for quail habitat. For D. variabilis no environmental variables were significant predictors of adult abundance; however, D. variabilis collections clustered in three significant areas best described as agriculture areas with defined edges. This study identified few landscape and vegetation variables associated with tick presence. While some variables were significantly associated with tick populations, the amount of explained variation was not useful for predicting reliably where ticks occur; consequently, additional research that includes multiple sampling seasons and locations throughout the southeast are warranted. This low amount of explained variation may also be due to the use of hosts for dispersal, and potentially to other abiotic and biotic variables. Host species play a large role in the establishment, maintenance, and dispersal of a tick species, as well as the maintenance of disease cycles, dispersal to new areas, and identification of risk areas. PMID:26656122

  7. Risk assessment of groundwater level variability using variable Kriging methods

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  8. Ocean acidification state in western Antarctic surface waters: drivers and interannual variability

    NASA Astrophysics Data System (ADS)

    Mattsdotter Björk, M.; Fransson, A.; Chierici, M.

    2013-05-01

    Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO). The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT), total dissolved inorganic carbon (CT) and pH. Two of these parameters were used together with sea-surface temperature (SST), and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr) and calcite (ΩCa). Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a) on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932) and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about 20 yr sooner

  9. Influence of Hypoxia and Hypercapnia on Sleep State-Dependent Heart Rate Variability Behavior in Newborn Lambs

    PubMed Central

    Beuchée, Alain; Hernández, Alfredo I.; Duvareille, Charles; Daniel, David; Samson, Nathalie; Pladys, Patrick; Praud, Jean-Paul

    2012-01-01

    Study Objectives: Although hypercapnia and/or hypoxia are frequently present during chronic lung disease of infancy and have also been implicated in sudden infant death syndrome (SIDS), their effect on cardiac autonomic regulation remains unclear. The authors' goal is to test that hypercapnia and hypoxia alter sleep-wake cycle-dependent heart rate variability (HRV) in the neonatal period. Design: Experimental study measuring HRV during sleep states in lambs randomly exposed to hypercapnia, hypoxia, or air. Setting: University center for perinatal research in ovines (Sherbrooke, Canada). INSERM-university research unit for signal processing (Rennes, France). Participants: Six nonsedated, full-term lambs. Interventions: Each lamb underwent polysomnographic recordings while in a chamber flowed with either air or 21% O2 + 5% CO2 (hypercapnia) or 10% O2 + 0% CO2 (hypoxia) on day 3, 4, and 5 of postnatal age. Measurements and Results: Hypercapnia increased the time spent in wakefulness and hypoxia the time spent in quiet sleep (QS). The state of alertness was the major determinant of HRV characterized with linear or nonlinear methods. Compared with QS, active sleep (AS) was associated with an overall increase in HRV magnitude and short-term self-similarity and a decrease in entropy of cardiac cycle length in air. This AS-related HRV pattern persisted in hypercapnia and was even more pronounced in hypoxia. Conclusion: Enhancement of AS-related sympathovagal coactivation in hypoxia, together with increased heart rate regularity, may be evidence that AS + hypoxia represent a particularly vulnerable state in early life. This should be kept in mind when deciding the optimal arterial oxygenation target in newborns and when investigating the potential involvement of hypoxia in SIDS pathogenesis. Citation: Beuchée A; Hernández AI; Duvareille C; Daniel D; Samson N; Pladys P; Praud JP. Influence of hypoxia and hypercapnia on sleep state-dependent heart rate variability behavior

  10. 49 CFR 1155.23 - Additional requirements when filing after an unsatisfactory result from a State, local, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Procedures Governing Applications for a Land-Use-Exemption Permit § 1155.23 Additional requirements when... the facility. (a) When an applicant has previously sought permission from the applicable state, local... siting of the facility, the applicant may petition the Board to accept an application for a land-use...

  11. Person Re-Identification via Distance Metric Learning With Latent Variables.

    PubMed

    Sun, Chong; Wang, Dong; Lu, Huchuan

    2017-01-01

    In this paper, we propose an effective person re-identification method with latent variables, which represents a pedestrian as the mixture of a holistic model and a number of flexible models. Three types of latent variables are introduced to model uncertain factors in the re-identification problem, including vertical misalignments, horizontal misalignments and leg posture variations. The distance between two pedestrians can be determined by minimizing a given distance function with respect to latent variables, and then be used to conduct the re-identification task. In addition, we develop a latent metric learning method for learning the effective metric matrix, which can be solved via an iterative manner: once latent information is specified, the metric matrix can be obtained based on some typical metric learning methods; with the computed metric matrix, the latent variables can be determined by searching the state space exhaustively. Finally, extensive experiments are conducted on seven databases to evaluate the proposed method. The experimental results demonstrate that our method achieves better performance than other competing algorithms.

  12. [The functional state classification and evaluation of the stability level in mental loads based on the factor structure of heart rate variability parameters].

    PubMed

    Mashin, V A; Mashina, M N

    2004-12-01

    In the paper, outcomes of the researches devoted to factor analysis of heart rate variability parameters and definition of the most informative parameters for diagnostics of functional states and an evaluation of level of stability to mental loads, are presented. The factor structure of parameters, which unclude integral level of heart rate variability (1), balance between activity of vagus and brain cortical-limbic systems (2), integrated level of cardiovascular system functioning (3), is substantiated. Factor analysis outcomes have been used for construction of functional state classification, for their differential diagnostics, and for development and check of algorithm for evaluation of the stability level in mental loads.

  13. Attitude Towards Physics and Additional Mathematics Achievement Towards Physics Achievement

    ERIC Educational Resources Information Center

    Veloo, Arsaythamby; Nor, Rahimah; Khalid, Rozalina

    2015-01-01

    The purpose of this research is to identify the difference in students' attitude towards Physics and Additional Mathematics achievement based on gender and relationship between attitudinal variables towards Physics and Additional Mathematics achievement with achievement in Physics. This research focused on six variables, which is attitude towards…

  14. Optical variability properties of mini-BAL and NAL quasars

    NASA Astrophysics Data System (ADS)

    Horiuchi, Takashi; Misawa, Toru; Morokuma, Tomoki; Koyamada, Suzuka; Takahashi, Kazuma; Wada, Hisashi

    2016-08-01

    While narrow absorption lines (NALs) are relatively stable, broad absorption lines (BALs) and mini-BAL systems usually show violent time variability within a few years via a mechanism that is not yet understood. In this study, we examine the variable ionization state (VIS) scenario as a plausible mechanism, as previously suspected. Over three years, we performed photometric monitoring observations of four mini-BAL and five NAL quasars at zem ˜ 2.0-3.1 using the 105 cm Kiso Schmidt Telescope in u, g, and i bands. We also performed spectroscopic monitoring observation of one of our mini-BAL quasars (HS 1603+3820) using the 188 cm Okayama Telescope over the same period as the photometric observations. Our main results are as follows: (1) Structure function (SF) analysis revealed that the quasar UV flux variability over three years was not large enough to support the VIS scenario, unless the ionization condition of outflow gas is very low. (2) There was no crucial difference between the SFs of mini-BAL and NAL quasars. (3) The variability of the mini-BAL and quasar light curves was weakly synchronized with a small time delay for HS 1603+3820. These results suggest that the VIS scenario may need additional mechanisms such as variable shielding by X-ray warm absorbers.

  15. Noise enhanced stability of a metastable state containing coupled Brownian particles

    NASA Astrophysics Data System (ADS)

    Singh, R. K.

    2017-05-01

    Dynamics of coupled Brownian particles with color correlated additive Gaussian colored noises in a metastable state is analyzed to study the phenomenon of noise enhanced stability. The lifetime of such a metastable state is found to depend on the noise correlations and initial conditions. Dynamics of the slow variable is analyzed using the method of adiabatic elimination in the weak color limit.

  16. Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation

    PubMed Central

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul

    2013-01-01

    Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state

  17. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.

    PubMed

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M; Emmenegger, Yann; Franken, Paul

    2013-03-01

    Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Mouse sleep laboratory. Male mice. Sleep deprivation. The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.

  18. Integrating Ecosystem Carbon Dynamics into State-and-Transition Simulation Models of Land Use/Land Cover Change

    NASA Astrophysics Data System (ADS)

    Sleeter, B. M.; Daniel, C.; Frid, L.; Fortin, M. J.

    2016-12-01

    State-and-transition simulation models (STSMs) provide a general approach for incorporating uncertainty into forecasts of landscape change. Using a Monte Carlo approach, STSMs generate spatially-explicit projections of the state of a landscape based upon probabilistic transitions defined between states. While STSMs are based on the basic principles of Markov chains, they have additional properties that make them applicable to a wide range of questions and types of landscapes. A current limitation of STSMs is that they are only able to track the fate of discrete state variables, such as land use/land cover (LULC) classes. There are some landscape modelling questions, however, for which continuous state variables - for example carbon biomass - are also required. Here we present a new approach for integrating continuous state variables into spatially-explicit STSMs. Specifically we allow any number of continuous state variables to be defined for each spatial cell in our simulations; the value of each continuous variable is then simulated forward in discrete time as a stochastic process based upon defined rates of change between variables. These rates can be defined as a function of the realized states and transitions of each cell in the STSM, thus providing a connection between the continuous variables and the dynamics of the landscape. We demonstrate this new approach by (1) developing a simple IPCC Tier 3 compliant model of ecosystem carbon biomass, where the continuous state variables are defined as terrestrial carbon biomass pools and the rates of change as carbon fluxes between pools, and (2) integrating this carbon model with an existing LULC change model for the state of Hawaii, USA.

  19. Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: an ELSA-Brasil cohort baseline study.

    PubMed

    Kemp, Andrew H; Brunoni, Andre R; Santos, Itamar S; Nunes, Maria A; Dantas, Eduardo M; Carvalho de Figueiredo, Roberta; Pereira, Alexandre C; Ribeiro, Antonio L P; Mill, José G; Andreão, Rodrigo V; Thayer, Julian F; Benseñor, Isabela M; Lotufo, Paulo A

    2014-12-01

    Increases in resting-state heart rate and decreases in its variability are associated with substantial morbidity and mortality, yet contradictory findings have been reported for the effects of the mood and anxiety disorders and of antidepressants. The authors investigated heart rate and heart rate variability in a large cohort from Brazil, using propensity score weighting, a relatively novel method, to control for numerous potential confounders. A total of 15,105 participants were recruited in the Brazilian Longitudinal Study of Adult Health. Mood and anxiety disorders were ascertained using the Portuguese version of the Clinical Interview Schedule-Revised. Heart rate and its variability were extracted from 10-minute resting-state electrocardiograms. Regressions weighted by propensity scores were carried out to compare participants with and without depressive or anxiety disorders, as well as users and non-users of antidepressants, on heart rate and heart rate variability. Use of antidepressants was associated with increases in heart rate and decreases in its variability. Effects were most pronounced for the tricyclic antidepressants (Cohen's d, 0.72-0.81), followed by serotonin and norepinephrine reuptake inhibitors (Cohen's d, 0.42-0.95) and other antidepressants (Cohen's d, 0.37-0.40), relative to participants not on antidepressants. Only participants with generalized anxiety disorder showed robust, though small, increases in heart rate and decreases in its variability after propensity score weighting. The findings may, in part, underpin epidemiological findings of increased risk for cardiovascular morbidity and mortality. Many factors that have an adverse impact on cardiac activity were controlled for in this study, highlighting the importance of cardiovascular risk reduction strategies. Further study is needed to examine whether, how, and when such effects contribute to morbidity and mortality.

  20. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  1. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States

    NASA Astrophysics Data System (ADS)

    Lute, A. C.; Abatzoglou, J. T.; Hegewisch, K. C.

    2015-02-01

    Projected warming will have significant impacts on snowfall accumulation and melt, with implications for water availability and management in snow-dominated regions. Changes in snowfall extremes are confounded by projected increases in precipitation extremes. Downscaled climate projections from 20 global climate models were bias-corrected to montane Snowpack Telemetry stations across the western United States to assess mid-21st century changes in the mean and variability of annual snowfall water equivalent (SFE) and extreme snowfall events, defined by the 90th percentile of cumulative 3 day SFE amounts. Declines in annual SFE and number of snowfall days were projected for all stations. Changes in the magnitude of snowfall event quantiles were sensitive to historical winter temperature. At climatologically cooler locations, such as in the Rocky Mountains, changes in the magnitude of snowfall events mirrored changes in the distribution of precipitation events, with increases in extremes and less change in more moderate events. By contrast, declines in snowfall event magnitudes were found for all quantiles in warmer locations. Common to both warmer and colder sites was a relative increase in the magnitude of snowfall extremes compared to annual SFE and a larger fraction of annual SFE from snowfall extremes. The coefficient of variation of annual SFE increased up to 80% in warmer montane regions due to projected declines in snowfall days and the increased contribution of snowfall extremes to annual SFE. In addition to declines in mean annual SFE, more frequent low-snowfall years and less frequent high-snowfall years were projected for every station.

  2. Defining Autism: Variability in State Education Agency Definitions of and Evaluations for Autism Spectrum Disorders

    PubMed Central

    Pennington, Malinda L.; Cullinan, Douglas; Southern, Louise B.

    2014-01-01

    In light of the steady rise in the prevalence of students with autism, this study examined the definition of autism published by state education agencies (SEAs), as well as SEA-indicated evaluation procedures for determining student qualification for autism. We compared components of each SEA definition to aspects of autism from two authoritative sources: Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) and Individuals with Disabilities Education Improvement Act (IDEA-2004). We also compared SEA-indicated evaluation procedures across SEAs to evaluation procedures noted in IDEA-2004. Results indicated that many more SEA definitions incorporate IDEA-2004 features than DSM-IV-TR features. However, despite similar foundations, SEA definitions of autism displayed considerable variability. Evaluation procedures were found to vary even more across SEAs. Moreover, within any particular SEA there often was little concordance between the definition (what autism is) and evaluation procedures (how autism is recognized). Recommendations for state and federal policy changes are discussed. PMID:24987527

  3. VIEW TO NORTHEAST OF c19441950 c19441950 POSTU.S. RADIUM ADDITION ADDITIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTHEAST OF c1944-1950 c1944-1950 POST-U.S. RADIUM ADDITION ADDITIONS TO PAINT APPLICATION BUILDING (RIGHT) AND CRYSTALLIZATION LABORATORY (LEFT) - United States Radium Corporation, 422-432 Alden Street, Orange, Essex County, NJ

  4. Violation of Bell's Inequality Using Continuous Variable Measurements

    NASA Astrophysics Data System (ADS)

    Thearle, Oliver; Janousek, Jiri; Armstrong, Seiji; Hosseini, Sara; Schünemann Mraz, Melanie; Assad, Syed; Symul, Thomas; James, Matthew R.; Huntington, Elanor; Ralph, Timothy C.; Lam, Ping Koy

    2018-01-01

    A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bell's inequality using continuous variable quadrature measurements. By creating a four-mode entangled state with homodyne detection, we recorded a clear violation with a Bell value of B =2.31 ±0.02 . This opens new possibilities for using continuous variable states for device independent quantum protocols.

  5. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    PubMed

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    NASA Astrophysics Data System (ADS)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  7. Variability in State-Based Recommendations for Management of Alpha Thalassemia Trait and Silent Carrier Detected on the Newborn Screen.

    PubMed

    Fogel, Benjamin N; Nguyen, Hong Loan T; Smink, Gayle; Sekhar, Deepa L

    2018-04-01

    We conducted an inventory of state-based recommendations for follow-up of alpha thalassemia silent carrier and trait identified on newborn screen. We found wide variability in the nature and timing of these recommendations. We recommend a standardized recommendation to guide pediatricians in evidenced-based care for this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 45 CFR 400.106 - Additional services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES REFUGEE RESETTLEMENT PROGRAM Refugee Medical Assistance Scope of Medical Services § 400.106 Additional services. If a State or local jurisdiction provides additional medical services beyond the scope of the State's Medicaid program to destitute residents of the...

  9. The Effect of Three Cognitive Variables on Students' Understanding of the Particulate Nature of Matter and Its Changes of State

    ERIC Educational Resources Information Center

    Tsitsipis, Georgios; Stamovlasis, Dimitrios; Papageorgiou, George

    2010-01-01

    In this study, students' understanding of the structure of matter and its changes of state such as melting, evaporation, boiling, and condensation was investigated in relation to three cognitive variables: logical thinking (LTh), field dependence/independence, and convergence/divergence dimension. The study took place in Greece with the…

  10. A Quantitative Examination of the Influence of Non-Instructional Variables on Meeting State Accountability Standards

    ERIC Educational Resources Information Center

    Newman, Lisa D.

    2017-01-01

    Since the 1990's, schools across the United States have been held accountable for increased student learning. Increased use of growth-based accountability models and a lack of clarity on what each model measures have resulted in a need for additional research focused on the real-world implications for teacher agency and school accountability. The…

  11. Occupancy estimation and modeling with multiple states and state uncertainty

    USGS Publications Warehouse

    Nichols, J.D.; Hines, J.E.; MacKenzie, D.I.; Seamans, M.E.; Gutierrez, R.J.

    2007-01-01

    The distribution of a species over space is of central interest in ecology, but species occurrence does not provide all of the information needed to characterize either the well-being of a population or the suitability of occupied habitat. Recent methodological development has focused on drawing inferences about species occurrence in the face of imperfect detection. Here we extend those methods by characterizing occupied locations by some additional state variable ( e. g., as producing young or not). Our modeling approach deals with both detection probabilities,1 and uncertainty in state classification. We then use the approach with occupancy and reproductive rate data from California Spotted Owls (Strix occidentalis occidentalis) collected in the central Sierra Nevada during the breeding season of 2004 to illustrate the utility of the modeling approach. Estimates of owl reproductive rate were larger than naive estimates, indicating the importance of appropriately accounting for uncertainty in detection and state classification.

