Science.gov

Sample records for additive si source

  1. The addition of strain in uniaxially strained transistors by both SiN contact etch stop layers and recessed SiGe sources and drains

    NASA Astrophysics Data System (ADS)

    Denneulin, Thibaud; Cooper, David; Hartmann, Jean-Michel; Rouviere, Jean-Luc

    2012-11-01

    SiN contact etch stop layers (CESL) and recessed SiGe sources/drains are two uniaxial strain techniques used to boost the charge carriers mobility in p-type metal oxide semiconductor field effect transistors (pMOSFETs). It has already been shown that the electrical performances of the devices can be increased by combining both of these techniques on the same transistor. However, there are few experimental investigations of their additivity from the strain point of view. Here, spatially resolved strain mapping was performed using dark-field electron holography (DFEH) on pMOSFETs transistors strained by SiN CESL and embedded SiGe sources/drains. The influence of both processes on the strain distribution has been investigated independently before the combination was tested. This study was first performed with non-silicided devices. The results indicated that in the channel region, the strain induced by the combination of both processes is equal to the sum of the individual components. Then, the same investigation was performed after Ni-silicidation of the devices. It was found that in spite of a slight reduction of the strain due to the silicidation, the strain additivity is approximately preserved. Finally, it was also shown that DFEH can be a useful technique to characterize the strain field around dislocations.

  2. Development of wide band gap p- a-SiOxCy:H using additional trimethylboron as carbon source gas

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Won; Sichanugrist, Porponth; Janthong, Bancha; Khan, Muhammad Ajmal; Niikura, Chisato; Konagai, Makoto

    2016-07-01

    We report p-type a-SiOxCy:H thin films which were fabricated by introducing additional Trimethylboron (TMB, B(CH3)3) doping gas into conventional standard p-type a-SiOx:H films. The TMB addition into the condition of p-a-SiOx:H improved optical bandgap from 2.14 to 2.20 eV without deterioration of electrical conductivity, which is promising for p-type window layer of thin film solar cells. The suggested p-a-SiOxCy:H films were applied in amorphous silicon solar cells and we found an increase of quantum efficiency at short wavelength regions due to wide bandgap of the new p-layer, and thus efficiency improvement from 10.4 to 10.7% was demonstrated in a-Si:H solar cell by employing the p-a-SiOxCy:H film. In case of a-SiOx:H cell, high open circuit voltage of 1.01 V was confirmed by using the suggested the p-a-SiOxCy:H film as a window layer. This new p-layer can be highly promising as a wide bandgap window layer to improve the performance of thin film silicon solar cells. [Figure not available: see fulltext.

  3. Characteristics of Si Solar Cells with the Addition of Frits and Additives to Al Pastes

    NASA Astrophysics Data System (ADS)

    Kim, Dongsun; Kim, Jongwoo; Lee, Jungki; Kim, Hyungsun

    2011-11-01

    Thick Al films are used widely as the backside electrode material of Si solar cells. The formation of Al and a back surface field reduce the back-surface recombination and improve the cell performance. This study examined the characteristics of Si solar cells with the addition of frits and additives to Al pastes after firing. The reactions among Al powders, frits and additives were studied. The wetting behavior between each powder (Al powder, frit, additive) and Si, Al substrates was also measured as a function of the temperature. These preliminary studies show that the frits affect the adhesion between Al and Si. In addition, the proper additives prevent the bowing of Si wafer.

  4. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2016-02-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  5. Dielectric behavior of Cu—Zn ferrites with Si additive

    NASA Astrophysics Data System (ADS)

    Uzma, G.

    2014-05-01

    Since ferrites are highly sensitive to the additives present in or added to them, extensive work, to improve the properties of basic ferrites, has been carried out on these aspects. The present paper reports the effects of composition, frequency, and temperature on the dielectric behavior of a series of CuxZn1—xFe2O4 ferrite samples prepared by the usual ceramic technique. In order to improve the properties of the samples, low cost Fe2O3 having 0.5 wt.% Si as an additive is selected to introduce into the system. The dielectric constant increases by increasing the Cu content, as the electron exchange of Cu2+ <=> Cu+ is responsible for the conduction and the polarization. However, the addition of Si could decrease the dielectric constant as it suppresses the ceramic grain growth and promotes the quality factor at higher frequencies. Dielectric constant ɛ' and loss tangent tan δ of the mixed Cu—Zn ferrite decrease with increasing frequency, attributed to the Maxwell—Wagner polarization, which increases as the temperature increases.

  6. Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Chou, R.; Milligan, J.; Paliwal, M.; Brochu, M.

    2015-03-01

    Additive manufacturing (AM) of metallic materials is experiencing a research and commercialization craze in almost all industrial sectors. However, to date, AM has been limited to a small numbers of alloys. With respect to aluminum, two alloys received some attention: Al-12Si and Al-10Si-1Mg. In both cases, fully dense components have been achieved using a continuous-wave selective laser melting system. In this article, a new approach of selective laser melting using a pulsed-laser source as opposed to a continuous-wave laser is proposed. Pulse selective laser melting (P-SLM) would allow for greater control over the heat input and thus further optimization possibilities of the microstructure. P-SLM was demonstrated using the Al-12Si system. Si refinement below 200 nm was achieved throughout the component. Density up to 95% and high hardness of above 135 HV were obtained. The solidification mechanism is also explained.

  7. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  8. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl2/Si powder source

    NASA Astrophysics Data System (ADS)

    Meng, Erchao; Ueki, Akiko; Meng, Xiang; Suzuki, Hiroaki; Itahara, Hiroshi; Tatsuoka, Hirokazu

    2016-08-01

    Si nanosheets connected to Si nanowires were synthesized using a MnCl2/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH4 or SiCl4. The existence of the Si nanosheets connected to the Si<111> nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of <211> perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  9. Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode.

    PubMed

    Zhu, Bin; Jin, Yan; Tan, Yingling; Zong, Linqi; Hu, Yue; Chen, Lei; Chen, Yanbin; Zhang, Qiao; Zhu, Jia

    2015-09-01

    Silicon, one of the most promising candidates as lithium-ion battery anode, has attracted much attention due to its high theoretical capacity, abundant existence, and mature infrastructure. Recently, Si nanostructures-based lithium-ion battery anode, with sophisticated structure designs and process development, has made significant progress. However, low cost and scalable processes to produce these Si nanostructures remained as a challenge, which limits the widespread applications. Herein, we demonstrate that Si nanoparticles with controlled size can be massively produced directly from low grade Si sources through a scalable high energy mechanical milling process. In addition, we systematically studied Si nanoparticles produced from two major low grade Si sources, metallurgical silicon (∼99 wt % Si, $1/kg) and ferrosilicon (∼83 wt % Si, $0.6/kg). It is found that nanoparticles produced from ferrosilicon sources contain FeSi2, which can serve as a buffer layer to alleviate the mechanical fractures of volume expansion, whereas nanoparticles from metallurgical Si sources have higher capacity and better kinetic properties because of higher purity and better electronic transport properties. Ferrosilicon nanoparticles and metallurgical Si nanoparticles demonstrate over 100 stable deep cycling after carbon coating with the reversible capacities of 1360 mAh g(-1) and 1205 mAh g(-1), respectively. Therefore, our approach provides a new strategy for cost-effective, energy-efficient, large scale synthesis of functional Si electrode materials. PMID:26258439

  10. Two New SiO Maser Sources in High-Mass Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Cho, Se-Hyung; Yun, Youngjoo; Kim, Jaeheon; Liu, Tie; Kim, Kee-Tae; Choi, Minho

    2016-08-01

    Silicon monoxide (SiO) masers are rare in star-forming regions, with the exception of five known SiO maser sources. However, we detected two new SiO maser sources from infrared-loud clumps of the high-mass star-forming regions G19.61‑0.23 and G75.78+0.34. High angular resolution observations toward G19.61‑0.23 suggest that the deeply embedded young stellar object (YSO) of SMA1 is powering the SiO masers. In addition, the SiO v = 1, J = 1 \\to 0 line shows four spike features, while the v = 2 maser shows combined features of one spike and broad wing components, implying energetic activities of the YSO of SMA1 in the G19.61‑0.23 hot molecular core. The SiO v = 0, J = 2 \\to 1 emission shows bipolar outflows in the NE–SW direction with respect to the center of the SiO maser source. A high angular resolution map of the SiO v = 1, J = 2 \\to 1 maser in G75.78+0.34 shows that the SiO maser is associated with the CORE source at the earliest stage of high-mass star formation. Therefore, the newly detected SiO masers and their associated outflows will provide good probes for investigating this early high-mass star formation.

  11. Impacts of additive uniaxial strain on hole mobility in bulk Si and strained-Si p-MOSFETs

    NASA Astrophysics Data System (ADS)

    Shuo, Zhao; Lei, Guo; Jing, Wang; Jun, Xu; Zhihong, Liu

    2009-10-01

    Hole mobility changes under uniaxial and combinational stress in different directions are characterized and analyzed by applying additive mechanical uniaxial stress to bulk Si and SiGe-virtual-substrate-induced strained-Si (s-Si) p-MOSFETs (metal-oxide-semiconductor field-effect transistors) along (110) and (100) channel directions. In bulk Si, a mobility enhancement peak is found under uniaxial compressive strain in the low vertical field. The combination of (100) direction uniaxial tensile strain and substrate-induced biaxial tensile strain provides a higher mobility relative to the (110) direction, opposite to the situation in bulk Si. But the combinational strain experiences a gain loss at high field, which means that uniaxial compressive strain may still be a better choice. The mobility enhancement of SiGe-induced strained p-MOSFETs along the (110) direction under additive uniaxial tension is explained by the competition between biaxial and shear stress.

  12. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  13. Optimum condition to fabricate 5-10 nm SiO2/Si structure using advanced nitric acid oxidation of Si method with Si source

    NASA Astrophysics Data System (ADS)

    Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2012-12-01

    A low temperature (≦120 °C) fabrication method to form relatively thick SiO2/Si structure with a Si source has been developed using the advanced nitric acid oxidation of Si (NAOS) method, and the formation mechanism has been investigated. The reaction mechanism consists of direct oxidation of Si, dissolution of Si sources, and surface reaction of the dissolved Si species. The dissolved Si species is present in HNO3 solutions as mono-silicic acid and reacts with oxidizing species formed by decomposition of HNO3 on an ultrathin SiO2 layer (i.e., 1.4 nm) produced by the direct oxidation of Si substrates with HNO3 solutions. To achieve a uniform thickness of SiO2 layer with a smooth surface, HNO3 solutions with concentrations higher than 60 wt. % are needed because the dissolved Si species polymerizes in HNO3 solutions when the concentration is below 60 wt. %, resulting in the formation of SiO2 particles in HNO3, which are deposited afterwards on the SiO2 layer. In spite of the low temperature formation at 120 °C, the electrical characteristics of the advanced NAOS SiO2 layer formed with 68 wt. % HNO3 and subsequent post-metallization anneal at 250 °C are nearly identical to those of thermal oxide formed at 900 °C.

  14. Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives.

    PubMed

    Fang, Sheng; Wang, Han; Yang, Juanyu; Yu, Bing; Lu, Shigang

    2016-08-15

    Various morphologies of silicon nanowires (SiNWs) were successfully prepared by the electrochemical reduction of silica mixed with different additives (Au, Ag, Fe, Co, Ni, and NiO, respectively). Straight SiNWs were extensively obtained by the electro-reduction of porous Ni/SiO2 blocks in molten CaCl2 at 900 °C. The SiNWs had a wide diameter distribution of 80 to 350 nm, and the Ni-Si droplets were found on the tips of the nanowires. The growth mechanism of SiNWs was investigated, which could reveal that the nano-sized Ni-Si droplets formed at the Ni/SiO2/CaCl2 three-phase interlines. Based on the mechanism proposed, NiO particles with sub-micrometer size were selected as the additive, and straight SiNWs with diameters of 60 to 150 nm were also prepared via the electrochemical process. PMID:27203479

  15. The improved mechanical properties of β-CaSiO3 bioceramics with Si3N4 addition.

    PubMed

    Pan, Ying; Zuo, Kaihui; Yao, Dongxu; Yin, Jinwei; Xin, Yunchuan; Xia, Yongfeng; Liang, Hanqin; Zeng, Yuping

    2015-03-01

    The motivation of this study is to investigate the effect of Si3N4 addition on the sinterability of β-CaSiO3 ceramics. β-CaSiO3 ceramics with different content of Si3N4 were prepared at the sintering temperature ranging from 1000°C to 1150°C. The results showed that Si3N4 can be successfully used as sintering additive by being oxidized to form SiO2. The β-CaSiO3 ceramics with 3wt% Si3N4 sintered at 1100°C revealed flexural strength, hardness and fracture toughness of 157.2MPa, 4.4GPa and 2.3MPam(1/2) respectively, which was much higher than that of pure β-CaSiO3 ceramics (41.1MPa, 1.0GPa, 1.1MPam(1/2)). XRD analysis and SEM observation indicated that the main phase maintained to be β-phase after sintering. PMID:26580024

  16. 17 CFR 38.801 - Additional sources for compliance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Additional sources for compliance. 38.801 Section 38.801 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DESIGNATED CONTRACT MARKETS Governance Fitness Standards § 38.801 Additional sources for...

  17. 17 CFR 38.258 - Additional sources for compliance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Additional sources for compliance. 38.258 Section 38.258 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DESIGNATED CONTRACT MARKETS Prevention of Market Disruption § 38.258 Additional sources for...

  18. Enhanced magnetic behaviors of CoPt nanoparticles by addition of SiO{sub 2}

    SciTech Connect

    Wang, Yaxin; Zhang, Xiaolong; Liu, Yang; Jiang, Yuhong; Zhang, Yongjun; Yang, Jinghai

    2014-05-01

    Equiatomic L1{sub 0} CoPt alloy nanoparticles (NPs) with various contents of SiO{sub 2} are synthesized by the simple sol–gel method. The SiO{sub 2} additions restrain the growth of grain and hinder the agglomeration formation. The coercivity increases first and then decreases with SiO{sub 2} addition. Compared to the 0 μl-SiO{sub 2} CoPt NPs, the higher ordering degree and better magnetic properties are obtained by the addition of amount 10 μl SiO{sub 2} in our sample. And the coercivity is two times as large as that of 0 μl-SiO{sub 2} NPs. When the addition of SiO{sub 2} is more than 10 μl, the deteriorated magnetic properties are ascribed to the transformation from hard magnetically phase to soft magnetically phase due to the decrease of particle size. - Graphical abstract: L1{sub 0} CoPt alloy nanoparticles with various contents of SiO{sub 2} are synthesized by sol–gel method. The effects of SiO{sub 2} on the structure and magnetic properties of CoPt nanoparticles are investigated. - Highlights: • The L1{sub 0} CoPt–SiO{sub 2} nanoparticles (NPs) were synthesized by sol–gel method. • Effects of SiO{sub 2} content on the structure and magnetic properties were investigated. • The addition of SiO{sub 2} restrained the growth of particle size. • CoPt–10 μl SiO{sub 2} NPs showed a higher ordering degree and better magnetic properties.

  19. Sintering and properties of Si3N4 with and without additives by HIP treatment

    NASA Technical Reports Server (NTRS)

    Kuratani, S.; Shimada, M.; Koizumi, M.

    1986-01-01

    Hot Isostatic Pressing (HIP) of Si3N4 powders with and without additives was performed using a glass container, and various kinds of pressureless-sintered Si3N4 were HIP'ed without a container. The effects of HIP treatment on density, microstructure, flexural strength, microhardness, and fracture toughness on Si3N4 ceramics were studied. Using a glass container it was difficult to reach theoretical density. The microhardness of HIP'ed Si3N4 without additives was low, and the fracture toughness of HIP'ed Si3N4 with and without additives was 22 to 25 W/m-K, and it decreased with increasing the amount of additives. The density and flexural strength, and hardness of pressureless-sintered Si3N4 which contained Al2O and Y2O3 as oxide additives were remarkably improved by HIP treatment using nitrogen as a pressure transmitting gas. It is very important to select the sintering conditions for fabricating the presintered body of Si3N4 in order to improve the mechanical properties of Si3N4 by HIP treatment.

  20. Modification of Mo-Si alloy microstructure by small additions of Zr.

    PubMed

    Mousa, M; Wanderka, N; Timpel, M; Singh, S; Krüger, M; Heilmaier, M; Banhart, J

    2011-05-01

    Molybdenum and its alloys are potential materials for high-temperature applications. However, molybdenum is susceptible to embrittlement because of oxygen segregation at the grain boundaries. In order to alleviate the embrittlement small amounts of zirconium were alloyed to a solid solution of Mo-1.5Si alloy. Two Mo-based alloys, namely Mo-1.5Si and Mo-1.5Si-1Zr, were investigated by the complementary high-resolution methods transmission electron microscopy and atom probe tomography. The Mo-1.5Si alloy shows a polycrystalline structure with two silicon-rich intermetallic phases Mo(5)Si(3) and Mo(3)Si located at the grain boundaries and within the grains. In addition, small clusters with up to 10 at% Si were found within the molybdenum solid solution. Addition of a small amount of zirconium to Mo-1.5Si leads to the formation of two intermetallic phases Mo(2)Zr and MoZr(2), which are located at the grain boundaries as well as within the interior of the grain. Transmission electron microscopy shows that small spherical Mo-Zr-rich precipitates (<10nm) decorate the grain boundaries. The stoichiometry of the small precipitates was identified as Mo(2)Zr by atom probe tomography. No Si-enriched small precipitates were detected in the Mo-1.5Si-1Zr alloy. It is concluded that the presence of zirconium hinders their formation. PMID:21215523

  1. Influence of Si Addition on Quenching Sensitivity and Formation of Nano-Precipitate in Al-Mg-Si Alloys.

    PubMed

    Kim, JaeHwang; Hayashi, Minoru; Kobayashi, Equo; Sato, Tatsuo

    2016-02-01

    The age-hardening is enhanced with the high cooling rate since more vacancies are formed during quenching, whereas the stable beta phase is formed with the slow cooling rate just after solid solution treatment resulting in lower increase of hardness during aging. Meanwhile, the nanoclusters are formed during natural aging in Al-Mg-Si alloys. The formation of nanoclusters is enhanced with increasing the Si amount. High quench sensitivity based on mechanical property changes was confirmed with increasing the Si amount. Moreover, the nano-size beta" phase, main hardening phase, is more formed by the Si addition resulting in enhancement of the age-hardening. The quench sensitivity and the formation behavior of precipitates are discussed based on the age-hardening phenomena. PMID:27433677

  2. Thermoelectric Properties of Sb-Doped Mg2Si Prepared Using Different Silicon Sources

    NASA Astrophysics Data System (ADS)

    Isoda, Yukihiro; Tada, Satoki; Kitagawa, Hiroyuki; Shinohara, Yoshikazu

    2016-03-01

    Magnesium silicide (Mg2Si) compounds doped with 8000 ppm Sb were prepared using different Si sources via liquid-solid reaction synthesis and hot pressing. The Si sources were solar-grade Si, metal-grade Si, and sludge Si. The Si sludge generated during the cutting of Si wafers was recycled as a Si source. The x-ray diffraction (XRD) patterns of the Si sludge corresponded to Si, silicon dioxide (SiO2), and C, whereas the solar-grade Si and metal-grade Si were indexed as a single Si phase. For the sintered compact samples, the Mg2Si phase was predominant in all the samples. However, small amounts of impurity phases, MgO and SiC, were identified in the sintered Mg2Si that used sludge Si. The thermoelectric properties of the Mg2Si produced using solar-grade Si or metal-grade Si were almost the same at the measured temperature. The efficacy of the low-purity metal-grade Si was demonstrated. However, the power factor and thermal conductivity of the Mg2Si produced using sludge Si were smaller than those of the other samples over the entire measured temperature range. However, the maximum value of ZT was almost the same.

