Sample records for additive antitumor effects

  1. In vitro additive antitumor effects of dimethoxycurcumin and 5-fluorouracil in colon cancer cells.

    PubMed

    Zhao, Huiying; Liu, Qingchun; Wang, Saisai; Dai, Fang; Cheng, Xiaofei; Cheng, Xiaobin; Chen, Wenbin; Zhang, Min; Chen, Dong

    2017-07-01

    Dimethoxycurcumin (DMC) is a lipophilic analog of curcumin, an effective treatment for colon cancer, which has greater chemical and metabolic stability. Chemotherapy treatments, such as 5-fluorouracil (5-Fu), play a key role in the current management of colon cancer. In this study, we investigated the antitumor efficacy of DMC in combination with 5-Fu in SW480 and SW620 colon cancer cells. CCK-8 assay was used to evaluate the inhibitory effect of DMC and 5-Fu on cancer cells proliferation, and the combination index was calculated. The influence of DMC and 5-Fu on cell cycle, apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential in SW480 and SW620 cells was determined using flow cytometry, and the related signaling pathways were detected by western blot. Transmission electron microscopy was used to observe endoplasmic reticulum expansion. DMC- and/or 5-Fu-induced apoptosis, stimulated G0/G1 phase arrest, increased ROS levels, decreased mitochondrial membrane potential, and enhanced endoplasmic reticulum expansion. The induction of apoptosis is involved in the increasing of Bax and cytochrome c and decreasing of Bcl2 expressions. Increased production of ROS was accompanied by upregulation of CHOP and Noxa. Combination therapy of DMC and 5-Fu had increased efficacy on the above pathways compared with either drug alone. Based on the calculated IC 50 , combination treatment with DMC and 5-Fu had an additive antitumor effect in both cell lines. Combined treatment with DMC and 5-Fu led to an additive antitumor effect in colon cancer cells that was related to apoptosis induction, G0/G1 phase arrest, increased ROS production, decreased mitochondrial membrane potential, and enhanced endoplasmic reticulum expansion. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Antitumor Effects of Somatostatin Analogs in Neuroendocrine Tumors

    PubMed Central

    Dubé, Pierre; Rinke, Anja

    2012-01-01

    Background. For decades, somatostatin analogs (including octreotide and lanreotide) have been indicated for relief of the symptoms of flushing, diarrhea, and wheezing associated with secretory neuroendocrine tumors (NETs). Recently, it has been suggested that somatostatin analogs may provide direct and indirect antitumor effects in secretory and nonsecretory NETs in addition to symptom control in secretory NETs. Methods. A systematic review of MEDLINE was conducted to identify studies that investigated the antitumor effects of octreotide or lanreotide for patients with NETs. Additional studies not published in the peer-reviewed literature were identified by searching online abstracts. Results. In all, 17 octreotide trials and 11 lanreotide trials that included antitumor effects were identified. Partial response rates were between 0% and 31%, and stable disease rates were between 15% and 89%. Octreotide was the only somatostatin analog for which results of a phase III, randomized, placebo-controlled clinical trial that investigated antitumor effects were published. After 6 months of treatment in this randomized phase III trial, stable disease was observed in 67% of patients (hazard ratio for time to disease progression: 0.34; 95% confidence interval: 0.20–0.59; p = .000072). Conclusions. In addition to symptom control for NETs, the data support an antitumor effect of somatostatin analogs and suggest that they may slow tumor growth. Long-acting repeatable octreotide has been shown to have an antitumor effect in a randomized phase III trial in midgut NETs, whereas results are pending in a corresponding controlled trial with lanreotide for patients with intestinal and pancreatic primary NETs. PMID:22628056

  3. [Advances on antitumor effect of parasites].

    PubMed

    Wang, Su-wen; Sun, Jun

    2014-08-01

    Immune response induced by parasites could inhibit tumor growth and promote apoptosis of tumor cells. The investigation into this character will provide new insights on the anti-tumor effect of parasites. The mechanism of parasite immune evasion may provide a reference for tumor research. Furthermore, some anti-parasitic drugs have shown antitumor effect indicating that the development of antitumor drugs may get inspiration from anti-parasitic drug studies.

  4. The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: role of EGFR-RAS-FOXM1-β-catenin signaling axis

    PubMed Central

    Valverde, Araceli; Peñarando, Jon; Cañas, Amanda; López-Sánchez, Laura M.; Conde, Francisco; Guil-Luna, Silvia; Hernández, Vanessa; Villar, Carlos; Morales-Estévez, Cristina; de la Haba-Rodríguez, Juan; Arand o, Enrique; Rodríguez-Ariza, Antonio

    2017-01-01

    Here we showed that the addition of the COX-2 inhibitor celecoxib improved the antitumor efficacy in colorectal cancer (CRC) of the monoclonal anti-EGFR antibody cetuximab. The addition of celecoxib augmented the efficacy of cetuximab to inhibit cell proliferation and to induce apoptosis in CRC cells. Moreover, the combination of celecoxib and cetuximab was more effective than either treatment alone in reducing the tumor volume in a mouse xenograft model. The combined treatment enhanced the inhibition of EGFR signaling and altered the subcellular distribution of β-catenin. Moreover, knockdown of FOXM1 showed that this transcription factor participates in this enhanced antitumoral response. Besides, the combined treatment decreased β-catenin/FOXM1 interaction and reduced the cancer stem cell subpopulation in CRC cells, as indicated their diminished capacity to form colonospheres. Notably, the inmunodetection of FOXM1 in the nuclei of tumor cells in human colorectal adenocarcinomas was significantly associated with response of patients to cetuximab. In summary, our study shows that the addition of celecoxib enhances the antitumor efficacy of cetuximab in CRC due to impairment of EGFR-RAS-FOXM1-β-catenin signaling axis. Results also support that FOXM1 could be a predictive marker of response of mCRC patients to cetuximab therapy. PMID:28423516

  5. [Antitumor effect research progress of shikonin and its derivatives].

    PubMed

    Zhu, Meng-Yuan; Wang, Ru-Bing; Zhou, Wen; Li, Shao-Shun

    2012-05-01

    Shikonin, the main active ingredient of Lithospermum, and its derivatives have been proved to have antitumor effects, and the anti-tumor mechanisms involve multiple targets. Based on recent literatures, this review focuses on the antitumor effects and its mechanisms. More emphases are given on the aspects of induction of apoptosis, induction of necrosis, acting on matrix metalloproteinase, acting on the protein tyrosine kinase and antiangiogenesis. The current status and problems of shikonin derivatives in antitumor effects are simply summarized and lookout for the development of antitumor drugs with shikonin as leading compounds.

  6. Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity.

    PubMed

    Peng, Qiuxian; Cai, Hongbing; Sun, Xuegang; Li, Xin; Mo, Zhixian; Shi, Jue

    2013-01-01

    Chinese herbal medicines have long been used to treat various illnesses by modulating the human immune response. In this study, we investigate the immuno-modulating effect and antitumor activity of Alocasia Cucullata (AC), a Chinese herb traditionally used to treat infection and cancer. We found that the whole water extract of AC roots could significantly attenuate tumor growth in mouse tumor models. The median survival time of the AC-treated mice was 43 days, 16 days longer than that of the control group. Moreover, the AC-treated mice showed substantially higher induction of key antitumor cytokines, such as IL-2, IFN-γ, and TNF-α, indicating that AC may exert antitumor effect by activating antitumor immunity. To further pinpoint the cellular and molecular mechanism of AC, we studied the dose response of a human monocytic cell line, THP-1, to the whole water extract of AC. Treatment of the AC extract significantly induced THP-1 differentiation into macrophage-like cells and the differentiated THP-1 showed expression of specific macrophage surface markers, such as CD11b and CD14, as well as productions of antitumor cytokines, e.g. IFN-γ and TNF-α. Our data thus point to AC as potentially a new, alternative immuno-modulating herbal remedy for anticancer treatment.

  7. Intratumoral immunocytokine treatment results in enhanced antitumor effects.

    PubMed

    Johnson, Erik E; Lum, Hillary D; Rakhmilevich, Alexander L; Schmidt, Brian E; Furlong, Meghan; Buhtoiarov, Ilia N; Hank, Jacquelyn A; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A; Gillies, Stephen D; Sondel, Paul M

    2008-12-01

    Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled (111)In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.

  8. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice

    PubMed Central

    Barakat, Waleed; Elshazly, Shimaa M.; Mahmoud, Amr A. A.

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive. PMID:26366170

  9. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect

    PubMed Central

    DiLillo, David J.; Ravetch, Jeffrey V.

    2015-01-01

    Summary Passively-administered anti-tumor mAbs rapidly kill tumor targets via FcγR-mediated cytotoxicity (ADCC), a short-term process. However, anti-tumor mAb treatment can also induce a vaccinal effect, in which mAb-mediated tumor death induces a long-term anti-tumor cellular immune response. To determine how such responses are generated, we utilized a murine model of an anti-tumor vaccinal effect against a model neoantigen. We demonstrate that FcγR expression by CD11c+ antigen-presenting cells is required to generate anti-tumor T cell responses upon ADCC-mediated tumor clearance. Using FcγR-humanized mice, we demonstrate that anti-tumor huIgG1 must engage hFcγRIIIA on macrophages to mediate ADCC, but also engage hFcγRIIA, the sole hFcγR expressed by human DCs, to generate a potent vaccinal effect. Thus, while next-generation anti-tumor antibodies with enhanced binding to only hFcγRIIIA are now in clinical use, ideal anti-tumor antibodies must be optimized for both cytotoxic effects as well as hFcγRIIA engagement on DCs to stimulate long-term anti-tumor cellular immunity. PMID:25976835

  10. Antitumor Effects of Palladium-α-Lipoic Acid Complex Formulation as an Adjunct in Radiotherapy.

    PubMed

    Veena, Ravindran Kalathil; Ajith, Thekkuttuparambil Ananthanarayanan; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis

    2016-01-01

    Several investigations have been initiated to enhance the antitumor effect of radiation and ameliorate its adverse effects such as reducing blood cell counts and causing DNA damage in normal cells. Compounds that enhance the antitumor activity of radiation without reducing blood cell counts or damaging DNA in normal cells can be of immense use as an adjunct in radiotherapy. We evaluated the antitumor effect of a specific set of minerals, vitamins, and amino acids (Poly-MVA) (2 mL/kg, per os), with and without radiation, against Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC) cell lines that were transplanted in a solid-tumor model. Whole-body γ-radiation exposure (2 Gy) was performed using 60Co. Poly-MVA enhanced the antitumor effect of radiation when administered beforehand. Furthermore, Poly-MVA administered once daily for 2 wk, immediately after 4 Gy irradiation, protected DNA damage in peripheral blood. It also rendered protection against the radiation-induced reduction of platelet count. The unique electronic and redox properties of palladium-α-lipoic acid complex in Poly-MVA appear to be responsible for the exhibited effect. The results conclude that the antitumor-enhancing and normal cell-protective effect of Poly-MVA warrants additional studies for its potential clinical application.

  11. Curcuma increasing antitumor effect of Rhizoma paridis saponins through absorptive enhancement of paridis saponins.

    PubMed

    Man, Shuli; Li, Yuanyuan; Fan, Wei; Gao, Wenyuan; Liu, Zhen; Li, Nan; Zhang, Yao; Liu, Changxiao

    2013-09-15

    Rhizoma paridis saponins (RPS) played a good antitumor role in many clinical applications. However, low oral bioavailability limited its application. In this research, water extract of Curcuma (CW) significantly increased antitumor effect of Rhizoma paridis saponins (RPS). GC-MS was used to identify its polar composition. HPLC was applied for determination of the content of curcuminoids in CW. As a result, 47 analytes with 0.65% of curcuminoids were identified in CW. According to the in vivo anti-tumor data, the best proportion of curcuminoids in CW with RPS was 16:500 (w/w). Using this ratio, curcuminoids significantly increased absorption of RPS in the everted rat duodenum sac system. In addition, curcuminoids decreased the promotion of RPS on rhodamine 123 efflux. The effect of curcuminoids was similar to that of the P-gp inhibitor, cyclosporin A in combination with RPS. In conclusion, drug combination of water extract of Curcuma with RPS was a good method to increase the antitumor effect of RPS. This combination would be a potent anticancer agent used in the prospective application. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. The anti-tumor effect of aspirin: What we know and what we expect.

    PubMed

    Ma, Ji; Cai, Zhonglin; Wei, Hongliang; Liu, Xinlan; Zhao, Qingli; Zhang, Tao

    2017-11-01

    Aspirin has been widely used as an antipyretic analgesic drug. More and more evidences have shown that aspirin may be play some role on anti-tumor. In this article, we reviewed the research history of aspirin in the treatment and prevention of cancer. Many epidemiological and clinical studies have shown that aspirin can reduce the risk of a variety of malignant tumors and reduce cancer mortality. In addition, we discuss the specific mechanisms of aspirin in the anti-tumor effects. It has been found that aspirin mainly depends on the COX pathway and non-COX pathway to inhibit tumor cell growth and to curb tumor development. In this article, clinical studies and anti-tumor mechanism studies published in recent years are reviewed. Copyright © 2017. Published by Elsevier Masson SAS.

  13. The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.

    PubMed

    Enomoto, Hirayuki; Tao, Lihua; Eguchi, Ryoji; Sato, Ayuko; Honda, Masao; Kaneko, Shuichi; Iwata, Yoshinori; Nishikawa, Hiroki; Imanishi, Hiroyasu; Iijima, Hiroko; Tsujimura, Tohru; Nishiguchi, Shuhei

    2017-09-22

    Type I-interferon (IFN) is considered to exert antitumor effects through the inhibition of cancer cell proliferation and angiogenesis. Based on the species-specific biological activity of IFN, we evaluated each antitumor mechanism separately. We further examined the antitumor effects of type I-IFN combined with sorafenib. Human IFN (hIFN) significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) Hep3B cells and the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Although mouse IFN (mIFN) did not inhibit the proliferation of Hep3B cells in vitro, mIFN, as well as hIFN, showed significant antitumor effects in mouse Hep3B cell-xenograft model. Furthermore, mIFN treatment amplified the antitumor effects of sorafenib in vivo with the suppression of angiogenesis. The DNA chip analysis showed that the mIFN treatment promoted the antitumor signal pathways of sorafenib, including anti-angiogenic effects. Unlike the effects observed in in vitro experiments, mIFN showed an antitumor effect in the mouse Hep3B cell-xenograft model, suggesting a role of the anti-angiogenic activity in the in vivo tumoricidal effects of type I-IFN. In addition, our findings suggested the clinical utility of combination therapy with type І-IFN and sorafenib for HCC.

  14. Antitumor and immunomodulatory effects of Justicia spicigera Schltdl (Acanthaceae).

    PubMed

    Alonso-Castro, Angel Josabad; Ortiz-Sánchez, Elizabeth; Domínguez, Fabiola; Arana-Argáez, Victor; Juárez-Vázquez, Maria del Carmen; Chávez, Marco; Carranza-Álvarez, Candy; Gaspar-Ramírez, Octavio; Espinosa-Reyes, Guillermo; López-Toledo, Gabriela; Ortiz-Andrade, Rolffy; García-Carrancá, Alejandro

    2012-06-14

    Medicinal plants are an important source of antitumor compounds. This study evaluated the acute toxicity in vitro and in vivo, as well as the cytotoxic, antitumor and immunomodulatory effects of ethanolic extracts of Justicia spicigera leaves (JSE). The in vitro and in vivo toxicity of JSE was evaluated with comet assay in peripheral blood mononuclear cells (PBMC) and acute toxicity in mice, according to the Lorke procedure, respectively. The apoptotic effect of JSE on human cancer cells and human noncancerous cells was evaluated using flow cytometry with annexin-Alexa 488/propidium iodide. Also, different doses of JSE were injected intraperitoneally daily into athymic mice bearing tumors of HeLa cells during 18 days. The growth and weight of tumors were measured. The in vitro immunomodulatory effects of JSE were evaluated estimating the effects of JSE on the phagocytosis of the yeast Saccharomyces cerevisiae, NO production and H(2)O(2) release in macrophages, as well as the proliferation of splenocytes and NK activity. The comet assay showed that only JSE tested at 200 and 1000 μg/ml induced a significantly DNA damage in PBMC, compared to untreated cells, whereas the LD(50) was >5000 mg/kg by intraperitoneal route (i.p.) and by oral route. JSE showed pro-apoptotic (Annexin/PI) effects by 35% against HeLa cells, but lack toxic effects against human normal cells. JSE administrated at 10, 50 and 100 mg/kg i.p. inhibited the tumor growth by 28%, 41% and 53%, respectively, in mice bearing HeLa tumor. JSE stimulated, in a concentration dependent manner, the phagocytosis of Saccharomyces cerevisiae yeasts, the NO production and H(2)O(2) release by human differentiated macrophages. In addition, JSE stimulated the proliferation of murine splenocytes and induced the NK cell activity. Justicia spicigera shows low toxic effects in vitro and in vivo, exerts apoptotic effects on HeLa cells, has antitumor effects in mice bearing HeLa tumor and induces immunomodulatory

  15. Anserine induced advantage effects on the antitumor activity of doxorubicin.

    PubMed

    Sadzuka, Yasuyuki; Sonobe, Takashi

    2007-06-01

    It is hoped that the strategy for the increase of antitumor activity by the combination of foods or their components will take quality of life into consideration. We examined whether anserine, is a dipeptide in foods, has beneficial effects on the doxorubicin (DOX) induced antitumor activity in vitro and in vivo. Anserine increased the DOX induced antitumor activity by the maintained DOX concentration in the tumor in vivo. On the other hand, anserine has no effect on the DOX concentration in normal tissues. Namely, it is expected that anserine will not increase the DOX induced adverse reaction. Thus, anserine appeared to increase the antitumor activity of DOX with an increased DOX concentration in the tumor by specific action on the tumor. Furthermore, anserine significantly induced DOX influx compared to that of the DOX alone group in vitro. It is speculated that the anserine induced increase in the antitumor activity of DOX in vivo was affected by the promotion of DOX influx into the tumor cells in vitro. Anserine was considered to take into tumor cells via a dipeptide transporter, and it resulted in an increase of the DOX influx. Anserine did not affect on the activity of the CYP3A subtype as a DOX metabolizing enzyme. Namely, it was expected that anserine increased the antitumor activity of DOX by the change of the DOX concentration without the changing metabolism of DOX.

  16. Antitumor Effect of KX-01 through Inhibiting Src Family Kinases and Mitosis.

    PubMed

    Kim, Seongyeong; Min, Ahrum; Lee, Kyung-Hun; Yang, Yaewon; Kim, Tae-Yong; Lim, Jee Min; Park, So Jung; Nam, Hyun-Jin; Kim, Jung Eun; Song, Sang-Hyun; Han, Sae-Won; Oh, Do-Youn; Kim, Jee Hyun; Kim, Tae-You; Hangauer, David; Lau, Johnson Yiu-Nam; Im, Kyongok; Lee, Dong Soon; Bang, Yung-Jue; Im, Seock-Ah

    2017-07-01

    KX-01 is a novel dual inhibitor of Src and tubulin. Unlike previous Src inhibitors that failed to show clinical benefit during treatment of breast cancer, KX-01 can potentially overcome the therapeutic limitations of current Src inhibitors through inhibition of both Src and tubulin. The present study further evaluates the activity and mechanism of KX-01 in vitro and in vivo . The antitumor effect of KX-01 in triple negative breast cancer (TNBC) cell lines was determined by MTT assay. Wound healing and immunofluorescence assays were performed to evaluate the action mechanisms of KX-01. Changes in the cell cycle and molecular changes induced by KX-01 were also evaluated. A MDA-MB-231 mouse xenograft model was used to demonstrate the in vivo effects. KX-01 effectively inhibited the growth of breast cancer cell lines. The expression of phospho-Src and proliferative-signaling molecules were down-regulated in KX-01-sensitive TNBC cell lines. In addition, migration inhibition was observed by wound healing assay. KX-01-induced G2/M cell cycle arrest and increased the aneuploid cell population in KX-01-sensitive cell lines. Multi-nucleated cells were significantly increased after KX-01 treatment. Furthermore, KX-01 effectively delayed tumor growth in a MDA-MB-231 mouse xenograft model. KX-01 effectively inhibited cell growth and migration of TNBC cells. Moreover, this study demonstrated that KX-01 showed antitumor effects through the inhibition of Src signaling and the induction of mitotic catastrophe. The antitumor effects of KX-01 were also demonstrated in vivo using a mouse xenograft model.

  17. Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel - Apocynaceae.

    PubMed

    Mousinho, Kristiana C; Oliveira, Cecília de C; Ferreira, José Roberto de O; Carvalho, Adriana A; Magalhães, Hemerson Iury F; Bezerra, Daniel P; Alves, Ana Paula N N; Costa-Lotufo, Letícia V; Pessoa, Claúdia; de Matos, Mayara Patrícia V; Ramos, Márcio V; Moraes, Manoel O

    2011-09-01

    Himatanthus drasticus (Mart.) Plumel - Apocynaceae is a medicinal plant popularly known as Janaguba. Its bark and latex have been used by the public for cancer treatment, among other medicinal uses. However, there is almost no scientific research report on its medicinal properties. The aim of this study was to investigate the antitumor effects of Himatanthus drasticus latex proteins (HdLP) in experimental models. The in vitro cytotoxic activity of the HdLP was determined on cultured tumor cells. HdLP was also tested for its ability to induce lysis of mouse erythrocytes. In vivo antitumor activity was assessed in two experimental models, Sarcoma 180 and Walker 256 carcinosarcoma. Additionally, its effects on the immunological system were also investigated. HdLP did not show any significant in vitro cytotoxic effect at experimental exposure levels. When intraperitoneally administered, HdLP was active against both in vivo experimental tumors. However, it was inactive by oral administration. The histopathological analysis indicates that the liver and kidney were only weakly affected by HdLP treatment. It was also demonstrated that HdLP acts as an immunomodulatory agent, increasing the production of OVA-specific antibodies. Additionally, it increased relative spleen weight and the incidence of megakaryocyte colonies. In summary, HdLP has some interesting anticancer activity that could be associated with its immunostimulating properties. Copyright © 2011. Published by Elsevier Ireland Ltd.

  18. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    PubMed

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  19. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    PubMed Central

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  20. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  1. Antitumor effect of Deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model.

    PubMed

    Khaled, Meyada; Belaaloui, Ghania; Jiang, Zhen-Zhou; Zhu, Xiong; Zhang, Lu-Yong

    2016-10-01

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, was found to be a potent antitumor and antiproliferative agent, in several tumor cells, in vitro. However, DPT has not been used clinically yet because of the lack of in vivo studies. This study is the first report demonstrating the antitumor effect of DPT on MDA-MB-231 human breast cancer xenografts in nude mice. DPT, significantly, inhibited the growth of MDA-MB-231 xenograft in BALB/c nude mice. The T/C value (the value of the relative tumor volume of treatment group compared to the control group) of groups treated with 5, 10, and 20 mg/kg of intravenous DPT-HP-β-CD was 42.87%, 34.04% and 9.63%, respectively, suggesting the positive antitumor activity of DPT. In addition, the antitumor effect of DPT-HP-β-CD (20 mg/kg) in human breast cancer MDA-MB-231 xenograft was more effective than etoposide (VP-16) (20 mg/kg) and docetaxel (20 mg/kg). These findings suggest that this drug is a promising chemotherapy candidate against human breast carcinoma. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Transcutaneous carbon dioxide enhances the antitumor effect of radiotherapy on oral squamous cell carcinoma.

    PubMed

    Iwata, Eiji; Hasegawa, Takumi; Ueha, Takeshi; Takeda, Daisuke; Saito, Izumi; Kawamoto, Teruya; Akisue, Toshihiro; Sakai, Yoshitada; Sasaki, Ryohei; Kuroda, Ryosuke; Komori, Takahide

    2018-05-16

    Radiotherapy (RT) is one of the main treatment modalities for oral squamous cell carcinoma (OSCC), however, radioresistance is a major impediment to its clinical success and poses as a concern that needs to be addressed. Tumor hypoxia is known to be significantly associated with radioresistance in various malignancies, hence, resolving the hypoxic state of a tumor may improve the antitumor effect of RT on OSCC. We have previously revealed that transcutaneous CO2 induced mitochondrial apoptosis and suppressed tumor growth in OSCC by resolving hypoxia. Considering the previous study, we hypothesized that transcutaneous CO2 may enhance the antitumor effect of RT on OSCC by improving intratumoral hypoxia, thereby overcoming radioresistance. In the present study, the combination of transcutaneous CO2 and RT significantly inhibited tumor growth compared with other treatments. This combination therapy also led to decreased expression of HIF-1α in parallel with increased expression of the cleaved forms of caspase-3-8-9 and PARP, which play essential roles in mitochondrial apoptosis. Additionally, the combination therapy increased the expression of ROS modulator 1 and subsequent mitochondrial ROS production, compared to RT alone. These results indicated that transcutaneous CO2 could potentially improve the antitumor effect of RT by decreasing the intratumoral hypoxia and increasing the mitochondrial apoptosis. Our findings indicated that CO2 therapy may be a novel adjuvant therapy in combination with RT for OSCC.

  3. Experimental research on the in vitro antitumor effects of Crataegus sanguinea.

    PubMed

    Sun, Jianling; Gao, Guolan; Gao, YuLian; Xiong, LiJuan; Li, Xiaoying; Guo, Jihong; Zhang, Yueming

    2013-09-01

    Crataegus sanguinea is a wild plant, which has been widely grown in the north and south of the Tianshan mountains in Xinjiang. In order to explore their anti-cancer properties, edible wild plants from Xinjiang have been tested for their antitumor properties. We used Ames tests, mouse bone marrow polychromatic erythrocytes micronucleus tests, and tumor cells cultured in vitro to study the anti-mutagenic and anti-tumor effects of C. sanguinea extract. We have shown that C. sanguinea has anti-mutagenic effect, but no mutagenicity. Cell culture in vitro experiments show that there is no inhibition of growth or increase in cell death on normal mouse fibroblasts, but a stronger inhibition of cell growth and an increase in cell death of Hep-2 and MGC-803 tumor cells. The results of this study illustrate that C. sanguinea extract has both anti-mutagenic and anti-tumor effects.

  4. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    PubMed Central

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-01-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis. PMID:26907515

  5. The Antitumor Effect of Singlet Oxygen.

    PubMed

    Bauer, Georg

    2016-11-01

    Tumor cells are protected against intercellular apoptosis-inducing signaling through expression of membrane-associated catalase and superoxide dismutase. Exogenous singlet oxygen derived from activated photosensitizers or from cold atmospheric plasma causes local inactivation of protective catalase which is followed by the generation of secondary extracellular singlet oxygen. This process is specific for tumor cells and is driven by a complex interaction between H 2 O 2 and peroxynitrite. Secondary singlet oxygen has the potential for autoamplification of its generation, resulting in optimal inactivation of protective catalase and reactivation of intercellular apoptosis-inducing signaling. An increase in the endogenous NO concentration also causes inactivation of catalase and autoamplificatory generation of secondary singlet oxygen. This principle is essential for the antitumor activity of secondary plant products, such as cyanidins and other inhibitors of NO dioxygenase. It seems that the action of the established chemotherapeutic taxol and the recently established antitumor effect of certain azoles are based on the same principles. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    PubMed Central

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  7. Study on fluorouracil-chitosan nanoparticle preparation and its antitumor effect.

    PubMed

    Chen, Gaimin; Gong, Rudong

    2016-05-01

    To successfully prepare fluorouracil-chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil-chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU-CS-mPEG prodrugs, and infrared, (1)H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad prospects for development.

  8. Increased anti-tumor effects using IL2 with anti-TGFβ reveals competition between mouse NK and CD8 T cells

    PubMed Central

    Alvarez, Maite; Bouchlaka, Myriam N.; Sckisel, Gail D.; Sungur, Can M.; Chen, Mingyi; Murphy, William J.

    2014-01-01

    Due to increasing interest in the removal of immunosuppressive pathways in cancer, the combination of IL2 with antibodies to neutralize TGFβ, a potent immunosuppressive cytokine, was assessed. Combination immunotherapy resulted in significantly greater anti-tumor effects. These were correlated with significant increases in the numbers and functionality of NK cells, NK progenitors and activated CD8 T cells resulting in the observed anti-tumor effects. Combination immunotherapy was also accompanied with lesser toxicities than IL2 therapy alone. Additionally, we observed a dual competition between NK and activated CD8 T cells such that after immunotherapy, the depletion of either effector population resulted in the increased total expansion of the other population and compensatory anti-tumor effects. This study demonstrates the efficacy of this combination immunotherapeutic regimen as a promising cancer therapy and illustrates the existence of potent competitive regulatory pathways between NK and CD8 T cells in response to systemic activation. PMID:25000978

  9. The anti-tumor effect and mechanisms of action of penta-acetyl geniposide.

    PubMed

    Peng, C H; Huang, C N; Wang, C J

    2005-06-01

    Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia Fructus, exhibits the anti-tumor effect. In this review, we discuss the anti-tumor effect and possible mechanisms of a derivative from Gardenia Fructus, penta-acetyl geniposide ((Ac)5GP). It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis induced by aflatoxin B1 (AFB1) by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest. Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. Besides, p53/Bax signaling was suggested to be involved in (Ac)5GP-induced apoptosis, though its downstream cascades needs further clarified. (Ac)5GP has also been shown to inhibit DNA synthesis of tumor cells. It arrested cell cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F. The phosphorylation status of p53 on serine 392 correlated with the process of growth arrest. Evidences from the in vivo experiments showed that (Ac)5GP is not harmful to liver, heart and kidney. In conclusion, (Ac)5GP is highly suggested to be an anti-tumor agent for development in the future.

  10. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora).

    PubMed

    Kwak, Chung Shil; Moon, Sung Chae; Lee, Mee Sook

    2006-01-01

    Pine needles (Pinus densiflora Siebold et Zuccarini) have long been used as a traditional health-promoting medicinal food in Korea. To investigate their potential anticancer effects, antioxidant, antimutagenic, and antitumor activities were assessed in vitro and/or in vivo. Pine needle ethanol extract (PNE) significantly inhibited Fe(2+)-induced lipid peroxidation and scavenged 1,1-diphenyl- 2-picrylhydrazyl radical in vitro. PNE markedly inhibited mutagenicity of 2-anthramine, 2-nitrofluorene, or sodium azide in Salmonella typhimurium TA98 or TA100 in Ames tests. PNE exposure effectively inhibited the growth of cancer cells (MCF-7, SNU-638, and HL-60) compared with normal cell (HDF) in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In in vivo antitumor studies, freeze-dried pine needle powder supplemented (5%, wt/wt) diet was fed to mice inoculated with Sarcoma-180 cells or rats treated with mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA, 50 mg/kg body weight). Tumorigenesis was suppressed by pine needle supplementation in the two model systems. Moreover, blood urea nitrogen and aspartate aminotransferase levels were significantly lower in pine needle-supplemented rats in the DMBA-induced mammary tumor model. These results demonstrate that pine needles exhibit strong antioxidant, antimutagenic, and antiproliferative effects on cancer cells and also antitumor effects in vivo and point to their potential usefulness in cancer prevention.

  11. Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins.

    PubMed

    Moltedo, Bruno; Faunes, Fernando; Haussmann, Denise; De Ioannes, Pablo; De Ioannes, Alfredo E; Puente, Javier; Becker, María Inés

    2006-12-01

    We determined the antitumor properties of a newly available hemocyanin obtained from the Chilean gastropod Concholepas concholepas (Biosonda Corp., Santiago, Chile) in a syngeneic heterotopic mouse bladder carcinoma model. Since keyhole limpet hemocyanin (Pierce, Rockford, Illinois) is used increasingly in biomedicine as a carrier for vaccines and an immunotherapeutic agent for bladder transitional cell carcinoma, there is a growing interest in finding new substances that share its potent immunomodulatory properties. Considering that keyhole limpet hemocyanin and Concholepas concholepas hemocyanin differ significantly, it was not possible to predict a priori the antitumor properties of Concholepas concholepas hemocyanin. C3H/He mice were primed with Concholepas concholepas hemocyanin before subcutaneous implantation of mouse bladder tumor-2 cells. Treatment consisted of a subcutaneous dose of Concholepas concholepas hemocyanin (1 mg or 100 mug) at different intervals after implantation. Keyhole limpet hemocyanin and phosphate buffered saline served as positive and negative controls, respectively. In addition, experiments were designed to determine which elements of the immune response were involved in its adjuvant immunostimulatory effect. Mice treated with Concholepas concholepas hemocyanin showed a significant antitumor effect, as demonstrated by decreased tumor growth and incidence, prolonged survival and lack of toxic effects. These effects were similar to those achieved with keyhole limpet hemocyanin. We found that each hemocyanin increased natural killer cell activity but the effect of Concholepas concholepas hemocyanin was stronger. Analysis of serum from treated mice showed an increased interferon-gamma and low interleukin-4, which correlated with antibody isotypes, confirming that hemocyanins induce a T helper type 1 cytokine profile. To our knowledge our results are the first demonstration of the antitumor effect of a hemocyanin other than keyhole limpet

  12. Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model.

    PubMed

    Tang, Jian-Cai; Shi, Hua-Shan; Wan, Li-Qiang; Wang, Yong-Sheng; Wei, Yu-Quan

    2013-01-01

    Curcumin previously was proven to inhibit angiogenesis and display potent antitumor activity in vivo and in vitro. In the present study, we investigated whether a combination curcumin with hyperthermia would have a synergistic antitumor effect in the LL/2 model. The results indicated that combination therapy significantly inhibited cell proliferation of MS-1 and LL/2 in vitro. LL/2 experiment model also demonstrated that the combination therapy inhibited tumor growth and prolonged the life span in vivo. Furthermore, combination therapy reduced angiogenesis and increased tumor apoptosis. Our findings suggest that the combination therapy exerted synergistic antitumor effects, providing a new perspective fpr clinical tumor therapy.

  13. Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature.

    PubMed

    Shi, Shujing; Chen, Longbang; Huang, Guichun

    2013-12-01

    Abnormal tumor vasculature and subsequent tumor hypoxia contribute to immune tolerance of tumor cells by impeding the homing of cytotoxic T cells into tumor parenchyma and inhibiting their antitumor efficacy. These obstacles might explain why the promising approach of adoptive cell immunotherapy does not exert significant antitumor activity. Hypoxia contributes to immune suppression by activating hypoxia-inducible factor (HIF-1) and the vascular endothelial growth factor pathway, which plays a determining role in promoting tumor cell growth and survival. Tumor hypoxia creates an immunosuppressive microenvironment via the accumulation and subsequent polarization of inflammatory cells toward immune suppression phenotypes, such as myeloid-derived suppressor cells, tumor-associated macrophages, and dendritic cells. Antiangiogenic therapy could normalize tumor vasculature and decrease hypoxic tumor area and thus may be an effective modality to potentiate immunotherapy. Adoptive cell immunotherapy alone is not efficient enough to decrease tumor growth as its antitumor effect is inhibited by the immunosuppressive hypoxic tumor microenvironment. This review describes that combination of antiangiogenic therapy with adoptive cell immunotherapy can exert synergistic antitumor effect, which will contribute to improve strategies for future anticancer therapies.

  14. Anti-tumor effects of an engineered 'killer' transfer RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and canmore » effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.« less

  15. Antitumor Effect of Burchellin Derivatives Against Neuroblastoma.

    PubMed

    Kurita, Masahiro; Takada, Tomomi; Wakabayashi, Noriko; Asami, Satoru; Ono, Shinichi; Uchiyama, Taketo; Suzuki, Takashi

    2018-02-01

    Neuroblastoma is one of the most commonly encountered malignant solid tumors in the pediatric age group. We examined the antitumor effects of five burchellin derivatives against human neuroblastoma cell lines. We evaluated cytotoxicity by the MTT assay for four human neuroblastoma and two normal cell lines. We also performed analysis of the apoptotic induction effect by flow cytometry, and examined the expression levels of apoptosis- and cell growth-related proteins by western blot analysis. We found that one of the burchellin derivatives (compound 4 ) exerted cytotoxicity against the neuroblastoma cell lines. Compound 4 induced caspase-dependent apoptosis via a mitochondrial pathway. The apoptosis mechanisms induced by compound 4 involved caspase-3, -7 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, compound 4 induced cell death through inhibition of the cell growth pathway (via extracellular signal-regulated kinase 1 and 2, AKT8 virus oncogene cellular homolog, and signal transducer and activator of transcription 3). Compound 4 exerted cellular cytotoxicity against neuroblastoma cells via induction of caspase-dependent apoptosis, and may offer promise for further development as a useful drug for the treatment of advanced neuroblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects.

    PubMed

    Otsuki, Noriko; Dang, Nam H; Kumagai, Emi; Kondo, Akira; Iwata, Satoshi; Morimoto, Chikao

    2010-02-17

    Various parts of Carica papaya Linn. (CP) have been traditionally used as ethnomedicine for a number of disorders, including cancer. There have been anecdotes of patients with advanced cancers achieving remission following consumption of tea extract made from CP leaves. However, the precise cellular mechanism of action of CP tea extracts remains unclear. The aim of the present study is to examine the effect of aqueous-extracted CP leaf fraction on the growth of various tumor cell lines and on the anti-tumor effect of human lymphocytes. In addition, we attempted to identify the functional molecular weight fraction in the CP leaf extract. The effect of CP extract on the proliferative responses of tumor cell lines and human peripheral blood mononuclear cells (PBMC), and cytotoxic activities of PBMC were assessed by [(3)H]-thymidine incorporation. Flow cytometric analysis and measurement of caspase-3/7 activities were performed to confirm the induction of apoptosis on tumor cells. Cytokine productions by PBMC were measured by ELISA. Gene profiling of the effect of CP extract treatment was performed by microarray analysis and real-time RT-PCR. We observed significant growth inhibitory activity of the CP extract on tumor cell lines. In PBMC, the production of IL-2 and IL-4 was reduced following the addition of CP extract, whereas that of IL-12p40, IL-12p70, IFN-gamma and TNF-alpha was enhanced without growth inhibition. In addition, cytotoxicity of activated PBMC against K562 was enhanced by the addition of CP extract. Moreover, microarray analyses showed that the expression of 23 immunomodulatory genes, classified by gene ontology analysis, was enhanced by the addition of CP extract. In this regard, CCL2, CCL7, CCL8 and SERPINB2 were representative of these upregulated genes, and thus may serve as index markers of the immunomodulatory effects of CP extract. Finally, we identified the active components of CP extract, which inhibits tumor cell growth and stimulates anti-tumor

  17. Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect.

    PubMed

    Lugini, Luana; Federici, Cristina; Borghi, Martina; Azzarito, Tommaso; Marino, Maria Lucia; Cesolini, Albino; Spugnini, Enrico Pierluigi; Fais, Stefano

    2016-08-01

    Tumor acidity represents a major cause of chemoresistance. Proton pump inhibitors (PPIs) can neutralize tumor acidity, sensitizing cancer cells to chemotherapy. To compare the anti-tumor efficacy of different PPIs in vitro and in vivo. In vitro experiments PPIs anti-tumor efficacy in terms of cell proliferation and cell death/apoptosis/necrosis evaluation were performed. In vivo PPIs efficacy experiments were carried out using melanoma xenograft model in SCID mice. Lansoprazole showed higher anti-tumor effect when compared to the other PPIs. The lansoprazole effect lasted even upon drug removal from the cell culture medium and it was independent from the lipophilicity of the PPIs formulation. These PPIs have shown different anti-tumoral efficacy, and the most effective at low dose was lansoprazole. The possibility to contrast tumor acidity by off-label using PPIs opens a new field of oncology investigation.

  18. Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT.

    PubMed

    Nakamura, Hiroyuki; Koganei, Hayato; Miyoshi, Tatsuro; Sakurai, Yoshinori; Ono, Koji; Suzuki, Minoru

    2015-01-15

    The first BNCT antitumor effects of BNNTs toward B16 melanoma cells were demonstrated. The use of DSPE-PEG2000 was effective for preparation of the BNNT-suspended aqueous solution. BNNT-DSPE-PEG2000 accumulated in B16 melanoma cells approximately three times higher than BSH and the higher BNCT antitumor effect was observed in the cells treated with BNNT-DSPE-PEG2000 compared to those treated with BSH, indicating that BNNT-DSPE-PEG2000 would be a possible candidate as a boron delivery vehicle for BNCT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Anti-tumor target prediction and activity verification of Ganoderma lucidum triterpenoids].

    PubMed

    Du, Guo-Hua; Wang, Hong-Xu; Yan, Zheng; Liu, Li-Ying; Chen, Ruo-Yun

    2017-02-01

    It has reported that Ganoderma lucidum triterpenoids had anti-tumor activity. However, the anti-tumor target is still unclear. The present study was designed to investigate the anti-tumor activity of G. lucidum triterpenoids on different tumor cells, and predict their potential targets by virtual screening. In this experiment, molecular docking was used to simulate the interactions of 26 triterpenoids isolated from G. lucidum and 11 target proteins by LibDock module of Discovery Studio2016 software, then the anti-tumor targets of triterpenoids were predicted. In addition, the in vitro anti-tumor effects of triterpenoids were evaluated by MTT assay by determining the inhibition of proliferation in 5 tumor cell lines. The docking results showed that the poses were greater than five, and Libdock Scores higher than 100, which can be used to determine whether compounds were activity. Eight triterpenoids might have anti-tumor activity as a result of good docking, five of which had multiple targets. MTT experiments demonstrated that the ganoderic acid Y had a certain inhibitory activity on lung cancer cell H460, with IC₅₀ of 22.4 μmol•L ⁻¹, followed by 7-oxo-ganoderic acid Z2, with IC₅₀ of 43.1 μmol•L ⁻¹. However, the other triterpenoids had no anti-tumor activity in the detected tumor cell lines. Taking together, molecular docking approach established here can be used for preliminary screening of anti-tumor activity of G.lucidum ingredients. Through this screening method, combined with the MTT assay, we can conclude that ganoderic acid Y had antitumor activity, especially anti-lung cancer, and 7-oxo-ganoderic acid Z2 as well as ganoderon B, to a certain extent, had anti-tumor activity. These findings can provide basis for the development of anti-tumor drugs. However, the anti-tumor mechanisms need to be further studied. Copyright© by the Chinese Pharmaceutical Association.

  20. Antitumor activity of cryptophycins: effect of infusion time and combination studies.

    PubMed

    Menon, K; Alvarez, E; Forler, P; Phares, V; Amsrud, T; Shih, C; Al-Awar, R; Teicher, B A

    2000-01-01

    Cryptophycins are a family of antitubulin antitumor agents. A synthetic cryptophycin derivative (LY355703, CRYPTO 52) is in early clinical evaluation. The effect of infusion time on the antitumor activity of four cryptophycins was assessed in rats bearing the 13762 mammary carcinoma and combination treatment regimens were assessed in nude mice bearing human tumor xenografts. The cryptophycins were prepared in 2% PEG300/8% cremophor/90% normal saline and delivered by jugular vein catheter on days 7, 9 and 11 post tumor implant to 13762 tumor-bearing rats. The cryptophycins prepared in the same formulation were administered by intravenous bolus injection on an alternate day schedule for five doses to human tumor xenograft bearing nude mice. An infusion time of 2 h in the rats increased the tumor growth delay produced by CRYPTO 52 and CRYPTO 55, while increasing the infusion time to 6 h continued to increase the tumor growth delay for CRYPTO 292 and CRYPTO 296. Administering CRYPTO 292 at a higher dose two times was more effective than administering it at a lower dose three times. The tumor growth delays produced by the cryptophycins in the rat 13762 mammary carcinoma were greater than those with cisplatin, doxorubicin, 5-fluorouracil and 5 x 3 Gray and comparable with cyclophosphamide and gemcitabine. Combination studies were carried out in human tumor xenografts including the MX-1 breast carcinoma, the Calu-6 non-small cell lung carcinoma, the H82 small cell lung carcinoma and the SW-2 small cell lung carcinoma. CRYPTO 52 and CRYPTO 55 combined with doxorubicin, paclitaxel and 5-fluorouracil to form highly effective regimens against the human MX-1 breast carcinoma. CRYPTO 52 and CRYPTO 55 were also highly effective against the three lung carcinoma xenografts when combined with the antitumor platinum complexes, cisplatin, carboplatin or oxaliplatin. Cryptophycins represent a promising new class of antitumor agents that may be optimally administered by intravenous

  1. Oligoesculin fraction induces anti-tumor effects and promotes immune responses on B16-F10 mice melanoma.

    PubMed

    Mokdad Bzeouich, Imen; Mustapha, Nadia; Sassi, Aicha; Ghedira, Kamel; Ghoul, Mohamed; Chebil, Latifa; Luis, José; Chekir-Ghedira, Leila

    2016-08-01

    Laccase was used to enzymatically polymerize esculin. Oligoesculin fraction was obtained after ultrafiltration through a 5-kDa membrane. Several studies have been carried out to prove the effectiveness of natural substances such as immunomodulators to promote the anti-cancer activity in situ. The purpose of our report was to explore whether the anti-tumor potential of the oligoesculin fraction in vitro and in vivo is linked to its immunological mechanisms in melanoma-bearing mice. We revealed that oligoesculin fraction reduced B16-F10 proliferation and migration in vitro in a dose-related manner. Moreover, melanin synthesis and tyrosinase activity were inhibited in these melanoma cells in a concentration-dependent way. The anti-tumor potential of oligoesculin fraction was also assessed in vivo. Our results showed that intraperitoneal administration of oligoesculin fraction, at 50 mg/kg body weight (b.w.) for 21 days, reduced tumor size and weight with percentages of inhibition of 94 and 87 %, respectively. Oligoesculin fraction was effective in promoting lysosomal activity and nitric oxide (NO) production by peritoneal macrophages in tumor-implanted mice. In addition, the activities of natural killer (NK), cytotoxic T lymphocytes, and macrophages were significantly enhanced by oligoesculin fraction. These findings suggested that this polymer with its anti-tumor and immunomodulatory properties could be used for the treatment of melanoma.

  2. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect.

    PubMed

    Wang, Qilong; Wei, Qiuyu; Yang, Qiuxuan; Cao, Xia; Li, Qiang; Shi, Feng; Tong, Shan Shan; Feng, Chunlai; Yu, Qingtong; Yu, Jiangnan; Xu, Ximing

    2018-01-15

    [6]-Gingerol, one of the components of the rhizome of Ginger, has a variety of biological activities such as anticoagulant, antioxidative, antitumor, anti-inflammatory, antihypertensive, and so forth. However, as one of the homologous phenolic ketones, [6]-gingerol is insoluble in water which limits its applications. Herein, we prepared [6]-gingerol proliposomes through modified thin-film dispersion method, which was spherical or oval, and physicochemically stable with narrow size distribution. Surprisingly, in vitro release of [6]-gingerol loaded proliposome compared with the free [6]-gingerol was significantly higher and its oral bioavailability increased 5-fold in vivo. Intriguingly, its antitumor effect was enhanced in the liposome formulation. Thus, our prepared [6]-gingerol proliposome proved to be a novel formulation for [6]-gingerol, which significantly improved its antitumor effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Doxycycline potentiates antitumor effect of cyclophosphamide in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Rishi Raj; Singh, Sandeep; Surve, Sachin V.

    2005-02-01

    Cyclophosphamide (CPA) is a widely used chemotherapeutic drug in neoplasias. It is a DNA and protein alkylating agent that has a broad spectrum of activity against variety of neoplasms including breast cancer. The therapeutic effectiveness of CPA is limited by the high-dose hematopoietic, renal, and cardiac toxicity that accompanies the systemic distribution of liver-derived activated drug metabolites. The present study examines the potential of combining well-tolerated antibiotic doxycycline (DOX) with CPA and understanding the mechanism of cell killing. Interestingly, we found that DOX significantly enhances the tumor regression activity of CPA on xenograft mice model bearing MCF-7 cells. DOX alsomore » potentiates MCF-7 cell killing by CPA in vitro. In presence of DOX (3 {mu}g/ml), the IC{sub 50} value of CPA decreased significantly from 10 to 2.5 mM. Additional analyses indicate that the tumor suppressor p53 and p53-regulated proapoptotic Bax were upregulated in vivo and in vitro following CPA treatment in combination with DOX, suggesting that upregulation of p53 may contribute to the enhancement of antitumor effect of CPA by DOX. Furthermore, downregulation of antiapoptotic Bcl-2 was observed in animals treated with CPA and CPA plus DOX when compared to untreated or DOX-treated groups. Our results raise the possibility that this combination chemotherapeutic regimen may lead to additional improvements in treatment of breast cancer.« less

  4. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate.

    PubMed

    Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui

    2018-02-01

    Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.

  5. Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy.

    PubMed

    Li, Jian-Wei; Wu, Zhong-Ming; Magetic, Davor; Zhang, Li-Jun; Chen, Zhi-Long

    2015-12-01

    In this paper, the antitumor activity of a novel porphyrin-based photosensitizer 5,10,15,20-tetrakis[(5-diethylamino)pentyl] porphyrin (TDPP) was reported in vitro and in vivo. The photophysical and cellular properties of TDPP were investigated. The singlet oxygen generation quantum yield of TDPP was detected; it showed a high singlet oxygen quantum yield of 0.52. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The efficiency of TDPP-photodynamic therapy (PDT) in vitro was analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and in situ trypan blue exclusion test. Treated with a 630-nm laser, TDPP can kill cultured human esophageal cancer cell line (Eca-109) cells and reduce the growth of Eca-109 xenograft tumors significantly in BABL/c nude mice. And histopathological study was also used to confirm the antitumor effect. It has the perspective to be developed as a new antitumor drug in photodynamic therapy and deserves further investigation.

  6. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3

    PubMed Central

    Sun, Xin-Yuan; Qu, Yue; Ni, An-Ran; Wang, Gui-Xiang; Huang, Wei-Bin; Chen, Zhong-Ping; Lv, Zhu-Fen; Zhang, Song; Lindsay, Holly; Zhao, Sibo; Li, Xiao-Nan; Feng, Bing-Hong

    2017-01-01

    N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3. PMID:29088860

  7. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells

    PubMed Central

    ZHENG, RUINIAN; YOU, ZHIJIAN; JIA, JUN; LIN, SHUNHUAN; HAN, SHUAI; LIU, AIXUE; LONG, HUIDONG; WANG, SENMING

    2016-01-01

    At present, the therapeutic treatment strategies for patients with hepatocellular carcinoma (HCC) remain unsatisfactory, and novel methods are urgently required to treat this disease. Members of the B cell lymphoma (Bcl)-2 family are anti-apoptotic proteins, which are commonly expressed at high levels in certain HCC tissues and positively correlate with the treatment resistance of patients with HCC. ABT-737, an inhibitor of Bcl-2 anti-apoptotic proteins, has been demonstrated to exhibit potent antitumor effects in several types of tumor, including HCC. However, treatment with ABT-737 alone also activates certain pro-survival signaling pathways, which attenuate the antitumor validity of ABT-737. Curcumin, which is obtained from Curcuma longa, is also an antitumor potentiator in multiple types of cancer. In the present study, the synergistic effect of curcumin and ABT-737 on HCC cells was investigated for the first time, to the best of our knowledge. It was found that curcumin markedly enhanced the antitumor effects of ABT-737 on HepG2 cells, which was partially dependent on the induction of apoptosis, according to western blot analysis and flow cytometric apoptosis analysis. In addition, the sustained activation of the ROS-ASK1-c-Jun N-terminal kinase pathway may be an important mediator of the synergistic effect of curcumin and ABT-737. Collectively, these results indicated that the combination of curcumin and ABT-737 can efficaciously induce the death of HCC cells, and may offer a potential treatment strategy for patients with HCC. PMID:26707143

  8. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  9. The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0364 TITLE: The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease...SUBTITLE The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease 5a. CONTRACT NUMBER 5b. GRANT NUMBER...synthetic multifunctional compounds as therapeutics for polycystic kidney disease (PKD). In collaboration with the Essigmann lab at MIT, we have

  10. Characterization and anti-tumor effects of chondroitin sulfate-chitosan nanoparticles delivery system

    NASA Astrophysics Data System (ADS)

    Hu, Chieh-Shen; Tang, Sung-Ling; Chiang, Chiao-Hsi; Hosseinkhani, Hossein; Hong, Po-Da; Yeh, Ming-Kung

    2014-11-01

    We prepared chondroitin sulfate (ChS)-chitosan (CS) nanoparticles (NPs) as a delivery carrier, and doxorubicin (Dox) was used as a model drug. The physicochemical properties and biological activities of the Dox-ChS-CS NPs including the release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated. The ChS-CS NPs and Dox-ChS-CS NPs had a mean size of 262.0 ± 15.0 and 369.4 ± 77.4 nm, and a zeta potential of 30.2 ± 0.9 and 20.6 ± 3.1 mV, respectively. In vitro release tests showed that the 50 % release time for the Dox-ChS-CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox-ChS-CS NPs. A significant difference was observed between doxorubicin solution and the Dox-ChS-CS NPs in the cellular uptake within 60 min ( p < 0.01). For the in vivo human xenograft-nude mouse model, the Dox-ChS-CS NPs were more effective with less body weight loss and anti-tumor growth suppression in comparison with the Dox solution. The prepared Dox-ChS-CS NPs offer a new effective targeting nanoparticle delivery system platform for anti-tumor therapy.

  11. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma

    PubMed Central

    Jia, Lihua; Wang, Juan; Wu, Tong; Wu, Jinan; Ling, Junqi; Cheng, Bin

    2017-01-01

    Chloroquine, which is a widely used antimalarial drug, has been reported to exert anticancer activity in some tumor types; however, its potential effects on oral squamous cell carcinoma (OSCC) remain unclear. The present study aimed to explore the effects and possible underlying mechanisms of chloroquine against OSCC. MTT and clonogenic assays were conducted to evaluate the effects of chloroquine on the human OSCC cell lines SCC25 and CAL27. Cell cycle progression and apoptosis were detected using flow cytometry. Autophagy was monitored using microtubule-associated protein 1A/1B-light chain 3 as an autophagosomal marker. In order to determine the in vivo antitumor effects of chloroquine on OSCC, a CAL27 xenograft model was used. The results demonstrated that chloroquine markedly inhibited the proliferation and the colony-forming ability of both OSCC cell lines in a dose- and time-dependent manner in vitro. Chloroquine also disrupted the cell cycle, resulting in the cell cycle arrest of CAL27 and SCC25 cells at G0/G1 phase, via downregulation of cyclin D1. In addition, chloroquine inhibited autophagy, and induced autophagosome and autolysosome accumulation in the cytoplasm, thus interfering with degradation; however, OSCC apoptosis was barely affected by chloroquine. The results of the in vivo study demonstrated that chloroquine effectively inhibited OSCC tumor growth in the CAL27 xenograft model. In conclusion, the present study reported the in vitro and in vivo antitumor effects of chloroquine on OSCC, and the results indicated that chloroquine may be considered a potent therapeutic agent against human OSCC. PMID:28849182

  12. Ginsenoside Rh2 enhances the antitumor immunological response of a melanoma mice model.

    PubMed

    Wang, Meng; Yan, Shi-Ju; Zhang, Hong-Tao; Li, Nan; Liu, Tao; Zhang, Ying-Long; Li, Xiao-Xiang; Ma, Qiong; Qiu, Xiu-Chun; Fan, Qing-Yu; Ma, Bao-An

    2017-02-01

    The treatment of malignant tumors following surgery is important in preventing relapse. Among all the post-surgery treatments, immunomodulators have demonstrated satisfactory effects on preventing recurrence according to recent studies. Ginsenoside is a compound isolated from panax ginseng, which is a famous traditional Chinese medicine. Ginsenoside aids in killing tumor cells through numerous processes, including the antitumor processes of ginsenoside Rh2 and Rg1, and also affects the inflammatory processes of the immune system. However, the role that ginsenoside serves in antitumor immunological activity remains to be elucidated. Therefore, the present study aimed to analyze the effect of ginsenoside Rh2 on the antitumor immunological response. With a melanoma mice model, ginsenoside Rh2 was demonstrated to inhibit tumor growth and improved the survival time of the mice. Ginsenoside Rh2 enhanced T-lymphocyte infiltration in the tumor and triggered cytotoxicity in spleen lymphocytes. In addition, the immunological response triggered by ginsenoside Rh2 could be transferred to other mice. In conclusion, the present study provides evidence that ginsenoside Rh2 treatment enhanced the antitumor immunological response, which may be a potential therapy for melanoma.

  13. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  14. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Astragalus polysaccharide enhanced antitumor effects of Apatinib in gastric cancer AGS cells by inhibiting AKT signalling pathway.

    PubMed

    Wu, Jun; Yu, Junxian; Wang, Jing; Zhang, Chenguang; Shang, Kun; Yao, Xiaojun; Cao, Bangwei

    2018-04-01

    Apatinib has been proved effective in the treatment of advanced gastric cancer. Traditional Chinese medicine is often considered as adjuvants which could increase the effects and counteract the side effects of chemotherapy. The present study aims to explore the antitumor effects of Astragalus polysaccharide (AsPs) in combination with Apatinib in gastric cancer AGS cells. Our results demonstrated that the expression of VEGFR-2 was observed in human gastric cancer line AGS. Both Apatinib and AsPs could significantly inhibit the proliferation of AGS cells in a dose-dependent manner and Apatinib in combination with AsPs showed enhanced inhibitory effects on cell proliferation, migration and invasion compared with Apatinib monotherapy. Moreover, there was a remarkable increase in apoptosis following Apatinib treatment which could be enhanced by the addition of AsPs. Western blotting showed that the combination of Apatinib and AsPs could inhibit the expression of phosphorylated AKT (p-AKT) and MMP-9 expression. In addition, both Apatinib alone and Apatinib in combination with AsPs induced celluar autophagy which could be attenuated by the autophagy inhibitor 3-MA. The suppression of autophagy leaded to further apoptosis induction and cell proliferation suppression. In conclusion, the current study showed AsPs enhanced antitumor effects of Apatinib on AGS cells by the mechanism which includes inhibition of AKT signaling pathway. Apatinib-induced autophagy could be attenuated by 3-MA, which subsequently increased the apoptosis rate. On the basis of our study, the combination of Apatinib and AsPs could be considered as a potential candidate in the gastric cancer treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies.

    PubMed

    Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J

    2016-09-01

    Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Structural Features, Antitumor and Antioxidant Activities of Rice Bran Polysaccharides Using Different Extraction Methods.

    PubMed

    Han, Wenfang; Li, Jiangtao; Ding, Yuqin; Xiong, Shanbai; Zhao, Siming

    2017-10-01

    In this study, rice bran polysaccharides (RBP) were extracted using the hydrothermal method (RBP-H), microwave-assisted extraction (RBP-M) and enzyme-assisted extraction (RBP-E). The prepared RBP samples exhibited the typical spectral patterns of polysaccharides, but differed in chemical composition, molecular features, antitumor and antioxidant activities. The molecular weights (Mw) of RBP-H, RBP-M, and RBP-E were 1.03 × 10 5 , 2.62 × 10 5 , and 0.46 × 10 5 g/mol, respectively. In vitro, all RBP samples significantly inhibited mouse sarcoma S180 cells viability in a dose-dependent manner. In vivo, RBP-M or RBP-E could not only inhibit the growth of the tumor, but also enhance the spleen index. In addition, RBP-E could induce an enhancement of superoxide dismutase (SOD) and glutathione peroxidase activities and a scavenging effect on malondialdehyde. This study demonstrated that the effective antitumor activity of RBP may be owed to its enhancement of antioxidant activity function. The present work suggested that RBP, especially RBP-E could be a safe and effective antitumor, bioactive agent or functional food. Polysaccharides is extracted from rice bran (RBP) using hydrothermal, microwave-assisted and enzyme-assisted extraction methods. The results suggested that the antitumor activity of RBP was associated with enhancement of immunization and antioxidant. RBP could be explored as a natural antitumor and antioxidant agent applied in medicines and functional foods. © 2017 Institute of Food Technologists®.

  18. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.

    PubMed

    Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela

    2004-03-01

    Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.

  19. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model.

    PubMed

    Abe, Shinji; Kaneko, Mika Kato; Tsuchihashi, Yuki; Izumi, Toshihiro; Ogasawara, Satoshi; Okada, Naoto; Sato, Chiemi; Tobiume, Makoto; Otsuka, Kenji; Miyamoto, Licht; Tsuchiya, Koichiro; Kawazoe, Kazuyoshi; Kato, Yukinari; Nishioka, Yasuhiko

    2016-09-01

    Podoplanin (aggrus) is highly expressed in several types of cancers, including malignant pleural mesothelioma (MPM). Previously, we developed a rat anti-human podoplanin mAb, NZ-1, and a rat-human chimeric anti-human podoplanin antibody, NZ-8, derived from NZ-1, which induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against podoplanin-positive MPM cell lines. In this study, we showed the antitumor effect of NZ-1, NZ-8, and NZ-12, a novel rat-human chimeric anti-human podoplanin antibody derived from NZ-1, in an MPM orthotopic xenograft SCID mouse model. Treatment with NZ-1 and rat NK (CD161a(+) ) cells inhibited the growth of tumors and the production of pleural effusion in NCI-H290/PDPN or NCI-H226 orthotopic xenograft mouse models. NZ-8 and human natural killer (NK) (CD56(+) ) cells also inhibited tumor growth and pleural effusion in MPM orthotopic xenograft mice. Furthermore, NZ-12 induced potent ADCC mediated by human MNC, compared with either NZ-1 or NZ-8. Antitumor effects were observed following treatment with NZ-12 and human NK (CD56(+) ) cells in MPM orthotopic xenograft mice. In addition, combined immunotherapy using the ADCC activity of NZ-12 mediated by human NK (CD56(+) ) cells with pemetrexed, led to enhanced antitumor effects in MPM orthotopic xenograft mice. These results strongly suggest that combination therapy with podoplanin-targeting immunotherapy using both NZ-12 and pemetrexed might provide an efficacious therapeutic strategy for the treatment of MPM. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Antitumor effect of degalactosylated gc-globulin on orthotopic grafted lung cancer in mice.

    PubMed

    Hirota, Keiji; Nakagawa, Yoshinori; Takeuchi, Ryota; Uto, Yoshihiro; Hori, Hitoshi; Onizuka, Shinya; Terada, Hiroshi

    2013-07-01

    Group-specific component (Gc)-globulin-derived macrophage-activating factor (GcMAF) generated by a cascade of catalytic reactions with deglycosidase enzymes exerts antitumor activity. We hypothesized that degalactosyl Gc-globulin (DG3), a precursor of GcMAF, also plays a role in recovery from cancer as well as GcMAF due to progression of deglycosylation by generally resident sialidases and mannosidases. We prepared the subtypes of DG3, such as 1f1f and 1s1s and its 22 homodimers, by using vitamin D3-binding Sepharose CL-6B and examined their antitumor activity in mice bearing Lewis lung carcinoma cells, by counting the number of nodules formed in their lungs. Antitumor activity of DG3 was observed regardless of its subtype, being equivalent to that of GcMAF. The injection route of DG3 affected its antitumor activity, with subcutaneous and intramuscular administration being more favorable than the intraperitoneal or intravenous route. In order to obtain significant antitumor activity, more than 160 ng/kg of DG3 were required. DG3 proved to be promising as an antitumor agent, similarly to GcMAF.