  12. Spatiotemporal Co-variability of Surface Climate for Renewable Energy across the Contiguous United States: Role of the North Atlantic Subtropical High

    NASA Astrophysics Data System (ADS)

    Doering, K.; Steinschneider, S.

    2017-12-01

    The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.

  13. Update on the NSF PAARE Program at SC State

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Ajello, Marco; Brittain, Sean D.; Cash, Jennifer; Hartmann, Dieter; Ho, Shirley; Howell, Steve B.; King, Jeremy R.; Leising, Mark D.; Smith, Daniel M.

    2017-01-01

    We report on results from our NSF PAARE program during Year 2 of the project. Our partnership under this PAARE award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) as well as individual investigators at NASA Ames and Carnegie Mellon University. Our recent work on variable and peculiar stars, work with the Kepler Observatory and our educational products in cosmology for non-STEM majors will be presented. We have successfully piloted sharing our teaching resources by offering an upper-level astrophysics course taught at Clemson via video conferencing , allowing a graduating senior from SC State to take a course not available through his home institution. Additionally, we are working on a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Our curriculum work includes new web-based cosmology activities and laboratory experiments. SC State undergraduates are reporting at this conference on their work with the light curves of semiregular variables using Kepler data. Additionally, we are heavily involved in the Citizen CATE Experiment. A PAARE scholarship student from SC State and the PAARE PI traveled to Indonesia for the March 2016 solar eclipse. Their results are also being presented elsewhere at this conference (see Myles McKay’s poster). Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Additional support has been provided by the South Carolina Space Grant Consortium and from NASA to SC State under awards NNX11AB82G and NNX13AC24G. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu

  14. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  15. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Wang, Tao; Li, Huasheng; Zhou, Yingming; Zeng, Guihua

    2016-09-01

    We propose and experimentally demonstrate a continuous-variable quantum key distribution (CV-QKD) protocol using dual-phase-modulated coherent states. We show that the modulation scheme of our protocol works equivalently to that of the Gaussian-modulated coherent-states (GMCS) protocol, but shows better experimental feasibility in the plug-and-play configuration. Besides, it waives the necessity of propagation of a local oscillator (LO) between legitimate users and generates a real local LO for quantum measurement. Our protocol is proposed independent of the one-way GMCS QKD without sending a LO [Opt. Lett. 40, 3695 (2015), 10.1364/OL.40.003695; Phys. Rev. X 5, 041009 (2015), 10.1103/PhysRevX.5.041009; Phys. Rev. X 5, 041010 (2015), 10.1103/PhysRevX.5.041010]. In those recent works, the system stability will suffer the impact of polarization drifts induced by environmental perturbations, and two independent frequency-locked laser sources are necessary to achieve reliable coherent detection. In the proposed protocol, these previous problems can be resolved. We derive the security bounds for our protocol against collective attacks, and we also perform a proof-of-principle experiment to confirm the utility of our proposal in real-life applications. Such an efficient scheme provides a way of removing the security loopholes associated with the transmitting LO, which have been a notoriously hard problem in continuous-variable quantum communication.

  16. Affected States soft independent modeling by class analogy from the relation between independent variables, number of independent variables and sample size.

    PubMed

    Kanık, Emine Arzu; Temel, Gülhan Orekici; Erdoğan, Semra; Kaya, Irem Ersöz

    2013-03-01

    The aim of study is to introduce method of Soft Independent Modeling of Class Analogy (SIMCA), and to express whether the method is affected from the number of independent variables, the relationship between variables and sample size. Simulation study. SIMCA model is performed in two stages. In order to determine whether the method is influenced by the number of independent variables, the relationship between variables and sample size, simulations were done. Conditions in which sample sizes in both groups are equal, and where there are 30, 100 and 1000 samples; where the number of variables is 2, 3, 5, 10, 50 and 100; moreover where the relationship between variables are quite high, in medium level and quite low were mentioned. Average classification accuracy of simulation results which were carried out 1000 times for each possible condition of trial plan were given as tables. It is seen that diagnostic accuracy results increase as the number of independent variables increase. SIMCA method is a method in which the relationship between variables are quite high, the number of independent variables are many in number and where there are outlier values in the data that can be used in conditions having outlier values.

  17. Correspondence between EQ-5D health state classifications and EQ VAS scores.

    PubMed

    Whynes, David K

    2008-11-07

    The EQ-5D health-related quality of life instrument comprises a health state classification followed by a health evaluation using a visual analogue scale (VAS). The EQ-5D has been employed frequently in economic evaluations, yet the relationship between the two parts of the instrument remains ill-understood. In this paper, we examine the correspondence between VAS scores and health state classifications for a large sample, and identify variables which contribute to determining the VAS scores independently of the health states as classified. A UK trial of management of low-grade abnormalities detected on screening for cervical pre-cancer (TOMBOLA) provided EQ-5D data for over 3,000 women. Information on distress and multi-dimensional health locus of control had been collected using other instruments. A linear regression model was fitted, with VAS score as the dependent variable. Independent variables comprised EQ-5D health state classifications, distress, locus of control, and socio-demographic characteristics. Equivalent EQ-5D and distress data, collected at twelve months, were available for over 2,000 of the women, enabling us to predict changes in VAS score over time from changes in EQ-5D classification and distress. In addition to EQ-5D health state classification, VAS score was influenced by the subject's perceived locus of control, and by her age, educational attainment, ethnic origin and smoking behaviour. Although the EQ-5D classification includes a distress dimension, the independent measure of distress was an additional determinant of VAS score. Changes in VAS score over time were explained by changes in both EQ-5D severities and distress. Women allocated to the experimental management arm of the trial reported an increase in VAS score, independently of any changes in health state and distress. In this sample, EQ VAS scores were predictable from the EQ-5D health state classification, although there also existed other group variables which contributed

  18. Analysis of variability in additive manufactured open cell porous structures.

    PubMed

    Evans, Sam; Jones, Eric; Fox, Pete; Sutcliffe, Chris

    2017-06-01

    In this article, a novel method of analysing build consistency of additively manufactured open cell porous structures is presented. Conventionally, methods such as micro computed tomography or scanning electron microscopy imaging have been applied to the measurement of geometric properties of porous material; however, high costs and low speeds make them unsuitable for analysing high volumes of components. Recent advances in the image-based analysis of open cell structures have opened up the possibility of qualifying variation in manufacturing of porous material. Here, a photogrammetric method of measurement, employing image analysis to extract values for geometric properties, is used to investigate the variation between identically designed porous samples measuring changes in material thickness and pore size, both intra- and inter-build. Following the measurement of 125 samples, intra-build material thickness showed variation of ±12%, and pore size ±4% of the mean measured values across five builds. Inter-build material thickness and pore size showed mean ranges higher than those of intra-build, ±16% and ±6% of the mean material thickness and pore size, respectively. Acquired measurements created baseline variation values and demonstrated techniques suitable for tracking build deviation and inspecting additively manufactured porous structures to indicate unwanted process fluctuations.

  19. S5 0716+714: GeV variability study

    DOE PAGES

    Rani, B.; Krichbaum, T. P.; Lott, B.; ...

    2013-02-19

    The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV–300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. In addition, we also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from amore » simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. Finally, we discuss several possible scenarios to explain the observed spectral break.« less

  20. S5 0716+714: GeV variability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, B.; Krichbaum, T. P.; Lott, B.

    The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV–300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. In addition, we also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from amore » simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. Finally, we discuss several possible scenarios to explain the observed spectral break.« less

  1. Variable spreading layer in 4U 1608-52 during thermonuclear X-ray bursts in the soft state

    NASA Astrophysics Data System (ADS)

    Kajava, J. J. E.; Koljonen, K. I. I.; Nättilä, J.; Suleimanov, V.; Poutanen, J.

    2017-11-01

    Thermonuclear (type-I) X-ray bursts, observed from neutron star (NS) low-mass X-ray binaries (LMXB), provide constraints on NS masses and radii and consequently the equation of state of NS cores. In such analyses, various assumptions are made without knowing if they are justified. We have analysed X-ray burst spectra from the LMXB 4U 1608-52, with the aim of studying how the different persistent emission components react to the bursts. During some bursts in the soft spectral state we find that there are two variable components: one corresponding to the burst blackbody component and another optically thick Comptonized component. We interpret the latter as the spreading layer between the NS surface and the accretion disc, which is not present during the hard-state bursts. We propose that the spectral changes during the soft-state bursts are driven by the spreading layer that could cover almost the entire NS in the brightest phases due to the enhanced radiation pressure support provided by the burst, and that the layer subsequently returns to its original state during the burst decay. When deriving the NS mass and radius using the soft-state bursts two assumptions are therefore not met: the NS is not entirely visible and the burst emission is reprocessed in the spreading layer, causing distortions of the emitted spectrum. For these reasons, the NS mass and radius constraints using the soft-state bursts are different compared to the ones derived using the hard-state bursts.

  2. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  3. On the primary variable switching technique for simulating unsaturated-saturated flows

    NASA Astrophysics Data System (ADS)

    Diersch, H.-J. G.; Perrochet, P.

    Primary variable switching appears as a promising numerical technique for variably saturated flows. While the standard pressure-based form of the Richards equation can suffer from poor mass balance accuracy, the mixed form with its improved conservative properties can possess convergence difficulties for dry initial conditions. On the other hand, variable switching can overcome most of the stated numerical problems. The paper deals with variable switching for finite elements in two and three dimensions. The technique is incorporated in both an adaptive error-controlled predictor-corrector one-step Newton (PCOSN) iteration strategy and a target-based full Newton (TBFN) iteration scheme. Both schemes provide different behaviors with respect to accuracy and solution effort. Additionally, a simplified upstream weighting technique is used. Compared with conventional approaches the primary variable switching technique represents a fast and robust strategy for unsaturated problems with dry initial conditions. The impact of the primary variable switching technique is studied over a wide range of mostly 2D and partly difficult-to-solve problems (infiltration, drainage, perched water table, capillary barrier), where comparable results are available. It is shown that the TBFN iteration is an effective but error-prone procedure. TBFN sacrifices temporal accuracy in favor of accelerated convergence if aggressive time step sizes are chosen.

  4. The Current State of Additive Manufacturing in Wind Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Margaret; Palmer, Sierra; Lee, Dominic

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% ofmore » the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).« less

  5. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  6. Self Efficacy and Some Demographic Variables as Predictors of Occupational Stress among Primary School Teachers in Delta State of Nigeria

    ERIC Educational Resources Information Center

    Akpochafo, G. O.

    2014-01-01

    This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…

  7. Late Holocene sea level variability and Atlantic Meridional Overturning Circulation

    USGS Publications Warehouse

    Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.

    2014-01-01

    Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.

  8. Extreme Variables in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to far-infrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with ΔK > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| < 1° yields 816 high amplitude variables, which include known variables of different classes such as high mass X-ray binaries, Novae and eclipsing binaries among others. Remarkably, 65% of the sample are found concentrated towards areas of star formation, similar to the results from GPS. In both surveys, sources in SFRs show spectral energy distributions (SEDs) that support classification as YSOs. This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow-up allows us to confirm the pre-main sequence nature of several GPS and VVV Objects. Most objects in both samples show spectroscopic signatures that can be attributed to YSOs undergoing high states of accretion, such as veiling of photospheric features and CO emission, or show FUor-like spectra. We also find a large fraction of objects with 2.12 μm H2 emission that

  9. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  10. Affected States Soft Independent Modeling by Class Analogy from the Relation Between Independent Variables, Number of Independent Variables and Sample Size

    PubMed Central

    Kanık, Emine Arzu; Temel, Gülhan Orekici; Erdoğan, Semra; Kaya, İrem Ersöz

    2013-01-01

    Objective: The aim of study is to introduce method of Soft Independent Modeling of Class Analogy (SIMCA), and to express whether the method is affected from the number of independent variables, the relationship between variables and sample size. Study Design: Simulation study. Material and Methods: SIMCA model is performed in two stages. In order to determine whether the method is influenced by the number of independent variables, the relationship between variables and sample size, simulations were done. Conditions in which sample sizes in both groups are equal, and where there are 30, 100 and 1000 samples; where the number of variables is 2, 3, 5, 10, 50 and 100; moreover where the relationship between variables are quite high, in medium level and quite low were mentioned. Results: Average classification accuracy of simulation results which were carried out 1000 times for each possible condition of trial plan were given as tables. Conclusion: It is seen that diagnostic accuracy results increase as the number of independent variables increase. SIMCA method is a method in which the relationship between variables are quite high, the number of independent variables are many in number and where there are outlier values in the data that can be used in conditions having outlier values. PMID:25207065

  11. Experimental investigation of terahertz quantum cascade laser with variable barrier heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu

    2014-04-28

    We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less

  12. Additions to the Flora of Cleveland County, Arkansas: Collections From Moro Bottoms Natural Area, A State-Protected Old-Growth Bottomland Hardwood Forest

    Treesearch

    Danny Skojac; Margaret S. Devall; Bernard R. Parresol

    2003-01-01

    An annotated list of 38 additions to the vascular flora of Cleveland County, Arkansas is presented. The additions presented were collected from Moro Bottoms Natural Area, a state-protected old-growth bottomland hardwood forest located in the northwest region of the county.

  13. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  14. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-02-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  15. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2018-01-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained

  16. Additive Effects of Cointoxicants in Single-Opioid Induced Deaths

    PubMed Central

    Sorg, Marcella H.; Long, D. Leann; Abate, Marie A.; Kaplan, James A.; Kraner, James C.; Greenwald, Margaret S.; Andrew, Thomas A.; Shapiro, Steven L.; Wren, Jamie A.

    2017-01-01

    A forensic drug database (FDD) was used to capture comprehensive data from all drug-related deaths in West Virginia, with deaths also included from the northern New England states of Maine, Vermont, and New Hampshire. All four states serve predominantly rural populations under two million and all have similar state medical examiner systems that employ statewide uniform death certification policies and practices. This study focused on 1482 single opioid deaths (fentanyl, hydrocodone, methadone, and oxycodone) in the FDD from 2007–2011. We modeled relationships between the opioid concentrations and the presence or absence of the following commonly occurring non-opioid cointoxicants: benzodiazepines (alprazolam and diazepam), alcohol, tricyclic antidepressants, selective serotonin reuptake inhibitors, and diphenhydramine. Additional covariates of state, age, body mass index, and sex were included. Results showed that the presence of alcohol, benzodiazepines, and antidepressants were each associated with statistically significant lower concentrations of some but not all of the opioids studied, which may obscure the interpretation of postmortem toxicology results alone. Fentanyl concentrations appeared to be the least associated with the presence or absence of the variables studied, and cointoxicant alcohol appeared to be associated with lower concentrations in opioid concentrations than were most of the other factors in the model studied. These findings underscore the importance of documenting all potential cointoxicants in opioid-related deaths. PMID:29399239

  17. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.

    PubMed

    Dimitriev, Dimitriy A; Saperova, Elena V; Dimitriev, Aleksey D

    2016-01-01

    Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA. Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.

  18. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students

    PubMed Central

    Dimitriev, Aleksey D.

    2016-01-01

    Objectives Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. Methods A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger’s State-Trait Anxiety Inventory was used to assess the level of SA. Results Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. Conclusions The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation. PMID:26807793

  19. Vegetation regulation on streamflow intra-annual variability through adaption to climate variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Li, Hongyi; Li, Shuai

    2015-12-16

    This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability, but in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index asmore » a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions.« less

  20. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    PubMed

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  1. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    NASA Astrophysics Data System (ADS)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  2. Back to Pupillometry: How Cortical Network State Fluctuations Tracked by Pupil Dynamics Could Explain Neural Signal Variability in Human Cognitive Neuroscience

    PubMed Central

    2017-01-01

    Abstract The mammalian thalamocortical system generates intrinsic activity reflecting different states of excitability, arising from changes in the membrane potentials of underlying neuronal networks. Fluctuations between these states occur spontaneously, regularly, and frequently throughout awake periods and influence stimulus encoding, information processing, and neuronal and behavioral responses. Changes of pupil size have recently been identified as a reliable marker of underlying neuronal membrane potential and thus can encode associated network state changes in rodent cortex. This suggests that pupillometry, a ubiquitous measure of pupil dilation in cognitive neuroscience, could be used as an index for network state fluctuations also for human brain signals. Considering this variable may explain task-independent variance in neuronal and behavioral signals that were previously disregarded as noise. PMID:29379876

  3. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  4. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reducedmore » to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.« less

  5. Entropy as a collective variable

    NASA Astrophysics Data System (ADS)

    Parrinello, Michele

    Sampling complex free energy surfaces that exhibit long lived metastable states separated by kinetic bottlenecks is one of the most pressing issues in the atomistic simulations of matter. Not surprisingly many solutions to this problem have been suggested. Many of them are based on the identification of appropriate collective variables that span the manifold of the slow varying modes of the system. While much effort has been put in devising and even constructing on the fly appropriate collective variables there is still a cogent need of introducing simple, generic, physically transparent, and yet effective collective variables. Motivated by the physical observation that in many case transitions between one metastable state and another result from a trade off between enthalpy and entropy we introduce appropriate collective variables that are able to represent in a simple way these two physical properties. We use these variables in the context of the recently introduced variationally enhanced sampling and apply it them with success to the simulation of crystallization from the liquid and to conformational transitions in protein. Department of Chemistry and Applied Biosciences, ETH Zurich, and Facolta' di Informatica, Istituto di Scienze Computazionali, Universita' della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland.