  3. Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    NASA Technical Reports Server (NTRS)

    Shimada, M.; Tanaka, A.; Yamada, T.; Koizumi, M.

    1984-01-01

    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C.

  4. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    SciTech Connect

    Cao, J. |

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  5. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  6. Thermal expansion of Ti{sub 5}Si{sub 3} with Ge, B, C, N, or O additions

    SciTech Connect

    Williams, J. J.; Kramer, M. J.; Akinc, M.

    2000-08-01

    The crystallographic thermal expansion coefficients of Ti{sub 5}Si{sub 3} from 20 to 1000 degree sign C as a function of B, C, N, O, or Ge content were measured by high-temperature x-ray diffraction using synchrotron sources at Cornell University (Cornell High Energy Synchrotron Source; CHESS) and Argonne National Laboratory (Advanced Photon Source; APS). Whereas the ratio of the thermal expansion coefficients along the c and a axes was approximately 3 for pure Ti{sub 5}Si{sub 3}, this ratio decreased to about 2 when B, C, or N atoms were added. Additions of O and Ge were less efficient at reducing this thermal expansion anisotropy. The extent by which the thermal expansion was changed when B, C, N, or O atoms were added to Ti{sub 5}Si{sub 3} correlated with their expected effect on bonding in Ti{sub 5}Si{sub 3}. (c) 2000 Materials Research Society.

  7. Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET

    NASA Technical Reports Server (NTRS)

    Sung, K. T.; Li, W. Q.; Li, S. H.; Pang, S. W.; Bhattacharya, P. K.

    1993-01-01

    A 5 nm-thick SiO2 gate was grown on an Si(p+)/Si(0.8)Ge(0.2) modulation-doped heterostructure at 26 C with an oxygen plasma generated by a multipolar electron cyclotron resonance source. The ultrathin oxide has breakdown field above 12 MV/cm and fixed charge density about 3 x 10 exp 10/sq cm. Leakage current as low as 1/micro-A was obtained with the gate biased at 4 V. The MISFET with 0.25 x 25 sq m gate shows maximum drain current of 41.6 mA/mm and peak transconductance of 21 mS/mm.

  8. Silicon purification using a Cu-Si alloy source

    NASA Technical Reports Server (NTRS)

    Powell, R. C.; Tejedor, P.; Olson, J. M.

    1986-01-01

    Production of 99.9999% pure silicon from 98% pure metallurgical grade (MG) silicon by a vapor transport filtration process (VTP) is described. The VTF process is a cold wall version of an HCl chemical vapor transport technique using a Si:Cu3Si alloy as the silicon source. The concentration, origin, and behavior of the various impurities involved in the process were determined by chemically analyzing alloys of different purity, the slag formed during the alloying process, and the purified silicon. Atomic absorption, emission spectrometry, inductively coupled plasma, spark source mass spectrometry, and secondary ion mass spectroscopy were used for these analyses. The influence of the Cl/H ratio and the deposition temperature on the transport rate was also investigated.

  9. Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering

    NASA Technical Reports Server (NTRS)

    Takatori, K.; Shimade, M.; Koizumi, M.

    1984-01-01

    Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.

  10. Evaluation of Exogenous siRNA Addition as a Metabolic Engineering Tool for Modifying Biopharmaceuticals

    PubMed Central

    Tummala, Seshu; Titus, Michael; Wilson, Lee; Wang, Chunhua; Ciatto, Carlo; Foster, Donald; Szabo, Zoltan; Guttman, Andras; Li, Chen; Bettencourt, Brian; Jayaraman, Muthuswamy; Deroot, Jack; Thill, Greg; Kocisko, David; Pollard, Stuart; Charisse, Klaus; Kuchimanchi, Satya; Hinkle, Greg; Milstein, Stuart; Myers, Rachel; Wu, Shiaw-Lin; Karger, Barry; Rossomando, Anthony

    2012-01-01

    Traditional metabolic engineering approaches, including homologous recombination, zinc finger nucleases, and short hairpin RNA (shRNA), have previously been employed to generate biologics with specific characteristics that improve efficacy, potency, and safety. An alternative approach is to exogenously add soluble small interfering RNA (siRNA) duplexes, formulated with a cationic lipid, directly to cells grown in shake flasks or bioreactors, This approach has the following potential advantages : no cell line development required, ability to tailor mRNA silencing by adjusting siRNA concentration, simultaneous silencing of multiple target genes, and potential temporal control of down regulation of target gene expression. In this study, we demonstrate proof of concept of the siRNA feeding approach as a metabolic engineering tool in the context of increasing monoclonal antibody afucosylation. First, potent siRNA duplexes targeting fut8 and gmds were dosed into shake flasks with cells that express an anti-CD20 monoclonal antibody. Dose response studies demonstrated the ability to titrate the silencing effect. Furthermore, siRNA addition resulted in no deleterious effects on cell growth, final protein titer, or specific productivity. In bioreactors, antibodies produced by cells following siRNA treatment exhibited improved functional characteristics compared to antibodies from untreated cells, including increased levels of afucosylation (63%), a 17-fold improvement in FCgRIIIa binding, and an increase in specific cell lysis by up to 30%, as determined in an ADCC assay. In addition, standard purification procedures effectively cleared the exogenously added siRNA and transfection agent. Moreover, no differences were observed when other key product quality structural attributes were compared to untreated controls. These results establish that exogenous addition of siRNA represents a potentially novel metabolic engineering tool to improve biopharmaceutical function and

  11. Work of Adhesion in Al/SiC Composites with Alloying Element Addition

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Fan, Tongxiang; Zhang, Di

    2013-11-01

    In the current work, a general methodology was proposed to demonstrate how to calculate the work of adhesion in a reactive multicomponent alloy/ceramic system. Applying this methodology, the work of adhesion of Al alloy/SiC systems and the influence of different alloying elements were predicted. Based on the thermodynamics of interfacial reaction and calculation models for component activities, the equilibrium compositions of the melts in Al alloy/SiC systems were calculated. Combining the work of adhesion models for reactive metal/ceramic systems, the work of adhesion in Al alloy/SiC systems both before and after the reaction was calculated. The results showed that the addition of most alloying elements, such as Mg, Si, and Mn, could increase the initial work of adhesion, while Fe had a slightly decreasing effect. As for the equilibrium state, the additions of Cu, Fe, Mn, Ni, Ti, and La could increase the equilibrium work of adhesion, but the additions of Mg and Zn had an opposite effect. Si was emphasized due to its suppressing effect on the interfacial reaction.

  12. In situ doping control for growth of n p n Si/SiGe/Si heterojunction bipolar transistor by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gao, F.; Huang, D. D.; Li, J. P.; Liu, C.

    2005-01-01

    N-p-n Si/SiGe/Si heterostructures have been grown by a disilane (Si 2H 6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH 3) and diborane (B 2H 6) as n- and p-type in situ doping sources, respectively. Adopting an in situ doping control technology, the influence of background B dopant on the growth of n-Si emitter layer was reduced, and an abrupt B dopant distribution from SiGe base to Si emitter layer was obtained. Besides, higher n-type doping in the surface region of emitter to reduce the emitter resist can be realized, and it did not result in the drop of growth rate of Si emitter layer in this technology.

  13. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    NASA Astrophysics Data System (ADS)

    Zhang, Yanning; Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2015-08-01

    In this study, Laser Engineered Net Shaping (LENSTM) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples' top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV0.2) > 100% Ti-N coating (1846 ± 68.5 HV0.2) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV0.2). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance.

  14. Spectroscopic Ellipsometry of 3C-SiC Thin Films Grown on Si Substrates Using Organosilane Sources

    NASA Astrophysics Data System (ADS)

    Kubo, Naoki; Moritani, Akihiro; Kitahara, Kuninori; Asahina, Shuichi; Kanayama, Nobuyuki; Tsutsumi, Koichi; Suzuki, Michio; Nishino, Shigehiro

    2005-06-01

    Dielectric function spectra of 3C-SiC films on Si substrates in the energy region of 0.73-6.43 eV were measured by spectroscopic ellipsometry. Hexamethyldisilane (Si2(CH3)6) and tetraethylsilane (Si(C2H5)4) were used as safe organosilane sources for the growth of SiC films. The measured spectra were compared with those of 3C-SiC on a Si(001) substrate grown with disilane (Si2H6). First, the pseudodielectric function spectra gave a shoulder structure corresponding to the direct X5-X1 interband transition in the Brillouin zone. Secondly, the dielectric function of 3C-SiC was determined by applying a four-layer model in which we took into account the surface roughness and mixed crystals of a carbonized interface layer. Finally, the third-derivative lineshape of the imaginary part \\varepsilon2 of the complex-dielectric function provided the values of the interband transition energy Eg and the broadening parameter Γ for the X5-X1 interband transition. The measured values of Γ indicated that the crystalline quality of SiC films grown using organosilane sources is comparable to that of SiC films grown using Si2H6.

  15. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Congxiang; Liu, Wen-wen; Wang, Xingli; Li, Xiaocheng; Tan, Chong Wei; Tay, Beng Kang; Coquet, Philippe

    2014-09-01

    We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  16. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  17. Additional experiments relative to the shelf life of Li(Si)/FeS2 thermal batteries

    NASA Astrophysics Data System (ADS)

    Searcy, J. Q.; Armijo, J. R.

    1985-02-01

    A continuing effort to develop a new thermal battery technology based on the Li(Si)/FeS2 electrochemical couple is reported. The results relate to the long shelf life requirement for thermal batteries designed by Sandia, and include topics relevant to leakage through the hermetic seal and accelerated aging experiments with materials new to the technology. Conclusions relevant to leakage through the hermetic seal are that the maximum leak rate must not exceed 1.8 x 10(-7) w, where w is the grams of Li(Si) contained by a battery, and that a bomb type leak test can be designed that is adequate for most Li(Si)/FeS2 batteries. Conclusions relevant to long term compatibility of new materials include the following: nickel is not compatible with the iron disulfide in the cathode; the CaSi2 additive used to suppress the initial voltage transient does not react or degrade during accelerated aging experiments, but the use of that material can lead to an increase in the variability of the activated lives, especially for long life batteries; Grafoil current collectors used with the cathode do not degrade in accelerated aging experiments.

  18. Gas-source MBE growth of strain-relaxed Si1-xCx on Si(100) substrates

    NASA Astrophysics Data System (ADS)

    Arimoto, Keisuke; Sakai, Shoichiro; Furukawa, Hiroshi; Yamanaka, Junji; Nakagawa, Kiyokazu; Usami, Noritaka; Hoshi, Yusuke; Sawano, Kentarou; Shiraki, Yasuhiro

    2013-09-01

    The hole effective mass in a compressively strained Si formed on a (100) surface is expected to be low. The growth of a high quality strain-relaxed Si1-xCx increases the possibility of high performance electronic devices using compressively strained Si film. In this study, growth conditions and their influence on microstructural aspects of Si1-xCx grown by gas-source molecular beam epitaxy were studied. Disilane and trimethylsilane were used as source gases. It was found that the strain-relaxation process and defect formation were influenced not only by substrate temperature but also by flow rates of the source gases. Relationships between the morphological aspects and non-substitutional carbon concentration were studied.

  19. Percolation model with an additional source of disorder.

    PubMed

    Kundu, Sumanta; Manna, S S

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R_{1} and R_{2} of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R_{1}-R_{2} plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is p_{c}(sq), the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R∈{0,R_{0}} and a percolation transition is observed with R_{0} as the control variable, similar to the site occupation probability. PMID:27415234

  20. Percolation model with an additional source of disorder

    NASA Astrophysics Data System (ADS)

    Kundu, Sumanta; Manna, S. S.

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.

  1. Effects of Si Addition and Heating Ar on the Electromigration Performance of Al-Alloy Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Dok Won; Lee, Byung-Zu; Jeong, Jong Yeul; Park, Hyun; Shim, Kyu Cheol; Kim, Jong Seok; Park, Young Bae; Woo, Sun-Woong; Lee, Jeong-gun

    2002-02-01

    The electromigration (EM) performance of Ti/Al-alloy multilayered metallization with one-step sputtered Al-alloy has been studied. The Al-alloys investigated included Al-1.0%Si-0.5%Cu and Al-0.5%Cu, and the Al-alloy films were prepared with and without heating Ar. The package-level EM test results indicate that the EM resistance of the Al-Si-Cu stack is nearly identical to that of the Al-Cu stack. Si addition was found to degrade the microstructure of the Al-alloy film, while it had the retarding effect on the Ti/Al reaction, which suggests that there exists a trade-off between the film microstructure and the formation of TiAl3 intermetallic compound. The EM performance of the one-step sputtered Al-alloy stack was enhanced by the use of heating Ar during the deposition of Al-alloy film, which has been attributed to the improved microstructure of the Al-alloy film by the use of heating Ar.

  2. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder Effects on the Sinterability and Mechanical Properties

    SciTech Connect

    Lee, Sea-Hoon; Cho, Chun-Rae; Park, Young-Jo; Ko, Jae-Woong; Kim, Hai-Doo; Lin, Hua-Tay; Becher, Paul F

    2013-01-01

    The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain Lu2O3-SiO2 additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at 1850oC through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at 1950oC. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine Si3N4 particles after nitridation and sintering at and above 1600oC. The amount of residual SiO2 within the specimens was not strongly affected by adding fine Si powder because most of the SiO2 layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and 8.0 MPa m1/2, respectively.

  3. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... Regional Offices. In addition, NRC Functional Organization Charts, NUREG-0325, contains...

  4. Development of improved p-type Si-20 at. % Ge by addition of fullerite

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Harringa, J. L.

    1994-08-01

    In a series of experiments designed to evaluate the possibility of lowering the lattice thermal conductivity of silicon-germanium alloys through the formation of an inert, intragranular nanophase, a number of p-type Si-20 at. % Ge alloys, with a nominal doping level of 0.5 at. % boron, were prepared with varying amounts of fullerite, a mixture of 90% C60+10% C70 with a particle size of 0.7 nm. The alloys were synthesized by mechanical alloying (MA) and the fullerite was added at various stages of the preparation sequence. Compacts consolidated by hot pressing at temperatures of 1200 °C to 1265 °C were found to be fully dense and homogeneous. Each compact was characterized by Hall effect at room temperature and also by electrical resistivity, Seebeck coefficient, and thermal diffusivity measurements to 1000 °C. A reduction in thermal conductivity of up to 22% compared to standard p-type alloys was observed in samples containing 0.8 weight percent additions. In this study, a maximum integrated average figure of merit, Z, between 300 and 1000 °C of 0.65×10-3 °C-1 was obtained, corresponding to 0.4 weight percent addition of fullerite. Observation of selected samples by transmission electron microscopy revealed that the fullerite reacted with silicon to form nanophase SiC inclusions.

  5. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  6. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  7. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  8. 10 CFR 1.3 - Sources of additional information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../cfr/. Final opinions made in the adjudication of cases are published in “Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1.3 Sources..., assignments of responsibility, and delegations of authority is in the Nuclear Regulatory Commission...

  9. One component metal sintering additive for {beta}-SiC based on thermodynamic calculation and experimental observations

    SciTech Connect

    Noviyanto, Alfian; Yoon, Dang-Hyok

    2011-08-15

    Graphical abstract: . Standard Gibbs formation free energies vs. temperature for various metal carbides. The heavy line represents the standard Gibbs free energy for {beta}-SiC. The hatched area denotes the typical liquid phase hot pressing temperature of {beta}-SiC (1973-2123 K). Highlights: {yields} Various metal elements were examined as a sintering additive for {beta}-SiC. {yields} Al and Mg enhanced the density significantly without decomposing {beta}-SiC, as predicted by thermodynamic simulation. {yields} Cr, Fe, Ta, Ti, V and W additives formed metal carbide and/or silicide compounds by decomposing {beta}-SiC. {yields} This approach would be useful for selecting effective sintering additive for high temperature ceramics. -- Abstract: Various types of metals were examined as sintering additives for {beta}-SiC by considering the standard Gibbs formation free energy and vapor pressure under hot pressing conditions (1973-2123 K), particularly for applications in nuclear reactors. Metallic elements having the low long-term activation under neutron irradiation condition, such as Cr, Fe, Ta, Ti, V and W, as well as widely used elements, Al, Mg and B, were considered. The conclusions drawn from thermodynamic considerations were compared with the experimental observations. Al and Mg were found to be effective sintering additives, whereas the others were not due to the formation of metal carbides or silicides from the decomposition of SiC under hot pressing conditions.

  10. Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas

    NASA Astrophysics Data System (ADS)

    Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.

    2009-02-01

    Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.

  11. Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas

    SciTech Connect

    Nordmark, H.; Holmestad, R.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Ulyashin, A.

    2009-02-15

    Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi{sub 2} particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H{sub 2} flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi{sub 2} particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiH{sub x} species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi{sub 2} particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi{sub 2} particles on their tips as well as sometimes being incorporated into their structure.

  12. Additive Effects on Si3n4 Oxidation/Volatilization in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig; Fox, Dennis S.; Wenglarz, Richard A.; Ferber, Mattison K.

    2002-01-01

    Two commercially available additive-containing silicon nitride materials were exposed in four environments which range in severity from dry oxygen at 1 atm pressure, and low gas velocity to an actual turbine engine. Oxidation and volatilization kinetics were monitored at temperatures ranging from 1066 to 1400 C. The main purpose of this paper is to examine the surface oxide morphology resulting from the exposures. It was found that the material surface was enriched in rare earth silicate phases in combustion environments when compared to the oxides formed on materials exposed in dry oxygen. However, the in situ formation of rare earth disilicate phases offered little additional protection from the volatilization of silica observed in combustion environments. It was concluded that externally applied environmental barrier coatings are needed to protect additive-containing silicon nitride materials from volatilization reactions in combustion environments. Introduction Si3N4 is proposed for use as components, such as vanes, in turbine applications. Tens of thousands of hours of life are needed for both land-based turbines and aeropropulsion applications. Additive-containing SisN4 materials are

  13. Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources

    SciTech Connect

    Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.

    1995-05-08

    Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.