  1. Anti-tumor effect of emodin on gynecological cancer cells.

    PubMed

    Wang, Yaoxian; Yu, Hui; Zhang, Jin; Ge, Xin; Gao, Jing; Zhang, Yunyan; Lou, Ge

    2015-10-01

    Although an anti-tumor effect of emodin has been reported before, its effect on human gynecological cancer cells has so far not been studied. Here, we assessed the effect of emodin on cervical cancer-derived (Hela), choriocarcinoma-derived (JAR) and ovarian cancer-derived (HO-8910) cells, and investigated the possible underlying molecular and cellular mechanisms. The respective cells were treated with 0, 5, 10 or 15 μM emodin for 72 h. Subsequently, MTT and Transwell in vitro migration assays revealed that emodin significantly decreased the viability and invasive capacity of the gynecological cancer-derived cells tested. We found that emodin induced apoptosis and significantly decreased mitochondrial membrane potential and ATP release in these cells. We also found that emodin may exert its apoptotic effects via regulating the activity of caspase-9 and the expression of cleaved-caspase-3. Moreover, we found that emodin induced a cell cycle arrest at the G0/G1 phase, possibly through down-regulating the key cell cycle regulators Cyclin D and Cyclin E. Interestingly, emodin also led to autophagic cell death, as revealed by increased MAP LC3 expression, a marker of the autophagosome, and decreased expression of the autophagy regulators Beclin-1 and Atg12-Atg5. Finally, we found that the protein levels of both VEGF and VEGFR-2 were significantly decreased in emodin-treated cells, suggesting an anti-angiogenic effect of emodin on gynecological cancer-derived cells. Our results suggest that emodin exhibits an anti-tumor effect on gynecological cancer-derived cells, possibly through multiple mechanisms including the induction of apoptosis and autophagy, the arrest of the cell cycle, and the inhibition of angiogenesis. Our findings may provide a basis for the design of potential emodin-based strategies for the treatment of gynecological tumors.

  2. Targeting Tumor Metabolism to Enhance the Effectiveness of Antitumor Immune Response in the Treatment of Breast Cancer

    DTIC Science & Technology

    2013-11-01

    glycolytic inhibitor, 3 - bromopyruvate ( 3 -BrPA) show a better response to antitumor immunotherapy. One of the major implications of the current finding is...effectiveness of immunotherapeutics in the treatment of human breast cancer15. SUBJECT TERMS Breast cancer, Energy metabolism, 3 - bromopyruvate , immune... bromopyruvate ( 3 -BrPA) show an improved-response to antitumor immunotherapy. The outcome of our study suggests that antiglycolytic pre-treatment sensitizes

  3. Antitumor activity of fermented noni exudates and its fractions

    PubMed Central

    LI, JINHUA; CHANG, LENG-CHEE; WALL, MARISA; WONG, D.K.W.; YU, XIANZHONG; WEI, YANZHANG

    2013-01-01

    Noni has been extensively used in folk medicine by Polynesians for over 2000 year. Recent studies have shown that noni has a wide spectrum of therapeutic activities including inhibition of angiogenesis, anti-inflammatory effects and anti-cancer activities. Intraperitoneal (i.p.) injection of fermented noni exudates (fNE) were previously found to induce significant tumor rejection in a S180 mouse sarcoma tumor model, while natural killer (NK) cells were demonstrated to be markedly involved in fNE-induced antitumor activity. In this study, fNE was partitioned into three fractions and their antitumor effects were examined using i.p. injection or as water supplement. The in vivo animal study results showed that when delivered by i.p. injection, n-butanol fraction of fNE (BuOH) effectively rejected (100%) tumor challenge and eradicated existing tumors (75%). When delivered as a water supplement, 62.5% of the mice receiving the n-butanol or ethyl acetate fractions resisted tumor cells. The tumor-resistant mice effectively rejected more and higher doses of tumor challenge, indicating that the immune system was activated. The findings confirm those of an earlier study showing fNE to have anti-tumor activity and demonstrating that the n-butanol fraction of fNE contains active antitumor components, to be further identified. More importantly, the antitumor effect of fNE and its fractions as water supplements renders a significant potential for identifying novel and powerful new dietary products for cancer prevention. PMID:24649140

  4. Antitumor activity of fermented noni exudates and its fractions.

    PubMed

    Li, Jinhua; Chang, Leng-Chee; Wall, Marisa; Wong, D K W; Yu, Xianzhong; Wei, Yanzhang

    2013-01-01

    Noni has been extensively used in folk medicine by Polynesians for over 2000 year. Recent studies have shown that noni has a wide spectrum of therapeutic activities including inhibition of angiogenesis, anti-inflammatory effects and anti-cancer activities. Intraperitoneal (i.p.) injection of fermented noni exudates (fNE) were previously found to induce significant tumor rejection in a S180 mouse sarcoma tumor model, while natural killer (NK) cells were demonstrated to be markedly involved in fNE-induced antitumor activity. In this study, fNE was partitioned into three fractions and their antitumor effects were examined using i.p. injection or as water supplement. The in vivo animal study results showed that when delivered by i.p. injection, n-butanol fraction of fNE (BuOH) effectively rejected (100%) tumor challenge and eradicated existing tumors (75%). When delivered as a water supplement, 62.5% of the mice receiving the n-butanol or ethyl acetate fractions resisted tumor cells. The tumor-resistant mice effectively rejected more and higher doses of tumor challenge, indicating that the immune system was activated. The findings confirm those of an earlier study showing fNE to have anti-tumor activity and demonstrating that the n-butanol fraction of fNE contains active antitumor components, to be further identified. More importantly, the antitumor effect of fNE and its fractions as water supplements renders a significant potential for identifying novel and powerful new dietary products for cancer prevention.

  5. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    PubMed

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer

  6. Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation.

    PubMed

    Hamano, Nobuhito; Negishi, Yoichi; Takatori, Kyohei; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Niidome, Takuro; Aramaki, Yukihiko

    2014-01-01

    Ultrasound (US) is used in the clinical setting not only for diagnosis but also for therapy. As a therapeutic US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical setting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however, microbubbles have room for improvement in size, stability, and targeting ability. To solve these issues, we reported that "Bubble liposomes" (BLs) containing the US imaging gas (perfluoropropane gas) liposomes were suitable for ultrasound imaging and gene delivery. In this study, we examined whether BLs and HIFU could enhance the ablation area of the tumor and the antitumor effect. First, we histologically analyzed the tumor after BLs and HIFU. The ablation area of the treatment of BLs and HIFU was broader than that of HIFU alone. Next, we monitored the temperature of the tumor, and examined the antitumor effect. The temperature increase with BLs and HIFU treatment was faster and higher than that with HIFU alone. Moreover, treatment with BLs and HIFU enhanced the antitumor effect, which was better than with HIFU alone. Thus, the combination of BLs and HIFU could be efficacious for cancer therapy.

  7. Clobenpropit enhances anti-tumor effect of gemcitabine in pancreatic cancer

    PubMed Central

    Paik, Woo Hyun; Ryu, Ji Kon; Jeong, Kyoung-Sin; Park, Jin Myung; Song, Byeong Jun; Lee, Sang Hyub; Kim, Yong-Tae; Yoon, Yong Bum

    2014-01-01

    AIM: To evaluate the anti-tumor effect of clobenpropit, which is a specific H3 antagonist and H4 agonist, in combination with gemcitabine in a pancreatic cancer cell line. METHODS: Three kinds of human pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and AsPC-1) were used in this study. Expression of H3 and H4 receptors in pancreatic cancer cells was identified with Western blotting. Effects of clobenpropit on cell proliferation, migration and apoptosis were evaluated. Alteration of epithelial and mesenchymal markers after administration of clobenpropit was analyzed. An in vivo study with a Panc-1 xenograft mouse model was also performed. RESULTS: H4 receptors were present as 2 subunits in human pancreatic cancer cells, while there was no expression of H3 receptor. Clobenpropit inhibited cell migration and increased apoptosis of pancreatic cancer cells in combination with gemcitabine. Clobenpropit up-regulated E-cadherin, but down-regulated vimentin and matrix metalloproteinase 9 in real-time polymerase chain reaction. Also, clobenpropit inhibited tumor growth (gemcitabine 294 ± 46 mg vs combination 154 ± 54 mg, P = 0.02) and enhanced apoptosis in combination with gemcitabine (control 2.5%, gemcitabine 25.8%, clobenpropit 9.7% and combination 40.9%, P = 0.001) by up-regulation of E-cadherin and down-regulation of Zeb1 in Panc-1 xenograft mouse. CONCLUSION: Clobenpropit enhanced the anti-tumor effect of gemcitabine in pancreatic cancer cells through inhibition of the epithelial-mesenchymal transition process. PMID:25024609

  8. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain.

    PubMed

    Báez, Roxana; Lopes, Miriam T; Salas, Carlos E; Hernández, Martha

    2007-10-01

    Stem bromelain (EC 3.4.22.32) is a major cysteine proteinase, isolated from pineapple ( Ananas comosus) stem. Its main medicinal use is recognized as digestive, in vaccine formulation, antitumoral and skin debrider for the treatment of burns. To verify the identity of the principle in stem fractions responsible for the antitumoral effect, we isolated bromelain to probe its pharmacological effects. The isolated bromelain was obtained from stems of adult pineapple plants by buffered aqueous extraction and cationic chromatography. The homogeneity of bromelain was confirmed by reverse phase HPLC, SDS-PAGE and N-terminal sequencing. The in vivo antitumoral/antileukemic activity was evaluated using the following panel of tumor lines: P-388 leukemia, sarcoma (S-37), Ehrlich ascitic tumor (EAT), Lewis lung carcinoma (LLC), MB-F10 melanoma and ADC-755 mammary adenocarcinoma. Intraperitoneal administration of bromelain (1, 12.5, 25 mg/kg), began 24 h after tumor cell inoculation in experiments in which 5-fluorouracil (5-FU, 20 mg/kg) was used as positive control. The antitumoral activity was assessed by the survival increase (% survival index) following various treatments. With the exception of MB-F10 melanoma, all other tumor-bearing animals had a significantly increased survival index after bromelain treatment. The largest increase ( approximately 318 %) was attained in mice bearing EAT ascites and receiving 12.5 mg/kg of bromelain. This antitumoral effect was superior to that of 5-FU, whose survival index was approximately 263 %, relative to the untreated control. Bromelain significantly reduced the number of lung metastasis induced by LLC transplantation, as observed with 5-FU. The antitumoral activity of bromelain against S-37 and EAT, which are tumor models sensitive to immune system mediators, and the unchanged tumor progression in the metastatic model suggests that the antimetastatic action results from a mechanism independent of the primary antitumoral effect.

  9. Oncolytic HSV virotherapy in murine sarcomas differentially triggers an antitumor T-cell response in the absence of virus permissivity

    PubMed Central

    Leddon, Jennifer L; Chen, Chun-Yu; Currier, Mark A; Wang, Pin-Yi; Jung, Francesca A; Denton, Nicholas L; Cripe, Kevin M; Haworth, Kellie B; Arnold, Michael A; Gross, Amy C; Eubank, Timothy D; Goins, William F; Glorioso, Joseph C; Cohen, Justus B; Grandi, Paola; Hildeman, David A; Cripe, Timothy P

    2015-01-01

    Multiple studies have indicated that in addition to direct oncolysis, virotherapy promotes an antitumor cytotoxic T cell response important for efficacy. To study this phenomenon further, we tested three syngeneic murine sarcoma models that displayed varied degrees of permissiveness to oncolytic herpes simplex virus replication and cytotoxicity in vitro, with the most permissive being comparable to some human sarcoma tumor lines. The in vivo antitumor effect ranged from no or modest response to complete tumor regression and protection from tumor rechallenge. The in vitro permissiveness to viral oncolysis was not predictive of the in vivo antitumor effect, as all three tumors showed intact interferon signaling and minimal permissiveness to virus in vivo. Tumor shrinkage was T-cell mediated with a tumor-specific antigen response required for maximal antitumor activity. Further analysis of the innate and adaptive immune microenvironment revealed potential correlates of susceptibility and resistance, including favorable and unfavorable cytokine profiles, differential composition of intratumoral myeloid cells, and baseline differences in tumor cell immunogenicity and tumor-infiltrating T-cell subsets. It is likely that a more complete understanding of the interplay between the immunologic immune microenvironment and virus infection will be necessary to fully leverage the antitumor effects of this therapeutic platform. PMID:27119100

  10. Antitumor activities of D-glucosamine and its derivatives*

    PubMed Central

    Zhang, Li; Liu, Wan-shun; Han, Bao-qin; Peng, Yan-fei; Wang, Dong-feng

    2006-01-01

    The growth inhibitory effects of D-glucosamine hydrochloride (GlcNH2·HCl), D-glucosamine (GlcNH2) and N-acetyl glucosamine (NAG) on human hepatoma SMMC-7721 cells in vitro were investigated. The results showed that GlcNH2·HCl and GlcNH2 resulted in a concentration-dependent reduction in hepatoma cell growth as measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. This effect was accompanied by a marked increase in the proportion of S cells as analyzed by flow cytometry. In addition, human hepatoma SMMC-7721 cells treated with GlcNH2·HCl resulted in the induction of apoptosis as assayed qualitatively by agarose gel electrophoresis. NAG could not inhibit the proliferation of SMMC-7721 cells. GlcNH2·HCl exhibited antitumor activity against Sarcoma 180 in Kunming mice at dosage of 125~500 mg/kg, dose of 250 mg/kg being the best. GlcNH2·HCl at dose of 250 mg/kg could enhance significantly the thymus index, and spleen index and could promote T lymphocyte proliferation induced by ConA. The antitumor effect of GlcNH2·HCl is probably host-mediated and cytocidal. PMID:16845712

  11. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells.

    PubMed

    Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan

    2015-01-01

    To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.

  12. In vitro and in vivo antitumor effects of 50 to 100-KDa components from B16 melanoma culture supernatant.

    PubMed

    Qin, Ying-Song; Zhang, X U; Zhang, Xiang-Yu

    2015-07-01

    The development of immunological therapies for melanoma has been of considerable concern in recent years. Whole tumor cell lysates have been used to develop antitumor vaccines, but the effective components of the lysates have not been identified. In the present study, protein elements were purified from the B16 supernatant to analyze the in vitro chemotaxis towards mouse spleen lymphocytes using a Boyden chamber. Prior to establishing a B16 melanoma model, C57BL/6 mice were vaccinated with these proteins, and melanoma growth, tumor appearance time and behavioral changes were observed. Next, the cytotoxicity and subsets of the tumor infiltrating lymphocytes, and the histological characteristics of the melanoma were analyzed. The isolated purified fragments of B16 melanoma culture supernatant had strong antitumor effects. The possible antitumor mechanism was delineated, and was identified to possibly be through the activation of cluster of differentiation 8-positive T cells and the promotion of B16 cell differentiation. These methods will provide a novel insight into understanding antitumor immunological mechanisms and provide a potential avenue for immunotherapy.

  13. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    PubMed

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  14. Evaluation of antitumor, immunomodulatory and free radical scavenging effects of a new herbal prescription seaweed complex preparation

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shao, Changlun; Kong, Wenwen; Fang, Yuchun; Wang, Changyun

    2013-09-01

    Seaweed Complex Preparation (SCP) is a clinical traditional Chinese medicine preparation which is composed of seven traditional Chinese herbs, and it has been used for treatment of lung cancer, liver cancer and digestive cancer. However, little information is available about the pharmacodynamic basis. The antitumor, immunomodulatory and free radical scavenging effects of SCP were evaluated in this study. Transplanted tumor in vivo method was used to determine the antitumor effect. The effects on splenocyte proliferation and phagocytosis of macrophages in tumor-bearing mice were measured by the MTT method and the phagocytizing cock red blood cell (CRBC) method respectively. The scavenging activities of SCP on DPPH and hydroxyl radicals in vitro were investigated. It was found that the medium-dose and high-dose of SCP could significantly inhibit the growth of transplanted hepatic tumor of murine hepatocarcinoma cell line H22, and promote proliferation of splenocytes and phagocytosis of macrophages. SCP possessed noticeable scavenging activities on DPPH and hydroxyl radicals. The antitumor effects of SCP might be achieved by improving immune system and scavenging free radicals, which is in accordance with the viewpoint of traditional Chinese medicine in promoting the body resistance and eliminating pathogenic factors for cancer treatment.

  15. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    PubMed Central

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  16. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations.

    PubMed

    Medhat, Dalia; Hussein, Jihan; El-Naggar, Mehrez E; Attia, Mohamed F; Anwar, Mona; Latif, Yasmine Abdel; Booles, Hoda F; Morsy, Safaa; Farrag, Abdel Razik; Khalil, Wagdy K B; El-Khayat, Zakaria

    2017-07-01

    Dextran-capped gold nanoparticles (Au-dextran NPs) were prepared exploiting the natural polysaccharide polymer as both reducing and stabilizing agent in the synthesis process, aiming at studying their antitumor effect on solid carcinoma and EAC-bearing mice. To this end, Au-dextran NPs were designed via simple eco-friendly chemical reaction and they were characterized revealing the monodispersed particles with narrow distributed size of around 49nm with high negative charge. In vivo experiments were performed on mice. Biochemical analysis of liver and kidney functions and oxidation stress ratio in addition to histopathological investigations of such tumor tissues were done demonstrating the potentiality of Au-dextran NPs as antitumor agent. The obtained results revealed that EAC and solid tumors caused significant increase in liver and kidney functions, liver oxidant parameters, alpha feto protein levels and diminished liver antioxidant accompanied by positive expression of tumor protein p53 of liver while the treatment with Au-dextran NPs for both types caused improvement in liver and kidney functions, increased liver antioxidant, increased the expression level of B-cell lymphoma 2 gene and subsequently suppressed the apoptotic pathway. As a result, the obtained data provides significant antitumor effects of the Au-dextran NPs in both Ehrlich ascites and solid tumor in mice models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Lapatinib in combination with paclitaxel plays synergistic antitumor effects on esophageal squamous cancer.

    PubMed

    Guo, Xiao-Fang; Li, Sai-Sai; Zhu, Xiao-Fei; Dou, Qiao-Hua; Liu, Duan

    2018-06-16

    Paclitaxel-based chemoradiotherapy was proven to be efficacious in treating patients with advanced esophageal cancer. However, the toxicity and the development of resistance limited its anticancer efficiency. The present study was to evaluate the antitumor effects of lapatinib, a dual tyrosine inhibitor of both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), combined with paclitaxel on the esophageal squamous cancer. MTT assays were used to evaluate the effects of the combination of lapatinib and paclitaxel on the growth of esophageal squamous cancer cell lines (KYSE150, KYSE450, KYSE510 and TE-7). The activity of the combination of two agents on cell invasion, migration and apoptosis was measured by wound healing assay, transwell assay and Annexin V-FITC/PI stain assay. Western blot assay was used to analyze the effects of the two agents on the EGFR/HER2 signaling. The in vivo efficacy was evaluated in KYSE450 xenograft nude mouse model. The combination of lapatinib and paclitaxel was highly synergistic in inhibiting cell growth with a combination index of < 1, and suppressed significantly the invasion and migration capability of esophageal squamous cancer cells. Esophageal squamous cancer cells displayed increased rates of apoptosis after treatment with lapatinib plus paclitaxel. The phosphorylated EGFR and HER2 as well as the activation of downstream molecules MAPKs and AKT significantly decreased when exposed to lapatinib and paclitaxel. In vivo studies showed that the combination of two agents had greater antitumor efficacy than either agent alone. The combination of lapatinib with paclitaxel showed synergistic antitumor activity, suggesting their potential in treating patients with esophageal squamous cancer.

  18. Vaccination with OK-432 followed by TC-1 tumor lysate leads to significant antitumor effects.

    PubMed

    Chen, I-Ju; Yen, Chih-Feng; Lin, Kun-Ju; Lee, Chyi-Long; Soong, Yung-Kuei; Lai, Chyong-Huey; Lin, Cheng-Tao

    2011-07-01

    Human papillomavirus (HPV) infects large numbers of women worldwide and is present in more than 99% of all cervical cancer. TC-1 cell is a cell line with high expression of E7 antigen of HPV type 16 and its cell lysate has been demonstrated as an ideal inducer of E7-specific, antitumor immunity. OK-432 (Picibanil), a penicillin-killed Streptococcus pyogenes, has been reported with potent immunomodulation properties in cancer treatment by stimulating the maturation of dendritic cells (DCs) and secretion of Th-1 type cytokines. The current study demonstrated that a protocol to immunize the C57BL/6 mice with OK-432 followed by treatment with TC-1 lysate can generate markedly increased immune responses of E7-specific CD4(+) T cells and a moderate increase of natural killer (NK) cell, as well as a satisfactorily protective and therapeutic antitumor effect by triggering the DCs to prime T cells. Depletion of lymphocyte subset in vivo suggested that the antitumor effects could be dominantly executed by CD8+ T cells and followed by NK cells, and both of these reactions were induced by the generation of robust E7-specific CD4(+) T helper cell response. These findings warrant OK-432 combination with tumor-lysate as an effective and safe vaccine in future clinical application of cervical cancer.

  19. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation.

    PubMed

    Nakagawa, Hidetoshi; Mizukoshi, Eishiro; Iida, Noriho; Terashima, Takeshi; Kitahara, Masaaki; Marukawa, Yohei; Kitamura, Kazuya; Nakamoto, Yasunari; Hiroishi, Kazumasa; Imawari, Michio; Kaneko, Shuichi

    2014-04-01

    Radiofrequency ablation therapy (RFA) is a radical treatment for liver cancers and induces tumor antigen-specific immune responses. In the present study, we examined the antitumor effects of focal OK-432-stimulated dendritic cell (DC) transfer combined with RFA and analyzed the functional mechanisms involved using a murine model. C57BL/6 mice were injected subcutaneously with colon cancer cells (MC38) in their bilateral flanks. After the establishment of tumors, the subcutaneous tumor on one flank was treated using RFA, and then OK-432-stimulated DCs were injected locally. The antitumor effect of the treatment was evaluated by measuring the size of the tumor on the opposite flank, and the immunological responses were assessed using tumor-infiltrating lymphocytes, splenocytes and draining lymph nodes. Tumor growth was strongly inhibited in mice that exhibited efficient DC migration after RFA and OK-432-stimulated DC transfer, as compared to mice treated with RFA alone or treatment involving immature DC transfer. We also demonstrated that the antitumor effect of this treatment depended on both CD8-positive and CD4-positive cells. On the basis of our findings, we believe that combination therapy for metastatic liver cancer consisting of OK-432-stimulated DCs in combination with RFA can proceed to clinical trials, and it is anticipated to be markedly superior to RFA single therapy.

  20. Propionibacterium acnes Augments Antitumor, Anti-Angiogenesis and Immunomodulatory Effects of Melatonin on Breast Cancer Implanted in Mice

    PubMed Central

    Talib, Wamidh H.; Saleh, Suhair

    2015-01-01

    Breast cancer is one of the most invasive cancers with high mortality. The immune stimulating Propionibacterium acnes is a Gram positive bacterium that has the ability to cause inflammation and activate Th1-type cytokine immune response. Antitumor response was associated with the inflammation induced by P. acnes, but the antitumor effect of this bacterium was not evaluated in combination with other agents. The aim of this study was to test the antitumor potential of a combination of melatonin and P. acnes against breast cancer implanted in mice. Balb/C mice were transplanted with EMT6/P cell line and in vivo antitumor effect was assessed for P. acnes, melatonin, and a combination of melatonin and P. acnes. Tumor and organs sections were examined using hematoxylin/eosin staining protocol, and TUNEL colorimetric assay was used to detect apoptosis. The expression of vascular endothelial growth factor (VEGF) was measured in tumor sections and serum levels of INF-γ, and IL-4 were measured to evaluate the immune system function. To evaluate the toxicity of our combination, AST and ALT levels were measured in the serum of treated mice. The combination of melatonin and P. acnes has high efficiency in targeting breast cancer in mice. Forty percent of treated mice were completely cured using this combination and the combination inhibited metastasis of cancer cells to other organs. The combination therapy reduced angiogenesis, exhibited no toxicity, induced apoptosis, and stimulates strong Th1-type cytokine antitumor immune response. The combination of melatonin and P. acnes represents a promising option to treat breast cancer. However, carful preclinical and clinical evaluation is needed before considering this combination for human therapy. PMID:25919398

  1. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  2. Pharmacokinetics and antitumor effects of the drug containing TNF-α in nanoparticles.

    PubMed

    Gamaley, S G; Bateneva, A V; Sysoeva, G M; Danilenko, E D; Lebedev, L R; Masycheva, V I

    2010-09-01

    Antitumor activity of TNF-α incorporated in nanoparticles (VLP-TNF-α) and dynamics of its accumulation and elimination from the blood and tumor tissue were studied in ICR mice. The VLP-TNF-α preparation exhibited higher antitumor activity compared to free TNF-α, presumably due to longer circulation of the cytokine in the blood and its more intensive accumulation by tumor tissue.

  3. Antitumor effect of the essential oil from leaves of Guatteria pogonopus (Annonaceae).

    PubMed

    do N Fontes, José Eraldo; Ferraz, Rosana P C; Britto, Anny C S; Carvalho, Adriana A; Moraes, Manoel O; Pessoa, Claudia; Costa, Emmanoel V; Bezerra, Daniel P

    2013-04-01

    Guatteria pogonopus Martius, a plant belonging to the Annonaceae family, is found in the remaining Brazilian Atlantic Forest. In this study, the chemical composition and antitumor effects of the essential oil isolated from leaves of G. pogonopus was investigated. The chemical composition of the oil was determined by GC-FID and GC/MS analyses. The in vitro cytotoxicity was evaluated against three different tumor cell lines (OVCAR-8, NCI-H358M, and PC-3M), and the in vivo antitumor activity was tested in mice bearing sarcoma 180 tumor. A total of 29 compounds was identified and quantified in the oil. The major compounds were γ-patchoulene (13.55%), (E)-caryophyllene (11.36%), β-pinene (10.37%), germacrene D (6.72%), bicyclogermacrene (5.97%), α-pinene (5.33%), and germacrene B (4.69%). The essential oil, but neither (E)-caryophyllene nor β-pinene, displayed in vitro cytotoxicity against all three tumor cell lines tested. The obtained average IC50 values ranged from 3.8 to 20.8 μg/ml. The lowest and highest values were obtained against the NCI-H358M and the OVCAR-8 cell lines, respectively. The in vivo tumor-growth-inhibition rates in the tumor-bearing mice treated with essential oil (50 and 100 mg/kg/d) were 25.3 and 42.6%, respectively. Hence, the essential oil showed significant in vitro and in vivo antitumor activity. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  5. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  6. In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma

    PubMed Central

    Masuelli, Laura; Benvenuto, Monica; Mattera, Rosanna; Di Stefano, Enrica; Zago, Erika; Taffera, Gloria; Tresoldi, Ilaria; Giganti, Maria Gabriella; Frajese, Giovanni Vanni; Berardi, Ginevra; Modesti, Andrea; Bei, Roberto

    2017-01-01

    Malignant mesothelioma (MM) is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API) is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse MM cells. We evaluated the in vivo anti-tumor activities of API in mice transplanted with MM #40a cells forming ascites. API inhibited in vitro MM cells survival, increased reactive oxygen species intracellular production and induced DNA damage. API activated apoptosis but not autophagy. API-induced apoptosis was sustained by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of both caspase 9 and caspase 8, cleavage of PARP-1, and increase of the percentage of cells in subG1 phase. API treatment affected the phosphorylation of ERK1/2, JNK and p38 MAPKs in a cell-type specific manner, inhibited AKT phosphorylation, decreased c-Jun expression and phosphorylation, and inhibited NF-κB nuclear translocation. Intraperitoneal administration of API increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of tumor growth. Our findings may have important implications for the design of MM treatment using API. PMID:28674496

  7. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity

    PubMed Central

    Cao, K; Wang, G; Li, W; Zhang, L; Wang, R; Huang, Y; Du, L; Jiang, J; Wu, C; He, X; Roberts, A I; Li, F; Rabson, A B; Wang, Y; Shi, Y

    2015-01-01

    The poor efficacy of the in vivo anti-tumor immune response has been partially attributed to ineffective T-cell responses mounted against the tumor. Fas-FasL-dependent activation-induced cell death (AICD) of T cells is believed to be a major contributor to compromised anti-tumor immunity. The molecular mechanisms of AICD are well-investigated, yet the possibility of regulating AICD for cancer therapy remains to be explored. In this study, we show that histone deacetylase inhibitors (HDACIs) can inhibit apoptosis of CD4+ T cells within the tumor, thereby enhancing anti-tumor immune responses and suppressing melanoma growth. This inhibitory effect is specific for AICD through suppressing NFAT1-regulated FasL expression on activated CD4+ T cells. In gld/gld mice with mutation in FasL, the beneficial effect of HDACIs on AICD of infiltrating CD4+ T cells is not seen, confirming the critical role of FasL regulation in the anti-tumor effect of HDACIs. Importantly, we found that the co-administration of HDACIs and anti-CTLA4 could further enhance the infiltration of CD4+ T cells and achieve a synergistic therapeutic effect on tumor. Therefore, our study demonstrates that the modulation of AICD of tumor-infiltrating CD4+ T cells using HDACIs can enhance anti-tumor immune responses, uncovering a novel mechanism underlying the anti-tumor effect of HDACIs. PMID:25745993

  8. Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects

    PubMed Central

    Tseng, Chih-Wen; Trimble, Cornelia; Monie, Archana; Alvarez, Ronald D.; Huh, Warner K.; Buchsbaum, Donald J.; Straughn, J. Michael; Wang, Mei-Cheng; Yagita, Hideo; Hung, Chien-Fu; Wu, T.-C.

    2008-01-01

    There is currently a vital need for the development of novel therapeutic strategies for the control of advanced stage cancers. Antigen-specific immunotherapy and the employment of antibodies against the death receptor 5 (DR5) have emerged as two potentially promising strategies for cancer treatment. In the current study, we hypothesize that the combination of treatment with the anti-DR5 monoclonal antibody, MD5-1 with a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7(detox)) administered via gene gun would lead to further enhancement of E7-specific immune responses as well as antitumor effects. Our results indicated that mice bearing the E7-expressing tumor, TC-1 treated with MD5-1 monoclonal antibody followed by CRT/E7(detox) DNA vaccination generated the most potent therapeutic anti-tumor effects as well as highest levels of E7-specific CD8+ T cells among all the groups tested. In addition, treatment with MD5-1 monoclonal antibody was capable of rendering the TC-1 tumor cells more susceptible to lysis by E7-specific cytotoxic T lymphocytes. Our findings serve as an important foundation for future clinical translation. PMID:18598733

  9. Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity.

    PubMed

    Leite, Elaine A; Souza, Cristina M; Carvalho-Júnior, Alvaro D; Coelho, Luiz G V; Lana, Angela M Q; Cassali, Geovanni D; Oliveira, Mônica C

    2012-01-01

    Cisplatin (CDDP) is one of the most effective and potent anticancer drugs used as first-line chemotherapy against several solid tumors. However, the severe side effects and its tendency to provoke chemoresistance often limit CDDP therapy. To avoid these inconveniences, the present study's research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). The present study aimed to evaluate the antitumor effect and toxicity of SpHL-CDDP, as compared with that of free CDDP, and long-circulating and non- pH-sensitive liposomes containing CDDP (NSpHL-CDDP), after their intravenous administration in solid Ehrlich tumor-bearing mice. Antitumor activity was evaluated by analysis of tumor volume and growth inhibition ratio, serum vascular endothelial growth factor (VEGF) levels, and histomorphometric and immunohistochemical studies. Body weight variation and the histological examination of bone marrow and kidneys were used as toxicity indicators. A significant reduction in the tumor volume and a higher tumor growth inhibition ratio was observed after SpHL-CDDP treatment, compared with free CDDP and NSpHL-CDDP treatments. In addition, complete remission of the tumor was detected in 18.2% of the mice treated with SpHL- CDDP (16 mg/kg). As such, the administration of SpHL-CDDP, as compared with free CDDP and NSpHL-CDDP, led to a decrease in the area of necrosis and in the percentage of positive CDC 47 tumor cells. A significant reduction in the VEGF serum level was also observed after SpHL-CDDP treatment, as compared with free-CDDP treatment. SpHL-CDDP administered in a two-fold higher dose than that of free CDDP presented a loss in body weight and changes in the hematopoietic tissue morphology, which proved to be similar to that of free CDDP. No changes could be verified in the renal tissue after any formulations containing CDDP had been administered. These findings showed that SpHL-CDDP allowed for the administration of higher doses of CDDP

  10. 5-fluorouracil enhances the antitumor effect of sorafenib and sunitinib in a xenograft model of human renal cell carcinoma.

    PubMed

    Miyake, Makito; Anai, Satoshi; Fujimoto, Kiyohide; Ohnishi, Sayuri; Kuwada, Masaomi; Nakai, Yasushi; Inoue, Takeshi; Tomioka, Atsushi; Tanaka, Nobumichi; Hirao, Yoshihiko

    2012-06-01

    Sorafenib and sunitinib are multi-kinase inhibitors with antitumor activity in patients with advanced renal cell carcinoma (RCC). Several studies have evaluated the effect of sorafenib/sunitinib in combination with chemotherapeutic agents in different types of tumor. However, few studies have addressed the activity of fluorinated pyrimidine in combination with sorafenib/sunitinib. In this study, we examined the potential of combination therapy with 5FU and sorafenib/sunitinib in human RCC cell lines. Three human RCC cell lines, ACHN, Caki-1 and Caki-2, were used to assess sensitivity to 5-fluorouracil (5FU), sorafenib and sunitinib alone or in combination using an in vitro cell survival assay. Caki-2 cells demonstrated significantly higher resistance to 5FU and sorafenib as compared to ACHN and Caki-1. Additive antitumor effects of the combination therapy were observed in the in vitro study. There was a tendency for a positive correlation between the sensitivity to sunitinib and platelet-derived growth factor β (PDGFR-β) expression levels, which were examined by reverse transcription polymerase chain reaction. Caki-1 xenograft models were prepared by inoculating cells subcutaneously into nude mice, which were divided randomly into six groups: control, 5FU (8 mg/kg/day, intraperitoneally), sorafenib (15 mg/kg/day, orally), sunitinib (20 mg/kg/day, orally), and 5FU with sorafenib or sunitinib. The treatments were administered on 5 days each week, and tumor growth was monitored for 42 days following inoculation of cells. Synergistic antitumor effects of the combination therapy were observed in an in vivo study. The resected tumors were evaluated using the Ki-67 labeling index and microvessel density. Both the Ki-67 labeling index and microvessel density were decreased in tumors treated with the combination therapy compared to those treated with sorafenib/sunitinib alone. These findings suggest that the combination therapy of 5FU with sorafenib/sunitinib may be an

  11. Antitumor effect of bevacizumab in a xenograft model of canine hemangiopericytoma.

    PubMed

    Michishita, Masaki; Uto, Tatsuya; Nakazawa, Ryota; Yoshimura, Hisashi; Ogihara, Kikumi; Naya, Yuko; Tajima, Tsuyoshi; Azakami, Daigo; Kishikawa, Seigo; Arai, Toshiro; Takahashi, Kimimasa

    2013-01-01

    Canine hemangiopericytoma (CHP) is characterized by frequent local recurrence and increased invasiveness. Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis in tumors. The aim of the present study was to investigate the effect of a single dose of bevacizumab on a xenograft model of CHP. VEGF protein was secreted from cultured CHP cells and interacted with bevacizumab. Bevacizumab treatment suppressed tumor growth by inhibiting tumor angiogenesis, whereas no significant differences were observed in the proliferation index and apoptosis rates of treated and untreated mice. Thus, bevacizumab had antitumor effects in a xenograft model of CHP.

  12. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b(+) Ly6C(hi) cells to tumor tissue reduces tumor growth.

    PubMed

    Deronic, Adnan; Tahvili, Sahar; Leanderson, Tomas; Ivars, Fredrik

    2016-07-11

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C(hi) and Ly6G(hi) cells, but instead reduced the influx of Ly6C(hi) cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C(hi) cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after

  13. Role of zoledronic acid in oncolytic virotherapy: Promotion of antitumor effect and prevention of bone destruction.

    PubMed

    Yamakawa, Yasuaki; Tazawa, Hiroshi; Hasei, Joe; Osaki, Shuhei; Omori, Toshinori; Sugiu, Kazuhisa; Komatsubara, Tadashi; Uotani, Kouji; Fujiwara, Tomohiro; Yoshida, Aki; Kunisada, Toshiyuki; Urata, Yasuo; Kagawa, Shunsuke; Ozaki, Toshifumi; Fujiwara, Toshiyoshi

    2017-09-01

    Osteosarcoma is an aggressive malignant bone tumor that causes bone destruction. Although tumor-specific replicating oncolytic adenovirus OBP-301 induces an antitumor effect in an osteosarcoma tumor, it cannot prevent bone destruction. Zoledronic acid (ZOL) is a clinically available agent that inhibits bone destruction. In this study, we investigated the potential of combination therapy with OBP-301 and ZOL against osteosarcomas with bone destruction. The antitumor activity of OBP-301 and ZOL in monotherapy or combination therapy was assessed using three human osteosarcoma cell lines (143B, MNNG/HOS, SaOS-2). The cytotoxic effect of OBP-301 and/or ZOL was measured by assay of cell apoptosis. The effect of OBP-301 and ZOL on osteoclast activation was investigated. The potential of combination therapy against tumor growth and bone destruction was analyzed using an orthotopic 143B osteosarcoma xenograft tumor model. OBP-301 and ZOL decreased the viability of human osteosarcoma cells. Combination therapy with OBP-301 and ZOL displayed a synergistic antitumor effect, in which OBP-301 promoted apoptosis through suppression of anti-apoptotic myeloid cell leukemia 1 (MCL1). Combination therapy significantly inhibited tumor-mediated osteoclast activation, tumor growth and bone destruction compared to monotherapy. These results suggest that combination therapy of OBP-301 and ZOL suppresses osteosarcoma progression via suppression of MCL1 and osteoclast activation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. NK Cell–Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin are Enhanced by Cytokines

    PubMed Central

    Kondadasula, SriVidya; Skinner, Cassandra C.; Mundy-Bosse, Bethany L.; Luedke, Eric; Jones, Natalie B.; Mani, Aruna; Roda, Julie; Karpa, Volodymyr; Li, Hong; Li, Jilong; Elavazhagan, Saranya; La Perle, Krista M.; Schmitt, Alessandra C.; Lu, Yanhui; Zhang, Xiaoli; Pan, Xueliang; Mao, Hsaioyin; Davis, Melanie; Jarjoura, David; Butchar, Jonathan P.; Poi, Ming; Phelps, Mitch; Tridandapani, Susheela; Byrd, John C.; Caligiuri, Michael A.; Lee, Robert J.; Carson, William E.

    2016-01-01

    Optimally effective antitumor therapies would not only activate immune effector cells, but engage them at the tumor. Folate-conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor–expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR) overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by NK cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P < 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG–coated KB target cells in the presence of the NK cell–activating cytokine IL12, and these coculture supernatants induced significant T cell chemotaxis P < 0.001). F-IgG–coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P = 0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo. Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy. PMID:26865456

  15. Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma.

    PubMed

    Leng, Jianhang; Zhang, Lihuang; Yao, Hangping; Cao, Xuetao

    2003-10-01

    To investigate the antitumor effects of intrasplenically transplanted interleukin-18 (IL-18) gene-modified hepatocytes on murine implanted liver carcinoma. Embryonic murine hepatocyte cell line (BNL-CL2) was transfected with a recombinant adenovirus encoding IL-18 and used as delivery cells for IL-18 gene transfer. Two cell lines, BNL-LacZ and BNL-CL2, were used as controls. One week after intrasplenic injection of C26 cells (colon carcinoma line), tumor-bearing syngeneic mice underwent the intrasplenic transplantation of IL-18 gene-modified hepatocyte cell line and were divided into treatment group (BNL IL-18) and control groups (BNL-LacZ and BNL-CL2). Two weeks later, the serum levels of IL-18, interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the implanted liver carcinoma-bearing mice were assayed, the cytotoxicity of murine splenic cytotoxic T-lymphocytes (CTLs) was measured, and the morphology of the hepatic tumors was studied to evaluate the antitumor effects of the approach. In the treatment group, the serum levels of IL-18, IFN-gamma, TNF-alpha and NO increased significantly. The splenic CTL activity increased markedly (P < 0.01), accompanied by a substantial decrease in tumor volume and the percentage of tumor area and prolonged survival of liver carcinomo-being mice. In vivo IL-18 expression by ex vivo manipulated cells with IL-18 recombinant adenovirus is able to exert potent antitumor effects by inducing a predominantly T-cell-helper type 1 (Th1) immune response. Intrasplenic transplantation of adenovirus-mediated IL-18 gene-modified hepatocytes could be used as a targeting treatment for implanted liver carcinoma.

  16. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer.

    PubMed

    Carneiro, Marcella Lemos Brettas; Peixoto, Raphael C A; Joanitti, Graziela A; Oliveira, Ricardo G S; Telles, Luis A M; Miranda-Vilela, Ana L; Bocca, Anamélia L; Vianna, Leonora M S; da Silva, Izabel C R; de Souza, Aparecido R; Lacava, Zulmira G M; Báo, Sônia N

    2013-02-16

    Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Mice were evaluated with regard to the treatments' toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Regarding the treatments' toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite

  17. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

    PubMed Central

    2013-01-01

    Background Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Methods Mice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Results Regarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. Conclusions In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report

  18. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells.

    PubMed

    García-Vilas, Javier A; Quesada, Ana R; Medina, Miguel A

    2015-01-26

    Damnacanthal, an anthraquinone present in noni plants, targets several tyrosine kinases and has antitumoral effects. This study aims at getting additional insight on the potential of damnacanthal as a natural antitumor compound. The direct effect of damnacanthal on c-Met was tested by in vitro activity assays. Additionally, Western blots of c-Met phosphorylation in human hepatocellular carcinoma Hep G2 cells were performed. The antitumor effects of damnacanthal were tested by using cell growth, soft agar clonogenic, migration and invasion assays. Their mechanisms were studied by Western blot, and cell cycle, apoptosis and zymographic assays. Results show that damnacanthal targets c-Met both in vitro and in cell culture. On the other hand, damnacanthal also decreases the phosphorylation levels of Akt and targets matrix metalloproteinase-2 secretion in Hep G2 cells. These molecular effects are accompanied by inhibition of the growth and clonogenic potential of Hep G2 hepatocellular carcinoma cells, as well as induction of Hep G2 apoptosis. Since c-Met has been identified as a new potential therapeutical target for personalized treatment of hepatocellular carcinoma, damnacanthal and noni extract supplements containing it could be potentially interesting for the treatment and/or chemoprevention of hepatocellular carcinoma through its inhibitory effects on the HGF/c-Met axis.

  19. The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis

    PubMed Central

    Ding, Xiu-Li; Man, Ya-Nan; Hao, Jian; Zhu, Cui-Hong; Liu, Chang; Yang, Xue

    2016-01-01

    Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis. PMID:27190997

  20. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    PubMed Central

    Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico

    2006-01-01

    Background Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). Methods An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. Results The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. Conclusion These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented

  1. Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma.

    PubMed

    Canitano, Andrea; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Federici, Cristina; Fais, Stefano

    2016-07-01

    Multiple Myeloma (MM) is the second most common hematological malignancy and is responsive to a limited number of drugs. Unfortunately, to date, despite the introduction of novel drugs, no relevant increase in survival rates has been obtained. Proton pump inhibitors (PPIs) have been shown to have significant antitumor action as single agents as well as in combination with chemotherapy. This study investigates the potential anti-tumor effectiveness of two PPIs, Lansoprazole and Omeprazole, against human MM cells. We found that Lansoprazole exerts straightforward efficacy against myeloma cells, even at suboptimal concentrations (50 µM), while Omeprazole has limited cytotoxic action. The Lansoprazole anti-MM effect was mostly mediated by a caspase-independent apoptotic-like cytotoxicity, with only a secondary anti-proliferative action. This study provides clear evidence supporting the use of Lansoprazole in the strive against MM with an efficacy proven much higher than current therapeutical approaches and without reported side effects. It is however conceivable that, consistent with the results obtained in other human tumors, Lansoprazole may well be combined with existing anti-myeloma therapies with the aim to improve the low level of efficacy of the current strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    PubMed

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    PubMed

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy.

  4. Antitumor Activity of Lankacidin Group Antibiotics Is Due to Microtubule Stabilization via a Paclitaxel-like Mechanism.

    PubMed

    Ayoub, Ahmed Taha; Abou El-Magd, Rabab M; Xiao, Jack; Lewis, Cody Wayne; Tilli, Tatiana Martins; Arakawa, Kenji; Nindita, Yosi; Chan, Gordon; Sun, Luxin; Glover, Mark; Klobukowski, Mariusz; Tuszynski, Jack

    2016-10-27

    Lankacidin group antibiotics show strong antimicrobial activity against various Gram-positive bacteria. In addition, they were shown to have considerable antitumor activity against certain cell line models. For decades, the antitumor activity of lankacidin was associated with the mechanism of its antimicrobial action, which is interference with peptide bond formation during protein synthesis. This, however, was never confirmed experimentally. Due to significant similarity to paclitaxel-like hits in a previous computational virtual screening study, we suggested that the cytotoxic effect of lankacidin is due to a paclitaxel-like action. In this study, we tested this hypothesis computationally and experimentally and confirmed that lankacidin is a microtubule stabilizer that enhances tubulin assembly and displaces taxoids from their binding site. This study serves as a starting point for optimization of lankacidin derivatives for better antitumor activities. It also highlights the power of computational predictions and their aid in guiding experiments and formulating rigorous hypotheses.

  5. The antitumoral effect of the American mistletoe Phoradendron serotinum (Raf.) M.C. Johnst. (Viscaceae) is associated with the release of immunity-related cytokines.

    PubMed

    Alonso-Castro, Angel Josabad; Juárez-Vázquez, Maria Del Carmen; Domínguez, Fabiola; González-Sánchez, Ignacio; Estrada-Castillón, Eduardo; López-Toledo, Gabriela; Chávez, Marco; Cerbón, Marco A; García-Carranca, Alejandro

    2012-08-01

    Phoradendron serotinum is commonly used in Mexican traditional medicine for the empirical treatment of cancer. However, there are no studies regarding the antitumoral or immunomodulatory activities of Phoradendron serotinum. The in vivo toxicity of ethanolic extracts of Phoradendron serotinum (PSE) was evaluated in mice according to the Lorke procedure. The in vitro immunomodulatory effects of PSE were evaluated estimating the effects of PSE on the pinocytosis, NO production and lysosomal enzyme activity in murine macrophages RAW 264.7. The effects of PSE on the proliferation of murine splenocytes and NK cell activity were also assayed. The cytotoxic effects on TC-1 (lung murine cancer cells) were evaluated using the MTT assay, whereas the apoptotic effect of PSE on TC-1 cells was evaluated using TUNEL assay. Also, different doses of PSE were injected intraperitoneally daily into C57BL/6 mice bearing tumors of TC-1 cells during 25 days. The growth and weight of tumors was measured. In addition, the levels of IL-2, IL-6, IL-12, IL-23 and IFN-γ in murine serum and supernatants of K562 cell-murine splenocyte cocultures were measured. PSE stimulated the proliferation, pinocytosis and lysosomal enzyme activity in murine macrophages with a similar potency than lypopolisaccharides 1 μg/ml. In addition, PSE stimulated the proliferation of murine splenocytes and induced the NK cell activity. PSE showed cytotoxic (IC(50)=1.9 μg/ml) and apoptotic effects against TC-1 cells. The LD(50) was 125 mg/kg by intraperitoneal route (i.p.) and 375 mg/kg by oral route. PSE administrated at 1, 5 and 10 mg/kg i.p. inhibited the tumor growth by 18%, 40% and 69%, respectively, in mice bearing TC-1 tumor. PSE increased the in vitro and in vivo release of IL-2, IL-6 and IFN-γ but lacked effect on IL-12 and IL-23 release. Phoradendron serotinum shows moderate toxic effects in vivo, exerts cytotoxic and apoptotic effects on TC-1 cells. Phoradendron serotinum also has antitumor effects in

  6. Rebamipide does not interfere with the antitumor effect of radiotherapy or chemotherapy in human oral tumor-bearing nude mice.

    PubMed

    Shibamori, Masafumi; Sato, Masayuki; Uematsu, Naoya; Nakashima, Takako; Sato, Asuka; Yamamura, Yoshiya; Sasabe, Hiroyuki; Umehara, Ken; Sakurai, Kazushi

    2015-09-01

    Recent studies have shown that rebamipide, which suppresses reactive oxygen species, prevents chemoradiotherapy-induced oral mucositis in patients with head and neck cancers. However, anticancer action of radiotherapy and chemotherapy is believed to be partially associated with generation of reactive oxygen species. The aim of this study was to determine whether rebamipide interferes with the antitumor action of radiotherapy and chemotherapy. The effect of rebamipide on tumor cell growth was investigated using a human oral squamous carcinoma cell line, HSC-2, in vitro and in vivo. Rebamipide showed no significant effect on cell or tumor growth in HSC-2 tumor-bearing nude mice. Influences of rebamipide on the antitumor action of radiotherapy and of chemotherapy with cisplatin or docetaxel were investigated using the same animal model. In radiotherapy, the tumor was treated with 2.5 Gy of X-rays for 5 days, and rebamipide (300 mg/kg p.o.) was administered during irradiation periods. In chemotherapy, tumor-bearing mice were treated once with cisplatin (8 mg/kg, i.v.) or docetaxel (15 mg/kg i.v.) and rebamipide (300 mg/kg p.o.) was administered for 5 days following the antitumor drug treatment. Rebamipide did not interfere with the antitumor action of radiotherapy and chemotherapy. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-01

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy.

  8. Intratumoral delivery of low doses of anti-CD40 mAb combined with monophosphoryl lipid A induces local and systemic antitumor effects in immunocompetent and T cell-deficient mice

    PubMed Central

    Van De Voort, Tyler J.; Felder, Mildred A. R.; Yang, Richard K.; Sondel, Paul M.; Rakhmilevich, Alexander L.

    2012-01-01

    In this study, an agonistic anti-CD40 monoclonal antibody was combined with monophosphoryl lipid A (MPL), a nontoxic derivative of LPS and agonist of toll-like receptor 4, to assess the immunomodulatory and antitumor synergy between the two agents in mice. Anti-CD40 was capable of priming macrophages to subsequent ex vivo activation by MPL in immunocompetent and T cell-depleted mice. Intraperitoneal injections of anti-CD40+MPL induced additive to synergistic suppression of poorly immunogenic B16-F10 melanoma growing subcutaneously in syngeneic mice. When anti-CD40+MPL were injected directly into the subcutaneous tumor, the combination treatment was more effective, even with a 25-fold reduction in dose. Low-dose intratumoral treatment also slowed the growth of a secondary tumor growing simultaneously at a distant, untreated site. Antitumor effects were also induced in immunodeficient SCID mice and in T cell-depleted C57BL/6 mice. Taken together, our results show that the antitumor effects of anti-CD40 are enhanced by subsequent treatment with MPL, even in T cell-deficient hosts. These preclinical data suggest that an anti-CD40+MPL combined regimen is appropriate for clinical testing in human patients, including cancer patients that may be immunosuppressed from prior chemotherapy. PMID:23211623

  9. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  10. Polyoxometalate-Based Organic-Inorganic Hybrids as Antitumor Drugs.

    PubMed

    Fu, Lei; Gao, Hanqin; Yan, Mei; Li, Shouzhu; Li, Xinyu; Dai, Zhifei; Liu, Shaoqin

    2015-06-24

    Polyoxometalates (POMs) have shown encouraging antitumor activity. However, their cytotoxicity in normal cells and unspecific interactions with biomolecules are two major obstacles that impede the practical applications of POMs in clinical cancer treatment. Derivatization of POMs with more biocompatible organic ligands is expected to cause a synergetic effect and achieve improved bioactivity and biospecificity. Herein, the synthesis of an amphiphilic organic-inorganic hybrid is reported by grafting a long-chain organoalkoxysilane lipid onto a POM. The amphiphilic POM hybrid could spontaneously assemble into the vesicles and exhibits enhanced antitumor activity for human colorectal cancer cell lines (HT29) compared to that of parent POMs. This detailed study reveals that the amphiphilic nature of POM hybrids enables the as-formed vesicles to easily bind to the cell membranes and then be uptaken by the cells, thus leading to a substantial increase in antitumor activity. Such prominent antitumor action is mostly accomplished via cell apoptosis, which ultimately results in cell death. Our finding demonstrates that novel POM hybrids-based drugs with increased bioactivity could be obtained by decorating POMs with selective organic ligands. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi

    PubMed Central

    Yang, Rui; Qi, Jing; Huang, Yue; Feng, Shuyun; Wu, Yao; Lin, Sensen; Liu, Zhixin; Jia, Ai-Qun; Yuan, Shengtao; Sun, Li

    2018-01-01

    Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidis-sima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima. PMID:29484370

  12. Synergistic anti-tumor effect of glycosylphosphatidylinositol-anchored IL-2 and IL-12.

    PubMed

    Ji, Jianfei; Li, Jinhua; Holmes, Lillia M; Burgin, Kelly E; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang

    2004-07-01

    Preclinical and clinical studies have demonstrated that interleukin 2 (IL-2), interleukin 12 (IL-12), and some other cytokines, play important roles in activating host immune responses against tumor growth. However, severe side effects caused by systemic high-dose administration of these cytokines limit their clinical application. In our previous study, local high doses of IL-2 were achieved by a GPI-anchoring technology; therefore, it will be interesting to know if this technology works for other cytokines. A fusion gene containing murine IL-12 and the glycosylphosphatidylinositol (GPI) anchor signal sequence was generated and transfected into the murine melanoma tumor cell line B16F0 either alone or together with a vector encoding GPI-anchored IL-2. The GPI-anchored cytokine expression of the selected stable clones was assayed in vitro by ELISA and their anti-tumor effects were analyzed in vivo by tumor lymphocyte infiltration and tumor growth studies. GPI-anchored IL-12 was successfully expressed on the cell surface as indicated by FACS analysis and IL-12 ELISA assay. The GPI-anchored IL-12 enhanced lymphocyte infiltration and significantly inhibited tumor growth. More importantly, when GPI-anchored IL-12 and GPI-anchored IL-2 were co-delivered, a synergistic anti-tumor effect was observed in both subcutaneous and intravenous tumor models. GPI anchorage of cytokines represents a new approach to locally deliver high doses of cytokines without the severe adverse effects normally accompanied with systematic high-dose administration of these cytokines. Copyright 2004 John Wiley & Sons, Ltd.

  13. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    PubMed Central

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  14. [Antitumor activity of monoclonal antibody MI2 against immunosuppressive acidic protein in vitro].

    PubMed

    Chen, B; Cai, X J; Zhou, S J

    1994-08-01

    In vitro antitumor activity of monoclonal antibody MI2 that was made by our laboratory to direct against immunosuppressive acidic protein (IAP) was observed with MTT assay for cytotoxicity. The results showed that the growth of human gastric cancer cell line SGC 7901 was inhibited significantly (P < 0.01) when MI2 was added at a concentration of 7.81 mg/L or higher. The inhibition activity of MI2 appeared to be dose dependent. Increased cytotoxicity (up to 206.3%) of LAK cells against SGC7901 could be remarkably (P < 0.01) induced by addition of MI2 at a concentration of 1.95 mg/L, so the ratio of effector to target was 10:1. The enhancing effect of MI2 on LAK cell activity was also dose dependent. The antitumor activity of MI2 was not associated with human complements.

  15. Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacokinetics and antitumor effects.

    PubMed

    Norelli, M; Casucci, M; Bonini, C; Bondanza, A

    2016-01-01

    Adoptive cell transfer of T cells genetically modified with tumor-reactive chimeric antigen receptors (CARs) is a rapidly emerging field in oncology, which in preliminary clinical trials has already shown striking antitumor efficacy. Despite these premises, there are still a number of open issues related to CAR-T cells, spanning from their exact mechanism of action (pharmacodynamics), to the factors associated with their in vivo persistence (pharmacokinetics), and, finally, to the relative contribution of each of the two in determining the antitumor effects and accompanying toxicities. In light of the unprecedented curative potential of CAR-T cells and of their predicted wide availability in the next few years, in this review we will summarize the current knowledge on the clinical pharmacology aspects of what is anticipated to be a brand new class of biopharmaceuticals to join the therapeutic armamentarium of cancer doctors. Copyright © 2015. Published by Elsevier B.V.

  16. Melatonin Enhances the Anti-Tumor Effect of Fisetin by Inhibiting COX-2/iNOS and NF-κB/p300 Signaling Pathways

    PubMed Central

    Yu, Zhenlong; Xiao, Yao; Wang, Jingshu; Qiu, Huijuan; Yu, Wendan; Tang, Ranran; Yuan, Yuhui; Guo, Wei; Deng, Wuguo

    2014-01-01

    Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy. PMID:25000190

  17. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis

    PubMed Central

    El-Naa, Mona Mohamed; Othman, Mohamed; Younes, Sheren

    2016-01-01

    Sildenafil is the first phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. However, recent studies have been suggesting an antitumor effect of sildenafil. The current study assessed the aforementioned activity of sildenafil in vivo and in vitro in solid-tumor-bearing mice and in a human cell line MCF-7, respectively. Moreover, we investigated the impact of sildenafil on cisplatin antitumor activity. The solid tumor was induced by inoculation of Ehrlich ascites carcinoma cells in female mice. The tumor-bearing mice were assigned randomly to control (saline), sildenafil (sildenafil 5 mg/kg/d, PO daily for 15 days), cisplatin (cisplatin 7.5 mg/kg, IP once on the 12th day of Ehrlich ascites carcinoma inoculation), and combination therapy (cisplatin and sildenafil) groups. The tumor volume was measured at the end of the treatment period along with the following parameters: angiogenin, vascular endothelial growth factor, tumor necrosis factor-α, Ki-67, caspase-3, DNA-flow cytometry analysis, and histopathological examination. The study results showed that sildenafil has significantly decreased the tumor volume by 30.4%, angiogenin and tumor necrosis factor-α contents, as well as vascular endothelial growth factor expression. Additionally, caspase-3 level significantly increased with sildenafil treatment, whereas Ki-67 expression failed to show any significant changes. Furthermore, the cell cycle analysis revealed that sildenafil was capable of improving the category of tumor activity from moderate to low proliferative. Sildenafil induced necrosis in the tumor. Moreover, the drug of interest showed cytotoxic activity against MCF-7 in vitro as well as potentiated cisplatin antitumor activity in vivo and in vitro. These findings shed light on the antitumor activity of sildenafil and its possible impact on potentiating the antitumor effect of conventional chemotherapeutic agents such as cisplatin. These effects might be related to antiangiogenic

  18. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis.

    PubMed

    El-Naa, Mona Mohamed; Othman, Mohamed; Younes, Sheren

    2016-01-01

    Sildenafil is the first phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. However, recent studies have been suggesting an antitumor effect of sildenafil. The current study assessed the aforementioned activity of sildenafil in vivo and in vitro in solid-tumor-bearing mice and in a human cell line MCF-7, respectively. Moreover, we investigated the impact of sildenafil on cisplatin antitumor activity. The solid tumor was induced by inoculation of Ehrlich ascites carcinoma cells in female mice. The tumor-bearing mice were assigned randomly to control (saline), sildenafil (sildenafil 5 mg/kg/d, PO daily for 15 days), cisplatin (cisplatin 7.5 mg/kg, IP once on the 12th day of Ehrlich ascites carcinoma inoculation), and combination therapy (cisplatin and sildenafil) groups. The tumor volume was measured at the end of the treatment period along with the following parameters: angiogenin, vascular endothelial growth factor, tumor necrosis factor-α, Ki-67, caspase-3, DNA-flow cytometry analysis, and histopathological examination. The study results showed that sildenafil has significantly decreased the tumor volume by 30.4%, angiogenin and tumor necrosis factor-α contents, as well as vascular endothelial growth factor expression. Additionally, caspase-3 level significantly increased with sildenafil treatment, whereas Ki-67 expression failed to show any significant changes. Furthermore, the cell cycle analysis revealed that sildenafil was capable of improving the category of tumor activity from moderate to low proliferative. Sildenafil induced necrosis in the tumor. Moreover, the drug of interest showed cytotoxic activity against MCF-7 in vitro as well as potentiated cisplatin antitumor activity in vivo and in vitro. These findings shed light on the antitumor activity of sildenafil and its possible impact on potentiating the antitumor effect of conventional chemotherapeutic agents such as cisplatin. These effects might be related to antiangiogenic

  19. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis.

    PubMed

    Chong, Dianlong; Ma, Linyan; Liu, Fang; Zhang, Zhirui; Zhao, Surong; Huo, Qiang; Zhang, Pei; Zheng, Hailun; Liu, Hao

    2017-09-01

    3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.

  20. Antitumor and antiangiogenic effects of GA-13315, a gibberellin derivative.

    PubMed

    Zhang, Yanli; Zhang, Hui; Chen, Jingbo; Zhao, Haixia; Zeng, Xianghui; Zhang, Hongbin; Qing, Chen

    2012-02-01

    This study showed that 13-chlorine-3,15-dioxy-gibberellic acid methyl ester (GA-13315), a gibberellin derivative, possessed high antitumor and antiangiogenic activity in vitro and in vivo. Cytotoxicity assays showed that GA-13315 was a potential and efficient antitumor compound, with inhibitory concentration 50 (IC(50)) values ranging from 0.13 to 30.28 μg/ml in 12 human tumor cell lines, and it showed moderate toxicity to peripheral blood mononuclear cells with an IC(50) value of 14.2 μg/ml. Administration of 0.5 or 2.5 mg/kg GA-13315 for 23 days significantly inhibited tumor growth of human non-small cell lung tumor (A549) xenografts, with relative growth rates ranging from 29.91% to 35.05%. Acute toxicity was determined in ICR mice, and the lethal dose 50 (LD(50)) was 4.19 g/kg after intragastric administration. The high antitumor potency of GA-13315 occurred in parallel with its antiangiogenic activity. In vitro, GA-13315 inhibited recombinant human epithelial growth factor-induced chemotactic motility and capillary-like tube formation of primary cultured human endothelial cells. Furthermore, GA-13315 decreased the factor VIII(+) microvessel density and vascular endothelial growth factor expression in A549 tumors, indicating its antiangiogenic efficacy in vivo. These results indicate that the antiangiogenic activity of GA-13315 contributes to its anticancer properties. Further studies are needed to investigate the use of GA-13315 as an anticancer drug.

  1. TCR-engineered, customized, antitumor T cells for cancer immunotherapy: advantages and limitations.

    PubMed

    Chhabra, Arvind

    2011-01-05

    The clinical outcome of the traditional adoptive cancer immunotherapy approaches involving the administration of donor-derived immune effectors, expanded ex vivo, has not met expectations. This could be attributed, in part, to the lack of sufficient high-avidity antitumor T-cell precursors in most cancer patients, poor immunogenicity of cancer cells, and the technological limitations to generate a sufficiently large number of tumor antigen-specific T cells. In addition, the host immune regulatory mechanisms and immune homeostasis mechanisms, such as activation-induced cell death (AICD), could further limit the clinical efficacy of the adoptively administered antitumor T cells. Since generation of a sufficiently large number of potent antitumor immune effectors for adoptive administration is critical for the clinical success of this approach, recent advances towards generating customized donor-specific antitumor-effector T cells by engrafting human peripheral blood-derived T cells with a tumor-associated antigen-specific transgenic T-cell receptor (TCR) are quite interesting. This manuscript provides a brief overview of the TCR engineering-based cancer immunotherapy approach, its advantages, and the current limitations.

  2. Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils.