  6. Additional Samples: Where They Should Be Located

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilger, G. G., E-mail: jfelipe@ufrgs.br; Costa, J. F. C. L.; Koppe, J. C.

    2001-09-15

    Information for mine planning requires to be close spaced, if compared to the grid used for exploration and resource assessment. The additional samples collected during quasimining usually are located in the same pattern of the original diamond drillholes net but closer spaced. This procedure is not the best in mathematical sense for selecting a location. The impact of an additional information to reduce the uncertainty about the parameter been modeled is not the same everywhere within the deposit. Some locations are more sensitive in reducing the local and global uncertainty than others. This study introduces a methodology to select additionalmore » sample locations based on stochastic simulation. The procedure takes into account data variability and their spatial location. Multiple equally probable models representing a geological attribute are generated via geostatistical simulation. These models share basically the same histogram and the same variogram obtained from the original data set. At each block belonging to the model a value is obtained from the n simulations and their combination allows one to access local variability. Variability is measured using an uncertainty index proposed. This index was used to map zones of high variability. A value extracted from a given simulation is added to the original data set from a zone identified as erratic in the previous maps. The process of adding samples and simulation is repeated and the benefit of the additional sample is evaluated. The benefit in terms of uncertainty reduction is measure locally and globally. The procedure showed to be robust and theoretically sound, mapping zones where the additional information is most beneficial. A case study in a coal mine using coal seam thickness illustrates the method.« less

  7. Exhaustive Search for Sparse Variable Selection in Linear Regression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato

    2018-04-01

    We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.

  8. Contextual Variability in Free Recall

    ERIC Educational Resources Information Center

    Lohnas, Lynn J.; Polyn, Sean M.; Kahana, Michael J.

    2011-01-01

    According to contextual-variability theory, experiences encoded at different times tend to be associated with different contextual states. The gradual evolution of context implies that spaced items will be associated with more distinct contextual states, and thus have more unique retrieval cues, than items presented in proximity. Ross and Landauer…

  9. Continuous-variable quantum homomorphic signature

    NASA Astrophysics Data System (ADS)

    Li, Ke; Shang, Tao; Liu, Jian-wei

    2017-10-01

    Quantum cryptography is believed to be unconditionally secure because its security is ensured by physical laws rather than computational complexity. According to spectrum characteristic, quantum information can be classified into two categories, namely discrete variables and continuous variables. Continuous-variable quantum protocols have gained much attention for their ability to transmit more information with lower cost. To verify the identities of different data sources in a quantum network, we propose a continuous-variable quantum homomorphic signature scheme. It is based on continuous-variable entanglement swapping and provides additive and subtractive homomorphism. Security analysis shows the proposed scheme is secure against replay, forgery and repudiation. Even under nonideal conditions, it supports effective verification within a certain verification threshold.

  10. State dynamics of a double sandbar system

    NASA Astrophysics Data System (ADS)

    Price, T. D.; Ruessink, B. G.

    2011-04-01

    A 9.3-year dataset of low-tide time-exposure images from Surfers Paradise, Northern Gold Coast, Australia was used to characterise the state dynamics of a double sandbar system. The morphology of the nearshore sandbars was described by means of the sequential bar state classification scheme of Wright and Short [1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56, 93-118]. Besides the two end members (the dissipative (D) and the reflective (R) states) and the four intermediate states (longshore bar and trough (LBT), rhythmic bar and beach (RBB), transverse bar and rip (TBR) and low tide terrace (LTT)), we identified two additional intermediate bar states. The erosive transverse bar and rip (eTBR) state related to the dominant oblique angle of wave incidence at the study site and the rhythmic low tide terrace (rLTT) related to the multiple bar setting. Using the alongshore barline variability and alongshore trough continuity as morphological indicators enabled the objective classification of the inner and outer bar states from the images. The outer bar was mostly in the TBR state and generally advanced sequentially through the states LBT-RBB-TBR-eTBR-LBT, with occasional transitions to the D state. Wave events led to abrupt state transitions of the outer bar, but, in contrast to expectations, did not necessarily correspond to upstate transitions. Instead, upstate (downstate) transitions coincided with angles of wave incidence θ larger (smaller) than 30°. The upstate TBR-eTBR-LBT sequence during high-angle events highlights the role of alongshore currents in bar straightening. The outer bar was found to govern the state of the inner bar to a large extent. Two types of inner bar behaviour were distinguished, based on the outer bar state. For intermediate outer bar states, the alongshore variability of the dominant inner rLTT state (52% in time) mainly related to that of the outer bar, implying some sort of morphological coupling

  11. VO2 and VCO2 variabilities through indirect calorimetry instrumentation.

    PubMed

    Cadena-Méndez, Miguel; Escalante-Ramírez, Boris; Azpiroz-Leehan, Joaquín; Infante-Vázquez, Oscar

    2013-01-01

    The aim of this paper is to understand how to measure the VO2 and VCO2 variabilities in indirect calorimetry (IC) since we believe they can explain the high variation in the resting energy expenditure (REE) estimation. We propose that variabilities should be separately measured from the VO2 and VCO2 averages to understand technological differences among metabolic monitors when they estimate the REE. To prove this hypothesis the mixing chamber (MC) and the breath-by-breath (BbB) techniques measured the VO2 and VCO2 averages and their variabilities. Variances and power spectrum energies in the 0-0.5 Hertz band were measured to establish technique differences in steady and non-steady state. A hybrid calorimeter with both IC techniques studied a population of 15 volunteers that underwent the clino-orthostatic maneuver in order to produce the two physiological stages. The results showed that inter-individual VO2 and VCO2 variabilities measured as variances were negligible using the MC while variabilities measured as spectral energies using the BbB underwent 71 and 56% (p < 0.05), increase respectively. Additionally, the energy analysis showed an unexpected cyclic rhythm at 0.025 Hertz only during the orthostatic stage, which is new physiological information, not reported previusly. The VO2 and VCO2 inter-individual averages increased to 63 and 39% by the MC (p < 0.05) and 32 and 40% using the BbB (p < 0.1), respectively, without noticeable statistical differences among techniques. The conclusions are: (a) metabolic monitors should simultaneously include the MC and the BbB techniques to correctly interpret the steady or non-steady state variabilities effect in the REE estimation, (b) the MC is the appropriate technique to compute averages since it behaves as a low-pass filter that minimizes variances, (c) the BbB is the ideal technique to measure the variabilities since it can work as a high-pass filter to generate discrete time series able to accomplish

  12. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  13. Operator’s Manual for Variable Weight, Variable C. G. Helmet Simulator,

    DTIC Science & Technology

    1981-09-01

    A variabh weight, variable CG helmet simulator has been designed to measure the effect of US Army headgear on muscle loading and fatigue. The helmet...less than the weight of most quality crash helmets made by reputable manufacturers. The addition of variable weights to the boxes can alter the center...of gravity to simulate the effect of equipment attached to the out- side of a helmet. The helmet simulator has been calibrated for weights of 3.2, 4.0

  14. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies

    PubMed Central

    Li, Lucia M.; Uehara, Kazumasa; Hanakawa, Takashi

    2015-01-01

    There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies. PMID:26029052

  15. Characterization of Nighttime Light Variability Over the Southeastern United States

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.

    2016-01-01

    City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.

  16. Partisan Politics or Public-Health Need? An empirical analysis of state choice during initial implementation of the Affordable Care Act.

    PubMed

    Mayer, Martin; Kenter, Robert; Morris, John C

    2015-01-01

    States' policy decisions regarding the Affordable Care Act (ACA) of 2010 have often been explained as predominantly, if not solely, partisan. Might rival explanations also apply? Using a cross-sectional 50-state regression model, we studied standard political variables coupled with public-health indicators. This work differs from existing research by employing a dependent variable of five additive measures of ACA support, examining the impact of both political and socioeconomic indicators on state policy decisions. Expanding on recent empirical studies with our more nuanced additive index of support measures, we found that same-party control of a state's executive and legislative branches was indeed by far the single best predictor of policy decisions. Public-health indicators, overwhelmed by partisan effect, did not sufficiently explain state policy choice. This result does not allay the concerns that health policy has become synonymous with health politics and that health politics now has little to do with health itself.

  17. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive.

    PubMed

    Xie, P-J; Huang, L-X; Zhang, C-H; Zhang, Y-L

    2016-07-01

    Olive leaf residue feedstuff additives were prepared by solid-state fermentation (SSF), and its feeding effects on broiler chickens were examined. The fermentation's nutrient value, that is, protein enrichment, cellulase activity, tannic acid degradation and amino acid enhancement, was determined. The effect of different strains, including molds (Aspergillus niger, Aspergillus oryzae and Trichoderma viride) and yeasts (Candida utilis, Candida tropicalis and Geotrichum candidum), and the fermentation time on the nutrient values of the feedstuff additives was investigated. The experimental results showed that the optimal parameters for best performance were A. niger and C. utilis in a 1 : 1 ratio (v/v) in co-culture fermentation for 5 days. Under these conditions, the total content of amino acids in the fermented olive leaf residues increased by 22·0% in comparison with that in the raw leaf residues. Both Glutamic acid and Aspartic acid contents were increased by more than 25·4%. Broiler chickens fed with different amounts of feedstuff additives were assessed. The results demonstrated that the chicken weight gains increased by 120%, and normal serum biochemical parameters were improved significantly after 10% of the feedstuff additives were supplemented to the daily chicken feed for 28 days. The co-culture combination of A. niger and C. utilis with SSF for olive leaf residue had the best nutrient values. The addition of 10% fermented olive leaf residue facilitated the chicken growth and development. This study reveals that olive leaf residues fermented by SSF exhibited considerable potential as feed additives for feeding poultry. © 2016 The Society for Applied Microbiology.

  18. Toward a Unified View of Black-Hole High-Energy States

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.

    1995-01-01

    We present here a review of high-energy (greater than 1 keV) observations of seven black-hole candidates, six of which have estimated masses. In this review we focus on two parameters of interest: the ratio of 'nonthermal' to total luminosity as a function of the total luminosity divided by the Eddington luminosity, and the root-mean-square (rms) variability as a function of the nonthermal-to-total luminosity ratio. Below approx. 10% Eddington luminosity, the sources tend to be strictly nonthermal (the so called 'off' and 'low' states). Above this luminosity the sources become mostly thermal (the 'high' state). with the nonthermal component increasing with luminosity (the 'very high' and 'flare' states). There are important exceptions to this behavior, however, and no steady - as opposed to transient - source has been observed over a wide range of parameter space. In addition, the rms variability is positively correlated with the ratio of nonthermal to total luminosity, although there may be a minimum level of variability associated with 'thermal' states. We discuss these results in light of theoretical models and find that currently no single model describes the full range of black-hole high-energy behavior. In fact, the observations are exactly opposite from what one expects based upon simple notions of accretion disk instabilities.

  19. Additional Cultural Resources Investigations at Selected Portions of the State-Road Coulee - Pammel Creek Flood Control Project at La Crosse, Wisconsin

    DTIC Science & Technology

    1986-05-01

    Mammals: Ten mammal taxa are represented in the Lc176 assemblage. Two of these, the short-tailed shrew (Blarina brevivicauda) and a vole (Microtus sp...ADDITIONAL CULTURAL RESOURCES INVESTIGATIONS AT SELECTED PORTIONS OF THE STATE-ROAD COULEE - PAMMEL CREEK FLOOD CONTROL PROJECT ATm LA CROSSE...INVESTIGATIONS AT SELECTED PORTIONS OF THE STATE-ROAD COULEE- PAMMEL CREEK FLOOD CONTROL PROJECT AT LA CROSSE. WISCONSIN 12. PERSONAL AUTHOR(S

  20. Solid-State Additive Manufacturing for Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Norfolk, Mark; Johnson, Hilary

    2015-03-01

    Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.

  1. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Youhong, E-mail: youhong.zhang@mail.tsinghua.edu.cn

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binariesmore » (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.« less

  2. Motor Variability Arises from a Slow Random Walk in Neural State

    PubMed Central

    Chaisanguanthum, Kris S.; Shen, Helen H.

    2014-01-01

    Even well practiced movements cannot be repeated without variability. This variability is thought to reflect “noise” in movement preparation or execution. However, we show that, for both professional baseball pitchers and macaque monkeys making reaching movements, motor variability can be decomposed into two statistical components, a slowly drifting mean and fast trial-by-trial fluctuations about the mean. The preparatory activity of dorsal premotor cortex/primary motor cortex neurons in monkey exhibits similar statistics. Although the neural and behavioral drifts appear to be correlated, neural activity does not account for trial-by-trial fluctuations in movement, which must arise elsewhere, likely downstream. The statistics of this drift are well modeled by a double-exponential autocorrelation function, with time constants similar across the neural and behavioral drifts in two monkeys, as well as the drifts observed in baseball pitching. These time constants can be explained by an error-corrective learning processes and agree with learning rates measured directly in previous experiments. Together, these results suggest that the central contributions to movement variability are not simply trial-by-trial fluctuations but are rather the result of longer-timescale processes that may arise from motor learning. PMID:25186752

  3. Extremal entanglement and mixedness in continuous variable systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-08-01

    We investigate the relationship between mixedness and entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on Schatten p norms to quantify the mixedness of a state and derive their explicit expressions in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity (defined as tr {rho}{sup 2} for the state {rho}) for generic n-mode states. We then review the analysis proving the existence of both maximally and minimally entangled states at given global and marginal purities, with the entanglement quantified by the logarithmic negativity.more » Based on these results, we extend such an analysis to generalized entropies, introducing and fully characterizing maximally and minimally entangled states for given global and local generalized entropies. We compare the different roles played by the purity and by the generalized p entropies in quantifying the entanglement and the mixedness of continuous variable systems. We introduce the concept of average logarithmic negativity, showing that it allows a reliable quantitative estimate of continuous variable entanglement by direct measurements of global and marginal generalized p entropies.« less

  4. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  5. An AO-assisted Variability Study of Four Globular Clusters

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Contreras Ramos, R.; Strader, J.; Hakala, P.; Catelan, M.; Peacock, M. B.; Simunovic, M.

    2016-09-01

    The image-subtraction technique applied to study variable stars in globular clusters represented a leap in the number of new detections, with the drawback that many of these new light curves could not be transformed to magnitudes due to severe crowding. In this paper, we present observations of four Galactic globular clusters, M 2 (NGC 7089), M 10 (NGC 6254), M 80 (NGC 6093), and NGC 1261, taken with the ground-layer adaptive optics module at the SOAR Telescope, SAM. We show that the higher image quality provided by SAM allows for the calibration of the light curves of the great majority of the variables near the cores of these clusters as well as the detection of new variables, even in clusters where image-subtraction searches were already conducted. We report the discovery of 15 new variables in M 2 (12 RR Lyrae stars and 3 SX Phe stars), 12 new variables in M 10 (11 SX Phe and 1 long-period variable), and 1 new W UMa-type variable in NGC 1261. No new detections are found in M 80, but previous uncertain detections are confirmed and the corresponding light curves are calibrated into magnitudes. Additionally, based on the number of detected variables and new Hubble Space Telescope/UVIS photometry, we revisit a previous suggestion that M 80 may be the globular cluster with the richest population of blue stragglers in our Galaxy. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  6. 14 CFR 25.1533 - Additional operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and wet), and runway gradients) for smooth, hard-surfaced runways. Additionally, at the option of the... for variable factors (such as altitude, temperature, wind, and runway gradients) are those at which...

  7. Morals or markets? Regulating assisted reproductive technologies as morality or economic policies in the states.

    PubMed

    Heidt-Forsythe, Erin

    2017-01-01

    The availability of assisted reproductive technologies (ARTs) in the medical marketplace complicates our understanding of reproductive public policy in the United States. Political debates over ARTs often are based on fundamental moral principles of life, reproduction, and kinship, similar to other reproductive policies in the United States. However, ARTs are an important moneymaking private enterprise for the U.S. biotechnology industry. This project investigates how the U.S. states regulate these unique and challenging technologies as either moral policies or economic policies. This study employs ordinary least squares (OLS) regression to estimate the significance of morality and economic policy variables on ART policies at the state level, noting associations between state-level political, economic, and gender variables on restrictive and permissive state-level ART policies. Economic variables (reflecting the biotechnology industry) and advocacy for access to ART on behalf of infertility patients increase the chances of states passing policies that enable consumer use of ARTs. Additionally, individual ART policies are distinct from one another in the ways that morality variables increase the chances of ART regulations. Surprisingly, the role of religious adherence among state residents varied in positive and negative relationships with individual policy passage. In general, these results support the hypothesis that ART laws are associated with economic as well as moral concerns of the states-ARTs lie at the intersection of issues of life and reproduction and of scientific innovation and health. What is most striking about these results is that they do not follow patterns seen in the legislation of abortion, contraception, and sexuality in general-those reproductive policies that are considered "morality policy." Similarly, economic variables are not consistently significant in the expected direction.

  8. State-by-state variations in cardiac rehabilitation participation are associated with educational attainment, income, and program availability.