  14. Modifying Si-based consolidants through the addition of colloidal nano-particles

    NASA Astrophysics Data System (ADS)

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  15. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.

    PubMed

    Tavares, A M G; Ramos, W S; de Blas, J C G; Lopes, E S N; Caram, R; Batista, W W; Souza, S A

    2015-11-01

    In the development of new materials for orthopedic implants, special attention has been given to Ti alloys that show biocompatible alloy elements and that are capable of reducing the elastic modulus. Accordingly, Ti-Nb-Si alloys show great potential for application. Thus, this is a study on the microstructures and properties of Ti-35Nb-xSi alloys (x=0, 0.15, 0.35 and 0.55) (wt%) which were thermally treated and cooled under the following conditions: furnace cooling (FC), air cooling (AC), and water quenching (WQ). The results showed that Si addition is effective to reduce the density of omega precipitates making beta more stable, and to produce grain refinement. Silicides, referred as (Ti,Nb)3Si, were formed for alloys containing 0.55% Si, and its formation presumably occurred during the heating at 1000°C. In all cooling conditions, the hardness values increased with the increasing of Si content, as a result from the strong Si solid solution strengthening effect, while the elastic modulus underwent a continuous reduction due to the reduction of omega precipitates in beta matrix. Lower elastic moduli were observed in water-quenched alloys, which concentration of 0.15% Si was more effective in their reduction, with value around 65 GPa. Regarding Ti-35Nb-xSi alloys (x=0, 0.15 and 0.35), the "double yield point" phenomenon, which is typical of alloys with shape memory effect, was observed. The increase in Si concentration also produced an increase from 382 MPa to 540 MPa in the alloys' mechanical strength. Ti-35Nb-0.55Si alloy, however, showed brittle mechanical behavior which was related to the presence of silicides at the grain boundary. PMID:26218870

  16. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    SciTech Connect

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D. Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M.; Bednarcik, J.; Michalikova, J.

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  17. The Effect of Li Additions on Wear Properties of Al-Mg{sub 2}Si Cast In-situ Composites

    SciTech Connect

    Ghorbani, M. R.; Emamy, M.; Ghiasinejad, J.; Malekan, A.

    2010-06-15

    Wear rate of a modified Al-Mg{sub 2}Si composite was studied by the use of a conventional pin-on-disc technique. In-situ Al-Mg{sub 2}Si composites (15, 20, 25 wt.%) were cast in a simple cylindrical mold. 0.3 wt.% Li was added into the molten composite to modify its microstructure. It has been found that Li addition decreases the mean size of primary Mg{sub 2}Si particles. The wear behavior of different composites at different rates revealed that Li addition increases the wear properties of Al-15%Mg{sub 2}Si to some extent but it did not have any significant influence on wear properties of two other composites.

  18. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  19. 5 CFR 3601.103 - Additional exceptions for gifts from outside sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Additional exceptions for gifts from outside sources. 3601.103 Section 3601.103 Administrative Personnel DEPARTMENT OF DEFENSE SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE DEPARTMENT OF DEFENSE § 3601.103 Additional exceptions for gifts from outside sources. In addition...

  20. Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of Al-Si Alloy to Magnesium

    NASA Astrophysics Data System (ADS)

    Nanjunda Swamy, H. M.; Nath, S. K.; Ray, S.

    2009-12-01

    Cast Mg-Al-Si composites synthesized by addition of Al-Si alloy containing 10, 15, and 20 wt pct of Si, in molten magnesium, to generate particles of Mg2Si by reaction between silicon and magnesium during stir casting has opened up the possibility to control the size of these particles. The microstructure of the cast composite consists of relatively dark polyhedral phase of Mg2Si and bright phase of β-Al12Mg17 along the boundary between dendrites of α-Mg solid solution. After hot forging at 350 °C, the microstructure has changed to relatively smaller sizes of β-Al12Mg17 and Mg2Si particles apart from larger grains surrounded by smaller grains due to dynamic recovery and recrystallization. Some of the Mg2Si particles crack during forging. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing volume fraction of Mg2Si, but the hardness is higher in forged composites by about 100 BHN. Yield strength in cast composites improves over that of the cast alloy, but there is a marginal increase in yield strength with increasing Mg2Si content. In forged composites, there is significant improvement in yield strength with increasing Mg2Si particles and also over those observed in their cast counterpart. In cast composites, ultimate tensile strength (UTS) decreases with increasing Mg2Si content possibly due to increased casting defects such as porosity and segregation, which increases with increasing Mg2Si content and may counteract the strengthening effect of Mg2Si content. However, in forged composite, UTS increases with increasing Mg2Si content until 5.25 vol pct due to elimination of segregation and lowering of porosity, but at higher Mg2Si content of 7 vol pct, UTS decreases, possibly due to extensive cracking of Mg2Si particles. On forging, the ductility decreases in forged alloy and composites possibly due to the remaining strain and the forged microstructure. The initiation fracture toughness, J IC , decreases drastically in

  1. Crack-Healing Behavior and Bending Strength Properties of SiC Ceramics Based on the Type of Additive SiO2 Employed

    NASA Astrophysics Data System (ADS)

    Nam, Ki Woo; Kim, Jong Soon; Park, Seung Won

    Silicon carbide (SiC) exhibits good strength at high temperatures and resistance to radioactivity. However, it has poor fracture toughness. The ability to heal cracks represents a very desirable means of overcoming this weakness. This study focuses on the crack-healing behavior and bending strength of SiC ceramics to which sintering additives have been added. Optimized crack-healing condition was found to be 1hr at an atmospheric level of 1100 °C. The maximum crack size that can be healed at the optimized condition was a semi-elliptical surface crack of 450 µm in diameter. Si oxide was revealed to be the principle material involved in crack-healing.

  2. Energetics of addition versus insertion mechanisms in the Si +( 2P) + HCOOH reaction

    NASA Astrophysics Data System (ADS)

    González, A. I.; Yáñez, M.

    1996-01-01

    High-level ab initio calculations have been performed to investigate the preference of insertion processes with respect to the formation of adducts in the Si + + formic acid reaction in the gas phase. We have found that the reactivity patterns shown by Si + in reactions with methanol and formaldehyde are significantly different from those exhibited with formic acid, which has both functional groups. The most stable product of the reaction between Si + and HCOOH corresponds to the insertion of the monocation into the COH bond of the neutral. Mostly importantly, the Si + association to the carbonyl oxygen atom is only 4.9 kcal/mol less favourable. All investigated local minima lie below the reactants in energy. In agreement with the experimental evidence, the formation of SiOH + as a possible product of the Si + + HCOOH reaction is predicted to be exothermic by 41.7 kcal/mol. The distonic character of the products is discussed as well as the harmonic vibrational frequencies of the global minimum.

  3. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    PubMed

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells. PMID:26502060

  4. Microstructure and Room Temperature Mechanical Properties of the Ni3Si-BASED Alloy with Titanium Addition

    NASA Astrophysics Data System (ADS)

    Wang, S. K.; Fu, C. C.; Cai, Z. W.; Jian, S. R.; Jang, J. S. C.; Zhang, H. Z.; Hsu, H. C.

    2011-06-01

    The microstructure and room temperature (RT) mechanical properties of the Ni-15Si-2Nb-1Cr-3Ti-0.2B alloy were investigated by means of X-ray diffraction, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and tensile test in air and vacuum. The results of tensile test revealed that the effect of Ti addition can significantly improve the elongation as well as ultimate tensile strength (UTS) (18.3% and 1320 MPa in air, 21% and 1600 MPa in vacuum) in comparison with the Ni-18Si-3Nb-1Cr-0.2B base alloy (10% and 1130 MPa in air, 14% and 1240 MPa in vacuum) at room temperature. In addition, the fracture surface of specimen after tensile test presents a typical transgranular ductile mode, with a fully dimpled fracture pattern. This indicates that the addition of Ti in the Ni-15Si-2Nb-1Cr-3Ti-0.2B alloy can effectively suppress the environmental embrittlement at room temperature. In addition, the Ni-15Si-2Nb-1Cr-3Ti-0.2B alloy exhibits insensitively to the strain rate both in air or vacuum at room temperature.

  5. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  6. Oil layer as source of hydrocarbon emissions in SI engines

    SciTech Connect

    Min, K.; Cheng, W.K.

    1998-07-01

    The role of lubrication oil film on the cylinder liner as a source of hydrocarbon emissions in spark-ignition engines is assessed. First, the source strength is examined via an analytical model of the gasoline vapor absorption/desorption process. The solution shows that depending on engine operating conditions, there are three regimes. The process could be (1) limited by the gas side diffusion process, (2) limited by the liquid phase diffusion process, with the absorbed fuel fully penetrating the oil layer thickness (thin oil film regime), and (3) again limited by the liquid phase diffusion process, but with the absorbed fuel penetration depth small compared to the oil layer thickness (thick oil film regime). In regime (1), the source strength (the integrated absorption or desorption flux over one cycle) is proportional to the inverse of the square root of the rpm, but independent of oil layer parameters. In regimes (2), the strength is proportional to the oil film thickness divided by the Henry`s constant. In regime (3), the strength is independent of the oil film thickness, but is proportional to the fuel penetration depth divided by the Henry`s constant. Then, the oxidation of the desorbed fuel (using iso-octane as fuel) is examined with a one-dimensional reaction/diffusion model. The novel feature of the model is that the desorbed fuel is being exposed to the piston crevice hydrocarbon, which is laid along the liner as the piston descends. At stoichiometric conditions, the oxidation of the crevice HC is reduced by the presence of the desorbed HC from the oil layer.

  7. Oil layer as source of hydrocarbon emissions in SI engine

    SciTech Connect

    Min, K.; Cheng, W.K.

    1996-12-31

    The role of lubrication oil film on the cylinder liner as a source of hydrogen emissions in spark ignition engines is assessed. First, the source strength is examined via an analytical model of the gasoline vapor absorption/desorption process. The solution shows that depending on engine operating conditions, there are three regimes. The process could be (i) limited by the gas side diffusion process; (ii) limited by the liquid phase diffusion process, with the absorbed fuel fully penetrating the oil layer thickness (thin oil film regime); and (iii) again limited by the liquid phase diffusion process, but with the absorbed fuel penetration depth small compared to the oil layer thickness (thick oil film regime). In regime (i), the source strength (the integrated absorption or desorption flux over one cycle) is proportional to the square root of the rpm but independent of oil layer parameters. In regime (ii), the strength is proportional to the oil film thickness divided by the Henry`s constant. In regime (iii), the strength is independent of the oil film thickness, but is proportional to the fuel penetration depth divided by the Henry`s constant. Then the oxidation of the desorbed fuel (using iso-octane as fuel) is examined with a one dimensional reaction/diffusion model. The novel feature of the model is that the desorbed fuel is being exposed to the piston crevice hydrogen which is laid along the liner as the piston descends. At stoichiometric condition, the oxidation of the crevice HC is reduced by the presence of the desorbed HC from the oil layer.

  8. 36 CFR 1290.3 - Sources of assassination records and additional records and information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records and additional records and information. 1290.3 Section 1290.3 Parks, Forests, and Public Property... Sources of assassination records and additional records and information. Assassination records and additional records and information may be located at, or under the control of, without limitation:...

  9. The Effect of SiC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Abdollahzadeh, A.; Bagheri, B.; Omidvar, H.

    2015-12-01

    Welding and joining of magnesium alloys exert a profound effect on magnesium application expansion, especially in ground and air transportations where large-size, complex components are required. Due to specific physical properties of magnesium, its welding requires great control. In general, the solid-state nature of friction stir welding (FSW) process has been found to produce a low concentration of defects. In the current research, specimens from AZ31 magnesium alloy were welded together using the friction stir process with previously inserted SiC powder particles in the nugget zone. In other words, during the FSW process, the pre-placed SiC particles were stirred throughout the nugget zone of the weld. The results indicated that proper values of rotation and translation speeds led to good appearance of weld zone and suitable distribution of SiC particles producing increased weld strength. The comparison of the microstructures and mechanical properties of FS-welded AZ31 with those of FS-welded one using pre-placed SiC particles showed that the addition of SiC particles decreased the grain size and increased the strength and the formability index.

  10. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Pan, Ye; Wu, Ji-li; Tao, Shi-wen; Chen, Yu

    2015-04-01

    The effects of La addition on the microstructure and tensile properties of B-refined and Sr-modified Al-11Si-1.5Cu-0.3Mg casting alloys were investigated. With a trace addition of La (0.05wt%-0.1wt%), the mutual poisoning effect between B and Sr can be neutralized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined α-Al grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetallics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.

  11. Irreversibility field and flux pinning in MgB2 with and without SiC additions

    NASA Astrophysics Data System (ADS)

    Sumption, M. D.; Bhatia, M.; Dou, S. X.; Rindfliesch, M.; Tomsic, M.; Arda, L.; Ozdemir, M.; Hascicek, Y.; Collings, E. W.

    2004-10-01

    The critical current density (Jc) was measured at 4.2 K for MgB2 strands with and without SiC additions. In some cases measurements were performed on long (1 m) samples wound on barrels, the transport results being compared to the results of magnetic measurements. Most measurements were performed on short samples in fields of up to 18 T. It was found that in situ processed strands with 10% SiC additions heat treated at 700-800 °C showed improved irreversibility fields (Hr) and bulk pinning strengths (Fp) as compared to control samples; an increase in Hr of 1.5 T was noted. Heat treatment to 900 °C gave even larger improvements, with Hr reaching 18 T and Fp values maximizing at 20 GN m-3.

  12. 5 CFR 3601.103 - Additional exceptions for gifts from outside sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gifts from outside sources. In addition to the gifts which come within the exceptions set forth in 5 CFR 2635.204, and subject to all provisions of 5 CFR 2635.201 through 2635.205, a DoD employee may accept gifts from outside sources otherwise prohibited by 5 CFR 2635.202(a) as follows: (a) Events sponsored...

  13. Theoretical investigation of the addition reaction of the aluminum chlorosilylenoid H2SiAlCl3 with ethylene.

    PubMed

    Zhang, Mingxia; Li, Wenzuo; Liu, Zhenbo; Li, Qingzhong; Cheng, Jianbo

    2016-07-01

    The addition reaction of the aluminum chlorosilylenoid H2SiAlCl3 with ethylene was investigated using the M06-2X and QCISD methods for the first time. The calculated results demonstrate that the addition reaction proceeds via two pathways: path I involves just one transition state, while path II involves two transition states. Path I is more feasible dynamically, as it has a lower barrier height than path II. The effect of the solvent CH2Cl2 was taken into consideration using the PCM model. The results indicated that the addition reaction is less likely to occur in CH2Cl2 solvent than in vacuum. This work has therefore highlighted a new pathway for the synthesis of silicon heterocyclic compounds. Graphical Abstract Relative energies (in kJ·mol(-1)) of the stationary points along the potential energy surfaces of the addition reaction of H2SiAlCl3 with C2H4 (values in parentheses were calculated in CH2Cl2 solvent). PMID:27271163

  14. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    2016-01-01

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P+N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH3x) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm2. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm2, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 105-106 cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P+N junction structure can mitigate some of the negative effects.

  15. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  16. Calibration of the E Si detector in a DE-E telescope with a ^212Pb pin source

    NASA Astrophysics Data System (ADS)

    Chan, Ka Pang

    2012-10-01

    In nuclear physics experiments, telescopes composed of two or more large area silicon strip detectors are used to identify charged particles. To use the energy loss method for particle identification, a thin (˜0.065mm) silicon detector (DE) is mounted in front of a thicker E detector (˜1.5 mm). The DE Si detector can be calibrated with 8.785, 6.778, 6.288, 5.685 and 5.423 MeV alpha particles emitted from a ^228Th source. However, this method cannot be used to calibrate the E detector as the alpha particles cannot penetrate the front DE detector. We have developed a method to calibrate the E detector by inserting a small irradiated dowel pin between the two Si detectors. The pin source is electroplated with ^212Pb nuclei which emit alpha particles with 8.785 MeV, 6.090 and 6.051 MeV. Insertion of the dowel pin is designed and guided so that the head of the pin lies near the center of the detector at a distance of 2.72 mm away from the surface of the E detector. In addition to providing two strong alpha peaks for calibrations, the close distance and high pixilation of the E detector allows accurate determination of the front dead layer of the E Si strip detector. This technique has been implemented successfully in calibrating the E Si detectors in the NSCL High Resolution Array (HiRA) consisting of 20 closely pack DE-E-CsI telescopes.

  17. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  18. Structure and high-temperature properties of Ti{sub 5}Si{sub 3} with interstitial additions

    SciTech Connect

    Williams, Jason

    1999-12-01

    This study was motivated by the fact that previous research on the structure and properties of Ti{sub 5}Si{sub 3} showed unacceptably inconsistent results. The primary reason for these inconsistencies was interstitial contamination of Ti{sub 5}Si{sub 3} by carbon, nitrogen and oxygen. Thus, this study measured the effects that these interstitial atoms have on some of the previously reported properties. These properties include crystalline structure, thermal expansion anisotropy, electronic structure and bonding, and high temperature oxidation resistance. In Chapter 2 of this study, the lattice parameters and atomic positions of Ti{sub 5}Si{sub 3} as a function of carbon, nitrogen or oxygen content were measured via x-ray and neutron diffraction. Comparing these lattice parameters to those reported in other studies on supposedly pure Ti{sub 5}Si{sub 3} confirmed that the majority of the previous studies had samples with a considerable amount of interstitial impurities. In fact, the lattice parameter trends given in Chapter 2 can be used to estimate the types and level of impurities in these studies. Furthermore, Chapter 2 discusses how atomic positions change as interstitial atoms are incorporated into the lattice. These changes in atomic separations suggest that strong bonds form between the interstitial atoms and the surrounding titanium atoms. This is in full agreement with the electronic structure calculations given in Chapter 4. These calculations show that bonding does occur between titanium d-states and interstitial atom p-states at the expense of bonding between some of the titanium and silicon atoms. In addition, carbon seems to be the most strongly bonded interstitial atom. Knowledge of the exact interstitial content and its effect on bonding is important because Chapters 3 and 5 have shown that interstitial atoms have a marked effect on the thermal expansion and oxidation resistance. As discussed in Chapter 3, all interstitial atoms lower the thermal

  19. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  20. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  1. Understanding Influence of MoSi2 Addition (5 Weight Percent) on Tribological Properties of TiB2

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Amartya; Raju, G. B.; Basu, Bikramjit

    2008-12-01

    In densifying engineering ceramics such as TiB2 using nonmetallic sinter additives, it is important to assess the influence of the addition of sinter-aid on the properties of TiB2. The present article reports how a small addition of MoSi2 (5 wt pct) sinter-aid enhances the wear resistance of TiB2 at mode-I fretting contact. This has been confirmed using a series of unlubricated wear tests on hot-pressed ceramics using two different counterbodies, viz. bearing steel and WC-6 wt pct Co cemented carbide, under identical testing conditions. Steady-state coefficient of friction (COF) against steel counterbody has been found to noticeably vary in the range of 0.5 to 1, with variation in load or MoSi2 addition. However, insignificant variation in COF (˜0.5) has been recorded during fretting against WC-Co. Furthermore, lower wear rate (˜10-6 mm3/Nm) is measured against the cemented carbide, as compared to that against steel (˜10-5 mm3/Nm). It has been observed that the material removal of TiB2-based ceramics against steel involves tribochemical wear as well as abrasive wear, and the occurrence of tribochemical wear is explained in terms of various feasible reactions at the tribological interface. Lower contact area, resulting in reduced adhesive wear, along with the absence of additional tribochemical wear, has been attributed to lower wear rate as observed after fretting against the harder (WC-Co) counterbody. A number of possible reactions along with their thermodynamic feasibility are discussed to explain the tribochemical wear at the interface of the mating couple. Irrespective of counterbody or material composition, the measured wear volume exhibits linear dependency on abrasion parameter, confirming the role of material parameters on the contribution of abrasive wear to the material removal/damage of the investigated materials.