    PubMed

    Liu, Min-Yu; Xiao, Lin; Chen, Geng-Hui; Wang, Yong-Xiang; Xiong, Wei-Xia; Li, Fei; Liu, Ying; Huang, Xiao-Ling; Deng, Yi-Fang; Zhang, Zhen; Sun, Hai-Yan; Liu, Quan-Hai; Yin, Ming

    2014-10-01

    JS-38 (mitothiolore), a synthetic version of a metabolite isolated from Xenorhabdus sp., was evaluated for its anti-tumor and white blood cell (WBC) elevating activities. These anti-proliferative activities were assessed in vitro using a panel of ten cell lines. The anti-tumor activities were tested in vivo using B16 allograft mouse models and xenograft models of A549 human lung carcinoma and QGY human hepatoma in nude mice. The anti-tumor interactions of JS-38 and cyclophosphamide (CTX) or 5-fluorouracil (5-Fu) were studied in a S180 sarcoma model in ICR mice. Specific stimulatory effects were determined on peripheral neutrophils in normal and CTX- and 5-Fu-induced neutropenic mice. The IC50 values ranged from 0.1 to 2.0 μmol·L(-1). JS-38 (1 μmol·L(-1)) caused an increase in A549 tumor cell apoptosis. Multi-daily gavage of JS-38 (15, 30, and 60 mg·kg(-1)·d(-1)) inhibited in vivo tumor progression without a significant effect on body weight. JS-38 additively enhanced the in vivo anti-tumor effects of CTX or 5-Fu. JS-38 increased peripheral neutrophil counts and neutrophil rates in normal BALB/c mice almost as effectively as granulocyte colony-stimulating factor (G-CSF). In mice with neutropenia induced by CTX or 5-Fu, JS-38 rapidly restored neutrophil counts. These results suggest that JS-38 has anti-tumor activity, and also has the ability to increase peripheral blood neutrophils. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Advance in Anti-tumor Mechanisms of Shikonin, Alkannin and their Derivatives.

    PubMed

    Zhang, Xu; Cui, Jia-Hua; Meng, Qing-Qing; Li, Shao-Shun; Zhou, Wen; Xiao, Sui

    2018-01-01

    Shikonin, alkannin and their derivatives, the main ingredient of Lithospermum erythrorhizon and Arnebia euchroma (Royle) Johnst native to Inner Mongolian and Northwest of China respectively, hold promising potentials for antitumor effects via multiple-target mechanisms. This review will emphasize the importance of their antitumor activity in apoptosis, necroptosis and immunogenic cell death, and expound the relationship of their antitumor activity and naphthoquinone scaffold that could generate ROS and alkylating agent. Meanwhile, the antitumor mechanisms of naturally-occurring shikonin, alkannin and their derivatives, which were divided into the direct interaction involved in alkylating agent, covalently binding the DNA and protein, as well as the indirect interaction mediated by ROS, nonspecifically influencing the mitochondria or multiple signal pathways, will be systematically summarized and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model

    PubMed Central

    Young, Brittany A.; Spencer, Jacqueline F.; Ying, Baoling; Toth, Karoly; Wold, William S. M.

    2013-01-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared to those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either one week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors. PMID:23928730

  5. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model.

    PubMed

    Young, B A; Spencer, J F; Ying, B; Toth, K; Wold, W S M

    2013-09-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared with those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either 1 week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors.

  6. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect

    PubMed Central

    Salvati, Erica; Leonetti, Carlo; Rizzo, Angela; Scarsella, Marco; Mottolese, Marcella; Galati, Rossella; Sperduti, Isabella; Stevens, Malcolm F.G.; D’Incalci, Maurizio; Blasco, Maria; Chiorino, Giovanna; Bauwens, Serge; Horard, Béatrice; Gilson, Eric; Stoppacciaro, Antonella; Zupi, Gabriella; Biroccio, Annamaria

    2007-01-01

    Functional telomeres are required for the replicability of cancer cells. The G-rich strand of telomeric DNA can fold into a 4-stranded structure known as the G-quadruplex (G4), whose stabilization alters telomere function limiting cancer cell growth. Therefore, the G4 ligand RHPS4 may possess antitumor activity. Here, we show that RHPS4 triggers a rapid and potent DNA damage response at telomeres in human transformed fibroblasts and melanoma cells, characterized by the formation of several telomeric foci containing phosphorylated DNA damage response factors γ-H2AX, RAD17, and 53BP1. This was dependent on DNA repair enzyme ATR, correlated with delocalization of the protective telomeric DNA–binding protein POT1, and was antagonized by overexpression of POT1 or TRF2. In mice, RHPS4 exerted its antitumor effect on xenografts of human tumor cells of different histotype by telomere injury and tumor cell apoptosis. Tumor inhibition was accompanied by a strong DNA damage response, and tumors overexpressing POT1 or TRF2 were resistant to RHPS4 treatment. These data provide evidence that RHPS4 is a telomere damage inducer and that telomere disruption selectively triggered in malignant cells results in a high therapeutic index in mice. They also define a functional link between telomere damage and antitumor activity and reveal the key role of telomere-protective factors TRF2 and POT1 in response to this anti-telomere strategy. PMID:17932567

  7. Anti-tumor Effects of Plasma Activated Media and Correlation with Hydrogen Peroxide Concentration

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Mohades, Soheila; Barekzi, Nazir; Maruthamuthu, Venkat; Razavi, Hamid

    2016-09-01

    Plasma activated media (PAM) can induce death in cancer cells. In our research, PAM is produced by exposing liquid culture medium to a helium plasma pencil. Reactive oxygen and nitrogen species in the aqueous state are known factors in anti-tumor effects of PAM. The duration of plasma exposure determines the concentrations of reactive species produced in PAM. Stability of the plasma generated reactive species and their lifetime depend on parameters such as the chemical composition of the medium. Here, a complete cell culture medium was employed to make PAM. Later, PAM was used to treat SCaBER cancer cells either as an immediate PAM (right after exposure) or as an aged-PAM (after storage). SCaBER (ATCC®HTB-3™) is an epithelial cell line from a human bladder with the squamous carcinoma disease. A normal epithelial cell line from a kidney tissue of a dog - MDCK (ATCC®CCL-34™) - was used to analyze the selective effect of PAM. Correspondingly, we measured the concentration of hydrogen peroxide- as a stable species with biological impact on cell viability- in both immediate PAM and aged-PAM. In addition, we report on the effect of serum supplemented in PAM on the H2O2 concentration measured by Amplex red assay kit. Finally, we evaluate the effects of PAM on growth and morphological changes in MDCK cells using fluorescence microscopy.

  8. Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid-octadecylamine conjugate.

    PubMed

    Sun, Jing; Song, Yanzhi; Lu, Mei; Lin, Xiangyun; Liu, Yang; Zhou, Songlei; Su, Yuqing; Deng, Yihui

    2016-10-10

    Dexamethasone palmitate has the potential to inhibit the activity of tumor-associated macrophages, which promote cancer proliferation, invasion, and metastasis; however, only very high and frequent doses are capable of inducing antitumor effects. With the aim to reduce the anticancer dose and decrease the nonspecific toxicity, we designed a liposomal system to co-deliver dexamethasone palmitate and doxorubicin. Furthermore, a ligand conjugate sialic acid-octadecylamine, with enhanced affinity towards the membrane receptors over-expressed in tumors, was anchored on the surface of the liposomes to increase drug distribution to the tumor tissue. Co-loaded liposomes were developed using lipid film hydration method to load dexamethasone palmitate and remote loading technology to load doxorubicin. The co-loaded liposomes modified with sialic acid-octadecylamine represented comparable physicochemical properties and blood plasma profiles with conventional co-loaded liposomes, but the biodistribution proved that sialic acid-octadecylamine modified liposomes accumulated more in tumor. The co-loaded liposomes showed higher tumor growth suppression than the single-drug loaded liposomes, while showing no additional drug toxicity in S180-bearing Kunming mice. The co-loaded liposomes modified with sialic acid-octadecylamine achieved a significantly better antitumor effect, and induced "shedding" of cancerous tissue in the mice. These finding suggested that co-loaded liposomes modified with sialic acid-octadecylamine provided a safe therapeutic strategy with outstanding anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Toxic effect of nonylphenol on the marine macroalgae Gracilaria lemaneiformis (Gracilariales, Rhodophyta): antioxidant system and antitumor activity.

    PubMed

    Zhong, Mingqin; Yin, Pinghe; Zhao, Ling

    2017-04-01

    The objective of the present work was to evaluate the toxic effect of nonylphenol (NP) on the antioxidant response and antitumor activity of Gracilaria lemaneiformis. An obvious oxidative damage was observed in this study. The thallus exposed to NP showed 1.2-2.0-fold increase in lipid peroxide and displayed a maximum level of 16.58 μmol g -1 Fw on 0.6 mg L -1 for 15-day exposure. The activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) enhanced significantly by 1.1-3.2-fold and subsequently diminished at the high concentrations and prolonged exposure. The results of DNA damage in comet assay also supported that NP was obviously toxic on G. lemaneiformis with increasing the percentage of tail DNA in a dose-dependent manner. Furthermore, the ethanol extract of G. lemaneiformis (EEGL) did exhibit antitumor potential against HepG-2 cells. While decreased in cell inhibition, ROS generation, apoptosis, and caspase-3 in HepG-2 cells treated with the EEGL were observed when G. lemaneiformis was exposed to NP for 15 days, and which were related to exposure concentration of NP. These suggested that NP has strongly toxic effect on the antitumor activity of G. lemaneiformis. The results revealed in this study imply that macroalgae can be useful biomarkers to evaluate marine pollutions.

  10. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody

    PubMed Central

    Fallon, Jonathan K.; Vandeveer, Amanda J.

    2017-01-01

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies. PMID:28423552

  11. Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice

    NASA Astrophysics Data System (ADS)

    de Souza, Ludmilla Regina; Alexandre Muehlmann, Luis; Carneiro Matos, Lívia; Simón-Vázquez, Rosana; Guerreiro Marques Lacava, Zulmira; Maurício Batista De-Paula, Alfredo; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; César Morais, Paulo; González-Fernández, África; Nair Báo, Sônia; Bentes Azevedo, Ricardo

    2015-12-01

    Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.

  12. New pyrazolopyridine analogs: Synthesis, antimicrobial, antiquorum-sensing and antitumor screening.

    PubMed

    El-Gohary, N S; Shaaban, M I

    2018-05-25

    New pyrazolopyridine analogs were prepared and tested for antimicrobial efficacy toward Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus fumigatus and Aspergillus flavus. Results revealed that compound 6 has prominent and broad spectrum antimicrobial activity. Compound 8 showed good antibacterial efficacy over the four tested bacterial strains. In addition, compounds 2-4 displayed interesting efficacy over S. aureus, B. cereus and P. aeruginosa as well as moderate efficacy toward E. coli, C. albicans, A. fumigatus and A. flavus. Furthermore, compounds 9 and 10 exhibited interesting efficacy over P. aeruginosa. Antiquorum-sensing efficacy of the same analogs toward Chromobacterium violaceum was also examined, whereas compounds 3, 4 and 6 displayed acceptable activity. In vitro antitumor assay of the new pyrazolopyridines toward liver (HepG2), breast (MCF-7) and cervix (Hela) cancer cells illustrated that compounds 2 and 5 have the highest antitumor activity over the three cell lines. Moreover, compound 4 exhibited interesting efficacy on all tested cell lines, whereas compound 7 showed good activity on MCF-7 cells. The most active in vitro antitumor analogs, 2, 4, 5 and 7 were assessed for in vivo antitumor efficacy on Ehrlich ascites carcinoma (EAC) cells, whereas compound 5 displayed the highest efficacy. In addition, cytotoxicity testing toward W138 and WISH normal cells revealed that all tested analogs are less cytotoxic than doxorubicin. The new analogs were evaluated for DNA-binding affinity, whereas compounds 2, 4 and 5 displayed the highest affinity. In silico studies concluded that all the new pyrazolopyridines are foreseen to have excellent oral absorption. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    PubMed

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  14. Poly(γ-glutamic acid)-coated lipoplexes loaded with Doxorubicin for enhancing the antitumor activity against liver tumors

    NASA Astrophysics Data System (ADS)

    Qi, Na; Tang, Bo; Liu, Guang; Liang, Xingsi

    2017-05-01

    The study was to develop poly-γ-glutamic acid (γ-PGA)-coated Doxorubicin (Dox) lipoplexes that enhance the antitumor activity against liver tumors. γ-PGA-coated lipoplexes were performed by electrostatistically attracting to the surface of cationic charge liposomes with anionic γ-PGA. With the increasing of γ-PGA concentration, the particle size of γ-PGA-coated Dox lipoplexes slightly increased, the zeta potential from positive shifted to negative, and the entrapment efficiency (EE) were no significant change. The release rate of γ-PGA-coated Dox lipoplexes slightly increased at acidic pH, the accelerated Dox release might be attributed to greater drug delivery to tumor cells, resulting in a higher antitumor activity. Especially, γ-PGA-coated Dox lipoplexes exhibited higher cellular uptake, significant in vitro cytotoxicity in HepG2 cells, and improved in vivo antitumor efficacy toward HepG2 hepatoma-xenografted nude models in comparison with Dox liposomes and free Dox solution. In addition, the analysis results via flow cytometry showed that γ-PGA-coated Dox lipoplexes induce S phase cell cycle arrest and significantly increased apoptosis rate of HepG2 cells. In conclusion, the presence of γ-PGA on the surface of Dox lipoplexes enhanced antitumor effects of liver tumors.

  15. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  16. Antitumor activity of biflorin, an o-naphthoquinone isolated from Capraria biflora.

    PubMed

    Vasconcellos, Marne Carvalho de; Bezerra, Daniel Pereira; Fonseca, Aluísio Marques; Pereira, Márcio Roberto Pinho; Lemos, Telma Leda Gomes; Pessoa, Otília Deusdênia Loiola; Pessoa, Cláudia; Moraes, Manoel Odorico de; Alves, Ana Paula Negreiros Nunes; Costa-Lotufo, Letícia Veras

    2007-08-01

    Pharmacological studies with an aqueous extract obtained from leaves of Capraria biflora showed potent cytotoxic, analgesic, antimicrobial and anti-inflammatory activities. It has been demonstrated that biflorin possesses an in vitro cytotoxic activity against tumor cells. The in vivo antitumor activity of biflorin was evaluated on two mouse models, sarcoma 180 and Ehrlich carcinoma. Biflorin was active against both tumors with a very similar profile. In addition, biflorin was also able to increase the response elicited by 5-FU in mice inoculated with both tumors. The results showed a decrease in Ki67 staining in tumor cells from treated-animals when compared with non-treated groups, which suggests an inhibition of tumor proliferation rate. Histopathological analysis from kidneys and liver showed that biflorin possessed weak and reversible toxic effects. It was also demonstrated that biflorin acts as an immunoadjuvant agent, rising the production of ovalbumin-specific antibodies and inducing a discreet increase of the white pulp and nest of megakaryocytic in spleen of treated mice, which can be related to its antitumor properties.

  17. Composition and mechanism of anti-tumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice

    USDA-ARS?s Scientific Manuscript database

    We investigated anti-tumor effects of the following four extracts of freeze-dried Hericium erinaceus mushrooms in Balb/c mice intracutaneously transplanted on the backs with CT-26 colon cancer cells: HWE, hot-water extraction by boiling in water for 3 h; MWE, microwaving in 50% ethanol/water at 60 W...

  18. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo.

    PubMed

    Chen, Songjie; Hu, Hui; Miao, Shushu; Zheng, Jiayong; Xie, Zhijian; Zhao, Hui

    2017-05-01

    Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.

  19. Anti-tumor activity of calcitriol: pre-clinical and clinical studies.

    PubMed

    Trump, Donald L; Hershberger, Pamela A; Bernardi, Ronald J; Ahmed, Sharmilla; Muindi, Josephia; Fakih, Marwan; Yu, Wei-Dong; Johnson, Candace S

    2004-05-01

    1,25-Dihydroxycholecalciferol (calcitriol) is recognized widely for its effects on bone and mineral metabolism. Epidemiological data suggest that low Vitamin D levels may play a role in the genesis of prostate cancer and perhaps other tumors. Calcitriol is a potent anti-proliferative agent in a wide variety of malignant cell types. In prostate, breast, colorectal, head/neck and lung cancer as well as lymphoma, leukemia and myeloma model systems calcitriol has significant anti-tumor activity in vitro and in vivo. Calcitriol effects are associated with an increase in G0/G1 arrest, induction of apoptosis and differentiation, modulation of expression of growth factor receptors. Glucocorticoids potentiate the anti-tumor effect of calcitriol and decrease calcitriol-induced hypercalcemia. Calcitriol potentiates the antitumor effects of many cytotoxic agents and inhibits motility and invasiveness of tumor cells and formation of new blood vessels. Phase I and II trials of calcitriol either alone or in combination with carboplatin, taxanes or dexamethasone have been initiated in patients with androgen dependent and independent prostate cancer and advanced cancer. Data indicate that high-dose calcitriol is feasible on an intermittent schedule, no dose-limiting toxicity has been encountered and optimal dose and schedule are being delineated. Clinical responses have been seen with the combination of high dose calcitriol+dexamethasone in androgen independent prostate cancer (AIPC) and apparent potentiation of the antitumor effects of docetaxel have been seen in AIPC. These results demonstrate that high intermittent doses of calcitriol can be administered to patients without toxicity, that the MTD is yet to be determined and that calcitriol has potential as an anti-cancer agent.

  20. Treatment With mANT2 shRNA Enhances Antitumor Therapeutic Effects Induced by MUC1 DNA Vaccination

    PubMed Central

    Choi, Yun; Jeon, Yong H; Jang, Ji-Young; Chung, June-Key; Kim, Chul-Woo

    2011-01-01

    In this study, we developed a combination therapy (pcDNA3/hMUC1+mANT2 shRNA) to enhance the efficiency of MUC1 DNA vaccination by combining it with mANT2 short hairpin RNA (shRNA) treatment in immunocompetent mice. mANT2 shRNA treatment alone increased the apoptosis of BMF cells (B16F1 murine melanoma cell line coexpressing an MUC1 and Fluc gene) and rendered BMF tumor cells more susceptible to lysis by MUC1-associated CD8+ T cells. Furthermore, combined therapy enhanced MUC1 associated T-cell immune response and antitumor effects, and resulted in a higher cure rate than either treatment alone (pcDNA3/hMUC1 or mANT2 shRNA therapy alone). Human MUC1 (hMUC1)-loaded CD11c+ cells in the draining lymph nodes of BMF-bearing mice treated with the combined treatment were found to be most effective at generating hMUC1-associated CD8+IFNγ+ T cells. Furthermore, the in vitro killing activities of hMUC1-associated cytotoxic T cells (CTLs) in the combined therapy were greater than in the respective monotherapies. Cured animals treated with the combined treatment rejected a rechallenge by BMF cells, but not a rechallenge by B16F1-Fluc cells at 14 days after treatment, and showed MUC1 antigen-associated immune responses. These results suggest that combined therapy enhances antitumor activity, and that it offers an effective antitumor strategy for treating melanoma. PMID:21063392

  1. Jungle Honey Enhances Immune Function and Antitumor Activity

    PubMed Central

    Fukuda, Miki; Kobayashi, Kengo; Hirono, Yuriko; Miyagawa, Mayuko; Ishida, Takahiro; Ejiogu, Emenike C.; Sawai, Masaharu; Pinkerton, Kent E.; Takeuchi, Minoru

    2011-01-01

    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261. PMID:19141489

  2. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma

    PubMed Central

    Hu-Lieskovan, Siwen; Mok, Stephen; Moreno, Blanca Homet; Tsoi, Jennifer; Faja, Lidia Robert; Goedert, Lucas; Pinheiro, Elaine M.; Koya, Richard C.; Graeber, Thomas; Comin-Anduix, Begoña; Ribas, Antoni

    2016-01-01

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA-4 antibody ipilimumab was terminated early due to substantial liver toxicities. MEK inhibitors can potentiate the MAPK inhibition in BRAF mutant cells, while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E driven melanoma, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors and improved in vivo cytotoxicity. Single agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and MHC expression, and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested combination of dabrafenib, trametinib with anti-PD1 therapy in SM1 tumors, and observed superior anti-tumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma. PMID:25787767

  3. Quercetin Potentiates Doxorubicin Mediated Antitumor Effects against Liver Cancer through p53/Bcl-xl

    PubMed Central

    Wang, Guanyu; Sharma, Sherven; Dong, Qinghua

    2012-01-01

    Background The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice. Methodology and Results The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers. Conclusion and Significance These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer. PMID:23240061

  4. Targeted Delivery of Chemotherapeutic Agents Using Improved Radiosensitive Liquid Core Microcapsules and Assessment of Their Antitumor Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Satoshi; Ehara, Shigeru; Ishii, Keizo

    2009-10-01

    Purpose: Radiation-sensitive microcapsules composed of alginate and hyaluronic acid are being developed. We report the development of improved microcapsules that were prepared using calcium- and yttrium-induced polymerization. We previously reported on the combined antitumor effect of carboplatin-containing microcapsules and radiotherapy. Methods and Materials: We mixed a 0.1% (wt/vol) solution of hyaluronic acid with a 0.2% alginate solution. Carboplatin (l mg) and indocyanine green (12.5 {mu}g) were added to this mixture, and the resultant material was used for capsule preparation. The capsules were prepared by spraying the material into a mixture containing a 4.34% CaCl{sub 2} solution supplemented with 0-0.01% yttrium.more » These capsules were irradiated with single doses of 0.5, 1.0, 1.5, or 2 Gy {sup 60}Co {gamma}-rays. Immediately after irradiation, the frequency of microcapsule decomposition was determined using a microparticle-induced X-ray emission camera. The amount of core content released was estimated by particle-induced X-ray emission and colorimetric analysis with 0.25% indocyanine green. The antitumor effect of the combined therapy was determined by monitoring its effects on the diameter of an inoculated Meth A fibrosarcoma. Results: Microcapsules that had been polymerized using a 4.34% CaCl{sub 2} solution supplemented with 5.0 x 10{sup -3}% (10{sup -3}% meant or 10%{sup -3}) yttrium exhibited the maximal decomposition, and the optimal release of core content occurred after 2-Gy irradiation. The microcapsules exhibited a synergistic antitumor effect combined with 2-Gy irradiation and were associated with reduced adverse effects. Conclusion: The results of our study have shown that our liquid core microcapsules can be used in radiotherapy for targeted delivery of chemotherapeutic agents.« less

  5. Pyrazole derivatives as antitumor, anti-inflammatory and antibacterial agents.

    PubMed

    Liu, Jia-Jia; Zhao, Meng-Yue; Zhang, Xin; Zhao, Xin; Zhu, Hai-Liang

    2013-11-01

    Within the past years, many researches on the synthesis, structure-activity relationships (SAR), antitumor, antiinflammatory and anti-bacterial activities of the pyrazole derivatives have been reported. Several pyrazole derivatives possess important pharmacological activities and they have been proved useful materials in drug research. Pyrazole derivatives play an important role in antitumor agents because of their good inhibitory activity against BRAF(V600E), EGFR, telomerase, ROS Receptor Tyrosine Kinase and Aurora-A kinase. In addition, pyrazole derivatives also show good antiinflammatory and anti-bacterial activities. In this review, the bioactivities of the pyrazole derivatives mentioned above will be summarized in detail. We sincerely hope that increasing knowledge of the SAR and cellular processes underlying the bioactivity of pyrazole derivatives will be beneficial to the rational design of new generation of small molecule drugs.

  6. Repeated oral dosing of TAS-102 confers high trifluridine incorporation into DNA and sustained antitumor activity in mouse models

    PubMed Central

    TANAKA, NOZOMU; SAKAMOTO, KAZUKI; OKABE, HIROYUKI; FUJIOKA, AKIO; YAMAMURA, KEISUKE; NAKAGAWA, FUMIO; NAGASE, HIDEKI; YOKOGAWA, TATSUSHI; OGUCHI, KEI; ISHIDA, KEIJI; OSADA, AKIKO; KAZUNO, HIROMI; YAMADA, YUKARI; MATSUO, KENICHI

    2014-01-01

    TAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA. However, the precise mechanisms underlying the incorporation into DNA and the inhibition of TS remain unclear. We found that FTD-dependent inhibition of TS was similar to that elicited by fluorodeoxyuridine (FdUrd), another clinically used nucleoside analog. However, washout experiments revealed that FTD-dependent inhibition of TS declined rapidly, whereas FdUrd activity persisted. The incorporation of FTD into DNA was significantly higher than that of other antitumor nucleosides. Additionally, orally administered FTD had increased antitumor activity and was incorporated into DNA more effectively than continuously infused FTD. When TAS-102 was administered, FTD gradually accumulated in tumor cell DNA, in a TPI-independent manner, and significantly delayed tumor growth and prolonged survival, compared to treatment with 5-FU derivatives. TAS-102 reduced the Ki-67-positive cell fraction, and swollen nuclei were observed in treated tumor tissue. The amount of FTD incorporation in DNA and the antitumor activity of TAS-102 in xenograft models were positively and significantly correlated. These results suggest that TAS-102 exerts its antitumor activity predominantly due to its DNA incorporation, rather than as a result of TS inhibition. The persistence of FTD in the DNA of tumor cells treated with TAS-102 may underlie its ability to prolong survival in cancer patients. PMID:25230742

  7. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells.

    PubMed

    Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Nonomura, Takako; Masaki, Tsutomu; Uchida, Naohito; Yoshiji, Hitoshi; Kuriyama, Shigeki

    2007-08-01

    Although a number of studies have shown that vitamin K possesses antitumor activities on various neoplastic cell lines, there are few reports demonstrating in vivo antitumor effects of vitamin K, and the antitumor effect on colorectal cancer (CRC) remains to be examined. Therefore, antitumor effects of vitamin K on CRC were examined both in vitro and in vivo. Vitamins K2, K3 and K5 suppressed the proliferation of colon 26 cells in a dose-dependent manner, while vitamin K1 did not. On flow cytometry, induction of apoptosis by vitamins K2, K3 and K5 was suggested by population in sub-G1 phase of the cell cycle. Hoechst 33342 staining and a two-color flow cytometric assay using fluorescein isothiocyanate-conjugated annexin V and propidium iodide confirmed that vitamins K2, K3 and K5 induced apoptotic death of colon 26 cells. Enzymatic activity of caspase-3 in colon 26 cells was significantly up-regulated by vitamins K2, K3 and K5. The pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, substantially prevented vitamin K-mediated apoptosis. In vivo study using syngeneic mice with subcutaneously established colon 26 tumors demonstrated that intravenous administration of vitamins K2, K3 and K5 significantly suppressed the tumor growth. The number of apoptotic tumor cells was significantly larger in the vitamin K-treated groups than in the control group. These results suggest that vitamins K2, K3 and K5 exerted effective antitumor effects on CRC in vitro and in vivo by inducing caspase-dependent apoptotic death of tumor cells, suggesting that these K vitamins may be promising agents for the treatment of patients with CRC.

  8. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    PubMed

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  9. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody.

    PubMed

    Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey; Greiner, John W

    2017-03-28

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.

  10. Mechanisms Underlying the Anti-Aging and Anti-Tumor Effects of Lithocholic Bile Acid

    PubMed Central

    Arlia-Ciommo, Anthony; Piano, Amanda; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.

    2014-01-01

    Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research. PMID:25238416

  11. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results

    PubMed Central

    Mut-Salud, Nuria; Álvarez, Pablo Juan; Garrido, Jose Manuel; Carrasco, Esther; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2016-01-01

    The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency. PMID:26682013

  12. Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma In Vivo

    PubMed Central

    Strüh, Christian M.; Jäger, Sebastian; Kersten, Astrid; Schempp, Christoph M.; Scheffler, Armin; Martin, Stefan F.

    2013-01-01

    Purpose Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. Experimental design B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. Results Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. Conclusion We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma. PMID:23614029

  13. Vitamins K2, K3 and K5 exert in vivo antitumor effects on hepatocellular carcinoma by regulating the expression of G1 phase-related cell cycle molecules.

    PubMed

    Kuriyama, Shigeki; Hitomi, Misuzu; Yoshiji, Hitoshi; Nonomura, Takako; Tsujimoto, Tatsuhiro; Mitoro, Akira; Akahane, Takami; Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Masaki, Tsutomu; Uchida, Naohito

    2005-08-01

    A number of studies have shown that various vitamins K, specifically vitamin K2, possessed antitumor activity on various types of rodent- and human-derived neoplastic cell lines. However, there are only a small number of reports demonstrating in vivo antitumor effects of vitamins K. Furthermore, the mechanism of antitumor effects of vitamins K still remains to be examined. In the present study, we examined the antitumor effects of vitamins K2, K3 and K5 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vivo. Furthermore, to examine the mechanism of antitumor actions of these vitamins K, mRNA expression levels of various G1 phase-related cell cycle molecules were evaluated by using a real-time reverse transcription-polymerase chain reaction (RT-PCR) method. HCC-bearing animals were produced by implanting PLC/PRF/5 cells subcutaneously into athymic nude mice, and drinking water containing vitamin K2, K3 or K5 was given to the animals. Treatments with vitamins K2, K3 and K5 were shown to markedly inhibit the growth of HCC tumors. To examine the mechanism of in vivo antitumor effects of vitamins K, total RNA was extracted from HCC tumors, and the expression of G1 phase-related cell cycle molecules was quantitatively examined. Real-time RT-PCR demonstrated that the expression of the cell cycle-driving molecule, cyclin-dependent kinase 4 (Cdk4), in HCC was significantly reduced by the treatments with vitamin K2, K3 and K5. Conversely, the expression of the cell cycle-suppressing molecules, Cdk inhibitor p16INK4a and retinoblastoma, in HCC was significantly enhanced by the treatments with vitamins K2, K3 and K5. These results indicate that vitamins K2, K3 and K5 exert antitumor effects on HCC by regulating the expression of G1 phase-related cell cycle molecules. These results also indicate that vitamins K2, K3 and K5 may be useful agents for the treatment of patients with HCC.

  14. Synergistic antitumor activity of the combination of salubrinal and rapamycin against human cholangiocarcinoma cells.

    PubMed

    Zhao, Xiaofang; Zhang, Chunyan; Zhou, Hong; Xiao, Bin; Cheng, Ying; Wang, Jinju; Yao, Fuli; Duan, Chunyan; Chen, Run; Liu, Youping; Feng, Chunhong; Li, Hong; Li, Jing; Dai, Rongyang

    2016-12-20

    Less is known about the roles of eukaryotic initiation factor alpha (eIF2α) in cholangiocarcinoma (CCA). Here, we report that eIF2α inhibitor salubrinal inhibits the proliferation of human CCA cells. Clinical application of mammalian target of rapamycin (mTOR) inhibitors only has moderate antitumor efficacy. Therefore, combination approaches may be required for effective clinical use of mTOR inhibitors. Here, we investigated the efficacy of the combination of salubrinal and rapamycin in the treatment of CCA. Our data demonstrate a synergistic antitumor effect of the combination of salubrinal and rapamycin against CCA cells. Rapamycin significantly inhibits the proliferation of CCA cells. However, rapamycin initiates a negative feedback activation of Akt. Inhibition of Akt by salubrinal potentiates the efficacy of rapamycin both in vitro and in vivo. Additionally, rapamycin treatment results in the up-regulation of Bcl-xL in a xenograft mouse model. It is notable that salubrinal inhibits rapamycin-induced Bcl-xL up-regulation in vivo. Taken together, our data suggest that salubrinal and rapamycin combination might be a new and effective strategy for the treatment of CCA.

  15. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo.

    PubMed

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-06-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity.

  16. Synthesis of sulfadimethoxine based surfactants and their evaluation as antitumor agents.

    PubMed

    Khowdiary, Manal Mohmed; Mostafa, Nashwa S

    2016-01-01

    Synthesized CO (II) and Pt (II) of sulfadimethoxine. These compounds were tested for potential antitumor activity against two of human tumor cell lines, colon carcinoma cell line [Hct116], and breast carcinoma cell line MCF7. The structures of the resulting compounds have been investigated by elemental, FT-IR and H 1 NMR analyzes to insure the purity and confirmed the structures of them. The surface properties studies and octanol/water partition coefficients, Po/w were measured. The synthesized compounds exhibit biological activities with the lowest log Po/w and critical micelle concentration (CMC) values. In addition, in this article we provide an insight into this subject in order to increase the drug bioavailability. Inhibitory activity against colon carcinoma cells was detected for Pt and cobalt ion complex with IC50 = 4.5, 2.2 µg and against breast carcinoma cells IC50 = 18.2, 5.7 µg, respectively. The main goal of cancer therapy is to attain the maximum therapeutic damage of tumor cells in combination with a minimum concentration of the drug. This can be achieved in principle via selective antitumor preparations, the cytostatic effects of which would be restricted within tumor tissue. While 100% selectivity may be impractical, the achievement of reasonably high selectivity seems to be a feasible aim. Platinum and cobalt complex surfactants in our research affect tumor tissue at a very low concentration at values lower than their CMC values; this indicate that the sulfadimethoxine complexes merit further investigation as potential antitumor drugs.

  17. Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo.

    PubMed

    Shi, Zheng; Chen, Jie; Li, Chun-yang; An, Na; Wang, Zi-jie; Yang, Shu-lin; Huang, Kai-feng; Bao, Jin-ku

    2014-02-01

    Proteins with legume lectin domains are known to possess a wide range of biological functions. Here, the antitumor effects of two representative legume lectins, concanavalin A (ConA) and Sophora flavescens lectin (SFL), on human breast carcinoma cells were investigated in vitro and in vivo. Human breast carcinoma MCF-7 cells and human normal mammary epithelial MCF-10A cells were examined. Cell viability was detected using WST-1 and CCK-8 assays. Cell apoptosis was analyzed with Hoechst 33258 staining. Cell cycle was investigated using flow cytometry. The expression of relevant proteins was measured using Western blotting. Breast carcinoma MCF-7 bearing nude mice were used to study the antitumor effects in vivo. The mice were injected with ConA (40 mg/kg, ip) and SFL (55 mg/kg, ip) daily for 14 d. ConA and SFL inhibited the growth of MCF-7 cells in dose- and time-dependent manners (IC50 values were 15 and 20 μg/mL, respectively). Both ConA and SFL induced apoptotic morphology in MCF-7 cells without affecting MCF-10A cells. ConA and SFL dose-dependently increased the sub-G1 proportion in MCF-7 cells, while SFL also triggered the G2/M phase cell cycle arrest. Both ConA and SFL dose-dependently increased the activities of caspase-3 and caspase-9 and release of cytochrome C from mitochondria into cytoplasm, up-regulated Bax and Bid, and down-regulated Bcl-2 and Bcl-XL in MCF-7 cells. ConA reduced NF-κB, ERK, and JNK levels, and increased p53 and p21 levels, while SFL caused similar changes in NF-κB, ERK, p53, and p21 levels, but did not affect JNK expression. Administration of ConA and SFL significantly decreased the subcutaneous tumor mass volume and weight in MCF-7 bearing nude mice. ConA and SFL exert anti-tumor actions against human breast carcinoma MCF-7 cells both in vitro and in vivo.

  18. Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo

    PubMed Central

    Shi, Zheng; Chen, Jie; Li, Chun-yang; An, Na; Wang, Zi-jie; Yang, Shu-lin; Huang, Kai-feng; Bao, Jin-ku

    2014-01-01

    Aim: Proteins with legume lectin domains are known to possess a wide range of biological functions. Here, the antitumor effects of two representative legume lectins, concanavalin A (ConA) and Sophora flavescens lectin (SFL), on human breast carcinoma cells were investigated in vitro and in vivo. Methods: Human breast carcinoma MCF-7 cells and human normal mammary epithelial MCF-10A cells were examined. Cell viability was detected using WST-1 and CCK-8 assays. Cell apoptosis was analyzed with Hoechst 33258 staining. Cell cycle was investigated using flow cytometry. The expression of relevant proteins was measured using Western blotting. Breast carcinoma MCF-7 bearing nude mice were used to study the antitumor effects in vivo. The mice were injected with ConA (40 mg/kg, ip) and SFL (55 mg/kg, ip) daily for 14 d. Results: ConA and SFL inhibited the growth of MCF-7 cells in dose- and time-dependent manners (IC50 values were 15 and 20 μg/mL, respectively). Both ConA and SFL induced apoptotic morphology in MCF-7 cells without affecting MCF-10A cells. ConA and SFL dose-dependently increased the sub-G1 proportion in MCF-7 cells, while SFL also triggered the G2/M phase cell cycle arrest. Both ConA and SFL dose-dependently increased the activities of caspase-3 and caspase-9 and release of cytochrome C from mitochondria into cytoplasm, up-regulated Bax and Bid, and down-regulated Bcl-2 and Bcl-XL in MCF-7 cells. ConA reduced NF-κB, ERK, and JNK levels, and increased p53 and p21 levels, while SFL caused similar changes in NF-κB, ERK, p53, and p21 levels, but did not affect JNK expression. Administration of ConA and SFL significantly decreased the subcutaneous tumor mass volume and weight in MCF-7 bearing nude mice. Conclusion: ConA and SFL exert anti-tumor actions against human breast carcinoma MCF-7 cells both in vitro and in vivo. PMID:24362332

  19. Sulfated modification and anti-tumor activity of laminarin.

    PubMed

    Ji, Chen-Feng; Ji, Yu-Bin; Meng, DE-You

    2013-11-01

    The aim of this study was to investigate the sulfated modification of laminarin and the changes in structure and antitumor activity. The chlorosulfonic acid-pyridine method was applied for sulfated modification. The molecular weights of laminarin and laminarin sulfate (LAMS) were measured by high-performance liquid chromatography (HPLC), and IR and NMR spectra were also recorded. The surface conformations of laminarin and LAMS were observed with a scanning electron microscope. The antitumor activities of the two polysaccharides were also evaluated using an MTT assay. LAMS with a sulfate content of 45.92% and a molecular weight of 16,000 was synthesized. The IR spectra of laminarin and LAMS showed the characteristic absorption peaks of a polysaccharide, and LAMS also had the characteristic absorption peaks of sulfate moieties. The NMR spectra showed that laminarin and LAMS had β-(1→3) glycosidic bonds forming the main chain, and sulfate substitution was at the hydroxyl groups of C 2 and C 6 . Under the scanning electron microscope, there were clear differences in surface conformation between laminarin and LAMS; laminarin was cloud-like and spongy, while LAMS was block-like and flaky. The MTT results showed that laminarin and LAMS had inhibitory effects on LoVo cell growth, and the antitumor activity of LAMS was higher than that of laminarin at the same concentration. This suggests that sulfated modification was able to change the laminarin structure and markedly enhance the antitumor activity.

  20. Anti-tumor effects of flavonoids from the ethnic medicine Docynia delavayi (Franch.) Schneid. and its possible mechanism.

    PubMed

    Deng, Xukun; Zhao, Xiangpei; Lan, Zhou; Jiang, Jie; Yin, Wu; Chen, Lvyi

    2014-07-01

    This study investigated the active components and the anti-tumor efficacy and mechanisms of the flavonoids from Docynia delavayi (Franch.) Schneid. (DDS). MTT assay was used to examine the growth inhibitory effects of the four flavonoids, including chrysin, quercetin, naringenin, and avicularin that were isolated from the rhizome of DDS, on human hematomas cell (HepG2), esophageal carcinoma cell (EC109), human cervical adenocarcinoma cell (Hela), human colon adenocarcinoma cell (SW480), and African green monkey kidney cell (Vero cells). The anti-tumor mechanism of chrysin on HepG2 was further investigated by the methods of fluorescence staining, flow cytometry, and immunoblotting. The results showed that the inhibitory activity of chrysin was much stronger than the other three flavonoids on HepG2, EC109, Hela, and SW480 cells for 48 h treatment in vitro. Moreover, no inhibiting effect of chrysin on the proliferation of normal cells (Vero cells) was observed. Further study revealed that chrysin caused HepG2 cell shrinkage, membrane blebbing, and apoptotic body formation, all of which were typical characteristics of apoptosis programmed cell death. Flow cytometric analysis demonstrated that chrysin increased the sub G0/G1 population, which indicated the increased cell apoptosis, thus preventing cells from entering the S phase as the population in G2/M or S phase declined; whereas in G0/G1 phase, it increased. In addition, immunoblot results showed that chrysin significantly increased the expression levels of caspase-3 and Bax proteins, and it decreased the expression level of B-cell lymphoma/leukemia-2 (Bcl-2) protein. These findings indicate that chrysin is the major flavonoid present in DDS, and it induces HepG2 cell death via apoptosis, probably through the participation of caspase-3, Bax, and Bcl-2 proteins.

  1. Antitumor effect of Ferula assa foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice.

    PubMed

    Bagheri, Seyyed Majid; Abdian-Asl, Amir; Moghadam, Mahin Taheri; Yadegari, Maryam; Mirjalili, Aghdas; Zare-Mohazabieh, Fatemeh; Momeni, Haniyeh

    Ferula assa foetida commonly consumed as a healthy beverage has been demonstrated to have various biological activities, including antioxidation, anti-obesity and anti-cancer. Our study aims to investigate the antitumor effect of asafoetida in vivo using mouse mammary carcinoma 4T1 cells. In the study, female BALB/c mice were divided into two groups (n = 6), which were control (untreated) and other group of mice with breast cancer treated with 100 mg/kg of asafoetida, respectively, by oral gavage. All mice were injected into the mammary fat pad with 4T1 cells (1 × 10 5 4T1 cells/0.1 ml of phosphate buffer solution). Asafoetida was administered on day 15 after the tumor had developed for 3 weeks. At end of experiment, tumor weight, tumor volume and tumor burden were measured and lung, liver, kidney and tumor were harvested and sections were prepared for histopathological analysis. Lipoxygenase inhibitory and antioxidant activity of asafoetida was also determined. Our results showed that treatment with asafoetida was effective in decreasing the tumor weight and tumor volume in treated mice. Body weight significantly increased in female BALB/c mice against control. Apart from the antitumor effect, asafoetida decreased lung, liver and kidney metastasis and also increased areas of necrosis in the tumor tissue respectively. The present study demonstrated that asafoetida has potent antitumor and antimetastasis effects on breast cancer and is a potential source of natural antitumor products. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  2. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation

    PubMed Central

    Granzin, Markus; Wagner, Juliane; Köhl, Ulrike; Cerwenka, Adelheid; Huppert, Volker; Ullrich, Evelyn

    2017-01-01

    Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant

  3. In vivo antitumor potential of Ipomoea pes-caprae on melanoma cancer

    PubMed Central

    Manigauha, Ashish; Kharya, M. D.; Ganesh, N.

    2015-01-01

    Background: The incidence of skin cancers is rising gradually. The treatment of melanoma is also necessary to prevent the spread of cancer to other body organs. Scientific literatures have not documented any evidence of the antitumor potential of Ipomoea pes-caprae on melanoma. Aim of the Study: Explore in vivo antitumor potential of I. pes-caprae on melanoma cancer. Materials and Methods: Petroleum ether (60°C–80°C), methanolic and aqueous extracts, and swaras prepared from the whole herb of I. pes-caprae were assessed for their antitumor activity. The extracts and swaras at doses of 25 and 50 mg/kg b. wt. were administered intraperitoneal along with chemo and radiotherapy for 40 days for exploring antitumor activity against melanoma cancer (B16F10) in male C57BL mice. The results obtained from tumor volume, and histopathological studies were compared with the control and dacarbazine used as a standard. Results: Antitumor effect of I. pes-caprae extracts and swaras on melanoma cancer was found to be significant (P < 0.01) compared to normal control. The tumor volume inhibition against tumor-bearing mice, although differed from each other, was concentration dependent. Administration of plant extracts and swaras from the day 1 since tumor inducted. The induction of tumor was found delayed by 10–15 days and the tumor volume on the day 40 was similar to the Dacarbazine treatment used as a standard. Conclusion: The results obtained from the tumor volume and histopathological studies clearly revealed the antitumor potential of I. pes-caprae on melanoma cancer. PMID:25829785

  4. Durable antitumor responses to CD47 blockade require adaptive immune stimulation

    PubMed Central

    Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher

    2016-01-01

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  5. Synthesis and antitumor activity of seleno- and thio-purines complexed with cis-diamminoplatinum (II).

    PubMed

    Maeda, M; Abiko, N; Sasaki, T

    1982-02-01

    cis-Diamminoplatinum (II) complexes with selenoguanine, thioguanine, 6-thioxanthine, or 6-mercaptopurine were synthesized by the reaction of stoichiometric amounts of selenopurine or thiopurine with aquated cis-dichlorodimmineplatinum (II) in slightly acidic medium, and their antitumor activity was studied against L1210 cells in mice. These compounds exhibited a medium antitumor activity with very low toxicity. The antitumor activity was dependent on the nature of the purine ligand. These complexes were very stable in various aqueous solvents at 37 degrees C for 10 d but not in the presence of mouse serum. The mechanism of the action effected by the complex is not clear. However, the slow release of an antitumor active purine from the complex, SeG-Pt (NH3)2, was observed.

  6. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice

    PubMed Central

    ZHU, BINGYAN; SHANG, BOYANG; LI, YI; ZHEN, YONGSU

    2016-01-01

    Previous studies have shown that trans-cinnamic acid (tCA) has a broad spectrum of biological activities, and exhibits antioxidant, anti-inflammatory and anticancer properties. In addition, tCA and a variety of its analogs have been detected as gut microbe-derived metabolites exerting various biological effects in the colon. The aim of this study was to assess the antitumor activity of tCA in vitro and in vivo, in particular its therapeutic efficacy against colon cancer xenografts in athymic mice. Furthermore, it aimed to examine the effects of tCA on histone deacetylases (HDACs) and to identify the underlying molecular mechanisms. Using an MTT assay, tCA was observed to inhibit the proliferation of several cancer cell lines, and the half maximal inhibitory concentration (IC50) in HT29 colon carcinoma cells was ~1 mM. Western blot analysis demonstrated that tCA upregulated the expression of acetyl-H3 and acetyl-H4 proteins, which was consistent with the effects of the HDAC inhibitor, trichostatin A (TSA). Furthermore, expression of Bcl-2 (a marker of cell proliferation) was reduced, and apoptosis was induced. Apoptosis was shown by the activation of cleavage of poly ADP ribose polymerase and the increased expression of Bax. Apoptosis was also confirmed using APC Annexin V and SYTOX Green Nucleic Acid Stain. In addition, the tCA-induced inhibition of the expression of HDAC markers and activation of apoptosis in tumor tissues were further confirmed by immunohistochemistry. Intragastric administration of tCA at doses of 1.0 and 1.5 mmol/kg body weight suppressed the growth of HT29 human colon carcinoma xenografts in athymic mice at well-tolerated doses. No toxic changes were found in the heart, lung, liver, kidney, colon or bone marrow following histopathological examination. This study indicated that tCA is effective against colon cancer xenograft in nude mice. The antitumor mechanism of tCA was mediated, at least in part, by inhibition of HDACs in cancer cells. As

  7. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer.

    PubMed

    Kodama, Tatsushi; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Yoshida, Miyuki; Watanabe, Yoshiaki; Kondoh, Osamu; Sakamoto, Hiroshi

    2014-12-01

    Alectinib/CH5424802 is a known inhibitor of anaplastic lymphoma kinase (ALK) and is being evaluated in clinical trials for the treatment of ALK fusion-positive non-small cell lung cancer (NSCLC). Recently, some RET and ROS1 fusion genes have been implicated as driver oncogenes in NSCLC and have become molecular targets for antitumor agents. This study aims to explore additional target indications of alectinib by testing its ability to inhibit the activity of kinases other than ALK. We newly verified that alectinib inhibited RET kinase activity and the growth of RET fusion-positive cells by suppressing RET phosphorylation. In contrast, alectinib hardly inhibited ROS1 kinase activity unlike other ALK/ROS1 inhibitors such as crizotinib and LDK378. It also showed antitumor activity in mouse models of tumors driven by the RET fusion. In addition, alectinib showed kinase inhibitory activity against RET gatekeeper mutations (RET V804L and V804M) and blocked cell growth driven by the KIF5B-RET V804L and V804M. Our results suggest that alectinib is effective against RET fusion-positive tumors. Thus, alectinib might be a therapeutic option for patients with RET fusion-positive NSCLC. ©2014 American Association for Cancer Research.

  8. [Antitumor action and other regulatory effects of low intensity electromagnetic and chemical factors in experiment].

    PubMed

    Garkavi, L Kh; Zhukova, G V; Shikhliarova, A I; Evstratova, O F; Barteneva, T A; Gudtskova, T N; Bragina, M I; Mashchenko, N M; Grigorov, S V; Skakun, P G

    2014-01-01

    This paper presents a brief overview of the results of the original researches of biological responses induced by agents of cytostatic and regulatory actions in small doses, as well as weak electromagnetic radiation of different frequency bands. The possibility of obtaining the expressed antitumor, antistress and geroprotective effects has been shown. The question of the relation of system mechanisms of realization of these effects with structural rearrangements in biological fluids, as well as the promising directions for optimizing the therapeutic properties of the informational impacts are discussed.

  9. Anti-tumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: in vitro and in vivo study.

    PubMed

    Harhaji, Lj; Mijatović, S; Maksimović-Ivanić, D; Stojanović, I; Momcilović, M; Maksimović, V; Tufegdzić, S; Marjanović, Z; Mostarica-Stojković, M; Vucinić, Z; Stosić-Grujicić, S

    2008-05-01

    Numerous studies have shown immunostimulatory and anti-tumor effects of water and standardized aqueous ethanol extracts derived from the medicinal mushroom, Coriolus versicolor, but the biological activity of methanol extracts has not been examined so far. In the present study we investigated the anti-tumor effect of C. versicolor methanol extract (which contains terpenoids and polyphenols) on B16 mouse melanoma cells both in vitro and in vivo. In vitro treatment of the cells with the methanol extract (25-1600 microg/ml) reduced melanoma cell viability in a dose-dependent manner. Furthermore, in the presence of the methanol extract (200 microg/ml, concentration IC(50)) the proliferation of B16 cells was arrested in the G(0)/G(1) phase of the cell cycle, followed by both apoptotic and secondary necrotic cell death. In vivo methanol extract treatment (i.p. 50 mg/kg, for 14 days) inhibited tumor growth in C57BL/6 mice inoculated with syngeneic B16 tumor cells. Moreover, peritoneal macrophages collected 21 days after tumor implantation from methanol extract-treated animals exerted stronger tumoristatic activity ex vivo than macrophages from control melanoma-bearing mice. Taken together, our results demonstrate that C. versicolor methanol extract exerts pronounced anti-melanoma activity, both directly through antiproliferative and cytotoxic effects on tumor cells and indirectly through promotion of macrophage anti-tumor activity.

  10. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy

    PubMed Central

    Medrano, Ruan F.V.; Hunger, Aline; Mendonça, Samir Andrade; Barbuto, José Alexandre M.; Strauss, Bryan E.

    2017-01-01

    During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-β, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/β share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/β, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/β has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/β have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied. PMID:29050360

  11. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer

    PubMed Central

    Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-01-01

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer. PMID:27487128

  12. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    PubMed

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  13. Antitumor and angiostatic peptides from frog skin secretions.

    PubMed

    van Zoggel, Hanneke; Hamma-Kourbali, Yamina; Galanth, Cécile; Ladram, Ali; Nicolas, Pierre; Courty, José; Amiche, Mohamed; Delbé, Jean

    2012-01-01

    The discovery of new molecules with potential antitumor activity continues to be of great importance in cancer research. In this respect, natural antimicrobial peptides isolated from various animal species including humans and amphibians have been found to be of particular interest. Here, we report the presence of two anti-proliferative peptides active against cancer cells in the skin secretions of the South American tree frog, Phyllomedusa bicolor. The crude skin exudate was fractioned by size exclusion gel followed by reverse-phase HPLC chromatography. After these two purification steps, we identified two fractions that exhibited anti-proliferative activity. Sequence analysis indicated that this activity was due to two antimicrobial α-helical cationic peptides of the dermaseptin family (dermaseptins B2 and B3). This result was confirmed using synthetic dermaseptins. When tested in vitro, synthetic B2 and B3 dermaseptins inhibited the proliferation of the human prostatic adenocarcinoma PC-3 cell line by more than 90%, with an EC(50) of around 2-3 μM. No effect was observed on the growth of the NIH-3T3 non-tumor mouse cell line with Drs B2, whereas a slight inhibiting effect was observed with Drs B3 at high dose. In addition, the two fractions obtained after size exclusion chromatography also inhibited PC-3 cell colony formation in soft agar. Interestingly, inhibition of the proliferation and differentiation of activated adult bovine aortic endothelial cells was observed in cells treated with these two fractions. Dermaseptins B2 and B3 could, therefore, represent interesting new pharmacological molecules with antitumor and angiostatic properties for the development of a new class of anticancer drugs.

  14. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L - Two traditional medicinal plants in China.

    PubMed

    Huyan, Ting; Li, Qi; Wang, Yi-Lin; Li, Jing; Zhang, Jian-Yang; Liu, Ya-Xiong; Shahid, Muhammad Riaz; Yang, Hui; Li, Huan-Qing

    2016-06-05

    Sonchus oleraceus (L.) L (SO) and Juniperus sabina L (JS) are traditional medicinal plants in China. And the aqueous extracts of them have been used to treat tumor, inflammatory diseases, infection and so on in Chinese folk culture. However, the underlying mechanisms of their anti-tumor activities have not been illustrated yet. This study aims to evaluate the inhibitory effects of aqueous extracts from SO and JS on tumor cells. The prepared aqueous extracts of SO and JS were used to treat HepG-2 and K562 tumor cells, while the human peripheral blood mononuclear cells (PBMCs) were set as normal control. The viabilities, cell cycle and apoptosis of tumor cells after extracts treatment were assessed, in addition the expression of apoptosis-related genes (FasL, caspase 3, 6, 7, 8, 9, and 10) were analyzed. Meanwhile, the adherence and migration of HepG-2 were tested, and the expression levels of MMPs and ICAM-1 were analyzed. On top of that, the pSTAT in the two cells were also analyzed and suggested the related signaling pathway that the extracts acted on with in these tumor cells. Results showed that aqueous extracts of SO and JS have inhibitory effects on HepG-2 and K562 cells by decreasing cell viability and inducing apoptosis via up-regulation of the expression of the apoptosis-related genes FasL, caspase 3 and caspase 9. The extracts had different IC50 on tumor cells and PBMCs, which could block the tumor cell cycle at the G(0)/G(1) stage and significantly inhibit the adherence of HepG-2 cells. The extracts inhibited migration of these cells by inhibiting the expression of ICAM-1, MMP-2 and MMP-9. Further study indicated that the inhibition of pSTAT1 and 3 might be responsible for the inhibitory effects of the extracts on tumor cells. The results of this study indicated that SO and JS extracts had the anti-tumor effects, which may be developed as novel anti-tumor drugs and used in cancer therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase.

    PubMed

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-17

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.

  16. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase

    PubMed Central

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-01

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth. This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors. PMID:27926505

  17. Advances in antitumor polysaccharides from phellinus sensu lato: Production, isolation, structure, antitumor activity, and mechanisms.

    PubMed

    Yan, Jing-Kun; Pei, Juan-Juan; Ma, Hai-Le; Wang, Zhen-Bin; Liu, Yuan-Shuai

    2017-04-13

    Edible and medicinal fungi (mushrooms) are widely applied to functional foods and nutraceutical products because of their proven nutritive and medicinal properties. Phellinus sensu lato is a well-known medicinal mushroom that has long been used in preventing ailments, including gastroenteric dysfunction, diarrhea, hemorrhage, and cancers, in oriental countries, particularly in China, Japan, and Korea. Polysaccharides represent a major class of bioactive molecules in Phellinus s. l., which have notable antitumor, immunomodulatory, and medicinal properties. Polysaccharides that were isolated from fruiting bodies, cultured mycelia, and filtrates of Phellinus s. l. have not only activated different immune responses of the host organism but have also directly suppressed tumor growth and metastasis. Studies suggest that polysaccharides from Phellinus s. l. are promising alternative anticancer agents or synergizers for existing antitumor drugs. This review summarizes the recent development of polysaccharides from Phellinus s. l., including polysaccharide production, extraction and isolation methods, chemical structure, antitumor activities, and mechanisms of action.

  18. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2009-05-01

    To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

  19. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells.

    PubMed

    Kuczma, Michal; Ding, Zhi-Chun; Zhou, Gang

    2016-01-01

    The alkylating agent melphalan is used in the treatment of hematological malignancies, especially multiple myeloma. In the past, the usefulness of melphalan has been solely attributed to its cytotoxicity on fastgrowing cancerous cells. Although the immunomodulatory effects of melphalan were suggested many years ago, only recently has this aspect of melphalan's activity begun to be elucidated at the molecular level. Emerging evidence indicates that melphalan can foster an immunogenic microenvironment by inducing immunogenic cell death (ICD) as characterized by membrane translocation of endoplasmic reticulum protein calreticulin (CRT) and by release of chromatin-binding protein high-mobility group box 1 (HMGB1). In addition, the lympho-depletive effect of melphalan can induce the release of pro-inflammatory cytokines and growth factors, deplete regulatory T cells, and create space to facilitate the expansion of infused tumor-reactive T cells. These features suggest that melphalan can be used as a preparative chemotherapy for adoptive T-cell therapy. This notion is supported by our recent work demonstrating that the combination of melphalan and adoptive transfer of tumor-reactive CD4+ T cells can mediate potent antitumor effects in animal models. This review summarizes the recent advances in understanding and utilizing the immunomodulatory effects of melphalan.

  20. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells

    PubMed Central

    Kuczma, Michal; Ding, Zhi-Chun; Zhou, Gang

    2017-01-01

    The alkylating agent melphalan is used in the treatment of hematological malignancies, especially multiple myeloma. In the past, the usefulness of melphalan has been solely attributed to its cytotoxicity on fast-growing cancerous cells. Although the immunomodulatory effects of melphalan were suggested many years ago, only recently has this aspect of melphalan’s activity begun to be elucidated at the molecular level. Emerging evidence indicates that melphalan can foster an immunogenic microenvironment by inducing immunogenic cell death (ICD) as characterized by membrane translocation of endoplasmic reticulum protein calreticulin (CRT) and by release of chromatin-binding protein high-mobility group box 1 (HMGB1). In addition, the lympho-depletive effect of melphalan can induce the release of pro-inflammatory cytokines and growth factors, deplete regulatory T cells, and create space to facilitate the expansion of infused tumor-reactive T cells. These features suggest that melphalan can be used as a preparative chemotherapy for adoptive T-cell therapy. This notion is supported by our recent work demonstrating that the combination of melphalan and adoptive transfer of tumor-reactive CD4+ T cells can mediate potent antitumor effects in animal models. This review summarizes the recent advances in understanding and utilizing the immunomodulatory effects of melphalan. PMID:27910767

  1. Anti-tumor effects of osthole on ovarian cancer cells in vitro.

    PubMed

    Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling

    2016-12-04

    Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines.

    PubMed

    Müller, Alena; Barat, Samarpita; Chen, Xi; Bui, Khac Cuong; Bozko, Przemyslaw; Malek, Nisar P; Plentz, Ruben R

    2016-05-01

    Cholangiocarcinoma (CC) worldwide is the most common biliary malignancy with poor prognostic value and new systemic treatments are desirable. Plant extracts like bromelain and papain, which are cysteine proteases from the fruit pineapple and papaya, are known to have antitumor activities. Therefore, in this study for the first time we investigated the anticancer effect of bromelain and papain in intra- and extrahepatic human CC cell lines. The effect of bromelain and papain on human CC cell growth, migration, invasion and epithelial plasticity was analyzed using cell proliferation, wound healing, invasion and apoptosis assay, as well as western blotting. Bromelain and papain lead to a decrease in the proliferation, invasion and migration of CC cells. Both plant extracts inhibited NFκB/AMPK signalling as well as their downstream signalling proteins such as p-AKT, p-ERK, p-Stat3. Additionally, MMP9 and other epithelial-mesenchymal-transition markers were partially found to be downregulated. Apoptosis was induced after bromelain and papain treatment. Interestingly, bromelain showed an overall more effective inhibition of CC as compared to papain. siRNA mediated silencing of NFκB on CC cells indicated that bromelain and papain have cytotoxic effects on human CC cell lines and bromelain and partially papain in comparison impair tumor growth by NFκB/AMPK signalling. Especially bromelain can evolve as promising, potential therapeutic option that might open new insights for the treatment of human CC.

  3. Conformation and recognition of DNA modified by a new antitumor dinuclear PtII complex resistant to decomposition by sulfur nucleophiles

    PubMed Central

    Zerzankova, Lenka; Suchankova, Tereza; Vrana, Oldrich; Farrell, Nicholas P.; Brabec, Viktor; Kasparkova, Jana

    2011-01-01

    Reported herein is a detailed biochemical and molecular biophysics study of the molecular mechanism of action of antitumor dinuclear PtII complex [{PtCl(DACH)}2-μ-Y]4+ [DACH = 1,2-diaminocyclohexane, Y =H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2] (complex 1). This new, long-chain bifunctional dinuclear PtII complex is resistant to metabolic decomposition by sulfur-containing nucleophiles. The results show that DNA adducts of 1 can largely escape repair and yet inhibit very effectively transcription so that they should persist longer than those of conventional cisplatin. Hence, they could trigger a number of downstream cellular effects different from those triggered in cancer cells by DNA adducts of cisplatin. This might lead to the therapeutic effects that could radically improve chemotherapy by platinum complexes. In addition, the findings of the present work make new insights into mechanisms associated with antitumor effects of dinuclear/trinuclear PtII complexes possible. PMID:19682435

  4. Antitumor activity of four macrocyclic ellagitannins from Cuphea hyssopifolia.

    PubMed

    Wang, C C; Chen, L G; Yang, L L

    1999-06-01

    We evaluated the antitumor activities of four macrocyclic hydrolyzable tannin dimers, cuphiin D1, cuphiin D2, oenothein B and woodfordin C isolated from Cuphea hyssopifolia (Lythraceae). All significantly inhibited the growth of the human carcinoma cell lines KB, HeLa, DU-145, Hep 3B, and the leukemia cell line HL-60, and showed less cytotoxicity than adriamycin against a normal cell line (WISH). All four compounds inhibited the viability of S-180 tumor cells in an in vitro assay and an in vivo S-180 tumor-bearing ICR mice model. Oenothein B demonstrated the greatest cytotoxicity (IC50 = 11.4 microg/ml) against S-180 tumor cells in culture, while cuphiin D1 resulted in the greatest increase in survival on S-180 tumor-bearing mice (%ILS = 84.1%). Our findings suggest that the antitumor effects of these compounds are not only related to their cytotoxicity on carcinoma cell lines, but also depended on a host-mediated mechanism; they may therefore have potential for antitumor applications.

  5. Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma.

    PubMed

    Yasuda, Takashi; Kamigaki, Takashi; Kawasaki, Kentaro; Nakamura, Tetsu; Yamamoto, Masashi; Kanemitsu, Kiyonori; Takase, Shiro; Kuroda, Daisuke; Kim, Yongsik; Ajiki, Tetsuo; Kuroda, Yoshikazu

    2007-07-01

    Cancer immunotherapy by dendritic cell (DC)/tumor cell fusion hybrids (DC/TC hybrids) has been shown to elicit potent anti-tumor effects via the induction of immune responses against multiple tumor-associated antigens. In the present study, we compared the anti-tumor effects of vaccinating Balb/c mice (H-2(d)) with CT26CL25 colon carcinoma cells that had been fused with either syngeneic DCs from Balb/c mice, allogeneic DCs from C57BL/6 mice (H-2(b)) or semiallogeneic DCs from B6D2F1 mice (H-2(b/d)). Preimmunization with either semiallogeneic or allogeneic DC/TC hybrids induced complete protection from tumor challenge, whereas mice preimmunized with syngeneic DC/TC hybrids were only partially protected (75% tumor rejection). The average number of pulmonary metastases after intravenous tumor injection decreased significantly following immunization with semiallogeneic or allogeneic DC/TC hybrids (8.3 +/- 7.9 or 16.3 +/- 3.5, mean +/- SD) relative to syngeneic DC/TC hybrids (67.8 +/- 6.3). These data demonstrate that vaccination with semiallogeneic DC/TC hybrids resulted in the greatest anti-tumor efficacy. Anti-tumor effects showed by in vivo studies were virtually accomplished by the frequency of induced CTLs specific to both gp70 and beta-galactosidase assessed by using pentameric assay. Among the fusion vaccines tested, semiallogeneic DC/TC hybrids induced the highest ratio of Th1 cytokine IFN-gamma to Th2 cytokine IL-10. In addition, allogeneic or semiallogeneic DC/TC hybrids elicited a significantly stronger NK activity than syngeneic DC/TC hybrids. These findings suggest that in clinical settings, DCs derived from a healthy donor (which are generally characterized as more semiallogeneic than allogeneic) may be more capable than autologous DCs of inducing promising anti-tumor effects in vaccinations with DC/TC hybrids.