    PubMed

    Gaalema, Diann E; Higgins, Stephen T; Shepard, Donald S; Suaya, Jose A; Savage, Patrick D; Ades, Philip A

    2014-01-01

    Wide geographic variations in cardiac rehabilitation (CR) participation in the United States have been demonstrated but are not well understood. Socioeconomic factors such as educational attainment are robust predictors of many health-related behaviors, including smoking, obesity, physical activity, substance abuse, and cardiovascular disease. We investigated potential associations between state-level differences in educational attainment, other socioeconomic factors, CR program availability, and variations in CR participation. A retrospective database analysis was conducted using data from the US Census Bureau, the Centers for Disease Control and Prevention, and the 1997 Medicare database. The outcome of interest was CR participation rates by state, and predictors included state-level high school (HS) graduation rates (in 2001 and 1970), median household income, smoking rates, density of CR program (programs per square mile and per state population), sex and race ratios, and median age. The relationship between HS graduation rates and CR participation by state was significant for both 2001 and 1970 (r = 0.64 and 0.44, respectively, P < .01). Adding the density of CR programs (per population) and income contributed significantly with a cumulative r value of 0.74 and 0.71 for the models using 2001 and 1970, respectively (Ps < .01). The amount of variance accounted for by each of the 3 variables differed between the 2000 and 1970 graduation rates, but both models were unaltered by including additional variables. State-level HS graduation rates, CR programs expressed as programs per population, and median income were strongly associated with geographic variations in CR participation rates.

  9. Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals.

    PubMed

    Kleis, Sebastian; Rueckmann, Max; Schaeffer, Christian G

    2017-04-15

    In this Letter, we propose a novel implementation of continuous variable quantum key distribution that operates with a real local oscillator placed at the receiver site. In addition, pulsing of the continuous wave laser sources is not required, leading to an extraordinary practical and secure setup. It is suitable for arbitrary schemes based on modulated coherent states and heterodyne detection. The shown results include transmission experiments, as well as an excess noise analysis applying a discrete 8-state phase modulation. Achievable key rates under collective attacks are estimated. The results demonstrate the high potential of the approach to achieve high secret key rates at relatively low effort and cost.

  10. A strategic outlook for coordination of ground-based measurement networks of atmospheric state variables and atmospheric composition

    NASA Astrophysics Data System (ADS)

    Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III

    2016-12-01

    There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery

  11. The Importance of Freshwater to Spatial Variability of Aragonite Saturation State in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Siedlecki, Samantha A.; Pilcher, Darren J.; Hermann, Albert J.; Coyle, Ken; Mathis, Jeremy

    2017-11-01

    High-latitude and subpolar regions like the Gulf of Alaska (GOA) are more vulnerable than equatorial regions to rising carbon dioxide (CO2) levels, in part due to local processes that amplify the global signal. Recent field observations have shown that the shelf of the GOA is currently experiencing seasonal corrosive events (carbonate mineral saturation states Ω, Ω < 1), including suppressed Ω in response to ocean acidification as well as local processes like increased low-alkalinity glacial meltwater discharge. While the glacial discharge mainly influences the inner shelf, on the outer shelf, upwelling brings corrosive waters from the deep GOA. In this work, we develop a high-resolution model for carbon dynamics in the GOA, identify regions of high variability of Ω, and test the sensitivity of those regions to changes in the chemistry of glacial meltwater discharge. Results indicate the importance of this climatically sensitive and relatively unconstrained regional freshwater forcing for Ω variability in the nearshore. The increase was nearly linear at 0.002 Ω per 100 µmol/kg increase in alkalinity in the freshwater runoff. We find that the local winds, biological processes, and freshwater forcing all contribute to the spatial distribution of Ω and identify which of these three is highly correlated to the variability in Ω. Given that the timing and magnitude of these processes will likely change during the next few decades, it is critical to elucidate the effect of local processes on the background ocean acidification signal using robust models, such as the one described here.

  12. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-04-01

    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e

  13. Impacts analysis of car following models considering variable vehicular gap policies

    NASA Astrophysics Data System (ADS)

    Xin, Qi; Yang, Nan; Fu, Rui; Yu, Shaowei; Shi, Zhongke

    2018-07-01

    Due to the important roles playing in the vehicles' adaptive cruise control system, variable vehicular gap polices were employed to full velocity difference model (FVDM) to investigate the traffic flow properties. In this paper, two new car following models were put forward by taking constant time headway(CTH) policy and variable time headway(VTH) policy into optimal velocity function, separately. By steady state analysis of the new models, an equivalent optimal velocity function was defined. To determine the linear stable conditions of the new models, we introduce equivalent expressions of safe vehicular gap, and then apply small amplitude perturbation analysis and long terms of wave expansion techniques to obtain the new models' linear stable conditions. Additionally, the first order approximate solutions of the new models were drawn at the stable region, by transforming the models into typical Burger's partial differential equations with reductive perturbation method. The FVDM based numerical simulations indicate that the variable vehicular gap polices with proper parameters directly contribute to the improvement of the traffic flows' stability and the avoidance of the unstable traffic phenomena.

  14. Non-suicidal Self-Injury in Eating Disordered Patients: Associations with Heart Rate Variability and State-Trait Anxiety.

    PubMed

    Giner-Bartolome, Cristina; Mallorquí-Bagué, Núria; Tolosa-Sola, Iris; Steward, Trevor; Jimenez-Murcia, Susana; Granero, Roser; Fernandez-Aranda, Fernando

    2017-01-01

    Background: Non-suicidal self-injury (NSSI) is commonly present in individuals with eating disorders (EDs) and is often employed as a maladaptive emotion regulation strategy to avoid or abate negative emotions. One of the most prevalent negative emotions experienced by self-injurers is anxiety; however, this emotion has not been extensively studied in this population. Thus, the aim of our study was to investigate the influence of anxiety on NSSI in patients with ED from two different dimensions: state anxiety and trait anxiety. Methods: The study comprised a total of 66 females: 12 ED patients with NSSI, 32 ED patients without a history of NSSI, and 22 healthy controls. State and trait anxiety were assessed by means of State-Trait Anxiety Inventory (STAI-S-T) and physiological data [i.e., heart rate variability (HRV)] were collected. Results: STAI-trait scores were significantly higher in ED patients with NSSI than ED patients without NSSI. Furthermore, when conducting logistic regression analyses higher STAI-trait scores were associated with NSSI in ED patients. However, no differences in STAI-state scores and HRV were found between ED patients with and without NSSI. Discussion: The present findings suggest that anxiety as a trait is associated with the use of maladaptive strategies (i.e., NSSI) in ED patients. These results uphold the need to target trait anxiety in ED treatment in order to prevent possible NSSI behaviors.

  15. Relationship between Climate Variability, Wildfire Risk, and Wildfire Occurrence in Wildland-Urban Interface of the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Jia, S.; Nghiem, S. V.

    2017-12-01

    As housing units in or near wildlands have grown, the wildland-urban interface (WUI) contain at present approximately one-third of all housing in the contiguous US. Wildfires are a part of the natural cycle in the Southwestern United States (SWUS) but the increasing trend of WUI has made wildfires a serious high-risk hazard. The expansion of WUI has elevated wildfire risks by increasing the chance of human caused ignitions and past fire suppression in the area. Previous studies on climate variability have shown that the SWUS region is prone to frequent droughts and has suffered from severe wildfires in the recent decade. Therefore, assessing the increased vulnerability to the wildfire in WUI is crucial for proactive adaptation under climate change. Our previous study has shown that a strong correlation between North Atlantic Oscillation (NAO) and temperature was found during March-June in the SWUS. The abnormally warm and dry spring conditions, combined with suppression of winter precipitation, can cause an early start of a fire season and high fire risk throughout the summer and fall. Therefore, it is crucial to investigate the connections between climate variability and wildfire danger characteristics. This study aims to identify climate variability using multiple climate indices such as NAO, El Niño-Southern Oscillation and the Pacific Decadal Oscillation closely related with droughts in the SWUS region. Correlation between the variability and fire frequency and severity in WUI were examined. Also, we investigated climate variability and its relationship on local wildfire potential using both Keetch-Byram Drought Index (KBDI) and Fire Weather Index (FWI) which have been used to assessing wildfire potential in the U.S.A and Canada, respectively. We examined the long-term variability of the fire potential indices and relationships between the indices and historical occurrence in WUI using multi-decadal reanalysis data sets. Following our analysis, we investigated

  16. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  17. Thermocline Temperature Variability Reveals Shifts in the Tropical Pacific Mean State across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.

    2014-12-01

    The eastern equatorial Pacific (EEP) is one of the most dynamic oceanographic regions, making it a critical area for understanding past climate change. Despite this, there remains uncertainty on the climatic evolution of the EEP through the last glacial period. According to the ocean dynamical thermostat theory, warming (cooling) of the tropical Pacific Ocean may lead to a more La Niña (El Niño)-like mean state due to zonally asymmetric heating and subsequent easterly (westerly) wind anomalies at the equator (Clement and Cane, 1999). Attempts to understand these feedbacks on millennial timescales across Marine Isotope Stage 3 (MIS 3) have proven to be fruitful in the western equatorial Pacific (WEP) (Stott et al., 2002), yet complimentary, high-resolution records from the EEP are lacking. To provide a more complete understanding of the feedback mechanisms of the dynamical thermostat across periods of abrupt climate change, we reconstruct thermocline temperature variability across MIS 3 from a sediment core located in the EEP, directly within the equatorial cold tongue upwelling region (core MV1014-02-17JC). Temperature anomalies in thermocline waters of the EEP are integrally linked to the ENSO system, with large positive and negative anomalies recorded during El Niño and La Niña events, respectively. Mg/Ca ratios in the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei were measured at 2 cm intervals, resulting in a temporal resolution of <200 years. Preliminary results across Interstadials 5-7 reveal warmer thermocline temperatures (an increase in Mg/Ca of .25 ± .02 mmol/mol) during periods of cooling following peak Interstadial warmth over Greenland, as seen from the NGRIP δ18O record. Thus, periods of cooling over Greenland appear to correspond to an El Niño-like mean state in the tropical Pacific, in line with predictions of an ocean dynamical thermostat. Interestingly, Heinrich Event 3 corresponds to cooler thermocline

  18. Exploring the Relationship between State Financial Aid Policy and Postsecondary Enrollment Choices: A Focus on Income and Race Differences

    ERIC Educational Resources Information Center

    Kim, Jiyun

    2012-01-01

    This study explores the relationship between state financial aid policies and postsecondary enrollment for high school graduates (or equivalent diploma holders). Utilizing an event history modeling for a nationally representative sample from the National Education Longitudinal Study (NELS:88/2000) in addition to state-level policy variables, this…

  19. Variability of runoff-based drought conditions in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.; Austin, Samuel H.

    2017-01-01

    In this study, a monthly water-balance model is used to simulate monthly runoff for 2109 hydrologic units (HUs) in the conterminous United States (CONUS) for water-years 1901 through 2014. The monthly runoff time series for each HU were smoothed with a 3-month moving average, and then the 3-month moving-average runoff values were converted to percentiles. For each HU, a drought was considered to occur when the HU runoff percentile dropped to the 20th percentile or lower. A drought was considered to end when the HU runoff percentile exceeded the 20th percentile. After identifying drought events for each HU, the frequency and length of drought events were examined. Results indicated that (1) the longest mean drought lengths occur in the eastern CONUS and parts of the Rocky Mountain region and the northwestern CONUS, (2) the frequency of drought is highest in the southwestern and central CONUS, and lowest in the eastern CONUS, the Rocky Mountain region, and the northwestern CONUS, (3) droughts have occurred during all months of the year and there does not appear to be a seasonal pattern to drought occurrence, (4) the variability of precipitation appears to have been the principal climatic factor determining drought, and (5) for most of the CONUS, drought frequency appears to have decreased during the 1901 through 2014 period.

  20. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States

    NASA Astrophysics Data System (ADS)

    Wurster, Christopher M.; McFarlane, Donald A.; Bird, Michael I.

    2007-07-01

    Stable isotopes of faeces contain information related to the animals feeding ecology. The use of stable isotope values from subfossil faeces as a palaeoenvironmental indicator depends on how faithfully the animal records their local environment. Here we present insectivorous bat guano δ 13C and δ 15N values from a precipitation gradient across the southern United States and northern Mexico to compare with local vegetation and climate. We find δ 13C values to be an excellent predictor of expected C 4/CAM vegetation, indicating that the bats are non-selective in their diet. Moreover, we find bat guano δ 13C values to be strongly correlated with summer precipitation amount and winter precipitation ratio. We also find evidence for a significant relationship with mean annual temperature. In general, we do not find δ 15N values to be related to any parameters along the climatic gradient we examined. Additionally, we measured δ 13C and δ 15N values of bulk guano deposited annually from 1968 to 1987 in a varved guano deposit at Eagle Creek Cave, Arizona. Neither δ 13C nor δ 15N values were significantly related to various local meteorological variables; however, we found δ 13C values of guano to be significantly related to drought and to the North American Monsoon indicating bat guano δ 13C values preserve an interpretable record of large-scale atmospheric variability.

  1. Input Variability Facilitates Unguided Subcategory Learning in Adults

    PubMed Central

    Eidsvåg, Sunniva Sørhus; Austad, Margit; Asbjørnsen, Arve E.

    2015-01-01

    Purpose This experiment investigated whether input variability would affect initial learning of noun gender subcategories in an unfamiliar, natural language (Russian), as it is known to assist learning of other grammatical forms. Method Forty adults (20 men, 20 women) were familiarized with examples of masculine and feminine Russian words. Half of the participants were familiarized with 32 different root words in a high-variability condition. The other half were familiarized with 16 different root words, each repeated twice for a total of 32 presentations in a high-repetition condition. Participants were tested on untrained members of the category to assess generalization. Familiarization and testing was completed 2 additional times. Results Only participants in the high-variability group showed evidence of learning after an initial period of familiarization. Participants in the high-repetition group were able to learn after additional input. Both groups benefited when words included 2 cues to gender compared to a single cue. Conclusions The results demonstrate that the degree of input variability can influence learners' ability to generalize a grammatical subcategory (noun gender) from a natural language. In addition, the presence of multiple cues to linguistic subcategory facilitated learning independent of variability condition. PMID:25680081

  2. Input Variability Facilitates Unguided Subcategory Learning in Adults.

    PubMed

    Eidsvåg, Sunniva Sørhus; Austad, Margit; Plante, Elena; Asbjørnsen, Arve E

    2015-06-01

    This experiment investigated whether input variability would affect initial learning of noun gender subcategories in an unfamiliar, natural language (Russian), as it is known to assist learning of other grammatical forms. Forty adults (20 men, 20 women) were familiarized with examples of masculine and feminine Russian words. Half of the participants were familiarized with 32 different root words in a high-variability condition. The other half were familiarized with 16 different root words, each repeated twice for a total of 32 presentations in a high-repetition condition. Participants were tested on untrained members of the category to assess generalization. Familiarization and testing was completed 2 additional times. Only participants in the high-variability group showed evidence of learning after an initial period of familiarization. Participants in the high-repetition group were able to learn after additional input. Both groups benefited when words included 2 cues to gender compared to a single cue. The results demonstrate that the degree of input variability can influence learners' ability to generalize a grammatical subcategory (noun gender) from a natural language. In addition, the presence of multiple cues to linguistic subcategory facilitated learning independent of variability condition.

  3. State Budgetary Assumptions. State Fiscal Brief No. 36.

    ERIC Educational Resources Information Center

    Boyd, Donald J.; Davis, Elizabeth I.

    When states prepare their budgets, they usually base revenue and expenditure projections upon forecasts of national and state economic and demographic trends. This brief presents findings of a Center for the Study of the States survey that asked state budget offices what they were assuming for many key variables. The survey obtained 41 state…

  4. SteamTables: An approach of multiple variable sets

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2009-10-01

    Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).

  5. Operational quantification of continuous-variable correlations.

    PubMed

    Rodó, Carles; Adesso, Gerardo; Sanpera, Anna

    2008-03-21

    We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.

  6. Spatial variability in water-balance model performance in the conterminous United States

    USGS Publications Warehouse

    Hay, L.E.; McCabe, G.J.

    2002-01-01

    A monthly water-balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil-moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R-square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long-term mean and standard deviation of annual precipitation; temperature and runoff; and low-flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R-square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.

  7. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  8. Wide but Variable Distribution of a Hypervirulent Campylobacter jejuni Clone in Beef and Dairy Cattle in the United States

    PubMed Central

    Tang, Yizhi; Meinersmann, Richard J.; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee Lawrence, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T.

    2017-01-01

    studies conducted on a national scale, we found a wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of preharvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health, as it is a zoonotic pathogen causing disease in both ruminants and humans. PMID:28970227

  9. Relative spatial soil geochemical variability along two transects across the United States and Canada

    USGS Publications Warehouse

    Garrett, Robert G.

    2009-01-01

    The patterns of relative variability differ by transect and horizon. The N–S transect A-horizon soils show significant between-40-km scale variability for 29 elements, with only 4 elements (Ca, Mg, Pb and Sr) showing in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In contrast, the C-horizon data demonstrate significant between-40-km scale variability for 26 elements, with 21 having in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In 36 instances, the ‘at-site’ variability is statistically significant in terms of the sample preparation and analysis variability. It is postulated that this contrast between the A- and C- horizons along the N–S transect, that is dominated by agricultural land uses, is due to the local homogenization of Ap-horizon soils by tillage reducing the ‘at-site’ variability. The spatial variability is distributed similarly between scales for the A- and C-horizon soils of the E–W transect. For all elements, there is significant variability at the within-40-km scale. Notwithstanding this, there is significant between-40-km variability for 28 and 20 of the elements in the A- and C-horizon data, respectively. The differences between the two transects are attributed to (1) geology, the N–S transect runs generally parallel to regional strikes, whereas the E–W transect runs across regional structures and lithologies; and (2) land use, with agricultural tillage dominating along the N–S transect. The spatial analysis of the transect data indicates that continental-scale maps demonstrating statistically significant patterns of geochemical variability may be prepared for many elements from data on soil samples collected on a 40 x 40 km grid or similar sampling designs resulting in a sample density of 1 site per 1600 km2.