  2. Impact of additional Pt and NiSi crystal orientation on channel stress induced by Ni silicide film in metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Kudo, Shuichi; Hirose, Yukinori; Kimura, Hiroshi; Tsuchimoto, Jun-ichi; Hattori, Nobuyoshi

    2014-01-01

    The impact of additional Pt and Ni monosilicide (NiSi) crystal orientation on channel stress from Ni silicide in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been demonstrated. The channel stress generation mechanism can be explained by the NiSi crystal orientation. In pure Ni silicide films, the channel stress in the p-type substrate is much larger than that in the n-type one, since the NiSi a-axis parallel to the channel direction is strongly aligned on the p-type substrate compared with on the n-type one. On the other hand, in NiPt silicide films, the difference in the channel stress between the p- and n-type substrates is small, because the NiSi crystal orientation on the p-type substrate is similar to that on the n-type one. These results can be explained by the Pt segregation at the interface between the NiSi film and the Si surface. Segregated Pt atoms cause the NiSi b-axis to align normal to the Si(001) surface in the nucleation step owing to the expansion of the NiSi lattice spacing at the NiSi/Si interface. Furthermore, the Pt segregation mechanism is considered to be caused by the grain boundary diffusion in the Ni2Si film during NiSi formation. We confirmed that the grains of Ni2Si on the p-type substrate are smaller than those on the n-type one. The Ni2Si film on the p-type substrate has more grain boundary diffusion paths than that on the n-type one. Therefore, the amount of Pt segregation at the NiSi/Si interface on the p-type substrate is larger than that on the n-type one. Consequently, the number of NiSi grains with the b-axis aligned normal to the Si(001) in the p-type substrate is larger than that in the n-type one. As a result, the channel stress induced by NiPt silicide in PMOS is larger than that in NMOS. According to this mechanism, controlling the Pt concentration at the NiSi/Si interface is one of the key factors for channel stress engineering.

  3. A fundamental study of the oxidation behavior of SI primary reference fuels with propionaldehyde and DTBP as an additive

    NASA Astrophysics Data System (ADS)

    Johnson, Rodney

    In an effort to combine the benefits of SI and CI engines, Homogeneous Charge Compression Ignition (HCCI) engines are being developed. HCCI combustion is achieved by controlling the temperature, pressure, and composition of the fuel and air mixture so that autoignition occurs in proper phasing with the piston motion. This control system is fundamentally more challenging than using a spark plug or fuel injector to determine ignition timing as in SI and CI engines, respectively. As a result, this is a technical barrier that must be overcome to make HCCI engines applicable to a wide range of vehicles and viable for high volume production. One way to tailor the autoignition timing is to use small amounts of ignition enhancing additives. In this study, the effect of the addition of DTBP and propionaldehyde on the autoignition behavior of SI primary reference fuels was investigated. The present work was conducted in a new research facility built around a single cylinder Cooperative Fuels Research (CFR) octane rating engine but modified to run in HCCI mode. It focused on the effect of select oxygenated hydrocarbons on hydrocarbon fuel oxidation, specifically, the primary reference fuels n-heptane and iso-octane. This work was conducted under HCCI operating conditions. Previously, the operating parameters for this engine were validated for stable combustion under a wide range of operating parameters such as engine speeds, equivalence ratios, compression ratios and inlet manifold temperature. The stable operating range under these conditions was recorded and used for the present study. The major focus of this study was to examine the effect of the addition of DTBP or propionaldehyde on the oxidation behavior of SI primary reference fuels. Under every test condition the addition of the additives DTBP and propionaldehyde caused a change in fuel oxidation. DTBP always promoted fuel oxidation while propionaldehyde promoted oxidation for lower octane number fuels and delayed

  4. HUMAN HEALTH DAMAGES FROM MOBILE SOURCE AIR POLLUTION: ADDITIONAL DELPHI DATA ANALYSIS. VOLUME II

    EPA Science Inventory

    The report contains the results of additional analyses of the data generated by a panel of medical experts for a study of Human Health Damages from Mobile Source Air Pollution (hereafter referred to as HHD) conducted by the California Air Resources Board in 1973-75 for the U.S. E...

  5. 5 CFR 3601.103 - Additional exceptions for gifts from outside sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sponsor in accordance with 5 CFR 2635.204(g)(5); and (3) The gift of free attendance meets the definition... gifts from outside sources. In addition to the gifts which come within the exceptions set forth in 5 CFR 2635.204, and subject to all provisions of 5 CFR 2635.201 through 2635.205, a DoD employee may...

  6. RAINFALL AND RUNOFF AS A SOURCE OF ORGANIC CARBON ADDITIONS TO BAYOU TEXAR, FLORIDA

    EPA Science Inventory

    Rainfall and Runoff as a Source of Organic Carbon Additions to Bayou Texar, Florida (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ERL,GB R852).

    T...

  7. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source.

    PubMed

    Yoshida, F; Yamamoto, T; Nakai, K; Zaboronok, A; Matsumura, A

    2015-12-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. PMID:26242560

  8. Influence of Si and W additions on high temperature oxidation of {gamma}-{alpha}{sub 2} Ti-Al alloys

    SciTech Connect

    Tomasi, A.; Noseda, C.; Nazmy, M.; Gialanella, S.

    1997-12-31

    Titanium aluminides have potential interest for high temperature applications because of their low density and high temperature strength. In this study the isothermal oxidation behavior in air and in the temperature range 700--850 C of {gamma}-{alpha}{sub 2}Ti-Al bulk alloys with different additions of W (0--9.5 wt.%) and Si (0--5.0 wt.%) was investigated. The samples were prepared by arc-melting starting from pure element powders (99.99%). After thermal treatments, for homogenization and phase stabilization, the samples were tested using a thermal analysis apparatus in order to evaluate their oxidation resistance. The oxidation rates show the beneficial effect of the W and Si additions. The growth and adherence to the protective scale on alloys have been investigated in conjunction with detailed oxide scale characterization using the techniques of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of the study are used for critical assessment of the oxidation mechanisms leading to the formation of surface layers of different compositions.

  9. Effects of additional HONO sources on visibility over the North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Ying; An, Junling; Gultepe, Ismail

    2014-09-01

    The objective of the present study was to better understand the impacts of the additional sources of nitrous acid (HONO) on visibility, which is an aspect not considered in current air quality models. Simulations of HONO contributions to visibility over the North China Plain (NCP) during August 2007 using the fully coupled Weather Research and Forecasting/Chemistry (WRF/Chem) model were performed, including three additional HONO sources: (1) the reaction of photo-excited nitrogen dioxide (NO * 2) with water vapor; (2) the NO2 heterogeneous reaction on aerosol surfaces; and (3) HONO emissions. The model generally reproduced the spatial patterns and diurnal variations of visibility over the NCP well. When the additional HONO sources were included in the simulations, the visibility was occasionally decreased by 20%-30% (3-4 km) in local urban areas of the NCP. Monthly-mean concentrations of NO{3/-}, NH{4/+}, SO{4/2-} and PM2.5 were increased by 20%-52% (3-11 μg m-3), 10%-38%, 6%-10%, and 6%-11% (9-17 μg m-3), respectively; and in urban areas, monthly-mean accumulationmode number concentrations (AMNC) and surface concentrations of aerosols were enhanced by 15%-20% and 10%-20%, respectively. Overall, the results suggest that increases in concentrations of PM2.5, its hydrophilic components, and AMNC, are key factors for visibility degradation. A proposed conceptual model for the impacts of additional HONO sources on visibility also suggests that visibility estimation should consider the heterogeneous reaction on aerosol surfaces and the enhanced atmospheric oxidation capacity due to additional HONO sources, especially in areas with high mass concentrations of NO x and aerosols.

  10. Palladium/Me(3)SiOTf-catalyzed bis-silylation of alpha,beta-unsaturated carbonyl compounds without involving oxidative addition of disilane.

    PubMed

    Ogoshi, Sensuke; Tomiyasu, Sadayuki; Morita, Masaki; Kurosawa, Hideo

    2002-10-01

    In the presence of a catalytic amount of Me(3)SiOTf and palladium(0), the addition of disilane to alpha,beta-unsaturated carbonyl compounds proceeds under very mild conditions via eta(3)-siloxyallylpalladium generated by the reaction of enone, enal, or aromatic aldehyde with palladium and Me(3)SiOTf. PMID:12296716

  11. Temperature dependence of a microstructured SiC coherent thermal source

    NASA Astrophysics Data System (ADS)

    Hervé, Armande; Drévillon, Jérémie; Ezzahri, Younès; Joulain, Karl; De Sousa Meneses, Domingos; Hugonin, Jean-Paul

    2016-09-01

    By ruling a grating on a polar material that supports surface phonon-polaritons such as silicon carbide (SiC), it is possible to create directional and monochromatic thermal sources. So far, most of the studies have considered only materials with room temperature properties as the ones tabulated in Palik's handbooks. Recently, measurements have provided experimental data of the SiC dielectric function at different temperatures. Here we study, numerically, the effect of the temperature dependence of the dielectric function on the thermal emission of SiC gratings (1D grating, in a first approach), heated at different temperatures. When materials are heated, the position of the grating emissivity peak shifts towards higher wavelength values. A second consequence of the temperature dependence of optical properties is that room temperature designed gratings are not optimal for higher temperatures. However, by modifying the grating parameters, it is possible to find an emission peak, with a maximum of emissivity near 1, for each temperature. We tried first to catch some patterns in the emissivity variation. Then, we obtained a grating, which leads to an optimum emissivity for all available temperature data for SiC.

  12. Hydrogen incorporation during deposition of a-Si:H from an intense source of SiH{sub 3}

    SciTech Connect

    Van de Sanden, M.C.M.; Severens, R.J.; Kessels, W.M.M.; Van de Pas, F.; Van Ijzendoorn, L.; Schram, D.C.

    1997-07-01

    The incorporation of hydrogen during the fast deposition of a-Si:H from an expanding thermal arc is investigated by means of isotope labeling of the precursor gases silane and hydrogen. It is found that hydrogen in a-Si:H originates dominantly from the silyl radical. A small fraction of the hydrogen in a-Si:H is due to exchange reaction of atomic hydrogen in the plasma with hydrogen chemisorbed on the surface during growth.

  13. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  14. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  15. Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Jing, Yan; Hongjuan, Wang; Genquan, Han

    2014-02-01

    We fabricated n-type Si-based TFETs with a Ge source on Si(110) substrate. The temperature dependent IDS-VGS characteristics of a TFET formed on Si(110) are investigated in the temperature range of 210 to 300 K. A study of the temperature dependence of ILeakage indicates that ILeakage is mainly dominated by the Shockley-Read-Hall (SRH) generation—recombination current of the n+ drain—Si substrate junction. ION increases monotonically with temperature, which is attributed to a reduction of the bandgap at the tunneling junction and an enhancement of band-to-band tunneling rate. The subthreshold swing S for trap assisted tunneling (TAT) current and band-to-band tunneling (BTBT) current shows the different temperature dependence. The subthreshold swing S for the TAT current degrades with temperature, while the S for BTBT current is temperature independent.

  16. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  17. Optical modelling of a Si-based DBR laser source using a nanocrystal Si-sensitized Er-doped silica rib waveguide in the C-band

    NASA Astrophysics Data System (ADS)

    Ciminelli, C.; Frascella, P.; Armenise, M. N.

    2008-05-01

    The availability of reliable silicon-based laser sources is at the basis of the integration of photonic and microelectronic devices on a single chip with consequent development of wavelength division multiplexing telecommunication systems. A high efficiency Si-based laser source with good stability at room temperature would encourage and push the large scale of integration of electronic and photonic devices within a single chip. Several techniques have been proposed for generating light with an internal quantum efficiency some order of magnitude greater than that typical of silicon (10-6) by using either electrical or optical pumping. Among them we mention the improvement of some fabrication process steps, reduction of the channels of non-radiative recombination, quantum confinement, the use of silicon nanocrystals (Si-ncs) incorporated in a silica matrix. This last technique is used in combination with Er3+ doping to generate light emission around 1500 nm in silicon, since Er-doped Si-ncs behave as electron-hole pairs trap, and the presence of Er shifts the emission peak to around 1500 nm. In this paper we have pointed out the optical model of a Si-based DBR laser including a Si-ncs Er-doped SiO2 rib waveguide, working at a wavelength in C-band. In particular, after a brief description of the structural and optical properties of the silicon crystals, we report on the model and design of the Er:Si-nc/SiO2 rib waveguide, of the optical cavity and of the Bragg mirrors. Numerical results are in good agreement with the literature.

  18. The Effects of Low Cu Additions and Predeformation on the Precipitation in a 6060 Al-Mg-Si Alloy

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Muraishi, Shinji; Marioara, Calin D.; Andersen, Sigmund J.; Røyset, Jostein; Holmestad, Randi

    2013-09-01

    Effects of low Cu additions (≤0.10 wt pct) and 10 pct predeformation before aging on precipitates' microstructures and types in a 6060 Al-Mg-Si alloy have been investigated using transmission electron microscopy (TEM). It was found that predeformation enhances precipitation kinetics and leads to formation of heterogeneous precipitate distributions along dislocation lines. These precipitates were often disordered. Cu additions caused finer microstructures, which resulted in the highest hardness of materials, in both the undeformed and the predeformed conditions. The introduced predeformation led to microstructure coarsening. This effect was less pronounced in the presence of Cu. The precipitate structure was studied in detail by high-resolution TEM and high angle annular dark-field scanning TEM (HAADF-STEM). The Cu additions did not alter the respective precipitation sequence in either the undeformed or the predeformed conditions, but caused a large fraction of β″ precipitates to be partially disordered in the undeformed conditions. Cu atomic columns were found in all the investigated precipitates, except for perfect β″. Although no unit cell was observed in the disordered precipitates, the presence of a periodicity having hexagonal symmetry along the precipitate length was inferred from the fast Fourier transforms (FFT) of HRTEM images, and sometimes directly observed in filtered HAADF-STEM images.

  19. Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.

    PubMed

    Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang

    2016-01-01

    We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. PMID:26583261

  20. Architecture of source-drain cavity of a p-channel field effect transistor for embedding with epitaxial SiGe for enhanced performance

    NASA Astrophysics Data System (ADS)

    Parikh, A.; Cai, Z.

    2011-09-01

    Increase in power consumption in field effect transistors has been curtailed in recent years by introduction of mechanical stress to achieve device speed gain over and above the traditional speed vs. power tradeoffs achieved only by scaling gate lengths. Increasingly, the source-drain region of p-channel field effect transistors are etched and epitaxial SiGe re-grown in the cavity to enhance hole mobility. However, the addition of stress as a method to improve performance would add to the process variability beyond the traditional source of lithography, now related to structure and dimension of the cavity and composition of SiGe. In this paper, compressive stress induced in the channel was directly measured using synchrotron x-ray diffraction. The samples were a set of gratings designed to map the transistor performance with varying design space. The x-ray beam was systematically stepped across the gratings at an interval of 200 nm and diffraction data collected to assess the extent of stress field. Diffraction space maps were created around the symmetric (004) and asymmetric (115) planes. Strain was deduced from Si peak shift and stress calculated from the Si elastic constants. Diffraction space maps around the asymmetric plane were used to deduce the mechanism and subsequent relaxation of strain. Diffraction data collected with x-ray beam placement close to the Si-SiGe vertical interface provided information from lateral SiGe epitaxy on the (110) plane. The presence of strained SiGe peak exhibiting tilt as well as "relaxed" SiGe peak surrounded by diffuse scattering due to dislocations were observed. The use of non-selective etch process resulted in cavity formation with multiple crystallographic planes. The subsequent relaxation mechanism that was dependent on the formation of misfit dislocations was perturbed, possibly due to pinning of the dislocations at the intersection of two crystallographic planes and served as the source of variability. Measured stress

  1. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  2. Effect of α-Si3N4 Addition on Sintering of α-Sialon Powder via Carbonthermal Reduction Nitridation of Boron-rich Slag-based Mixture

    NASA Astrophysics Data System (ADS)

    Wu, Junbin; Jiang, Tao; Xue, Xiangxin

    2011-10-01

    With boron-rich slag, silica fume, bauxite chalmette, carbon black and α-Si3N4 as starting materials, α-Sialon powders were prepared by carbothermal reduction-nitridation(CRN). Different contents of α-Si3N4 addition were added to investigate the α-Sialon formation as a function of α-Si3N4 addition from boron rich slag based mixture fired at 1480 °C for 8 h under N2 flowing of 0.4 L/min. Phase assembly, microstructure of reaction products were determined by X-ray Diffraction and Scanning Electron Microscope. The results showed that the main phases of the samples were a-Sialon, h-BN, AlN and small quantity of SiC. With the increasing amount of the α-Si3N4 addition, the h-BN content remained in a constant and AlN content was running down steadily, while the α-Sialon content increased gradually. The aspect ratio and the amount of elongated α-Sialon grains could be tailored by using different amounts of the α-Si3N4 addition.

  3. Effect of 1-olefin addition on supercritical phase Fischer-Tropsch synthesis over Co/SiO{sub 2} catalyst

    SciTech Connect

    Yan, S.R.; Zhang, Z.X.; Zhou, J.L.; Fan, L.; Fujimoto, Kaoru

    1997-12-31

    Hydrocarbon wax produced by Fischer-Tropsch Synthesis (FTS) has been used in many fields for its high quality, such as high melting point, high hardness value, low viscosity, being nitrogen sulfur and aromatics-free. Selective synthesis of FT wax has generated great interest, especially in the case of lower oil-prices. As a polymerization process, however, in conventional gas phase FTS, selectivity of wax is constrained by the Anderson-Schultz-Flory (ASF) kinetics. Supercritical phase Fischer-Tropsch synthesis co-fed with 1-tetradecene over Co/SiO{sub 2} catalysts has been carried out. It was found that added 1-tetradecene could reach the surface of the catalyst by the aid of a supercritical fluid, and participate in the chain growth process there, which was indistinguishable from the original chain propagation. Consequently, the yield of hydrocarbons larger than C{sub 14} increased significantly, while the selectivity of C{sub 1}-C{sub 13} decreased correspondingly, which made the carbon number distribution deviate from ASF kinetics drastically. In addition, the analytical results of wax showed that average molecular weight and degree of saturation of the wax increased, while the content of oxygenates in the wax decreased due to the addition of 1-tetradecene.