  6. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin.

    PubMed

    Kameyama, Kazuhisa; Motoyama, Keiichi; Tanaka, Nao; Yamashita, Yuki; Higashi, Taishi; Arima, Hidetoshi

    2017-01-01

    Mitophagy is the specific autophagic elimination system of mitochondria, which regulates cellular survival via the removal of damaged mitochondria. Recently, we revealed that folate-appended methyl-β-cyclodextrin (FA-M-β-CyD) provides selective antitumor activity in folate receptor-α (FR-α)-expressing cells by the induction of autophagy. In this study, to gain insight into the detailed mechanism of this antitumor activity, we focused on the induction of mitophagy by the treatment of FR-α-expressing tumor cells with FA-M-β-CyD. In contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered KB cells, human epithelial cells from a fatal cervical carcinoma (FR-α (+)) through FR-α-mediated endocytosis. The transmembrane potential of isolated mitochondria after treatment with FA-M-β-CyD was significantly elevated. In addition, FA-M-β-CyD lowered adenosine triphosphate (ATP) production and promoted reactive oxygen species production in KB cells (FR-α (+)). Importantly, FA-M-β-CyD enhanced light chain 3 (LC3) conversion (LC3-I to LC3-II) in KB cells (FR-α (+)) and induced PTEN-induced putative kinase 1 (PINK1) protein expression, which is involved in the induction of mitophagy. Furthermore, FA-M-β-CyD had potent antitumor activity in BALB/c nu/nu mice xenografted with KB cells (FR-α (+)) without any significant side effects. Taken together, these findings demonstrate that the autophagic cell death elicited by FA-M-β-CyD could be associated with mitophagy induced by an impaired mitochondrial function.

  7. Antitumor effectiveness and mechanism of action of Ru(II)/amino acid/diphosphine complexes in the peritoneal carcinomatosis progression.

    PubMed

    Mello-Andrade, Francyelli; da Costa, Wanderson Lucas; Pires, Wanessa Carvalho; Pereira, Flávia de Castro; Cardoso, Clever Gomes; Lino-Junior, Ruy de Souza; Irusta, Vicente Raul Chavarria; Carneiro, Cristiene Costa; de Melo-Reis, Paulo Roberto; Castro, Carlos Henrique; Almeida, Marcio Aurélio Pinheiro; Batista, Alzir Azevedo; Silveira-Lacerda, Elisângela de Paula

    2017-10-01

    Peritoneal carcinomatosis is considered as a potentially lethal clinical condition, and the therapeutic options are limited. The antitumor effectiveness of the [Ru(l-Met)(bipy)(dppb)]PF 6 (1) and the [Ru(l-Trp)(bipy)(dppb)]PF 6 (2) complexes were evaluated in the peritoneal carcinomatosis model, Ehrlich ascites carcinoma-bearing Swiss mice. This is the first study that evaluated the effect of Ru(II)/amino acid complexes for antitumor activity in vivo. Complexes 1 and 2 (2 and 6 mg kg -1 ) showed tumor growth inhibition ranging from moderate to high. The mean survival time of animal groups treated with complexes 1 and 2 was higher than in the negative and vehicle control groups. The induction of Ehrlich ascites carcinoma in mice led to alterations in hematological and biochemical parameters, and not the treatment with complexes 1 and 2. The treatment of Ehrlich ascites carcinoma-bearing mice with complexes 1 and 2 increased the number of Annexin V positive cells and cleaved caspase-3 levels and induced changes in the cell morphology and in the cell cycle phases by induction of sub-G1 and G0/G1 cell cycle arrest. In addition, these complexes reduce angiogenesis induced by Ehrlich ascites carcinoma cells in chick embryo chorioallantoic membrane model. The treatment with the LAT1 inhibitor decreased the sensitivity of the Ehrlich ascites carcinoma cells to complexes 1 and 2 in vitro-which suggests that the LAT1 could be related to the mechanism of action of amino acid/ruthenium(II) complexes, consequently decreasing the glucose uptake. Therefore, these complexes could be used to reduce tumor growth and increase mean survival time with less toxicity than cisplatin. Besides, these complexes induce apoptosis by combination of different mechanism of action.

  8. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *

    PubMed Central

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-01-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991

  9. Comparison of the fibronectin-binding ability and antitumor efficacy of various mycobacteria.

    PubMed

    Hudson, M A; Ritchey, J K; Catalona, W J; Brown, E J; Ratliff, T L

    1990-07-01

    Although the mechanism by which Bacillus Calmette-Guerin (BCG) exerts an antitumor effect on superficial bladder tumors is not fully understood, recent evidence has implicated binding of BCG organisms to fibronectin (FN) as requisite for this antitumor efficacy. Various substrains of BCG and other mycobacteria were tested in vitro for their relative capacities to bind both matrix and soluble FN. A substrain of Mycobacterium kansasii, designated the "high-binding strain," was found to bind FN more readily (P less than 0.05) in in vitro studies, when compared to commercially available substrains of BCG (Tice, Connaught, and Armand Frappier). The binding by the three commercial strains of BCG to FN in vitro appeared to be equivalent. The high-binding strain was further demonstrated to attach more readily in vivo to the acutely injured murine bladder (P less than 0.005) than the Armand Frappier substrain. Finally, using the MB49 murine bladder tumor model, an enhanced antitumor effect (P less than 0.05) was noted in mice treated with intravesical high-binding strain, in comparison to the Armand Frappier substrain, during five weekly treatments. It appears not only that the commercial substrains of BCG bind FN in an equivalent manner but also that the relative binding capacities of the substrains correlate directly with antitumor activity. A substrain of M. kansasii appears to have been identified which may prove more clinically effective than the currently available strains of BCG.

  10. Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    PubMed Central

    Shen, Juqun; Vil, Marie Danielle; Prewett, Marie; Damoci, Chris; Zhang, Haifan; Li, Huiling; Jimenez, Xenia; Deevi, Dhanvanthri S; Iacolina, Michelle; Kayas, Anthony; Bassi, Rajiv; Persaud, Kris; Rohoza-Asandi, Anna; Balderes, Paul; Loizos, Nick; Ludwig, Dale L; Tonra, James; Witte, Larry; Zhu, Zhenping

    2009-01-01

    Platelet-derived growth factor receptor β (PDGFRβ) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers. PMID:19484148

  11. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.

    PubMed

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V; Martinon, Fabio; Modlin, Robert L; Speiser, Daniel E; Gilliet, Michel

    2015-12-15

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

  12. The structure-activity relationship between polysaccharides from Sargassum thunbergii and anti-tumor activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liu, Ge; Yao, Jianting; Shan, Tifeng; Sun, Chaomin; Zhang, Quanbin

    2017-12-01

    Polysaccharides derived from Sargassum thunbergii were prepared to investigate the structure-activity relationship between polysaccharides and anti-tumor activity in vitro. Many factors were examined. Overall, STW (polysaccharide extracted by hot water) had the best activity, followed by STJ (polysaccharide extracted by dilute alkali), and then STA (polysaccharide extracted by dilute acid). Location of algae had no effect at 500μg/mL and 1000μg/mL, while STW-QD (algae collected from Qingdao, China) had the best activity, followed by STW-WZ (algae collected from Wenzhou, China) and STW-LJ (algae collected from Lianjiang, China) and then STW-DL (algae collected from Dalian, China) and STW-RC (algae collected from Rongcheng, China) at 250μg/mL. Moreover, molecular weight had no effect at 1000μg/mL, while higher molecular weights were associated with better activities at 250μg/mL and 500μg/mL. Sulfate content had no effect at 1000μg/mL, while anti-tumor activities decreased accompanying with the changes of sulfate content. Uronic acid content was an important factor influencing activity. The fractions of STW showed little anti-tumor activity; however, the mixture of the fractions of STW showed approximately 60% inhibition. Overall, these findings suggested that the anti-tumor activity of polysaccharides required multilateral cooperation and that some of the effective components were lost. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.

    PubMed

    Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian

    2018-04-16

    mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and

  14. Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.

    PubMed

    Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay

    2015-01-01

    In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency

    PubMed Central

    Kong, Miao; Tang, Jiamin; Qiao, Qi; Wu, Tingting; Qi, Yan; Tan, Songwei; Gao, Xueqin; Zhang, Zhiping

    2017-01-01

    There is accumulating evidence that regulating tumor microenvironment plays a vital role in improving antitumor efficiency. Herein, to remodel tumor immune microenvironment and elicit synergistic antitumor effects, lipid-coated biodegradable hollow mesoporous silica nanoparticle (dHMLB) was constructed with co-encapsulation of all-trans retinoic acid (ATRA), doxorubicin (DOX) and interleukin-2 (IL-2) for chemo-immunotherapy. The nanoparticle-mediated combinational therapy provided a benign regulation on tumor microenvironment through activation of tumor infiltrating T lymphocytes and natural killer cells, promotion of cytokines secretion of IFN-γ and IL-12, and down-regulation of immunosuppressive myeloid-derived suppressor cells, cytokine IL-10 and TGF-β. ATRA/DOX/IL-2 co-loaded dHMLB demonstrated significant tumor growth and metastasis inhibition, and also exhibited favorable biodegradability and safety. This nanoplatform has great potential in developing a feasible strategy to remodel tumor immune microenvironment and achieve enhanced antitumor effect. PMID:28900509

  16. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin.

    PubMed

    Hattori, Yoshiyuki; Shibuya, Kazuhiko; Kojima, Kaori; Miatmoko, Andang; Kawano, Kumi; Ozaki, Kei-Ichi; Yonemochi, Etsuo

    2015-07-01

    Previously, we found that the injection of zoledronic acid (ZOL) into mice bearing tumor induced changes of the vascular structure in the tumor. In this study, we examined whether ZOL treatment could decrease interstitial fluid pressure (IFP) via change of tumor vasculature, and enhance the antitumor efficacy of liposomal doxorubicin (Doxil®). When ZOL solution was injected at 40 µg/mouse per day for three consecutive days into mice bearing murine Lewis lung carcinoma LLC tumor, depletion of macrophages in tumor tissue and decreased density of tumor vasculature were observed. Furthermore, ZOL treatments induced inflammatory cytokines such as interleukin (IL)-10 and -12, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α in serum of LLC tumor-bearing mice, but not in normal mice, indicating that ZOL treatments might induce an inflammatory response in tumor tissue. Furthermore, ZOL treatments increased antitumor activity by Doxil in mice bearing a subcutaneous LLC tumor, although they did not significantly increase the tumor accumulation of doxorubicin (DXR). These results suggest that ZOL treatments might increase the therapeutic efficacy of Doxil via improvement of DXR distribution in a tumor by changing the tumor vasculature. ZOL treatment can be an alternative approach to increase the antitumor effect of liposomal drugs.

  17. Antitumor activity of pan-HER inhibitors in HER2-positive gastric cancer.

    PubMed

    Yoshioka, Takahiro; Shien, Kazuhiko; Namba, Kei; Torigoe, Hidejiro; Sato, Hiroki; Tomida, Shuta; Yamamoto, Hiromasa; Asano, Hiroaki; Soh, Junichi; Tsukuda, Kazunori; Nagasaka, Takeshi; Fujiwara, Toshiyoshi; Toyooka, Shinichi

    2018-04-01

    Molecularly targeted therapy has enabled outstanding advances in cancer treatment. Whereas various anti-human epidermal growth factor receptor 2 (HER2) drugs have been developed, trastuzumab is still the only anti-HER2 drug presently available for gastric cancer. In this study, we propose novel treatment options for patients with HER2-positive gastric cancer. First, we determined the molecular profiles of 12 gastric cancer cell lines, and examined the antitumor effect of the pan-HER inhibitors afatinib and neratinib in those cell lines. Additionally, we analyzed HER2 alteration in 123 primary gastric cancers resected from Japanese patients to clarify possible candidates with the potential to respond to these drugs. In the drug sensitivity analysis, both afatinib and neratinib produced an antitumor effect in most of the HER2-amplified cell lines. However, some cells were not sensitive to the drugs. When the molecular profiles of the cells were compared based on the drug sensitivities, we found that cancer cells with lower mRNA expression levels of IGFBP7, a tumor suppressor gene that inhibits the activation of insulin-like growth factor-1 receptor (IGF-1R), were less sensitive to pan-HER inhibitors. A combination therapy consisting of pan-HER inhibitors and an IGF-1R inhibitor, picropodophyllin, showed a notable synergistic effect. Among 123 clinical samples, we found 19 cases of HER2 amplification and three cases of oncogenic mutations. In conclusion, afatinib and neratinib are promising therapeutic options for the treatment of HER2-amplified gastric cancer. In addition to HER2 amplification, IGFBP7 might be a biomarker of sensitivity to these drugs, and IGF-1R-targeting therapy can overcome drug insensitiveness in HER2-amplified gastric cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. Dll4 Blockade Potentiates the Anti-Tumor Effects of VEGF Inhibition in Renal Cell Carcinoma Patient-Derived Xenografts

    PubMed Central

    Miles, Kiersten Marie; Seshadri, Mukund; Ciamporcero, Eric; Adelaiye, Remi; Gillard, Bryan; Sotomayor, Paula; Attwood, Kristopher; Shen, Li; Conroy, Dylan; Kuhnert, Frank; Lalani, Alshad S.; Thurston, Gavin; Pili, Roberto

    2014-01-01

    Background The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC). Methods and Results Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model. Conclusions Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC. PMID:25393540

  19. AZD8055 Exerts Antitumor Effects on Colon Cancer Cells by Inhibiting mTOR and Cell-cycle Progression.

    PubMed

    Chen, Yun; Lee, Cheng-Hung; Tseng, Bor-Yuan; Tsai, Ya-Hui; Tsai, Huang-Wen; Yao, Chao-Ling; Tseng, Sheng-Hong

    2018-03-01

    AZD8055 is an inhibitor of mammalian target of rapamycin (mTOR) that can suppress both mTOR complex 1 (mTORC1) and mTORC2. This study investigated the antitumor effects of AZD8055 on colon cancer. The effects of AZD8055 on proliferation, apoptosis, and cell cycle of colon cancer cells, and tumor growth in a mouse colon cancer model were studied. AZD8055 significantly inhibited proliferation and induced apoptosis of colon cancer cells (p<0.05). The phosphorylation of both AKT and S6 kinase 1 (S6K1) was suppressed by AZD8055. AZD8055 also induced G 0 /G 1 cell-cycle arrest, reduced cyclin D1 and increased p27 expression, and suppressed the levels of phospho-cyclin-dependent kinase 2 and phospho-retinoblastoma. Compared to the control, oral administration of AZD8055 significantly suppressed tumor growth in mice (p<0.05). AZD8055 induces cytotoxicity, apoptosis, and cell-cycle arrest of colon cancer cells, and exerts an antitumor effect in mice. It also inhibits the mTOR signaling pathway and mTOR-dependent cell-cycle progression. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Study of Antitumor Activity of Sodium Phenylbutyrate, Histon Deacetylase Inhibitor, on Ehrlich Carcinoma Model.

    PubMed

    Fadeev, N P; Kharisov, R I; Kovan'ko, E G; Pustovalov, Yu I

    2015-09-01

    Antitumor activity of sodium phenylbutyrate was studied on 120 outbred female mice with transplanted Ehrlich ascites carcinoma. The animals received the drug in doses of 400, 800, and 1200 mg/kg with drinking water daily for 21 days. The antitumor effect was evaluated by tumor growth inhibition and lifespan prolongation. Phenylbutyrate in the dose of 800 mg/kg was most effective. The drug inhibited the tumor growth by 71%, prolonged the lifespan of animals by 28, and was low-toxic.

  1. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091.

    PubMed

    Canela, María-Dolores; Noppen, Sam; Bueno, Oskía; Prota, Andrea E; Bargsten, Katja; Sáez-Calvo, Gonzalo; Jimeno, María-Luisa; Benkheil, Mohammed; Ribatti, Domenico; Velázquez, Sonsoles; Camarasa, María-José; Díaz, J Fernando; Steinmetz, Michel O; Priego, Eva-María; Pérez-Pérez, María-Jesús; Liekens, Sandra

    2017-02-28

    We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3''-amino-4''-methoxyphenyl)-1-(5'-methoxy-3',4'-methylendioxyphenyl)-2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-to-straight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM. In addition, TUB091 displayed vascular disrupting effects in vitro and in the chicken chorioallantoic membrane (CAM) assay at low nanomolar concentrations. A water-soluble L-Lys-L-Pro derivative of TUB091 (i.e. TUB099) showed potent antitumor activity in melanoma and breast cancer xenograft models by causing rapid intratumoral vascular shutdown and massive tumor necrosis. TUB099 also displayed anti-metastatic activity similar to that of combretastatin A4-phosphate. Our data indicate that this novel class of chalcones represents interesting lead molecules for the design of vascular disrupting agents (VDAs). Moreover, we provide evidence that our prodrug approach may be valuable for the development of anti-cancer drugs.

  2. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Hitomi, Misuzu; Yokoyama, Fumi; Kita, Yuko; Nonomura, Takako; Masaki, Tsutomu; Yoshiji, Hitoshi; Inoue, Hideyuki; Kinekawa, Fumihiko; Kurokohchi, Kazutaka; Uchida, Naohito; Watanabe, Seishiro; Kuriyama, Shigeki

    2005-03-01

    A number of studies have shown that various K vitamins, specifically vitamins K2 and K3, possess antitumor activity on various types of rodent- and human-derived neoplastic cell lines. In the present study, we examined the antitumor effects of vitamins K1, K2 and K3 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vitro and in vivo. Furthermore, we examined the mechanisms of antitumor actions of these vitamins in vitro and in vivo. Although vitamin K1 did not inhibit proliferation of PLC/PRF/5 cells at a 90-microM concentration (the highest tested), vitamins K2 and K3 suppressed proliferation of the cells at concentrations of 90 and 9 microM, respectively. By flow cytometric analysis, it was shown that not only vitamin K1, but also vitamin K2 did not induce apoptosis or cell cycle arrest on PLC/PRF/5 cells. In contrast, vitamin K3 induced G1 arrest, but not apoptosis on PLC/PRF/5 cells. Subsequent in vivo study using subcutaneous HCC-bearing athymic nude mice demonstrated that both vitamins K2 and K3 markedly suppressed the growth of HCC tumors to similar extent. Protein expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4), but not p16INK4a Cdk inhibitor in the tumor was significantly reduced by vitamin K2 or K3 treatment, indicating that vitamins K2 and K3 may induce G1 arrest of cell cycle on PLC/PRF/5 cells in vivo. Taken collectively, vitamins K2 and K3 were able to induce potent antitumor effects on HCC in vitro and in vivo, at least in part, by inducing G1 arrest of the cell cycle. The results indicate that vitamins K2 and K3 may be useful agents for the treatment of patients with HCC.

  3. Involvement of PPARγ in the antitumoral action of cannabinoids on hepatocellular carcinoma

    PubMed Central

    Vara, D; Morell, C; Rodríguez-Henche, N; Diaz-Laviada, I

    2013-01-01

    Cannabinoids exert antiproliferative effects in a wide range of tumoral cells, including hepatocellular carcinoma (HCC) cells. In this study, we examined whether the PPARγ-activated pathway contributed to the antitumor effect of two cannabinoids, Δ9-tetrahydrocannabinol (THC) and JWH-015, against HepG2 and HUH-7 HCC cells. Both cannabinoids increased the activity and intracellular level of PPARγ mRNA and protein, which was abolished by the PPARγ inhibitor GW9662. Moreover, genetic ablation with small interfering RNA (siRNA), as well as pharmacological inhibition of PPARγ decreased the cannabinoid-induced cell death and apoptosis. Likewise, GW9662 totally blocked the antitumoral action of cannabinoids in xenograft-induced HCC tumors in mice. In addition, PPARγ knockdown with siRNA caused accumulation of the autophagy markers LC3-II and p62, suggesting that PPARγ is necessary for the autophagy flux promoted by cannabinoids. Interestingly, downregulation of the endoplasmic reticulum stress-related protein tribbles homolog 3 (TRIB3) markedly reduced PPARγ expression and induced p62 accumulation, which was counteracted by overexpression of PPARγ in TRIB3-knocked down cells. Taken together, we demonstrate for the first time that the antiproliferative action of the cannabinoids THC and JWH-015 on HCC, in vitro and in vivo, are modulated by upregulation of PPARγ-dependent pathways. PMID:23640460

  4. Antitumor effects of deracoxib treatment in 26 dogs with transitional cell carcinoma of the urinary bladder.

    PubMed

    McMillan, Sarah K; Boria, Pedro; Moore, George E; Widmer, William R; Bonney, Patty L; Knapp, Deborah W

    2011-10-15

    OBJECTIVE-To evaluate the antitumor activity and toxic effects of deracoxib, a selective cyclooxygenase-2 inhibitor, in dogs with transitional cell carcinoma (TCC) of the urinary bladder. DESIGN-Clinical trial. Animals-26 client-owned dogs with naturally occurring, histologically confirmed, measurableTCC of the urinary bladder. PROCEDURES-Dogs were treated PO with deracoxib at a dosage of 3 mg/kg/d (1.36 mg/lb/d) as a single-agent treatment for TCC. Tumor response was assessed via radiography, abdominal ultrasonography, and ultrasonographic mapping of urinary bladder masses. Toxic effects of deracoxib administration in dogs were assessed through clinical observations and hematologic and biochemical analyses. RESULTS-Of 24 dogs for which tumor response was assessed, 4 (17%) had partial remission, 17 (71%) had stable disease, and 3 (13%) had progressive disease; initial response could not be assessed in 2 of 26 dogs. The median survival time was 323 days. Median time to progressive disease was 133 days. Renal, hepatic, and gastrointestinal abnormalities attributed to deracoxib administration were noted in 4% (1/26), 4% (1/26), and 19% (5/26) of dogs, respectively. CONCLUSIONS AND CLINICAL RELEVANCE-Results indicated that deracoxib was generally well tolerated by dogs and had antitumor activity against TCC.

  5. Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model.

    PubMed

    Jin, Jun; Choi, Suh Hee; Lee, Jung Eun; Joo, Jin-Deok; Han, Jung Ho; Park, Su-Young; Kim, Chae-Yong

    2017-05-01

    Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo . These results suggest that SMA salt has significant antitumor effects on glioblastoma.

  6. In vitro and in vivo antitumor effects of the essential oil from the leaves of Guatteria friesiana.

    PubMed

    Britto, Anny C S; de Oliveira, Allan C A; Henriques, Raissa M; Cardoso, Gabriella M B; Bomfim, Diogo S; Carvalho, Adriana A; Moraes, Manoel O; Pessoa, Claudia; Pinheiro, Maria L B; Costa, Emmanoel V; Bezerra, Daniel P

    2012-03-01

    Guatteria friesiana (W. A. Rodrigues) Erkens & Maas (synonym Guatteriopsis friesiana W. A. Rodrigues), popularly known as "envireira", is a medicinal plant found in the Brazilian and Colombian Amazon basin that is used in traditional medicine for various purposes. Recent studies on this species have demonstrated antimicrobial activity. In this study, the antitumor activity of the essential oil from the leaves of G. friesiana (EOGF) and its main components ( α-, β-, and γ-eudesmol) were determined using experimental models. In the in vitro study, EOGF and its components α-, β-, and γ-eudesmol displayed cytotoxicity against tumor cell lines, showing IC₅₀ values in the range of 1.7 to 9.4 µg/mL in the HCT-8 and HL-60 cell lines for EOGF, 5.7 to 19.4 µg/mL in the HL-60 and MDA-MB-435 cell lines for α-eudesmol, 24.1 to > 25 µg/mL in the SF-295 and MDA-MB-435 cell lines for β-eudesmol, and 7.1 to 20.6 µg/mL in the SF-295 and MDA-MB-435 cell lines for γ-eudesmol, respectively. In the in vivo study, the antitumor effect of EOGF was evaluated in mice inoculated with sarcoma 180 tumor cells. Tumor growth inhibition rates were 43.4-54.2 % and 6.6-42.8 % for the EOGF treatment by intraperitoneal (50 and 100 mg/kg/day) and oral (100 and 200 mg/kg/day) administration, respectively. The treatment with EOGF did not significantly affect body mass, macroscopy of the organs, or blood leukocyte counts. Based on these results, we can conclude that EOGF possesses significant antitumor activity and has only low systemic toxicity. These effects could be assigned to its components α-, β-, and γ-eudesmol. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis

    PubMed Central

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Background Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Materials and methods Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Results Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. Conclusion The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK

  8. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    PubMed

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  9. Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.

    PubMed

    Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F

    2016-01-01

    Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late

  10. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells.

    PubMed

    Attia, W Y; Gabry, M S; El-Shaikh, K A; Othman, G A

    2008-01-01

    Honey is thought to exhibit a broad spectrum of therapeutic properties including antibacterial, antifungal, cytostatic and anti-inflammatory activity and has been used for the treatment of gastric ulcers, burns, and for storage of skin grafts. The present study investigated the antitumor effect of bee honey against Ehrlich ascites tumor in mice and the possible mode of antitumor action. Peroral administration of mice with honey (10, 100 or 1000 mg/ 100 g BW) every other day for 4 weeks before intraperitoneal inoculation with Ehrlich ascites tumor (EAT, 1 x 10(6) cells) increased the number bone marrow cells as well as peritoneal macrophages, but not peripheral blood leukocytes nor splenocytes. The phagocytic function of macrophages as well as the T- and B-cell functions were also increased. Honey pre-treatment also recovered the total lipids, total proteins, as well as liver and kidney enzyme activities in EAT-bearing mice. In vitro studies on EAT cells demonstrated inhibitory effect of honey on tumor cell proliferation, viability % of tumor cells as well as the size of solid tumor. The present results indicate that the preventive treatment with honey is considerably effective against EAT in mice both in vivo and in vitro. The antitumor activity of honey may occur through the activation of macrophages, T-cells and B-cells.

  11. Quantitative Assay of Pyrazofurin a New Antiviral, Antitumor Antibiotic1

    PubMed Central

    Westhead, J. E.; Price, H. D.

    1974-01-01

    Pyrazofurin, a carbon-linked nucleoside, has been previously reported to possess antiviral and antitumor activity. The antagonistic effect of pyrazofurin against Neurospora crassa has been utilized to develop a quantitative assay for the compound. PMID:4275616

  12. Antitumor activity of 2‑[(2E)‑3,7‑dimethyl‑2,6‑octadienyl]‑6‑methyl‑2,5‑cyclohexadiene‑1,4‑dione isolated from the aerial part of Atractylodes macrocephala in hepatocellular carcinoma.

    PubMed

    Li, Lei; Zhao, Rui; Li, Ying; Wang, Wen-Hui

    2017-11-01

    2‑[(2E)‑3,7‑dimethyl‑2,6‑octadienyl]‑6‑methy l‑2,5‑cyclohexadiene‑1,4‑dione (DMD) is a compound isolated from Atractylodes macrocephala; however, its antitumor activity has not yet been investigated. Therefore, the present study aimed to investigate the antitumor activity of DMD in the H22 mouse hepatocellular carcinoma (HCC) cell line in vitro and in vivo. In the present study, the antiproliferative effects of DMD against H22 cells were evaluated using the MTT assay in vitro. Furthermore, xenograft nude mice were established to evaluate the antitumor effects of DMD on H22 cells in vivo. In addition, apoptosis of H22 cells was determined by flow cytometry with Annexin V‑fluorescein isothiocyanate/propidium iodide staining, and western blotting was subsequently performed to examine the expression levels of proteins associated with apoptosis, and c‑Jun N‑terminal kinase (JNK), p38 and extracellular signal‑regulated kinase (ERK)1/2 mitogen‑activated protein kinases (MAPKs). The results demonstrated that DMD exerts an antitumor effect against H22 cells in vitro and in vivo, and the underlying mechanism may be associated with mitochondria‑mediated apoptosis through upregulation of cytochrome c, cleaved (c)‑caspase‑3, c‑caspase‑9, c‑caspase‑7 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein, and downregulation of Bcl‑2. In addition, the antitumor effects of DMD against H22 cells may be also associated with the MAPK signaling pathway via increased p‑JNK and reduced p‑ERK1/2 expression. In conclusion, the present study demonstrated the DMD exerts antitumor effects against HCC in mice and provides a scientific basis for the clinical use of DMD for the treatment of HCC.

  13. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  14. Analysis of Blood Serum by the Method of Refractometry in Antitumor Therapy in Patients with Multiple Myeloma

    NASA Astrophysics Data System (ADS)

    Plotnikova, L. V.; Polyanichko, A. M.; Kobeleva, M. O.; Nikekhin, A. A.; Uspenskaya, M. V.; Kayava, A. V.; Garifullin, A. D.; Voloshin, S. V.

    2018-01-01

    The serum of patients with multiple myeloma was examined by refractometric methods before and after the course of antitumor therapy. It was found that the amount of protein in the serum of patients with multiple myeloma, determined by the value of the serum refractive index, tended to decrease after the course of treatment. The value of the refractive index of blood serum can be used as an additional criterion for assessing the dynamics of changes in blood-serum properties during antitumor therapy.

  15. Responsiveness of senescent mice to the antitumor properties of Corynebacterium parvum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhas, J.M.; Ullrich, R.L.

    1976-01-01

    The antitumor properties of Corynebacterium parvum have been studied in young (3- to 8-month-old) and aged (18 or more months old) BALB/c mice given s.c., i.m., i.p., or i.v. transplants of the highly malignant, weakly immunogenic line 1 lung carcinoma, and aged (25- to 33-month-old) BALB/c mice bearing primary mammary tumors. These aged BALB/c mice were shown to be less immunoresponsive than their younger counterparts, and this, in combination with nonimmunological factors, made them more sensitive to the lethal effects of the line 1 carcinoma. Correspondingly, C. parvum proved to have less antitumor activity in aged mice than it didmore » in young mice. In spite of this relatively weaker, antitumor activity for C. parvum in aged mice, repeated injections of this agent were able to induce temporary regressions of the primary mammary tumors studied and thereby prolong survival time.« less

  16. Potential Antitumor Effects of Pomegranates and Its Ingredients.

    PubMed

    Rahmani, Arshad H; Alsahli, Mohammed A; Almatroodi, Saleh A

    2017-01-01

    The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy.

  17. Evaluation of Bufadienolides as the Main Antitumor Components in Cinobufacin Injection for Liver and Gastric Cancer Therapy.

    PubMed

    Wei, Xiaolu; Si, Nan; Zhang, Yuefei; Zhao, Haiyu; Yang, Jian; Wang, Hongjie; Wang, Lianmei; Han, Linyu; Bian, Baolin

    2017-01-01

    Cinobufacin injection, also known as huachansu, is a preparation form of Cinobufacini made from Cinobufacin extract liquid. Despite that Cinobufacin injection is shown to shrink liver and gastric tumors, improving patient survival and life quality, the effective components in Cinobufacin remain elusive. In this study, we aim to screen antitumor components from Cinobufacin injection to elucidate the most effective antitumor components for treatment of liver and gastric cancers. High performance liquid chromatography (HPLC) and LC-MS/MS analysis were used to separate and determine the components in Cinobufacin injection. Inhibition rates of various components in Cinobufacin injection on liver and gastric cancer cells were determined with MTT assay; Hepatocellular carcinoma and gastric cancer models were used to assess the antitumor effect of the compounds in vivo. The major constituents in Cinobufacin injection include peptides, nucleic acids, tryptamines and bufotalins. MTT assay revealed that bufadienolides had the best antitumor activity, with peptides being the second most effective components. Bufadienolides showed significant inhibition rates on gastric and hepatocellular tumour growth in vivo. Bufadienolides are the most effective components in Cinobufacini injection for the treatment of liver and gastric cancers. This discovery can greatly facilitate further research in improving the therapeutic effects of Cinobufacin injection, meanwhile reducing its adverse reaction.

  18. Enhanced antitumor reactivity of tumor-sensitized T cells by interferon alfa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vander Woude, D.L.; Wagner, P.D.; Shu, S.

    Tumor-draining lymph node cells from mice bearing the methylcholanthrene-induced MCA 106 tumors can be sensitized in vitro to acquire antitumor reactivity. We examined the effect of interferon alfa on the function of cells that underwent in vitro sensitization in adoptive immunotherapy. Interferon alfa increased the antitumor reactivity of in vitro sensitized cells in the treatment of MCA 106 pulmonary metastases. This effect was evident in irradiated mice, indicating that a host response to the interferon alfa was not required. Interferon alfa treatment increased class I major histocompatibility complex antigen expression on tumor cells and increased their susceptibility to lysis bymore » in vitro sensitized cells. These results suggest that interferon alfa enhancement of adoptive immunotherapy was mediated by its effect on tumor cells. Interferon alfa may be a useful adjunct to the adoptive immunotherapy of human cancer.« less

  19. The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0365 TITLE: The Therapeutic Effect of the Antitumor Drug 11beta and Related Molecules on Polycystic Kidney Disease...Molecules on Polycystic Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0365 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John Essigmann, Robert Croy, Bogdan...polycystic kidney disease (PKD). In collaboration with Somlo group at Yale University, we have already shown that two parent compounds, 11β-dichloro and 11β

  20. Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.

    PubMed

    Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2015-06-15

    The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Anti-Tumor Necrosis Factor Alpha Agents: A Systematic Review and Meta-analysis.

    PubMed

    Yang, Chen; Huang, Junlin; Huang, Xiaowen; Huang, Shaozhuo; Cheng, Jiaxin; Liao, Weixin; Chen, Xuewen; Wang, Xueyi; Dai, Shixue

    2018-05-12

    The association between anti-tumor necrosis factor alpha agents and the risk of lymphoma in patients with inflammatory bowel disease has already been sufficiently reported. However, the results of these studies are inconsistent. Hence, this analysis was conducted to investigate whether anti-tumor necrosis factor alpha agents can increase the risk of lymphoma in inflammatory bowel disease patients. MEDLINE, EMBASE and the Cochrane Library were searched to identify relevant studies which evaluated the risk of lymphoma in inflammatory bowel disease patients treated with anti-tumor necrosis factor alpha agents. A random-effects meta-analysis was performed to calculate the pooled incidence rate ratios as well as risk ratios. Twelve studies comprising 285811 participants were included. The result showed that there was no significantly increased risk of lymphoma between anti-tumor necrosis factor alpha agents exposed and anti-tumor necrosis factor alpha agents unexposed groups (random effects: incidence rate ratio [IRR], 1.43 95%CI, 0.91-2.25, p= 0.116; random effects: risk ratio [RR], 0.83 95%CI, 0.47-1.48, p=0.534). However, monotherapy of anti-tumor necrosis factor alpha agents (random effects: IRR=1.65, 95%CI, 1.16-2.35; p=0.006; random effects: RR=1.00, 95%CI, 0.39-2.59; p=0.996) or combination therapy (random effects: IRR=3.36, 95%CI, 2.23-5.05; p< 0.001; random effects: RR=1.90, 95%CI, 0.66-5.44; p=0.233) can significantly increase the risk of lymphoma. Exposition of anti-tumor necrosis factor alpha agents in patients with inflammatory bowel disease is not associated with a higher risk of lymphoma. Combination therapy and anti-tumor necrosis factor alpha agents monotherapy can significantly increase the risk of lymphoma in patients with inflammatory bowel disease.

  2. Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity

    PubMed Central

    Guo, Gang; Yu, Miao; Xiao, Wei; Celis, Esteban; Cui, Yan

    2017-01-01

    Mutations in tumor suppressor p53 remain a vital mechanism of tumor escape from apoptosis and senescence. Emerging evidence suggests that p53 dysfunction also fuels inflammation and supports tumor immune evasion, thereby serving as an immunological driver of tumorigenesis. Therefore, targeting p53 in the tumor microenvironment (TME) also represents an immunologically desirable strategy for reversing immunosuppression and enhancing antitumor immunity. Using a pharmacological p53 activator nutlin-3a, we show that local p53 activation in TME comprising overt tumor infiltrating leukocytes (TILeus) induces systemic antitumor immunity and tumor regression, but not in TME with scarce TILeus, such as B16 melanoma. Maneuvers that recruit leukocytes to TME, such as TLR3 ligand in B16 tumors, greatly enhanced nutlin-induced antitumor immunity and tumor control. Mechanistically, nutlin-3a-induced antitumor immunity was contingent on two non-redundant but immunologically synergistic p53-dependent processes: reversal of immunosuppression in TME and induction of tumor immunogenic cell death (ICD), leading to activation and expansion of polyfunctional CD8 CTLs and tumor regression. Our study demonstrates that unlike conventional tumoricidal therapies, which rely on effective p53 targeting in each tumor cell and often associate with systemic toxicity, this immune-based strategy requires only limited local p53 activation to alter the immune landscape of TME and subsequently amplify immune response to systemic antitumor immunity. Hence, targeting the p53 pathway in TME can be exploited to reverse immunosuppression and augment therapeutic benefits beyond tumoricidal effects to harness tumor-specific, durable, and systemic antitumor immunity with minimal toxicity. PMID:28280037

  3. [The Antitumor Effects of Fisetin on Ovarian Cancer in vitro and in vivo.

    PubMed

    Meng, Yi-Bo; Xiao, Chao; Chen, Xin-Lian; Bai, Peng; Yao, Yuan; Wang, He; Xiao, Xue

    2016-11-01

    We attempted to survey the inhibit effect of fisetin with human ovarian cancer cell line SKOV3 and the xenograft and the mechanism of the effect. The ovarian cancer cell line SKOV3 treated by fisetin were observed directly under the transmission electronmicroscope (TEM);MTT assay was used to determine cell viability.Flow cytometry was used to analyze the apoptosis in ovarian cancer cell line SKOV3.In addition,we established an ovarian cancer athymicnude rat model.We observed the neoplasia and progression after fisetin treatment.The proliferation and apoptosis of athymic nude rat model were evaluated by testing Bcl-2,Bax and poly-ADP-ribose polyerase (PARP) expression through Western blot. The chromatin were brought together and the apoptotic bodies were detected in SKOV3 cells under transmission electron microscope after the treatment by fisetin.MTT assay indicated that fisetin inhibited ovarian cancer cell proliferation in a dose-dependent manner.The flow cytometry data demonstrated that the apoptosis might induct in SKOV3 cells after treatment by fisetin.In athymic rude rat model,under the influence of fisetin,tumor volume and tumor mass were significantly decreased.Western blot demonstrated that treatment with higher concentration of fisetin resulted in a significant decrease of Bcl-2 and a significant increase of Bax.The apoptosis proteins PARP was cut apparently. The results provided the first insight into antitumor anti-proliferative and the induction of apoptosis efficacy of fisetin against ovarian cancer in vitro and in vivo .All data suggested a safe promising therapeutic potential of fisetin in ovarian cancer treatment.

  4. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18.

    PubMed

    Hu, Biliang; Ren, Jiangtao; Luo, Yanping; Keith, Brian; Young, Regina M; Scholler, John; Zhao, Yangbing; June, Carl H

    2017-09-26

    The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR) T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE) CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors. Copyright © 2017. Published by Elsevier Inc.

  5. Antitumor effect of the integrin α4 signaling inhibitor JK273 in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Lu, Thien Nhan; Ganganna, Bogonda; Pham, Thuy Trang; Vo, Anh Van; Lu, Thien Phuc; Nguyen, Huong-Giang Thi; Nguyen, My-Nuong Thi; Huynh, Phuong Nguyen; Truong, Ngoc Tuyen; Lee, Jongkook

    2017-09-16

    Lung cancer accounts for the highest death rate among cancers worldwide, with most patients being diagnosed with non-small cell lung cancer (NSCLC), urging more effective therapies. We report that JK273, a pyrrolo[2,3-d]pyrimidine analog, which inhibits α4 integrin signaling, showed a selective cytotoxic effect against HCI-H460 NSCLC cells, with an IC 50 of 0.98 ± 0.15 μM, but showed less sensitivity to fibroblasts with a selectivity index (SI) greater than 30. This effect was attributed to cell cycle arrest at S phase by JK273 treatment, resulting in the apoptosis of NCI-H460 cells, further confirmed by exposing phosphatidylserine and morphological changes. Taken together with the previous study of JK273 inhibiting cell migration, we propose that JK273 could serve as an antitumor compound to specifically target cancer cells but not non-cancerous cells by triggering programmed cell death, in addition to anti-metastatic effects in cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  7. Potential Antitumor Effects of Pomegranates and Its Ingredients

    PubMed Central

    Rahmani, Arshad H.; Alsahli, Mohammed A.; Almatroodi, Saleh A.

    2017-01-01

    The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy. PMID:28989248

  8. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms.

    PubMed

    Araya, Cindy; Lomonte, Bruno

    2007-03-01

    The effects of two cationic synthetic peptides, derived from the C-terminal region of Lys49 phospholipase A2 homologues from snake venoms, upon various murine tumor cell lines (B16 melanoma, EMT6 mammary carcinoma, S-180 sarcoma, P3X myeloma, tEnd endothelial cells) were evaluated. The peptides are 13-mers derived from Agkistrodon piscivorus piscivorus Lys49 PLA2 (p-AppK: KKYKAYFKLKCKK) and Bothrops asper Lys49 myotoxin II (pEM-2[D]: KKWRWWLKALAKK), respectively, in the latter case with slight modifications and with all-D amino acids. All tumor cells tested were susceptible to the lytic action of the peptides. The susceptibility of tumor cell lines was not higher than that of C2C12 skeletal muscle myoblasts, utilized as a non-transformed cell line control. However, in a murine model of subcutaneous solid tumor growth of EMT6 mammary carcinoma, the intraperitoneal administration of pEM-2[D] caused a tumor mass reduction of 36% (p<0.05), which was of similar magnitude to that achieved by the administration of paclitaxel, an antitumor drug in clinical use. Thus, the C-terminal peptides of Lys49 phospholipase A2 homologues present antitumor effects that might be of interest in developing therapeutic strategies against cancer.

  9. Cluster Intradermal DNA Vaccination Rapidly Induces E7-specific CD8+ T Cell Immune Responses Leading to Therapeutic Antitumor Effects

    PubMed Central

    Peng, Shiwen; Trimble, Cornelia; Alvarez, Ronald D.; Huh, Warner K.; Lin, Zhenhua; Monie, Archana; Hung, Chien-Fu; Wu, T.-C.

    2010-01-01

    Intradermal administration of DNA vaccines via a gene gun represents a feasible strategy to deliver DNA directly into the professional antigen-presenting cells (APCs) in the skin. This helps to facilitate the enhancement of DNA vaccine potency via strategies that modify the properties of APCs. We have previously demonstrated that DNA vaccines encoding human papillomavirus type 16 (HPV-16) E7 antigen linked to calreticulin (CRT) are capable of enhancing the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. It has also been shown that cluster (short-interval) DNA vaccination regimen generates potent immune responses in a minimal timeframe. Thus, in the current study we hypothesize that the cluster intradermal CRT/E7 DNA vaccination will generate significant antigen-specific CD8+ T cell infiltrates in E7-expressing tumors in tumor-bearing mice, leading to an increase in apoptotic tumor cell death. We found that cluster intradermal CRT/E7 DNA vaccination is capable of rapidly generating a significant number of E7-specific CD8+ T cells, resulting in significant therapeutic antitumor effects in vaccinated mice. We also observed that cluster intradermal CRT/E7 DNA vaccination in the presence of tumor generates significantly higher E7-specific CD8+ T cell immune responses in the systemic circulation as well as in the tumors. In addition, this vaccination regimen also led to significantly lower levels of CD4+Foxp3+ T regulatory cells and myeloid suppressor cells compared to vaccination with CRT DNA in peripheral blood and in tumor infiltrating lymphocytes, resulting in an increase in apoptotic tumor cell death. Thus, our study has significant potential for future clinical translation. PMID:18401437

  10. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091

    PubMed Central

    Canela, María-Dolores; Noppen, Sam; Bueno, Oskía; Prota, Andrea E.; Bargsten, Katja; Sáez-Calvo, Gonzalo; Jimeno, María-Luisa; Benkheil, Mohammed; Ribatti, Domenico; Velázquez, Sonsoles; Camarasa, María-José; Fernando Díaz, J.; Steinmetz, Michel O.; Priego, Eva-María; Pérez-Pérez, María-Jesús; Liekens, Sandra

    2017-01-01

    We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3’’-amino-4’’-methoxyphenyl)-1-(5’-methoxy-3’,4’-methylendioxyphenyl)-2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-to-straight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM. In addition, TUB091 displayed vascular disrupting effects in vitro and in the chicken chorioallantoic membrane (CAM) assay at low nanomolar concentrations. A water-soluble L-Lys-L-Pro derivative of TUB091 (i.e. TUB099) showed potent antitumor activity in melanoma and breast cancer xenograft models by causing rapid intratumoral vascular shutdown and massive tumor necrosis. TUB099 also displayed anti-metastatic activity similar to that of combretastatin A4-phosphate. Our data indicate that this novel class of chalcones represents interesting lead molecules for the design of vascular disrupting agents (VDAs). Moreover, we provide evidence that our prodrug approach may be valuable for the development of anti-cancer drugs. PMID:27224920

  11. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function.

    PubMed

    Thompson, Matthew G; Navarro, Flor; Chitsike, Lennox; Ramirez, Luis; Kovacs, Elizabeth J; Watkins, Stephanie K

    2016-12-01

    Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    PubMed

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  13. YAP is essential for Treg mediated suppression of anti-tumor immunity.

    PubMed

    Ni, Xuhao; Tao, Jinhui; Barbi, Joseph; Chen, Qian; Park, Benjamin V; Li, Zhiguang; Zhang, Nailing; Lebid, Andriana; Ramaswamy, Anjali; Wei, Ping; Zheng, Ying; Zhang, Xuehong; Wu, Xingmei; Vignali, Paolo D A; Yang, Cuiping; Li, Huabin; Pardoll, Drew; Lu, Ling; Pan, Duojia; Pan, Fan

    2018-06-15

    Regulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. However, the pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. Herein, we report that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. This potentiation stemmed from YAP-dependent upregulation of Activin signaling which amplifies TGFβ/SMAD activation in Tregs. YAP-deficiency resulted in dysfunctional Tregs unable to suppress anti-tumor immunity or promote tumor growth in mice. Chemical YAP antagonism and knockout or blockade of the YAP-regulated Activin Receptor similarly improved anti-tumor immunity. Thus we identify YAP as an unexpected amplifier of a Treg-reinforcing pathway with significant potential as an anti-cancer immunotherapeutic target. Copyright ©2018, American Association for Cancer Research.

  14. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.

    PubMed

    Shi, Shujing; Wang, Rui; Chen, Yitian; Song, Haizhu; Chen, Longbang; Huang, Guichun

    2013-01-01

    Cytokine-induced killer cells (CIK cells) are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. We combined recombinant human endostatin (rh-endostatin) and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells therapy against lung carcinomas and unmask the mechanisms of the

  15. Combining Antiangiogenic Therapy with Adoptive Cell Immunotherapy Exerts Better Antitumor Effects in Non-Small Cell Lung Cancer Models

    PubMed Central

    Shi, Shujing; Wang, Rui; Chen, Yitian; Song, Haizhu; Chen, Longbang; Huang, Guichun

    2013-01-01

    Introduction Cytokine-induced killer cells (CIK cells) are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. Methods We combined recombinant human endostatin (rh-endostatin) and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. Results Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. Conclusions Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells therapy against lung

  16. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    PubMed

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  17. A chemical perspective on the anthracycline antitumor antibiotics.

    PubMed Central

    Abdella, B R; Fisher, J

    1985-01-01

    The anthracycline antitumor antibiotics occupy a central position in the chemotherapeutic control of cancer. They remain, however, antibiotics of the last resort and thus exhibit toxicity both to the neoplasm and to the host organism. As part of the continuing effort to dissociate the molecular processes responsible for these two separate toxicities, attention has been drawn to the intrinsic redox capacity of their tetrahydronapthacenedione aglycone moiety, and to the possible expression of this redox activity against those biomolecules for which anthracyclines have a particular affinity (polynucleotides and membranes). This review is a synopsis of the present trends and thoughts concerning this relationship, written from the point of view of the intrinsic chemical competence of the anthracyclines and their metabolites. While our ignorance is profound--the precise molecular locus of the antitumor expression of the anthracyclines remains unknown--there is now evidence that the relationship of the anthracyclines to the DNA (possibly requiring enzymatic cooperation) and to the membranes, with neither event requiring redox chemistry, may comprise the core of the antitumor effects. The adventitious expression of the redox activity under either aerobic conditions (in which circumstances molecular oxygen is reduced) or anaerobic conditions (in which circumstances potentially reactive aglycone tautomers are obtained) is therefore thought to contribute more strongly to the host toxicity. Yet little remains proven, and the understanding of the intrinsic chemical competence can do little more than lightly define the boundaries within which are found these and numerous other working hypotheses. PMID:3913602

  18. Optimization of antitumor treatment conditions for transcutaneous CO2 application: An in vivo study.

    PubMed

    Ueha, Takeshi; Kawamoto, Teruya; Onishi, Yasuo; Harada, Risa; Minoda, Masaya; Toda, Mitsunori; Hara, Hitomi; Fukase, Naomasa; Kurosaka, Masahiro; Kuroda, Ryosuke; Akisue, Toshihiro; Sakai, Yoshitada

    2017-06-01

    Carbon dioxide (CO2) therapy can be applied to treat a variety of disorders. We previously found that transcutaneous application of CO2 with a hydrogel decreased the tumor volume of several types of tumors and induced apoptosis via the mitochondrial pathway. However, only one condition of treatment intensity has been tested. For widespread application in clinical antitumor therapy, the conditions must be optimized. In the present study, we investigated the relationship between the duration, frequency, and treatment interval of transcutaneous CO2 application and antitumor effects in murine xenograft models. Murine xenograft models of three types of human tumors (breast cancer, osteosarcoma, and malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma) were used to assess the antitumor effects of transcutaneous CO2 application of varying durations, frequencies, and treatment intervals. In all human tumor xenografts, apoptosis was significantly induced by CO2 treatment for ≥10 min, and a significant decrease in tumor volume was observed with CO2 treatments of >5 min. The effect on tumor volume was not dependent on the frequency of CO2 application, i.e., twice or five times per week. However, treatment using 3- and 4-day intervals was more effective at decreasing tumor volume than treatment using 2- and 5-day intervals. The optimal conditions of transcutaneous CO2 application to obtain the best antitumor effect in various tumors were as follows: greater than 10 min per application, twice per week, with 3- and 4-day intervals, and application to the site of the tumor. The results suggest that this novel transcutaneous CO2 application might be useful to treat primary tumors, while mitigating some side effects, and therefore could be safe for clinical trials.

  19. Enhanced antitumor effect of YM872 and AG1296 combination treatment on human glioblastoma xenograft models.

    PubMed

    Watanabe, Takashi; Ohtani, Toshiyuki; Aihara, Masanori; Ishiuchi, Shogo

    2013-04-01

    Blockade of Ca(++)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) inhibits the proliferation of human glioblastoma by inhibiting Akt phosphorylation, which is independent of the phosphatidylinositol 3-kinase pathway. Inhibiting platelet-derived growth factor receptor (PDGFR)-mediated phosphorylation causes growth inhibition in glioblastoma cells. The authors of this study investigated the effects of YM872 and AG1296, singly and in combination and targeting different pathways upstream of Akt, on Akt-mediated tumor growth in glioblastoma cells in vivo and in vitro. The expression of AMPAR, PDGFR, and c-kit in glioblastoma cells was analyzed via immunofluorescence. Glioblastoma cells, both in culture and in xenografts grown in mice, were treated with YM872 and AG1296, singly or in combination. Inhibition of tumor growth was observed after treatment in the xenograft model. Cell proliferation assays were performed using anti-Ki 67 antibody in vivo and in vitro. The CD34-positive tumor vessel counts within the vascular hot spots of tumor specimens were evaluated. Phosphorylation of Akt was studied using Western blot analysis. Combined administration of YM872 and AG1296 had a significant enhanced effect on the inhibition of cell proliferation and reduction of tumor vascularity in the xenograft model. These agents singly and in combination demonstrated a significant reduction of Akt phosphorylation at Ser473 and inhibition of tumor proliferation in vitro, although combined administration had no enhanced antitumor effects. The strongly enhanced antitumor effect of this combination therapy in vivo rather than in vitro may be attributable to disruption of the aberrant vascular niche. This combination therapy might provide substantial benefits to patients with glioblastoma.

  20. Comparative study of sister chromatid exchange induction and antitumor effects by homo-aza-steroidal esters of [p-[bis(2-chloroethyl)amino]phenyl]butyric acid.

    PubMed

    Camoutsis, C; Catsoulacos, D; Karayiann, V; Papageorgiou, A; Mourelatos, D; Mioglou, E; Kritsi, Z; Nikolaropoulos, S

    2001-01-01

    The present work was undertaken in order to test the hypothesis that the Sister Chromatid Exchange (SCE) assay in vitro can be used for the prediction of in vivo tumor response to newly synthesized potential chemotherapeutics. The effect of three homo-aza-steroidal esters containing the -CONH- in the steroidal nucleus, 1, 2, and 3 on SCE rates and on cell kinetics in cultured human lymphocytes was studied. The antitumor activity of these compounds was tested on leukemia P388- and leukemia L1210-bearing mice. The three substances induced statistically significant enhancement of SCEs and of cell division delays. Compounds 1 and 3 were identified, on a molar basis, as more effective inducers of SCEs and of cell division delays compared with compound 2. Compounds 1 and 3 had upon both experimental tumors better therapeutic effects compared with compound 2 at equitoxic doses. Therefore, the order of the antitumor effectiveness of the three compounds coincided with the order of the cytogenetic effects they induced.

  1. [Anti-tumor effects of DDP-PLLA-CNTs on human cholangiocarcinoma cell line in vitro].

    PubMed

    Li, Maolan; Lu, Wei; Zhang, Fei; Ding, Qichen; Wu, Xiangsong; Tan, Zhujun; Wu, Wenguang; Weng, Hao; Wang, Xuefeng; Shi, Weibin; Dong, Ping; Gu, Jun; Liu, Yingbin

    2014-11-04

    To explore the antitumor effects of DDP-PLLA-CNTs on human cholangiocarcinoma cell line. DDP-PLLA-CNTs were prepared with the method of ultrasound emulsification. The morphology of DDP-PLLA-CNTs was determined by scanning electron microscope (SEM). And its drug loading and drug release curve in vitro was detected by UV-Vis-NIR spectrophotometer. CCK8 was used to test the cytotoxic effects of DDP-PLLA-CNTs at different concentrations on QBC939 cell proliferation.Flow cytometry was employed to measure the changes of apoptotic rate. With excellent controlled-release characteristic of in vitro drug release, DDP-PLLA-CNTs inhibited the proliferation and significantly increased the apoptotic rate of QBC939 cell line. DDP-PLLA-CNTs have drug sustained-release characteristics and can significantly inhibit the proliferation of QBC939 cell line.

  2. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  3. Down-regulation of MDR1 by Ad-DKK3 via Akt/NFκB pathways augments the anti-tumor effect of temozolomide in glioblastoma cells and a murine xenograft model.

    PubMed

    Fujihara, Toshitaka; Mizobuchi, Yoshifumi; Nakajima, Kohei; Kageji, Teruyoshi; Matsuzaki, Kazuhito; Kitazato, Keiko T; Otsuka, Ryotaro; Hara, Keijiro; Mure, Hideo; Okazaki, Toshiyuki; Kuwayama, Kazuyuki; Nagahiro, Shinji; Takagi, Yasushi

    2018-05-19

    Glioblastoma multiforme (GBM) is the most malignant of brain tumors. Acquired drug resistance is a major obstacle for successful treatment. Earlier studies reported that expression of the multiple drug resistance gene (MDR1) is regulated by YB-1 or NFκB via the JNK/c-Jun or Akt pathway. Over-expression of the Dickkopf (DKK) family member DKK3 by an adenovirus vector carrying DKK3 (Ad-DKK3) exerted anti-tumor effects and led to the activation of the JNK/c-Jun pathway. We investigated whether Ad-DKK3 augments the anti-tumor effect of temozolomide (TMZ) via the regulation of MDR1. GBM cells (U87MG and U251MG), primary TGB105 cells, and mice xenografted with U87MG cells were treated with Ad-DKK3 or TMZ alone or in combination. Ad-DKK3 augmentation of the anti-tumor effects of TMZ was associated with reduced MDR1 expression in both in vivo and in vitro studies. The survival of Ad-DKK3-treated U87MG cells was inhibited and the expression of MDR1 was reduced. This was associated with the inhibition of Akt/NFκB but not of YB-1 via the JNK/c-Jun- or Akt pathway. Our results suggest that Ad-DKK3 regulates the expression of MDR1 via Akt/NFκB pathways and that it augments the anti-tumor effects of TMZ in GBM cells.

  4. Apicidin and Docetaxel Combination Treatment Drives CTCFL Expression and HMGB1 Release Acting as Potential Antitumor Immune Response Inducers in Metastatic Breast Cancer Cells12

    PubMed Central

    Buoncervello, Maria; Borghi, Paola; Romagnoli, Giulia; Spadaro, Francesca; Belardelli, Filippo; Toschi, Elena; Gabriele, Lucia

    2012-01-01

    Currently approved combination regimens available for the treatment of metastatic tumors, such as breast cancer, have been shown to increase response rates, often at the cost of a substantial increase in toxicity. An ideal combination strategy may consist of agents with different mechanisms of action leading to complementary antitumor activities and safety profiles. In the present study, we investigated the effects of the epigenetic modulator apicidin in combination with the cytotoxic agent docetaxel in tumor breast cell lines characterized by different grades of invasiveness. We report that combined treatment of apicidin and docetaxel, at low toxicity doses, stimulates in metastatic breast cancer cells the expression of CTCF-like protein and other cancer antigens, thus potentially favoring an antitumor immune response. In addition, apicidin and docetaxel co-treatment specifically stimulates apoptosis, characterized by an increased Bax/Bcl-2 ratio and caspase-8 activation. Importantly, following combined exposure to these agents, metastatic cells were also found to induce signals of immunogenic apoptosis such as cell surface expression of calreticulin and release of considerable amounts of high-mobility group box 1 protein, thus potentially promoting the translation of induced cell death into antitumor immune response. Altogether, our results indicate that the combined use of apicidin and docetaxel, at a low toxicity profile, may represent a potential innovative strategy able to activate complementary antitumor pathways in metastatic breast cancer cells, associated with a potential control of metastatic growth and possible induction of antitumor immunity. PMID:23019417

  5. Potent antitumor bifunctional DNA alkylating agents, synthesis and biological activities of 3a-aza-cyclopenta[a]indenes.

    PubMed

    Kakadiya, Rajesh; Dong, Huajin; Lee, Pei-Chih; Kapuriya, Naval; Zhang, Xiuguo; Chou, Ting-Chao; Lee, Te-Chang; Kapuriya, Kalpana; Shah, Anamik; Su, Tsann-Long

    2009-08-01

    A series of bifunctional DNA interstrand cross-linking agents, bis(hydroxymethyl)- and bis(carbamates)-8H-3a-azacyclopenta[a]indene-1-yl derivatives were synthesized for antitumor evaluation. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human tumor xenografts in vivo. Furthermore, these derivatives have little or no cross-resistance to either Taxol or Vinblastine. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft by 13a,b and 14g,h and significant suppression against prostate adenocarcinoma PC3 xenograft by 13b were achieved at the maximum tolerable dose with relatively low toxicity. In addition, these agents induce DNA interstrand cross-linking and substantial G2/M phase arrest in human non-small lung carcinoma H1299 cells. The current studies suggested that these agents are promising candidates for preclinical studies.

  6. Antitumor effect of the selective COX-2 inhibitor celecoxib on endometrial adenocarcinoma in vitro and in vivo

    PubMed Central

    XIAO, YITAO; TENG, YINCHENG; ZHANG, RUI; LUO, LAIMIN

    2012-01-01

    The aim of this study was to investigate the antitumor effect of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib on endometrial adenocarcinoma in mice. Various amounts of celecoxib were added to HEC-1B cells in vitro for different durations. Cell cycle and apoptosis were analyzed using flow cytometry. HEC-1B cytostasis, invasiveness and COX-2 expression were examined by MTT, transwell cabin and western blot assays, respectively. An in vivo human endometrial adenocarcinoma model was established in BALB/c nude mice using HEC-1B cells. For two weeks, the celecoxib groups were treated with celecoxib 2 or 4 mg/day via oral administration and the control group was treated with saline. Tumor volume, growth curves and the inhibition rate (IR) were recorded. COX-2 expression levels and microvessel density (MVD) were investigated using an immunohistochemical technique. In the celecoxib groups, cell proliferation was significantly inhibited in a concentration- and time-dependent manner. The proportion of cells in the G0/G1 phase increased within 24 h after the addition of celecoxib whereas those in the S and G2/M phases decreased with an increasing apoptosis peak (sub-G1) and apoptosis rate. The microporous Matrigel-coated polycarbonate membrane of the Transwell cabin was traversable for the HEC-1B cells. The invasiveness was attenuated when the celecoxib concentration was increased. The tumor growth was also greatly inhibited when the celecoxib concentration was increased. The tumor IRs were 32.4 and 48.6% following treatment with 2 and 4 mg/day celecoxib, respectively. COX-2 was mainly expressed in the cytoplasm of the tumor cells. In the celecoxib groups, the COX-2 expression levels were concentration-dependent. The COX-2 expression level and MVD decreased when the celecoxib concentration was increased. The results of dependability analysis revealed that the COX-2 expression level was positively correlated with MVD (r=0.921; P<0.01). The antitumor effect of

  7. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.

    PubMed

    Deslouches, Berthony; Di, Y Peter

    2017-07-11

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  8. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications

    PubMed Central

    Deslouches, Berthony; Di, Y. Peter

    2017-01-01

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs. PMID:28422728

  9. Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism

    PubMed Central

    Li, Wei; Xu, Qi; He, Yu-Fang; Liu, Ying; Yang, Shu-Bao; Wang, Zi; Zhang, Jing; Zhao, Li-Chun

    2015-01-01

    Although previous studies confirmed that steaming and the fermentation process could significantly improve the cognitive-enhancement and neuroprotective effects of Codonopsis lanceolata, the anti-tumor efficacy of steamed C. lanceolata (SCL) and what mechanisms are involved remain largely unknown. The present study was designed to evaluate the anti-tumor effect in vivo of SCL in H22 tumor-bearing mice. The results clearly indicated that SCL could not only inhibit the tumor growth, but also prolong the survival time of H22 tumor-bearing mice. Besides, the serum levels of cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-2 (IL-2), were enhanced by SCL administration. The observations of Hoechst 33258 staining demonstrated that SCL was able to induce tumor cell apoptosis. Finally, immunohistochemical analysis revealed that SCL treatment significantly increased Bax expression and decreased Bcl-2 and vascular endothelial growth factor (VEGF) expression of H22 tumor tissues in a dose-dependent manner. Moreover, LC/MS analysis of SCL indicated that it mainly contained lobetyolin and six saponins. Taken all together, the findings in the present study clearly demonstrated that SCL inhibited the H22 tumor growth in vivo at least partly via improving the immune functions, inducing apoptosis and inhibiting angiogenesis. PMID:26426041

  10. Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine-docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both in vitro and in vivo.