  10. Analytical optimal controls for the state constrained addition and removal of cryoprotective agents

    PubMed Central

    Chicone, Carmen C.; Critser, John K.

    2014-01-01

    Cryobiology is a field with enormous scientific, financial and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes, and pointing to a direction for the cryopreservation of many other cell types. PMID:22527943

  11. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by the...

  12. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by the...

  13. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by the...

  14. Symbolic dynamics marker of heart rate variability combined with clinical variables enhance obstructive sleep apnea screening

    NASA Astrophysics Data System (ADS)

    Ravelo-García, A. G.; Saavedra-Santana, P.; Juliá-Serdá, G.; Navarro-Mesa, J. L.; Navarro-Esteva, J.; Álvarez-López, X.; Gapelyuk, A.; Penzel, T.; Wessel, N.

    2014-06-01

    Many sleep centres try to perform a reduced portable test in order to decrease the number of overnight polysomnographies that are expensive, time-consuming, and disturbing. With some limitations, heart rate variability (HRV) has been useful in this task. The aim of this investigation was to evaluate if inclusion of symbolic dynamics variables to a logistic regression model integrating clinical and physical variables, can improve the detection of subjects for further polysomnographies. To our knowledge, this is the first contribution that innovates in that strategy. A group of 133 patients has been referred to the sleep center for suspected sleep apnea. Clinical assessment of the patients consisted of a sleep related questionnaire and a physical examination. The clinical variables related to apnea and selected in the statistical model were age (p < 10-3), neck circumference (p < 10-3), score on a questionnaire scale intended to quantify daytime sleepiness (p < 10-3), and intensity of snoring (p < 10-3). The validation of this model demonstrated an increase in classification performance when a variable based on non-linear dynamics of HRV (p < 0.01) was used additionally to the other variables. For diagnostic rule based only on clinical and physical variables, the corresponding area under the receiver operating characteristic (ROC) curve was 0.907 (95% confidence interval (CI) = 0.848, 0.967), (sensitivity 87.10% and specificity 80%). For the model including the average of a symbolic dynamic variable, the area under the ROC curve was increased to 0.941 (95% = 0.897, 0.985), (sensitivity 88.71% and specificity 82.86%). In conclusion, symbolic dynamics, coupled with significant clinical and physical variables can help to prioritize polysomnographies in patients with a high probability of apnea. In addition, the processing of the HRV is a well established low cost and robust technique.

  15. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  16. Short-term variability of blood pressure and heart rate in hyperthyroidism.

    PubMed

    Girard, A; Hugues, F C; Le Jeunne, C; Elghozi, J L

    1998-06-01

    The effect of hyperthyroidism on the short-term memory variability of blood pressure and heart rate was evaluated in 12 untreated hyperthyroid patients during thyrotoxicosis and after a 6 1/2 month treatment designed to achieve a stable euthyroid state. Beat-by-beat finger blood pressure was measured with a Finapres device. The pulse interval, from which pulse rate was derived, was obtained from the blood pressure signal. Due to the significant change in heart rhythm associated with thyrotoxicosis, both pulse interval (taken as a surrogate of heart period) and pulse rate (taken as a surrogate of heart rate) were computed. Power spectral analysis showed a reduction in the overall heart period variability in the supine position in the hyperthyroid compared to the euthyroid state. This effect was observed in the low-frequency (0.005-0.068 Hz), mid-frequency (0.068-0.127 Hz) and high-frequency (respiratory) domains as well, with a significant reduction of the modulus of these bands of 31%, 35% and 47%, respectively. The heart rate spectral modulus also exhibited a reduction of the high-frequency component (31%) in the supine position in the hyperthyroid subjects. These changes in heart rhythmicity corroborate a vagal deficit in hyperthyroidism. In addition, blood pressure spectral power exhibited a significant deficit in the orthostatism-induced mid-frequency systolic blood pressure rise in the hyperthyroid state (64%) compared with the euthyroid state. This observation may reflect a reduced vascular sympathetic activation with standing. The resulting vasodilatation could well contribute to normalize blood pressure in thyrotoxicosis in which cardiac output is increased.

  17. Disentanglement in bipartite continuous-variable systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, F. A. S.; Coelho, A. S.; Nussenzveig, P.

    2011-11-15

    Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses such as those introduced by a realistic quantum communication channel, e.g., by propagation in an optical fiber. We find that entanglement can vanish completely for partial losses, in a situation reminiscent of so-called entanglement sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels. Having in mind the potential applications of such entangled light beams to optical communications, we investigate the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined, and we derive criteria to testmore » the robustness of entangled states. These criteria are necessary and sufficient for Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement in more complex multipartite systems.« less

  18. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID

  19. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: Examples from two alpine watersheds

    NASA Astrophysics Data System (ADS)

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-02-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996-2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54-0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  20. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds

    USGS Publications Warehouse

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-01-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  1. What controls springtime fine dust variability in the western United States? Implications for air quality and public health risks under future climate change.

    NASA Astrophysics Data System (ADS)

    Achakulwisut, P.; Mickley, L. J.; Shen, L.; Anenberg, S.

    2017-12-01

    Studies suggest that deposition of atmospheric dust and its surface concentrations have recently been increasing in the Southwest, and a key concern is that climate change will impact dust mobilization and transport across the western United States. Here we diagnose the dominant meteorological factors driving observed fine dust interannual variability in the western United States during 2002-2015 in March-May, and investigate the implications of our results for future dust levels. Empirical orthogonal function analysis suggests that for each spring month, 50-61% of present-day variance in fine dust can be explained by either a coherent pattern of co-variability across the West or a dipole Northwest-Southwest pattern. We identify the key drivers of fine dust variability to be regional precipitation, temperature, and soil moisture, which in turn are influenced at least in part by large-scale changes in sea surface temperature and/or atmospheric circulation patterns. Fluctuations in the trans-Pacific transport of Asian dust also contribute to fine dust variability in March and April. We find that March fine dust concentrations have increased from 2002 to 2015 in Southwest regions (0.09 ± 0.07 μg m-3 a-1). Multiple linear regression analysis suggests that these increases are associated with: (1) regionally drier and warmer conditions driven by constructive interference between El Niño Southern-Oscillation and Pacific Decadal Oscillation; (2) soil moisture reductions in areas spanning the North American deserts; and (3) stronger trans-Pacific transport. We then use observed drought-sensitivities to project future changes in annual mean fine dust during the late-21st century (2076-2095), using bias-corrected downscaled meteorological outputs from 23 CMIP5 models following two Representative Concentration Pathways (RCP2.6 and RCP8.5). Together with projections of future population and baseline incidence rates, and results from epidemiological studies of health risks

  2. ESTIMATED EFFECTIVE CHIMNEY HEIGHTS BASED ON RAWINSONDE OBSERVATIONS AT SELECTED SITES IN THE UNITED STATES

    EPA Science Inventory

    The plume rise equations of Briggs (1975) for variable vertical profiles of temperature and wind speed are described and applied for hypothetical small and very large chimneys at five NWS rawinsonde stations across the United States. From other available data additional informati...

  3. Are State legislatures responding to public opinion when allocating funds for tobacco control programs?

    PubMed

    Snyder, Angela; Falba, Tracy; Busch, Susan; Sindelar, Jody

    2004-07-01

    This study explored the factors associated with state-level allocations to tobacco-control programs. The primary research question was whether public sentiment regarding tobacco control was a significant factor in the states' 2001 budget decisions. In addition to public opinion, several additional political and economic measures were considered. Significant associations were found between our outcome, state-level tobacco-control funding per capita, and key variables of interest including public opinion, amount of tobacco settlement received, the party affiliation of the governor, the state's smoking rate, excise tax revenue received, and whether the state was a major producer of tobacco. The findings from this study supported our hypothesis that states with citizens who favor more restrictive indoor air policies allocate more to tobacco control. Effective public education to change public opinion and the cultural norms surrounding smoking may affect political decisions and, in turn, increase funding for crucial public health programs.

  4. Using state variables to model the response of tumour cells to radiation and heat: a novel multi-hit-repair approach.

    PubMed

    Scheidegger, Stephan; Fuchs, Hans U; Zaugg, Kathrin; Bodis, Stephan; Füchslin, Rudolf M

    2013-01-01

    In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.

  5. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm.

    PubMed

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV=0.0776, R(c)=0.9777, RMSEP=0.0963, and R(p)=0.9686 for pH model; RMSECV=1.3544% w/w, R(c)=0.8871, RMSEP=1.4946% w/w, and R(p)=0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.

  7. Short-term and seasonal pH,pCO2and saturation state variability in a coral-reef ecosystem

    NASA Astrophysics Data System (ADS)

    Gray, Sarah E. C.; Degrandpre, Michael D.; Langdon, Chris; Corredor, Jorge E.

    2012-09-01

    Coral reefs are predicted to be one of the ecosystems most sensitive to ocean acidification. To improve predictions of coral reef response to acidification, we need to better characterize the natural range of variability of pH, partial pressure of carbon dioxide (pCO2) and calcium carbonate saturation states (Ω). In this study, autonomous sensors for pH and pCO2 were deployed on Media Luna reef, Puerto Rico over three seasons from 2007 to 2008. High temporal resolution CaCO3 saturation states were calculated from the in situ data, giving a much more detailed characterization of reef saturation states than previously possible. Reef pH, pCO2 and aragonite saturation (ΩAr) ranged from 7.89 to 8.17 pH units, 176-613 μatm and 2.7-4.7, respectively, in the range characteristic of most other previously studied reef ecosystems. The diel pH, pCO2 and Ω cycles were also large, encompassing about half of the seasonal range of variability. Warming explained about 50% of the seasonal supersaturation in mean pCO2, with the remaining supersaturation primarily due to net heterotrophy and net CaCO3 production. Net heterotrophy was likely driven by remineralization of mangrove derived organic carbon which continued into the fall, sustaining high pCO2 levels until early winter when the pCO2 returned to offshore values. As a consequence, the reef was a source of CO2 to the atmosphere during the summer and fall and a sink during winter, resulting in a net annual source of 0.73 ± 1.7 mol m-2 year-1. These results show that reefs are exposed to a wide range of saturation states in their natural environment. Mean ΩAr levels will drop to 3.0 when atmospheric CO2 increases to 500 μatm and ΩAr will be less than 3.0 for greater than 70% of the time in the summer. Long duration exposure to these low ΩAr levels are expected to significantly decrease calcification rates on the reef.

  8. Eliminating Survivor Bias in Two-stage Instrumental Variable Estimators.

    PubMed

    Vansteelandt, Stijn; Walter, Stefan; Tchetgen Tchetgen, Eric

    2018-07-01

    Mendelian randomization studies commonly focus on elderly populations. This makes the instrumental variables analysis of such studies sensitive to survivor bias, a type of selection bias. A particular concern is that the instrumental variable conditions, even when valid for the source population, may be violated for the selective population of individuals who survive the onset of the study. This is potentially very damaging because Mendelian randomization studies are known to be sensitive to bias due to even minor violations of the instrumental variable conditions. Interestingly, the instrumental variable conditions continue to hold within certain risk sets of individuals who are still alive at a given age when the instrument and unmeasured confounders exert additive effects on the exposure, and moreover, the exposure and unmeasured confounders exert additive effects on the hazard of death. In this article, we will exploit this property to derive a two-stage instrumental variable estimator for the effect of exposure on mortality, which is insulated against the above described selection bias under these additivity assumptions.

  9. Non-suicidal Self-Injury in Eating Disordered Patients: Associations with Heart Rate Variability and State-Trait Anxiety

    PubMed Central

    Giner-Bartolome, Cristina; Mallorquí-Bagué, Núria; Tolosa-Sola, Iris; Steward, Trevor; Jimenez-Murcia, Susana; Granero, Roser; Fernandez-Aranda, Fernando

    2017-01-01

    Background: Non-suicidal self-injury (NSSI) is commonly present in individuals with eating disorders (EDs) and is often employed as a maladaptive emotion regulation strategy to avoid or abate negative emotions. One of the most prevalent negative emotions experienced by self-injurers is anxiety; however, this emotion has not been extensively studied in this population. Thus, the aim of our study was to investigate the influence of anxiety on NSSI in patients with ED from two different dimensions: state anxiety and trait anxiety. Methods: The study comprised a total of 66 females: 12 ED patients with NSSI, 32 ED patients without a history of NSSI, and 22 healthy controls. State and trait anxiety were assessed by means of State-Trait Anxiety Inventory (STAI-S-T) and physiological data [i.e., heart rate variability (HRV)] were collected. Results: STAI-trait scores were significantly higher in ED patients with NSSI than ED patients without NSSI. Furthermore, when conducting logistic regression analyses higher STAI-trait scores were associated with NSSI in ED patients. However, no differences in STAI-state scores and HRV were found between ED patients with and without NSSI. Discussion: The present findings suggest that anxiety as a trait is associated with the use of maladaptive strategies (i.e., NSSI) in ED patients. These results uphold the need to target trait anxiety in ED treatment in order to prevent possible NSSI behaviors. PMID:28736544

  10. The relationship of document and quantitative literacy with learning styles and selected personal variables for aerospace technology students at Indiana State University

    NASA Astrophysics Data System (ADS)

    Martin, Royce Ann

    The purpose of this study was to determine the extent that student scores on a researcher-constructed quantitative and document literacy test, the Aviation Documents Delineator (ADD), were associated with (a) learning styles (imaginative, analytic, common sense, dynamic, and undetermined), as identified by the Learning Type Measure, (b) program curriculum (aerospace administration, professional pilot, both aerospace administration and professional pilot, other, or undeclared), (c) overall cumulative grade point average at Indiana State University, and (d) year in school (freshman, sophomore, junior, or senior). The Aviation Documents Delineator (ADD) was a three-part, 35 question survey that required students to interpret graphs, tables, and maps. Tasks assessed in the ADD included (a) locating, interpreting, and describing specific data displayed in the document, (b) determining data for a specified point on the table through interpolation, (c) comparing data for a string of variables representing one aspect of aircraft performance to another string of variables representing a different aspect of aircraft performance, (d) interpreting the documents to make decisions regarding emergency situations, and (e) performing single and/or sequential mathematical operations on a specified set of data. The Learning Type Measure (LTM) was a 15 item self-report survey developed by Bernice McCarthy (1995) to profile an individual's processing and perception tendencies in order to reveal different individual approaches to learning. The sample used in this study included 143 students enrolled in Aerospace Technology Department courses at Indiana State University in the fall of 1996. The ADD and the LTM were administered to each subject. Data collected in this investigation were analyzed using a stepwise multiple regression analysis technique. Results of the study revealed that the variables, year in school and GPA, were significant predictors of the criterion variables, document

  11. Relative Contributions of Selected Teachers' Variables and Students' Attitudes toward Academic Achievement in Biology among Senior Secondary School Students in Ondo State, Nigeria

    ERIC Educational Resources Information Center

    Gbore, L. O.; Daramola, C. A.

    2013-01-01

    This study investigated the relative contributions of selected teachers' variables and students' attitude towards academic achievement in biology among senior secondary schools in Ondo State, Nigeria. It involved descriptive survey research and ex-post facto research designs. The sample, 360 respondents which consists of 180 biology teachers and…

  12. Metacognitive judgments of repetition and variability effects in natural concept learning: evidence for variability neglect.

    PubMed

    Wahlheim, Christopher N; Finn, Bridgid; Jacoby, Larry L

    2012-07-01

    In four experiments, we examined the effects of repetitions and variability on the learning of bird families and metacognitive awareness of such effects. Of particular interest was the accuracy of, and bases for, predictions regarding classification of novel bird species, referred to as category learning judgments (CLJs). Participants studied birds in high repetitions and high variability conditions. These conditions differed in the number of presentations of each bird (repetitions) and the number of unique species from each family (variability). After study, participants made CLJs for each family and were then tested. Results from a classification test revealed repetition benefits for studied species and variability benefits for novel species. In contrast with performance, CLJs did not reflect the benefits of variability. Results showed that CLJs were susceptible to accessibility-based metacognitive illusions produced by additional repetitions of studied items.

  13. Pharmacokinetic Variability of Drugs Used for Prophylactic Treatment of Migraine.

    PubMed

    Tfelt-Hansen, Peer; Ågesen, Frederik Nybye; Pavbro, Agniezka; Tfelt-Hansen, Jacob

    2017-05-01

    In this review, we evaluate the variability in the pharmacokinetics of 11 drugs with established prophylactic effects in migraine to facilitate 'personalized medicine' with these drugs. PubMed was searched for 'single-dose' and 'steady-state' pharmacokinetic studies of these 11 drugs. The maximum plasma concentration was reported in 248 single-dose and 115 steady-state pharmacokinetic studies, and the area under the plasma concentration-time curve was reported in 299 single-dose studies and 112 steady-state pharmacokinetic studies. For each study, the coefficient of variation was calculated for maximum plasma concentration and area under the plasma concentration-time curve, and we divided the drug variability into two categories; high variability, coefficient of variation >40%, or low or moderate variability, coefficient of variation <40%. Based on the area under the plasma concentration-time curve in steady-state studies, the following drugs have high pharmacokinetic variability: propranolol in 92% (33/36), metoprolol in 85% (33/39), and amitriptyline in 60% (3/5) of studies. The following drugs have low or moderate variability: atenolol in 100% (2/2), valproate in 100% (15/15), topiramate in 88% (7/8), and naproxen and candesartan in 100% (2/2) of studies. For drugs with low or moderate pharmacokinetic variability, treatment can start without initial titration of doses, whereas titration is used to possibly enhance tolerability of topiramate and amitriptyline. The very high pharmacokinetic variability of metoprolol and propranolol can result in very high plasma concentrations in a small minority of patients, and those drugs should therefore be titrated up from a low initial dose, depending mainly on the occurrence of adverse events.