  4. Effects of h-BN addition on microstructures and mechanical properties of β-CaSiO3 bioceramics.

    PubMed

    Pan, Ying; Yao, Dongxu; Zuo, Kaihui; Xia, Yongfeng; Yin, Jinwei; Liang, Hanqin; Zeng, Yuping

    2016-09-01

    The main purpose of this study consists in investigating the effects of h-BN addition on the sinterability of β-CaSiO3 (β-CS) bioceramics. β-CS bioceramics with different contents of h-BN were prepared at the sintering temperature ranging from 800°C to 1100°C. The results showed that h-BN can be successfully used as sintering additive by being oxidized to form low melting point B2O3 related glassy phase and enhanced the flexural strength by the formation of rod-like β-CS grains. β-CS bioceramics with 1wt% h-BN sintered at 1000°C revealed flexural strength and fracture toughness of 182.2MPa and 2.4MPam(1/2) respectively, which were much higher than that of pure β-CS bioceramics (30.2MPa, 0.53MPam(1/2)) fabricated in the same processing condition. PMID:27227289

  5. Additive antileukemia effects by GFI1B- and BCR-ABL-specific siRNA in advanced phase chronic myeloid leukemic cells.

    PubMed

    Koldehoff, M; Zakrzewski, J L; Beelen, D W; Elmaagacli, A H

    2013-07-01

    Previous studies demonstrated selective inhibition of the BCR-ABL (breakpoint cluster region-Abelson murine leukemia oncogene) tyrosine kinase by RNA interference in leukemic cells. In this study, we evaluated the effect of BCR-ABL small interfering RNA (siRNA) and GFI1B siRNA silencing on chronic myeloid leukemia (CML) cells in myeloid blast crises. The GFI1B gene was mapped to chromosome 9 and is, therefore, located downstream of the BCR-ABL translocation in CML cells. Co-transfection of BCR-ABL siRNA and GFI1B siRNA dramatically decreased cell viability and significantly induced apoptosis and inhibited proliferation in K562 cells (P<0.0001) and primary advanced phase CML cells (P<0.0001) versus controls. Furthermore, combining of BCR-ABL siRNA and GFI1B siRNA significantly modified the expression of several relevant genes including Myc, MDR1, MRP1 and tyrosyl-phosphoproteins in primary CML cells. Our data suggest that silencing of both BCR-ABL siRNA and GFI1B siRNA is associated with an additive antileukemic effect against K562 cells and primary advanced CML cells, further validating these genes as attractive therapeutic targets. PMID:23788109

  6. Paramagnetic point defects in amorphous thin films of SiO{sub 2} and Si{sub 3}N{sub 4}: Updates and additions

    SciTech Connect

    Poindexter, E.H.; Warren, W.L.

    1995-07-01

    Recent research on point defects in thin films of silicon dioxide, silicon nitride, and silicon oxynitride on Si is presented and reviewed. In SiO{sub 2}, it now clear that no one type of E{prime} are proposed. Molecular orbital theory and easy passivation of E{prime} by H{sub 2} suggest that released H might depassivate interface P{sub b} sites. A charged E{prime}{sub {delta}} center has been seen in Cl-free SIMOX (separation by implantation of oxygen) and thermal oxide films, and it is reassigned to an electron delocalized over four O{sub 3}{triple_bond}Si units around a fifth Si. In Si{sub 3}N{sub 4}, a new model for the amphoteric charging of {sm_bullet}Si{triple_bond}N{sub 3} moieties is based on local shifts in defect energy with respect to the Fermi level, arising from nonuniform composition; it does not assume negative U electron correlation. A new defect NN{sub 2}{sup 0} has been identified, with dangling orbital on a two-coordinated N atom bonded to another N. Silicon oxynitride defects are briefly presented.

  7. Real time monitoring of pentacene growth on SiO{sub 2} from a supersonic source

    SciTech Connect

    Hong, S.; Bhargava, S.; Engstrom, J. R.; Amassian, A.; Ferguson, J. D.; Malliaras, G. G.; Woll, A. R.; Brock, J. D.

    2008-06-23

    Thin film growth of pentacene on SiO{sub 2} using a supersonic source has been investigated with in situ real time synchrotron x-ray scattering and ex situ atomic force microscopy, focusing on the effects of incident kinetic energy E{sub i} and growth rate GR on the evolution of surface roughness and the crystalline structure of the thin films. For the conditions examined here, E{sub i}=2.5-7.2 eV and GR=0.0015-0.2 ML s{sup -1}, the thin film phase is always observed. We find that while the effect of E{sub i} on interlayer transport is minimal, at high growth rates, slightly smoother films are observed.

  8. A study of the effects of an additional sound source on RASS performance

    SciTech Connect

    Coulter, R.L.

    1998-12-31

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurements (ARM) Program continuously operates a nine panel 915 MHz wind profiler with Radio Acoustic Sounding System (RASS), measuring wind profiles for 50 minutes and virtual temperature profiles for the remaining 10 minutes during each hour. It is well recognized that one of the principal limits on RASS performance is high horizontal wind speed that moves the acoustic wave front sufficiently to prevent the microwave energy produced by the radar and scattered from the acoustic wave from being reflected back t the radar antenna. With this limitation in mind, the ARM program purchased an additional, portable acoustic source that could be mounted on a small trailer and placed in strategic locations to enhance the RASS performance (when it was not being used for spare parts). A test of the resulting improvement in RASS performance was performed during the period 1995--1997.

  9. Styrofoam Debris as a Source of Hazardous Additives for Marine Organisms.

    PubMed

    Jang, Mi; Shim, Won Joon; Han, Gi Myung; Rani, Manviri; Song, Young Kyoung; Hong, Sang Hee

    2016-05-17

    There is growing concern over plastic debris and their fragments as a carrier for hazardous substances in marine ecosystem. The present study was conducted to provide field evidence for the transfer of plastic-associated chemicals to marine organisms. Hexabromocyclododecanes (HBCDs), brominated flame retardants, were recently detected in expanded polystyrene (styrofoam) marine debris. We hypothesized that if styrofoam debris acts as a source of the additives in the marine environment, organisms inhabiting such debris might be directly influenced by them. Here we investigated the characteristics of HBCD accumulation by mussels inhabiting styrofoam. For comparison, mussels inhabiting different substrates, such as high-density polyethylene (HDPE), metal, and rock, were also studied. The high HBCD levels up to 5160 ng/g lipid weight and the γ-HBCD dominated isomeric profiles in mussels inhabiting styrofoam strongly supports the transfer of HBCDs from styrofoam substrate to mussels. Furthermore, microsized styrofoam particles were identified inside mussels, probably originating from their substrates. PMID:27100560

  10. A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing

    SciTech Connect

    Chinthavali, Madhu Sudhan; Ayers, Curtis William; Campbell, Steven L; Wiles, Randy H; Ozpineci, Burak

    2014-01-01

    With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

  11. Surface barrier heights and changes induced by ferrocene group addition on Ge and Si surfaces cleaved in electrolytes

    NASA Astrophysics Data System (ADS)

    Hinckley, S.; Haneman, D.

    1980-12-01

    Ge and Si single crystals were cleaved inside electrolytes of ferrocene in tetrabutyl ammonium perchlorate and ethanol. and the stable surface barrier heights measured from photocurrent-potential plots. When hydroxymethylferrocene (HMF) was added, the Ge barrier height reduced from 0.19 to 0.14eV, but Si was unchanged at 0.68 eV. The results are interpreted as due to inability of HMF to dislodge ferrocene from the Si surfaces, but ability to replace it on Ge surfaces; the packing density of the molecules is concluded to be lower than for ferrocene.

  12. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.

    PubMed

    Lindgren, Fredrik; Xu, Chao; Niedzicki, Leszek; Marcinek, Marek; Gustafsson, Torbjörn; Björefors, Fredrik; Edström, Kristina; Younesi, Reza

    2016-06-22

    An electrolyte based on the new salt, lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), is evaluated in combination with nano-Si composite electrodes for potential use in Li-ion batteries. The additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are also added to the electrolyte to enable an efficient SEI formation. By employing hard X-ray photoelectron spectroscopy (HAXPES), the SEI formation and the development of the active material is probed during the first 100 cycles. With this electrolyte formulation, the Si electrode can cycle at 1200 mAh g(-1) for more than 100 cycles at a coulombic efficiency of 99%. With extended cycling, a decrease in Si particle size is observed as well as an increase in silicon oxide amount. As opposed to LiPF6 based electrolytes, this electrolyte or its decomposition products has no side reactions with the active Si material. The present results further acknowledge the positive effects of SEI forming additives. It is suggested that polycarbonates and a high LiF content are favorable components in the SEI over other kinds of carbonates formed by ethylene carbonate (EC) and dimethyl carbonate (DMC) decomposition. This work thus confirms that LiTDI in combination with the investigated additives is a promising salt for Si electrodes in future Li-ion batteries. PMID:27220376

  13. Stabilization of {alpha}-SiAlONs using a rare-earth mixed oxide (RE{sub 2}O{sub 3}) as sintering additive

    SciTech Connect

    Santos, C.; Silva, O.M.M.; Silva, C.R.M.

    2005-07-12

    {alpha}-SiAlONs are commonly produced by liquid phase sintering of Si{sub 3}N{sub 4} with AlN and Y{sub 2}O{sub 3} as additives. The formation of the {alpha}-SiAlONs using a mixed oxide (RE{sub 2}O{sub 3}), containing yttria and rare-earth oxides, as an alternative additive was investigated. Dense {alpha}-SiAlONs were obtained by gas-pressure sintering, starting from {alpha}-Si{sub 3}N{sub 4} and AlN-Y{sub 2}O{sub 3} or AlN-RE{sub 2}O{sub 3} as additives. The mixed oxide powder RE{sub 2}O{sub 3} was characterized by means of high-resolution synchrotron X-ray diffraction and compared to Y{sub 2}O{sub 3}. The X-ray diffraction analysis of the mixed oxide shows a pattern indicating a true solid solution formation. The Rietveld refinement of the crystal structure of the sintered {alpha}-SiAlON using AlN-RE{sub 2}O{sub 3} as additive revealed a similar crystal structure to the {alpha}-SiAlON using AlN-RE{sub 2}O{sub 3} as additive. The comparison of the microstructures of the both {alpha}-SiAlONs produced using pure Y{sub 2}O{sub 3} or RE{sub 2}O{sub 3}, revealed similar grain sizes of about 4.5 {mu}m with aspect ratios of about 5. Both materials show also similar mechanical properties, with hardness of 18.5 GPa and fracture toughness of 5 MPa m{sup 1/2}. It could be, thus, demonstrated that pure Y{sub 2}O{sub 3} can be substituted by the rare-earth solid solution, RE{sub 2}O{sub 3}, in the formation of {alpha}-SiAlONs, presenting similar microstructural and mechanical properties.

  14. The Effect of Crystallinity of Carbon Source on Mechanically Activated Carbothermic Synthesis of Nano-Sized SiC Powders

    NASA Astrophysics Data System (ADS)

    Moshtaghioun, B. M.; Monshi, A.; Abbasi, M. H.; Karimzadeh, F.

    2013-02-01

    The relevance of the structure of carbon materials and milling on the carbothermic reduction of silica to produce nano-sized silicon carbide (SiC) was studied. Graphite (crystalline) and metallurgical coke (mainly amorphous) were chosen as carbon precursors that were mixed with amorphous pure nano-sized SiO2 and milled for different times. The SiC yield at 1450 °C for l h was influenced by the degree of milling. Extending the milling time increased SiC formation in both cases. Although some extensive milling converted both sources of carbon into amorphous phase, the amount of synthesized SiC from graphite was about 4.5-3 times higher than coke with increased extent of milling. Graphite is converted from stable crystalline state into the amorphous phase, so it absorbs more activation energy of milling and fresher active centers are created, while the already amorphous coke absorbs less energy and thus less fresh active centers are created. This energy difference acts as a driving force, resulting in higher yield of nano-sized SiC when graphite is used as carbon source.

  15. Addition of surfactants in ozonated water cleaning for the suppression of functional group formation and particle adhesion on the SiO2 surface

    NASA Astrophysics Data System (ADS)

    Yang, Jahyun; Im, Kyungtaek; Lim, Sangwoo

    2011-04-01

    Various kinds of surfactants were added to a cleaning solution and deionized (DI) water, and their effect on the suppression of organic function group formation and particle adhesion to a SiO2 surface was analyzed using multi-internal reflection Fourier transform infrared spectroscopy. The results implied that attached organic functional groups are affected by the chemical structure of a surfactant in DI water. Furthermore, the addition of anionic glycolic acid ethoxylate 4-tert-butylphenyl ether (GAE4E) is the most effective in terms of preventing organic group attachment and particle adhesion to the SiO2 surface, whether it was added to the cleaning solution or post-cleaning rinse water, with or without polystyrene latex particles. Moreover, it was possible to completely prevent particle adhesion to the SiO2 surface with the proper addition of GAE4E in DIO3 solution.

  16. Refinement of the Microstructure of Sn-Ag-Bi-In Solder, by Addition of SiC Nanoparticles, to Reduce Electromigration Damage Under High Electric Current

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Nagao, Shijo; Sugahara, Tohru; Suganuma, Katsuaki; Ueshima, Minoru; Albrecht, Hans-Juergen; Wilke, Klaus; Strogies, Joerg

    2014-12-01

    The trends of miniaturization, multi-functionality, and high performance in advanced electronic devices require higher densities of I/O gates and reduced area of soldering of interconnections. This increases the electric current density flowing through the interconnections, increasing the risk of interconnection failure caused by electromigration (EM). Accelerated directional atomic diffusion in solder materials under high current induces substantial growth of intermetallic compounds (IMCs) at the anode, and also void and crack formation at the cathode. In the work discussed in this paper, addition of SiC nanoparticles to Sn-Ag-Bi-In (SABI) lead-free solder refined its microstructure and improved its EM reliability under high current stress. Electron backscattering diffraction analysis revealed that the added SiC nanoparticles refined solder grain size after typical reflow. Under current stress, SABI joints with added nano-SiC had lifetimes almost twice as long as those without. Comparison of results from high-temperature aging revealed direct current affected evolution of the microstructure. Observations of IMC growth indicated that diffusion of Cu in the SiC composite solder may not have been reduced. During current flow, however, only narrow voids were formed in solder containing SiC, thus preventing the current crowding caused by bulky voids in the solder without SiC.

  17. Si doping of metal-organic chemical vapor deposition grown gallium nitride using ditertiarybutyl silane metal-organic source

    NASA Astrophysics Data System (ADS)

    Fong, W. K.; Leung, K. K.; Surya, C.

    2007-01-01

    Liquid Si ditertiarybutyl silane (DTBSi) metal-organic source was used as the Si dopant source for the growth of n-type GaN by metal-organic chemical vapor deposition (MOCVD) for the first time to replace the conventional gaseous Si sources like silane SiH 4 [K. Pakula, R. Bozek, J.M. Baranowski, J. Jasinski, Z. Liliental-Weber, J. Crystal Growth 267 (2004) 1] and disilane Si 2H 6 [L.B. Rowland, K. Doverspike, D.K. Gaskill, Appl. Phys. Lett. 66 (1995) 1495]. Electrical, structural, optical, and surface properties of the samples doped by DTBSi as well as an undoped control sample are determined by Hall, high resolution X-ray diffraction (HRXRD), photoluminescence (PL), and atomic force microscopy (AFM) measurements respectively. A constant doping efficiency for GaN is obtained with carrier concentration up to 10 18 cm -3. The typical HRXRD full-width at half-maximum values of symmetric (0 0 2) and asymmetric (1 0 2) planes are 284 and 482 arcsec, respectively. The near band edge PL intensity is found to be increased proportional to the doping concentration. Dark spot density is also determined from AFM measurement.

  18. Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition

    NASA Astrophysics Data System (ADS)

    Chen, Dongyue; Murakami, Kenta; Dohi, Kenji; Nishida, Kenji; Soneda, Naoki; Li, Zhengcao; Liu, Li; Sekimura, Naoto

    2015-12-01

    Although heavy ion irradiation is a good tool to simulate neutron irradiation-induced damages in light water reactor, it produces inhomogeneous defect distribution. Such difference in defect distribution brings difficulty in comparing the microstructure evolution and mechanical degradation between neutron and heavy ion irradiation, and thus needs to be understood. Stainless steel is the typical structural material used in reactor core, and could be taken as an example to study the inhomogeneous defect depth distribution in heavy ion irradiation and its influence on the tested irradiation hardening by nano-indentation. In this work, solution annealed stainless steel model alloys are irradiated by 3 MeV Fe2+ ions at 400 °C to 3 dpa to produce Frank loops that are mainly interstitial in nature. The silicon content of the model alloys is also tuned to change point defect diffusion, so that the loop depth distribution influenced by diffusion along the irradiation beam direction could be discussed. Results show that in low Si (0% Si) and base Si (0.42% Si) samples the depth distribution of Frank loop density quite well matches the dpa profile calculated by the SRIM code, but in high Si sample (0.95% Si), the loop number density in the near-surface region is very low. One possible explanation could be Si's role in enhancing the effective vacancy diffusivity, promoting recombination and thus suppressing interstitial Frank loops, especially in the near-surface region, where vacancies concentrate. By considering the loop depth distribution, the tested irradiation hardening is successfully explained by the Orowan model. A hardening coefficient of around 0.30 is obtained for all the three samples. This attempt in interpreting hardening results may make it easier to compare the mechanical degradation between different irradiation experiments.

  19. Effect of water quenching and SiO2 addition during vitrification of fly ash Part 1: on the crystalline characteristics of slags.

    PubMed

    Kuo, Yi-Ming; Wang, Jian-Wen; Wang, Chih-Ta; Tsai, Cheng-Hsien

    2008-04-15

    The objective of this study is to investigate how cooling rate and basicity in a vitrification process govern the crystalline characteristics of slags. In this experiment, the incineration fly ash mixtures with various SiO2 addition ratios were vitrified at 1450 degrees C and cooled down separately by air or water. Different thermal analysis, scanning electron microscopy and X-ray diffraction analysis with an internal standard addition were applied to investigate the crystalline characteristics of slags. The microanalytical mapping images showed that water quenching and the addition of SiO2, both enhanced the glassy amorphous phase to distribute more uniformly in slags. Addition of SiO2 would lower the melting temperature of fly ash mixtures and retard the formation of crystalline phases in slags. When the basicity (mass ratio of CaO to SiO2 before vitrification) was >0.990, the profiles of crystalline phases in slags with equal basicity were similar no matter how they were cooled. However, when the basicity <0.674, water quenching greatly enhanced the formation of the glassy amorphous phase in slags. For air cooled slags, an even lower basicity (<0.511) is required to vitrify fly ash well. PMID:17766040

  20. OT2_jalcolea_2: Additional Hpoint observations of large post-AGB sources from HIFIStars

    NASA Astrophysics Data System (ADS)

    Alcolea, J.