    PubMed

    Zhang, Jiulong; Yang, Chunrong; Pan, Shuang; Shi, Menghao; Li, Jie; Hu, Haiyang; Qiao, Mingxi; Chen, Dawei; Zhao, Xiuli

    2018-11-01

    Mitochondrial-targeting therapy was considered to be a promising approach for the efficient treatment of cancer while positive charge induced nonspecific cytotoxicity severely limits its application. To overcome this drawback, a novel mitochondria targeted conjugate triphenylphosphine-docetaxel (TD) has been synthesized successfully and incorporated it into liposomes (EPSLP/TD), which possessed excellent pH-sensitive characteristic, EphA 10 mediated active targetability as well as mitochondria-targeting capability. EPSLP/TD was characterized to have a small particle size, high-encapsulation efficiency and excellent pH-sensitive characteristic. Compared with DTX-loaded liposomes (EPSLP/DTX), EPSLP/TD possessed higher cytotoxicity against MCF-7 cell line. Mitochondrial-targeting assay demonstrated mitochondria-targeting moiety triphenylphosphine (TPP) could efficiently deliver DTX to mitochondria. Western immunoblotting assay indicated that EPSLP/TD could efficiently deliver antitumor drug to mitochondria and induce cell apoptosis via mitochondria-mediated apoptosis pathway. In vivo antitumor study demonstrated EPSLP/TD owed excellent in vivo antitumor activity. Histological assay demonstrated EPSLP/TD showed strongly apoptosis inducing effect, anti-proliferation effect and anti-angiogenesis effect. This work investigated the potential of hierarchical targeting pH-sensitive liposomes is a suitable carrier to activate mitochondria-mediated apoptosis pathway for cancer therapy.

  11. Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro.

    PubMed

    Wang, Li; Li, Yulin; Zhu, Lidan; Yin, Ran; Wang, Ren; Luo, Xiaohu; Li, Yongfu; Li, Yanan; Chen, Zhengxing

    2016-07-01

    Polysaccharides purified from rice bran show antitumor activity against tumor cells, yet the mechanism of this action remains poorly understood. To address this issue, our study evaluated the effect of rice bran polysaccharides on mouse melanoma cell line B16, and Raw264.7 macrophages. Rice bran polysaccharides (RBP) failed to inhibit B16 cell growth in vitro. However, Raw264.7 macrophages treated by RBP enhancement of cytotoxic effects. The cytotoxicity was confirmed by the stimulation of nitric oxide (NO) production and tumor necrosis factor-α (TNF-α) secretion on Raw264.7 macrophages in a dose-dependent manner. RBP2, a fraction of RBP, notably enhanced the inhibition of B16 cells and boosted the immunepotentiation effect compared with RBP. To further enhance the inhibition of B16 cell growth, sulfated polysaccharides (SRBP) was derived using the chlorosulfonic acid-pyridine method. SRBP2 was found to suppress B16 cell growth, reduce B16 cell survival and stimulate NO and TNF-α production. However, SRBP2 displayed a cytotoxic effect on Raw264.7 macrophages. These results suggest that the antitumor activity of RBP and RBP2 is mediated mainly through the activation of macrophages. SRBP2 exerts its antitumor activity by inducing apoptosis in tumor cells and the secretion of NO and TNF-α. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evaluation of cytotoxic and antitumoral properties of Tessaria absinthioides (Hook & Arn) DC, "pájaro bobo", aqueous extract.

    PubMed

    Persia, Fabio A; Rinaldini, Estefanía; Carrión, Adriana; Hapon, María Belén; Gamarra-Luques, Carlos

    2017-01-01

    Higher plants have provided various natural derived drugs used currently in western medicine. Tessaria absinthioides (Hook. & Arn.) DC, Asteraceae, is a native plant from South-America with reported ethnopharmacological and culinary uses. Despite recent scientific reports about plants properties, there is not a well conducted research about its anticancer and potential toxic effects. The current work demonstrates the plant aqueous extract composition; the in vitro induced cytotoxicity, and explores, in vivo, its oral toxicity and antitumoral effects. Composition of aqueous extract was determined by phytochemical reactions. Cytotoxicity was tested in tumoral (Hela, Gli-37, HCT-116 and MCF-7) and non-tumoral (HBL-100) cells, using MTT assay. Oral toxicity and the antitumor activity against colorectal carcinoma were studied in rodents. The chemical analysis revealed the presence of flavonoids, carbohydrates, sterols, terpenes and tannins. Cytotoxicity towards tumoral cells was observed (CV50: 3.0 to 14.8 υg/ml); while in non-tumoral cells, extracts evidenced a selective reduced toxicity (CV50: 29.5 υg/ml). Oral administration of the extract does not induce acute nor dose-repeated toxicity at doses up to 2000 mg/kg and 1000 mg/kg/day, respectively. The antitumoral effect was confirmed by a significant increase in a median survival from 24 weeks (non-treated) to 30 weeks (T. absinthioides treated). The present data indicate that T. absinthioides extract exhibits cytotoxicity against cancer cell lines, with no-toxic effects and significant antitumoral effects in colorectal cancer when is orally administrated. In conclusion, T. absinthioides possesses selective cytotoxicity and antitumoral activities, making its plant derivatives products promising for cancer research and treatment.

  13. Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy.

    PubMed

    Kanagawa, N; Yanagawa, T; Nakagawa, T; Okada, N; Nakagawa, S

    2013-01-01

    Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.

  14. The antitumor effect of static and extremely low frequency magnetic fields against nephroblastoma and neuroblastoma.

    PubMed

    Yuan, Lin-Qing; Wang, Can; Zhu, Kun; Li, Hua-Mei; Gu, Wei-Zhong; Zhou, Dong-Ming; Lai, Jia-Qi; Zhou, Duo; Lv, Yao; Tofani, Santi; Chen, Xi

    2018-05-02

    Certain magnetic fields (MF) have potential therapeutic antitumor effect whereas the underlying mechanism remains undefined. In this study, a well-characterized MF was applied to two common childhood malignancies, nephroblastoma and neuroblastoma. This MF has a time-averaged total intensity of 5.1 militesla (mT), and was generated as a superimposition of a static and an extremely low frequency (ELF) MF in 50 Hertz (Hz). In nephroblastoma and neuroblastoma cell lines including G401, CHLA255, and N2a, after MF exposure of 2 h per day, the cell viability decreased significantly after 2 days. After 3 days, inhibition rates of 17-22% were achieved in these cell lines. Furthermore, the inhibition rate was positively associated with exposure time. On the other hand, when using static MF only while maintaining the same time-averaged intensity of 5.1 mT, the inhibition rate was decreased. Thus, both time and combination of ELF field were positively associated with the inhibitory effect of this MF. Exposure to the field decreased cell proliferation and induced apoptosis. Combinational use of MF together with chemotherapeutics cisplatin (DDP) was performed in both in vitro and in vivo experiments. In cell lines, combinational treatment further increased the inhibition rate compared with single use of either DDP or MF. In G401 nephroblastoma tumor model in nude mice, combination of MF and DDP resulted in significant decrease of tumor mass, and the side effect was limited in mild liver injury. MF exposure by itself did not hamper liver or kidney functions. In summary, the antitumor effect of an established MF against neuroblastoma and nephroblastoma is reported, and this field has the potential to be used in combination with DDP to achieve increased efficacy and reduce side effects in these two childhood malignancies. Bioelectromagnetics. 2018;9999:1-11. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Spin-labeled 1-alkyl-1-nitrosourea synergists of antitumor antibiotics.

    PubMed

    Gadjeva, V; Koldamova, R

    2001-01-01

    A new method for synthesis of four spin-labeled structural analogues of the antitumor drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), using ethyl nitrite for nitrosation of the intermediate spin-labeled ureas has been described. In vitro synergistic effects of 1-ethyl-3-[4-(2,2,6,6-tetramethylpiperidine-1-oxyl)]-1-nitrosourea (3b) on the cytotoxicity of bleomycin and farmorubicin were found in human lymphoid leukemia tumor cells. We measured the tissue distribution of 3b in organ homogenates of C57BL mice by an electron paramagnetic resonance method. The spin-labeled nitrosourea was mainly localized in the lungs. Our results strongly support the development and validation of a new approach for synthesis of less toxic nitrosourea derivatives as potential synergists of antitumor drugs.

  16. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity.

    PubMed

    Katsiougiannis, Stergios; Chia, David; Kim, Yong; Singh, Ram P; Wong, David T W

    2017-03-01

    Tumor exosomes are emerging as antitumor immunity regulators; however, their effects on secondary exosome secretion by distal organs have not been explored. We have previously demonstrated that suppression of exosomes at the distal tumor site of pancreatic ductal adenocarcinoma (PDAC) ablated the development of salivary biomarker profile. Here, we explore the function of salivary exosomes from tumor-bearing mice in immune surveillance. We provide evidence that salivary exosomes from mice with PDAC exhibit a suppressive effect that results in reduced tumor-killing capacity by NK cells. Salivary exosomes from mice with PDAC where pancreatic tumors were engineered to suppress exosome biogenesis failed to suppress NK cell cytotoxic potential against tumor cells, as opposed to salivary exosomes from mice with PDAC with normal tumor exosome biogenesis. These results reveal an important and previously unknown mechanism of antitumor immune regulation and provide new insights into our understanding of the alterations of this biofluid during tumor development.-Katsiougiannis, S., Chia, D., Kim, Y., Singh, R. P., Wong, D. T. W. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. © FASEB.

  17. Enhanced tolerance and antitumor efficacy by docetaxel-loaded albumin nanoparticles.

    PubMed

    Tang, Xiaolei; Wang, Guijun; Shi, Runjie; Jiang, Ke; Meng, Lingtong; Ren, Hao; Wu, Jinhui; Hu, Yiqiao

    2016-10-01

    Docetaxel is one of the most active chemotherapeutic agents for cancer treatment. The traditional docetaxel injection (TAXOTERE®) is currently formulated in the surfactant polysorbate 80, which has been associated with severe adverse reactions. To avoid the use of polysorbate 80 as well as to reduce the systemic toxicity of docetaxel, in this study, docetaxel-loaded albumin nanoparticles were fabricated by a novel simple self-assembly method. The resulting nanoparticles showed a mean diameter size of 150 nm. After being encapsulated into nanoparticles, docetaxel displayed similar cytotoxicity to traditional injection. Since polysorbate 80 was not involved in nanoparticles, the hemolysis was completely eliminated. The maximal tolerance dose of nanoparticles was also increased, which allowed a higher dose to be safely intravenously injected and produced ideal antitumor effects. The 150 nm diameter also allowed the nanoparticles to accumulate in tumor tissue via the enhanced permeability and retention effect. The passive targeting ability further caused the higher antitumor effects of nanoparticles than that of traditional injection at the same dose (7.5 mg/kg). Therefore, docetaxel-loaded albumin nanoparticles fabricated by our strategy showed higher promise in their safety and effectiveness than the traditional docetaxel injection.

  18. Antioxidative and antitumor properties of in vitro-cultivated broccoli (Brassica oleracea var. italica).

    PubMed

    Cakar, Jasmina; Parić, Adisa; Maksimović, Milka; Bajrović, Kasim

    2012-02-01

    Broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)] contains substantial quantities of bioactive compounds, which are good free radical scavengers and thus might have strong antitumor properties. Enhancing production of plant secondary metabolites could be obtained with phytohormones that have significant effects on the metabolism of secondary metabolites. In that manner, in vitro culture presents good model for manipulation with plant tissues in order to affect secondary metabolite production and thus enhance bioactive properties of plants. Estimation of the antioxidative and antitumor properties of broccoli cultivated in different in vitro conditions. In vitro germinated and cultivated broccoli seedlings, as well as spontaneously developed calli, were subjected to Soxhlet extraction. Antioxidative activity of the herbal extracts was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) radical method. Antitumor properties of the extracts were determined using crown-gall tumor inhibition (potato disc) assay. Three, 10, 20, and 30 days old broccoli seedlings, cultivated in vitro on three different Murashige-Skoog media, two types of callus, and seedlings from sterile filter paper were used for extraction. In total, 15 aqueous extracts were tested for antioxidative and antitumor potential. Three day-old seedlings showed the highest antioxidative activity. Eleven out of 15 aqueous extracts demonstrated above 50% of crown-gall tumor inhibition in comparison with the control. Tumor inhibition was in association with types and concentrations of phytohormones presented in growing media. It is demonstrated that phytohormones in plant-growing media could affect the bioactive properties of broccoli either through increasing or decreasing their antioxidative and antitumor potential.

  19. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.

    PubMed

    Christofides, Anthos; Karantanos, Theodoros; Bardhan, Kankana; Boussiotis, Vassiliki A

    2016-12-20

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.

  20. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2

    PubMed Central

    Bardhan, Kankana; Boussiotis, Vassiliki A.

    2016-01-01

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity. PMID:27793053

  1. Spin labeled antioxidants protect bacteria against the toxicity of alkylating antitumor drug CCNU.

    PubMed

    Gadjeva, Vesselina; Lazarova, Grozdanka; Zheleva, Antoaneta

    2003-10-15

    We have studied the toxic effect of the alkylating antitumor drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU) on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) strains, alone and in presence of oxygen radical-scavenging substances [Vitamin E, stable nitroxyl radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TMPO), and spin labeled (nitroxyl free radical moiety containing) analogues of CCNU] and compared with that of the alkylating antitumor drug 5-(3,3-dimethyltriazene-1-yl)-imidazole-4-carboxamide (dacarbazine, DTIC). All spin labeled compounds tested were almost no toxic at doses of 50-500 microM/ml, whereas the alkylating antitumor drug CCNU showed toxicity in a dose dependent manner. Even low doses of spin labeled nitrosoureas provided protection against the toxicity caused by the antitumor drug CCNU alone. The lowest toxicity against E. coli and S. aureus were achieved when 500 microM/ml of CCNU was combined with 200 microM/ml of spin labeled nitrosourea N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl]-glycine amid of 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl (SLCNUgly). A combination of TMPO with vitamin E completely abolished the toxicity of CCNU. Endogenous formation of oxygen radicals and their possible involvement in CCNU toxicity towards the bacteria strains tested have been also discussed.

  2. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas

    PubMed Central

    Cheng, Yu-Chen; Hueng, Dueng-Yuan; Huang, Hua-Yin; Chen, Jang-Yi; Chen, Ying

    2016-01-01

    Glioblastoma (GBM) is a malignant brain tumor associated with a high mortality rate. The aim of this study is to investigate the synergistic effects of honokiol (Hono) and magnolol (Mag), extracted from Magnolia officinalis, on cytotoxicity and inhibition of human GBM tumor progression in cellular and animal models. In comparison with Hono or Mag alone, co-treatment with Hono and Mag (Hono-Mag) decreased cyclin A, D1 and cyclin-dependent kinase 2, 4, 6 significantly, leading to cell cycle arrest in U87MG and LN229 human glioma cells. In addition, phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, and Ki67 were decreased after Hono-Mag treatment, showing proliferation inhibition. Hono-Mag treatment also reduced p-p38 and p-JNK but elevated p-ERK expression. Besides, Hono-Mag treatment induced autophagy and intrinsic and extrinsic apoptosis. Both ERK and autophagy inhibitors enhanced Hono-Mag-induced apoptosis in LN229 cells, indicating a rescuer role of ERK. In human GBM orthotopic xenograft model, the Hono-Mag treatment inhibited the tumor progression and induced apoptosis more efficiently than Temozolomide, Hono, or Mag group. In conclusion, the Hono-Mag exerts a synergistic anti-tumor effect by inhibiting cell proliferation and inducing autophagy and apoptosis in human GBM cells. The Hono-Mag may be applied as an adjuvant therapy to improve the therapeutic efficacy of GBM treatment. PMID:27074557

  3. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance.

    PubMed

    Sherif, Iman O; Al-Gayyar, Mohammed M H

    2018-04-01

    Oleuropein is considered as a new chemotherapeutic agent in human hepatocellular carcinoma (HCC) while, its exact underlying molecular mechanism still not yet explored. In addition, cisplatin is a standard anticancer drug against solid tumors with toxic side effects. Therefore, we conducted this study to assess antitumor activity of oleuropein either alone or in combination with cisplatin against HepG2, human HCC cell lines, via targeting pro-NGF/NGF signaling pathway. HepG2 cells were treated with cisplatin (20, 50, 100 μM) and oleuropein (100, 200, 300 and 400 μM) as well as some of the cells were treated with 50 μM cisplatin and different concentrations of oleuropein. Gene expressions of nerve growth factor (NGF), matrix metalloproteinase-7 (MMP-7) and caspase-3 were evaluated by real time-PCR. In addition, protein levels of NGF and pro-form of NGF (pro-NGF) were measured by ELISA while, nitric oxide (NO) content was determined colorimetrically. Cisplatin treatment showed a significant elevation of NO content and pro-NGF protein level with a marked reduction of NGF protein level in addition to the upregulation of caspase-3 along with downregulation of MMP-7 gene expressions in a dose-dependent manner. However, the combination of 50 μM cisplatin and 200 μM oleuropein showed the most potent effect on the molecular level when compared with oleuropein or cisplatin alone. Our results showed for the first time that the anti-tumor activity of oleuropein against HCC could be attributed to influencing the pro-NGF/NGF balance via affecting MMP-7 activity without affecting the gene expression of NGF. Concurrent treatment with both oleuropein and cisplatin could lead to more effective chemotherapeutic combination against HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    PubMed

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity.

  5. In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice.

    PubMed

    León, Ignacio E; Cadavid-Vargas, Juan F; Resasco, Agustina; Maschi, Fabricio; Ayala, Miguel A; Carbone, Cecilia; Etcheverry, Susana B

    2016-12-01

    Osteosarcoma (OS) is the most common primary tumor of bone, occurring predominantly in the second decade of life. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for patients with localized disease. Vanadium is an ultra-trace element that after being absorbed accumulates in bone. Besides, vanadium compounds have been studied during recent years to be considered as representative of a new class of non-platinum antitumor agents. Moreover, flavonoids are a wide family of polyphenolic compounds that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, the in vitro and in vivo effects of an oxidovanadium(IV) complex with the flavonoid chrysin on the new 3D human osteosarcoma and xenograft osteosarcoma mice models. The pharmacological results show that VOchrys inhibited the cell viability affecting the shape and volume of the spheroids and VOchrys suppressed MG-63 tumor growth in the nude mice without inducing toxicity and side effects. As a whole, the results presented herein demonstrate that the antitumor action of the complex was very promissory on human osteosarcoma models, whereby suggesting that VOchrys is a potentially good candidate for future use in alternative antitumor treatments.

  6. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects.

    PubMed

    Garde, Seema V; Forté, André J; Ge, Michael; Lepekhin, Eugene A; Panchal, Chandra J; Rabbani, Shafaat A; Wu, Jinzi J

    2007-11-01

    In an effort to develop new agents and molecular targets for the treatment of cancer, aspargine-glycine-arginine (NGR)-targeted liposomal doxorubicin (TVT-DOX) is being studied. The NGR peptide on the surface of liposomal doxorubicin (DOX) targets an aminopeptidase N (CD13) isoform, specific to the tumor neovasculature, making it a promising strategy. To further understand the molecular mechanisms of action, we investigated cell binding, kinetics of internalization as well as cytotoxicity of TVT-DOX in vitro. We demonstrate the specific binding of TVT-DOX to CD13-expressing endothelial [human umbilical vein endothelial cells (HUVEC) and Kaposi sarcoma-derived endothelial cells (SLK)] and tumor (fibrosarcoma, HT-1080) cells in vitro. Following binding, the drug was shown to internalize through the endosomal pathway, eventually leading to the localization of doxorubicin in cell nuclei. TVT-DOX showed selective toxicity toward CD13-expressing HUVEC, sparing the CD13-negative colon-cancer cells, HT-29. Additionally, the nontargeted counterpart of TVT-DOX, Caelyx, was less cytotoxic to the CD13-positive HUVECs demonstrating the advantages of NGR targeting in vitro. The antitumor activity of TVT-DOX was tested in nude mice bearing human prostate-cancer xenografts (PC3). A significant growth inhibition (up to 60%) of PC3 tumors in vivo was observed. Reduction of tumor vasculature following treatment with TVT-DOX was also apparent. We further compared the efficacies of TVT-DOX and free doxorubicin in the DOX-resistant colon-cancer model, HCT-116, and observed the more pronounced antitumor effects of the TVT-DOX formulation over free DOX. The potential utility of TVT-DOX in a variety of vascularized solid tumors is promising.

  7. Carvedilol efficiently protects kidneys without affecting the antitumor efficacy of cisplatin in mice.

    PubMed

    Carvalho Rodrigues, Maria A; Silva Faria, Marcia C da; Santos, Neife A G dos; Gobe, Glenda C; dos Santos, Antonio Cardozo

    2013-10-25

    Cisplatin is an effective anticancer drug which has been used to treat a wide range of tumors for the last 30 years. However, its use is associated with nephrotoxicity. Protective strategies have been reported, but their impact on the antitumor activity of cisplatin has not been clarified. We have previously reported the protective potential of carvedilol against cisplatin nephrotoxicity in tumor-free rats. Therefore, in the present study we used a tumor-bearing model to investigate the impact of carvedilol on the antitumor activity of cisplatin. The renal damage induced by cisplatin and the protective effect of carvedilol were demonstrated by the levels of blood urea nitrogen and plasma creatinine as well as by renal histopathology and immunohistochemistry. The mechanism of protection was associated with significantly decreased (i) oxidative stress markers, (ii) Bax expression, (iii) caspase-3 activity and (iv) TUNEL labeling for apoptosis. More importantly, evaluation of tumor mass, tumor remission rate and the survival curve showed that carvedilol did not impair the antitumor action of cisplatin. These findings suggest that the mechanisms underlying the nephrotoxic and the antitumor activity of cisplatin might be different. This is the first study to report such findings. Compared to other reported potential cytoprotectors against cisplatin-induced nephrotoxicity, carvedilol stands out due to the fact that it is already clinically-employed and well tolerated by the patients. Based on these features and on the present findings, carvedilol is a very promising candidate for future clinical trials as nephroprotector in patients treated with cisplatin. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  9. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach

    PubMed Central

    Qi, Quan; Li, Rui; Li, Hui-ying; Cao, Yu-bing; Bai, Ming; Fan, Xiao-jing; Wang, Shu-yan; Zhang, Bo; Li, Shao

    2016-01-01

    Aim: Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. Methods: The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. Results: The nuciferine target profile was enriched with signaling pathways and biological functions, including “regulation of lipase activity”, “response to nicotine” and “regulation of cell proliferation”. Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. Conclusion: By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels. PMID:27180984

  10. Litopenaeus vannamei hemocyanin exhibits antitumor activity in S180 mouse model in vivo

    PubMed Central

    Aweya, Jude Juventus; Zheng, Zhou; Zhong, Mingqi; Chen, Jiehui; Wang, Fan

    2017-01-01

    Hemocyanin is a multifunctional glycoprotein, which also plays multiple roles in immune defense. While it has been demonstrated that hemocyanin from some mollusks can induce potent immune response and is therefore undergoing clinical trials to be used in anti-tumor immunotherapy, little is currently known about how hemocyanin from arthropods affect tumors. In this study we investigated the anti-tumor activity of hemocyanin from Litopenaeus vannamei on Sarcoma-180 (S180) tumor-bearing mice model. Eight days treatment with 4mg/kg bodyweight of hemocyanin significantly inhibited the growth of S180 up to 49% as compared to untreated. Similarly, histopathology analysis showed a significant decrease in tumor cell number and density in the tissues of treated mice. Moreover, there was a significant increase in immune organs index, lymphocyte proliferation, NK cell cytotoxic activity and serum TNF-α level, suggesting that hemocyanin could improve the immunity of the S180 tumor-bearing mice. Additionally, there was a significant increase in superoxide dismutase (SOD) activity and a decrease in the level of malondialdehyde (MDA) in serum and liver, which further suggest that hemocyanin improved the anti-oxidant ability of the S180 tumor-bearing mice. Collectively, our data demonstrated that L. vannamei hemocyanin had a significant antitumor activity in mice. PMID:28854214

  11. CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response.

    PubMed

    Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita; Wyatt, Megan W; Dhar, Payal; Selvam, Shanmugam Panneer; Fu, Jianing; Zhang, Jinyu; Nguyen, Hung; Kang, Inhong; Toth, Kyle; Al-Homrani, Mazen; Husain, Mahvash; Beeson, Gyda; Ball, Lauren; Helke, Kristi; Husain, Shahid; Garrett-Mayer, Elizabeth; Hardiman, Gary; Mehrotra, Meenal; Nishimura, Michael I; Beeson, Craig C; Bupp, Melanie Gubbels; Wu, Jennifer; Ogretmen, Besim; Paulos, Chrystal M; Rathmell, Jeffery; Yu, Xue-Zhong; Mehrotra, Shikhar

    2018-01-09

    Heightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumor T cells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD + -dependent activity of the histone deacetylase Sirt1. Pharmacological or genetic inhibition of Sirt1 activity impaired the anti-tumor potential of Th1/17 cells. Importantly, T cells with reduced surface expression of the NADase CD38 exhibited intrinsically higher NAD + , enhanced oxidative phosphorylation, higher glutaminolysis, and altered mitochondrial dynamics that vastly improved tumor control. Lastly, blocking CD38 expression improved tumor control even when using Th0 anti-tumor T cells. Thus, strategies targeting the CD38-NAD + axis could increase the efficacy of anti-tumor adoptive T cell therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi, E-mail: m18070383032@163.com

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. Inmore » all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.« less

  13. Antitumor Activities of Kushen: Literature Review

    PubMed Central

    Sun, Mingyu; Cao, Hongyan; Sun, Lin; Dong, Shu; Bian, Yanqin; Han, Jun; Zhang, Lijun; Ren, Shuang; Hu, Yiyang; Liu, Chenghai; Xu, Lieming; Liu, Ping

    2012-01-01

    To discover and develop novel natural compounds with therapeutic selectivity or that can preferentially kill cancer cells without significant toxicity to normal cells is an important area in cancer chemotherapy. Kushen, the dried roots of Sophora flavescens Aiton, has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anticancer drugs. More potent antitumor activities were identified in KS-Fs than in KS-As in vitro and in vivo. KS-Fs may be developed as novel antitumor agents. PMID:22969826

  14. Evaluation of a novel photosensitizing drug having antitumor effect for advanced prostate cancer

    NASA Astrophysics Data System (ADS)

    Saito, Sachiko; Inai, Mizuho; Honda, Norihiro; Hazama, Hisanao; Kaneda, Yasufumi; Awazu, Kunio

    2017-07-01

    Prostate cancer is the second most frequently diagnosed cancer among men worldwide and a novel treatment for the disease is required. Replication-deficient virus particles, hemagglutinating virus of Japan envelope (HVJ-E), has cytotoxicity to cancer cells. To enhance the therapeutic effect of HVJ-E by photodynamic therapy (PDT) as a trigger of HVJ-E's anti-tumor effect, talaporfin sodium (Laserphyrin) used for PDT was encapsulated into HVJ-E to produce a novel photosensitizing drug, named Laserphyrin ®-HVJ-E, and its therapeutic effect for prostate cancer cells (PC-3) was evaluated. As the results, direct cytotoxicities of HVJ-E and Laserphyrin ®-HVJ-E for PC-3 after an administration time of 48 h were almost the same. Cell survival rates of PC-3, which were irradiated 2 h after administration of Laserphyrin ®-HVJ-E, were about 7.8%. Although further study is needed to find an optimal PDT condition, these results suggest that Laserphyrin ®-HVJ-E is useful for treatment of prostate cancer due to the combination of cytotoxicities of HVJ-E and PDT.

  15. Angiostatic, tumor inflammatory and anti-tumor effects of CXCL4(47-70) and CXCL4L1(47-70) in an EGF-dependent breast cancer model.

    PubMed

    Van Raemdonck, Katrien; Berghmans, Nele; Vanheule, Vincent; Bugatti, Antonella; Proost, Paul; Opdenakker, Ghislain; Presta, Marco; Van Damme, Jo; Struyf, Sofie

    2014-11-15

    CXCL4 and CXCL4L1, platelet-derived CXC chemokines, and their carboxy-terminal peptides CXCL4(47-70) and CXCL4L1(47-70) previously displayed angiostatic and anti-tumoral activity in a melanoma model. Here, we found CXCL4(47-70) and CXCL4L1(47-70) to inhibit lymphatic endothelial cell proliferation in vitro. Furthermore, the angiostatic potential of CXCL4(47-70) and CXCL4L1(47-70) was tested against different angiogenic stimuli (FGF1, FGF2, FGF8, EGF and VEGF). Besides reducing FGF2-induced vascular endothelial cell growth, CXCL4(47-70) and CXCL4L1(47-70) efficiently counteracted EGF. Consequently, we considered their anti-tumoral potential in EGF-dependent MDA-MB-231 breast tumors. In tumor-bearing mice, CXCL4(47-70) reduced tumor growth better than CXCL4L1(47-70). In CXCL4(47-70)-treated tumors significantly more intratumoral monocytes/macrophages and dendritic cells were present and higher expression levels of CCL5 and IFN- γ were detected by qPCR on tumor lysates. Because neither peptide was able to specifically bind CXCR3A or CXCR3B, differential glycosaminoglycan binding and direct interaction with cytokines (EGF and CCL5) might explain any differences in anti-tumoral effects. Notably, CCL5-induced monocyte chemotaxis in vitro was increased by addition of CXCL4(47-70) or CXCL4L1(47-70). Finally, CXCL4(47-70) and CXCL4L1(47-70) inhibited proliferation of MDA-MB-231 cells. Our results suggest a tumor type-dependent responsiveness to either CXCL4(47-70) or CXCL4L1(47-70) treatment, defined by anti-proliferative, angiostatic and inflammatory actions, and substantiate their therapeutic potential.

  16. Angiostatic, tumor inflammatory and anti-tumor effects of CXCL447–70 and CXCL4L147–70 in an EGF-dependent breast cancer model

    PubMed Central

    Van Raemdonck, Katrien; Berghmans, Nele; Vanheule, Vincent; Bugatti, Antonella; Proost, Paul; Opdenakker, Ghislain; Presta, Marco; Van Damme, Jo; Struyf, Sofie

    2014-01-01

    CXCL4 and CXCL4L1, platelet-derived CXC chemokines, and their carboxy-terminal peptides CXCL447–70 and CXCL4L147–70 previously displayed angiostatic and anti-tumoral activity in a melanoma model. Here, we found CXCL447–70 and CXCL4L147–70 to inhibit lymphatic endothelial cell proliferation in vitro. Furthermore, the angiostatic potential of CXCL447–70 and CXCL4L147–70 was tested against different angiogenic stimuli (FGF1, FGF2, FGF8, EGF and VEGF). Besides reducing FGF2-induced vascular endothelial cell growth, CXCL447–70 and CXCL4L147–70 efficiently counteracted EGF. Consequently, we considered their anti-tumoral potential in EGF-dependent MDA-MB-231 breast tumors. In tumor-bearing mice, CXCL447–70 reduced tumor growth better than CXCL4L147–70. In CXCL447–70-treated tumors significantly more intratumoral monocytes/macrophages and dendritic cells were present and higher expression levels of CCL5 and IFN-γ were detected by qPCR on tumor lysates. Because neither peptide was able to specifically bind CXCR3A or CXCR3B, differential glycosaminoglycan binding and direct interaction with cytokines (EGF and CCL5) might explain any differences in anti-tumoral effects. Notably, CCL5-induced monocyte chemotaxis in vitro was increased by addition of CXCL447–70 or CXCL4L147–70. Finally, CXCL447–70 and CXCL4L147–70 inhibited proliferation of MDA-MB-231 cells. Our results suggest a tumor type-dependent responsiveness to either CXCL447–70 or CXCL4L147–70 treatment, defined by anti-proliferative, angiostatic and inflammatory actions, and substantiate their therapeutic potential. PMID:25373734

  17. [Antitumor effect of recombinant Xenopus laevis vascular endothelial growth factor (VEGF) as a vaccine combined with adriamycin on EL4 lymphoma in mice].

    PubMed

    Niu, Ting; Liu, Ting; Jia, Yong-Qian; Liu, Ji-Yan; Wu, Yang; Hu, Bing; Tian, Ling; Yang, Li; Kan, Bing; Wei, Yu-Quan

    2005-09-01

    To explore the antitumor effect of immunotherapy with recombinant Xenopus laevis vascular endothelial growth factor (xVEGF) as a vaccine combined with adriamycin on lymphoma model in mice. EL4 lymphoma model was established in C57BL/6 mice. Mice were randomized into four groups: combination therapy, adriamycin alone, xVEGF alone and normal saline (NS) groups, and then were given relevant treatments. The growth of tumor, the survival rate of tumor-bearing mice, and the potential toxicity of regimens above were observed. Anti-VEGF antibody-producing B cells (APBCs) were detected by enzyme-linked immunospot (ELISPOT) assay. In addition, microvessel density (MVD) of tumor was detected by immunohistochemistry, and tumor cell apoptosis was also detected by TUNEL staining. The tumor volumes of mice were significantly smaller in combination group than those in other three groups (P < 0.05). Complete regression of tumor was observed in 3 of 10 mice in combination group. Forty-eight days after inoculation of tumor cells, the survival rate of mice was significantly higher in combination group than in NS group (P < 0.01). The anti-VEGF APBC count in combination group or xVEGF group was significantly higher, compared with that in adriamycin group or NS group (P < 0.01). MVD in tumor tissues was significantly lower in combination group than those in other three groups (P < 0.05). Moreover, tumor cell apoptosis was significantly higher in combination group than those in other three groups (P < 0.05). In this experimental study, the use of xVEGF vaccine and adriamycin as a combination of immunotherapy with chemotherapy has sucessfully produced synergistic antitumor effect on lymphoma in mice.

  18. Curcumin exerts its antitumor effects in a context dependent fashion.

    PubMed

    Kreutz, Dominique; Sinthuvanich, Chomdao; Bileck, Andrea; Janker, Lukas; Muqaku, Besnik; Slany, Astrid; Gerner, Christopher

    2018-06-30

    Proteome profiling profoundly contributes to the understanding of cell response mechanisms to drug actions. Such knowledge may become a key to improve personalized medicine. In the present study, the effects of the natural remedy curcumin on breast cancer model systems were investigated. MCF-7, ZR-75-1 and TGF-β1 pretreated fibroblasts, mimicking cancer-associated fibroblasts (CAFs), were treated independently as well as in tumor cell/CAF co-cultures. Remarkably, co-culturing with CAF-like cells (CLCs) induced different proteome alterations in MCF-7 and ZR-75-1 cells, respectively. Curcumin significantly induced HMOX1 in single cell type models and co-cultures. However, other curcumin effects differed. In the MCF-7/CLC co-culture, curcumin significantly down-regulated RC3H1, a repressor of inflammatory signaling. In the ZR-75-1/CLC co-culture, curcumin significantly down-regulated PEG10, an anti-apoptotic protein, and induced RRAGA, a pro-apoptotic protein involved in TNF-alpha signaling. Furthermore, curcumin induced AKR1C2, an important enzyme for progesterone metabolism. None of these specific curcumin effects were observed in single cell type cultures. All high-resolution mass spectrometry data are available via ProteomeXchange with the identifier PXD008719. The present data demonstrate that curcumin induces proteome alterations, potentially accounting for its known antitumor effects, in a strongly context-dependent fashion. Better means to understand and potentially predict individual variations of drug effects are urgently required. The present proteome profiling study of curcumin effects demonstrates the massive impact of the cell microenvironment on cell responses to drug action. Co-culture models apparently provide more biologically relevant information regarding curcumin effects than single cell type cultures. Copyright © 2018. Published by Elsevier B.V.

  19. [Assessment of Antitumor Effect of Submerged Culture of Ophiocordyceps sinensis and Cordyceps militaris].

    PubMed

    Avtonomova, A V; Krasnopolskaya, L M; Shuktueva, M I; Isakova, E B; Bukhman, V M

    2015-01-01

    Ophiocordyceps sinensis and Cordyceps militaris metabolites showed a high potential in the treatment of tumors as well as some other diseases. Antitumor properties of O. sinensis and C. militaris submerged mycelium were investigated. It was found that the O. sinensis dry biomass in a dose of 50 mg/kg administered once a day to the mice with subcutaneously inoculated P388 lympholeucosis lowered the tumor growth by 65% vs. 54% for the C. militaris dry biomass. The water extract of O. sinensis submerged culture however accelerated the growth of the P388 lympholeucosis tumor node in the mice almost two times, compared to the control. A greater caution in using this fungus as a source of biologically active substances is required since unwanted tumor-stimulating effects can arise.

  20. Antitumor activity of Annona squamosa seed oil.

    PubMed

    Chen, Yong; Chen, Yayun; Shi, Yeye; Ma, Chengyao; Wang, Xunan; Li, Yue; Miao, Yunjie; Chen, Jianwei; Li, Xiang

    2016-12-04

    Custard apple (Annona squamosa Linn.) is an edible tropical fruit, and its seeds have been used to treat "malignant sore" (cancer) and other usage as insecticide. A comparison of extraction processes, chemical composition analysis and antitumor activity of A. squamosa seed oil (ASO) were investigated. The optimal extraction parameters of ASO were established by comparing percolation, soxhlet, ultrasonic and SFE-CO 2 extraction methods. The chemical composition of fatty acid and content of total annonaceous acetogenins (ACGs) of ASO was investigated by GC-MS and colorimetric assay, and anti-tumor activity of ASO was tested using H 22 xenografts bearing mice. The optimal extraction parameters of ASO were obtained as follows: using soxhlet extraction method with extraction solvent of petroleum ether, temperature of 80°C, and extraction time of 90min. Under these conditions, the yield of ASO was 22.65%. GC-MS analysis results showed that the main chemical compositions of fatty acid of ASO were palmitic acid (9.92%), linoleic acid (20.49%), oleic acid (56.50%) and stearic acid (9.14%). The total ACGs content in ASO was 41.00mg/g. ASO inhibited the growth of H 22 tumor cells in mice with a maximum inhibitory rate of 53.54% by oral administration. Furthermore, it was found that ASO exerted an antitumor effect via decreasing interleukin-6 (IL-6), janus kinase (Jak) and phosphorylated signal transducers and activators of transcription (p-Stat3) expression. The results demonstrated that ASO suppressed the H 22 solid tumor development may due to its main chemical constituents unsaturated fatty acid and ACGs via IL-6/Jak/Stat3 pathway. ASO may be a potential candidate for the treatment of cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy

    NASA Astrophysics Data System (ADS)

    Xiong, Wenli; Wang, Pan; Hu, Jianmin; Jia, Yali; Wu, Lijie; Chen, Xiyang; Liu, Quanhong; Wang, Xiaobing

    2015-12-01

    Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor.

  2. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs

    PubMed Central

    2014-01-01

    Background The coinhibitory receptor Programmed Death-1 (PD-1) inhibits effector functions of activated T cells and prevents autoimmunity, however, cancer hijack this pathway to escape from immune attack. The costimulatory receptor glucocorticoid-induced TNFR related protein (GITR) is up-regulated on activated T cells and increases their proliferation, activation and cytokine production. We hypothesize that concomitant PD-1 blockade and GITR triggering would synergistically improve the effector functions of tumor-infiltrating T cells and increase the antitumor immunity. In present study, we evaluated the antitumor effects and mechanisms of combined PD-1 blockade and GITR triggering in a clinically highly relevant murine ID8 ovarian cancer model. Methods Mice with 7 days-established peritoneal ID8 ovarian cancer were treated intraperitoneally (i.p.) with either control, anti-PD-1, anti-GITR or anti-PD-1/GITR monoclonal antibody (mAb) and their survival was evaluated; the phenotype and function of tumor-associated immune cells in peritoneal cavity of treated mice was analyzed by flow cytometry, and systemic antigen-specific immune response was evaluated by ELISA and cytotoxicity assay. Results Combined anti-PD-1/GITR mAb treatment remarkably inhibited peritoneal ID8 tumor growth with 20% of mice tumor free 90 days after tumor challenge while treatment with either anti-PD-1 or anti-GITR mAb alone exhibited little antitumor effect. The durable antitumor effect was associated with a memory immune response and conferred by CD4+ cells and CD8+ T cells. The treatment of anti-PD-1/GITR mAb increased the frequencies of interferon-γ-producing effector T cells and decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state in peritoneal cavity. In addition, combined treatment of anti-PD-1/GITR mAb mounted an antigen-specific immune response as evidenced by antigen-specific IFN

  3. Effect of anhydrosophoradiol-3-acetate of Calotropis gigantea (Linn.) flower as antitumoric agent against Ehrlich's ascites carcinoma in mice.

    PubMed

    Habib, Muhammad R; Karim, Muhammad R

    2013-01-01

    Over 60% of currently used anti-cancer agents are derived in one-way or another from natural sources, including plants, marine organisms and microorganisms. Calotropis gigantea (Linn.) (Family: Asclepiadaceae) is a perennial shrub and it is used as a traditional folk medicine for the treatment of various health complications. But there is no report on isolation of anticancerous chemicals from the flower of Calotropis gigantea. The objective of the present study is to explore the antitumor effect of anhydrosophoradiol-3-acetate (A3A), isolated from the flower of Calotropis gigantea (Linn.) against Ehrlich's ascites carcinoma (EAC) in Swiss albino mice. Antitumoric effect of A3A was assessed by evaluating viable tumor cell count, survival time, body weight gain due to tumor burden, hematological and biochemical (glucose, cholesterol, triglyceride, blood urea, SALP, SGPT and SGOT) parameters of EAC bearing host at doses of 10 and 20 mg/kg body weight. Treatment with A3A decreased the viable tumor cells and body weight gain thereby increasing the life span of EAC bearing mice. A3A also brought back the altered hematological (Hb, total RBC and total WBC) and biochemical parameters more or less to normal level. Results of this study conclude that in vivo the A3A was effective in inhibiting the growth of EAC with improving in cancer induced complications.

  4. Shape of Nanoparticles as a Design Parameter to Improve Docetaxel Antitumor Efficacy.

    PubMed

    Guo, Yifei; Zhao, Shuang; Qiu, Hanhong; Wang, Ting; Zhao, Yanna; Han, Meihua; Dong, Zhengqi; Wang, Xiangtao

    2018-04-18

    It was reported that the shape of nanocarriers played an important role in achieving a better therapeutic effect. To optimize the morphology and enhance the antitumor efficacy, in this study based on the amphiphilic PAMAM- b-OEG codendrimer (POD), docetaxel-loaded spherical and flake-like nanoparticles (DTX nanospheres and nanosheets) were prepared via an antisolvent precipitation method with similar particle size, surface charge, stability, and release profiles. The feed weight ratio of DTX/POD and the branched structure of OEG dendron were suggested to influence the shapes of the self-assembled nanostructures. As expected, DTX nanospheres and nanosheets exhibited strong shape-dependent cellular internalization efficiency and antitumor activity. The clathrin-mediated endocytosis and macropincytosis-dependent endocytosis were proven to be the main uptake mechanism for DTX nanospheres, while it was clathrin-mediated endocytosis for DTX nanosheets. More importantly, DTX nanosheets presented obviously superior antitumor efficacy over nanospheres, the tumor inhibition rate was increased 2-fold in vitro and 1.3-fold in vivo. An approximately 2-fold increase in pharmacokinetic parameter (AUC, MRT, and T 1/2 ) and tumor accumulation were observed in the DTX nanosheets group. These results suggested that the particle shape played a key role in influencing cellular uptake behavior, pharmacokinetics, biodistribution, and antitumor activity; the shape of drug-loaded nanoparticles should be considered in the design of a new generation of nanoscale drug delivery systems for better therapeutic efficacy of anticancer drug.

  5. Pre-clinical toxicity and immunogenicity evaluation of a MUC1-MBP/BCG anti-tumor vaccine.

    PubMed

    Hu, Boqi; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Ni, Weihua; Yuan, Hongyan; Zhang, Nannan; Xie, Fei; Tai, Guixiang

    2016-04-01

    Mucin 1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas and is an attractive target in tumor immunotherapy. Our previous study showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific Th1-dominant immune response, simulated MUC1-specific cytotoxic T lymphocyte killing activity, and could significantly inhibit MUC1-expression B16 cells' growth in mice. To help move the vaccine into a Phase I clinical trial, in the current study, a pre-clinical toxicity and immunogenicity evaluation of the vaccine was conducted. The evaluation was comprised of a single-dose acute toxicity study in mice, repeat-dose chronic toxicity and immunogenicity studies in rats, and pilot toxicity and immunogenicity studies in cynomolgus monkeys. The results showed that treatment with the MUC1-MBP/BCG anti-tumor vaccine did not cause any organ toxicity, except for arthritis or local nodules induced by BCG in several rats. Furthermore, the vaccine significantly increased the levels of IFN-γ in rats, indicating that Th1 cells were activated. In addition, the results showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific IgG antibody response both in rats and cynomolgus monkeys. Collectively, these data are beneficial to move the MUC1-MBP/BCG anti-tumor vaccine into a Phase I clinical trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Influence of drying methods over in vitro antitumoral effects of exopolysaccharides produced by Agaricus blazei LPB 03 on submerged fermentation.

    PubMed

    Fernandes, M B A; Habu, S; de Lima, M A; Thomaz-Soccol, V; Soccol, C R

    2011-03-01

    Agaricus blazei is a mushroom that belongs to the Brazilian biodiversity and is considered as an important producer of bioactive compounds beneficial to human health. Studies have demonstrated that these compounds present immuno-modulatory, antioxidant and antitumor properties. In order to compare the most used method for fungal polysaccharide drying, lyophilization with other industrial-scale methods, the aim of this work was to submit A. blazei LPB 03 polysaccharide extracts to vaucum, spray and freeze drying, and evaluate the maintenance of its antitumoral effects in vitro. Exopolysaccharides produced by A. blazei LPB 03 on submerged fermentation were extracted with ethanol and submitted to drying processes. The efficiency represents the water content that was removed during the drying process. The resultant dried products showed water content around 3% and water activity less than 0.380, preventing therefore the growth of microorganisms and reactions of chemical degradation. Exopolysaccharide extracts dried by vacuum and spray dryer did not showed any significant cytotoxic effect on cell viability of Wistar mice macrophages. Content of total sugars and protein decrease after drying, nevertheless, 20 mg/ml of exopolysaccharides dried by spray dryer reached 33% of inhibition rate over Ehrlich tumor cells in vitro.

  7. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    PubMed Central

    Liu, Ying; He, Man; Niu, Mengmeng; Zhao, Yiqing; Zhu, Yuanzhang; Li, Zhenhua; Feng, Nianping

    2015-01-01

    Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm) with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate. PMID:25960649

  8. Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.

    PubMed

    Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui

    2016-09-01

    The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  9. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis

    PubMed Central

    Leung, Kin-Mei; Batey, Sarah; Rowlands, Robert; Isaac, Samine J; Jones, Phil; Drewett, Victoria; Carvalho, Joana; Gaspar, Miguel; Weller, Sarah; Medcalf, Melanie; Wydro, Mateusz M; Pegram, Robert; Mudde, Geert C; Bauer, Anton; Moulder, Kevin; Woisetschläger, Max; Tuna, Mihriban; Haurum, John S; Sun, Haijun

    2015-01-01

    FS102 is a HER2-specific Fcab (Fc fragment with antigen binding), which binds HER2 with high affinity and recognizes an epitope that does not overlap with those of trastuzumab or pertuzumab. In tumor cells that express high levels of HER2, FS102 caused profound HER2 internalization and degradation leading to tumor cell apoptosis. The antitumor effect of FS102 in patient-derived xenografts (PDXs) correlated strongly with the HER2 amplification status of the tumors. Superior activity of FS102 over trastuzumab or the combination of trastuzumab and pertuzumab was observed in vitro and in vivo when the gene copy number of HER2 was equal to or exceeded 10 per cell based on quantitative polymerase chain reaction (qPCR). Thus, FS102 induced complete and sustained tumor regression in a significant proportion of HER2-high PDX tumor models. We hypothesize that the unique structure and/or epitope of FS102 enables the Fcab to internalize and degrade cell surface HER2 more efficiently than standard of care antibodies. In turn, increased depletion of HER2 commits the cells to apoptosis as a result of oncogene shock. FS102 has the potential of a biomarker-driven therapeutic that derives superior antitumor effects from a unique mechanism-of-action in tumor cells which are oncogenically addicted to the HER2 pathway due to overexpression. PMID:26234505

  10. Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth.

    PubMed

    Shu, Guangwen; Zhao, Wenhao; Yue, Ling; Su, Hanwen; Xiang, Meixian

    2015-06-20

    Salvia chinensis Benth (S. chinensis) is a traditional herb applied in the treatment of hepatocellular carcinoma (HCC). Polysaccharides abundantly exist in this plant. However, it remains poorly understood if polysaccharides from S. chinensis (PSSC) contribute to its anti-HCC activity. The in vivo anti-HCC activity of PSSC was evaluated in Kunming mice bearing H22 ascitic hepatoma cells. An array of physiological indexes was measured to evaluate toxicological effects on host animals. Subgroups of immune cells were purified by a magnetic-activated cell sorting system and analyzed by flow cytometry. Reverse transcription real-time PCR and immunoblotting were recruited to determine the effects of PSSC on the cellular signaling of different subgroup of immune cells. PSSC suppressed in vivo proliferation of H22 cells with undetectable toxic effects on tumor-bearing mice. PSSC alleviated tumor transplantation-induced CD4+ T cell apoptosis and dysregulation of serum cytokine profiles, which elevated cytotoxic activities of natural killer and CD8+ T cells. PSSC reduced serum levels of prostaglandin E2 (PGE2). Injection of exogenous PGE2 completely abrogated the antitumor immunostimulatory activity of PSSC. Cyclic adenosine monophosphate (cAMP) is the second messager of PGE2. In CD4+ T cells, PSSC substantially declined intracellular cAMP. This event elevated protein levels of JAK3, enhancing STAT5 phosphorylation and STAT5-dependent expression of anti-apoptotic genes. Cyclooxygenase-2 is the key enzyme mediating biosynthesis of PGE2. PSSC suppressed the transcription and translation of cyclooxygenase-2 in tumor associated macrophages. Our data clearly showed antitumor immunostimulatory activity of PSSC against transplanted H22 HCC cells. Suppressing tumor transplantation-induced PGE2 production was implicated in the anti-tumor immunostimulatory activity of PSSC. These works provides novel insights into the traditional application of S. chinensis against HCC and supported

  11. Anticancer effect of a Kampo preparation Daikenchuto.

    PubMed

    Nagata, Takuya; Toume, Kazufumi; Long, Lv Xiao; Hirano, Katsuhisa; Watanabe, Toru; Sekine, Shinichi; Okumura, Tomoyuki; Komatsu, Katsuko; Tsukada, Kazuhiro

    2016-07-01

    No traditional Japanese and Chinese herbal preparations have been shown to be effective antitumor agents, and a Japanese herbal therapy (Kampo medicine) for cancer that causes fewer adverse drug reactions than orthodox pharmaceuticals is desired. Our present study demonstrated that a Kampo preparation Daikenchuto (DKT) exerts an antitumor effect against various cancer cells. We also discovered an antitumor factor in Japanese Zanthoxylum peel, which is an ingredient of DKT. Breast, esophageal, gastric, and colon cancer cell lines were individually incubated with DKT for 1-72 h, followed by assessment of tumor growth inhibition by MTT assay. The cancer cells were also analyzed for apoptotic changes after DKT treatment. Nude mice were used to establish a model of gastric cancer tumor growth and peritoneal disseminated metastasis, in which the number of peritoneal disseminations was evaluated after oral administration of DKT for 4 weeks. In addition, the antitumor effects of the individual DKT ingredients (viz., ginseng, Japanese Zanthoxylum peel, and processed ginger) and other Kampo preparations were also analyzed. The antitumor effect of DKT was demonstrated in gastric, breast, esophageal, and colon cancer cells. DKT treatment induced apoptosis in these cells. Oral administration of DKT had a tendency to reduce the growth and significantly reduced the peritoneal dissemination of gastric cancer in the nude mouse model compared with control. DKT exhibited a higher antitumor effect than other Kampo preparations. Furthermore, Japanese Zanthoxylum peel, an ingredient of DKT, showed a particularly potent antitumor effect. Our study indicated that DKT is useful as a Kampo preparation for cancer therapy. We also showed that Japanese Zanthoxylum peel, an ingredient of DKT, contains an antitumor factor.

  12. Antitumor Activity of Emodin against Pancreatic Cancer Depends on Its Dual Role: Promotion of Apoptosis and Suppression of Angiogenesis

    PubMed Central

    Chen, Kang-Jie; Tong, Hong-Fei; Wang, Zhao-Hong; Ni, Zhong-Lin; Liu, Hai-Bin; Guo, Hong-Chun; Liu, Dian-Lei

    2012-01-01

    Background Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. Methodology/Principal Finding In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo. Conclusions/Significance Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors. PMID:22876305

  13. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    NASA Astrophysics Data System (ADS)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  14. Enhancement of anti-tumor effect of particulate vaccine delivery system by 'bacteriomimetic' CpG functionalization of poly-lactic-co-glycolic acid nanoparticles.

    PubMed

    Kokate, Rutika A; Thamake, Sanjay I; Chaudhary, Pankaj; Mott, Brittney; Raut, Sangram; Vishwanatha, Jamboor K; Jones, Harlan P

    2015-01-01

    Low immunogenicity remains a major obstacle in realizing the full potential of cancer vaccines. In this study, we evaluated CpG-coated tumor antigen (Tag)-encapsulating 'bacteriomimetic' nanoparticles (CpG-nanoparticle [NP]-Tag NPs) as an approach to enhance anti-tumor immunity. CpG-NP-Tag NPs were synthesized, characterized for their physicochemical properties and tested in vivo. We found CpG predosing followed by intraperitoneal (IP) immunization with CpG-NP-Tag NPs significantly attenuated tumor growth in female BALB/c mice compared with respective controls. Histopathological and Immunofluorescence data revealed CpG-NP-Tag tumors had lower proliferation, higher apoptotic activity, greater CD4(+) and CD8(+) T cell infiltration as well as higher IFN-γ levels as compared with control groups. Our findings suggest CpG-NP-Tag NPs can enhance anti-tumor effect of nanoparticulate tumor vaccination system.

  15. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides.

    PubMed

    Jiao, Rui; Liu, Yingxia; Gao, Hao; Xiao, Jia; So, Kwok Fai

    2016-01-01

    Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current

  16. alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity.

    PubMed

    Kim, Yeon-Jeong; Ko, Hyun-Jeong; Kim, Yun-Sun; Kim, Dong-Hyeon; Kang, Seock; Kim, Jong-Mook; Chung, Yeonseok; Kang, Chang-Yuil

    2008-06-15

    Most of the current tumor vaccines successfully elicit strong protection against tumor but offer little therapeutic effect against existing tumors, highlighting the need for a more effective vaccine strategy. Vaccination with tumor antigen-presenting cells can induce antitumor immune responses. We have previously shown that NKT-licensed B cells prime cytotoxic T lymphocytes (CTLs) with epitope peptide and generate prophylactic/therapeutic antitumor effects. To extend our B cell vaccine approach to the whole antigen, and to overcome the MHC restriction, we used a nonreplicating adenovirus to transduce B cells with antigenic gene. Primary B cells transduced with an adenovirus-encoding truncated Her-2/neu (AdHM) efficiently expressed Her-2/neu. Compared with the moderate antitumor activity induced by vaccination with adenovirus-transduced B cells (B/AdHM), vaccination with alpha-galactosylceramide-loaded B/AdHM (B/AdHM/alpha GalCer) induced significantly stronger antitumor immunity, especially in the tumor-bearing mice. The depletion study showed that CD4(+), CD8(+) and NK cells were all necessary for the therapeutic immunity. Confirming the results of the depletion study, B/AdHM/alpha GalCer vaccination induced cytotoxic NK cell responses but B/AdHM did not. Vaccination with B/AdHM/alpha GalCer generated Her-2/neu-specific antibodies more efficiently than B/AdHM immunization. More importantly, B/AdHM/alpha GalCer could prime Her-2/neu-specific cytotoxic T cells more efficiently and durably than B/AdHM. CD4(+) cells appeared to be necessary for the induction of antibody and CTL responses. Our results demonstrate that, with the help of NKT cells, antigen-transduced B cells efficiently induce innate immunity as well as a wide range of adaptive immunity against the tumor, suggesting that they could be used to develop a novel cellular vaccine. (c) 2008 Wiley-Liss, Inc.

  17. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn; Zhou, Ling; Zhang, Yan-ling

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endomore » via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.« less

  18. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.

    PubMed

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan

    2015-06-01

    Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC.

  19. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  20. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2014-05-25

    Three water-soluble polysaccharide fractions (SHP30, SHP60, and SHP80) extracted from the Sargassum horneri were obtained by water extraction and radial flow chromatography. The high-performance gel-permeation chromatography analysis showed that the average molecular weight (Mw) of three polysaccharides were approximately 1.58×10(3), 1.92×10(3) and 11.2KDa, respectively. Their in vitro antioxidant activities, antitumor activities were investigated and compared. Among these three polysaccharides, SHP30 with the highest sulfate content and intermediate molecular weight exhibited excellent antioxidant and antitumor activities in the superoxide radical assay, hydroxyl radical assay, reducing power assay, and MTT assay. Then, flow cytometry assay and quantitative real-time reverse transcription-PCR analysis suggested that the accumulation of cells in G0/G1 and S phase effecting apoptosis-associated gene expressions such as Bcl-2 and Bax might account for the growth inhibition of DLD cells by SHP30. Based on these results, we have inferred that sulfate content and molecular weight were the factors influencing antioxidant and antitumor activities. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    PubMed

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis.

    PubMed

    Li, Ning; Feng, Lin; Han, Hui-Qiong; Yuan, Jing; Qi, Xue-Kang; Lian, Yi-Fan; Kuang, Bo-Hua; Zhang, Yu-Chen; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Yao, You-Yuan; Xu, Miao; He, Gui-Ping; Zhao, Bing-Chun; Gao, Ling; Feng, Qi-Sheng; Chen, Li-Zhen; Yang, Lu; Yang, Dajun; Zeng, Yi-Xin

    2016-10-10

    Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2017-05-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  4. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  5. Optimization of T-cell Reactivity by Exploiting TCR Chain Centricity for the Purpose of Safe and Effective Antitumor TCR Gene Therapy.

    PubMed

    Ochi, Toshiki; Nakatsugawa, Munehide; Chamoto, Kenji; Tanaka, Shinya; Yamashita, Yuki; Guo, Tingxi; Fujiwara, Hiroshi; Yasukawa, Masaki; Butler, Marcus O; Hirano, Naoto

    2015-09-01

    Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity affects reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1(235-243) (A24/WT1(235)) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1(235) and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically unselected TCRs. ©2015 American Association for Cancer Research.

  6. Hydroxyurea derivatives of irofulven with improved antitumor efficacy.

    PubMed

    Staake, Michael D; Kashinatham, Alisala; McMorris, Trevor C; Estes, Leita A; Kelner, Michael J

    2016-04-01

    Irofulven is a semi-synthetic derivative of Illudin S, a toxic sesquiterpene isolated from the mushroom Omphalotus illudens. Irofulven has displayed significant antitumor activity in various clinical trials but displayed a limited therapeutic index. A new derivative of irofulven was prepared by reacting hydroxyurea with irofulven under acidic conditions. Acetylation of this new compound with acetic anhydride produced a second derivative. Both of these new derivatives displayed significant antitumor activity in vitro and in vivo comparable to or exceeding that of irofulven. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis of novel grafted hyaluronic acid with antitumor activity.

    PubMed

    Abu Elella, Mahmoud H; Mohamed, Riham R; Sabaa, Magdy W

    2018-06-01

    In our study, we aimed to synthesize novel grafted hyaluronic acid with cationic biodegradable polymer, poly (N-vinyl imidazole) (PVI), through free radical polymerization using potassium persulfate as initiator. The effect of various grafting factors including initiator and monomer concentrations, reaction time and temperature was studied on the percentage of grafting parameters such as; graft yield (% GY), grafting efficiency (% GE) and amount of homopolymer formation (% H). Maximum grafted HA was% GY = 235% and%GE = 83% obtained on optimum conditions at [I n ] = 17.5 mmol L -1 , [M] = 1.25 mol L -1 , Temp. = 50 °C, time = 1.5 h and [HA] = 0.025 mol L -1 . The structure of grafted HA (HA-g-PVI) was elucidated via various analysis tools such as; elemental analyses, FTIR, 1 H NMR, XRD, TGA and Field emission scanning electron microscopy (FE-SEM). Hepatic and breast cancers are two common cancer types threatening people worldwide, so, the antitumor activity of two grafted HA samples (% GY = 155% and 235%) was studied against hepatic cancer (HepG-2) and breast cancer cell lines (MCF-7) compared to unmodified HA and PVI. The results showed that antitumor activity of grafted samples was more than unmodified HA and increased with increasing the grafting percentage of PVI onto HA chains, also, the antitumor activity of tested samples against HepG-2 cell lines was higher than MCF-7 cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Diterpenoid alkaloids from the root of Aconitum sinchiangense W. T. Wang with their antitumor and antibacterial activities.

    PubMed

    Liang, Xiaoxia; Chen, Lan; Song, Lei; Fei, Wenbo; He, Min; He, Changliang; Yin, Zhongqiong

    2017-09-01

    A phytochemical study of the root barks of Aconitum sinchiangense W. T. Wang, a traditional Chinese herb medicine, led to the isolation of 15 diterpenoid alkaloids, including one new C 19 -diterpenoid alkaloid, sinchiangensine A (1), whose structure was determined by spectral methods including 2D NMR. Additionally, sinchiangensine A and its known analogue 3 were first reported as potential antitumor and antibacterial diterpenoid alkaloids, which showed significant antitumor activities against tumour cells (HL-60, A-549, SMCC-7721, MCF-7 and SW480), with IC 50 comparable to cisplatin, and significant antibacterial activities against Staphylococcus aureus ATCC-25923 with MIC value of 0.147 and 0.144 μmol/mL, respectively.

  9. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosismore » rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.« less

  10. Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft.

    PubMed

    Hao, Fangran; Wang, Siyuan; Zhu, Xiao; Xue, Junsheng; Li, Jingyun; Wang, Lijie; Li, Jian; Lu, Wei; Zhou, Tianyan

    2017-02-01

    To investigate the anti-tumor effect of sunitinib in combination with dopamine in the treatment of nu/nu nude mice bearing non-small cell lung cancer (NSCLC) A549 cells and to develop the combination PK/PD model. Further, simulations were conducted to optimize the administration regimens. A PK/PD model was developed based on our preclinical experiment to explore the relationship between plasma concentration and drug effect quantitatively. Further, the model was evaluated and validated. By fixing the parameters obtained from the PK/PD model, simulations were built to predict the tumor suppression under various regimens. The synergistic effect was observed between sunitinib and dopamine in the study, which was confirmed by the effect constant (GAMA, estimated as 2.49). The enhanced potency of dopamine on sunitinib was exerted by on/off effect in the PK/PD model. The optimal dose regimen was selected as sunitinib (120 mg/kg, q3d) in combination with dopamine (2 mg/kg, q3d) based on the simulation study. The synergistic effect of sunitinib and dopamine was demonstrated by the preclinical experiment and confirmed by the developed PK/PD model. In addition, the regimens were optimized by means of modeling as well as simulation, which may be conducive to clinical study.

  11. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons.

    PubMed

    Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup

    2016-06-01

    Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.

  12. Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3',4'-didemethylnobiletin, derived from nobiletin.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Chai, Chee-Yin; Lo, Chih-Yu; Dushenkov, Slavik; Ho, Chi-Tang; Pan, Min-Hsiung; Wang, Ying-Jan

    2008-12-01

    We reported previously that 3',4'-didemethylnobiletin (DDMN) is the major metabolite of nobiletin in mouse urine. In this study, we examined DDMN's molecular mechanism of action and its anti-inflammatory and antitumor properties. We demonstrated that topical application of DDMN effectively inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated transcription of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and ornithine decarboxylase (ODC) messenger RNA and protein expression in mouse skin. Pretreatment with DDMN has resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappa B (NF-kappaB) subunit. DDMN also reduced DNA binding by blocking phosphorylation of inhibitor kappaB (IkappaB) alpha and p65 and caused subsequent degradation of IkappaBalpha. DDMN inhibited TPA-induced phosphorylation and nuclear translocation of the signal transducer and activator of transcription 3. Moreover, DDMN suppressed TPA-induced activation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt and protein kinase C that are upstream of NF-kappaB and activator protien-1. We also found that DDMN significantly inhibited TPA-induced mouse skin inflammation by decreasing inflammatory parameters. Furthermore, DDMN significantly inhibited 7,12-dimethylbenz[a]anthracene/TPA-induced skin tumor formation measured by the tumor multiplicity of papillomas at 20 weeks. Presented data for the first time reveal that DDMN is an effective antitumor agent that functions by downregulating inflammatory iNOS, COX-2 and ODC gene expression in mouse skin. It is suggested that DDMN is a novel functional agent capable of preventing inflammation-associated tumorigenesis.