  14. Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There A Connection?

    PubMed Central

    Stergiou, Nicholas; Decker, Leslie M.

    2011-01-01

    Fields studying movement generation, including robotics, psychology, cognitive science and neuroscience utilize concepts and tools related to the pervasiveness of variability in biological systems. The concept of variability and the measures for nonlinear dynamics used to evaluate this concept open new vistas for research in movement dysfunction of many types. This review describes innovations in the exploration of variability and their potential importance in understanding human movement. Far from being a source of error, evidence supports the presence of an optimal state of variability for healthy and functional movement. This variability has a particular organization and is characterized by a chaotic structure. Deviations from this state can lead to biological systems that are either overly rigid and robotic or noisy and unstable. Both situations result in systems that are less adaptable to perturbations, such as those associated with unhealthy pathological states or absence of skillfulness. PMID:21802756

  15. Heart-Rate Variability-More than Heart Beats?

    PubMed

    Ernst, Gernot

    2017-01-01

    Heart-rate variability (HRV) is frequently introduced as mirroring imbalances within the autonomous nerve system. Many investigations are based on the paradigm that increased sympathetic tone is associated with decreased parasympathetic tone and vice versa . But HRV is probably more than an indicator for probable disturbances in the autonomous system. Some perturbations trigger not reciprocal, but parallel changes of vagal and sympathetic nerve activity. HRV has also been considered as a surrogate parameter of the complex interaction between brain and cardiovascular system. Systems biology is an inter-disciplinary field of study focusing on complex interactions within biological systems like the cardiovascular system, with the help of computational models and time series analysis, beyond others. Time series are considered surrogates of the particular system, reflecting robustness or fragility. Increased variability is usually seen as associated with a good health condition, whereas lowered variability might signify pathological changes. This might explain why lower HRV parameters were related to decreased life expectancy in several studies. Newer integrating theories have been proposed. According to them, HRV reflects as much the state of the heart as the state of the brain. The polyvagal theory suggests that the physiological state dictates the range of behavior and psychological experience. Stressful events perpetuate the rhythms of autonomic states, and subsequently, behaviors. Reduced variability will according to this theory not only be a surrogate but represent a fundamental homeostasis mechanism in a pathological state. The neurovisceral integration model proposes that cardiac vagal tone, described in HRV beyond others as HF-index, can mirror the functional balance of the neural networks implicated in emotion-cognition interactions. Both recent models represent a more holistic approach to understanding the significance of HRV.

  16. The effect of modeled absolute timing variability and relative timing variability on observational learning.

    PubMed

    Grierson, Lawrence E M; Roberts, James W; Welsher, Arthur M

    2017-05-01

    There is much evidence to suggest that skill learning is enhanced by skill observation. Recent research on this phenomenon indicates a benefit of observing variable/erred demonstrations. In this study, we explore whether it is variability within the relative organization or absolute parameterization of a movement that facilitates skill learning through observation. To do so, participants were randomly allocated into groups that observed a model with no variability, absolute timing variability, relative timing variability, or variability in both absolute and relative timing. All participants performed a four-segment movement pattern with specific absolute and relative timing goals prior to and following the observational intervention, as well as in a 24h retention test and transfers tests that featured new relative and absolute timing goals. Absolute timing error indicated that all groups initially acquired the absolute timing, maintained their performance at 24h retention, and exhibited performance deterioration in both transfer tests. Relative timing error revealed that the observation of no variability and relative timing variability produced greater performance at the post-test, 24h retention and relative timing transfer tests, but for the no variability group, deteriorated at absolute timing transfer test. The results suggest that the learning of absolute timing following observation unfolds irrespective of model variability. However, the learning of relative timing benefits from holding the absolute features constant, while the observation of no variability partially fails in transfer. We suggest learning by observing no variability and variable/erred models unfolds via similar neural mechanisms, although the latter benefits from the additional coding of information pertaining to movements that require a correction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Variable Oakleaf Caterpillar

    Treesearch

    Louis F. Wilson; Gordon A. Surgeoner

    1979-01-01

    The variable oakleaf caterpillar (Heterocampa manteo (Dbldy.)) is a common insect in deciduous forests of Eastern North America. It has been recorded from most of the Eastern Canadian Provinces and most of the States in the East to North Dakota in the West and south to eastern Texas, Louisiana, and Mississippi. Heavy defoliations of hosts may occur anywhere within this...

  18. Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability

    PubMed Central

    Gohel, Suril; Di, Xin; Walter, Martin; Biswal, Bharat B.

    2012-01-01

    Abstract In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these “functional covariance networks”. PMID:22765879

  19. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    NASA Astrophysics Data System (ADS)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  20. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

    PubMed Central

    2015-01-01

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072

  1. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  2. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    NASA Astrophysics Data System (ADS)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  3. State Laws and Guidelines for RTI: Additional Implementation Features

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2011-01-01

    Response to intervention (RTI) remains a major issue in both the professional literature and school practice. A series of previous "snapshot" studies traced the development of RTI in state laws concerning identification of students with specific learning disability (SLD). In the last article in this series, Zirkel and Thomas (2010) reported that…

  4. Continuous-variable quantum teleportation with non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, F.; Dipartimento di Fisica, Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi; CNR-INFM Coherentia, Napoli, Italy and CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Baronissi

    2007-08-15

    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those thatmore » most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity.« less

  5. The Anomalous Low State of LMC X-3

    NASA Technical Reports Server (NTRS)

    Smale, A. P.; Boyd, P. T.; Markwardt, C. B.

    2009-01-01

    Archival RXTE ASM and PCA observations of the black hole binary LMC X-3 reveal a dramatic and extended low state lasting from December 8, 2003 until March 18, 2004, unprecedented both in its Low luminosity (Lx(2-10keV)=4.2x 1035 ergs s-1, approximately 4 times fainter than ever before seen from LMC X-3 in its low/hard state, and representing 0.15% of its X-ray luminosity during the high/soft state); and Long duration (approximately equal to 100 days, as compared with 5-20 days for 'normal' low/hard state excursions). During this anomalous low state no significant variability is observed on timescales of days-weeks, and the spectrum is well described by a simple power law with index 1.7 plus or minus 0.2. We examine the variability characteristics of LMC X-3 before and after this event using conventional and topological methods, and show that with the exception of the anomalous low state itself the long-term behavior of the source in topological phase space can be completely described in terms of a well-understood nonlinear dynamics system known as the Duffing oscillator, implying that the accretion disk in LMC X-3 is a driven, dissipative system with two solutions competing for control of its time evolution. This work shows that dynamical information and constraints revealed by topological analysis methods can provide a valuable addition to traditional studies of accretion disk behavior.

  6. A variable-mode stator consequent pole memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lyu, Shukang; Lin, Heyun; Zhu, Z. Q.

    2018-05-01

    In this paper, a variable-mode concept is proposed for the speed range extension of a stator-consequent-pole memory machine (SCPMM). An integrated permanent magnet (PM) and electrically excited control scheme is utilized to simplify the flux-weakening control instead of relatively complicated continuous PM magnetization control. Due to the nature of memory machine, the magnetization state of low coercive force (LCF) magnets can be easily changed by applying either a positive or negative current pulse. Therefore, the number of PM poles may be changed to satisfy the specific performance requirement under different speed ranges, i.e. the machine with all PM poles can offer high torque output while that with half PM poles provides wide constant power range. In addition, the SCPMM with non-magnetized PMs can be considered as a dual-three phase electrically excited reluctance machine, which can be fed by an open-winding based dual inverters that provide direct current (DC) bias excitation to further extend the speed range. The effectiveness of the proposed variable-mode operation for extending its operating region and improving the system reliability is verified by both finite element analysis (FEA) and experiments.

  7. Assessing positive emotional states in dogs using heart rate and heart rate variability.

    PubMed

    Zupan, Manja; Buskas, Julia; Altimiras, Jordi; Keeling, Linda J

    2016-03-01

    Since most animal species have been recognized as sentient beings, emotional state may be a good indicator of welfare in animals. The goal of this study was to manipulate the environment of nine beagle research dogs to highlight physiological responses indicative of different emotional experiences. Stimuli were selected to be a more or a less positive food (meatball or food pellet) or social reward (familiar person or less familiar person). That all the stimuli were positive and of different reward value was confirmed in a runway motivation test. Dogs were tested individually while standing facing a display theatre where the different stimuli could be shown by lifting a shutter. The dogs approached and remained voluntarily in the test system. They were tested in four sessions (of 20s each) for each of the four stimuli. A test session consisted of four presentation phases (1st exposure to stimulus, post exposure, 2nd exposure, and access to reward). Heart rate (HR) and heart rate variability (HRV) responses were recorded during testing in the experimental room and also when lying resting in a quiet familiar room. A new method of 'stitching' short periods of HRV data together was used in the analysis. When testing different stimuli, no significant differences were observed in HR and LF:HF ratio (relative power in low frequency (LF) and the high-frequency (HF) range), implying that the sympathetic tone was activated similarly for all the stimuli and may suggest that dogs were in a state of positive arousal. A decrease of HF was associated with the meatball stimulus compared to the food pellet and the reward phase (interacting with the person or eating the food) was associated with a decrease in HF and RMSSD (root mean square of successive differences of inter-beat intervals) compared to the preceding phase (looking at the person or food). This suggests that parasympathetic deactivation is associated with a more positive emotional state in the dog. A similar reduction

  8. Efficient continuous-variable state tomography using Padua points

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.

    Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.

  9. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-05-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments.

  10. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed Central

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-01-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments. PMID:11359688

  11. An Examination of the Demographic and Environmental Variables Correlated with Lyme Disease Emergence in Virginia.

    PubMed

    Seukep, Sara E; Kolivras, Korine N; Hong, Yili; Li, Jie; Prisley, Stephen P; Campbell, James B; Gaines, David N; Dymond, Randel L

    2015-12-01

    Lyme disease is the United States' most significant vector-borne illness. Virginia, on the southern edge of the disease's currently expanding range, has experienced an increase in Lyme disease both spatially and temporally, with steadily increasing rates over the past decade and disease spread from the northern to the southwestern part of the state. This study used a Geographic Information System and a spatial Poisson regression model to examine correlations between demographic and land cover variables, and human Lyme disease from 2006 to 2010 in Virginia. Analysis indicated that herbaceous land cover is positively correlated with Lyme disease incidence rates. Areas with greater interspersion between herbaceous and forested land were also positively correlated with incidence rates. In addition, income and age were positively correlated with incidence rates. Levels of development, interspersion of herbaceous and developed land, and population density were negatively correlated with incidence rates. Abundance of forest fragments less than 2 hectares in area was not significantly correlated. Our results support some findings of previous studies on ecological variables and Lyme disease in endemic areas, but other results have not been found in previous studies, highlighting the potential contribution of new variables as Lyme disease continues to emerge southward.

  12. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... least two) technical committees to advise the State council and the State board on the development of model curricula to address State labor market needs. The technical committees shall develop an inventory of skills that may be used by the State board to define state-of-the-art model curricula. This...

  13. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... least two) technical committees to advise the State council and the State board on the development of model curricula to address State labor market needs. The technical committees shall develop an inventory of skills that may be used by the State board to define state-of-the-art model curricula. This...

  14. Regional variability in the accuracy of statistical reproductions of historical time series of daily streamflow at ungaged locations

    NASA Astrophysics Data System (ADS)

    Farmer, W. H.; Archfield, S. A.; Over, T. M.; Kiang, J. E.

    2015-12-01

    In the United States and across the globe, the majority of stream reaches and rivers are substantially impacted by water use or remain ungaged. The result is large gaps in the availability of natural streamflow records from which to infer hydrologic understanding and inform water resources management. From basin-specific to continent-wide scales, many efforts have been undertaken to develop methods to estimate ungaged streamflow. This work applies and contrasts several statistical models of daily streamflow to more than 1,700 reference-quality streamgages across the conterminous United States using a cross-validation methodology. The variability of streamflow simulation performance across the country exhibits a pattern familiar to other continental scale modeling efforts performed for the United States. For portions of the West Coast and the dense, relatively homogeneous and humid regions of the eastern United States models produce reliable estimates of daily streamflow using many different prediction methods. Model performance for the middle portion of the United States, marked by more heterogeneous and arid conditions, and with larger contributing areas and sparser networks of streamgages, is consistently poor. A discussion of the difficulty of statistical interpolation and regionalization in these regions raises additional questions of data availability and quality, hydrologic process representation and dominance, and intrinsic variability.

  15. State Test Programs Mushroom as NCLB Mandate Kicks in: Nearly Half of States Are Expanding Their Testing Programs to Additional Grades This School Year to Comply with the Federal No Child Left Behind Act

    ERIC Educational Resources Information Center

    Olson, Lynn

    2005-01-01

    Twenty-three states are expanding their testing programs to additional grades this school year to comply with the federal No Child Left Behind Act. In devising the new tests, most states have defied predictions and chosen to go beyond multiple-choice items, by including questions that ask students to construct their own responses. But many state…

  16. Adaptive Variability in Skilled Human Movements

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutoshi; Ohtsuki, Tatsuyuki

    Human movements are produced in variable external/internal environments. Because of this variability, the same motor command can result in quite different movement patterns. Therefore, to produce skilled movements humans must coordinate the variability, not try to exclude it. In addition, because human movements are produced in redundant and complex systems, a combination of variability should be observed in different anatomical/physiological levels. In this paper, we introduce our research about human movement variability that shows remarkable coordination among components, and between organism and environment. We also introduce nonlinear dynamical models that can describe a variety of movements as a self-organization of a dynamical system, because the dynamical systems approach is a major candidate to understand the principle underlying organization of varying systems with huge degrees-of-freedom.

  17. Role Variables VS. Contextual Variables in the Theory of Didactic Systems

    NASA Astrophysics Data System (ADS)

    Alberti, Monica; Cirina, Lucia; Paoli, Francesco

    Partisans of the constructivist approach to mathematics education, such as Brousseau or Chevallard, developed an accurate theoretical framework in which didactical systems are viewed in a systemic perspective. What they somewhat fail to draw, however, is a sharp distinction between role variables - concerning the roles played in the didactical interaction by the individual elements of the system (Student-Teacher-Knowledge) - and contextual variables - concerning the action on the learning process of the system as a whole. Our research in progress on 2nd graders' word problem solving strategies applies the previous dichotomy to class management strategies adopted by teachers. Partial evidence collected so far points to the tentative conclusion according to which, contextual variables being equal, differences in teaching styles and methods may deeply reshape the role component of didactical systems. If we take into careful account this distinction, we can shed additional light into some hitherto unexplained phenomena observed in the literature.

  18. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil.

    PubMed

    Taniguchi, Satie; Colabuono, Fernanda I; Dias, Patrick S; Oliveira, Renato; Fisner, Mara; Turra, Alexander; Izar, Gabriel M; Abessa, Denis M S; Saha, Mahua; Hosoda, Junki; Yamashita, Rei; Takada, Hideshige; Lourenço, Rafael A; Magalhães, Caio A; Bícego, Márcia C; Montone, Rosalinda C

    2016-05-15

    High spatial variability in polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides, such as DDTs, and polybrominated diphenylethers was observed in plastic pellets collected randomly from 41 beaches (15 cities) in 2010 from the coast of state of São Paulo, southeastern Brazil. The highest concentrations ranged, in ng g(-1), from 192 to 13,708, 3.41 to 7554 and <0.11 to 840 for PAHs, PCBs and DDTs, respectively. Similar distribution pattern was presented, with lower concentrations on the relatively less urbanized and industrialized southern coast, and the highest values in the central portion of the coastline, which is affected by both waste disposal and large port and industrial complex. Additional samples were collected in this central area and PCB concentrations, in ngg(-)(1), were much higher in 2012 (1569 to 10,504) than in 2009/2010 (173 to 309) and 2014 (411), which is likely related to leakages of the PCB commercial mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  20. The Role of Motivation and Learner Variables in L1 and L2 Vocabulary Development in Japanese Heritage Language Speakers in the United States

    ERIC Educational Resources Information Center

    Mori, Yoshiko; Calder, Toshiko M.

    2015-01-01

    This study investigates the role of motivation and learner variables in bilingual vocabulary development among first language (L1) Japanese students attending hoshuukoo (i.e., supplementary academic schools for Japanese-speaking children) in the United States. One hundred sixteen high school students ages 15-18 from eight hoshuukoo completed…

  1. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States.

    PubMed

    Tang, Yizhi; Meinersmann, Richard J; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T; Zhang, Qijing

    2017-09-29

    manuscript describes wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of pre-harvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health as it is a zoonotic pathogen causing disease in both ruminants and humans. Copyright © 2017 Tang et al.

  2. 45 CFR 96.132 - Additional agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Additional agreements. 96.132 Section 96.132... Abuse Prevention and Treatment Block Grant § 96.132 Additional agreements. (a) With respect to... facility in its funding agreement. (c) The State shall coordinate prevention and treatment activities with...

  3. 45 CFR 96.132 - Additional agreements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Additional agreements. 96.132 Section 96.132... Abuse Prevention and Treatment Block Grant § 96.132 Additional agreements. (a) With respect to... facility in its funding agreement. (c) The State shall coordinate prevention and treatment activities with...