    2011-09-01

    One of the most spectacular phases in the evolution of intermediate mass stars takes place at the end of their lives. At the end of the AGB, the central star dashes across the HR diagram from the red giant to the blue dwarf region. At the same time, the spherically symmetric and slowly expanding circumstellar envelopes around AGB stars become planetary nebulae (PNe), displaying a large variety of shapes and structures far more complex. This transformation takes place at the very end of the AGB, and it is due to the interaction of fast and bipolar molecular winds with the fossil AGB circumstellar envelope. The origin of these post-AGB winds is still unclear, but we know that the resulting two-wind interactions are only active during a very short period of time, ~ 100 yr, but still they are able to strongly modify the kinematics of the nebulae and re-shape them. To better understand these processes we must study the warm molecular gas component of early post-AGB sources, both pre-planetary nebulae (pPNe) and young PNe. Herschel/HIFI is very well suited at this, because its spectral coverage, high velocity resolution, and superb sensitivity. For these reasons, 10 pPNe and young PNe were included in the KPGT HIFISTARS, were a large number of spectral lines are observed in a moderate number of frequency setups, but just at the central point. In many cases this is simply enough, since most post-AGB sources in HIFIStars are compact. However there are three cases in which the non spherically symmetric structures seen in the warm gas are larger than the telescope beam: OH231.8+4.2, NGC7027 and NGC6302. Therefore we propose to perform some additional points in these three sources in a selected sample of HIFISTARS frequency setups, were we have detected strong lines of CO, H2O, NH3 and OH. These observations are crucial to understand the kinematics and interactions traced by these warm gas probes, and gain insight in the intricate problem of the post-AGB dynamics.

  1. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Velasco, L.; Olaya, J. J.; Rodil, S. E.

    2016-02-01

    In this work, nanostructured NbxSiyNz thin films were deposited onto stainless steel AISI 304 substrates by co-sputtering a Nb target with Si additions while using unbalanced magnetron sputtering. The microstructure was analyzed by X-ray diffraction, and the chemical composition was identified by X-ray photoelectron spectroscopy. The hardness was measured by nanoindentation, and the corrosion resistance was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy using a 3 wt% NaCl solution. The addition of Si in the NbN thin films changed the microstructure from a crystalline to an amorphous phase. The chemical analysis showed the presence of both Si3N4 and NbN phases. The hardness decreased from 20 GPa (NbN) to 15 GPa for the film with the highest Si concentration (28.6 at.%). Nevertheless, the corrosion properties were significantly improved as the Si concentration increased; the polarization resistance after 168 h of immersion was two orders of magnitude larger in comparison with the substrate.

  2. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  3. The CERN antiproton source: Controls aspects of the additional collector ring and fast sampling devices

    NASA Astrophysics Data System (ADS)

    Chohan, V.

    1990-08-01

    The upgrade of the CERN antiproton source, meant to gain an order of magnitude in antiproton flux, required the construction of an additional ring to complement the existing antiproton accumulator (AA) and an entire rebuild of the target zone. The AA also needed major modifications to handle the increased flux and perform purely as an accumulator, preceded by collection in the collector ring (AC). The upgrade, known as the ACOL (antiproton collector) project, was approved under strict time and budgetary constraints and the existing AA control system, based on the Proton Synchrotron (PS) Divisional norms of CAMAC and Norsk-Data computers, had to be extended in the light of this. The limited (9 months) installation period for the whole upgrade meant that substantial preparatory and planning activities had to be carried out during the normal running of the AA. Advantage was taken of the upgrade to improve and consolidate the AA. Some aspects of the control system related to this upgrade are discussed together with the integration of new applications and instrumentation. The overall machine installation and running-in was carried out within the defined milestones and the project has now achieved the physics design goals.

  4. Effects of small amount of additional elements on control of interstitial impurities and mechanical properties of V?4Cr?4Ti?Si?Al?Y alloys

    NASA Astrophysics Data System (ADS)

    Chuto, Toshinori; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori; Muroga, Takeo; Yamamoto, Norikazu

    2004-03-01

    In order to improve the mechanical properties of low activation vanadium alloys for fusion structural applications, effects of small addition of Si, Al and Y on the control of interstitial impurities (O, C and N) during the fabrication process were examined for several V-4Cr-4Ti-Si-Al-Y alloys produced by the levitation melting method. Charpy impact tests and tensile tests were carried out for five kinds of V-4Cr-4Ti-Si-Al-Y alloys using miniaturized specimens for the purpose of evaluating the effects of these elements on mechanical properties. Oxygen concentration decreased almost linearly with increasing loss of yttrium during melting. This oxygen reduction with yttrium loss during the melting process may have been achieved by two types of mechanisms, they are, (i) suppression of oxygen penetration into the molten materials from the environment and (ii) getting of oxygen from the matrix by forming Y 2O 3, which floats to the surface during the melting. There was no effect of Si and Al addition to control the concentration of interstitial impurities. V-4Cr-4Ti-0.1Si-0.1Al-0.1Y alloy showed the best impact properties out of the alloys investigated. Upper-shelf energy of the alloys decreased with increasing yttrium content. High number density of coarse inclusions containing yttrium could cause the degradation of impact properties, though they hardly affect tensile properties of the alloys. Even at higher yttrium contents, V-4Cr-4Ti-Y alloys without addition of Si and Al showed relatively high upper-shelf energy.

  5. Simultaneous Observatinos of H2O and SiO Masers Toward Known Extragalactic Water Maser Sources

    NASA Astrophysics Data System (ADS)

    Cho, Se-Hyung; Yoon, Dong-Hwan; Kim, Jaeheon; Byun, Do-Young; Wagner, Jan

    2015-12-01

    We observe ten known 22 GHz H_{2}O maser galaxies during February 19-22, 2011 using the 21 m Tamna telescope of the Korean VLBI Network and a new wide-band digital spectrometer. Simultaneously we searched for 43 GHz SiO v = 1, 2, J = 1-0 maser emission. We detect H_{2}O maser emission towards five sources (M 33, NGC 1052, NGC 1068, NGC 4258, M 82), with non-detections towards the remaining sources (UGC 3193, UGC 3789, Antennae H_{2}O-West, M 51, NGC 6323) likely due to sensitivity. Our 22 GHz spectra are consistent with earlier findings. Our simultaneous 43 GHz SiO maser search produced non-detections, yielding - for the first time - upper limits on the 43 GHz SiO maser emission in these sources at a 3 σ sensitivity level of 0.018 K-0.033 K (0.24 Jy-0.44 Jy) in a 1.75 km s^{-1} velocity resolution. Our findings suggest that any 43 GHz SiO masers in these sources (some having starburst-associated H_{2}O kilomasers) must be faint compared to the 22 GHz H_{2}O maser emission.

  6. Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Axinte, Eugen; Zhao, Zhengfeng; Wang, Yan

    2016-09-01

    The effects of elemental addition, C and Ce, on the microstructure, thermal property and magnetic property of mechanically alloyed FeSiBAlNi (based-W5) high entropy alloys (HEAs) have been investigated in depth in the present work. The amorphous HEAs have been successfully fabricated by mechanical alloying. The results reveal that Ce addition obviously shortens the formation time of fully amorphous phase, therefore leading to the enhanced glass forming ability (GFA) of the based-W5. The final products of as-milled FeSiBAlNiC alloy consist of the main amorphous phase and a small amount of Si nanocrystals. In addition, C and Ce addition are both beneficial to enhance the thermal stability. The coercivity force (Hc) of the tested samples lies in the range of 50-378 Oe, suggesting the semi-hard magnetic property. The saturation magnetization (Ms) becomes decreased with increasing the milling time. C addition effectively increases Ms exhibiting the good magnetic property, however, Ce addition presents the negative effect. It should be noted that the amorphous phase tends to be formed when the radius ratio (Rr) is larger than 1, and the GFA is enhanced with increasing Rr and valence electron concentration.

  7. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  8. Improving the damping ability by the addition of Nano SiO2 to the concrete materials

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Teng, Jun

    2009-07-01

    Damping in structures is commonly provided by viscoelastic nonstructural materials. Due to the large volume of structural materials in a structure, the contribution of a structural material to damping can be substantial. In this paper, the experimental investigation on damping ability of concrete materials and its members with Nana SiO2 was carried out by the method of 3-point bending beam damping measurement and cantilever beam free vibration respectively. The microstructure of concrete mix with Nano SiO2 was observed by XRD and SEM, then damping mechanism was discussed. The experimental results show that the damping reinforced effect achieved best with the 4% mixture ratio of Nana SiO2, but the optimal adulteration quantity of Nano SiO2 was 3% of cement weight by the comprehensive consideration of cost, workability, strength and dynamic properties. Nano materials as a mixture increase interfaces, and the non-uniform stress distribution under external force improves frictional damping energy consumption ability of concrete. The experimental results on the damping ratio and the loss tangent of the concrete materials with Nano materials are consistent.

  9. Formation of the χ-Phase Precipitate in Co-28Cr-6Mo Alloys with Additional Si and C

    NASA Astrophysics Data System (ADS)

    Sugawara, Kei; Alfirano; Mineta, Shingo; Ueda, Kyosuke; Narushima, Takayuki

    2015-09-01

    The precipitates of biomedical Co-28Cr-6Mo-(0.5 to 2)Si-(0.05 to 0.35)C alloys (mass pct) have been investigated before and after heat treatment, focusing on the formation of the χ-phase precipitate. The precipitates were precisely and directly analyzed after using electrolytic extraction to separate the precipitates from the alloys. Heat treatment was performed at 1523 K (1250 °C) for a holding time of 0.6 ks. The χ-phase precipitate was detected with Si content of 1.3 to 2 mass pct and C content of 0.05 to 0.15 mass pct in both the as-cast and heat-treated alloys. The higher Si content and the mid-level C content of about 0.15 mass pct favored the formation of the χ-phase precipitate. Moreover, the χ-phase precipitate was not observed in the compositional range of the ASTM F 75 standard: Si content ≤1.0 mass pct and C content ≤0.35 mass pct. In the as-cast Co-28Cr-6Mo-1.3Si-0.15C alloy, which is outside of the ASTM F 75 standard, the content of the χ-phase precipitate was around 6 pct in area percent; the decrease in the ductility was detected in the tensile test of this alloy. The amount of precipitates decreased due to heat treatment at 1523 K (1250 °C), where the dissolution of precipitates occurred. After the heat treatment, a single χ-phase precipitate region was detected.

  10. Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.

    PubMed

    Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia

    2015-11-11

    Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices. PMID:26492222

  11. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    NASA Astrophysics Data System (ADS)

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-06-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% - 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%.

  12. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters.

    PubMed

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm(2)) is in the range of 2.04% - 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10,952 cd/cm(2) and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  13. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    PubMed Central

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% – 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  14. Presolar SiC in chondrites - How variable and how many sources?

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.

    1993-06-01

    The carbon and silicon isotropic compositions of 246 isotopically anomalous SiC grains measured in low concentration residues are reported. The residues were prepared from nine chondrites, namely, 6 unequilibrated ordinary chondrites (UOCs), Qingzhen (EH3), Leoville (CV3), and Murchison (CM2). Murchison is used as a standard to which all the other meteorites studied are compared. The range of isotopic compositions exhibited by UOC SiC is found to be similar to Murchison, except in Inman. Inman SiC has a distinctly different distribution of its silicon isotopic composition compared to the other meteorites. Residues from Qingzhen and Leoville produce only one anomalous SiC grain each.

  15. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions

    NASA Astrophysics Data System (ADS)

    Sakuma, Yasuharu; Matsumura, Osamu; Takechi, Hiroshi

    1991-02-01

    Processing peculiarities and functions of alloying elements, such as Si and Mn, were studied for improving formability of steel sheets with mixed microstructures. Annealing a sheet steel with 0.2 pct C in the intercritical range produced very fine particles of retained austenite which were moderately stabilized due to C enrichment by subsequent holding in the bainite transformation range. Its strength-ductility balance is greatly superior to that of other dual-phase steels due to transformation-induced plasticity ( TRIP). The holding time in the bainite transformation range varies with temperature, depending on the activation energy of C diffusion in austenite, and shifts to longer times with an increase of Si or Mn additions. The optimum cooling rate from the intercritical region is reduced with an increase of Mn content but is not influenced by Si content. Additional Mn makes the retained austenite content larger, although uniform elongation remains the same. In this case, the product of tensile strength and total elongation is increased due to an increase in the tensile strength. Contrary to Mn, Si does not affect retained austenite content but improves the uniform elongation by increasing its stability.

  16. Additional fluorine passivation to pyrolytic-N2O passivated ultrathin silicon oxide/Si(100) films

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi

    2006-08-01

    To enhance the reliability of ultrathin silicon oxide/Si(100) films and clarify the effect of fluorine on it, in situ pyrolytic-gas passivation (PGP) using NF3 was simultaneously performed with the previously proposed PGP using N2O. As a result, the following synergistic effects of F and N passivation for the films were confirmed: The electrical characteristics, such as the time-dependent dielectric breakdown lifetime, potential barrier height energy of the oxide, and interface state density, were significantly improved. Quantitative analyses of F and N indicated that this is probably caused by microscopic structural changes in the oxide near the oxide-Si(100) substrate interface. It is, therefore, believed that F passivation effectively contributes to compensate the inconsistent-state bonding sites near the interface that remain with N passivation.

  17. Response of Mg Addition on the Dendritic Structures and Mechanical Properties of Hypoeutectic Al-10Si (Wt Pct) Alloys

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Yildiz, Mehmet; Keskin, Mustafa

    2016-08-01

    Rapidly solidified hypoeutectic Al-10Si- xMg ( x = 0, 5, 10 wt pct) alloys were produced by the melt-spinning method. The phase composition was identified by X-ray diffractometry, and the microstructures of the alloys were characterized by scanning electron microscopy. The melting characteristics were studied by differential scanning calorimetry and differential thermal analysis under an Ar atmosphere. The mechanical properties of the melt-spun and conventionally solidified alloys were tested by tensile-strength and Vickers microhardness tests. The results illustrate that the cooling rate and solidification time of 89 μm thick melt-spun ribbon were estimated to be 2.97 × 107 K s-1 and 9.31 × 10-6 s, respectively. Nanoscale Si spot particles were observed growing on the surface of the dendritic α-Al matrix and the average sizes of these spots ranged from 10 to 50 nm. The improvement in the tensile properties and microhardness was related to structural refinement and the supersaturated α-Al solid solution; the nanoscale-dispersed Si spot particles made a significant improvement to the mechanical properties of the melt-spun ribbon. Detailed electrical resistivity tests of the ribbons were carried out at temperatures of 300 K to 800 K (27 °C to 527 °C).

  18. Response of Mg Addition on the Dendritic Structures and Mechanical Properties of Hypoeutectic Al-10Si (Wt Pct) Alloys

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Yildiz, Mehmet; Keskin, Mustafa

    2016-05-01

    Rapidly solidified hypoeutectic Al-10Si-xMg (x = 0, 5, 10 wt pct) alloys were produced by the melt-spinning method. The phase composition was identified by X-ray diffractometry, and the microstructures of the alloys were characterized by scanning electron microscopy. The melting characteristics were studied by differential scanning calorimetry and differential thermal analysis under an Ar atmosphere. The mechanical properties of the melt-spun and conventionally solidified alloys were tested by tensile-strength and Vickers microhardness tests. The results illustrate that the cooling rate and solidification time of 89 μm thick melt-spun ribbon were estimated to be 2.97 × 107 K s-1 and 9.31 × 10-6 s, respectively. Nanoscale Si spot particles were observed growing on the surface of the dendritic α-Al matrix and the average sizes of these spots ranged from 10 to 50 nm. The improvement in the tensile properties and microhardness was related to structural refinement and the supersaturated α-Al solid solution; the nanoscale-dispersed Si spot particles made a significant improvement to the mechanical properties of the melt-spun ribbon. Detailed electrical resistivity tests of the ribbons were carried out at temperatures of 300 K to 800 K (27 °C to 527 °C).

  19. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    SciTech Connect

    Dong, J.X.; Karnezis, P.A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from {approximately}1.7 pct for the gravity die cast LM25 alloy to {approximately}8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated conditions. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25 + Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of {approximately}6.5 pct, compared to that of {approximately}0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  20. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    NASA Astrophysics Data System (ADS)

    Dong, J. X.; Karnezis, P. A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from ˜1.7 pct for the gravity die cast LM25 alloy to ˜8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated condition. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25+Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of ˜6.5 pct, compared to that of ˜0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  1. 3D interconnected porous HA scaffolds with SiO2 additions: effect of SiO2 content and macropore size on the viability of human osteoblast cells.

    PubMed

    Nikom, Jaru; Charoonpatrapong-Panyayong, Kanokwan; Kedjarune-Leggat, Ureporn; Stevens, Ron; Kosachan, Nudthakarn; Jaroenworaluck, Angkhana

    2013-08-01

    3D interconnected porous scaffolds of HA and HA with various additions of SiO2 were fabricated using a polymeric template technique, to make bioceramic scaffolds consisting of macrostructures of the interconnected macropores. Three different sizes of the polyurethane template were used in the fabrication process to form different size interconnected macropores, to study the effect of pore size on human osteoblast cell viability. The template used allowed fabrication of scaffolds with pore sizes of 45, 60, and 75 ppi, respectively. Scanning microscopy was used extensively to observe the microstructure of the sintered samples and the characteristics of cells growing on the HA surfaces of the interconnected macropores. It has been clearly demonstrated that the SiO2 addition has influenced both the phase transformation of HA to TCP (β-TCP and α-TCP) and also affected the human osteoblast cell viability grown on these scaffolds. PMID:23355495

  2. Tribological properties of SiC-based MCD films synthesized using different carbon sources when sliding against Si3N4

    NASA Astrophysics Data System (ADS)

    Wang, Xinchang; Shen, Xiaotian; Zhao, Tianqi; Sun, Fanghong; Shen, Bin

    2016-04-01

    Micro-crystalline diamond (MCD) films are deposited on reactive sintering SiC substrates by the bias enhanced hot filament chemical vapor deposition (BE-HFCVD) method, respectively using the methane, acetone, methanol and ethanol as the carbon source. Two sets of standard tribotests are conducted, adopting Si3N4 balls as the counterpart balls, respectively with the purpose of clarifying differences among tribological properties of different MCD films, and studying detailed effects of the carbon source C, normal load Fn and sliding velocity v based on orthogonal analyses. It is clarified that the methane-MCD film presents the lowest growth rate, the highest film quality, the highest hardness and the best adhesion, in consequence, it also performs the best tribological properties, including the lowest coefficient of friction (COF) and wear rate Id, while the opposite is the methanol-MCD film. Under a normal load Fn of 7 N and at a sliding velocity v of 0.4183 m/s, for the methane-MCD film, the maximum COF (MCOF) is 0.524, the average COF during the relatively steady-state regime (ACOF) is 0.144, and the Id is about 1.016 × 10-7 mm3/N m; and for the methanol-MCD film, the MCOF is 0.667, the ACOF is 0.151, and the Id is 1.448 × 10-7 mm3/N m. Moreover, the MCOF, ACOF, Id and the wear rate of the Si3N4 ball Ib will all increase with the Fn, while the v only has significant effect on the ACOF, which shows a monotone increasing trend with the v.