  13. [Study on alkaloids of Corydalis ochotensis and their antitumor bioactivity].

    PubMed

    Yu, Jia-jia; Cong, Deng-li; Jiang, Ying; Zhou, Yuan; Wang, Yan; Zhao, Chun-fang

    2014-10-01

    To investigate the chemical constituents of Corydalis ochotensis and their antitumor bioactivity. The compounds were isolated by silica gel column chromatography and recrystallization. Their structures were identified by spectroscopic analysis (NMR) and physicochemical properties. Their cytotoxic activity was studied by MTT. Six compounds were elucidated as protopine (1), ochotensimine (2), fumariline (3), sanguinarine (4), tetrahydroberberine (5) and berberine (6). Compound 1 had excellent inhibitory activity on HepG2, SW480 and A549 cells, and compound 4 had excellent inhibitory activity on Hep2, HepG2, SW480 and A549 cells. Compounds 3, 4 and 5 are isolated from this plant for the first time; In the MTT antitumor experiments,compounds 1 and 4 show an antitumor activity.

  14. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti-tumor activity.

    PubMed

    Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie

    2017-05-01

    To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. To reduce the side effects and enhance the anti-tumor activities of anticancer drugs, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro and in vivo, HSA-MSe@DOX possessed tumor-targeting abilities and not only

  15. Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model.

    PubMed

    Wu, Yanhong; Deng, Zhenling; Wang, Huiru; Ma, Wenbo; Zhou, Chunxia; Zhang, Shuren

    2016-09-20

    Recently, the immunostimulatory roles of chemotherapeutics have been increasingly revealed, although bone marrow suppression is still a common toxicity of chemotherapy. While the numbers and ratios of different immune subpopulations are analyzed after chemotherapy, changes to immune status after each cycle of treatment are less studied and remain unclear. To determine the tumor-specific immune status and functions after different cycles of chemotherapy, we treated CT26 tumor-bearing mice with one to four cycles of 5-fluorouracil (5-FU). Overall survival was not improved when more than one cycle of 5-FU was administered. Here we present data concerning the immune statuses after one and three cycles of chemotherapy. We analyzed the amount of spleen cells from mice treated with one and three cycles of 5-FU as well as assayed their proliferation and cytotoxicity against the CT26 tumor cell line. We found that the absolute numbers of CD8 T-cells and NK cells were not influenced significantly after either one or three cycles of chemotherapy. However, after three cycles of 5-FU, proliferated CD8 T-cells were decreased, and CT26-specific cytotoxicity and IFN-γ secretion of spleen cells were impaired in vitro. After one cycle of 5-FU, there was a greater percentage of tumor infiltrating CD8 T-cells. In addition, more proliferated CD8 T-cells, enhanced tumor-specific cytotoxicity as well as IFN-γ secretion of spleen cells against CT26 in vitro were observed. Given the increased expression of immunosuppressive factors, such as PD-L1 and TGF-β, we assessed the effect of early introduction of immunotherapy in combination with chemotherapy. We found that mice treated with cytokine induced killer cells and PD-L1 monoclonal antibodies after one cycle of 5-FU had a better anti-tumor performance than those treated with chemotherapy or immunotherapy alone. These data suggest that a single cycle of 5-FU treatment promoted an anti-tumor immune response, whereas repeated chemotherapy

  16. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8.

    PubMed

    Shinnoh, Masahide; Horinaka, Mano; Yasuda, Takashi; Yoshikawa, Sae; Morita, Mie; Yamada, Takeshi; Miki, Tsuneharu; Sakai, Toshiyuki

    2013-03-01

    Bacillus Calmette-Guérin (BCG) intravesical therapy against superficial bladder cancer is one of the most successful immunotherapies in cancer, though the precise mechanism has not been clarified. Recent studies have demonstrated urinary tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels to be higher in BCG-responsive patients than non-responders and shown that polymorphonuclear neutrophils (PMNs) migrating to the bladder after BCG instillation release large amounts of TRAIL. To establish a safer and more effective intravesical therapy than BCG, we examined whether other bacteria induced similar effects. We stimulated PMNs or peripheral blood mononuclear cells (PBMCs) with BCG or other bacteria, and then aliquots of the culture supernatants or cell lysates were assayed for TRAIL. We examined the signaling pathway regulating the release of TRAIL from PMNs and evaluated the antitumor effects of BCG or other bacteria in vitro and in vivo. We have found that Clostridium butyricum MIYAIRI 588 (CBM588) induces the release of endogenous TRAIL from PMNs as well as BCG. In addition, we have shown that matrix metalloproteinase 8 (MMP-8) is one of the key factors responsible for the release. Interestingly, TLR2/4 signaling pathway has been suggested to be important for the release of TRAIL by MMP-8. CBM588 has been proven to be as effective as BCG against cancer cells by inducing apoptosis in vivo as well as in vitro. Taken together, these results strongly suggest that CBM588 is promising for a safer and more effective therapy against bladder cancer.

  17. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential

    PubMed Central

    ALAM, BADRUL; MAJUMDER, RAJIB; AKTER, SHAHINA; LEE, SANG-HAN

    2015-01-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential. PMID:25624910

  18. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.

    PubMed

    Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han

    2015-02-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.

  19. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma.

    PubMed

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Chang, Na

    2017-09-20

    Curcumin, a derivative from the dried rhizome of curcuma longa, has been proven to possess anti-tumor effects. However, the detailed molecular mechanisms have not been fully elucidated. In this study, we aimed to explore the anti-tumor mechanisms of curcumin in treating gastric cancer. BALB/C mice grafted with a mouse gastric adenocarcinoma cell line (MFC) were used as the experimental model. Mice received different doses of curcumin after grafting. Tumor size was measured and tumor weight was determined after tumor inoculation. TUNEL assay and flow cytometric analysis were applied to evaluate the apoptosis of the cancer cells. Serum cytokines IFN-γ, TNF-α, granzyme B and perforin were detected by ELISA assay. The anti-tumor effect was determined using cytotoxic T-lymphocyte (CTL) assays and in vivo tumor prevention tests. The expression of DEC1, HIF-1α, STAT3 and VEGF in tumor tissues was examined by immunostaining and analyzed using an Image J analysis system. Compared with controls, tumor growth (size and weight) was significantly inhibited by curcumin treatment (P < 0.05). The apoptotic index in gastric cancer cells was significantly increased in the curcumin treatment group. Splenocyte cells from mice treated with curcumin exhibited higher cytolytic effects on MFC cancer cells than those from mice treated with saline (P < 0.01). The expression of DEC1, HIF-1α, STAT3 and VEGF in tumor tissues was down-regulated after curcumin treatment. Our results indicate that curcumin inhibits the proliferation of gastric carcinoma by inducing the apoptosis of tumor cells, activating immune cells to secrete a large amount of cytokines, and down-regulating the DEC1, HIF-1α, VEGF and STAT3 signal transduction pathways.

  20. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression.

    PubMed

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen

    2016-09-01

    In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.

  1. Generation of a novel TRAIL mutant by proline to arginine substitution based on codon bias and its antitumor effects.

    PubMed

    Zhu, Aijing; Wang, Xiuyun; Huang, Min; Chen, Chen; Yan, Juan; Xu, Qi; Wei, Lijia; Huang, Xianzhou; Zhu, Hong; Yi, Cheng

    2017-10-01

    TNF ligand superfamily member 10 (TRAIL) is a member of the tumor necrosis factor superfamily. The present study was performed in an effort to increase the expression of soluble (s)TRAIL by rebuilding the gene sequence of TRAIL. Three principles based on the codon bias of Escherichia coli were put forward to design the rebuild strategy. Relying on these three principles, a P7R mutation near the N‑terminal region of sTRAIL, named TRAIL‑Mu, was designed. TRAIL‑Mu was subsequently cloned into the PTWIN1 plasmid and expressed in E. coli BL21 (DE3). Using a high‑level expression system and a three‑step purification method, soluble TRAIL‑Mu protein reached ~90% of total cellular protein and purity was >95%, demonstrating success in overcoming inclusion body formation. The cytotoxic effect of TRAIL‑Mu was evaluated by sulforhodamine B assay in the MD‑MB‑231, A549, NCI‑H460 and L02 cell lines. The results demonstrated that TRAIL‑Mu exerted stronger antitumor effects on TRAIL‑sensitive tumor cell lines, and was able to partially reverse the resistance of a TRAIL‑resistant tumor cell line. In addition, TRAIL‑Mu exhibited no notable biological effects in a normal liver cell line. The novel TRAIL variant generated in the present study may be useful for the mass production of this important protein for therapeutic purposes.

  2. Suppression of NF-κB Survival Signaling by Nitrosylcobalamin Sensitizes Neoplasms to the Anti-tumor Effects of Apo2L/TRAIL*

    PubMed Central

    Chawla-Sarkar, Mamta; Bauer, Joseph A.; Lupica, Joseph A.; Morrison, Bei H.; Tang, Zhuo; Oates, Rhonda K.; Almasan, Alex; DiDonato, Joseph A.; Borden, Ernest C.; Lindner, Daniel J.

    2007-01-01

    We have previously demonstrated the anti-tumor activity of nitrosylcobalamin (NO-Cbl), an analog of vitamin B12 that delivers nitric oxide (NO) and increases the expression of tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) and its receptors in human tumors. The specific aim of this study was to examine whether NO-Cbl could sensitize drug-resistant melanomas to Apo2L/TRAIL. Antiproliferative effects of NO-Cbl and Apo2L/TRAIL were assessed in malignant melanomas and non-tumorigenic melanocyte and fibro-blast cell lines. Athymic nude mice bearing human melanoma A375 xenografts were treated with NO-Cbl and Apo2L/TRAIL. Apoptosis was measured by TUNEL and confirmed by examining levels and activity of key mediators of apoptosis. The activation status of NF-κB was established by assaying DNA binding, luciferase reporter activity, the phosphorylation status of IκBα, and in vitro IKK activity. NO-Cbl sensitized Apo2L/TRAIL-resistant melanoma cell lines to growth inhibition by Apo2L/TRAIL but had minimal effect on normal cell lines. NO-Cbl and Apo2L/TRAIL exerted synergistic anti-tumor activity against A375 xenografts. Treatment with NO-Cbl followed by Apo2L/TRAIL induced apoptosis in Apo2L/TRAIL-resistant tumor cells, characterized by cleavage of caspase-3, caspase-8, and PARP. NO-Cbl inhibited IKK activation, characterized by decreased phosphorylation of IκBα and inhibition of NF-κB DNA binding activity. NO-Cbl suppressed Apo2L/TRAIL- and TNF-α-mediated activation of a transfected NF-κB-driven luciferase reporter. XIAP, an inhibitor of apoptosis, was inactivated by NO-Cbl. NO-Cbl treatment rendered Apo2L/TRAIL-resistant malignancies sensitive to the anti-tumor effects of Apo2L/TRAIL in vitro and in vivo. The use of NO-Cbl and Apo2L/TRAIL capitalizes on the tumor-specific properties of both agents and represents a promising anti-cancer combination. PMID:12881518

  3. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    NASA Astrophysics Data System (ADS)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  4. Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid.

    PubMed

    Domhan, Sophie; Muschal, Stefan; Schwager, Christian; Morath, Christian; Wirkner, Ute; Ansorge, Wilhelm; Maercker, Christian; Zeier, Martin; Huber, Peter E; Abdollahi, Amir

    2008-06-01

    The relative risk for the development of malignancies following solid organ transplantation seems to be decreased in patients treated with the immunosuppressive agent mycophenolic acid (MPA). However, the molecular mechanisms of the antineoplastic effects of MPA are not completely understood. Here, we report that human endothelial cells and fibroblasts are highly sensitive to MPA treatment. We found that U87 glioblastoma cells were resistant to MPA treatment in vitro. However, U87 tumor growth was markedly inhibited in vivo in BALB/c nude mice, suggesting that MPA exerted its antitumor effects via modulation of the tumor microenvironment. Accordingly, microvascular density and pericyte coverage were markedly reduced in MPA-treated tumors in vivo. Using functional in vitro assays, we showed that MPA potently inhibited endothelial cell and fibroblast proliferation, invasion/migration, and endothelial cell tube formation. To identify the genetic participants governing the antiangiogenic and antifibrotic effects of MPA, we performed genome-wide transcriptional analysis in U87, endothelial and fibroblast cells at 6 and 12 h after MPA treatment. Network analysis revealed a critical role for MYC signaling in endothelial cells treated with MPA. Moreover, we found that the antiangiogenic effects of MPA were organized by coordinated communications between MYC and NDRG1, YYI, HIF1A, HDAC2, CDC2, GSK3B, and PRKACB signaling. The regulation of these "hub nodes" was confirmed by real-time quantitative reverse transcription-PCR and protein analysis. The critical involvement of MYC in the antiangiogenic signaling of MPA was further shown by gene knockdown experiments. Together, these data provide a molecular basis for the antiangiogenic and antifibrotic effects of MPA, which warrants further clinical investigations.

  5. Mannosylated protamine as a novel DNA vaccine carrier for effective induction of anti-tumor immune responses.

    PubMed

    Zeng, Zhaoyan; Dai, Shuang; Jiao, Yan; Jiang, Lei; Zhao, Yuekui; Wang, Bo; Zong, Li

    2016-06-15

    Gene immunotherapy has been developed as a promising strategy for inhibition of tumor growth. In the study, mannosylated protamine sulphate (MPS) was used as a novel DNA vaccine carrier to enhance transfection efficiency and anti-tumor immune responses. Anti-GRP DNA vaccine (pGRP) was selected as a model gene and condensed by MPS to form MPS/pGRP nanoparticles. The cellular uptake and transfection efficiency of MPS/pGRP nanoparticles in macrophages were evaluated. The effect of the nanoparticles in enhancing GRP-specific humoral immune response was then evaluated by nasal vaccination of nanoparticles in mice. The results demonstrated that both the cellular uptake and transfection efficiency of MPS nanoparticles in macrophages were higher than those of protamine nanoparticles. MPS/pGRP nanoparticles stimulated the production of higher titers (3.9×10(3)) of specific antibodies against GRP than those of protamine/pGRP nanoparticles (6.4×10(2), p<0.01) and intramuscular injection pGRP solution (2.5×10(3), p<0.05). Furthermore, the inhibitory rate in MPS/pGRP nanoparticles group (65.80%) was significantly higher than that in protamine/pGRP nanoparticles group (35.13%) and pGRP solution group (43.39%). Hence, it is evident that MPS is an efficient targeting gene delivery carrier which could improve in vitro transfection efficiency as well as anti-tumor immunotherapy in mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    PubMed

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  7. Anti-tumor Study of Chondroitin Sulfate-Methotrexate Nanogels

    NASA Astrophysics Data System (ADS)

    Wang, Jinyu; Zhao, Weibo; Chen, Haixiao; Qin, An; Zhu, Peizhi

    2017-10-01

    Self-assembly nanogels (NGs) were formed by bioconjugating methotrexate (MTX) with chondroitin sulfate (CS). MTX-CS NGs can greatly enhance the solubility and improve the delivery efficacy of MTX due to the CD44 binding property of CS. Vivo experiments revealed that MTX-CS NGs showed less toxicity than MTX. MTX-CS NGs can improve the anti-tumor effect while reducing the side effects of MTX. Due to their CD44 binding property, chondroitin sulfate-drug conjugates could be a promising and efficient platform for improving the solubility of sparingly soluble drug molecules as well as targeted delivery to cancer cells and tumor tissues.

  8. Immunosuppression Enhances Oncolytic Adenovirus Replication and Antitumor Efficacy in the Syrian Hamster Model

    PubMed Central

    Thomas, Maria A; Spencer, Jacqueline F; Toth, Karoly; Sagartz, John E; Phillips, Nancy J; Wold, William SM

    2012-01-01

    We recently described an immunocompetent Syrian hamster model for oncolytic adenoviruses (Ads) that permits virus replication in tumor cells as well as some normal tissues. This model allows exploration of interactions between the virus, tumor, normal organs, and host immune system that could not be examined in the immunodeficient or nonpermissive animal models previously used in the oncolytic Ad field. Here we asked whether the immune response to oncolytic Ad enhances or limits antitumor efficacy. We first determined that cyclophosphamide (CP) is a potent immunosuppressive agent in the Syrian hamster and that CP alone had no effect on tumor growth. Importantly, we found that the antitumor efficacy of oncolytic Ads was significantly enhanced in immunosuppressed animals. In animals that received virus therapy plus immunosuppression, significant differences were observed in tumor histology, and in many cases little viable tumor remained. Notably, we also determined that immunosuppression allowed intratumoral virus levels to remain elevated for prolonged periods. Although favorable tumor responses can be achieved in immunocompetent animals, the rate of virus clearance from the tumor may lead to varied antitumor efficacy. Immunosuppression, therefore, allows sustained Ad replication and oncolysis, which leads to substantially improved suppression of tumor growth. PMID:18665155

  9. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity

    PubMed Central

    Rookhuizen, Derek C.; Joannas, Leonel; Carpier, Jean-Marie; Yatim, Nader; Albert, Matthew L.

    2017-01-01

    CD8+ T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called “cross-presentation.” Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum–phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8+ T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti–PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8+ T cell responses to dead cells and to induce effective antitumor immune responses during anti–PD-1 treatment in mice. PMID:28663435

  10. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model

    PubMed Central

    Gomez-Cadena, A; Urueña, C; Prieto, K; Martinez-Usatorre, A; Donda, A; Barreto, A; Romero, P; Fiorentino, S

    2016-01-01

    Recent findings suggest that part of the anti-tumor effects of several chemotherapeutic agents require an intact immune system. This is in part due to the induction of immunogenic cell death. We have identified a gallotannin-rich fraction, obtained from Caesalpinia spinosa (P2Et) as an anti-tumor agent in both breast carcinoma and melanoma. Here, we report that P2Et treatment results in activation of caspase 3 and 9, mobilization of cytochrome c and externalization of annexin V in tumor cells, thus suggesting the induction of apoptosis. This was preceded by the onset of autophagy and the expression of immunogenic cell death markers. We further demonstrate that P2Et-treated tumor cells are highly immunogenic in vaccinated mice and induce immune system activation, clearly shown by the generation of interferon gamma (IFN-γ) producing tyrosine-related protein 2 antigen-specific CD8+ T cells. Moreover, the tumor protective effects of P2Et treatment were abolished in immunodeficient mice, and partially lost after CD4 and CD8 depletion, indicating that P2Et's anti-tumor activity is highly dependent on immune system and at least in part of T cells. Altogether, these results support the hypothesis that the gallotannin-rich fraction P2Et's anti-tumor effects are mediated to a great extent by the endogenous immune response following to the exposure to immunogenic dying tumor cells. PMID:27253407

  11. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model

    PubMed Central

    Magnone, Mirko; Zamporlini, Federica; Emionite, Laura; Sturla, Laura; Bianchi, Giovanna; Vigliarolo, Tiziana; Nahimana, Aimable; Nencioni, Alessio; Raffaelli, Nadia; Bruzzone, Santina

    2016-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5′-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors. PMID:26658104

  12. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.

    PubMed

    Sociali, Giovanna; Raffaghello, Lizzia; Magnone, Mirko; Zamporlini, Federica; Emionite, Laura; Sturla, Laura; Bianchi, Giovanna; Vigliarolo, Tiziana; Nahimana, Aimable; Nencioni, Alessio; Raffaelli, Nadia; Bruzzone, Santina

    2016-01-19

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5'-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.

  13. The anti-tumor effect and biological activities of the extract JMM6 from the stem-barks of the Chinese Juglans mandshurica Maxim on human hepatoma cell line BEL-7402.

    PubMed

    Zhang, Yongli; Cui, Yuqiang; Zhu, Jiayong; Li, Hongzhi; Mao, Jianwen; Jin, Xiaobao; Wang, Xiangsheng; Du, Yifan; Lu, Jiazheng

    2013-01-01

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the extracted compound JMM6 were studied in BEL-7402 cells by MTT, Cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay and Detection of mitochondrial membrane potential (ΔΨm). After treatment with the JMM6, the growth of BEL-7402 cells was inhibited and cells displayed typical morphological apoptotic characteristics. Further investigations revealed that treatment with JMM6 mainly caused G2/M cell cycle arrest and induced apoptosis in BEL-7402 cells. To evaluate the alteration of mitochondria in JMM6 induced apoptosis. The data showed that JMM6 decreased significantly the ΔΨm, causing the depolarization of the mitochondrial membrane. Our results show that the JMM6 will have a potential advantage of anti-tumor, less harmful to normal cells. This paper not only summarized the JMM6 pick-up technology from Juglans mandshurica Maxim and biological characteristic, but also may provide further evidence to exploit the potential medicine compounds from the stem-barks of the Chinese Juglans mandshurica Maxim.

  14. Antitumor effects of nano-bubble hydrogen-dissolved water are enhanced by coexistent platinum colloid and the combined hyperthermia with apoptosis-like cell death.

    PubMed

    Asada, Ryoko; Kageyama, Katsuhiro; Tanaka, Hiroshi; Matsui, Hisakazu; Kimura, Masatsugu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-12-01

    In order to erase reactive oxygen species (ROS) related with the proliferation of tumor cells by reducing activity of hydrogen, we developed functional water containing nano-bubbles (diameters: <900 nm for 71%/population) hydrogen of 1.1-1.5 ppm (the theoretical maximum: 1.6 ppm) with a reducing ability (an oxidation-reduction potential -650 mV, normal water: +100-200 mV) using a microporous-filter hydrogen-jetting device. We showed that hydrogen water erased ROS indispensable for tumor cell growth by ESR/spin trap, the redox indicator CDCFH-DA assay, and was cytotoxic to Ehrlich ascites tumor cells as assessed by WST-8 assay, crystal violet dye stain and scanning electron microscopy, after 24-h or 48-h incubation sequent to warming at 37°C or 42°C. Hydrogen water supplemented with platinum colloid (0.3 ppm Pt in 4% polyvinylpyrrolidone) had more antitumor activity than hydrogen water alone, mineral water alone (15.6%), hydrogen water plus mineral water, or platinum colloid alone as observed by decreased cell numbers, cell shrinkage and pycnosis (nuclear condensation)/karyorrhexis (nuclear fragmentation) indicative of apoptosis, together with cell deformation and disappearance of microvilli on the membrane surface. These antitumor effects were promoted by combination with hyperthermia at 42°C. Thus, the nano-bubble hydrogen water with platinum colloid is potent as an anti-tumor agent.

  15. Development of DS-5573a: A novel afucosylated mAb directed at B7-H3 with potent antitumor activity.

    PubMed

    Nagase-Zembutsu, Akiko; Hirotani, Kenji; Yamato, Michiko; Yamaguchi, Junko; Takata, Takehiko; Yoshida, Makoto; Fukuchi, Keisuke; Yazawa, Mitsuhiro; Takahashi, Shu; Agatsuma, Toshinori

    2016-05-01

    B7-H3 is highly overexpressed in a variety of human clinical tumors, and its expression is significantly associated with poor outcomes. In our study, we aimed to develop new antitumor mAbs by employing cancer cell immunization, and succeeded in generating a mouse anti-human B7-H3 antibody (M30) that shows antitumor activity. M30 was humanized (Hu-M30), and an afucosylated Hu-M30 (DS-5573a) was also generated. To assess the potency of DS-5573a as a therapeutic mAb, we characterized this mAb and evaluated its antitumor activity in vitro and in vivo. Flow cytometry analysis showed that B7-H3 proteins were expressed on various types of cancer cell lines broadly, and DS-5573a binds to IgC1 and IgC2 domains of human B7-H3. Antibody-dependent cellular cytotoxicity activity of DS-5573a was drastically enhanced against medium to high B7-H3-expressing cancer cell lines MDA-MB-231 and NCI-H322. DS-5573a also induced high antibody-dependent cellular cytotoxicity activity against low B7-H3-expressing cancer cell line COLO205, whereas Hu-M30 induced little activity against it. In addition, DS-5573a was found to be a novel anti-B7-H3 antibody which showed antibody-dependent cellular phagocytosis activity. Furthermore, DS-5573a showed dose-dependent and significant antitumor efficacy (0.03-3 mg/kg) in MDA-MB-231-bearing SCID mice (which have functional natural killer cells and macrophages), but little antitumor efficacy in NOG mice (which lack natural killer cells and have reduced macrophage function). These results suggest that antitumor activity of DS-5573a is mediated by effector cells, and this mAb could be a promising antitumor therapy for patients with a wide range of B7-H3-expressing tumors. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Potent Antitumor Effects of Combination Therapy With IFNs and Monocytes in Mouse Models of Established Human Ovarian and Melanoma Tumors

    PubMed Central

    Nakashima, Hideyuki; Miyake, Kotaro; Clark, Christopher R; Bekisz, Joseph; Finbloom, Joel; Husain, Syed R.; Baron, Samuel; Puri, Raj K.; Zoon, Kathryn C.

    2012-01-01

    Interferon-activated monocytes are known to exert cytocidal activity against tumor cells in vitro. Here, we have examined whether a combination of IFN-α2a and IFN-γ and human monocytes mediate significant antitumor effects against human ovarian and melanoma tumor xenografts in mouse models. OVCAR-3 tumors were treated i.t. with monocytes alone, IFN-α2a and IFN-γ alone or combination of all three on day 0, 15 or 30 post-tumor implantation. Mice receiving combination therapy beginning day 15 showed significantly reduced tumor growth and prolonged survival including complete regression in 40% mice., Tumor volumes measured on day 80 in mice receiving combination therapy (206 mm3) were significantly smaller than those of mice receiving the IFNs alone (1041 mm3), monocytes alone (1111 mm3) or untreated controls (1728 mm3). Similarly, combination therapy with monocytes and IFNs of much larger tumor also inhibited OVCAR-3 tumor growth. Immunohistochemistry studies showed a large number of activated macrophages (CD31+/CD68+) infiltrating into OVCAR-3 tumors and higher densities of IL-12, IP10 and NOS2, markers of M1 (classical) macrophages in tumors treated with combination therapy compared to the controls. Interestingly, IFNs activated macrophages induced apoptosis of OVCAR-3 tumor cells as monocytes alone or IFNs alone did not mediate significant apoptosis. Similar antitumor activity was observed in the LOX melanoma mouse model, but not as profound as seen with the OVCAR-3 tumors. Administration of either mixture of monocytes and IFN-α2a or monocytes and IFN-γ did not inhibit Lox melanoma growth; however a significant inhibition was observed when tumors were treated with a mixture of monocytes, IFN-α2a and IFN-γ. These results indicate that monocytes and both IFN-α2a and IFN-γ may be required to mediate profound antitumor effect against human ovarian and melanoma tumors in mouse models. PMID:22159517

  17. The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise

    NASA Astrophysics Data System (ADS)

    Guo, Qin; Sun, Zhongkui; Xu, Wei

    2016-05-01

    The anti-tumor model with correlation between multiplicative non-Gaussian noise and additive Gaussian-colored noise has been investigated in this paper. The behaviors of the stationary probability distribution demonstrate that the multiplicative non-Gaussian noise plays a dual role in the development of tumor and an appropriate additive Gaussian colored noise can lead to a minimum of the mean value of tumor cell population. The mean first passage time is calculated to quantify the effects of noises on the transition time of tumors between the stable states. An increase in both the non-Gaussian noise intensity and the departure from the Gaussian noise can accelerate the transition from the disease state to the healthy state. On the contrary, an increase in cross-correlated degree will slow down the transition. Moreover, the correlation time can enhance the stability of the disease state.

  18. Antibody treatment of human tumor xenografts elicits active anti-tumor immunity in nude mice

    PubMed Central

    Liebman, Meredith A.; Roche, Marly I.; Williams, Brent R.; Kim, Jae; Pageau, Steven C.; Sharon, Jacqueline

    2007-01-01

    Athymic nude mice bearing subcutaneous tumor xenografts of the human anti-colorectal cancer cell line SW480 were used as a preclinical model to explore anti-tumor immunotherapies. Intratumor or systemic treatment of the mice with murine anti-SW480 serum, recombinant anti-SW480 polyclonal antibodies, or the anti-colorectal cancer monoclonal antibody CO17-1A, caused retardation or regression of SW480 tumor xenografts. Interestingly, when mice that had regressed their tumors were re-challenged with SW480 cells, these mice regressed the new tumors without further antibody treatment. Adoptive transfer of spleen cells from mice that had regressed their tumors conferred anti-tumor immunity to naïve nude mice. Pilot experiments suggest that the transferred anti-tumor immunity is mediated by T cells of both γδ and αβ lineages. These results demonstrate that passive anti-tumor immunotherapy can elicit active immunity and support a role for extra-thymic γδ and αβ T cells in tumor rejection. Implications for potential immunotherapies include injection of tumor nodules in cancer patients with anti-tumor antibodies to induce anti-tumor T cell immunity. PMID:17920694

  19. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers.

    PubMed

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2015-05-01

    To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    PubMed

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  1. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin.

    PubMed

    Orel, Valerii; Shevchenko, Anatoliy; Romanov, Andriy; Tselepi, Marina; Mitrelias, Thanos; Barnes, Crispin H W; Burlaka, Anatoliy; Lukin, Sergey; Shchepotin, Igor

    2015-01-01

    We present a technology and magneto-mechanical milling chamber for the magneto-mechano-chemical synthesis (MMCS) of magneto-sensitive complex nanoparticles (MNC) comprising nanoparticles Fe3O4 and anticancer drug doxorubicin (DOXO). Magnetic properties of MNC were studied with vibrating magnetometer and electron paramagnetic resonance. Under the influence of mechano-chemical and MMCS, the complex show a hysteresis curve, which is typical for soft ferromagnetic materials. We also demonstrate that Lewis lung carcinoma had a hysteresis loop typical for a weak soft ferromagnet in contrast to surrounding tissues, which were diamagnetic. Combined action of constant magnetic field and radio frequency moderate inductive hyperthermia (RFH) below 40°C and MNC was found to induce greater antitumor and antimetastatic effects as compared to conventional DOXO. Radiospectroscopy shows minimal activity of FeS-protein electron transport chain of mitochondria, and an increase in the content of non-heme iron complexes with nitric oxide in the tumor tissues under the influence of RFH and MNC. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    NASA Astrophysics Data System (ADS)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  3. Esculetin exerts antitumor effect on human gastric cancer cells through IGF-1/PI3K/Akt signaling pathway.

    PubMed

    Wang, Guijun; Lu, Meili; Yao, Yusheng; Wang, Jing; Li, Juan

    2017-11-05

    In this study, we aimed to investigate the antitumor effect of esculetin, a coumarin derivative extracted from natural plants, on human gastric cancer cells, and to illustrate the potential mechanisms. The results showed that esculetin exhibited anti-proliferative effects against gastric cancer cells and induced their apoptosis in a dose dependent manner with lower toxicity against normal gastric epithelial cells. Mechanism study indicated that esculetin induced gastric cancer MGC-803 cells apoptosis by triggering the activation of mitochondrial apoptotic pathway through reducing the mitochondrial membrane potential (MMP), increasing Bax/Bcl-2 ratio, activating caspase-3 and caspase-9 activity, and increasing cytochrome c release from mitochondria. Further study showed that the pro-apoptotic effects of esculetin were associated with down-regulation of insulin-like growth factor-1/ phosphatidylinositide 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling pathway. Activation of IGF-1/PI3K/Akt pathway by IGF-1 abrogated the pro-apoptotic effects of esculetin, while inhibition of IGF-1/PI3K/Akt pathway by triciribine or LY294002 enhanced the pro-apoptotic effects of esculetin. In addition, esculetin inhibited in vivo tumor growth with no obvious toxicity following subcutaneous inoculation of MGC-803 cells in nude mice, and inhibited activation of IGF-1/PI3K/Akt pathway in tumor tissue. These results indicate that esculetin could inhibit cell proliferation and induce apoptosis of gastric cancer cells through IGF-1/PI3K/Akt mediated mitochondrial apoptosis pathway, and may be a novel effective chemotherapeutic agent against gastric cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay.

    PubMed

    Peixoto, Raphael Cândido Apolinário; Miranda-Vilela, Ana Luisa; de Souza Filho, José; Carneiro, Marcella Lemos' Brettas; Oliveira, Ricardo G S; da Silva, Matheus Oliveira; de Souza, Aparecido R; Báo, Sônia Nair

    2015-05-01

    Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.

  5. Synthesis and anti-tumor evaluation of panaxadiol halogen-derivatives.

    PubMed

    Xiao, Shengnan; Chen, Shuai; Sun, Yuanyuan; Zhou, Wuxi; Piao, Huri; Zhao, Yuqing

    2017-09-01

    In the current work, 13 novel panaxadiol (PD) derivatives were synthesized by reacting with chloroacetyl chloride and bromoacetyl bromide. Their in vitro antitumor activities were evaluated on three human tumor cell lines (HCT-116, BGC-823, SW-480) and three normal cells (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2) by MTT assay. Compared with PD, the results demonstrated that compound 1e, 2d, 2e showed significant anti-tumor activity against three tumor cell lines, the IC50 value of compound 2d against HCT-116 was the lowest (3.836μM). The anti-tumor activity of open-ring compounds are significantly better than the compounds of C-25 cyclization. Compound 1f, 2f, 2g showed the strong anti-tumor activity. The IC50 value of compound 2g against BGC-823 and SW-480 were the lowest (0.6μM and 0.1μM, respectively). Combined with cytotoxicity test, the IC50 value of compound 1e, 2d, 2e are greater than 100. the open-ring compounds (1f, 2f, 2g) showed a strong toxicity. The toxicity of 1f is lower than 2f and 2g. These compounds may be useful for the development of novel antiproliferative agents. Copyright © 2017. Published by Elsevier Ltd.

  6. New cysteamine (2-chloroethyl)nitrosoureas. Synthesis and preliminary antitumor results.

    PubMed

    Madelmont, J C; Godeneche, D; Parry, D; Duprat, J; Chabard, J L; Plagne, R; Mathe, G; Meyniel, G

    1985-09-01

    Three chemical pathways were used for the synthesis of four new N'-(2-chloroethyl)-N-[2-(methylsulfinyl)ethyl]- and N'-(2-chloroethyl)-N-[2-(methylsulfonyl)ethyl]-N- or N'-nitrosoureas. These compounds are plasma metabolites of CNCC, a promising antineoplastic (2-chloroethyl)nitrosourea. Preliminary antitumor evaluation was performed against L1210 leukemia implanted intraperitoneally in mice. Among these compounds, two of them exhibited a greater antitumor activity compared to that of the parent mixture.

  7. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies.

    PubMed

    Lee, Edmund C; Fitzgerald, Michael; Bannerman, Bret; Donelan, Jill; Bano, Kristen; Terkelsen, Jennifer; Bradley, Daniel P; Subakan, Ozlem; Silva, Matthew D; Liu, Ray; Pickard, Michael; Li, Zhi; Tayber, Olga; Li, Ping; Hales, Paul; Carsillo, Mary; Neppalli, Vishala T; Berger, Allison J; Kupperman, Erik; Manfredi, Mark; Bolen, Joseph B; Van Ness, Brian; Janz, Siegfried

    2011-12-01

    The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Both cell line-derived OCI-Ly10 and primary human lymphoma-derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMyc(Cα)/Bcl-X(L) GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc-disseminated model of iMyc(Cα)/Bcl-X(L) was used to determine antitumor activity and effects on osteolytic bone disease. MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMyc(Cα)/Bcl-X(L) GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. ©2011 AACR.

  8. Antitumor Activity of the Investigational Proteasome Inhibitor MLN9708 in Mouse Models of B-cell and Plasma Cell Malignancies

    PubMed Central

    Lee, Edmund C.; Fitzgerald, Michael; Bannerman, Bret; Donelan, Jill; Bano, Kristen; Terkelsen, Jennifer; Bradley, Daniel P.; Subakan, Ozlem; Silva, Matthew D.; Liu, Ray; Pickard, Michael; Li, Zhi; Tayber, Olga; Li, Ping; Hales, Paul; Carsillo, Mary; Neppalli, Vishala T.; Berger, Allison J.; Kupperman, Erik; Manfredi, Mark; Bolen, Joseph B.; Van Ness, Brian; Janz, Siegfried

    2012-01-01

    Purpose The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Experimental Design Both cell line–derived OCI-Ly10 and primary human lymphoma–derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMycCα/Bcl-XL GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc–disseminated model of iMycCα/ Bcl-XL was used to determine antitumor activity and effects on osteolytic bone disease. Results MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMycCα/Bcl-XL GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Conclusions Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. PMID:21903769

  9. Antitumor effect of fibrin glue containing temozolomide against malignant glioma

    PubMed Central

    Anai, Shigeo; Hide, Takuichiro; Takezaki, Tatsuya; Kuroda, Jun-ichiro; Shinojima, Naoki; Makino, Keishi; Nakamura, Hideo; Yano, Shigetoshi; Kuratsu, Jun-ichi

    2014-01-01

    Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma. PMID:24673719

  10. Mechanisms Underlying the Anti-Tumoral Effects of Citrus bergamia Juice

    PubMed Central

    Delle Monache, Simona; Sanità, Patrizia; Trapasso, Elena; Ursino, Maria Rita; Dugo, Paola; Russo, Marina; Ferlazzo, Nadia; Calapai, Gioacchino; Angelucci, Adriano; Navarra, Michele

    2013-01-01

    Based on the growing deal of data concerning the biological activity of flavonoid-rich natural products, the aim of the present study was to explore in vitro the potential anti-tumoral activity of Citrus Bergamia (bergamot) juice (BJ), determining its molecular interaction with cancer cells. Here we show that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ. The SH-SY5Y antiproliferative effect elicited by BJ was not due to a cytotoxic action and it did not induce apoptosis. Instead, BJ stimulated the arrest in the G1 phase of cell cycle and determined a modification in cellular morphology, causing a marked increase of detached cells. The inhibition of adhesive capacity on different physiologic substrates and on endothelial cells monolayer were correlated with an impairment of actin filaments, a reduction in the expression of the active form of focal adhesion kinase (FAK) that in turn caused inhibition of cell migration. In parallel, BJ seemed to hinder the association between the neural cell adhesion molecule (NCAM) and FAK. Our data suggest a mechanisms through which BJ can inhibit important molecular pathways related to cancer-associated aggressive phenotype and offer new suggestions for further studies on the role of BJ in cancer treatment. PMID:23613861

  11. JNK-1 Inhibition Leads to Antitumor Activity in Ovarian Cancer

    PubMed Central

    Vivas-Mejia, Pablo; Benito, Juliana Maria; Fernandez, Ariel; Han, Hee-Dong; Mangala, Lingegowda; Rodriguez-Aguayo, Cristian; Chavez-Reyes, Arturo; Lin, Yvonne G.; Nick, Alpa M.; Stone, Rebecca L.; Kim, Hye Sun; Claret, Francois-Xavier; Bornmann, William; Hennessy, Bryan TJ.; Sanguino, Angela; Peng, Zhengong; Sood, Anil K.; Lopez-Berestein, Gabriel

    2011-01-01

    Purpose To demonstrate the functional, clinical and biological significance of JNK-1 in ovarian carcinoma. Experimental Design Analysis of the impact of JNK on 116 epithelial ovarian cancers was conducted. The role of JNK in vitro and in experimental models of ovarian cancer was assessed. We studied the role of WBZ_4, a novel JNK inhibitor redesigned from imatinib based on targeting wrapping defects, in cell lines and in experimental models of ovarian cancer. Results We found a significant association of pJNK with progression free survival in the 116 epithelial ovarian cancers obtained at primary debulking therapy. WBZ_4 led to cell growth inhibition and increased apoptosis in a dose dependent fashion in four ovarian cancer cell lines. In vivo, while imatinib had no effect on tumor growth, WBZ_4 inhibited tumor growth in orthotopic murine models of ovarian cancer. The anti-tumor effect was further increased in combination with docetaxel. Silencing of JNK-1 with systemically administered siRNA led to significantly reduced tumor weights as compared to non-silencing siRNA controls, indicating that indeed the antitumor effects observed were due to JNK-1 inhibition. Conclusions These studies identify JNK-1 as an attractive therapeutic target in ovarian carcinoma and that the re-designed WBZ_4 compound should be considered for further clinical development. PMID:20028751

  12. [Chemical constituents of Carya cathayensis and their antitumor bioactivity].

    PubMed

    Wu, De-lin; Chen, Shi-yun; Liu, Jing-song; Jin, Chuan-shan; Xu, Feng-qing

    2011-07-01

    To investigate the chemical constituents of Carya cathayensis and their antitumor bioactivity. The compounds were isolated by Sephadex LH-20 and silica gel column chromatography. Their structures were identified by physicochemical properties and spectroscopic analysis. Then their cytotoxic activity was studied. Five compounds were elucidated as chrysophanol (1), physcion (2), beta-sitosterol (3), pinostrobin(4), 4,8-dihydroxy-1-tetralone (5). Compounds 2 and 5 are isolated from Carya cathayensis for the first time. In the MTT antitumor experiments, the compounds 1,4 and 5 have the cytotoxic activity to KB cell.

  13. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives

    PubMed Central

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421

  14. COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin

    DOE PAGES

    Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong; ...

    2017-12-28

    Cisplatin-based therapy is highly toxic, but moderately effective in most cancers. Concurrent inhibition of cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) results in antitumor activity and has organ-protective effects. The goal of this paper was to determine the antitumor activity of PTUPB, an orally bioavailable COX-2/sEH dual inhibitor, in combination with cisplatin and gemcitabine (GC) therapy. NSG mice bearing bladder cancer patient-derived xenografts were treated with vehicle, PTUPB, cisplatin, GC, or combinations thereof. Mouse experiments were performed with two different PDX models. PTUPB potentiated cisplatin and GC therapy, resulting in significantly reduced tumor growth and prolonged survival. PTUPB plus cisplatinmore » was no more toxic than cisplatin single-agent treatment as assessed by body weight, histochemical staining of major organs, blood counts, and chemistry. The combination of PTUPB and cisplatin increased apoptosis and decreased phosphorylation in the MAPK/ERK and PI3K/AKT/mTOR pathways compared with controls. PTUPB treatment did not alter platinum–DNA adduct levels, which is the most critical step in platinum-induced cell death. The in vitro study using the combination index method showed modest synergy between PTUPB and platinum agents only in 5637 cell line among several cell lines examined. However, PTUPB is very active in vivo by inhibiting angiogenesis. Finally, PTUPB potentiated the antitumor activity of cisplatin-based treatment without increasing toxicity in vivo and has potential for further development as a combination chemotherapy partner.« less

  15. COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong

    Cisplatin-based therapy is highly toxic, but moderately effective in most cancers. Concurrent inhibition of cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) results in antitumor activity and has organ-protective effects. The goal of this paper was to determine the antitumor activity of PTUPB, an orally bioavailable COX-2/sEH dual inhibitor, in combination with cisplatin and gemcitabine (GC) therapy. NSG mice bearing bladder cancer patient-derived xenografts were treated with vehicle, PTUPB, cisplatin, GC, or combinations thereof. Mouse experiments were performed with two different PDX models. PTUPB potentiated cisplatin and GC therapy, resulting in significantly reduced tumor growth and prolonged survival. PTUPB plus cisplatinmore » was no more toxic than cisplatin single-agent treatment as assessed by body weight, histochemical staining of major organs, blood counts, and chemistry. The combination of PTUPB and cisplatin increased apoptosis and decreased phosphorylation in the MAPK/ERK and PI3K/AKT/mTOR pathways compared with controls. PTUPB treatment did not alter platinum–DNA adduct levels, which is the most critical step in platinum-induced cell death. The in vitro study using the combination index method showed modest synergy between PTUPB and platinum agents only in 5637 cell line among several cell lines examined. However, PTUPB is very active in vivo by inhibiting angiogenesis. Finally, PTUPB potentiated the antitumor activity of cisplatin-based treatment without increasing toxicity in vivo and has potential for further development as a combination chemotherapy partner.« less

  16. Effect of an External Magnetic Flux on Antitumor Antibiotic Neocarzinostatin Yield by Streptomyces carzinostaticus var. F-41

    NASA Astrophysics Data System (ADS)

    Kudo, Kozo; Yoshida, Yuko; Yoshimura, Noboru; Ishida, Nakao

    1993-11-01

    The yield of the antitumor antibiotic neocarzinostatin (NCS), produced by Streptomyces carzinostaticus var. F-41, was sensitive to an external magnetic flux. When this strain was cultivated at 28°C in a NCS-producing medium under various magnetic flux densities, good NCS yield was observed at below 250 G magnetic flux density during the exponential growth phase as compared with that obtained in the same medium without magnetic flux, but was not observed at more than 500 G. However, no definite effect on the physiological characteristics and carbohydrate utilization of this strain, and primary physicochemical properties of NCS from magnetic flux could be detected.

  17. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  18. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Shi, Le; Liang, Tao

    Background: Evodiamine is an alkaloid extracted from Euodia rutaecarpa (Juss.) Benth. There is little information about the mechanisms of evodiamine on the apoptosis of hepatocellular carcinoma (HCC). Materials and methods: A xenograft model and CCK8 assay were used to investigate the anti-HCC effect of evodiamine. The effect of evodiamine on apoptosis was evaluated by DAPI staining and flow cytometry. Western blot analyses and immunohistochemistry were processed to assess the protein expressions of Akt and apoptotic proteins. Results: Evodiamine suppressed tumor growth, improved the expression of cleaved-caspase3 and decreased tumor specific growth factor (TSGF) and alpha fetoprotein (AFP) activities. Furthermore, evodiaminemore » inhibited cell viability and induced cell cycle arrest. DAPI staining revealed nuclear condensation in evodiamine-treated groups. Meanwhile, evodiamine increased the number of apoptotic cells. Furthermore, evodiamine suppressed Akt and regulated apoptotic proteins in HepG2 cells. Evodiamine decreased p-Akt levels activated by SC79, which led to the increase of bax/bcl-2 and cleaved-caspase3. Conclusions: Our findings suggested that evodiamine could exert anti-HCC effect through inducing Akt-mediated apoptosis. Evodiamine has the potential to be a therapeutic medicine for HCCs. - Highlights: • Anti-tumor effect of evodiamine in hepatocellular carcinoma. • Evodiamine induces apoptosis in hepatocellular carcinoma. • The correlation between induction of apoptosis and Akt expression.« less

  19. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate

    PubMed Central

    da Silva, Gisela Bevilacqua Rolfsen Ferreira; Scarpa, Maria Virginia; Carlos, Iracilda Zepone; Quilles, Marcela Bassi; Lia, Raphael Carlos Comeli; do Egito, Eryvaldo Socrates Tabosa; de Oliveira, Anselmo Gomes

    2015-01-01

    Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ. PMID:25609963

  20. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate.

    PubMed

    da Silva, Gisela Bevilacqua Rolfsen Ferreira; Scarpa, Maria Virginia; Carlos, Iracilda Zepone; Quilles, Marcela Bassi; Lia, Raphael Carlos Comeli; do Egito, Eryvaldo Socrates Tabosa; de Oliveira, Anselmo Gomes

    2015-01-01

    Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ.

  1. DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2014-02-03

    The noncovalent analogues of antitumor polynuclear platinum complexes represent a structurally discrete class of platinum drugs. Their chemical and biological properties differ significantly from those of most platinum chemotherapeutics, which bind to DNA in a covalent manner by formation of Pt-DNA adducts. In spite of the fact that these noncovalent polynuclear platinum complexes contain no leaving groups, they have been shown to bind to DNA with high affinity. We report here on the DNA condensation properties of a series of noncovalent analogues of antitumor polynuclear platinum complexes described by biophysical and biochemical methods. The results demonstrate that these polynuclear platinum compounds are capable of inducing DNA condensation at more than 1 order of magnitude lower concentrations than conventional spermine. Atomic force microscopy studies of DNA condensation confined to a mica substrate have revealed that the DNA morphologies become more compact with increasing concentration of the platinum complexes. Moreover, we also found that the noncovalent polynuclear platinum complex [{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](6+) (TriplatinNC-A) binds to DNA in a sequence-dependent manner, namely, to A/T-rich sequences and A-tract regions, and that noncovalent polynuclear platinum complexes protect DNA from enzymatic cleavage by DNase I. The results suggest that mechanisms of antitumor and cytotoxic activities of these complexes may be associated with their unique ability to condense DNA along with their sequence-specific DNA binding. Owing to their high cellular accumulation, it is also reasonable to suggest that their mechanism of action is based on the competition with naturally occurring DNA condensing agents, such as polyamines spermine, spermidine, and putrescine, for intracellular binding sites, resulting in the disturbance of the correct binding of regulatory proteins initiating the onset of apoptosis.

  2. Chitosan as an adjuvant-like substrate for dendritic cell culture to enhance antitumor effects.

    PubMed

    Lin, Yong-Chong; Lou, Pei-Jen; Young, Tai-Horng

    2014-10-01

    To induce monocyte differentiation into dendritic cells (DCs) is the essential protocol for the DC-mediated cancer immunotherapy. In this study, monocytes isolated from mouse bone marrow were cultured on chitosan substrate to evaluate the effect of the chitosan culture system on the induction and tumor protection of DCs. Compared to tissue culture polystyrene (TCPS), the chitosan culture system could enhance monocyte aggregation and detachment with increased MTT reduction activity and expression of DC marker CD11c and LPS co-receptor CD14. Moreover, compared to TCPS, chitosan could enhance lipopolysaccharides (LPS)-stimulated DCs to secrete higher amount of IL-12. More importantly, vaccination of tumor lysate-pulsed DCs harvested from chitosan could increase cytotoxic T-lymphocyte (CTL) activity and showed significantly enhanced anti-tumor effect than those from TCPS. Therefore, the current study demonstrated that a protocol to culture DCs on a less-adherent chitosan substrate followed by treatment with tumor lysate has the potential in future DC-based vaccine application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Glutaminase-1 Inhibitor 968 Enhances Dihydroartemisinin-Mediated Antitumor Efficacy in Hepatocellular Carcinoma Cells

    PubMed Central

    Zheng, Meihong; Zhang, Yonghui; Chen, Aiping; Wu, Junhua; Wei, Jiwu

    2016-01-01

    Reprogrammed metabolism and redox homeostasis are potential targets of cancer therapy. Our previous study demonstrated that the kidney form of glutaminase (GLS1) is highly expressed in hepatocellular carcinoma (HCC) cells and can be used as a target for effective anticancer therapy. Dihydroartemisinin (DHA) increases intracellular reactive oxygen species (ROS) levels leading to cytotoxicity in cancer cells. However, the heterogeneity of cancer cells often leads to differing responses to oxidative lesions. For instance, cancer cells with high ratio of GSH/GSSG, a critical ROS scavenger, are resistant to ROS-induced cytotoxicity. We postulate that a combinatorial strategy firstly disrupting redox homeostasis followed by DHA might yield a profound antitumor efficacy. In this study, when HCC cells were treated with a GLS1 inhibitor 968, the ROS elimination capacity was significantly reduced in HCC cells, which rendered HCC cells but not normal endothelial cells more sensitive to DHA-mediated cytotoxicity. We further confirmed that this synergistic antitumor efficacy was mediated by excessive ROS generation in HCC cells. NAC, a ROS inhibitor, partly rescued the combinatorial cytotoxic effect of 968 and DHA. Given that GLS1 is a potential antitumor target and DHA has been safely used in clinic, our findings provide new insight into liver cancer therapy targeting glutamine metabolism combined with the ROS generator DHA, which can be readily translated into cancer clinical trials. PMID:27835669

  4. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice.

    PubMed

    Yang, Hong-Mei; Sun, Chao-Yue; Liang, Jia-Li; Xu, Lie-Qiang; Zhang, Zhen-Biao; Luo, Dan-Dan; Chen, Han-Bin; Huang, Yong-Zhong; Wang, Qi; Lee, David Yue-Wei; Yuan, Jie; Li, Yu-Cui

    2017-02-24

    Bleomycin (BLM), a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum , an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CI SCFE ) have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CI SCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CI SCFE combined with BLM in the treatment of hepatoma 22 (H22) tumor-bearing mice. The results suggested that the oral administration of CI SCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6), tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CI SCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CI SCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future.

  5. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice

    PubMed Central

    Yang, Hong-Mei; Sun, Chao-Yue; Liang, Jia-Li; Xu, Lie-Qiang; Zhang, Zhen-Biao; Luo, Dan-Dan; Chen, Han-Bin; Huang, Yong-Zhong; Wang, Qi; Lee, David Yue-Wei; Yuan, Jie; Li, Yu-Cui

    2017-01-01

    Bleomycin (BLM), a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22) tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6), tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future. PMID:28245556

  6. Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma.

    PubMed

    Iwagami, Yoshifumi; Casulli, Sarah; Nagaoka, Katsuya; Kim, Miran; Carlson, Rolf I; Ogawa, Kosuke; Lebowitz, Michael S; Fuller, Steve; Biswas, Biswajit; Stewart, Solomon; Dong, Xiaoqun; Ghanbari, Hossein; Wands, Jack R

    2017-09-01

    Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.

  7. Dual tumor-targeted poly(lactic-co-glycolic acid)–polyethylene glycol–folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery

    PubMed Central

    Chen, Jia; Wu, Qi; Luo, Li; Wang, Yi; Zhong, Yuan; Dai, Han-Bin; Sun, Da; Luo, Mao-Ling; Wu, Wei; Wang, Gui-Xue

    2017-01-01

    Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid) (PLGA)–polyethylene glycol (PEG)–folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug) loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL), both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug delivery. PMID:28848351

  8. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis.

    PubMed

    Zhang, Bochao; Zhang, Xuewu

    2013-01-01

    Spirulina platensis is a multicellular edible blue-green alga with abundant proteins (∼ 60%). No report is available on the antitumor polypeptides from the whole proteins of S. platensis. In this study, for the first time, an antitumor polypeptide Y2 from trypsin digest of S. platensis proteins was obtained by using freeze-thawing plus ultrasonication extraction, hydrolysis with four enzymes (trypsin, alcalase, papain, and pepsin), and gel filtration chromatography. The results showed that the degree of hydrolysis can be ordered as: trypsin (38.5%) > alcalase (31.2%) > papain (27.8%) > pepsin (7.1%). For MCF-7 and HepG2 cells, at 250 µg/mL, the maximum inhibitory rate of Y2 was 97%, while standard drug 5-FU was 55 and 97%, respectively. Furthermore, the nanoencapsulation of Y2 with chitosan (CS) was also investigated. After nanoencapsulation, the maximum encapsulation efficiency and polypeptides contents are 49 and 15%, respectively; and the antitumor activity is basically not lost. These data demonstrated the potential of nanopolypeptides (Y2-CS) in food and pharmaceutical applications. © 2013 American Institute of Chemical Engineers.

  9. Doxil Synergizes with Cancer Immunotherapies to Enhance Antitumor Responses in Syngeneic Mouse Models

    PubMed Central

    Rios-Doria, Jonathan; Durham, Nicholas; Wetzel, Leslie; Rothstein, Raymond; Chesebrough, Jon; Holoweckyj, Nicholas; Zhao, Wei; Leow, Ching Ching; Hollingsworth, Robert

    2015-01-01

    Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and liposomal doxorubicin (Doxil) were evaluated for their ability to boost the antitumor response of different cancer immunotherapies including checkpoint blockers (anti–PD-L1, PD-1, and CTLA-4 mAbs) and TNF receptor agonists (OX40 and GITR ligand fusion proteins) in syngeneic mouse models. In a preventative CT26 mouse tumor model, both doxorubicin and Doxil synergized with anti–PD-1 and CTLA-4 mAbs. Doxil was active when CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that Doxil activity is increased in the presence of a functional immune system. Using established tumors and maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models, combination groups produced strong synergistic antitumor effects, a larger percentage of complete responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased the percentage of tumor-infiltrating regulatory T cells and, in combination with anti–PD-L1, increased the percentage of tumor-infiltrating CD8+ T cells. In the tumor, Doxil administration increased CD80 expression on mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells, suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates and antitumor activity. PMID:26408258

  10. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines

    PubMed Central

    Sun, Liying; Hao, Yanzhe; Wang, Zhan; Zeng, Yi

    2018-01-01

    Epstein-Barr virus (EBV) is related to a variety of malignant tumors, and its encoded protein, latent membrane protein 2 (LMP2), is an effective target antigen that is widely used to construct vector vaccines. However, the model cells carrying LMP2 have still not been established to assess the oncolytic effect of LMP2-related vaccines at present. In this study, TC-1-GLUC-LMP2 tumor cells were constructed as target cells to evaluate the anti-tumor effects of LMP2-assosiated vaccines. The results showed that both LMP2 and Gaussia luciferase (GLuc) genes could be detected by polymerase chain reaction (PCR) and reverse transcription-polymerase chain reaction (RT-PCR) in TC-1-GLUC-LMP2 cells. Western blot results showed that the LMP2 and Gaussia luciferase proteins were stably expressed in tumor cells for at least 30 generations. We mixed 5 × 104 LMP2-specific mouse splenic lymphocytes with 5 × 103 TC-1-GLUC-LMP2 target cells and found that the target cells were killed as the specific killing effect was obviously enhanced by the increased quantities of LMP2-peptide stimulated spleens. Furthermore, the tumor cells could not be observed in the mice inoculated TC-1-GLUC-LMP2 cells after being immunized with vaccine-LMP2, while the vaccine-NULL immunized mice showed that tumor volume gradually grew with increased inoculation time. These results indicated that the TC-1-GLUC-LMP2 cells stably expressing LMP2 and GLuc produced tumors in mice, and that the LMP2-specific cytotoxic T lymphocyte (CTL) effectively killed the cells in vitro and in vivo, suggesting that TC-1-GLUC-LMP2 cells can be used as model cells to assess the immune and antitumor effects of LMP2-related vaccines. PMID:29570629

  11. In vitro testing of curcumin based composites coatings as antitumoral systems against osteosarcoma cells

    NASA Astrophysics Data System (ADS)

    Tirca, I.; Mitran, V.; Marascu, V.; Brajnicov, S.; Ion, V.; Stokker-Cheregi, F.; Popovici, I. A.; Cimpean, A.; Dinca, V.; Dinescu, M.

    2017-12-01

    In this work, we propose a new design for biodegradable composite coatings obtained by laser methods, which are aimed at evaluating the effects of active antitumoral elements on osteosarcoma cells. Our approach relies on embedding curcumin, which is a natural polyphenol having antitumoral properties, within biodegradable copolymer coatings (i.e. polyvinyl alcohol-polyethylene glycol - PVA-PEG) by using matrix assisted pulsed laser evaporation (MAPLE). The structural and morphological characteristics of the coatings were tailored by using different solvents (water, ethanol, benzene, dimethylsufoxide) as deposition matrix. The morphological characteristics of the resulting films were investigated by atomic force microscopy (AFM), whereas their chemical composition was characterized by Fourier transform infrared spectroscopy (FTIR). These characteristics were correlated with the degradation behavior by using ellipsometry (SE) and AFM measurements data. The in vitro study of the MG-63 osteosarcoma cell behavior indicates that the developed hybrid coatings significantly decreased osteosarcoma cell viability and proliferation potential. The physico-chemical characteristics of the thin films, along with the preliminary in vitro analyses, suggest that our developed polymeric hybrid coatings represent an efficient way to tackle the design of antitumoral surfaces, with applications in biomedicine.

  12. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro.

    PubMed

    Ma, Jing; Shen, Ming; Xu, Chang Song; Sun, Ying; Duan, You Rong; Du, Lian Fang

    2016-11-29

    A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.

  13. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  14. [Influence of nanoparticle-encapsulated SEA on T-cell subgroups and its antitumor effect on hepatoma].

    PubMed

    Ye, Jing; Sui, Yan-Fang; Wu, Dao-Cheng; Li, Zeng-Shan; Chen, Guang-Sheng; Zhang, Xiu-Min

    2003-06-01

    Staphylococcal enterotoxin A (SEA) is one of the widely researched superantigens, which is prospective in antitumor therapy. However, its application is limited due to the toxicity. This study was conducted to prepare the nanoparticle-encapsulated SEA (NSEA) and to observe its influences on the T-cell subgroups and the antitumor effects in vivo. NSEA was prepared by the interfacial polymerization method.BALB/c mice were divided into 3 groups (each group had 12 mice). After injection of 0.1 ml normal saline (NS I group), 0.1 ml 2 mg/L free SEA (SEA I group) and 0.1 ml 2 mg/L NSEA(NSEA I group), the changes of T-cell subgroups (CD4(+) and CD8(+)) were observed. The mice model bearing hepatocellular carcinoma H22 were injected with 0.1 ml NS(NS II group), 0.1 ml 2 mg/L free SEA(SEA II group), 0.1 ml 2 mg/L NSEA (NESA II group), then the tumor volume and the survival time were recorded. SEA and NSEA significantly improved the absolute number of CD4(+) and CD8(+) T cells (P< 0.01); while the proportion of CD4(+) to CD8(+) did not change (P >0.05). The numbers of CD4(+) and CD8(+) T cells in NSEA I group reached the peaks [(8.26+/-1.46) x 10(9)/L and (5.53+/-0.91) x 10(9)/L] at 72 hours. The absolute number of CD4(+) T cells in SEA I group reached the peak of (8.61+/-1.59) x 10(9)/L at 48 hours,and the absolute number of CD8(+) T cells reached the peak of (6.05+/-1.31) x 10(9)/L at 72 hours; both of them descended to normal level at 96 hours. The inhibition rates of SEA II group and NSEA II group were 58.9% and 50% and the percentages of life span increase were 167% and 169%, respectively. NSEA and SEA could induce the activation and proliferation of T cells in vivo but could not influence the proportion of CD4(+) and CD8(+) cells in the mice. The effects of NSEA were weaker but longer than that of SEA. This study demonstrated that NSEA has the sustained release effects and prolongs the effective time.

  15. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    PubMed

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  16. A Novel Paclitaxel Microemulsion Containing a Reduced Amount of Cremophor EL: Pharmacokinetics, Biodistribution, and In Vivo Antitumor Efficacy and Safety

    PubMed Central

    Wang, Ying; Wu, Ke-Chun; Zhao, Bing-Xiang; Zhao, Xin; Wang, Xin; Chen, Su; Nie, Shu-Fang; Pan, Wei-San; Zhang, Xuan; Zhang, Qiang

    2011-01-01

    The purpose of this study was to prepare a novel paclitaxel (PTX) microemulsion containing a reduced amount of Cremophor EL (CrEL) which had similar pharmacokinetics and antitumor efficacy as the commercially available PTX injection, but a significantly reduced allergic effect due to the CrEL. The pharmacokinetics, biodistribution, in vivo antitumor activity and safety of PTX microemulsion was evaluated. The results of pharmacokinetic and distribution properties of PTX in the microemulsion were similar to those of the PTX injection. The antitumor efficacy of the PTX microemulsion in OVCRA-3 and A 549 tumor-bearing animals was similar to that of PTX injection. The PTX microemulsion did not cause haemolysis, erythrocyte agglutination or simulative reaction. The incidence and degree of allergic reactions exhibited by the PTX microemulsion group, with or without premedication, were significantly lower than those in the PTX injection group (P < .01). In conclusion, the PTX microemulsion had similar pharmacokinetics and anti-tumor efficacy to the PTX injection, but a significantly reduced allergic effect due to CrEL, indicating that the PTX microemulsion overcomes the disadvantages of the conventional PTX injection and is one way of avoiding the limitations of current injection product while providing suitable therapeutic efficacy. PMID:21331356

  17. An antitumor promoter from Moringa oleifera Lam.

    PubMed

    Guevara, A P; Vargas, C; Sakurai, H; Fujiwara, Y; Hashimoto, K; Maoka, T; Kozuka, M; Ito, Y; Tokuda, H; Nishino, H

    1999-04-06

    In the course of studies on the isolation of bioactive compounds from Philippine plants, the seeds of Moringa oleifera Lam. were examined and from the ethanol extract were isolated the new O-ethyl-4-(alpha-L-rhamnosyloxy)benzyl carbamate (1) together with seven known compounds, 4(alpha-L-rhamnosyloxy)-benzyl isothiocyanate (2), niazimicin (3), niazirin (4), beta-sitosterol (5), glycerol-1-(9-octadecanoate) (6), 3-O-(6'-O-oleoyl-beta-D-glucopyranosyl)-beta-sitosterol (7), and beta-sitosterol-3-O-beta-D-glucopyranoside (8). Four of the isolates (2, 3, 7, and 8), which were obtained in relatively good yields, were tested for their potential antitumor promoting activity using an in vitro assay which tested their inhibitory effects on Epstein-Barr virus-early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). All the tested compounds showed inhibitory activity against EBV-EA activation, with compounds 2, 3 and 8 having shown very significant activities. Based on the in vitro results, niazimicin (3) was further subjected to in vivo test and found to have potent antitumor promoting activity in the two-stage carcinogenesis in mouse skin using 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as tumor promoter. From these results, niazimicin (3) is proposed to be a potent chemo-preventive agent in chemical carcinogenesis. Copyright 1999 Elsevier Science B.V.