  4. Effectiveness of the Touch Math Technique in Teaching Basic Addition to Children with Autism

    ERIC Educational Resources Information Center

    Yikmis, Ahmet

    2016-01-01

    This study aims to reveal whether the touch math technique is effective in teaching basic addition to children with autism. The dependent variable of this study is the children's skills to solve addition problems correctly, whereas teaching with the touch math technique is the independent variable. Among the single-subject research models, a…

  5. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape

    PubMed Central

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS

  6. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape.

    PubMed

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we

  7. Diffusion of Impaired Driving Laws Among US States.

    PubMed

    Macinko, James; Silver, Diana

    2015-09-01

    We examined internal and external determinants of state's adoption of impaired driving laws. Data included 7 state-level, evidence-based public health laws collected from 1980 to 2010. We used event history analyses to identify predictors of first-time law adoption and subsequent adoption between state pairs. The independent variables were internal state factors, including the political environment, legislative professionalism, government capacity, state resources, legislative history, and policy-specific risk factors. The external factors were neighboring states' history of law adoption and changes in federal law. We found a strong secular trend toward an increased number of laws over time. The proportion of younger drivers and the presence of a neighboring state with similar laws were the strongest predictors of first-time law adoption. The predictors of subsequent law adoption included neighbor state adoption and previous legislative action. Alcohol laws were negatively associated with first-time adoption of impaired driving laws, suggesting substitution effects among policy choices. Organizations seeking to stimulate state policy changes may need to craft strategies that engage external actors, such as neighboring states, in addition to mobilizing within-state constituencies.

  8. AN ONLINE CATALOG OF CATACLYSMIC VARIABLE SPECTRA FROM THE FAR-ULTRAVIOLET SPECTROSCOPIC EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godon, Patrick; Sion, Edward M.; Levay, Karen

    2012-12-15

    We present an online catalog containing spectra and supporting information for cataclysmic variables that have been observed with the Far-Ultraviolet Spectroscopic Explorer (FUSE). For each object in the catalog we list some of the basic system parameters such as (R.A., decl.), period, inclination, and white dwarf mass, as well as information on the available FUSE spectra: data ID, observation date and time, and exposure time. In addition, we provide parameters needed for the analysis of the FUSE spectra such as the reddening E(B - V), distance, and state (high, low, intermediate) of the system at the time it was observed.more » For some of these spectra we have carried out model fits to the continuum with synthetic stellar and/or disk spectra using the codes TLUSTY and SYNSPEC. We provide the parameters obtained from these model fits; this includes the white dwarf temperature, gravity, projected rotational velocity, and elemental abundances of C, Si, S, and N, together with the disk mass accretion rate, the resulting inclination, and model-derived distance (when unknown). For each object one or more figures are provided (as gif files) with line identification and model fit(s) when available. The FUSE spectra and the synthetic spectra are directly available for download as ASCII tables. References are provided for each object, as well as for the model fits. In this article we present 36 objects, and additional ones will be added to the online catalog in the future. In addition to cataclysmic variables, we also include a few related objects, such as a wind-accreting white dwarf, a pre-cataclysmic variable, and some symbiotics.« less

  9. 30,000 years of hydroclimatic variability in the coastal southwest United States: regional synthesis and forcings analysis.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.

    2015-12-01

    The coastal southwest United States is characterized by a winter dominated hydroclimate. Far from dependable, this region's supply of winter precipitation is highly variable and often characterized by hydrologic opposites - droughts and floods. Predicting future precipitation and hydrologic dynamics requires a paleoperspective. Here, we present an up-to-date synthesis of hydroclimatic variability over the past 30,000 years. A variety of terrestrial-based studies are examined and compared to understand patterns of regional hydroclimatic change. This comparison is extended into the San Joaquin Basin of California where future climate change will impact the region's agricultural stability and economy. Particularly interesting is the apparent role that Pacific sea surface temperatures (SSTs) play in modulating the region's hydroclimate over a variety of timescales. Are past periods of above average Pacific SSTs analogs for future global warming? If yes, the region might expect an increase in winter precipitation as SSTs rise in response to global warming. However, how this potential precipitation increase is manifest is unknown. For example, will the intensity of precipitation events increase and thus present increased flood hazards and diminished freshwater capture? Finally, we present evidence for changes in the source of winter precipitation over time as well as ecological responses to past hydrologic change.

  10. Steady state temperature distribution in dermal regions of an irregular tapered shaped human limb with variable eccentricity.

    PubMed

    Agrawal, M; Pardasani, K R; Adlakha, N

    2014-08-01

    The investigators in the past have developed some models of temperature distribution in the human limb assuming it as a regular circular or elliptical tapered cylinder. But in reality the limb is not of regular tapered cylindrical shape. The radius and eccentricity are not same throughout the limb. In view of above a model of temperature distribution in the irregular tapered elliptical shaped human limb is proposed for a three dimensional steady state case in this paper. The limb is assumed to be composed of multiple cylindrical substructures with variable radius and eccentricity. The mathematical model incorporates the effect of blood mass flow rate, metabolic activity and thermal conductivity. The outer surface is exposed to the environment and appropriate boundary conditions have been framed. The finite element method has been employed to obtain the solution. The temperature profiles have been computed in the dermal layers of a human limb and used to study the effect of shape, microstructure and biophysical parameters on temperature distribution in human limbs. The proposed model is one of the most realistic model as compared to conventional models as this can be effectively employed to every regular and nonregular structures of the body with variable radius and eccentricity to study the thermal behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  12. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  13. Continuous-variable teleportation of a negative Wigner function

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav, Jr.; Filip, Radim; Furusawa, Akira

    2010-07-01

    Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated single-photon state there is a strict threshold squeezing one has to surpass to successfully teleport the negativity of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional one. The main consequences for quantum communication and quantum computing with continuous variables are discussed.

  14. Exploring the spectral variability of the Seyfert 1.5 galaxy Markarian 530 with Suzaku

    NASA Astrophysics Data System (ADS)

    Ehler, H. J. S.; Gonzalez, A. G.; Gallo, L. C.

    2018-05-01

    A 2012 Suzaku observation of the Seyfert 1.5 galaxy Markarian 530 was analysed and found to exhibit two distinct modes of variability, which were found to be independent from one another. Firstly, the spectrum undergoes a smooth transition from a soft to a hard spectrum. Secondly, the spectrum displays more rapid variability seemingly confined to a very narrow energy band (˜1 - 3 keV). Three physical models (blurred reflection, partial covering, and soft Comptonisation) were explored to characterise the average spectrum of the observation as well as the spectral state change. All three models were found to fit the average spectrum and the spectral changes equally well. The more rapid variability appears as two cycles of a sinusoidal function, but we cannot attribute this to periodic variability. The Fe Kα band exhibits a narrow 6.4 keV emission line consistent with an origin from the distant torus. In addition, features blueward of the neutral iron line are consistent with emission from He-like and H-like iron that could be originating from the highly ionised layer of the torus, but a broad Gaussian profile at ˜6.7 keV also fits the spectrum well.

  15. Enabling intelligent copernicus services for carbon and water balance modeling of boreal forest ecosystems - North State

    NASA Astrophysics Data System (ADS)

    Häme, Tuomas; Mutanen, Teemu; Rauste, Yrjö; Antropov, Oleg; Molinier, Matthieu; Quegan, Shaun; Kantzas, Euripides; Mäkelä, Annikki; Minunno, Francesco; Atli Benediktsson, Jon; Falco, Nicola; Arnason, Kolbeinn; Storvold, Rune; Haarpaintner, Jörg; Elsakov, Vladimir; Rasinmäki, Jussi

    2015-04-01

    The objective of project North State, funded by Framework Program 7 of the European Union, is to develop innovative data fusion methods that exploit the new generation of multi-source data from Sentinels and other satellites in an intelligent, self-learning framework. The remote sensing outputs are interfaced with state-of-the-art carbon and water flux models for monitoring the fluxes over boreal Europe to reduce current large uncertainties. This will provide a paradigm for the development of products for future Copernicus services. The models to be interfaced are a dynamic vegetation model and a light use efficiency model. We have identified four groups of variables that will be estimated with remote sensed data: land cover variables, forest characteristics, vegetation activity, and hydrological variables. The estimates will be used as model inputs and to validate the model outputs. The earth observation variables are computed as automatically as possible, with an objective to completely automatic estimation. North State has two sites for intensive studies in southern and northern Finland, respectively, one in Iceland and one in state Komi of Russia. Additionally, the model input variables will be estimated and models applied over European boreal and sub-arctic region from Ural Mountains to Iceland. The accuracy assessment of the earth observation variables will follow statistical sampling design. Model output predictions are compared to earth observation variables. Also flux tower measurements are applied in the model assessment. In the paper, results of hyperspectral, Sentinel-1, and Landsat data and their use in the models is presented. Also an example of a completely automatic land cover class prediction is reported.

  16. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  17. Trap density of states in n-channel organic transistors: variable temperature characteristics and band transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Joung-min, E-mail: cho.j.ad@m.titech.ac.jp; Akiyama, Yuto; Kakinuma, Tomoyuki

    2013-10-15

    We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulatedmore » characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V{sub G} above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.« less

  18. Relating brain signal variability to knowledge representation.

    PubMed

    Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R

    2012-11-15

    We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. Processes Understanding of Decadal Climate Variability

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Cubasch, Ulrich

    2016-04-01

    The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.

  20. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.

    2017-12-01

    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water

  1. Guidelines for the operation of variable message signs on state highways

    DOT National Transportation Integrated Search

    2004-06-01

    A variable message sign (VMS) is a traffic control device whose message can be changed manually, electrically, mechanically, or electromechanically to provide motorists with information about traffic congestion, traffic crashes, maintenance operation...

  2. Evaluating Washington State's immunization information system as a research tool.

    PubMed

    Jackson, Michael L; Henrikson, Nora B; Grossman, David C

    2014-01-01

    Immunization information systems (IISs) are powerful public health tools for vaccination activities. To date, however, their use for public health research has been limited, in part as a result of insufficient understanding on accuracy and quality of IIS data. We evaluated the completeness and accuracy of Washington State IIS (WAIIS) data, with particular attention to data elements of research interest. We analyzed all WAIIS records on all children born between 2006 and 2010 with at least 1 vaccination recorded in WAIIS between 2006 and 2010. We assessed all variables for completeness and tested selected variables for internal validity. To assess external validity, we matched WAIIS data to records from Group Health, a large integrated health care organization in Washington State. On these children, we compared vaccination data in WAIIS with vaccination data from Group Health's immunization registry. The WAIIS data included 486,265 children and 8,670,234 unique vaccinations. Variables required by WAIIS (such as date of vaccination) were highly complete, but optional variables were often missing. For example, most records were missing data on route (80.7%) and anatomic site (81.7%) of vaccination. WAIIS data, when complete, were highly accurate relative to the Group Health immunization registry, with 96% to 99% agreement between fields such as vaccination code and anatomic site. Required data elements in WAIIS are highly complete and have both internal and external validity, suggesting that these variables are useful for research. Research requiring nonrequired variables should use additional validity checks before proceeding. Copyright © 2014 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  3. Evaluating Inter-Annual Climate Variability of Nitrogen Wet Deposition in the United States Using Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Nergui, T.; Thomas, N.; Liu, M.; Lamb, B. K.; Adam, J. C.; Chung, S. H.

    2012-12-01

    Human activities, primarily agricultural practices and fossil fuel combustion, have caused a significant increase in nitrogen (N) emissions into the atmosphere over the last 150 years. The increase in emission subsequently leads to elevated ozone concentration, haze, increased acid rain and N deposition at local and regional scales. Many ecosystems in the US are naturally N limited. These regions are highly vulnerable to increased N deposition which can lead to irreversible changes in biodiversity richness and composition of the ecosystems. Through the impact on atmospheric chemistry and scavenging by precipitation, climate variability can play a major role on N deposition rates. The El Niño/Southern Oscillation (ENSO), Northern Annular Mode/Arctic Oscillation (NAM/AO), North Atlantic Oscillation (NAO), and the Pacific-North American Pattern (PNA) indices are the key climate indices that characterize the climate in the contiguous US at inter-annual timescale. Here, we identify dominant periodic components (signal) in the N wet deposition and the climate index timeseries and examine their correlations and coherences using wavelet analysis. Seasonal precipitation and nitrogen (ammonium and nitrate) wet deposition data from the National Atmospheric Deposition Program (NADP), National Trends Network (NTN) for 87 sites across the United States are used for the study. The sites were selected based on data continuity of 21 years or more and NADP criteria for valid precipitation and wet deposition data. Precipitation data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are also used to replicate and validate the general features of climate variability effects in different regions of US. Initial analysis reveals nitrate wet deposition has a dominant 1-4 year periodicity while ammonium wet deposition has a shorter periodicity (about 0.5-2 year) during 1979 to 2011. Precipitation and total N wet deposition are most correlated in the Great Plains

  4. The Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2002 Tropical Ozone Climatology. 3; Instrumentation and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacqueline C.; Smit, Herman G. J.; Oltmans, Samuel J.; Johnson, Bryan J.; Kirchhoff, Volker W. J. H.; Schmidlin, Francis J.

    2004-01-01

    Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with accompanying pressure-temperature-humidity soundings) are archived. Analysis of ozonesonde imprecision within the SHADOZ dataset revealed that variations in ozonesonde technique could lead to station-to-station biases in the measurements. In this paper imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS. Variability among stations is evaluated using total ozone normalized to TOMS and results of laboratory tests on ozonesondes (JOSE-2O00, Julich Ozonesonde Intercomparison Experiment). Ozone deviations from a standard instrument in the JOSE flight simulation chamber resemble those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain systematic variations in SHADOZ ozone profiles are accounted for by differences in solution composition, data processing and instrument (manufacturer). Instrument bias leads to a greater ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific sites compared to other SHADOZ stations at 0-20 deg.S.

  5. Income inequality and child maltreatment in the United States.

    PubMed

    Eckenrode, John; Smith, Elliott G; McCarthy, Margaret E; Dineen, Michael

    2014-03-01

    To examine the relation between county-level income inequality and rates of child maltreatment. Data on substantiated reports of child abuse and neglect from 2005 to 2009 were obtained from the National Child Abuse and Neglect Data System. County-level data on income inequality and children in poverty were obtained from the American Community Survey. Data for additional control variables were obtained from the American Community Survey and the Health Resources and Services Administration Area Resource File. The Gini coefficient was used as the measure of income inequality. Generalized additive models were estimated to explore linear and nonlinear relations among income inequality, poverty, and child maltreatment. In all models, state was included as a fixed effect to control for state-level differences in victim rates. Considerable variation in income inequality and child maltreatment rates was found across the 3142 US counties. Income inequality, as well as child poverty rate, was positively and significantly correlated with child maltreatment rates at the county level. Controlling for child poverty, demographic and economic control variables, and state-level variation in maltreatment rates, there was a significant linear effect of inequality on child maltreatment rates (P < .0001). This effect was stronger for counties with moderate to high levels of child poverty. Higher income inequality across US counties was significantly associated with higher county-level rates of child maltreatment. The findings contribute to the growing literature linking greater income inequality to a range of poor health and well-being outcomes in infants and children.

  6. Regulation of Spatiotemporal Patterns by Biological Variability: General Principles and Applications to Dictyostelium discoideum

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2015-01-01

    Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In biology, the resulting patterns are also subject to the influence of the systematic differences between the system’s constituents (biological variability). This regulation of spatiotemporal patterns by biological variability is the topic of our review. We discuss several examples of correlations between cell properties and the self-organized spatiotemporal patterns, together with their relevance for biology. Our guiding, illustrative example will be spiral waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially fatal ventricular fibrillation) so a deeper understanding of this additional layer of self-organized pattern formation would be beneficial to a wide range of applications. One of the most striking differences between pattern-forming systems in physics or chemistry and those in biology is the potential importance of variability. In the former, system components are essentially identical with random fluctuations determining the details of the self-organization process and the resulting patterns. In biology, due to variability, the properties of potentially very few cells can have a driving influence on the resulting asymptotic collective state of the colony. Variability is one means of implementing a few-element control on the collective mode. Regulatory architectures, parameters of signaling cascades, and properties of structure formation processes can be "reverse-engineered" from observed spatiotemporal patterns, as different types of regulation and forms of interactions between the constituents can lead to markedly different correlations. The power of this biology-inspired view of pattern formation lies in building a bridge between two scales: the patterns as a collective state of a very large number of cells on the one hand, and the internal

  7. Measurement variability error for estimates of volume change

    Treesearch

    James A. Westfall; Paul L. Patterson

    2007-01-01

    Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...

  8. Diffusion of Impaired Driving Laws Among US States

    PubMed Central

    Silver, Diana

    2015-01-01

    Objectives. We examined internal and external determinants of state’s adoption of impaired driving laws. Methods. Data included 7 state-level, evidence-based public health laws collected from 1980 to 2010. We used event history analyses to identify predictors of first-time law adoption and subsequent adoption between state pairs. The independent variables were internal state factors, including the political environment, legislative professionalism, government capacity, state resources, legislative history, and policy-specific risk factors. The external factors were neighboring states’ history of law adoption and changes in federal law. Results. We found a strong secular trend toward an increased number of laws over time. The proportion of younger drivers and the presence of a neighboring state with similar laws were the strongest predictors of first-time law adoption. The predictors of subsequent law adoption included neighbor state adoption and previous legislative action. Alcohol laws were negatively associated with first-time adoption of impaired driving laws, suggesting substitution effects among policy choices. Conclusions. Organizations seeking to stimulate state policy changes may need to craft strategies that engage external actors, such as neighboring states, in addition to mobilizing within-state constituencies. PMID:26180969

  9. 42 CFR 493.557 - Additional submission requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scope of the specialty or subspecialty areas. (2) A description of the organization's data management..., Nonprofit Accreditation Organization or Exemption Under an Approved State Laboratory Program § 493.557 Additional submission requirements. (a) Specific requirements for accreditation organizations. In addition to...