  3. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions

    NASA Astrophysics Data System (ADS)

    Hassani, Amir; Ranjbar, Khalil; Sami, Sattar

    2012-08-01

    An alloy of Al-8wt% Si-0.8wt% Fe was cast in a metallic die, and its microstructural changes due to Ti-B refiner and Sr modifier additions were studied. Apart from usual refinement and modification of the microstructure, some mutual influences of the additives took place, and no mutual poisoning effects by these additives, in combined form, were observed. It was noticed that the dimensions of the iron-rich intermetallics were influenced by the additives causing them to become larger. The needle-shaped intermetallics that were obtained from refiner addition became thicker and longer when adding the modifier. It was also found that α-Al and eutectic silicon phases preferentially nucleate on different types of intermetallic compounds. The more iron content of the intermetallic compounds and the more changes in their dimensions occurred. Formation of the shrinkage porosities was also observed.

  4. Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources.

    PubMed

    Jayanegara, Anuraga; Wina, Elizabeth; Takahashi, Junichi

    2014-10-01

    Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins

  5. Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

    PubMed Central

    Jayanegara, Anuraga; Wina, Elizabeth; Takahashi, Junichi

    2014-01-01

    Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins

  6. Effects of ultrasonic agitation and surfactant additive on surface roughness of Si (111) crystal plane in alkaline KOH solution.

    PubMed

    Jiao, Qingbin; Tan, Xin; Zhu, Jiwei; Feng, Shulong; Gao, Jianxiang

    2016-07-01

    In the silicon wet etching process, the "pseudo-mask" formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (111) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15nm when using ultrasonic agitation and Rq is smaller than 7nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5-20%, the ultrasonic frequency is 100kHz and the ultrasound intensity is 30-50W/L, the surface roughness Rq is smaller than 2nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50W and 100kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (111) crystal plane in silicon wet etching process. PMID:26964944

  7. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... reporting rule on October 7, 2010, and it was not published until October 28, 2010, 75 FR 66434, three weeks... electronics, fluorinated GHG production, and electrical equipment use on April 12, 2009 (74 FR 16448) as part... October 30, 2009 (74 FR 56260). EPA deferred action on these source categories because EPA received...

  8. 75 FR 18651 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...EPA is revising and supplementing its initial proposed actions to require reporting of fluorinated greenhouse gas (fluorinated GHG) emissions from certain source categories. Specifically, EPA is revising and supplementing its initial proposal to require reporting of fluorinated GHG emissions from electronics manufacturing, production of fluorinated gases, and use of electrical transmission and......

  9. Effect of source frequency and pulsing on the SiO2 etching characteristics of dual-frequency capacitive coupled plasma

    NASA Astrophysics Data System (ADS)

    Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young

    2015-01-01

    A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.

  10. Food additives and environmental chemicals as sources of childhood behavior disorders

    SciTech Connect

    Weiss, B.

    1982-01-01

    The Feingold hypothesis postulates that many children who exhibit disturbed behavior improve on a diet devoid of certain food additives. Its validity has been examined on the basis of controlled trails. The total evidence, although not wholly consistent, nevertheless suggests that the hypothesis is, in principle, correct. Such a conclusion poses difficult problems and new issues for etiology, treatment, toxicology, and regulation.

  11. Common genetic variants, acting additively, are a major source of risk for autism

    PubMed Central

    2012-01-01

    Background Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions Our results, when viewed in the context of results from genome

  12. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    SciTech Connect

    Vanacore, G. M.; Zani, M.; Tagliaferri, A.; Nicotra, G.; Bollani, M.; Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F.; Capellini, G.; Isella, G.; Osmond, J.

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  13. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    NASA Astrophysics Data System (ADS)

    Vanacore, G. M.; Nicotra, G.; Zani, M.; Bollani, M.; Bonera, E.; Montalenti, F.; Capellini, G.; Isella, G.; Osmond, J.; Picco, A.; Boioli, F.; Tagliaferri, A.

    2015-03-01

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  14. BREEDING PIERCE'S DISEASE RESISTANT TABLE AND RAISIN GRAPES AND THE DEVELOPMENT OF MARKERS FOR ADDITIONAL SOURCES OF RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen BC3 and two BC2 crosses between V. arizonica source of Pierce’s disease (PD) resistance and seedless table and raisin selections were made and produced 3,396 berries, 4,459 ovules and 1,840 embryos. Two additional seedless and two seeded crosses were made. Ten 2006 BC2 families (V. arizoni...

  15. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; De Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  16. Solid sampling determination of lithium and sodium additives in microsamples of yttrium oxyorthosilicate by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laczai, Nikoletta; Kovács, László; Péter, Ágnes; Bencs, László

    2016-03-01

    Solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS-HR-CS-GFAAS) methods were developed and studied for the fast and sensitive quantitation of Li and Na additives in microsamples of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce) scintillator materials. The methods were optimized for solid samples by studying a set of GFAAS conditions (i.e., the sample mass, sensitivity of the analytical lines, and graphite furnace heating programs). Powdered samples in the mass range of 0.099-0.422 mg were dispensed onto graphite sample insertion boats, weighed and analyzed. Pyrolysis and atomization temperatures were optimized by the use of single-element standard solutions of Li and Na (acidified with 0.144 mol/L HNO3) at the Li I 610.353 nm and Na I 285.3013 nm analytical lines. For calibration purposes, the method of standard addition with Li and Na solutions was applied. The correlation coefficients (R values) of the calibration graphs were not worse than 0.9678. The limit of detection for oxyorthosilicate samples was 20 μg/g and 80 μg/g for Li and Na, respectively. The alkaline content of the solid samples were found to be in the range of 0.89 and 8.4 mg/g, respectively. The accuracy of the results was verified by means of analyzing certified reference samples, using methods of standard (solution) addition calibration.

  17. Solidification and recycling of incinerator bottom ash through the addition of colloidal silica (SiO2) solution.

    PubMed

    Park, Jong Soo; Park, Young Jun; Heo, Jong

    2007-01-01

    The possibility of using incinerator bottom ash as a substitute for natural aggregates was investigated. Rough, porous surface of bottom ash, which diminishes the strength of solidified products, was improved by colloidal silica solution. As a result, a significant increase of mechanical strength was accomplished by a slight amount of silica (<1 wt% to total). Moreover, pozzolanic reaction was induced in initial cement hydration due to the nano-particle size of about 20 nm in colloidal silica solution. Cylindrical specimens and bricks were prepared from bottom ash added to a colloidal silica (SiO2) solution and cement, and then their compressive strengths were evaluated. Cylindrical specimens showed an increase of approximately 60% in compressive strength when colloidal solution containing 4 wt% silica particles was sprayed onto the bottom ash. The strength of bricks containing colloidal silica was in excess of 20 MPa, which meets the requirement of construction materials. Results of leaching tests based on Toxicity Characteristic Leaching Procedure (TCLP) proved that the solidified bottom ash possessed good chemical stability. PMID:17081741

  18. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source......

  19. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source......

  20. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source......

  1. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source......

  2. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation

    PubMed Central

    Bárcena, Alicia; Muench, Marcus O.; Kapidzic, Mirhan; Gormley, Matthew; Goldfien, Gabriel A.; Fisher, Susan J.

    2012-01-01

    Background Hematopoietic stem cell (HSC) transplantation is an essential element of medical therapy, leading to cures of previously incurable disease for hematological and non-hematological pathologies. Many patients do not find matched donors in a timely manner, which has driven efforts to find alternative pools of transplantable HSCs. The use of umbilical cord blood (UCB) as a source of transplantable HSCs began more than two decades ago. However, the use of UCB as a reliable source of HSCs for transplantation still faces crucial challenges: the number of HSCs present in a unit of UCB is usually sufficient for younger children but not for adults and the persistent delayed engraftment often seen can result in high rates of infection and mortality. Study Design and Methods We propose a new approach to a solution of these problems: a potential increase of the limited number of UCB–HSCs available by harvesting HSCs contained in the placenta and the fetal chorionic membrane available at birth. Results We investigated the presence of hematopoietic progenitors/HSC in human placenta and chorion at different gestational ages. The characterization of these cells was performed by flow cytometry and immunolocalization and their functional status was investigated by transplanting them into immunodeficient mice. Conclusion HSCs are present in extraembryonic tissues and could be banked in conjunction to the UCB-HSCs. This novel approach could have a large impact on the field of HSC banking and more crucially, on the outcome of patients undergoing this treatment by greatly improving the use of life-saving hematopoietic transplants. PMID:22074633

  3. Impacts of Additional HONO Sources on Concentrations and Deposition of NOy in the Beijing-Tianjin-Hebei Region of China

    NASA Astrophysics Data System (ADS)

    Li, Ying; An, Junling; Kajino, Mizuo; Li, Jian; Qu, Yu

    2015-04-01

    Reactive nitrogen-containing compounds (NOy) are involved in many important chemical processes in the atmosphere, including aerosol formation as well as ozone (O3) production and destruction. As NOy deposition was increasing rapidly in China during 1980s ~ 2000s, great effort is urgently needed to reduce N deposition. HONO, an important component of NOy, is a significant precursor of the hydroxyl radical (OH) that drives the formation of O3 and fine particles (PM2.5). Nevertheless, the detailed formation mechanisms of HONO and strength of its sources remain unclear. Unknown HONO sources and their potential impacts on air quality have gained extensive interests but to our current knowledge, the impact of HONO sources on regional-scale deposition of NOy has not been quantified up to date. The goal of this work is to evaluate the effects of the additional HONO sources on concentrations and deposition of individual NOy species as well as the NOy budget in the northern Chinese regions being affected by heavy pollution. Simulations of HONO contributions over Beijing-Tianjin-Hebei region (BTH) during summer and winter periods of 2007 using the fully coupled Weather Research and Forecasting /Chemistry (WRF/Chem) model are performed by including three additional HONO sources: 1) the reaction of photo-excited nitrogen dioxide (NO2*) with water vapor, 2) NO2 heterogeneous reaction at the aerosol surfaces, and 3) HONO emissions. The model results show that the three additional HONO sources produce a 20%~40% (> 100%) increase in monthly-mean OH concentrations in many urban areas in August (February), leading to a 10%~40% (10%~100%) variation in monthly-mean concentrations of NOx, nitrate and PAN, a 5%~10% (10%~40%) increase in the total dry deposition of NOy, and an enhancement of 1.4 Gg N (1.5 Gg N) in the total of dry and wet deposition of NOy over this region in August (February). These results suggest that the additional HONO sources aggravate regional-scale acid deposition

  4. Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-form Nanocomposites with Tailored Microstructures and Properties

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Wang, Hongqiao; Chang, Fei; Dai, Donghua; Yuan, Pengpeng; Hagedorn, Yves-Christian; Meiners, Wilhelm

    The nanoscale TiC particle reinforced AlSi10Mg nanocomposite parts were produced by selective laser melting (SLM) additive manufacturing process. The influence of laser energy density (LED) on densification behavior, microstructural evolution, microhardness and wear properties of SLM-processed TiC/AlSi10Mg nanocomposites was studied. It showed that the near fully dense nanocomposite parts (>98% theoretical density) were achieved with increasing the applied LED. The TiC reinforcement in SLM-processed parts experienced a microstructural change from the standard nanoscale particle morphology (the average size 77-93 nm) to the relatively coarsened submicron structure (the mean particle size 154 nm) as the LED increased.The sufficiently high densification rate combined with the homogeneousdistribution of nanoscale TiC reinforcement throughout the matrix led to a high microhardness of 181.2 HV0.2, a considerably low coefficient of friction (COF) of 0.36, and a reduced wear rate of 2.94×10-5 mm3N-1m-1 for SLM-processed TiC/AlSi10Mg nanocomposite parts.

  5. Tellurium addition as a solution to improve compactness of ex-situ processed MgB2-SiC superconducting tapes

    NASA Astrophysics Data System (ADS)

    Sandu, V.; Aldica, G.; Popa, S.; Enculescu, Monica; Badica, P.

    2016-06-01

    Ex-situ spark plasma sintering (SPS) was used to obtain dense MgB2-based tapes in a Fe sheath with the starting composition (MgB2)0.975 + (SiC)0.025 + Te0.01. Prior to the SPS procedure of tape formation, the samples were submitted to a series of cold working processes typical for the powder-in-tube technique. The tapes were compared with optimal doped bulk samples (having the same starting composition) and a pristine MgB2 tape. The morphology of the composite samples, the phase structure of both the core and the inner face of the metallic sheath shows the formation of a plethora of traces as a result of interaction between MgB2, additives, and the Fe sheath. Important critical parameters, like critical current density and the irreversibility field, show that there is a field and temperature range where the SiC and Te-added tapes display better critical parameters comparative to either pristine MgB2 tapes in the Fe sheath or SiC and Te doped MgB2 bulk samples.

  6. Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe-PbS with SiC nanoparticle additions

    NASA Astrophysics Data System (ADS)

    Ni, Jennifer E.; Case, Eldon D.; Schmidt, Robert D.; Wu, Chun-I.; Hogan, Timothy P.; Trejo, Rosa M.; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-12-01

    Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055% PbI2-SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1-3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

  7. Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe PbS with SiC nanoparticle additions

    SciTech Connect

    Ni, Jennifer E; Case, Eldon D; Hogan, Timophy P.; Trejo, Rosa M; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-01-01

    Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08 0.055% PbI2 SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1 3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

  8. Reflection high-energy electron diffraction evaluation of thermal deoxidation of chemically cleaned Si, SiGe, and Ge layers for solid-source molecular beam epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    The authors present a study on the thermal evolution of the reflection high-energy electron diffraction pattern of chemically cleaned (001)-oriented Si, Ge, and SiGe surfaces, associating observed changes in the reconstructions with the desorption of known residual contaminants for Si and Ge surfaces. The implications of residual oxides prior to epitaxy on stacking fault densities in the grown films are presented. Further evidence for the two-phase nature of oxides on SiGe surfaces is provided, demonstrating that it is necessary to heat a SiGe surface up to the thermal deoxidation temperature of a Si surface to obtain stacking fault-free growth.

  9. A study of the influence of mischmetal additions to Al-7Si-0.3Mg (LM 25/356) alloy

    SciTech Connect

    Ravi, M.; Pillai, U.T.S.; Damodaran, A.D.; Dwarakadasa, E.S.

    1996-05-01

    This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.

  10. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  11. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    PubMed

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability. PMID:26116020

  12. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. PMID:27233044

  13. A FEATURE MOVIE OF SiO EMISSION 20-100 AU FROM THE MASSIVE YOUNG STELLAR OBJECT ORION SOURCE I

    SciTech Connect

    Matthews, L. D.; Greenhill, L. J.; Goddi, C.; Humphreys, E. M. L.; Chandler, C. J.; Kunz, M. W.

    2010-01-01

    We present multi-epoch Very Long Baseline Array imaging of the {sup 28}SiO v = 1 and v = 2, J = 1-0 maser emission toward the massive young stellar object (YSO) Orion Source I. Both SiO transitions were observed simultaneously with an angular resolution of approx0.5 mas (approx0.2 AU for d = 414 pc) and a spectral resolution of approx0.2 km s{sup -1}. Here we explore the global properties and kinematics of the emission through two 19-epoch animated movies spanning 21 months (from 2001 March 19 to 2002 December 10). These movies provide the most detailed view to date of the dynamics and temporal evolution of molecular material within approx20-100 AU of a massive (approx>8 M{sub sun}) YSO. As in previous studies, we find that the bulk of the SiO masers surrounding Source I lie in an X-shaped locus; the emission in the south and east arms is predominantly blueshifted, and emission in the north and west is predominantly redshifted. In addition, bridges of intermediate-velocity emission are observed connecting the red and blue sides of the emission distribution. We have measured proper motions of over 1000 individual maser features and found that these motions are characterized by a combination of radially outward migrations along the four main maser-emitting arms and motions tangent to the intermediate-velocity bridges. We interpret the SiO masers as arising from a wide-angle bipolar wind emanating from a rotating, edge-on disk. The detection of maser features along extended, curved filaments suggests that magnetic fields may play a role in launching and/or shaping the wind. Our observations appear to support a picture in which stars with masses as high as at least 8 M{sub sun} form via disk-mediated accretion. However, we cannot yet rule out that the Source I disk may have been formed or altered following a recent close encounter.

  14. Resonant charge relaxation as a likely source of the enhanced thermopower in FeSi

    NASA Astrophysics Data System (ADS)

    Sun, Peijie; Wei, Beipei; Menzel, Dirk; Steglich, Frank

    2014-12-01

    The enhanced thermopower of the correlated semiconductor FeSi is found to be robust against the sign of the relevant charge carriers. At T ≈70 K, the position of both the high-temperature shoulder of the thermopower peak and the nonmagnetic-enhanced paramagnetic crossover, the Nernst coefficient ν assumes a large maximum and the Hall mobility μH diminishes to below 1 cm2/V s. These cause the dimensionless ratio ν /μH —a measure of the energy dispersion of the charge scattering time τ (ɛ ) —to exceed that of classical metals and semiconductors by two orders of magnitude. Concomitantly, the resistivity exhibits a hump and the magnetoresistance changes its sign. Our observations hint at a resonant scattering of the charge carriers at the magnetic crossover, imposing strong constraints on the microscopic interpretation of the robust thermopower enhancement in FeSi.

  15. Formation of Si-C-N ceramics from melamine-carbosilazane single source precursors

    SciTech Connect

    Shatnawi, Mazin; Al-Mansi, Wafaa; Arafa, Isam

    2008-01-15

    A series of melamine-carbosilazane pre-ceramic macromolecules (Mel-CSZs) were prepared by the condensation of melamine with different organochlorosilanes (R{sub x}SiCl{sub 4-x} where R is CH{sub 3}/C{sub 6}H{sub 5} and x is 1, 2 or 3) using pyridine as a solvent under nitrogen atmosphere. These melamine-based carbosilazane macromolecules (Mel-CSZs) were characterized by infrared spectroscopy (FT-IR), mass spectrometry (MS), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The backbone of the resulting Mel-CSZs consists of melamine and carbosilazane building blocks. Pyrolysis of these Mel-CSZs at 600 deg. C under nitrogen and vacuum afforded the corresponding silicon-based nonoxide carbonitride ceramics (Si-C-N). The microstructure and textural morphology of the resulting fine ceramic materials were examined using FT-IR, powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). - Graphical abstract: Pyrolysis of the prepared melamine-organosilane macromolecules afforded Si-C-N ceramics with different textural morphology.