  18. The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro.

    PubMed

    Krusch, Matthias; Salih, Julia; Schlicke, Manuela; Baessler, Tina; Kampa, Kerstin Maria; Mayer, Frank; Salih, Helmut Rainer

    2009-12-15

    Sunitinib and Sorafenib are protein kinase inhibitors (PKI) approved for treatment of patients with advanced renal cell cancer (RCC). However, long-term remissions of advanced RCC have only been observed after IL-2 treatment, which underlines the importance of antitumor immune responses in RCC patients. Because PKI, besides affecting tumor cells, also may inhibit signaling in immune effector cells, we determined how Sunitinib and Sorafenib influence antitumor immunity. We found that cytotoxicity and cytokine production of resting and IL-2-activated PBMC are inhibited by pharmacological concentrations of Sorafenib but not Sunitinib. Analysis of granule-mobilization within PBMC revealed that this was due to impaired reactivity of NK cells, which substantially contribute to antitumor immunity by directly killing target cells and shaping adaptive immune responses by secreting cytokines like IFN-gamma. Analyses with resting and IL-2-activated NK cells revealed that both PKI concentration dependently inhibit cytotoxicity and IFN-gamma production of NK cells in response to tumor targets. This was due to impaired PI3K and ERK phosphorylation which directly controls NK cell reactivity. However, while Sorafenib inhibited NK cell effector functions and signaling at levels achieved upon recommended dosing, pharmacological concentrations of Sunitinib had no effect, and this was observed upon stimulation of NK cell reactivity by tumor target cells and upon IL-2 treatment. In light of the important role of NK cells in antitumor immunity, and because multiple approaches presently aim to combine PKI treatment with immunotherapeutic strategies, our data demonstrate that choice and dosing of the most suitable PKI in cancer treatment requires careful consideration.

  19. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells.

    PubMed

    Dai, Peihong; Wang, Weiyi; Yang, Ning; Serna-Tamayo, Cristian; Ricca, Jacob M; Zamarin, Dmitriy; Shuman, Stewart; Merghoub, Taha; Wolchok, Jedd D; Deng, Liang

    2017-05-19

    Advanced cancers remain a therapeutic challenge despite recent progress in targeted therapy and immunotherapy. Novel approaches are needed to alter the tumor immunosuppressive microenvironment and to facilitate the recognition of tumor antigens that leads to antitumor immunity. Poxviruses, such as modified vaccinia virus Ankara (MVA), have potential as immunotherapeutic agents. We show that infection of conventional dendritic cells (DCs) with heat- or ultraviolet-inactivated MVA leads to higher levels of interferon induction than MVA alone through the cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase)-STING cytosolic DNA-sensing pathway. Intratumoral injection of inactivated MVA (iMVA) was effective and generated adaptive antitumor immunity in murine melanoma and colon cancer models. iMVA-induced antitumor therapy was less effective in STING- or Batf3-deficient mice than in wild-type mice, indicating that both cytosolic DNA sensing and Batf3-dependent CD103 + /CD8α + DCs are essential for iMVA immunotherapy. The combination of intratumoral delivery of iMVA and systemic delivery of immune checkpoint blockade generated synergistic antitumor effects in bilateral tumor implantation models as well as in a unilateral large established tumor model. Our results suggest that inactivated vaccinia virus could be used as an immunotherapeutic agent for human cancers. Copyright © 2017, American Association for the Advancement of Science.

  20. Combined SRC inhibitor saracatinib and anti-ErbB2 antibody H2-18 produces a synergistic antitumor effect on trastuzumab-resistant breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingfei; Yu, Xiaojie; Dong, Jian

    Despite of the effectiveness of the anti-ErbB2 humanized antibody trastuzumab, trastuzumab resistance emerges as a major and common clinical problem. Thus, circumventing trastuzumab resistance has become an urgent need. Recently, Src inhibitor saracatinib has drawn great attention for its key role in trastuzumab response. As shown in our previous study, H2-18, an anti-ErbB2 antibody, could potently induce programmed cell death (PCD) in trastuzumab-resistant breast cancer cells. Here we combined H2-18 and a Src inhibitor, saracatinib, and studied the antitumor activity of this drug combination in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and saracatinib could synergistically inhibitmore » cell proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cell lines in vitro. H2-18 plus saracatinib could also inhibit the HCC-1954 tumor growth more effectively in vivo than each drug alone. H2-18 plus saracatinib showed a significantly more potent PCD-inducing activity compared with either H2-18 or saracatinib alone. We conclude that enhanced PCD may contribute to the superior antitumor efficacy of this combination therapy. The combination of H2-18 and SRC inhibitor has the potential to be translated into clinic. - Highlights: • Anti-ErbB2 mAb H2-18 induces PCD in ErbB2-overexpresing breast cancer cells. • H2-18 plus saracatinib induce a greater PCD compared with either drug alone. • H2-18 and saracatinib synergistically inhibit in vitro cell proliferation of breast cancer cells. • H2-18 plus saracatinib exert a greater in vivo antitumor activity than either drug alone.« less

  1. Evaluation of innate and adaptive immunity contributing to the antitumor effects of PD1 blockade in an orthotopic murine model of pancreatic cancer

    PubMed Central

    D'Alincourt Salazar, Marcela; Manuel, Edwin R.; Tsai, Weimin; D'Apuzzo, Massimo; Goldstein, Leanne; Blazar, Bruce R.; Diamond, Don J.

    2016-01-01

    ABSTRACT Despite the clinical success of anti-PD1 antibody (α-PD1) therapy, the immune mechanisms contributing to the antineoplastic response remain unclear. Here, we describe novel aspects of the immune response involved in α-PD1-induced antitumor effects using an orthotopic KrasG12D/p53R172H/Pdx1-Cre (KPC) model of pancreatic ductal adenocarcinoma (PDA). We found that positive therapeutic outcome involved both the innate and adaptive arms of the immune system. Adoptive transfer of total splenocytes after short-term (3 d) but not long-term (28 d) PD1 blockade significantly extended survival of non-treated tumor-bearing recipient mice. This protective effect appeared to be mostly mediated by T cells, as adoptive transfer of purified natural killer (NK) cells and/or granulocyte receptor 1 (Gr1)+ cells or splenocytes depleted of Gr1+ cells and NK cells did not exhibit transferrable antitumor activity following short-term PD1 blockade. Nevertheless, splenic and tumor-derived CD11b+Gr1+ cells and NK cells showed significant persistence of α-PD1 bound to these cells in the treated primary recipient mice. We observed that short-term inhibition of PD1 signaling modulated the profiles of multifunctional cytokines in the tumor immune-infiltrate, including downregulation of vascular endothelial growth factor A (VEGF-A). Altogether, the data suggest that systemic blockade of PD1 results in rapid modulation of antitumor immunity that differs in the tumor microenvironment (TME) when compared to the spleen. These results demonstrate a key role for early immune-mediated events in controlling tumor progression in response to α-PD1 treatment and warrant further investigation into the mechanisms governing responses to the therapy at the innate-adaptive immune interface. PMID:27471630

  2. Comparison in antioxidant and antitumor activities of pine polyphenols and its seven biotransformation extracts by fungi

    PubMed Central

    Li, Hui

    2017-01-01

    Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay and antitumor activity against LoVo cells were biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Mucor wutungkiao (BMW), biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Aspergillus niger (BAN), biotransformation extract of Aspergillus oryzae (BAO) and BMW, respectively. Correlation analysis found that antioxidant and antitumor activities were associated with polyphenols contents and types of free radicals and tumors. A. carbonarius can make polyphenol oxidation, hydroxylation and methylation, and form new polyphenols. In conclusion, A. carbonarius, A. niger and M. wutungkiao are valuable microorganisms used for polyphenols biotransformation and enhance the antioxidant and antitumor activities of polyphenols. PMID:28560092

  3. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    PubMed Central

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  4. Indian Medicinal Mushrooms as a Source of Antioxidant and Antitumor Agents

    PubMed Central

    A. Ajith, Thekkuttuparambil; K. Janardhanan, Kainoor

    2007-01-01

    Medicinal mushrooms occurring in South India namely Ganoderma lucidum, Phellinus rimosus, Pleurotus florida and Pleurotus pulmonaris possessed profound antioxidant and antitumor activities. This indicated that these mushrooms would be valuable sources of antioxidant and antitumor compounds. Investigations also revealed that they had significant antimutagenic and anticarcinogenic activities. Thus, Indian medicinal mushrooms are potential sources of antioxidant and anticancer compounds. However, intensive and extensive investigations are needed to exploit their valuable therapeutic use. PMID:18398492

  5. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    PubMed

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  6. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity

    PubMed Central

    Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.

    2018-01-01

    Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444

  7. Effects of phenformin on the proliferation of human tumor cell lines.

    PubMed

    Caraci, Filippo; Chisari, Mariangela; Frasca, Giuseppina; Chiechio, Santina; Salomone, Salvatore; Pinto, Antonio; Sortino, Maria Angela; Bianchi, Alfredo

    2003-12-19

    Phenformin is a biguanide that has been largely used in the past for its anti-diabetic activity. A large body of evidence suggests additional effects of phenformin including antitumoral activity in different animal models in vivo. Thus, the present study has been conducted in order to elucidate possible mechanisms involved in the antitumoral effects of phenformin. In various tumoral cell lines (SH-SY5Y neuroblastoma and LNCaP prostate adenocarcinoma cells), increasing concentrations of phenformin (50-500 microM) induced a concentration-dependent inhibition of cell proliferation. This effect was not dependent on the ability of the drug to reduce glucose levels and was accompanied by induction of apoptotic cell death as measured by cytofluorometric analysis. In addition, a short-time incubation of SH-SY5Y cells with phenformin induced enhanced and transient expression of the cell cycle inhibitor p21 suggesting that phenformin causes inhibition of cell cycle progression prior to induction of apoptosis. These results demonstrate an activity at the cellular level of phenformin that supports its antitumoral effect observed in vivo.

  8. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-06-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  9. Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression

    PubMed Central

    Verma, Vivek; Kim, Young; Lee, Min-Cheol; Lee, Jae-Tae; Cho, Sunghoon; Park, In-Kyu; Min, Jung Joon; Lee, Je Jung; Lee, Shee Eun; Rhee, Joon Haeng

    2016-01-01

    Dendritic cell (DC) based anti-cancer immunotherapy is well tolerated in patients with advanced cancers. However, the clinical responses seen after adoptive DC therapy have been suboptimal. Several factors including scarce DC numbers in tumors and immunosuppressive tumor microenvironments contribute to the inefficacy of DCs as cellular vaccines. Hence DC based vaccines can benefit from novel methods of cell delivery that would prevent the direct exposure of immune cells to suppressive tumor microenvironments. Here we evaluated the ability of DCs harbored in biocompatible scaffolds (referred to as biomatrix entrapped DCs; beDCs) in activating specific anti-tumor immune responses against primary and post-surgery secondary tumors. Using a preclinical cervical cancer and a melanoma model in mice, we show that single treatment of primary and post-surgery secondary tumors using beDCs resulted in significant tumor growth retardation while multiple inoculations were required to achieve a significant anti-tumor effect when DCs were given in free form. Additionally, we found that, compared to the tumor specific E6/E7 peptide vaccine, total tumor lysate induced higher expression of CD80 and CD40 on DCs that induced increased levels of IFNγ production upon interaction with host lymphocytes. Remarkably, a strong immunocyte infiltration into the host-implanted DC-scaffold was observed. Importantly, the host-implanted beDCs induced the anti-tumor immune responses in the absence of any stromal cell support, and the biomatrix structure was eventually absorbed into the surrounding host tissue. Collectively, these data indicate that the scaffold-based DC delivery may provide an efficient and safe way of delivering cell-based vaccines for treatment of primary and post-surgery secondary tumors. PMID:27223090

  10. Antitumor and immunomodulatory effects of weikangfu granule compound in tumor-bearing mice

    PubMed Central

    Nie, Xiaohua; Shi, Baojun; Ding, Yuting; Tao, Wenyi

    2006-01-01

    Background: Weikangfu granule compound (WKC) is a drug preparation based on a clinical prescription drug, Weikangfu-tang, which has been found to have therapeutic effects on gastric cancer. WKC comprises 7 components, including polysaccharides, saponin, flavonoids, and essential oil. Objective: The purpose of this study was to assess the antitumor and immunomodulatory effects of WKC in a tumor-bearing rodent model. Methods: Male and female Kuming mice weighing ∼20 g were subcutaneously implanted with sarcoma 180 (S180) tumor cells and randomly assigned to 1 of 5 treatment groups: oral WKC 175, 350, or 525 mg/kg·d, isotonic saline (negative control), or intraperitoneal cyclophosphamide 25 mg/kg·d (positive control). All treatments were administered daily for 10 days. After euthanization on day 11, the mice, tumors, and spleens were weighed. Lymphocyte proliferation and cytotoxic T lymphocyte (CTL) activity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cellular viability assay method. Macrophage phagocytosis was identified using a yeast test. Results: Fifty mice were included in the study (10 mice were assigned to each group). The tumors of the mice administered WKC 175, 350, and 525 mg/kg·d were significantly regressed, as determined using MICs, compared with those in the negative-control group (P<0.05, P<0.01, and P<0.01, respectively), and the inhibitory rates were 30.43%, 46.72%, and 54.35%, respectively. Compared with those in the negative-control group, CTL activities and lymphocyte proliferations in the presence of concanavalin A were significantly greater in the WKC-treated groups at all doses (CTL activities: P<0.05, P<0.01, and P<0.01, respectively; lymphocyte proliferations: P<0.05, P<0.01, and P<0.01, respectively). In the groups receiving WKC 175, 350, and 525 mg/kg·d, the phagocytic rates were 1.5- to 2.0-fold those in the negative-control group (P<0.05, P<0.01, and P<0.01, respectively). In the groups

  11. Antitumor and Wound Healing Properties of Rubus ellipticus Smith.

    PubMed

    George, Blassan Plackal; Parimelazhagan, Thangaraj; Kumar, Yamini T; Sajeesh, Thankarajan

    2015-06-01

    The present investigation has been undertaken to study the antioxidant, antitumor, and wound healing properties of Rubus ellipticus. The R. ellipticus leaves were extracted using organic solvents in Soxhlet and were subjected to in vitro antioxidant assays. R. ellipticus leaf methanol (RELM) extract, which showed higher in vitro antioxidant activity, was taken for the evaluation of in vivo antioxidant, antitumor, and wound healing properties. Acute oral and dermal toxicity studies showed the safety of RELM up to a dose of 2 g/kg. A significant wound healing property was observed in incision, excision, and Staphylococcus aureus-induced infected wound models in the treatment groups compared to the control group. A complete epithelialization period was noticed during the 13(th) day and the 19(th) day. A 250-mg/kg treatment was found to prolong the life span of mice with Ehrlich ascite carcinoma (EAC; 46.76%) and to reduce the volume of Dalton's lymphoma ascite (DLA) solid tumors (2.56 cm(3)). The present study suggests that R. ellipticus is a valuable natural antioxidant and that it is immensely effective for treating skin diseases, wounds, and tumors. Copyright © 2015. Published by Elsevier B.V.

  12. Antitumor Properties of the Essential Oil From the Leaves of Duguetia gardneriana.

    PubMed

    Rodrigues, Ana Carolina B C; Bomfim, Larissa M; Neves, Sara P; Menezes, Leociley R A; Dias, Rosane B; Soares, Milena B P; Prata, Ana Paula N; Rocha, Clarissa A Gurgel; Costa, Emmanoel V; Bezerra, Daniel P

    2015-07-01

    Duguetia gardneriana, popularly known in the Brazilian northeast as "jaquinha", is a species belonging to the family Annonaceae. The aim of this work was to assess the chemical composition and antitumor properties of the essential oil from the leaves of D. gardneriana in experimental models. The chemical composition of the essential oil was analyzed via gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. In vitro cytotoxic activity was determined in cultured tumor cells, and in vivo antitumor activity was assessed in B16-F10-bearing mice. The identified compounds were β-bisabolene (80.99%), elemicin (8.04%), germacrene D (4.15%), and cyperene (2.82%). The essential oil exhibited a cytotoxic effect, with IC50 values of 16.89, 19.16, 13.08, and 19.33 µg/mL being obtained for B16-F10, HepG2, HL-60, and K562 cell lines, respectively. On the other hand, β-bisabolene was inactive in all of the tested tumor cell lines (showing IC50 values greater than 25 µg/mL). The in vivo analysis revealed tumor growth inhibition rates of 5.37-37.52% at doses of 40 and 80 mg/kg/day, respectively. Herein, the essential oil from the leaves of D. gardneriana presented β-bisabolene as the major constituent and showed cytotoxic and antitumor potential. Georg Thieme Verlag KG Stuttgart · New York.

  13. Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells.

    PubMed

    Han, Guangmei; Liu, Renyong; Han, Ming-Yong; Jiang, Changlong; Wang, Jianping; Du, Shuhu; Liu, Bianhua; Zhang, Zhongping

    2014-12-02

    The molecular processes of drugs from cellular uptake to intracellular distribution as well as the intracellular interaction with the target molecule are critically important for the development of new antitumor drugs. In this work, we have successfully developed a label-free surface-enhanced Raman scattering (SERS) technique to monitor and visualize the metabolism of antitumor drug 6-mercaptopurine in living cells. It has been clearly demonstrated that Au@Ag NPs exhibit an excellent Raman enhancement effect to both 6-mercaptopurine and its metabolic product 6-mercaptopurine-ribose. Their different ways to absorb at the surface of Au@Ag NPs lead to the obvious spectral difference for distinguishing the antitumor drug and its metabolite by SERS spectra. The Au@Ag NPs can easily pass through cell membranes in a large amount and sensitively respond to the biological conversion of 6-mercaptopurine in tumor cells. The Raman imaging can visualize the real-time distribution of 6-mercaptopurine and its biotransformation with the concentrations in tumor cells. The SERS-based method reported here is simple and efficient for the assessments of drug efficacy and the understanding of the molecular therapeutic mechanism of antitumor drugs at the cellular level.

  14. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  15. Blocking Glycolytic Metabolism Increases Memory T Cells and Antitumor Function | Center for Cancer Research

    Cancer.gov

    CD8+ T cells are a major component of the cellular immune response, which is necessary to control a variety of bacterial and viral infections. CD8+ T cells also play a major role in the cell-mediated antitumor immune response. After encountering antigen, naïve CD8+ T cells undergo an extensive period of proliferation and expansion, and differentiate into effector cells and distinct memory T cell subsets. Preclinical studies using adoptive transfer of purified CD8+ T cells have shown that the ability of T cells to proliferate and survive for a long time after transfer is associated with effective antitumor and antiviral responses. Understanding how the formation of long-lived memory T cell subsets is controlled may enable development of more potent immunotherapies against cancer and infectious diseases.

  16. Autocrine Complement Inhibits IL10-Dependent T-Cell Mediated Antitumor Immunity to Promote Tumor Progression

    PubMed Central

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen

    2016-01-01

    In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552

  17. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models

    PubMed Central

    Shoji, Takuhiro; Saito, Ryuta; Chonan, Masashi; Shibahara, Ichiyo; Sato, Aya; Kanamori, Masayuki; Sonoda, Yukihiko; Kondo, Toru; Ishii, Naoto; Tominaga, Teiji

    2016-01-01

    Background Glioblastoma is one of the most malignant brain tumors in adults and has a dismal prognosis. In a previous report, we reported that CD40, a TNF-R-related cell surface receptor, and its ligand CD40L were associated with glioma outcomes. Here we attempted to activate CD40 signaling in the tumor and determine if it exerted therapeutic efficacy. Methods CD40 expression was examined in 3 mouse glioma cell lines (GL261, NSCL61, and bRiTs-G3) and 5 human glioma cell lines (U87, U251, U373, T98, and A172). NSCL61 and bRiTs-G3, as glioma stem cells, also expressed the glioma stem cell markers MELK and CD44. In vitro, we demonstrated direct antitumor effects of an anti-CD40 agonistic monoclonal antibody (FGK45) against the cell lines. The efficacy of FGK45 was examined by local convection-enhanced delivery of the monoclonal antibody against each glioma model. Results CD40 was expressed in all mouse and human cell lines tested and was found at the cell membrane of each of the 3 mouse cell lines. FGK45 administration induced significant, direct antitumor effects in vitro. The local delivery of FGK45 significantly prolonged survival compared with controls in the NSCL61 and bRiTs-G3 models, but the effect was not significant in the GL261 model. Increases in apoptosis and CD4+ and CD8+ T cell infiltration were observed in the bRiTs-G3 model after FGK45 treatment. Conclusions Local delivery of FGK45 significantly prolonged survival in glioma stem cell models. Thus, local delivery of this monoclonal antibody is promising for immunotherapy against gliomas. PMID:26917236

  18. BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals.

    PubMed

    Li, Shan; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Peng, Shiqi

    2015-03-01

    Inflammation has a critical role in the tumor progression, free radical damage can worse the status of patients in cancer condition. The anti-cancer agents capable of inhibiting inflammation and scavenging free radicals attract a lot of our interest. Aimed at the discovery of such anti-tumor agent, a novel intercalator, benzyl 1-[4-hydroxy-3-(methoxycarbonyl)-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate (BPIC) was presented. The docking investigation of BPIC and doxorubicin towards the DNA (PDB ID: 1NAB) gave equal score and similar feature. The anti-proliferation assay of 8 cancer cells identified S180 cells had equal sensitivity to BPIC and doxorubicin. The anti-tumor assay defined the efficacy of BPIC been 2 folds higher than that of doxorubicin. At 1μmol/kg of dose BPIC effectively inhibited xylene-induced ear edema and decreased the plasma TNF-α and IL-8 of the mice. BPIC scavenged ∙OH, ∙O2(-) and NO free radicals in a concentration dependent manner and NO free radicals had the highest sensitivity. BPIC could be a novel anti-tumor lead capable of simultaneously inhibiting inflammation and scavenging free radicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Study of the antitumor activity of alveolar macrophages after transfected human INF-γ gene].

    PubMed

    Zhou, Fengli; Bi, Xiaogang; Zhang, Tiantuo; Huang, Jing

    2011-05-01

    Alveolar macrophages (AMs) activated have the antitumor activity. The interferon-γ (INF-γ) is one of the stimulating factors. INF-γ can enhance the immune function of AMs in vitro. The aim of this study is to investigate the effect of human INF-γ gene on the antitumor activity of AMs when transfected into the alveolar macrophages (AMs) from the patients with lung cancer in vitro. AMs obtained by brochoalveolar lavage were separated and transfected by INF-γ gene. RT-PCR and ELISA were applied to determine whether the transfection was successful. The levels of tumor necrosis factor α (TNF-α), nitric oxide (NO) and interleukin-1 (IL-1) produced by AMs and the killing activity of AMs against L1210 cells was detected respectively. Both RT-PCR and ELISA demonstrated that human INF-γ gene had been successfully transfected into AMs. When transfected by human INF-γ gene, the levels of TNF-α, NO and IL-1 produced by AMs from the patients with lung cancer and the killing activity of AMs against L1210 cells were significantly higher than those of the control groups. Human INF-γ gene can enhance the antitumor activity of AMs when transfected into AMs from the patients with lung cancer.

  20. Enhanced anti-tumor activity by the combination of a conditionally replicating adenovirus mediated interleukin-24 and dacarbazine against melanoma cells via induction of apoptosis.

    PubMed

    Jiang, Guan; Liu, Yan-Qun; Wei, Zhi-Ping; Pei, Dong-Sheng; Mao, Li-Jun; Zheng, Jun-Nian

    2010-08-28

    Malignant melanoma is one of the most lethal and aggressive human malignancies. It is notoriously resistant to all of the current therapeutic modalities, including chemotherapy. Suppressed apoptosis and extraordinary invasiveness are the distinctive features that contribute to the malignancy of melanoma. Dacarbazine (DTIC) has been considered as the gold standard for melanoma treatment with a response rate of 15-20%. Unfortunately, the resistance to this chemotherapeutic agent occurs frequently. ZD55-IL-24 is a selective conditionally replicating adenovirus that can mediate the expression of interleukin-24 (IL-24) gene, which has a strong anti-tumor effect. In this study, we hypothesized that a combination of ZD55-IL-24-mediated gene virotherapy and chemotherapy using DTIC would produce an increased cytotoxicity against human melanoma cells in comparison with these agents alone. Our results showed that the combination of ZD55-IL-24 and DTIC significantly enhanced the anti-tumor activity by more effectively inducing apoptosis in melanoma cells than either agent used alone without any overlapping toxicity against normal cells. This additive or synergistic effect of ZD55-IL-24 in combination with DTIC in killing human malignant melanoma cells implies a promising novel approach for melanoma therapy. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  1. The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment

    PubMed Central

    Hashimoto, Yuuri; Tazawa, Hiroshi; Teraishi, Fuminori; Kojima, Toru; Watanabe, Yuichi; Uno, Futoshi; Yano, Shuya; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2012-01-01

    Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells. PMID:22720091

  2. Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria.

    PubMed

    Chakraborty, Subrata; Tai, Dar-Fu; Lin, Yi-Chun; Chiou, Tzyy-Wen

    2015-05-15

    Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60-120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80-108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures.

  3. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed bymore » the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.« less

  4. Dihydroartemisinin Exerts Anti-Tumor Activity by Inducing Mitochondrion and Endoplasmic Reticulum Apoptosis and Autophagic Cell Death in Human Glioblastoma Cells

    PubMed Central

    Qu, Chengbin; Ma, Jun; Liu, Xiaobai; Xue, Yixue; Zheng, Jian; Liu, Libo; Liu, Jing; Li, Zhen; Zhang, Lei; Liu, Yunhui

    2017-01-01

    Glioblastoma (GBM) is the most advanced and aggressive form of gliomas. Dihydroartemisinin (DHA) has been shown to exhibit anti-tumor activity in various cancer cells. However, the effect and molecular mechanisms underlying its anti-tumor activity in human GBM cells remain to be elucidated. Our results proved that DHA treatment significantly reduced cell viability in a dose- and time-dependent manner by CCK-8 assay. Further investigation identified that the cell viability was rescued by pretreatment either with Z-VAD-FMK, 3-methyladenine (3-MA) or in combination. Moreover, DHA induced apoptosis of GBM cells through mitochondrial membrane depolarization, release of cytochrome c and activation of caspases-9. Enhanced expression of GRP78, CHOP and eIF2α and activation of caspase 12 were additionally confirmed that endoplasmic reticulum (ER) stress pathway of apoptosis was involved in the cytotoxicity of DHA. DHA-treated GBM cells exhibited the morphological and biochemical changes typical of autophagy. Co-treatment with chloroquine (CQ) significantly induced the above effects. Furthermore, ER stress and mitochondrial dysfunction were involved in the DHA-induced autophagy. Further study revealed that accumulation of reactive oxygen species (ROS) was attributed to the DHA induction of apoptosis and autophagy. The illustration of these molecular mechanisms will present a novel insight for the treatment of human GBM. PMID:29033794

  5. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans

    PubMed Central

    Qi, Chunjian; Cai, Yihua; Gunn, Lacey; Ding, Chuanlin; Li, Bing; Kloecker, Goetz; Qian, Keqing; Vasilakos, John; Saijo, Shinobu; Iwakura, Yoichiro; Yannelli, John R.

    2011-01-01

    β-glucans have been reported to function as a potent adjuvant to stimulate innate and adaptive immune responses. However, β-glucans from different sources are differential in their structure, conformation, and thus biologic activity. Different preparations of β-glucans, soluble versus particulate, further complicate their mechanism of action. Here we show that yeast-derived particulate β-glucan activated dendritic cells (DCs) and macrophages via a C-type lectin receptor dectin-1 pathway. Activated DCs by particulate β-glucan promoted Th1 and cytotoxic T-lymphocyte priming and differentiation in vitro. Treatment of orally administered yeast-derived particulate β-glucan elicited potent antitumor immune responses and drastically down-regulated immunosuppressive cells, leading to the delayed tumor progression. Deficiency of the dectin-1 receptor completely abrogated particulate β-glucan–mediated antitumor effects. In contrast, yeast-derived soluble β-glucan bound to DCs and macrophages independent of the dectin-1 receptor and did not activate DCs. Soluble β-glucan alone had no therapeutic effect but significantly augmented antitumor monoclonal antibody-mediated therapeutic efficacy via a complement activation pathway but independent of dectin-1 receptor. These findings reveal the importance of different preparations of β-glucans in the adjuvant therapy and allow for the rational design of immunotherapeutic protocols usable in clinical trials. PMID:21531981

  6. Anti-tumor effects of a novel chimeric peptide on S180 and H22 xenografts bearing nude mice.

    PubMed

    Wu, Dongdong; Gao, Yanfeng; Chen, Lixiang; Qi, Yuanming; Kang, Qiaozhen; Wang, Haili; Zhu, Linyu; Ye, Yong; Zhai, Mingxia

    2010-05-01

    In recent years, many endogenous peptides have been identified by screening combinatory phage display peptide library, which play important roles in the process of angiogenesis. A heptapeptide, ATWLPPR, binds specifically to NRP-1 and selectively inhibits VEGF165 binding to VEGFR-2. Another heptapeptide, NLLMAAS, blocks both Ang-1 and Ang-2 binding to Tie-2 in a dose-dependent manner. In the present study, we aimed to connect ATWLPPR (V1) with NLLMAAS (V2) via a flexible linker, Ala-Ala, to reconstruct a novel peptide ATWLPPRAANLLMAAS (V3). We firstly investigated the anti-tumor and anti-angiogenic effects of peptide V3 on sarcoma S180 and hepatoma H22 bearing BALB/c nude mice. Mice were continuously subcutaneously administrated with normal saline, V1 (320microg/kg/d), V2 (320microg/kg/d), V1+V2 (320microg/kg/d), and V3 (160, 320 and 480microg/kg/d), for 7 days. Treatment with peptide V3 could significantly reduce the tumor weight and volume. Pathological examination showed that the tumors treated with peptide V3 had a larger region of necrosis than that of peptide V1, V2, and V1+V2 at the same dose. A significant decrease of microvessel density (MVD) in a dose-dependent manner was observed in each group of peptide V3. The results of pathological examination on normal tissue, lung, heart, liver, spleen, kidney and white blood cells showed that peptide V3 might have no significant toxicity. In conclusion, our results demonstrated that peptide V3 could be more effective on inhibiting tumor growth and angiogenesis than that of V1, V2, and V1+V2. Peptide V3 could be considered as a novel chimeric peptide with potent anti-tumor activity. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: 4β-S-aromatic heterocyclic podophyllum derivatives display antitumor activity

    PubMed Central

    Li, Jian-Long; Zhao, Wei; Zhou, Chen; Zhang, Ya-Xuan; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    Herein is a first effort to systematically study the significance of carbon-sulfur (C-S) and carbon-amine (C-NH) bonds on the antitumor proliferation activity of podophyllum derivatives and their precise mechanism of apoptosis. Compared with the derivative modified by a C-NH bond, the derivative modified by a C-S bond exhibited superior antitumor activity, the inhibition activity of target proteins tubulin or Topo II, cell cycle arrest, and apoptosis induction. Antitumor mechanistic studies showed that the death receptor and the mitochondrial apoptotic pathways were simultaneously activated by the C-S bond modified aromatic heterocyclic podophyllum derivatives with a higher cellular uptake percentage of 60–90% and induction of a higher level of reactive oxygen species (ROS). Only the mitochondrial apoptotic pathway was activated by the C-NH bond modified aromatic heterocyclic podophyllum derivatives, with a lower cellular uptake percentage of 40–50%. This study provided insight into effects of the C-S and C-NH bond modification on the improvement of the antitumor activity of Podophyllum derivatives. PMID:26443888

  8. Influence of tumors on protective anti-tumor immunity and the effects of irradiation

    PubMed Central

    Foulds, Gemma A.; Radons, Jürgen; Kreuzer, Mira; Multhoff, Gabriele; Pockley, Alan G.

    2012-01-01

    Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer. PMID:23378947

  9. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC

    PubMed Central

    Basher, Fahmin; Jeng, Emily K.; Wong, Hing; Wu, Jennifer

    2016-01-01

    Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists. PMID:26625316

  10. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC.

    PubMed

    Basher, Fahmin; Jeng, Emily K; Wong, Hing; Wu, Jennifer

    2016-01-05

    Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists.

  11. N-Hydroxyphthalimide exhibits antitumor activity by suppressing mTOR signaling pathway in BT-20 and LoVo cells.

    PubMed

    Wang, Min; Zhou, Ankun; An, Tao; Kong, Lingmei; Yu, Chunlei; Liu, Jianmei; Xia, Chengfeng; Zhou, Hongyu; Li, Yan

    2016-03-03

    N-Hydroxyphthalimide (NHPI), an important chemical raw material, was found to have potent and selective anti-proliferative effect on human breast carcinoma BT-20 cells, human colon adenocarcinoma LoVo and HT-29 cells during our screening for anticancer compounds. The purpose of this study is to assess the antitumor efficacy of NHPI in vitro and in vivo and to explore the underlying antitumor mechanism. Cell cytotoxicity of NHPI was evaluated using MTS assay and cell morphological analysis. After NHPI treatment, cell cycle, apoptosis and mitochondrial membrane potential were analyzed using flow cytometer. The subcellular localization of eukaryotic initiation factor 4E (eIF4E) was analyzed by immunofluorescence assay. The antitumor efficacy of NHPI in vivo was tested in BT-20 xenografts. The underlying antitumor mechanisms of NHPI in vitro and in vivo were investigated with western blot analysis in NHPI-treated cancer cells and tumor tissues. Statistical significance was determined using Student's t-test. In vitro, NHPI selectively inhibited the proliferation and induced G2/M phase arrest in BT-20 and LoVo cells, which was attributed to the inhibition of cyclin B1 and cdc2 expressions. Furthermore, NHPI induced apoptosis via mitochondrial pathway. Of note, NHPI effectively inhibited mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2) signaling, and overcame the feedback activation of Akt and extracellular signal-regulated kinase (ERK) caused by mTORC1 inhibition in BT-20 and LoVo cells. In vivo, NHPI inhibited tumor growth and suppressed mTORC1 and mTORC2 signaling in BT-20 xenografts with no obvious toxicity. We found for the first time that NHPI displayed antitumor activity which is associated with the inhibition of mTOR signaling pathway. Our findings suggest that NHPI may be developed as a promising candidate for cancer therapeutics by targeting mTOR signaling pathway and as such warrants further exploration.

  12. [Establishment of EL4 tumor-bearing mouse models and investigation on immunological mechanisms of anti-tumor effect of melphalan].

    PubMed

    Li, Mo-lin; Li, Chuan-gang; Shu, Xiao-hong; Jia, Yu-jie; Qin, Zhi-hai

    2006-03-01

    To establish mouse lymphoma EL4 tumor-bearing mouse models in wild type C57BL/6 mice and nude C57BL/6 mice respectively, and to further investigate the immunological mechanisms of anti-tumor effect of melphalan. Mouse lymphoma EL4 cells were inoculated subcutaneously into wild type C57BL/6 mice (immune-competent mice). Twelve days later, melphalan of different doses were administered intraperitoneally to treat these wild type C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded subsequently to find out the minimal dose of melphalan that could cure the tuomr-bearing mice. Then the same amount of EL4 tumor cells were inoculated subcutaneously into wild type C57BL/6 mice and nude C57BL/6 mice (T cell-deficient mice) simultaneously, which had the same genetic background of C57BL/6. Twelve days later, melphalan of the minimal dose was given intraperitoneally to treat both the wild type and nude C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded in these two different types of mice subsequently. A single dose of melphalan (7.5 mg/kg) could cure EL4 tumor-bearing wild type C57BL/6 mice, but could not induce tumor regression in EL4 tumor-bearing nude C57BL/6 mice. A single dose of melphalan has obvious anti-tumor effect on mouse lymphoma EL4 tumor-bearing wild type C57BL/6mice, which requires the involvement of T lymphocytes in the host probably related to their killing functions.

  13. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells

    PubMed Central

    Kósa, János P; Horváth, Péter; Wölfling, János; Kovács, Dóra; Balla, Bernadett; Mátyus, Péter; Horváth, Evelin; Speer, Gábor; Takács, István; Nagy, Zsolt; Horváth, Henrik; Lakatos, Péter

    2013-01-01

    AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC. PMID

  14. Enhanced antitumor efficacy of poly(D,L-lactide-co-glycolide)-based methotrexate-loaded implants on sarcoma 180 tumor-bearing mice

    PubMed Central

    Gao, Li; Xia, Lunyang; Zhang, Ruhui; Duan, Dandan; Liu, Xiuxiu; Xu, Jianjian; Luo, Lan

    2017-01-01

    Purpose Methotrexate is widely used in chemotherapy for a variety of malignancies. However, severe toxicity, poor pharmacokinetics, and narrow safety margin of methotrexate limit its clinical application. The aim of this study was to develop sustained-release methotrexate-loaded implants and evaluate antitumor activity of the implants after intratumoral implantation. Materials and methods We prepared the implants containing methotrexate, poly(D,L-lactide-co-glycolide), and polyethylene glycol 4000 with the melt-molding technique. The implants were characterized with regards to drug content, morphology, in vitro, and in vivo release profiles. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were carried out to investigate the physicochemical properties of the implants. Furthermore, the antitumor activity of the implants was tested in a sarcoma 180 mouse model. Results The implants were prepared as solid rods. Scanning electron microscopy images showed a smooth surface of the implant, suggesting that methotrexate was homogeneously dispersed in the polymeric matrix. The results of DSC and FTIR indicated that no significant interaction between methotrexate and the polymer was observed in the implants. Both in vitro and in vivo release profiles of the implants were characterized by burst release followed by sustained release of methotrexate. Intratumoral implantation of methotrexate-loaded implants could efficiently delay tumor growth. Moreover, an increase in the dose of implants led to a higher tumor suppression rate without additional systemic toxicity. Conclusion These results demonstrate that methotrexate-loaded implants had significant antitumor efficacy in a sarcoma 180 mouse model without dose-limiting side effects, and suggest that the implants could be potentially applied as an intratumoral delivery system to treat cancer. PMID:29118572

  15. Antitumor and Antimicrobial Activity of Some Cyclic Tetrapeptides and Tripeptides Derived from Marine Bacteria

    PubMed Central

    Chakraborty, Subrata; Tai, Dar-Fu; Lin, Yi-Chun; Chiou, Tzyy-Wen

    2015-01-01

    Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60–120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80–108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures. PMID:25988520

  16. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells.

    PubMed

    Nam, Woong; Tak, Jungae; Ryu, Ju-Kyoung; Jung, Mankil; Yook, Jong-In; Kim, Hyung-Jun; Cha, In-Ho

    2007-04-01

    Artemisinin is of special biological interest because of its outstanding antimalarial activity. Recently, it was reported that artemisinin has antitumor activity. Its derivatives, artesunate, arteether, and artemeter, also have antitumor activity against melanoma, breast, ovarian, prostate, CNS, and renal cancer cell lines. Recently, monomer, dimer, and trimer derivatives were synthesized from deoxoartemisinin, and the dimers and the trimers were found to have much more potent antitumor activity than the monomers. We evaluated the antitumor activity of artemisinin and its various derivatives (dihydroartemisinin, dihydroartemisinin 12-benzoate, 12-(2'-hydroxyethyl) deoxoartemisinin, 12-(2'-ethylthio) deoxoartemisinin dimer, deoxoartemisinin trimer) in comparison with paclitaxel (Taxol), 5-fluorouracil (5-FU), cisplatin in vitro. In this study, the deoxoartemisinin trimer had the most potent antitumor effect (IC(50) = 6.0 microM), even better than paclitaxel (IC(50) = 13.1 microM), on oral cancer cell line (YD-10B). In addition, it induced apoptosis through a caspase-3-dependent mechanism. The deoxoartemisinin trimer was found to have greater antitumor effect on tumor cells than other commonly used chemotherapeutic drugs, such as 5-FU, cisplatin, and paclitaxel. Furthermore, the ability of artemisinin and its derivatives to induce apoptosis highlights their potential as chemotherapeutic agents, for many anticancer drugs achieve their antitumor effects by inducing apoptosis in tumor cells. (c) 2006 Wiley Periodicals, Inc.

  17. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    PubMed

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  18. In-vitro antitumor activity evaluation of hyperforin derivatives.

    PubMed

    Sun, Feng; Liu, Jin-Yun; He, Feng; Liu, Zhong; Wang, Rui; Wang, Dong-Mei; Wang, Yi-Fei; Yang, De-Po

    2011-08-01

    The derivatives of hyperforin, namely hyperforin acetate (2), 17,18,22,23,27,28,32,33-octahydrohyperforin acetate (3), and N,N-dicyclohexylamine salt of hyperforin (4), have been investigated for their antitumor properties. In-vitro studies demonstrated that 2 and 4 were active against HeLa (human cervical cancer), A375 (human malignant melanoma), HepG2 (human hepatocellular carcinoma), MCF-7 (human breast cancer), A549 (human nonsmall cell lung cancer), K562 (human chronic myeloid leukemia), and K562/ADR (human adriamycin-resistant K562) cell lines with IC(50) values in the range of 3.2-64.1 μM. The energy differences between highest occupied molecular orbital and lowest unoccupied molecular orbital of 2-4 were calculated to be 0.39778, 0.43106, and 0.30900 a.u., respectively, using the Gaussian 03 software package and ab initio method with the HF/6-311 G* basis set. The result indicated that the biological activity of 4 might be the strongest and that of 3 might be the weakest, which was in accordance with their corresponding antiproliferative effects against the tested tumor cell lines. Compound 4 caused cell cycle arrest at G2/M phase in flow cytometry experiment and induced apoptosis by 4',6-diamidino-2-phenylindole staining and Annexin V-FITC/PI (propidium iodide) double-labeled staining in HepG2 cells. The results indicated a potential for N,N-dicyclohexylamine salt of hyperforin as a new antitumor drug.

  19. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    PubMed

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Antioxidant, Anti-Inflammatory, and Antitumor Activities of Cultured Mycelia and Fruiting Bodies of the Elm Oyster Mushroom, Hypsizygus ulmarius (Agaricomycetes).

    PubMed

    Greeshma, Panavalappil; Ravikumar, Korattuvalappil S; Neethu, Mangalathmelathil N; Pandey, Meera; Zuhara, Karattuthodi Fathimathu; Janardhanan, Kainoor K

    2016-01-01

    Ethanoic extracts from the fruiting bodies and mycelia of the elm oyster mushroom, Hypsizygus ulmarius, were evaluated for their antioxidant, anti-inflammatory, and antitumor properties. Ethnolic extracts of fruiting body and mycelia showed 88%, 85%, 71%, and 85%, 65%, 70% 2,2-diphenyl-1-picrylhydrazyl, hydroxyl (DPPH) and 2,2'-azinobis (3-ethyl benzothiazolin-6-sulfonic acid) (ABTS) radical-scavenging activities, respectively, at a concentration of 1000 µg/mL. The anti-inflammatory activity was determined using carrageenan- and formalin- induced paw edema models. Diclofenac was used as the standard drug. In both models, the mycelia extract showed higher activity than the fruiting body extract. The antitumor effect of the extracts against Dalton's Lymphoma Ascites cell-line-induced tumors showed significant antitumor activity. Mycochemical analysis confirmed the presence of many pharmacologically active compounds such as phenol, alkaloids, proteins, tannins, and polysaccharides. Among these, polysaccharides and phenolic compounds were present at a higher concentration in both extracts. These compounds might be largely responsible for the mushroom's medicinal properties. The results of this study indicate that H. ulmarius possesses significant antioxidant, anti-inflammatory, and antitumor properties.

  1. Ukrain, a plant derived semi-synthetic compound, exerts antitumor effects against murine and human breast cancer and induce protective antitumor immunity in mice.

    PubMed

    Bozeman, E N; Srivatsan, S; Mohammadi, H; Daniels, D; Shashidharamurthy, R; Selvaraj, P

    2012-12-01

    Despite the recent advances in anti-cancer therapies, breast cancer accounts for the highest percentage of estimated new cases among female cancer patients. The anti-cancer drug Ukrain, a plant-derived semi-synthetic compound, has been shown to be effective in a variety of tumor models including colon, brain, ovarian, melanoma and lymphoma. However, the direct cytotoxic effects of Ukrain have yet to be investigated in breast cancer models. Herein, we investigated the in vitro and in vivo cytotoxicity of Ukrain using murine (4T07 and TUBO) and human (SKBR-3) breast cancer cell lines. Cells were treated with varying concentrations of Ukrain for up to 72 h and analyzed for viability by trypan blue exclusion, apoptosis by intracellular caspase 3 and Annexin V staining, and proliferative potential by a clonogenic assay. Female BALB/c mice were challenged subcutaneously (s.c.) with 4T07-RG cells and administered 5 mg/kg or 12.5 mg/kg body weight Ukrain intravenously (i.v.) on the same day and 3 days later. Protective immune responses were determined following re-challenge of tumor-free mice 35 days post primary challenge. Ukrain exposure induced apoptosis in a dose and time-dependent manner with 50 µg/mL Ukrain leading to >50% cell death after 48 h exposure for all three breast cancer cell lines. Ukrain administration (12.5 mg/kg) led to significant inhibition of 4T07 tumor growth in vivo and sustained protective anti-tumor immunity following secondary challenge. Our findings demonstrate the in vitro and in vivo cytotoxic effects of Ukrain on breast cancer cells and may provide insight into designing Ukrain-based therapies for breast cancer patients.

  2. Human regulatory T cells do not suppress the antitumor immunity in the bone marrow: a role for bone marrow stromal cells in neutralizing regulatory T cells.

    PubMed

    Guichelaar, Teun; Emmelot, Maarten E; Rozemuller, Henk; Martini, Bianka; Groen, Richard W J; Storm, Gert; Lokhorst, Henk M; Martens, Anton C; Mutis, Tuna

    2013-03-15

    Regulatory T cells (Tregs) are potent tools to prevent graft-versus-host disease (GVHD) induced after allogeneic stem cell transplantation or donor lymphocyte infusions. Toward clinical application of Tregs for GVHD treatment, we investigated the impact of Tregs on the therapeutic graft-versus-tumor (GVT) effect against human multiple myeloma tumors with various immunogenicities, progression rates, and localizations in a humanized murine model. Immunodeficient Rag2(-/-)γc(-/-) mice, bearing various human multiple myeloma tumors, were treated with human peripheral blood mononuclear cell (PBMC) alone or together with autologous ex vivo cultured Tregs. Mice were analyzed for the in vivo engraftment, homing of T-cell subsets, development of GVHD and GVT. In additional in vitro assays, Tregs that were cultured together with bone marrow stromal cells were analyzed for phenotype and functions. Treatment with PBMC alone induced variable degrees of antitumor response, depending on the immunogenicity and the growth rate of the tumor. Coinfusion of Tregs did not impair the antitumor response against tumors residing within the bone marrow, irrespective of their immunogenicity or growth rates. In contrast, Tregs readily inhibited the antitumor effect against tumors growing outside the bone marrow. Exploring this remarkable phenomenon, we discovered that bone marrow stroma neutralizes the suppressive activity of Tregs in part via production of interleukin (IL)-1β/IL-6. We furthermore found in vitro and in vivo evidence of conversion of Tregs into IL-17-producing T cells in the bone marrow environment. These results provide new insights into the Treg immunobiology and indicate the conditional benefits of future Treg-based therapies.

  3. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas.

    PubMed

    Lee, Sanghyun; Lee, Yeon Sil; Jung, Sang Hoon; Shin, Kuk Hyun; Kim, Bak-Kwang; Kang, Sam Sik

    2003-09-01

    The in vivo anti-tumor activities of decursinol angelate (1) and decursin (2) isolated from the roots of Angelica gigas were investigated. These two compounds, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume of mice inoculated with Sarcoma-180 tumor cells. These results suggest that decursinol angelate (1) and decursin (2) from A. gigas have anti-tumor activities.

  4. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects.

    PubMed

    Allen, Joshua E; Krigsfeld, Gabriel; Mayes, Patrick A; Patel, Luv; Dicker, David T; Patel, Akshal S; Dolloff, Nathan G; Messaris, Evangelos; Scata, Kimberly A; Wang, Wenge; Zhou, Jun-Ying; Wu, Gen Sheng; El-Deiry, Wafik S

    2013-02-06

    Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an antitumor protein that is in clinical trials as a potential anticancer therapy but suffers from drug properties that may limit efficacy such as short serum half-life, stability, cost, and biodistribution, particularly with respect to the brain. To overcome such limitations, we identified TRAIL-inducing compound 10 (TIC10), a potent, orally active, and stable small molecule that transcriptionally induces TRAIL in a p53-independent manner and crosses the blood-brain barrier. TIC10 induces a sustained up-regulation of TRAIL in tumors and normal cells that may contribute to the demonstrable antitumor activity of TIC10. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor suppressor TRAIL.

  5. A combination of exosomes carrying TSA derived from HLA-A2-positive human white buffy coat and polyI:C for use as a subcellular antitumor vaccination.

    PubMed

    Ren, Wei-na; Chang, Chun-kang; Fan, Hua-hua; Guo, Fang; Ren, Ya-na; Yang, Jie; Guo, Juan; Li, Xiao

    2011-01-01

    To improve its antitumor effect, we used human leukocyte antigen -A2 (HLA-A2)-positive human dendritic cell (DC)-derived DEXs (DC-derived exosomes) to support NY-ESO-1 antigen and polyI:C, with the aim of increasing the proliferation of specific cytotoxic T lymphocytes (CTL) in transgenic mice. Mature dendritic cells derived from peripheral blood mononuclear cells (PBMC) were isolated from the blood of healthy adults with positive HLA-2A. Using centrifuge and membrane ultrafiltration, EXO (exosomes) were extracted from the supernatant of DCs secretions. Transgenic C57 mice were immunized with human-derived tumor testis antigen NY-ESO-1/EXO, with or without polyI:C. Mice were sacrificed four weeks after immunization, and spleen cells were isolated and tested for function. The experiments included antigen-specific CTL proliferation, as tested by dimerization and antitumor effects for K562 cells as well as melanoma, tested at different ratios of effected cells:target cells (0:1, 10:1, 50:1, and 100:1). Dimerization experiments indicated that the effect of DEX/TSA (tumor specific antigens) + PolyI:C was 2.36 ± 1.10% and the control was 0.38 ± 0.31%, while the effect of DEX/TSA was 1.97 ± 0.63% and the control was 0.36 ± 0.07%. Antitumor effects by DEX/TSA: PolyI:C for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 11.14 ± 1.36%, 14.17 ± 0.62%, 15.71 ± 2.48%, and 24.31 ± 2.91%, respectively, for K562 cells. The antitumor effects for DEX/TSA for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 12.23 ± 2.25%, 13.10 ± 1.57%, 15.27 ± 2.93%, and 19.87 ± 2.72%, respectively, for K562 cells. With ratios of 10:1 and 100:1, the antitumor effects of DEX/TSA + PolyI:C were better than for the DEX/TSA group (P < 0.05). However, higher ratios of effecter cells to target cells increased, and there were no significant improvements in antitumor effect for control cells. Combining PolyI:C with DEX/TSA derived from healthy human blood

  6. Artemisia dracunculus Extracts Obtained by Organic Solvents and Supercritical CO2 Produce Cytotoxic and Antitumor Effects in Mice with L5178Y Lymphoma.

    PubMed

    Navarro-Salcedo, Martha Hilda; Delgado-Saucedo, Jorge Ivan; Siordia-Sánchez, Victor Hugo; González-Ortiz, Luis J; Castillo-Herrera, Gustavo Adolfo; Puebla-Pérez, Ana M

    2017-11-01

    We investigated the cytotoxic and antitumor effects of nine leaf extracts from Artemisia dracunculus (Tarragon). Five extracts were obtained using different organic solvents and four by supercritical CO 2 . The cytotoxic effects were expressed as IC 50 in 100, 80, 80, 100, and 80 μg/mL by respective solvents: hexane, ethyl acetate, acetone, ethanol, and acetonitrile in L5178Y lymphoma cells. For supercritical CO 2 extract A, IC 50 was 100 μg/mL; for extracts C and D, IC 50 was 150 μg/mL. The antitumor activity was assessed through a tumor growth inhibition test that measured ascites fluid volume and tumor cell counts of BALB/c mice (2 × 10 4 cells L5178Y i.p.). Twenty-four hours after inoculation, mice were treated with 100 mg/kg of acetonitrile extract or extract SF-A daily for 15 days in independent groups of five mice, using two administration routes. We observed tumor evolution with and without treatment. Without treatment, tumor evolution was 17,969 × 10 6  ± 5485 L5178Y cells in 2.6 mL ascites volume, whereas the orally treated acetonitrile extract group showed 0.1 × 10 6  ± 0.07 L5178Y cells (P < .05). The oral SF-A group showed 12.9 × 10 6  ± 243 L5178Y cells, and intraperitoneal (i.p.)-treated SF-A group showed 0.1 × 10 6  ± 0.05 L5178Y cells (P < .05) without any ascites volume development. The acetonitrile extract contains abundant polyphenols and possibly a flavone with antioxidant activity. The SF-A contains abundant alkamides. Both extracts are complexes and the identity of the compounds responsible for observed antitumor activity remains unknown.

  7. Cationic lipid-conjugated hydrocortisone as selective antitumor agent.

    PubMed

    Rathore, Bhowmira; Chandra Sekhar Jaggarapu, Madhan Mohan; Ganguly, Anirban; Reddy Rachamalla, Hari Krishna; Banerjee, Rajkumar

    2016-01-27

    Hydrocortisone, the endogenously expressed steroidal, hormonal ligand for glucocorticoid receptor (GR), is body's natural anti-inflammatory and xenobiotic metabolizing agent. It has both palliative as well as adverse effects in different cancer patients. Herein, we show that conjugation product of C16-carbon chain-associated cationic lipid and hydrocortisone (namely, HYC16) induces selective toxicity in cancer (e.g. melanoma, breast cancer and lung adenocarcinoma) cells with least toxicity in normal cells, through induction of apoptosis and cell cycle arrest at G2/M phase. Further, significant tumor growth inhibition was observed in syngeneic melanoma tumor model with considerable induction of apoptosis in tumor-associated cells. In contrast to hydrocortisone, significantly higher anti-angiogenic behavior of HYC16 helped in effective tumor shrinkage. This is the first demonstration to convert natural hormone hydrocortisone into a selective bioactive entity possessing anti-tumor effect. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization.

    PubMed

    Rekoske, Brian T; Smith, Heath A; Olson, Brian M; Maricque, Brett B; McNeel, Douglas G

    2015-08-01

    DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. ©2015 American Association for Cancer Research.

  9. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines.

    PubMed

    Salem, Mohamed Labib

    2005-06-01

    Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.

  10. Antitumor activities of extracts from selected desert plants against HepG2 human hepatocellular carcinoma cells.

    PubMed

    Thoppil, Roslin J; Harlev, Eli; Mandal, Animesh; Nevo, Eviatar; Bishayee, Anupam

    2013-05-01

    Phytochemicals are produced by desert plants to protect themselves against stressful environments. They have been shown to be useful in preventing and fighting adverse pathophysiological conditions and complex diseases, including cancer. Although many desert plants have been investigated for their antitumor properties, a large number of them still remain to be explored for possible therapeutic applications in oncologic diseases. To screen the antitumor effects of selected desert plants, namely Achillea fragrantissima (Forssk.) Sch. Bip. (Compositae), Ochradenus baccatus Delile (Resedaceae), Origanum dayi Post (Lamiaceae), Phlomis platystegia Post (Lamiaceae) and Varthemia iphionoides Boiss (Compositae), against an in vitro tumor model utilizing HepG2 human hepatocellular carcinoma cells. The aqueous extracts of aerial parts of the aforementioned plants were prepared and used for the in vitro experiments. The HepG2 cells were exposed to varying concentrations (0-4 mg/mL) of each plant extract for 24 or 48 h and the cytotoxicity was measured by the MTT assay. Following 24 h exposure, O. dayi extract exhibited a substantial antiproliferative effect in HepG2 cells (IC50 = 1.0 mg/mL) followed by O. baccatus (IC50 = 1.5 mg/mL). All plant extracts displayed cytotoxicity following 48 h exposure. Nevertheless, a substantial effect was observed with O. dayi (IC50 = 0.35 mg/mL) or O. baccatus (IC50 = 0.83 mg/mL). The aqueous extracts from aerial parts of O. dayi and O. baccatus possess antitumor effects against human liver cancer cells. These desert plants represent valuable resources for the development of potential anticancer agents.

  11. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    PubMed

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. Copyright © 2012 Wiley Periodicals, Inc.

  12. Effects of matrine on the proliferation of HT29 human colon cancer cells and its antitumor mechanism

    PubMed Central

    CHANG, CHENG; LIU, SHAO-PING; FANG, CHUN-HUA; HE, REN-SHENG; WANG, ZHEN; ZHU, YOU-QING; JIANG, SHAO-WEI

    2013-01-01

    Matrine is one of the main active components that is extracted from the dry roots of Sophora flavescens. The compound has potent antitumor activity in various cancer cell lines. However, the anticancer activity of matrine in colon cancer cells remains unclear. The purpose of the present study was to investigate the effects of matrine on the growth of human colon cancer cells and the expression of the associated proteins. Cancer cell proliferation was measured by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The cell cycle distribution and apoptosis were analyzed by flow cytometry (FCM). The activation of the caspases and the expression of pro-apoptotic and anti-apoptotic factors were examined using western blot analysis. Matrine was shown to significantly inhibit the proliferation of HT29 cells in a dose- and time-dependent manner, and also to reduce the percentage of cells in the G2/M phase, which was most frequently associated with an increase of cells arrested in the G0/G1 phase of the cell cycle. Western blot analysis revealed that matrine induced the activation of caspase-3 and -9 and the release of cytochrome C (Cyto C) from the mitochondria to the cytosol. Furthermore, the pro-apoptotic factor, Bax, was upregulated and the anti-apoptotic factor, Bcl-2, was downregulated, eventually leading to a reduction in the ratio of Bcl-2/Bax proteins. The results demonstrated that matrine inhibits proliferation and induces apoptosis of HT29 human cells in vitro. The induction of apoptosis appears to occur through the upregulation of Bax, the downregulation of Bcl-2, the release of Cyto C from the mitochondria to the cytosol and the activation of caspase-3 and caspase-9, which subsequently trigger major apoptotic cascades. Matrine has potent antitumor activity in HT29 cells and may be used as a novel effective reagent in the treatment of colon cancer. PMID:24137393

  13. Antitumor and anti-angiogenic potentials of isolated crude saponins and various fractions of Rumex hastatus D. Don.

    PubMed

    Ahmad, Sajjad; Ullah, Farhat; Ayaz, Muhammad; Zeb, Anwar; Ullah, Farman; Sadiq, Abdul

    2016-03-12

    Cancer, being the foremost challenge of the modern era and the focus of world-class investigators, gargantuan research is in progress worldwide to explore novel therapeutic for its management. The exploitation of natural sources has been proven to be an excellent approach to treat or minify the excessive angiogenesis and proliferation of cells. Similarly, based the ethnomedicinal uses and literature survey, the current study is designed to explore the anti-tumor and anti-angiogenic potentials of Rumex hastatus. Anti-tumor and anti-angiogenic activities were carried out using potato-disc model and chorioallantoic membrane (CAM) assay respectively. Moreover, R. hastatus was also assessed for antibacterial activity against Agrobacterium tumefaciens (tumor causing bacterial strain). The positive controls used in anti-tumor, anti-angiogenic and antibacterial activities were vincristine sulphate, dexamethasone and cefotaxime respectively. The crude saponins (Rh.Sp), methanolic extract (Rh.Cr) and other solvent extracts like n-hexane (Rh.Hex), chloroform (Rh.Chf), ethylacetate (Rh.EtAc) and aqueous fraction (Rh.Aq) exhibited notable anti-tumor and anti-angiogenic activities. In potato tumor assay, the chloroform and saponin fractions were observed to be the most effective showing 86.7 and 93.3 % tumor inhibition at 1000 µg/ml with IC50 values 31.6 and 18.1 µg/ml respectively. Similarly, these two samples i.e., chloroform and saponins also excelled among the entire test samples in anti-angiogenic evaluation exhibiting 81.6 % (IC50 = 17.9 µg/ml) and 78.9 % (IC50 = 64.9 µg/ml) at 1000 µg/ml respectively. In contrast, the antibacterial investigations revealed a negligible potential against A. tumefaciens. Based on our results we can claim that R. hastatus possesses both anti-tumor and anti-angiogenic potentials. In all of the solvent fractions, Rh.Chf and Rh.Sp were most effective against tumor and angiogenesis while having negligible activity against A

  14. Apigenin sensitizes colon cancer cells to anti-tumor activity of ABT-263

    PubMed Central

    Shao, Huanjie; Jing, Kai; Mahmoud, Esraa; Huang, Haihong; Fang, Xianjun; Yu, Chunrong

    2013-01-01

    Apigenin is an edible plant-derived flavonoid that shows modest anti-tumor activities in vitro and in vivo. Apigenin treatment resulted in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between apigenin and ABT-263 in colon cancer cells. We observed a synergistic effect between apigenin and ABT-263 on apoptosis of colon cancer cells. ABT-263 alone induced limited cell death while upregulating expression of Mcl-1, a potential mechanism for the acquired resistance to ABT-263. The presence of apigenin antagonized ABT-263-induced Mcl-1 upregulation and dramatically enhanced ABT-263-induced cell death. Meanwhile, apigenin suppressed AKT and ERK activation. Inactivation of either AKT or ERK by lentivirus-transduced shRNA or treatment with specific small molecule inhibitors of these pathways enhanced ABT-263-induced cell death, mirroring the effect of apigenin. Moreover, the combination response was associated with upregulation of Bim and activation of Bax. Downregulation of Bax eliminated the synergistic effect of apigenin and ABT-263 on cell death. Xenograft studies in SCID mice showed that the combined treatment with apigenin and ABT-263 inhibited tumor growth by up to 70% without obvious adverse effects, while either agent only inhibited around 30%. Our results demonstrate a novel strategy to enhance ABT-263 induced anti-tumor activity in human colon cancer cells by apigenin via inhibition of the Mcl-1, AKT and ERK pro-survival regulators. PMID:24126433

  15. Synergistic antitumor effect of combining metronomic chemotherapy with adoptive cell immunotherapy in nude mice.

    PubMed

    Shi, Shujing; Tao, Leilei; Song, Haizhu; Chen, Longbang; Huang, Guichun

    2014-05-01

    Adoptive cell immunotherapy with cytokine-induced killer cell (CIK cell) represents a promising non-toxic anticancer therapy. However, the clinical efficacy of CIK cells is limited because of abnormal tumor vasculature. Metronomic chemotherapy shows promising anticancer activity by its potential antiangiogenic effect and reduced toxicity. We hypothesized that metronomic chemotherapy with paclitaxel could improve the antitumor effect of adoptive CIK cell immunotherapy. Mice health status was analyzed by measuring mice weight and observing mice behavior. Immunohistochemistry was used to investigate the recruitment of CIK cells, the expression of endothelial cell molecules, as well as the hypoxic tumor area. Metronomic paclitaxel synergized with adoptive CIK cell immunotherapy to inhibit the growth of non-small cell lung cancer (NSCLC). Metronomic paclitaxel reduced hypoxic tumor area and increased CIK cell infiltration. Hypoxia impeded the adhesion of CIK cells and reduced the expression of endothelial cell adhesion molecules. In vivo studies demonstrated that more CIK cells were found in endothelial cell adhesion molecules high expressed area. Our study provides a new rationale for combining metronomic chemotherapy with adoptive cell immunotherapy in the treatment of xenograft NSCLC tumors in immunodeficient mice. Further clinical trials integrating translational research are necessary to better evaluate the clinical benefit of this promising approach. © 2014 APMIS. Published by John Wiley & Sons Ltd.