  10. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  11. Additive Manufacturing Solutions in the United States Marine Corps

    DTIC Science & Technology

    2017-12-01

    4 demonstrates this process. A laser or a blade then cuts each layer to shape the final product. Wohlers (2017) states that “the cost of material is...printed sole for its running shoes. The top of the shoe is constructed from conventional fabric and is attached to the sole after it is printed...milling). This runs on 208 volts and provides a small work area (T. Arndt, personal communication, June 21, 2017). 1st Maintenance Battalion Marines

  12. Theory and design of variable conductance heat pipes

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1972-01-01

    A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.

  13. Initial testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  14. Continuous-Variable Triple-Photon States Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    González, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J. A.; Bencheikh, K.

    2018-01-01

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  15. Continuous-Variable Triple-Photon States Quantum Entanglement.

    PubMed

    González, E A Rojas; Borne, A; Boulanger, B; Levenson, J A; Bencheikh, K

    2018-01-26

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  16. Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO

  17. Impact of advanced monitoring variables on intraoperative clinical decision-making: an international survey.

    PubMed

    Joosten, Alexandre; Desebbe, Olivier; Suehiro, Koichi; Essiet, Mfonobong; Alexander, Brenton; Ricks, Cameron; Rinehart, Joseph; Faraoni, David; Cecconi, Maurizio; Van der Linden, Philippe; Cannesson, Maxime

    2017-02-01

    To assess the relationship between the addition of advanced monitoring variables and changes in clinical decision-making. A 15-questions survey was anonymously emailed to international experts and physician members of five anesthesia societies which focused on assessing treatment decisions of clinicians during three realistic clinical scenarios measured at two distinct time points. The first is when typical case information and basic monitoring (T1) were provided, and then once again after the addition of advanced monitoring variables (T2). We hypothesized that the addition of advanced variables would increase the incidence of an optimal therapeutic decision (a priori defined as the answer with the highest percentage of expert agreement) and decrease the variability among the physician's suggested treatments. The survey was completed by 18 experts and 839 physicians. Overall, adding advanced monitoring did not significantly increase physician response accuracy, with the least substantial changes noted on questions related to volume expansion or vasopressor administration. Moreover, advanced monitoring data did not significantly decrease the high level of initial practice variability in physician suggested treatments (P = 0.13), in contrast to the low variability observed within the expert group (P = 0.039). Additionally, 5-10 years of practice (P < 0.0001) and a cardiovascular subspecialty (P = 0.048) were both physician characteristics associated with a higher rate of optimal therapeutic decisions. The addition of advanced variables was of limited benefit for most physicians, further indicating the need for more in depth education on the clinical value and technical understanding of such variables.

  18. Long-distance continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouguet, Paul; SeQureNet, 23 avenue d'Italie, F-75013 Paris; Kunz-Jacques, Sebastien

    2011-12-15

    We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10{sup -3} bit per pulse at amore » distance of 120 km for reasonable physical parameters.« less

  19. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation.

    PubMed

    Barton, Hugh A; Chiu, Weihsueh A; Setzer, R Woodrow; Andersen, Melvin E; Bailer, A John; Bois, Frédéric Y; Dewoskin, Robert S; Hays, Sean; Johanson, Gunnar; Jones, Nancy; Loizou, George; Macphail, Robert C; Portier, Christopher J; Spendiff, Martin; Tan, Yu-Mei

    2007-10-01

    Physiologically based pharmacokinetic (PBPK) models are used in mode-of-action based risk and safety assessments to estimate internal dosimetry in animals and humans. When used in risk assessment, these models can provide a basis for extrapolating between species, doses, and exposure routes or for justifying nondefault values for uncertainty factors. Characterization of uncertainty and variability is increasingly recognized as important for risk assessment; this represents a continuing challenge for both PBPK modelers and users. Current practices show significant progress in specifying deterministic biological models and nondeterministic (often statistical) models, estimating parameters using diverse data sets from multiple sources, using them to make predictions, and characterizing uncertainty and variability of model parameters and predictions. The International Workshop on Uncertainty and Variability in PBPK Models, held 31 Oct-2 Nov 2006, identified the state-of-the-science, needed changes in practice and implementation, and research priorities. For the short term, these include (1) multidisciplinary teams to integrate deterministic and nondeterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through improved documentation of model structure(s), parameter values, sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include (1) theoretical and practical methodological improvements for nondeterministic/statistical modeling; (2) better methods for evaluating alternative model structures; (3) peer-reviewed databases of parameters and covariates, and their distributions; (4) expanded coverage of PBPK models across chemicals with different properties; and (5) training and reference materials, such as cases studies, bibliographies/glossaries, model repositories, and enhanced

  20. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Technical Reports Server (NTRS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; hide

    2016-01-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 < approx. a* < approx. 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be approx.10deg-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at approx. 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  1. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°-15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  2. Effect of additional optical pumping injection into the ground-state ensemble on the gain and the phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2014-02-01

    The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.

  3. Continuous-variable teleportation of a negative Wigner function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mista, Ladislav Jr.; Filip, Radim; Furusawa, Akira

    2010-07-15

    Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated single-photon state there ismore » a strict threshold squeezing one has to surpass to successfully teleport the negativity of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional one. The main consequences for quantum communication and quantum computing with continuous variables are discussed.« less

  4. 20 CFR 655.154 - Additional positive recruitment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 655.154 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Labor Certification Process for Temporary Agricultural Employment in the United States (H-2A Workers) Post-Acceptance Requirements § 655.154 Additional positive...

  5. Socio-demographic, health, and tinnitus related variables affecting tinnitus severity.

    PubMed

    Hoekstra, Carlijn E L; Wesdorp, Francina M; van Zanten, Gijsbert A

    2014-01-01

    Tinnitus is a highly prevalent symptom with potential severe morbidity. Fortunately, only a small proportion of the population experience problems due to their tinnitus in such a degree that it adversely affects their quality of life (clinically significant tinnitus). It is not known why these individuals develop more burden from tinnitus. It seems likely that the severity of tinnitus can be influenced by different factors, such as socio-demographic or tinnitus characteristics or additional health complaints. It remains unclear from the current literature as to what are the main independent variables that have a bearing on tinnitus severity. This study addresses this problem by investigating variables previously described in the literature as well as additional variables. The aim of this study is to identify socio-demographic, health, and tinnitus variables that independently relate to tinnitus severity the most. This is a retrospective cohort study performed at the Tinnitus Care Group of the University Medical Center, Utrecht, in 309 consecutively seen chronic tinnitus patients. At this care group, patients are examined according to a structured diagnostic protocol, including history-taking by an otorhinolaryngologist and audiologist, physical examination, and audiometry. Based on results from previous research and theoretical considerations, a subset of data acquired through this diagnostic protocol were selected and used in this study. Univariate and multivariate correlations with tinnitus severity were investigated for 28 socio-demographic, health, and tinnitus variables. Tinnitus severity was measured with the Tinnitus Questionnaire (TQ) and the Tinnitus Handicap Inventory (THI). Eighteen variables related univariately with the TQ and 16 variables related univariately with the THI. Among these, 14 variables related univariately with both the TQ and the THI. Multivariate analyses showed three variables with an independent significant effect on both the TQ and

  6. Spatiotemporal Variability of Dimethylsulphoniopropionate on a Fringing Coral Reef: The Role of Reefal Carbonate Chemistry and Environmental Variability

    PubMed Central

    Burdett, Heidi L.; Donohue, Penelope J. C.; Hatton, Angela D.; Alwany, Magdy A.; Kamenos, Nicholas A.

    2013-01-01

    Oceanic pH is projected to decrease by up to 0.5 units by 2100 (a process known as ocean acidification, OA), reducing the calcium carbonate saturation state of the oceans. The coastal ocean is expected to experience periods of even lower carbonate saturation state because of the inherent natural variability of coastal habitats. Thus, in order to accurately project the impact of OA on the coastal ocean, we must first understand its natural variability. The production of dimethylsulphoniopropionate (DMSP) by marine algae and the release of DMSP’s breakdown product dimethylsulphide (DMS) are often related to environmental stress. This study investigated the spatiotemporal response of tropical macroalgae (Padina sp., Amphiroa sp. and Turbinaria sp.) and the overlying water column to natural changes in reefal carbonate chemistry. We compared macroalgal intracellular DMSP and water column DMSP+DMS concentrations between the environmentally stable reef crest and environmentally variable reef flat of the fringing Suleman Reef, Egypt, over 45-hour sampling periods. Similar diel patterns were observed throughout: maximum intracellular DMSP and water column DMS/P concentrations were observed at night, coinciding with the time of lowest carbonate saturation state. Spatially, water column DMS/P concentrations were highest over areas dominated by seagrass and macroalgae (dissolved DMS/P) and phytoplankton (particulate DMS/P) rather than corals. This research suggests that macroalgae may use DMSP to maintain metabolic function during periods of low carbonate saturation state. In the reef system, seagrass and macroalgae may be more important benthic producers of dissolved DMS/P than corals. An increase in DMS/P concentrations during periods of low carbonate saturation state may become ecologically important in the future under an OA regime, impacting larval settlement and increasing atmospheric emissions of DMS. PMID:23724073

  7. Variability in Pretest-Posttest Correlation Coefficients by Student Achievement Level. NCEE 2011-4033

    ERIC Educational Resources Information Center

    Cole, Russell; Haimson, Joshua; Perez-Johnson, Irma; May, Henry

    2011-01-01

    State assessments are increasingly used as outcome measures for education evaluations. The scaling of state assessments produces variability in measurement error, with the conditional standard error of measurement increasing as average student ability moves toward the tails of the achievement distribution. This report examines the variability in…

  8. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.

    PubMed Central

    Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A

    2001-01-01

    Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector-borne diseases exhibit a distinct seasonal pattern, which clearly suggests that they are weather sensitive. Rainfall, temperature, and other weather variables affect in many ways both the vectors and the pathogens they transmit. For example, high temperatures can increase or reduce survival rate, depending on the vector, its behavior, ecology, and many other factors. Thus, the probability of transmission may or may not be increased by higher temperatures. The tremendous growth in international travel increases the risk of importation of vector-borne diseases, some of which can be transmitted locally under suitable circumstances at the right time of the year. But demographic and sociologic factors also play a critical role in determining disease incidence, and it is unlikely that these diseases will cause major epidemics in the United States if the public health infrastructure is maintained and improved. PMID:11359689

  9. X-ray variability of Cygnus X-1 in its soft state

    NASA Technical Reports Server (NTRS)

    Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.

    1997-01-01

    Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.

  10. [The state of the psychological contract and its relation with employees' psychological health].

    PubMed

    Gracia, Francisco Javier; Silla, Inmaculada; Peiró, José María; Fortes-Ferreira, Lina

    2006-05-01

    In the present paper the role of the state of the psychological contract to predict psychological health results is studied in a sample of 385 employees of different Spanish companies. Results indicate that the state of the psychological contract significantly predicts life satisfaction, work-family conflict and well-being beyond the prediction produced by the content of the psychological contract. In addition, trust and fairness, two dimensions of the state of psychological contract, all together contribute to explain these psychological health variables adding value to the role as predictor of fulfillment of the psychological contract. The results support the approach argued by Guest and colleagues.

  11. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  12. Persistence of Undergraduate Students at Arizona State University: A Research Report on the Class Entering in Fall, 1976.

    ERIC Educational Resources Information Center

    Richardson, Richard C., Jr.; Attinasi, Louis C., Jr.

    The academic persistence of undergraduate students at Arizona State University was studied. Demographic and academic profiles were developed, and persistence rates were calculated for the overall population of 3,166 freshmen, and by gender and ethnicity. Additional demographic variables were residency status and age. The academic variables…

  13. Blood Pressure Variability and Cognitive Function Among Older African Americans: Introducing a New Blood Pressure Variability Measure.

    PubMed

    Tsang, Siny; Sperling, Scott A; Park, Moon Ho; Helenius, Ira M; Williams, Ishan C; Manning, Carol

    2017-09-01

    Although blood pressure (BP) variability has been reported to be associated with cognitive impairment, whether this relationship affects African Americans has been unclear. We sought correlations between systolic and diastolic BP variability and cognitive function in community-dwelling older African Americans, and introduced a new BP variability measure that can be applied to BP data collected in clinical practice. We assessed cognitive function in 94 cognitively normal older African Americans using the Mini-Mental State Examination (MMSE) and the Computer Assessment of Mild Cognitive Impairment (CAMCI). We used BP measurements taken at the patients' three most recent primary care clinic visits to generate three traditional BP variability indices, range, standard deviation, and coefficient of variation, plus a new index, random slope, which accounts for unequal BP measurement intervals within and across patients. MMSE scores did not correlate with any of the BP variability indices. Patients with greater diastolic BP variability were less accurate on the CAMCI verbal memory and incidental memory tasks. Results were similar across the four BP variability indices. In a sample of cognitively intact older African American adults, BP variability did not correlate with global cognitive function, as measured by the MMSE. However, higher diastolic BP variability correlated with poorer verbal and incidental memory. By accounting for differences in BP measurement intervals, our new BP variability index may help alert primary care physicians to patients at particular risk for cognitive decline.

  14. Patterns of variability in supercritical hadronic systems

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Mastichiadis, A.

    2018-07-01

    A unique and often overlooked property of a source loaded with relativistic protons is that it can become supercritical, i.e. it can undergo an abrupt transition from a radiatively inefficient to a radiatively efficient state once its proton energy density exceeds a certain threshold. In this paper, we investigate the temporal variability of hadronic systems in this hardly explored regime. We show that there exists a range of proton densities that prevent the system from reaching a steady state, but drive it instead in a quasi-periodic mode. The escaping radiation then exhibits limit cycles, even if all physical parameters are held constant in time. We extend our analysis to cases where the proton injection rate varies with time and explore the variability patterns of escaping radiation as the system moves in and out from the supercritical regime. We examine the relevance of our results to the variability of the prompt gamma-ray burst emission and show that, at least on a phenomenological level, some interesting analogies exist.

  15. Borehole temperature variability at Hoher Sonnblick, Austria

    NASA Astrophysics Data System (ADS)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  16. Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Amend, Jan P.; Helgeson, Harold C.

    1997-01-01

    Group additivity equations of state for aqueous organic molecules have been generated by combining the revised Helgeson-Kirkham-Flowers (HKF) equations of state ( Shock and Helgeson, 1988, 1990; Tanger and Helgeson, 1988; Shock et al., 1989, 1992) with experimental values of the standard molal properties of aqueous alkanes, alkanols, alkylbenzenes, car☐ylic acids, amides, and amines. Equations of state parameters for the groups represented by -CH 2-, -CH 3, -CHCH 3-, -C 6H 5, -CH 2OH, -COOH, -CONH 2, and -CH 2NH 2 were determined by regression of the experimental data. This procedure permits calculation of the standard molal thermodynamic properties of these groups at elevated temperatures and pressures. Although curves representing the apparent standard molal Gibbs free energies (Δ G°) and enthalpies (Δ H°) of formation, and the standard molal entropies ( S°) of the groups as a function of temperature and pressure are respectively similar for each of them, the temperature dependence of the standard molal heat capacities ( Cp°) and volumes ( V°) of a number of the groups are quite different from one another. For example, the standard molal heat capacities of the hydrocarbon groups minimize with increasing temperature, but those of -CH 2OH and -CH 2NH 2 maximize. Computed values of Δ G°, Δ H°, S°, Cp°, V°, and the equations of state parameters for the various groups were used together with group additivity relations to generate corresponding values of these properties for aqueous n-alkanes, 2-methylalkanes, n-alkylbenzenes, n-alkanols, n-car☐ylic acids, n-amides, and n-amines at temperatures ≤ 250°C and pressures ≤ 1 kbar. The validity and generality of the equations of state are supported by the fact that predicted equilibrium constants for liquid n-alkane solubility reactions in water compare favorably with experimental values reported in the literature for temperatures as high as 200°C. Furthermore, equilibrium constants for aqueous ethane

  17. Observer synthesis for a class of Takagi-Sugeno descriptor system with unmeasurable premise variable. Application to fault diagnosis

    NASA Astrophysics Data System (ADS)

    López-Estrada, F. R.; Astorga-Zaragoza, C. M.; Theilliol, D.; Ponsart, J. C.; Valencia-Palomo, G.; Torres, L.

    2017-12-01

    This paper proposes a methodology to design a Takagi-Sugeno (TS) descriptor observer for a class of TS descriptor systems. Unlike the popular approach that considers measurable premise variables, this paper considers the premise variables depending on unmeasurable vectors, e.g. the system states. This consideration covers a large class of nonlinear systems and represents a real challenge for the observer synthesis. Sufficient conditions to guarantee robustness against the unmeasurable premise variables and asymptotic convergence of the TS descriptor observer are obtained based on the H∞ approach together with the Lyapunov method. As a result, the designing conditions are given in terms of linear matrix inequalities (LMIs). In addition, sensor fault detection and isolation are performed by means of a generalised observer bank. Two numerical experiments, an electrical circuit and a rolling disc system, are presented in order to illustrate the effectiveness of the proposed method.

  18. Continuous variable quantum cryptography using coherent states.

    PubMed

    Grosshans, Frédéric; Grangier, Philippe

    2002-02-04

    We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.

  19. A global perspective on Glacial- to Interglacial variability change

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2017-04-01

    Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.

  20. Improved short-term variability in the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model

    NASA Astrophysics Data System (ADS)

    Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.

    2014-08-01

    We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.