  16. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots.

    PubMed

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Hadda, Taibi Ben

    2015-07-03

    Being a part of Chinese as well as ayurdic herbal system, roots of Rumex hastatus D. Don (RH) is highly medicinal, used to regulated blood pressure. It is also reported that the plant is diuretic, laxative, tonic, used against microbial skin diseases, bilious complaints and jaundice. The present study is conducted to evaluate phytochemical, antimicrobial, antitumor and cytotoxic activities of extract obtained from R. hastatus roots. RH roots were powdered and extracted with methanol to get crude extract. Crude extract was further fractioned on the basis of increasing polarity, with n-hexane (HRR), chloroform (CRR), ethyl acetate (ERR), n-butanol (BRR) and residual aqueous fraction (ARR). Methanol extract and its derived fractions were subjected to phytochemical screening and assayed for antibacterial activities via agar well diffusion method. Antifungal activities were checked through agar tube dilution method whereas potato disc assay was employed for the determination of antitumor activity. On the other hand cytotoxic activities were conducted using brine shrimps procedures. The results obtained from phytochemical analysis indicate the presence of alkaloids, anthraquinones, flavonoids and saponins in all the fractions. Most of the plant fractions showed substantial antimicrobial activities, which is in accordance with the spacious use of tested plant samples in primary healthcare center. Fractions of R. hastatus roots for cytotoxicity were tested as an effective cytotoxic was found as BRR > MRR > CRR > ARR > ERR > HRR. Ranking order of fractions of R. hastatus roots for effective antitumor screening was found as MRR > BRR > ARR > CRR > ERR > HRR. These results showed that R. hastatus appeared as an important source for the discovery of new antimicrobial drugs and antitumor agents; verify its traditional uses and its exploitation as therapeutic agent.

  17. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations

    PubMed Central

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    ABSTRACT Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs. PMID:26574622

  18. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.

    PubMed

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping

    2017-02-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.

  19. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    PubMed

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model.

    PubMed

    Awde, Ali R; Boisgard, Raphaël; Thézé, Benoit; Dubois, Albertine; Zheng, Jinzi; Dollé, Frédéric; Jacobs, Andreas H; Tavitian, Bertrand; Winkeler, Alexandra

    2013-12-01

    On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkylphosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis-resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using (18)F-DPA-714 PET. In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with (18)F-DPA-714 for the time of treatment. A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in (18)F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive microglia/macrophages and glial fibrillary acidic protein-positive astrocytes. Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using (18)F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas.

  1. Quercetin Enhances the Antitumor Activity of Trichostatin A through Upregulation of p53 Protein Expression In Vitro and In Vivo

    PubMed Central

    Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2013-01-01

    This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112

  2. The application of antitumor drug-targeting models on liver cancer.

    PubMed

    Yan, Yan; Chen, Ningbo; Wang, Yunbing; Wang, Ke

    2016-06-01

    Hepatocarcinoma animal models, such as the induced tumor model, transplanted tumor model, gene animal model, are significant experimental tools for the evaluation of targeting drug delivery system as well as the pre-clinical studies of liver cancer. The application of antitumor drug-targeting models not only furnishes similar biological characteristics to human liver cancer but also offers guarantee of pharmacokinetic indicators of the liver-targeting preparations. In this article, we have reviewed some kinds of antitumor drug-targeting models of hepatoma and speculated that the research on this field would be capable of attaining a deeper level and expecting a superior achievement in the future.

  3. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin.

    PubMed

    Hu, Liandong; Pang, Saixi; Hu, Qiaofeng; Gu, Deliang; Kong, Dongqian; Xiong, Xiaoyun; Su, Jianying

    2015-10-01

    The current study aimed to investigate whether the novel folate (FT) modified nanoparticles (NPs) co-loaded with docetaxel (DT) and curcumin (CU) (named as FT-NPs) could enhance the delivery efficiency to tumor compared with the NPs without FT (non-targeted NPs). FT-NPs were successfully formulated in this article. In vitro cytotoxic activity against A549 cells and in vivo antitumor activity of FT-NPs in S180 cell bearing mice were conducted. Cellular uptake test was used to evaluate uptake efficiency of FT-NPs. Histological observation was used to determine the lung security. Besides, the physical chemical properties such as stability, particle size, zeta potential, drug encapsulation efficiency, transmission electron microscopy (TEM) were also conducted. FT-NPs exhibited stronger growth inhibition effects on A549 cells compared with non-targeted NPs, moreover, the novel FT-NPs indicated more effective antitumor efficacy in inhibiting tumor growth. Confocal laser scanning microscopy indicated that the uptake of FT-NPs was facilitated and effective. Histological observation meant that FT-NPs were biocompatible and appropriate for pulmonary administration. These results confirmed that FT-NPs with relatively high drug loading capacity could effectively inhibit tumor growth and reduce toxicity. The novel FT-NPs could produce as an outstanding nanocarrier for the targeted treatment of cancers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. [Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects].

    PubMed

    Shi, Gui-Lan; Zhuang, Xiu-Fen; Han, Xiang-Ping; Li, Jie; Zhang, Yu; Zhang, Shu-Ren; Liu, Bin-Lei

    2012-02-01

    The aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF. oHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded. Both oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal

  5. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities.

    PubMed

    Dao, Pascal; Jarray, Rafika; Smith, Nikaia; Lepelletier, Yves; Le Coq, Johanne; Lietha, Daniel; Hadj-Slimane, Réda; Herbeuval, Jean-Philippe; Garbay, Christiane; Raynaud, Françoise; Chen, Huixiong

    2014-06-28

    FAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch.

    PubMed

    Guo, Min; Ding, Guo-Bin; Guo, Songjia; Li, Zhuoyu; Zhao, Liangqi; Li, Ke; Guo, Xiangrong

    2015-09-01

    Nostoc commune Vauch. has been traditionally used as a healthy food and medicine for centuries especially in China. It has been demonstrated that the polysaccharides isolated from Nostoc commune Vauch. exhibit strong antimicrobial and antioxidant activities. However, little is known about their anticancer activities and the underlying mechanisms of action. Herein, we report the isolation of a polysaccharide from Nostoc commune Vauch. (NVPS), and its physicochemical properties were analyzed. In an attempt to demonstrate the potential application of NVPS in tumor chemotherapy, the in vitro antitumor activity was determined. NVPS significantly suppressed the growth and proliferation of MCF-7 and DLD1 cells. The molecular mechanism underlying this in vitro antitumor efficacy was elucidated, and the results indicated that NVPS simultaneously triggered intrinsic, extrinsic and endoplasmic reticulum stress (ERS)-mediated apoptotic signaling pathways. Collectively, these findings demonstrate that NVPS could be used as a novel promising source of natural antitumor agents.

  7. Dendritic cell-tumor coculturing vaccine can induce antitumor immunity through both NK and CTL interaction.

    PubMed

    Kim, K D; Choi, S C; Kim, A; Choe, Y K; Choe, I S; Lim, J S

    2001-11-01

    Immunization of dendritic cells (DC) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL) that are responsible for protection and regression. We show here that immunization with bone marrow-derived DC cocultured with tumor cells can induce a protective immunity against challenges to viable tumor cells. In this study, we further investigated the mechanism by which the antitumor activity was induced. Immunization of mice with DC cocultured with murine colon carcinoma. CT-26 cells, augmented CTL activity against the tumor cells. Concomitantly, an increase in natural killer (NK) cell activity was also detected in the same mice. When DC were fixed with paraformaldehyde prior to coculturing with tumor cells, most of the CTL and NK cell activity diminished, indicating that DC are involved in the process of presenting the tumor antigen(s) to CTL. NK cell depletion in vivo produced markedly low tumor-specific CTL activity responsible for tumor prevention. In addition, RT-PCR analysis confirmed the high expression of INF-gamma mRNA in splenocytes after vaccination with DC cocultured with tumors, but low expression in splenocytes from NK-depleted mice. Most importantly, the tumor protective effect rendered to DC by the coculturing with CT-26 cells was not observed in NK-depleted mice, which suggests that DC can induce an antitumor immune response by enhancing NK cell-dependent CTL activation. Collectively, our results indicate that NK cells are required during the priming of cytotoxic T-cell response by DC-based tumor vaccine and seem to delineate a mechanism by which DC vaccine can provide the desired immunity.

  8. Targeted antitumoral dehydrocrotonin nanoparticles with L-ascorbic acid 6-stearate.

    PubMed

    Frungillo, Lucas; Martins, Dorival; Teixeira, Sérgio; Anazetti, Maristela Conti; Melo, Patrícia da Silva; Durán, Nelson

    2009-12-01

    Tumoral cells are known to have a higher ascorbic acid uptake than normal cells. Therefore, the aim of this study was to obtain polymeric nanoparticles containing the antitumoral compound trans-dehydrocrotonin (DHC) functionalized with L-ascorbic acid 6-stearate (AAS) to specifically target this system tumoral cells. Nanoparticle suspensions (NP-AAS-DHC) were prepared by the nanoprecipitation method. The systems were characterized for AAS presence by thin-layer chromatography and for drug loading (81-88%) by UV-Vis spectroscopy. To further characterize these systems, in vitro release kinetics, size distribution (100-140 nm) and Zeta potential by photon-correlation spectroscopic method were used. In vitro toxicity against HL60 cells was evaluated by tetrazolium reduction and Trypan blue exclusion assays. Cell death by apoptosis was quantified and characterized by flow cytometry and caspase activity. Zeta potential analyses showed that the system has a negatively charged outer surface and also indicate that AAS is incorporated on the external surface of the nanoparticles. In vitro release kinetics assay showed that DHC loaded in nanoparticles had sustained release behavior. In vitro toxicity assays showed that NP-AAS-DHC suspension was more effective as an antitumoral than free DHC or NP-DHC and increased apoptosis induction by receptor-mediated pathway. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Anti-tumor and Chemoprotective Effect of Bauhinia tomentosa by Regulating Growth Factors and Inflammatory Mediators.

    PubMed

    Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2015-01-01

    Cancer is a leading cause of death worldwide. Due to the toxic side effects of the commonly used chemotherapeutic drug cyclophosphamide (CTX), the use of herbal medicines with fewer side effects but having potential use as inducing anti-cancer outcomes in situ has become increasingly popular. The present study sought to investigate the effects of a methanolic extract of Bauhinia tomentosa against Dalton's ascites lymphoma (DAL) induced ascites as well as solid tumors in BALB/c mice. Specifically, B. tomentosa extract was administered intraperitonealy (IP) at 10 mg/kg. BW body weight starting just after tumor cell implantation and thereafter for 10 consecutive days. In the ascites tumor model hosts, administration of extract resulted in a 52% increase in the life span. In solid tumor models, co-administration of extract and CTX significantly reduced tumor volume (relative to in untreated hosts) by 73% compared to just by 52% when the extract alone was provided. Co-administration of the extract also mitigated CTX-induced toxicity, including decreases in WBC count, and in bone marrow cellularity and α-esterase activity. Extract treatment also attenuated any increases in serum levels of TNFα, iNOS, IL-1β, IL-6, GM-CSF, and VEGF seen in tumor-bearing hosts. This study confirmed that, the potent antitumor activity of B.tomentosa extract may be associated with immune modulatory effects by regulating anti-oxidants and cytokine levels.

  10. Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins.

    PubMed

    Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan

    2016-08-25

    Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the

  11. Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity.

    PubMed

    Fasseas, Michael K; Fasseas, Costas; Mountzouris, Konstantinos C; Syntichaki, Popi

    2013-03-01

    This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.

  12. Antitumoral effect of vanadium compounds in malignant melanoma cell lines.

    PubMed

    Rozzo, Carla; Sanna, Daniele; Garribba, Eugenio; Serra, Maria; Cantara, Alessio; Palmieri, Giuseppe; Pisano, Marina

    2017-09-01

    In this study we evaluated the anticancer activity against malignant melanoma (MM) of four different vanadium species: the inorganic anion vanadate(V) (indicated with VN), and three oxidovanadium(IV) complexes, [V IV O(dhp) 2 ] where dhp - is the anion 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS2), [V IV O(mpp) 2 ] where mpp - is 1-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS3), and [V IV O(ppp) 2 ] where ppp - is 1-phenyl-2-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS4). The antitumor effects of these compounds were studied against two different MM cell lines (A375 and CN-mel) and a fibroblast cell line (BJ) as normal control. All tested V compounds exert antiproliferative activity on MM cells in a dose dependent manner (IC 50 ranges from 2.4μM up to 14μM) being A375 the most sensitive cell line. VN and VS2 were the two most active compounds against A375 (IC 50 of 4.7 and 2.6μM, respectively), causing apoptosis and cell cycle block. The experimental data indicate that the cell cycle arrest occurs at different phases for the two V species analyzed (G2 checkpoint for VN and G0/G1 for VS2), showing the importance of the chemical form in determining their mechanism of action. These results add more insights into the landscape of vanadium versatility in biological systems and into its role as a potential cancer therapeutic agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.

    PubMed

    Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J

    2015-11-01

    Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation

  14. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koonce, Nathan A.; Quick, Charles M.; Hardee, Matthew E.

    Purpose: Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. Methods and Materials: The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. Results: In the 4T1 murine breast tumormore » model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose—notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Conclusions: Our results have demonstrated that TNF-labeled gold

  15. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  16. Synthesis of novel heterocyclic ring-fused 18β-glycyrrhetinic acid derivatives with antitumor and antimetastatic activity.

    PubMed

    Gao, Cheng; Dai, Fu-Jun; Cui, Hai-Wei; Peng, Shi-Hong; He, Yuan; Wang, Xue; Yi, Zheng-Fang; Qiu, Wen-Wei

    2014-08-01

    Glycyrrhetinic acid (GA) is one of the most important triterpenoic acids shows many pharmacological effects, especially antitumor activity. GA triggers apoptosis in various tumor cell lines. However, the antitumor activity of GA is weak, thus the synthesis of new synthetic analogs with enhanced potency is needed. By introducing various five-member fused heterocyclic rings at C-2 and C-3 positions, 18 novel GA derivatives were obtained. These compounds were evaluated for their inhibitory activity against the growth of eight different tumor cell lines using a SRB assay. The most active compound 37 showed IC50 between 5.19 and 11.72 μm, which was about 11-fold more potent than the lead compound GA. An apoptotic effect of GA and 37 was determined using flow cytometry and trypan blue exclusion assays. We also demonstrated here for the first time that GA and the synthetic derivatives exhibited inhibitory effect on migration of the tested tumor cells, especially 37 which was about 20-fold more potent than GA on antimetastatic activity. © 2014 John Wiley & Sons A/S.

  17. Intratumoral IL-12 and TNF-alpha-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity.

    PubMed

    Sabel, Michael S; Skitzki, Joseph; Stoolman, Lloyd; Egilmez, Nejat K; Mathiowitz, Edith; Bailey, Nicola; Chang, Wen-Jian; Chang, Alfred E

    2004-02-01

    Local, sustained delivery of cytokines at a tumor can enhance induction of antitumor immunity and may be a feasible neoadjuvant immunotherapy for breast cancer. We evaluated the ability of intratumoral poly-lactic-acid-encapsulated microspheres (PLAM) containing interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) in a murine model of breast cancer to generate a specific antitumor response. BALB/c mice with established MT-901 tumors underwent resection or treatment with a single intratumoral injection of PLAM containing IL-12, TNF-alpha, or GM-CSF, alone or in combination. Two weeks later, lymph nodes and spleens were harvested, activated with anti-CD3 monoclonal antibodies (mAb) and rhIL-2, and assessed for antitumor reactivity by an interferon gamma (IFNgamma) release assay. Tumor-infiltrating lymphocyte (TIL) analysis was performed on days 2 and 5 after treatment by mechanically processing the tumors to create a single cell suspension, followed by three-color fluorescence-activated cell sorter (FACS) analysis. Intratumoral injection of cytokine-loaded PLAM significantly suppressed tumor growth, with the combination of IL-12 and TNF-alpha leading to increased infiltration by polymorphonuclear cells and CD8+ T-cells in comparison with controls. The induction of tumor-specific reactive T-cells in the nodes and spleens, as measured by IFN-gamma production, was highest with IL-12 and TNF-alpha. This treatment resulted in resistance to tumor rechallenge. A single intratumoral injection of IL-12 and TNF-alpha-loaded PLAM into a breast tumor leads to infiltration by polymorphonuclear cells and CD8+ T-cells with subsequent tumor regression. In addition, this local therapy induces specific antitumor T-cells in the lymph nodes and spleens, resulting in memory immune response.

  18. Enhancement of antitumor activity of OK-432 (picibanil) by Triton X-114 phase partitioning.

    PubMed

    Hashimoto, Masahito; Takashige, Katsuhiro; Furuyashiki, Maiko; Yoshidome, Keitaro; Sano, Ryoko; Kawamura, Yutaka; Ijichi, Shinji; Morioka, Hirofumi; Koide, Hiroyuki; Oku, Naoto; Moriya, Yoichiro; Kusumoto, Shoich; Suda, Yasuo

    2008-01-01

    OK-432 (Picibanil), a Streptococcal immunotherapeutic agent, has been used for immunotherapy of various cancers as a biological response modifier (BRM). However, OK-432 contains multiple components consisting of immunotherapeutic ones and contaminants which may weaken the effects or exert side-effects. In this study, we investigated extraction of contaminants from OK-432 using Triton X-114 (TX-114)-water phase partitioning and examined an antitumor effect of the resulting preparation. OK-432 was subjected to TX-114 partitioning to give residual precipitate designated as OK-TX-ppt. OK-TX-ppt exerted no TLR2-mediated activity, but induced interleukin (IL)-6 in human PBMC. OK-TX-ppt also induced tumor necrosis factor (TNF)-alpha, IL-10, IL-12, and interferon (IFN)-gamma in PBMC. Moreover, IFN-gamma-inducing activity of OK-TX-ppt was significantly higher and IL-10 production was lower than that of OK-432. In tumor-bearing mice model, administration of OK-TX-ppt i.p. extended the survival time of Meth-A-bearing mice compared to OK-432. OK-TX-ppt also increased the levels of IL-12 and IFN-gamma in mouse spleen cells in vitro. These results indicated that TX-114 partitioning removed some contaminants, which attenuates the antitumor effect, from OK-432 and increase the immunotherapeutic effects of OK-432.

  19. In vitro and in vivo antitumor activity of the halogenated boroxine dipotassium-trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]).

    PubMed

    Ivankovic, Sinisa; Stojkovic, Ranko; Galic, Zoran; Galic, Borivoj; Ostojic, Jelena; Marasovic, Maja; Milos, Mladen

    2015-06-01

    Dipotassium-trioxohydroxytetrafluorotriborate K2[B3O3F4OH] was listed as a promising new therapeutic for cancer diseases. For in vitro and in vivo investigation of its antitumor effects 4T1 mammary adenocarcinoma, B16F10 melanoma and squamous cell carcinoma SCCVII were used. The detailed in vitro investigation undoubtedly showed that K2[B3O3F4OH] affects the growth of cancer cells. The proliferation of cells depends on the concentration so that aqueous solution of K2[B3O3F4OH], the concentrations of 10(-4) M and less, does not affect cell growth, but the concentrations of 10(-3) M or more, significantly slows cells growth. B16F10 and SCCVII cells show higher sensitivity to the cytotoxic effects of K2[B3O3F4OH] compared to 4T1 cells. Under in vivo conditions, K2[B3O3F4OH] slows the growth of all three tumors tested compared to the control, and the inhibitory effect was most pronounced during the application of the substance. There is almost no difference if K2[B3O3F4OH] was applied intraperitoneally, intratumor, peroral or as ointment. Addition of 5-FU did not further increase the antitumor efficacy of K2[B3O3F4OH].

  20. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.

    PubMed

    Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y

    2008-01-01

    Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.

  1. In vivo antitumor effect, induction of apoptosis and safety of Remirea maritima Aubl. (Cyperaceae) extracts.

    PubMed

    Dória, Grace Anne A; Menezes, Paula P; Lima, Bruno S; Vasconcelos, Bruno S; Silva, Francilene A; Henriques, Raíssa M; Melo, Marcélia G D; Alves, Ângela V F; Moraes, Manoel O; Pessoa, Cláudia Ó; Carvalho, Adriana A; Prata, Ana Paula N; Junior, Ricardo Luiz C A; Lima-Verde, Isabel B; Quintans-Júnior, Lucindo J; Bezerra, Daniel P; Nogueira, Paulo C L; Araujo, Adriano A S

    2016-08-15

    Remirea maritima has been widely used in the treatment of diarrhea, kidney disease, and high fever and for therapeutic purposes, such as an analgesic and anti-inflammatory. However, few scientific research studies on its medicinal properties have been reported. The present study aimed to investigate the anticancer potential of aqueous extract (AE), 40% hydroalcoholic extracts (40HA) and 70% (70HA) from R. maritima in experimental models and to identify its phytochemical compounds. The chemical composition of AE, 40HA and 70HA was assessed by HPLC-DAD and ESI-IT-MS/MS. In vitro activity was determined on cultured tumor cell, NCI-H385N (Broncho-alveolar carcinoma), OVCAR-8 (Ovarian carcinoma) and PC-3M (prostate carcinoma) by the MTT assay, and the in vivo antitumor activity was assessed in Sarcoma 180-bearing mice. Toxicological parameters were also evaluated as well as the humoral immune response. Among the aqueous and hydroalcoholic extracts of R. maritima, only 40HA showed in vitro biological effect potential, presenting IC50 values of 27.08, 46.62 and >50µg/ml for OVCAR-8, NCI-H385M and PC-3M cells lines, respectively. Regarding chemical composition, a mixture of isovitexin-2''-O-β-D-glucopyranoside, vitexin-2''-O-β-D-glucopyranoside, luteolin-7-O-glucuronide and 1-O-(E)-caffeoyl-β-D-glucose were identified as the major phytochemical compounds of the extracts. In the in vivo study, the tumor inhibition rates were 57.16-62.57% at doses of 25mg/kg and 50mg/kg, respectively, and the tumor morphology presented increasing numbers of apoptotic cells. Additionally, 40HA also demonstrated significantly increased of OVA-specific total Ig. 40HA exhibited in vitro and in vivo anticancer properties without substantial toxicity that could be associated with its immunostimulating properties. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Oligodeoxynucleotides Expressing Polyguanosine Motifs Promote Anti-Tumor Activity through the Up-Regulation of IL-2

    PubMed Central

    Kobayashi, Nobuaki; Hong, Choongman; Klinman, Dennis M.; Shirota, Hidekazu

    2012-01-01

    The primary goal of cancer immunotherapy is to elicit an immune response capable of eliminating the tumor. One approach towards accomplishing that goal utilizes general (rather than tumor-specific) immunomodulatory agents to boost the number and activity of pre-existing cytotoxic T lymphocytes. We find that the intra-tumoral injection of poly-G ODN has such an effect, boosting anti-tumor immunity and promoting tumor regression. The anti-tumor activity of polyguanosine (poly-G) oligonucleotides (ODN) was mediated through CD8 T cells in a TLR9 independent manner. Mechanistically, poly-G ODN directly induced the phosphorylation of Lck (an essential element of the T cell signaling pathway), thereby enhancing the production of IL-2 and CD8 T cell proliferation. These findings establish poly-G ODN as a novel type of cancer immunotherapy. PMID:23296706

  3. Antitumoral materials with regenerative function obtained using a layer-by-layer technique

    PubMed Central

    Ficai, Denisa; Sonmez, Maria; Albu, Madalina Georgiana; Mihaiescu, Dan Eduard; Ficai, Anton; Bleotu, Coralia

    2015-01-01

    A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7) composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. PMID:25767374

  4. In vitro and in vivo antitumor effect of trachylobane-360, a diterpene from Xylopia langsdorffiana.

    PubMed

    Pita, João Carlos Lima Rodrigues; Xavier, Aline Lira; de Sousa, Tatyanna Kelvia Gomes; Mangueira, Vivianne Mendes; Tavares, Josean Fechine; de Oliveira Júnior, Robson José; Veras, Robson Cavalcante; Pessoa, Hilzeth de Luna Freire; da Silva, Marcelo Sobral; Morelli, Sandra; Ávila, Veridiana de Melo Rodrigues; da Silva, Teresinha Gonçalves; Diniz, Margareth de Fátima Formiga Melo; Castello-Branco, Marianna Vieira Sobral

    2012-08-10

    Trachylobane-360 (ent-7α-acetoxytrachyloban-18-oic acid) was isolated from Xylopia langsdorffiana. Studies have shown that it has weak cytotoxic activity against tumor and non-tumor cells. This study investigated the in vitro and in vivo antitumor effects of trachylobane-360, as well as its cytotoxicity in mouse erythrocytes. In order to evaluate the in vivo toxicological aspects related to trachylobane-360 administration, hematological, biochemical and histopathological analyses of the treated animals were performed. The compound exhibited a concentration-dependent effect in inducing hemolysis with HC₅₀ of 273.6 µM, and a moderate in vitro concentration-dependent inhibitory effect on the proliferation of sarcoma 180 cells with IC₅₀ values of 150.8 µM and 150.4 µM, evaluated by the trypan blue exclusion test and MTT reduction assay, respectively. The in vivo inhibition rates of sarcoma 180 tumor development were 45.60, 71.99 and 80.06% at doses of 12.5 and 25 mg/kg of trachylobane-360 and 25 mg/kg of 5-FU, respectively. Biochemical parameters were not altered. Leukopenia was observed after 5-FU treatment, but this effect was not seen with trachylobane-360 treatment. The histopathological analysis of liver and kidney showed that both organs were mildly affected by trachylobane-360 treatment. Trachylobane-360 showed no immunosuppressive effect. In conclusion, these data reinforce the anticancer potential of this natural diterpene.

  5. Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

    PubMed

    Jiang, Zhengyu; Zhang, Hongxia; Wang, Ye; Yu, Bin; Wang, Chen; Liu, Changcheng; Lu, Juan; Chen, Fei; Wang, Minjun; Yu, Xinlu; Lin, Jiahao; Pan, Xinghua; Wang, Pin; Zhu, Haiying

    2016-02-23

    Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.

  6. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models.

    PubMed

    Shoji, Takuhiro; Saito, Ryuta; Chonan, Masashi; Shibahara, Ichiyo; Sato, Aya; Kanamori, Masayuki; Sonoda, Yukihiko; Kondo, Toru; Ishii, Naoto; Tominaga, Teiji

    2016-08-01

    Glioblastoma is one of the most malignant brain tumors in adults and has a dismal prognosis. In a previous report, we reported that CD40, a TNF-R-related cell surface receptor, and its ligand CD40L were associated with glioma outcomes. Here we attempted to activate CD40 signaling in the tumor and determine if it exerted therapeutic efficacy. CD40 expression was examined in 3 mouse glioma cell lines (GL261, NSCL61, and bRiTs-G3) and 5 human glioma cell lines (U87, U251, U373, T98, and A172). NSCL61 and bRiTs-G3, as glioma stem cells, also expressed the glioma stem cell markers MELK and CD44. In vitro, we demonstrated direct antitumor effects of an anti-CD40 agonistic monoclonal antibody (FGK45) against the cell lines. The efficacy of FGK45 was examined by local convection-enhanced delivery of the monoclonal antibody against each glioma model. CD40 was expressed in all mouse and human cell lines tested and was found at the cell membrane of each of the 3 mouse cell lines. FGK45 administration induced significant, direct antitumor effects in vitro. The local delivery of FGK45 significantly prolonged survival compared with controls in the NSCL61 and bRiTs-G3 models, but the effect was not significant in the GL261 model. Increases in apoptosis and CD4(+) and CD8(+) T cell infiltration were observed in the bRiTs-G3 model after FGK45 treatment. Local delivery of FGK45 significantly prolonged survival in glioma stem cell models. Thus, local delivery of this monoclonal antibody is promising for immunotherapy against gliomas. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers.

    PubMed

    Sun, Jian-Bo; Duan, Jin-Hong; Dai, Shun-Ling; Ren, Jun; Zhang, Yan-Dong; Tian, Jie-Sheng; Li, Ying

    2007-12-08

    Hepatocellular carcinoma (HCC) is the most common form of cancer although effective therapeutic strategy especially targeted therapy is lacking. We recently employed bacterial magnetosomes (BMs) as the magnetic-targeted drug carrier and found an antitumor effect of doxorubicin (DOX)-loaded BMs (DBMs) in EMT-6 and HL60 cell lines. The aim of this study was to evaluate the in vitro and in vivo anti-neoplastic effects of DBMs on hepatic cancer. DBMs, DOX and BMs displayed tumor suppression rates of 86.8%, 78.6% and 4.3%, respectively, in H22 cell-bearing mice. The mortality rates following administration of DBMs, DOX and BMs were 20%, 80% and 0%, respectively. Pathological examination of hearts and tumors revealed that both DBMs and DOX effectively inhibited tumor growth although DBMs displayed a much lower cardiac toxicity compared with DOX. The DBMs were cytotoxic to H22 cells manifested as inhibition of cell proliferation and c-myc expression, consistent with DOX. The IC(50) of DOX, DBMs and BMs in target cells were 5.309 +/- 0.010, 4.652 +/- 0.256 and 22.106 +/- 3.330 microg/ml, respectively. Our data revealed both in vitro and in vivo antitumor property of DBMs similar to that of DOX. More importantly, the adverse cardiac toxicity was significantly reduced in DBMs compared with DOX. Collectively, our study suggests the therapeutic potential of DBMs in target-therapy against liver cancer.

  8. In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicolor aqueous extract on mouse mammary 4T1 carcinoma.

    PubMed

    Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-01-01

    Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Antitumor effects of a tumor cell vaccine expressing a membrane-bound form of the IL-12 p35 subunit.

    PubMed

    Lim, Ho Yong; Ju, Hee Young; Chung, Hee-Yong; Kim, Young Sang

    2010-08-15

    We investigated whether expression of the IL-12 p35 subunit in membrane-bound form in tumor cells enhanced their immunogenicity. Since p35 is only secreted when associated with the IL-12 p40 subunit, we generated tumor cells expressing membrane-bound forms of p35 and p40 as chimeras with the transmembrane/cytoplasmic region of TNFα (mbIL-12p35 and mbIL-12p40). The relevant vectors were transfected into MethA fibrosarcoma cells, and mbIL-12p35 or mbIL-12p40-expressing tumor clones were isolated and their ability to induce antitumor immunity studied. Cells of the mbIL-12p35 tumor clone induced CD69 expression and IFNγ production in purified CD8(+) T cells in vitro, and their in vivo tumorigenicity was reduced. Cells of the mbIL-12p40 tumor clone failed to show either of these activities. Mice that had rejected cells of the mbIL-12p35 tumor clone possessed systemic antitumor immunity to wild type tumor cells. The growth rate of mbIL-12p35 tumor cells was greater in CD8(+) T cell-depleted mice than in CD4(+) T-cell- and NK cell-depleted mice or normal mice, suggesting that CD8(+) T cells were mainly responsible for the antitumor immunity. These results indicate that expression of mbIL-12p35 on tumor cells enhances their immunogenicity by increasing their ability to activate CD8(+) T cells, possibly by direct priming.

  10. [Antitumoral bibenzyl derivatives from tuber of Arundina graminifolia].

    PubMed

    Liu, Meifeng; Lv, Haoran; Ding, Yi

    2012-01-01

    To isolate the bibenzyl derivatives from the tuber of Arundina graminifolia and evaluate the anti-tumor activity of these compounds in vitro. The constituents have been extracted by 95% alcohol and then isolated by column chromatography on silica gel and Sephedax LH-20. The structures were determined by UV, IR, NMR and MS spectral analysis. Six constituents have been isolated, and their structures have been established as 2,7-dihydroxy-1-(p-hydroxylbenzyl)-4-methoxy-9, 10-dihydrophenanthrene (1), 4,7-dihydroxy-1- (p-hydroxylbenzyl)-2-methoxy-9,10-dihydrophenanthrene (2), 3, 3'-dihydroxy-5-methoxybibenzyl (3), (2E) -2- propenoic acid-3-(4-hydroxy-3-methoxyphenyl) -tetracosyl ester (4), (2E) -2-propenoic acid-3- (4-hydroxy-3- methoxyphenyl) -pentacosyl ester (5) and pentadecyl acid (6), respectively. All compounds except for 3 were isolated from the tuber of A. graminifolia for the first time. Compound 3 with bibenzyl ring opening exhibits stronger anti-tumor activity than that of compounds 1 and 2 with bibenzyl ring closing.

  11. Recombinant interleukin-12 and interleukin-18 antitumor therapy in a guinea-pig hepatoma cell implant model.

    PubMed

    Shiratori, Ikuo; Suzuki, Yasuhiko; Oshiumi, Hiroyuki; Begum, Nasim A; Ebihara, Takashi; Matsumoto, Misako; Hazeki, Kaoru; Kodama, Ken; Kashiwazaki, Yasuo; Seya, Tsukasa

    2007-12-01

    Interleukin (IL)-12 and IL-18 are secreted by myeloid cells activated with adjuvants such as Bacillus Calmette-Guérin (BCG) cell wall. They induce T-helper 1 polarization in the host immune system and upregulate production of lymphocyte interferon-gamma, which leads to the induction of an antitumor gene program. It has been reported that humans have an immune system that more closely resembles that of the guinea pig in adjuvant-response features rather than the mouse system, which prevents the mouse results being extrapolated to human immunotherapy. Here we have constructed a tumor-implant system in guinea pigs to evaluate the antitumor potential of guinea pig IL-12 (gpIL-12) and guinea pig IL-18 (gpIL-18). Purified recombinant gpIL-12 and gpIL-18 were prepared and applied intraperitoneally to tumor-bearing (line 10 hepatoma) guinea pigs as the basis of the adjuvant immunotherapy. Intraperitoneal administration of gpIL-12 and gpIL-18 led to retardation of primary tumor growth and suppression of lymph-node metastasis in tumor-bearing guinea pigs. The permissible range of IL-12 appeared wider in guinea pigs than in mice. Even at an IL-12 dose higher than that in mice, there was no evidence of side-effects until day 26, when the guinea pigs were killed. gpIL-18 augmented the antitumor effect of gpIL-12 but exerted less ability to suppress lymph-node metastasis. The effects of gpIL-12 and gpIL-18 on the tumors implanted in guinea pigs will encourage us to use IL-12- and IL-18-inducible adjuvants for immunotherapy in human patients with solid cancer.

  12. Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori

    Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway bymore » partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.« less

  13. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna

    2017-05-01

    Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.

  14. Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells.

    PubMed

    Endo, Masahiro; Beppu, Hidehiko; Akiyama, Hidehiko; Wakamatsu, Kazumasa; Ito, Shosuke; Kawamoto, Yasuko; Shimpo, Kan; Sumiya, Toshimitu; Koike, Takaaki; Matsui, Taei

    2010-07-01

    Mushrooms of the genus Agaricus are a common folk remedy against carcinoma. The active ingredients, polysaccharides and protein-polysaccharide complexes containing beta-glucan, have been isolated and shown to have indirect tumor-suppressing activity via an immunological activation. The diffusible fraction of a hot-water extract of Agaricus blazei Murrill (ABM) powder was fractionated by HPLC based on the anti-tumor activity against leukemic cells in vitro. The structure of the anti-tumor substance was determined by NMR and MS analyses. We purified a tumorcidal substance from the diffusible fraction of ABM and identified it as agaritine, beta-N-(gamma-l(+)-glutamyl)-4-(hydroxymethyl) phenylhydrazine, having a molecular mass of 267 Da. This compound inhibited the proliferation of leukemic cell lines such as U937, MOLT4, HL60 and K562 with IC(50) values of 2.7, 9.4, 13.0, and 16.0 microg/mL, respectively, but showed no significant effect on normal lymphatic cells at concentrations up to 40 microg/mL. Although agaritine has been suspected of having genotoxic or carcinogenic properties, agaritine did not activate the umu gene of Salmonella, which reacts to carcinogens. The results indicate that agaritine from ABM has direct anti-tumor activity against leukemic tumor cells in vitro. This is in contrast to the carcinogenic activity previously ascribed to this compound. Our results also show that this activity is distinct from that of beta-glucan, which indirectly suppresses proliferation of tumor cells. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Pardaxin, a Fish Antimicrobial Peptide, Exhibits Antitumor Activity toward Murine Fibrosarcoma in Vitro and in Vivo

    PubMed Central

    Wu, Shu-Ping; Huang, Tsui-Chin; Lin, Ching-Chun; Hui, Cho-Fat; Lin, Cheng-Hui; Chen, Jyh-Yih

    2012-01-01

    The antitumor activity of pardaxin, a fish antimicrobial peptide, has not been previously examined in in vitro and in vivo systems for treating murine fibrosarcoma. In this study, the antitumor activity of synthetic pardaxin was tested using murine MN-11 tumor cells as the study model. We show that pardaxin inhibits the proliferation of MN-11 cells and reduces colony formation in a soft agar assay. Transmission electron microscopy (TEM) showed that pardaxin altered the membrane structure similar to what a lytic peptide does, and also produced apoptotic features, such as hollow mitochondria, nuclear condensation, and disrupted cell membranes. A qRT-PCR and ELISA showed that pardaxin induced apoptosis, activated caspase-7 and interleukin (IL)-7r, and downregulated caspase-9, ATF 3, SOCS3, STAT3, cathelicidin, p65, and interferon (IFN)-γ suggesting that pardaxin induces apoptosis through the death receptor/nuclear factor (NF)-κB signaling pathway after 14 days of treatment in tumor-bearing mice. An antitumor effect was observed when pardaxin (25 mg/kg; 0.5 mg/day) was used to treat mice for 14 days, which caused significant inhibition of MN-11 cell growth in mice. Overall, these results indicate that pardaxin has the potential to be a novel therapeutic agent to treat fibrosarcomas. PMID:23015777

  16. Establishment of anti-tumor memory in humans using in vitro-educated CD8+ T cells

    PubMed Central

    Butler, Marcus O.; Friedlander, Philip; Milstein, Matthew I.; Mooney, Mary M.; Metzler, Genita; Murray, Andrew P.; Tanaka, Makito; Berezovskaya, Alla; Imataki, Osamu; Drury, Linda; Brennan, Lisa; Flavin, Marisa; Neuberg, Donna; Stevenson, Kristen; Lawrence, Donald; Hodi, F. Stephen; Velazquez, Elsa F.; Jaklitsch, Michael T.; Russell, Sara E.; Mihm, Martin; Nadler, Lee M.; Hirano, Naoto

    2013-01-01

    While advanced stage melanoma patients have a median survival of less than a year, adoptive T cell therapy can induce durable clinical responses in some patients. Successful adoptive T cell therapy to treat cancer requires engraftment of anti-tumor T lymphocytes that not only retain specificity and function in vivo but also display an intrinsic capacity to survive. To date, adoptively transferred anti-tumor CD8+ T lymphocytes (CTL) have had limited life spans unless the host has been manipulated. To generate CTL that possess an intrinsic capacity to persist in vivo, we developed a human artificial antigen presenting cell system that can educate anti-tumor CTL to acquire both a central memory and effector memory phenotype as well as the capacity to survive in culture for prolonged periods of time. In the present report, we examined whether anti-tumor CTL generated using this system could function and persist in patients. Here, we showed that MART1-specific CTL, educated and expanded using our artificial antigen presenting cell system, could survive for prolonged periods in advanced stage melanoma patients without previous conditioning or cytokine treatment. Moreover, these CTL trafficked to the tumor, mediated biological and clinical responses, and established anti-tumor immunologic memory. Therefore, this approach may broaden the availability of adoptive cell therapy to patients both alone and in combination with other therapeutic modalities. PMID:21525398

  17. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  18. 1-(Benzenesulfonyl)-1,5-dihydro-4,1-benzoxazepine as a new scaffold for the design of antitumor compounds.

    PubMed

    Cruz-López, Olga; Ramírez, Alberto; Navarro, Saúl A; García, María A; Marchal, Juan A; Campos, Joaquín M; Conejo-García, Ana

    2017-07-01

    Bozepinib is a potent and selective anticancer compound which chemical structure is made up of a benzofused seven-membered ring and a purine moiety. We previously demonstrated that the purine fragment does not exert antiproliferative effect per se. A series of 1-(benzenesulfonyl)-4,1-benzoxazepine derivatives were synthesized in order to study the influence of the benzofused seven-membered ring in the biological activity of bozepinib by means of antiproliferative, cell cycle and apoptosis studies. Our results show that the methyleneoxy enamine sulfonyl function is essential in the antitumor activity of the structures and thus, it is a scaffold suitable for further modification with a view to obtain more potent antitumor compounds.

  19. A Novel Immunomodulatory Hemocyanin from the Limpet Fissurella latimarginata Promotes Potent Anti-Tumor Activity in Melanoma

    PubMed Central

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C.; Manubens, Augusto; De Ioannes, Alfredo E.; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy. PMID

  20. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    PubMed

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  1. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    NASA Astrophysics Data System (ADS)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  2. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  3. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles

    PubMed Central

    Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L

    2015-01-01

    Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840

  4. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    PubMed

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  5. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Carboplatin Effects Against Ovarian Cancer☆

    PubMed Central

    Yu, Jun; Ma, Yan; Drisko, Jeanne; Chen, Qi

    2013-01-01

    Background Tumor resistance to platinum-based drugs has been an obstacle to the treatment of ovarian cancer. Extract of the plant Rauwolfia vomitoria has long been used by cancer patients. However, there have not been systematic studies of its anticancer activity. Objective In an effort to enhance the effectiveness of platinum-based drugs, we investigated the anticancer effect of a Rauwolfia vomitoria extract (Rau), both alone and in combination with carboplatin (Cp). Methods In vitro cytotoxicity and colony formation were evaluated in several ovarian cancer cell lines. In vivo effects were evaluated in an intraperitoneal ovarian cancer mouse model. The combination of Rau and Cp was assessed using Chou-Talalay’s constant ratio design and median effect analysis based on the isobologram principle to determine the combination index values. Results Rau decreased cell growth in all 3 tested ovarian cancer cell lines dose dependently and completely inhibited formation of colonies in soft agar. Apoptosis was induced in a time- and dose-dependent manner and was the predominant form of Rau-induced cell death. Synergy of Rau with Cp was detected, with combination index values <1 and dose reduction index values for Cp ranging from 1.7- to 7-fold. Tumor growth in mice was significantly suppressed by 36% or 66% with Rau treatment alone at a low (20 mg/kg) or a high dose (50 mg/kg), respectively, an effect comparable to that of Cp alone. The volume of ascitic fluid and the number of nonblood cells in ascites were also significantly decreased. Combining Rau with Cp remarkably enhanced the effect of Cp and reduced tumor burden by 87% to 90% and ascites volume by 89% to 97%. Conclusions Rau has potent antitumor activity and in combination significantly enhances the effect of Cp against ovarian cancer. PMID:24465036

  6. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Carboplatin Effects Against Ovarian Cancer.

    PubMed

    Yu, Jun; Ma, Yan; Drisko, Jeanne; Chen, Qi

    2013-12-01

    Tumor resistance to platinum-based drugs has been an obstacle to the treatment of ovarian cancer. Extract of the plant Rauwolfia vomitoria has long been used by cancer patients. However, there have not been systematic studies of its anticancer activity. In an effort to enhance the effectiveness of platinum-based drugs, we investigated the anticancer effect of a Rauwolfia vomitoria extract (Rau), both alone and in combination with carboplatin (Cp). In vitro cytotoxicity and colony formation were evaluated in several ovarian cancer cell lines. In vivo effects were evaluated in an intraperitoneal ovarian cancer mouse model. The combination of Rau and Cp was assessed using Chou-Talalay's constant ratio design and median effect analysis based on the isobologram principle to determine the combination index values. Rau decreased cell growth in all 3 tested ovarian cancer cell lines dose dependently and completely inhibited formation of colonies in soft agar. Apoptosis was induced in a time- and dose-dependent manner and was the predominant form of Rau-induced cell death. Synergy of Rau with Cp was detected, with combination index values <1 and dose reduction index values for Cp ranging from 1.7- to 7-fold. Tumor growth in mice was significantly suppressed by 36% or 66% with Rau treatment alone at a low (20 mg/kg) or a high dose (50 mg/kg), respectively, an effect comparable to that of Cp alone. The volume of ascitic fluid and the number of nonblood cells in ascites were also significantly decreased. Combining Rau with Cp remarkably enhanced the effect of Cp and reduced tumor burden by 87% to 90% and ascites volume by 89% to 97%. Rau has potent antitumor activity and in combination significantly enhances the effect of Cp against ovarian cancer.

  7. Antitumor efficacy of a novel CLA-PTX microemulsion against brain tumors: in vitro and in vivo findings.

    PubMed

    Li, Dan; Yang, Ke; Li, Jie-Si; Ke, Xi-Yu; Duan, Yu; Du, Ruo; Song, Ping; Yu, Ke-Fu; Ren, Wei; Huang, Dan; Li, Xing-Huo; Hu, Xin; Zhang, Xuan; Zhang, Qiang

    2012-01-01

    Considering the observations that linoleic acid conjugated with paclitaxel (CLA-PTX) possesses antitumor activity against brain tumors, is able to cross the blood-brain barrier, but has poor water solubility, the purpose of this study was to prepare a novel CLA-PTX microemulsion and evaluate its activity against brain tumors in vitro and in vivo. The in vitro cytotoxicity of a CLA-PTX microemulsion was investigated in C6 glioma cells. The in vivo antitumor activity of the CLA-PTX microemulsion was evaluated in tumor-bearing nude mice and rats. The pharmacokinetics of the CLA-PTX microemulsion were investigated in rats, and its safety was also evaluated in mice. The average droplet size of the CLA-PTX microemulsion was approximately 176.3 ± 0.8 nm and the polydispersity index was 0.294 ± 0.024. In vitro cytotoxicity results showed that the IC(50) of the CLA-PTX microemulsion was 1.61 ± 0.83 μM for a C6 glioma cell line, which was similar to that of free paclitaxel and CLA-PTX solution (P > 0.05). The antitumor activity of the CLA-PTX microemulsion against brain tumors was confirmed in our in vivo C6 glioma tumor-bearing nude mice as well as in a rat model. In contrast, Taxol(®) had almost no significant antitumor effect in C6 glioma tumor-bearing rats, but could markedly inhibit growth of C6 tumors in C6 glioma tumor-bearing nude mice. The pharmacokinetic results indicated that CLA-PTX in solution has a much longer circulation time and produces higher drug plasma concentrations compared with the CLA-PTX microemulsion. The results of the acute toxicity study showed that the LD(50) of CLA-PTX solution was 103.9 mg/kg. In contrast, the CLA-PTX microemulsion was well tolerated in mice when administered at doses up to 200 mg/kg. CLA-PTX microemulsion is a novel formulation with significant antitumor efficacy in the treatment of brain tumors, and is safer than CLA-PTX solution.

  8. Antitumor efficacy of a novel CLA-PTX microemulsion against brain tumors: in vitro and in vivo findings

    PubMed Central

    Li, Dan; Yang, Ke; Li, Jie-Si; Ke, Xi-Yu; Duan, Yu; Du, Ruo; Song, Ping; Yu, Ke-Fu; Ren, Wei; Huang, Dan; Li, Xing-Huo; Hu, Xin; Zhang, Xuan; Zhang, Qiang

    2012-01-01

    Background Considering the observations that linoleic acid conjugated with paclitaxel (CLA-PTX) possesses antitumor activity against brain tumors, is able to cross the blood–brain barrier, but has poor water solubility, the purpose of this study was to prepare a novel CLA-PTX microemulsion and evaluate its activity against brain tumors in vitro and in vivo. Methods The in vitro cytotoxicity of a CLA-PTX microemulsion was investigated in C6 glioma cells. The in vivo antitumor activity of the CLA-PTX microemulsion was evaluated in tumor-bearing nude mice and rats. The pharmacokinetics of the CLA-PTX microemulsion were investigated in rats, and its safety was also evaluated in mice. Results The average droplet size of the CLA-PTX microemulsion was approximately 176.3 ± 0.8 nm and the polydispersity index was 0.294 ± 0.024. In vitro cytotoxicity results showed that the IC50 of the CLA-PTX microemulsion was 1.61 ± 0.83 μM for a C6 glioma cell line, which was similar to that of free paclitaxel and CLA-PTX solution (P > 0.05). The antitumor activity of the CLA-PTX microemulsion against brain tumors was confirmed in our in vivo C6 glioma tumor-bearing nude mice as well as in a rat model. In contrast, Taxol® had almost no significant antitumor effect in C6 glioma tumor-bearing rats, but could markedly inhibit growth of C6 tumors in C6 glioma tumor-bearing nude mice. The pharmacokinetic results indicated that CLA-PTX in solution has a much longer circulation time and produces higher drug plasma concentrations compared with the CLA-PTX microemulsion. The results of the acute toxicity study showed that the LD50 of CLA-PTX solution was 103.9 mg/kg. In contrast, the CLA-PTX microemulsion was well tolerated in mice when administered at doses up to 200 mg/kg. Conclusion CLA-PTX microemulsion is a novel formulation with significant antitumor efficacy in the treatment of brain tumors, and is safer than CLA-PTX solution. PMID:23269869

  9. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression12

    PubMed Central

    Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J

    2014-01-01

    Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621

  10. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis dulcis) Peel Flavonoids.

    PubMed

    Zhan, Ge; Pan, Leiqing; Tu, Kang; Jiao, Shunshan

    2016-10-01

    The preparation, quantification, and characterization of flavonoid compounds from Chinese water chestnut peel (CWCP) flavonoid extract and ethyl acetate fraction (EF), n-butanol fraction, and water fraction were studied. Among these, EF showed the maximum free radical levels (IC 50 values of 0.36, 0.40, and 0.37 mg/mL for DPPH•, ABTS• + , and •OH, respectively), nitrite scavenging effects (IC 50 = 1.89 mg/mL), and A549 cell inhibitory activities (IC 50 = 776.12 μg/mL) with the highest value of total flavonoid content (TFC, 421.32 mg/g). Moreover, the contents of 8 flavonoids in this fraction were quantified using high-performance liquid chromatography, and fisetin, diosmetin, luteolin, and tectorigenin were the 4 major flavonoids with levels of 31.66, 29.91, 13.69, and 12.41 mg/g, respectively. Luteolin produced a greater inhibition of human lung cancer A549 cells (IC 50 = 59.60 μg/mL) than did fisetin, diosmetin, and tectorigenin. Flow cytometry revealed that the cellular mechanisms of luteolin inhibition of A549 cells were achieved via the induction of cell proliferation arrest at G 1 phase and apoptosis/necrosis. Our findings suggest that flavonoids are closely associated with antitumor, antioxidant, and nitrite scavenging effects of CWCP. © 2016 Institute of Food Technologists®.

  11. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination.

    PubMed

    Shi, Ce; Zhao, Xingchen; Liu, Zonghui; Meng, Rizeng; Chen, Xiangrong; Guo, Na

    2016-01-01

    Food safety is an important worldwide public health concern, and microbial contamination in foods not only leads to food deterioration and shelf life reduction but also results in economic losses and disease. The main aim of the present study was to evaluate the effect of epsilon-poly-L-lysine (ε-PL) and citral combination against Escherichia coli O157:H7 (E. coli O157:H7) strains. The preliminary antioxidant and antitumor activities were also studied. Synergism is a positive interaction created when two compounds combine and exert an inhibitory effect that is greater than the sum of their individual effects. The synergistic antimicrobial effect of ε-PL and citral was studied using the checkerboard method against E. coli O157:H7. The minimal inhibitory concentration, time-kill, and scanning electron microscope assays were used to determine the antimicrobial activity of ε-PL and citral alone or in combination; 2,2-diphenyl-1-picrylhydrazyl-scavenging assay and western blotting were used in antioxidant activity assays; cell viability assay was carried out to finish preliminary antitumor test. Minimal inhibitory concentrations of ε-PL and citral resisted to the five E. coli O157:H7 strains were 2-4 µg/mL and 0.5-1 µg/mL, and the fractional inhibitory concentration indices were 0.25-0.375. The results of time-kill assay revealed that a stronger bactericidal effect in a laboratory medium might be exerted in the combination against E. coli O157:H7 than that in a food model. The compounds alone or in combination exhibited a potential 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, and the expression of superoxide dismutase 1 and glutathione peroxidase 1 protein increased. The preliminary antitumor activity effect of the combination was better than ε-PL or citral alone. These findings indicated that the combination of ε-PL and citral could not only be used as a promising naturally sourced food preservative but also be used in the pharmaceutical industry.

  12. Antitumor and immunostimulatory activities of a genotype V recombinant attenuated veterinary Newcastle disease virus vaccine.

    PubMed

    Ortega-Rivera, Oscar Antonio; Quintanar, J Luis; Del Toro-Arreola, Susana; Alpuche-Solis, Ángel G; Esparza-Araiza, Mayra J; Salinas, Eva

    2018-01-01

    Antitumor conventional treatments including chemo/radiotherapy result in several side effects and non-specificity. Therapies including the use of oncolytic viruses, particularly the Newcastle disease virus (NDV), have emerged as an attractive alternative due to their capacity to kill cancer cells directly or through stimulation of the immune system. In the present study, a commercial vaccine composed of a recombinant attenuated NDV strain P05 (rNDV-P05) was assessed for antitumor and immunostimulatory activity. Firstly, hemagglutination activity was evaluated at different pH and temperature conditions. Then, cancer cell lines and peripheral blood mononuclear cells (PBMC) were co-cultured with or without rNDV-P05 and cytoplasmic nucleosomes were measured by enzyme-linked immunosorbent assay (ELISA) as an apoptosis indicator. Antitumor cytokines produced by PBMC in response to the virus were analyzed by ELISA and reverse transcription quantitative polymerase chain reaction. Characterization of rNDV-P05 indicates that the virus is slightly sensible to acid and basic pH, and stable at temperatures no greater than 42°C. The majority of cell lines developed apoptosis in co-culture with rNDV-P05 in a dose-time dependent manner. The highest level of HeLa, HCC1954 and HepG2 cell apoptosis was at 48 h/50 hemagglutination units (HU), and HL-60 was 24 h/50 HU. A549 cell line and PBMC did not show sensitivity to apoptosis by the virus. PBMC from healthy donors stimulated with the rNDV-P05 increased significantly the levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α and soluble TNF-related apoptosis-inducing ligand in culture supernatants, as well as their mRNA expression. These results demonstrate that the pro-apoptotic effect of rNDV-P05 and its magnitude is specific to particular tumor cell lines and is not induced on PBMC; and the virus stimulates the expression of several key antitumor cytokines. This study promotes the use of rNDV-P05 in an alternate

  13. Antitumor and immunostimulatory activities of a genotype V recombinant attenuated veterinary Newcastle disease virus vaccine

    PubMed Central

    Ortega-Rivera, Oscar Antonio; Quintanar, J Luis; Del Toro-Arreola, Susana; Alpuche-Solis, Ángel G; Esparza-Araiza, Mayra J; Salinas, Eva

    2018-01-01

    Antitumor conventional treatments including chemo/radiotherapy result in several side effects and non-specificity. Therapies including the use of oncolytic viruses, particularly the Newcastle disease virus (NDV), have emerged as an attractive alternative due to their capacity to kill cancer cells directly or through stimulation of the immune system. In the present study, a commercial vaccine composed of a recombinant attenuated NDV strain P05 (rNDV-P05) was assessed for antitumor and immunostimulatory activity. Firstly, hemagglutination activity was evaluated at different pH and temperature conditions. Then, cancer cell lines and peripheral blood mononuclear cells (PBMC) were co-cultured with or without rNDV-P05 and cytoplasmic nucleosomes were measured by enzyme-linked immunosorbent assay (ELISA) as an apoptosis indicator. Antitumor cytokines produced by PBMC in response to the virus were analyzed by ELISA and reverse transcription quantitative polymerase chain reaction. Characterization of rNDV-P05 indicates that the virus is slightly sensible to acid and basic pH, and stable at temperatures no greater than 42°C. The majority of cell lines developed apoptosis in co-culture with rNDV-P05 in a dose-time dependent manner. The highest level of HeLa, HCC1954 and HepG2 cell apoptosis was at 48 h/50 hemagglutination units (HU), and HL-60 was 24 h/50 HU. A549 cell line and PBMC did not show sensitivity to apoptosis by the virus. PBMC from healthy donors stimulated with the rNDV-P05 increased significantly the levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α and soluble TNF-related apoptosis-inducing ligand in culture supernatants, as well as their mRNA expression. These results demonstrate that the pro-apoptotic effect of rNDV-P05 and its magnitude is specific to particular tumor cell lines and is not induced on PBMC; and the virus stimulates the expression of several key antitumor cytokines. This study promotes the use of rNDV-P05 in an alternate

  14. Gut microbiome can control antitumor immune function in liver

    Cancer.gov

    An NCI study in mice that found a connection between gut bacteria and antitumor immune responses in the liver has implications for understanding mechanisms that lead to liver cancer and for potential treatments. The study was published in Science.

  15. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action.

    PubMed

    Mohamed, Shimaa Ibrahim Abdelmonym; Jantan, Ibrahim; Haque, Md Areeful

    2017-09-01

    Natural products with immunomodulatory activity are widely used in treatment of many diseases including autoimmune diseases, inflammatory disorders in addition to cancer. They gained a great interest in the last decades as therapeutic agents since they provide inexpensive and less toxic products than the synthetic chemotherapeutic agents. Immunomodulators are the agents that have the ability to boost or suppress the host defense response that can be used as a prophylaxis as well as in combination with other therapeutic modalities. The anticancer activity of these immunomodulators is due to their anti-inflammatory, antioxidant, and induction of apoptosis, anti-angiogenesis, and anti-metastasis effect. These natural immunomodulators such as genistein, curcumin, and resveratrol can be used as prophylaxis against the initiation of cancer besides the inhibition of tumor growth and proliferation. Whereas, immunostimulants can elicit and activate humoral and cell-mediated immune responses against the tumor that facilitate the recognition and destruction of the already existing tumor. This review represents the recent studies on various natural immunomodulators with antitumor effects. We have focused on the relationship between their anticancer activity and immunomodulatory mechanisms. The mechanisms of action of various immunomodulators such as polyphenolic compounds, flavonoids, organosulfur compounds, capsaicin, vinca alkaloids, bromelain, betulinic acid and zerumbone, the affected cancerous cell lines in addition to the targeted molecules and transcriptional pathways have been review and critically analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Antitumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia.

    PubMed

    Ruijun, Wang; Shi, Wang; Yijun, Xia; Mengwuliji, Tu; Lijuan, Zhang; Yumin, Wang

    2015-01-01

    A water-soluble polysaccharide, named as JRP1, was extracted and fractioned from the epicarp of immature fruit of Juglans mandshurica Maxim. The determination of the monosaccharide composition in JRP1 with gas chromatography (GC) showed that JRP1 was composed of Gal (43.1%), Glu (23.6%), Ara (16.2%), Rha (9.8%) and Fru (7.3%). The results in vitro showed that 25, 50 and 100 μg/mL of JRP1 could present a significant inhibition on the growth of S180 cells, and furthermore, a significant improvement on the proliferation ability of lymphocytes and the phagocytic activity of macrophages. The results in vivo showed that compared with those in the control group, the inhibition rates of different doses of JRP1 on S180 cells in the tumor-bearing mice were 35.3%, 40.6% and 48.1%, respectively, and serum immune cytokine levels such as IL-2, TNF-α and IFN-γ were significantly improved. Our results confirm that JRP1 has the activities of effective antitumor and immunomodulatory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A targeted IL-15 fusion protein with potent anti-tumor activity

    PubMed Central

    Chen, Siqi; Huang, Qiang; Liu, Jiayu; Xing, Jieyu; Zhang, Ning; Liu, Yawei; Wang, Zhong; Li, Qing

    2015-01-01

    IL-15 has been actively investigated for its potential in tumor immunotherapy. To enhance the anti-tumor activity of IL-15, the novel PFC-1 construct was designed, which comprises the following 3 parts: (1) IL-15Rα fused with IL-15 to enhance IL-15 activity, (2) an Fc fragment to increase protein half-life, and (3) an integrin-targeting RGD peptide to enhance tumor targeting. PFC-1 showed tumor cell targeting without compromising IL-15 activity. PFC-1 also had potent anti-tumor activities in xenograft models, suggesting the potential application of this multi-functional fusion protein in tumor therapy. PMID:26176990

  18. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells.

    PubMed

    Miller, Megan Jo; Foy, Kevin C; Overholser, Jay P; Nahta, Rita; Kaumaya, Pravin Tp

    2014-11-01

    The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237-269 (domain II) and 461-479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461-471) epitope with HER-2 (266-296), HER-2 (597-626), HER-1 (418-435) and insulin-like growth factor receptor type I (IGF-1R) (56-81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers.

  19. Multifunctional antitumor magnetite/chitosan- l-glutamic acid (core/shell) nanocomposites

    NASA Astrophysics Data System (ADS)

    Santos, Daniela P.; Ruiz, M. Adolfina; Gallardo, Visitación; Zanoni, Maria Valnice B.; Arias, José L.

    2011-09-01

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan- l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  20. Antitumor Properties of the leaf essential oil of Zornia brasiliensis.

    PubMed

    Costa, Emmanoel V; Menezes, Leociley R A; Rocha, Suellen L A; Baliza, Ingrid R S; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Bezerra, Daniel P

    2015-05-01

    Zornia brasiliensis, popularly known as "urinária", "urinana", and "carrapicho", is a medicinal plant used in Brazilian northeast folk medicine as a diuretic and against venereal diseases. The aim of this study was to investigate the chemical composition and antitumor potential of the leaf essential oil of Z. brasiliensis. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analyzed by GC-MS and GC-FID. Its composition was characterized by the presence of trans-nerolidol, germacrene D, trans-caryophyllene, α-humulene, and farnesene as major constituents. In vitro cytotoxicity of the essential oil and some of its major constituents (trans-nerolidol, trans-caryophyllene, and α-humulene) was evaluated for tumor cell lines from different histotypes using the Alamar blue assay. The essential oil, but not the constituents tested, presented promising cytotoxicity. Furthermore, mice inoculated with B16-F10 mouse melanoma were used to confirm its in vivo effectiveness. An in vivo antitumor study showed tumor growth inhibition rates of 1.68-38.61 % (50 and 100 mg/kg, respectively). In conclusion, the leaf essential oil of Z. brasiliensis presents trans-nerolidol, germacrene D, trans-caryophyllene, α-humulene, and farnesene as major constituents and is able to inhibit cell proliferation in cultures as well as in tumor growth in mice. Georg Thieme Verlag KG Stuttgart · New York.