  16. Enhancement of Identifying Cancer Specialists through the Linkage of Medicare Claims to Additional Sources of Physician Specialty

    PubMed Central

    Pollack, Lori A; Adamache, Walter; Eheman, Christie R; Ryerson, A Blythe; Richardson, Lisa C

    2009-01-01

    Objective To examine the number of cancer specialists identified in three national datasets, the effect of combining these datasets, and the use of refinement rules to classify physicians as cancer specialists. Data Sources 1992–2003 linked Surveillance, Epidemiology, and End Results (SEER)-Medicare data and a cancer-free comparison population of Medicare beneficiaries, Unique Physician Identification Number (UPIN) Registry, and the American Medical Association (AMA) Masterfile. Study Design We compared differences in counts of cancer specialists identified in Medicare claims only with the number obtained by combining data sources and after using rules to refine specialty identification. Data Extraction We analyzed physician specialty variables provided on Medicare claims, along with the specialties obtained by linkage of unencrypted UPINs on Medicare claims to the UPIN Registry, the AMA Masterfile, and all sources combined. Principle Findings Medicare claims identified the fewest number of cancer specialists (n=11,721) compared with 19,753 who were identified when we combined all three datasets. The percentage increase identified by combining datasets varied by subspecialty (187 percent for surgical oncologists to 50 percent for radiation oncologists). Rules created to refine identification most affected the count of radiation oncologists. Conclusions Researchers should consider taking the additional effort and cost to refine classification by using additional data sources based on their study objectives. PMID:19207588

  17. The influence of Si addition in 55AlZn bath on the coating structures obtained in the batch hot-dip metallization

    NASA Astrophysics Data System (ADS)

    Mendala, J.

    2011-05-01

    One of the methods of increasing the corrosion resistance of zinc coatings is the application of zinc and aluminium alloy baths in the metallization process. The coatings obtained are characterized by much better corrosion resistance thanks to the combination of aluminium properties, i.e. the barrier protection provided by naturally created aluminium oxides, with the capacity to protect the steel substrate, which is characteristic of zinc coatings. Zinc coatings with 55 wt. % Al and an addition of Si have gained industrial importance. The introduction of a third alloying component into the metallization bath is a technological addition, the aim of which is to reduce and possibly inhibit the aluminium diffusion towards the substrate. The article presents the results of the examination of coatings obtained in a 55AlZn bath at varied parameters of the technological process, as well as the specification of silicon addition influence on the structure and chemical composition of the coatings, and on the kinetics of growth. The coatings were obtained in three temperatures: 620, 640 and 660°C, and the process was conducted in a 55 wt. % Al bath with Si content of 0, 0.8 and 1.6 wt. % respectively, the remaining content was Zn. For the purposes of evaluating the microstructure and thickness of the coatings obtained, examinations on a light microscope were conducted. In order to determine the chemical composition of the coatings obtained, an EDS analysis was conducted. Quantitative examination of the chemical composition was carried out on the selected cross-sections of samples with coatings considered to be representative ones, using a SEM with a microanalysis system. Moreover, the linear distribution of elements on the cross-sections of the chosen coatings was determined. It is possible to state that the addition of silicon to 55AlZn baths allows reducing the uncontrolled growth of a layer. The layers obtained are more uniform, continuous and they show good adhesion to

  18. Si(001):B gas-source molecular-beam epitaxy: Boron surface segregation and its effect on film growth kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; Glass, G.; Spila, T.; Taylor, N.; Park, S. Y.; Abelson, J. R.; Greene, J. E.

    1997-09-01

    B-doped Si(001) films, with concentrations CB up to 1.7×1022cm-3, were grown by gas-source molecular-beam epitaxy from Si2H6 and B2H6 at Ts=500-800 °C. D2 temperature-programed desorption (TPD) spectra were then used to determine B coverages θB as a function of CB and Ts. In these measurements, as-deposited films were flash heated to desorb surface hydrogen, cooled, and exposed to atomic deuterium until saturation coverage. Strong B surface segregation was observed with surface-to-bulk B concentration ratios ranging up to 1200. TPD spectra exhibited β2 and β1 peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced peaks β2* and β1*. Increasing θB increased the area under β2* and β1* at the expense of β2 and β1 and decreased the total D coverage θD. The TPD results were used to determine the B segregation enthalpy, -0.53 eV, and to explain and model the effects of high B coverages on Si(001) growth kinetics. Film deposition rates R increase by ⩾50% with increasing CB>˜1×1019 cm-3 at Ts⩽550 °C, due primarily to increased H desorption rates from B-backbonded Si adatoms, and decrease by corresponding amounts at Ts⩾600 °C due to decreased adsorption site densities. At Ts⩾700 °C, high B coverages also induce {113} facetting.

  19. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong; Tian, Xiubo; Li, Muqin; Gong, Chunzhi; Wei, Ronghua

    2016-07-01

    Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at -1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to -500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C2H2 and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H3/E2 and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this paper, the effects of the sample bias voltage on the film properties are discussed in detail and the optimal bias voltage is presented.

  20. Addition of Si-H and B-H bonds and redox reactivity involving low-coordinate nitrido-vanadium complexes.

    PubMed

    Thompson, Rick; Tran, Ba L; Ghosh, Soumya; Chen, Chun-Hsing; Pink, Maren; Gao, Xinfeng; Carroll, Patrick J; Baik, Mu-Hyun; Mindiola, Daniel J

    2015-03-16

    In this study we enumerate the reactivity for two molecular vanadium nitrido complexes of [(nacnac)V≡N(X)] formulation [nacnac = (Ar)NC(Me)CHC(Me)(Ar)(-), Ar = 2,6-(CHMe2)2C6H3); X(-) = OAr (1) and N(4-Me-C6H4)2 (Ntolyl2) (2)]. Density functional theory calculations and reactivity studies indicate the nitride motif to have nucleophilic character, but where the nitrogen atom can serve as a conduit for electron transfer, thus allowing the reduction of the vanadium(V) metal ion with concurrent oxidation of the incoming substrate. Silane, H2SiPh2, readily converts the nitride ligand in 1 into a primary silyl-amide functionality with concomitant two-electron reduction at the vanadium center to form the complex [(nacnac)V{N(H)SiHPh2}(OAr)] (3). Likewise, addition of the B-H bond in pinacolborane to the nitride moiety in 2 results in formation of the boryl-amide complex [(nacnac)V{N(H)B(pinacol)}(Ntolyl2)] (4). In addition to spectroscopic data, complexes 3 and 4 were also elucidated structurally by single-crystal X-ray diffraction analysis. One-electron reduction of 1 with 0.5% Na/Hg on a preparative scale allowed for the isolation and structural determination of an asymmetric bimolecular nitride radical anion complex having formula [Na]2[(nacnac)V(N)(OAr)]2 (5), in addition to room-temperature solution X-band electron paramagnetic resonance spectroscopic studies. PMID:25732980

  1. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  2. Alpha-Si{sub 3}N{sub 4} precipitation in C/C-SiC composites from inherent fiber impurity sources

    SciTech Connect

    Pleger, R.; Braue, W.

    1995-10-01

    The formation of crystalline {alpha}-Si{sub 3}N{sub 4} filaments grown inside the pore channels of HT-carbon fibers from a 2D C/C-SiC composite is investigated by transmission electron microscopy. Precipitation of {alpha}-Si{sub 3}N{sub 4} is promoted by a low carbonization heat treatment of the C/C material prior to liquid silicon infiltration and results from the interaction of a highly reactive nitrogen-rich vapor phase released from the fiber and silicon vapor diffusing ahead of the SiC reaction front into the porous microtexture of the fiber.

  3. Effect of powder characteristics on gas-pressure sintering of Si{sub 3}N{sub 4} with rare earth additives

    SciTech Connect

    Tiegs, T.N.; Nunn, S.D.; Walls, C.A.; Barker, D.; Davisson, C.; Jones, P.J.

    1993-09-01

    Several Si{sub 3}N{sub 4} powders, synthesized by various methods and having different surface areas, oxygen contents and impurity levels, were examined. During early stage densification, all powders showed similar shrinkage with the diimide ederived powder exhibiting delayed {alpha}/{beta} transformation compared to the other powders. The diimide and gas-phase derived powders achieved the highest final densities. Improved densification was observed by increasing the oxygen content and this also resulted in high toughness for some materials with rare earth apatite additives. However, the increased oxygen resulted in reduced high temperature strength. Fracture toughnesses (K{sub Ic}) up to 10 MPa{radical}m were obtained for some compositions.

  4. Selective hydrogenation of furan-containing condensation products as a source of biomass-derived diesel additives.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-10-01

    In this study, we demonstrate that while the energy density and lubricity of the C15 and C16 products of furan condensation of biomass-derived aldehydes with 2-methylfuran are consistent with requirements for diesel, these products do not meet specifications for cetane number and pour point due to their aromatic furan rings. However, a novel class of products that fully meet or exceed most specifications for diesel can be produced by converting the furan rings in these compounds to cyclic ether moieties. Full hydrodeoxygenation of furan condensation products to alkanes would require 55-60% higher hydrogen demand, starting from biomass, compared to the products of furan ring saturation, providing an additional incentive to support the saturated products. We also report here on a tunable class of catalysts that contain Pd nanoparticles supported on ionic liquid-modified SiO2 that can achieve complete saturation of the furan rings in yields of 95% without opening these rings. PMID:25169952

  5. Effect of CeO2, MgO and Y2O3 additions on the sinterability of a milled Si3N4 with 14.5 wt% SiO2

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1981-01-01

    The sinterability of alpha Si3N4 with 0-5.07 equivalent per cent of CeO2, MgO, or Y2O3 has been studied in the temperature range 1650-1820 C by density measurements and X-ray diffraction analysis. Maximum densities were obtained in the range 1765-1820 C and were 99.6% of theoretical with 2.5% CeO2; 98.5% of theoretical with 1.24 to 1.87% MgO, and 99.2% of theoretical with 2.5% Y2O3. Densities 94% or more of theoretical value were obtained with as little as 0.62 equivalent per cent additive.

  6. Effect of cerium addition on casting/chill interfacial heat flux and casting surface profile during solidification of Al-14%Si alloy

    NASA Astrophysics Data System (ADS)

    Vijeesh, V.; Prabhu, K. N.

    2016-03-01

    In the present investigation, Al-14 wt. % Si alloy was solidified against copper, brass and cast iron chills, to study the effect of Ce melt treatment on casting/chill interfacial heat flux transients and casting surface profile. The heat flux across the casting/chill interface was estimated using inverse modelling technique. On addition of 1.5% Ce, the peak heat flux increased by about 38%, 42% and 43% for copper, brass and cast iron chills respectively. The effect of Ce addition on casting surface texture was analyzed using a surface profilometer. The surface profile of the casting and the chill surfaces clearly indicated the formation of an air gap at the periphery of the casting. The arithmetic average value of the profile departure from the mean line (Ra) and arithmetical mean of the absolute departures of the waviness profile from the centre line (Wa) were found to decrease on Ce addition. The interfacial gap width formed for the unmodified and Ce treated casting surfaces at the periphery were found to be about 35µm and 13µm respectively. The enhancement in heat transfer on addition of Ce addition was attributed to the lowering of the surface tension of the liquid melt. The gap width at the interface was used to determine the variation of heat transfer coefficient (HTC) across the chill surface after the formation of stable solid shell. It was found that the HTC decreased along the radial direction for copper and brass chills and increased along radial direction for cast iron chills.

  7. Mo/Si multilayer-coated amplitude-division beam splitters for XUV radiation sources

    PubMed Central

    Sobierajski, Ryszard; Loch, Rolf Antonie; van de Kruijs, Robbert W. E.; Louis, Eric; von Blanckenhagen, Gisela; Gullikson, Eric M.; Siewert, Frank; Wawro, Andrzej; Bijkerk, Fred

    2013-01-01

    Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7–1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2–0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element. PMID:23412481

  8. Experimental investigations of the swirling flow in the conical diffuser using flow-feedback control technique with additional energy source

    NASA Astrophysics Data System (ADS)

    Tǎnasǎ, C.; Bosioc, A. I.; Susan-Resiga, R. F.; Muntean, S.

    2012-11-01

    The previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water injection along to the axis mitigates the pressure fluctuations associated to the precessing vortex rope [1]. However, for swirling flows similar to Francis turbines operated at partial discharge, the water jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, it was introduced a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser [2]. This is called flow-feedback control technique (FFCT) and it was investigated experimentally in order to assess its capability [3]. The FFCT approach not requires additional energy to supply the jet. Consequently, the turbine efficiency is not diminished due to the volumetric losses injected even if around 10% of the main flow is used. However, the equivalent amplitude of the pressure pulsations associated to the vortex rope decreases with 30% if 10% jet discharge is applied [3]. Using 12% water jet discharge from upstream then the equivalent amplitude of the pressure pulsations is mitigated with 70% according to Bosioc et al. [4]. In our case, an extra 2% jet discharge is required in order to obtain similar results with FFCT. This extra discharge is provided using an additional energy source. Therefore, the paper presents experimental investigation performed with FFCT with additional energy source. The experimental results obtained with this technique are compared against FFCT and the swirling flow with vortex rope, respectively.

  9. Gas-source MBE growth and n-type doping of AlGaAs using TEG, TEA, AsH 3 and Si 2H 6

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Ando, H.; Sandhu, A.; Ishikawa, H.; Sugiyama, Y.

    1991-01-01

    We have studied gas-source molecular beam epitaxy (GSMBE) growth and n-type doping of AlGaAs using triethylgallium, triethylaluminum, arsine (AsH 3) and disilane (Si 2H 6), focusing on (1) the effect of substrate temperature (520-690°C) and AsH 3 flow rate (2-7 SCCM) on the carbon and oxygen incorporation of Al xGa 1- xAs ( x ˜ 0.28), and (2) the variation of the carrier concentration of n-type Al xGa 1- xAs ( x = 0-0.28) with Si 2H 6 flow rate (0.4-10 SCCM). The carbon concentration decreased with increasing substrate temperature up to 610°C, then increased with increasing substrate temperature using an AsH 3 flow rate of 2 SCCM. Below 610°C, an increase in AsH 3 flow rate resulted in a reduction in the carbon concentration. We obtained a carbon concentration of 1 × 10 18 cm -3 at a substrate temperature of 520°C and an AsH 3 flow rate of 7 SCCM. The addition of molecular hydrogen was found to further reduce the carbon concentration, and the lowest value obtained was 8.2 × 10 17 cm -3 at a substrate temperature of 520°C using 4 SCCM AsH 3 and 4.5 SCCM of molecular hydrogen. The oxygen concentration was not affected by the substrate temperature, but showed a slight decrease with increasing AsH 3 flow rate. The lowest oxygen concentration was 2.5 × 10 17 cm -3 at 7 SCCM AsH 3 flow rate. The variation of the hole concentration with growth conditions was similar to that observed for carbon. The 4.2 K photoluminescence was dominated by a free-to-bound emission having a full-width-at-half-maximum of 18 meV, which is thought to be related to shallow carbon acceptors. Si 2H 6 was shown to be a suitable cold n-type gaseous dopant source for GSMBE growth of AlGaAs. The carrier concentration of the n-type Al xGa 1- xAs ( x = 0-0.28) epilayer was reproducibly controlled between 5 × 10 17 and 2 × 10 18 cm -3.

  10. Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H.

    PubMed

    Fehr, M; Schnegg, A; Rech, B; Astakhov, O; Finger, F; Bittl, R; Teutloff, C; Lips, K

    2014-02-14

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by 1H nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si:H. PMID:24580698

  11. Metastable Defect Formation at Microvoids Identified as a Source of Light-Induced Degradation in a-Si :H

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.

    2014-02-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.

  12. Effect of hot carrier stress on RF reliability of 40 nm PMOSFETs with and without SiGe source/drain

    NASA Astrophysics Data System (ADS)

    Tang, Mao-Chyuan; Fang, Yean-Kuen; Wei, Sun-Chin; Chen, David C.; Yeh, Chune-Sin; Huang-Lu, Shiang

    2008-11-01

    For the first time, the effect of hot carrier stress (HCS) on RF reliability of 40 nm PMOSFETs with and without SiGe source/drain (S/D) was studied in detail. After HCS, the extra SiGe S/D mechanical stress deteriorated the hot carrier reliability more by inducing more defects at the interface between the gate oxide and the extension of S/D. However, the SiGe S/D strain did not change the worst HCS condition and the dependence of fT degradation. The fT is still dominated by gm only, even though the Cgs and Cgd have been changed by the SiGe S/D strain.

  13. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  14. On the extraction of the external drain and source resistors and effective channel length in Si-MOSFET

    NASA Astrophysics Data System (ADS)

    Joodaki, M.

    2015-09-01

    This paper focuses on the extraction of drain/source resistance and effective channel length (Leff) of the silicon MOSFET in the linear drain current region. Leff is expressed as a function of drain/source resistance, drain current, threshold voltage, drain voltage, and body-effect coefficient. Using this definition, an additional component of drain/source resistance in the linear drain current region, inversion charge reduction resistance (RΔQ), is introduced which results from the influence of drain/source resistors, internal source/body voltage and drain voltage on the total inversion charge. Finally, a new method for extraction of the drain/source resistance is developed. In this method several parameters that have impact on device behavior are considered. The parameters include gate voltage dependency, short channel effects, and poly gate length dependency. The results presented here are not only very useful for accurate device modeling and characterization, but are also vital to better understanding of the device physics. Furthermore, they can describe shortcomings of the other methods which use devices of different gate lengths. The extracted linear model provides less than 1.07% and 3.3% average absolute error and maximum error, respectively, for all seven devices under test over the gate voltage range of 0.75-2 V.

  15. Analysis of wavelength influence on a-Si crystallization processes with nanosecond laser sources

    NASA Astrophysics Data System (ADS)

    García, O.; García-Ballesteros, J. J.; Munoz-Martin, David; Núñez-Sánchez, S.; Morales, M.; Carabe, J.; Torres, I.; Gandía, J. J.; Molpeceres, C.

    2013-08-01

    In this work we present a detailed study of the wavelength influence in pulsed laser annealing of amorphous silicon thin films, comparing the results for material modification at different fluence regimes in the three fundamental harmonics of standard DPSS (diode pumped solid state) nanosecond laser sources, UV (355 nm), visible (532 nm) and IR (1064 nm). The crystalline fraction (% crystalline silicon) profiles resulted from irradiation of amorphous silicon thin film samples are characterized with MicroRaman techniques. A finite element numerical model (FEM) is developed in COMSOL to simulate the process. The crystalline fraction results and the local temperature evolution in the irradiated area are presented and analyzed in order to establish relevant correlation between theoretical and experimental results. For UV (355 nm) and visible (532 nm) wavelengths, the results of the numerical model are presented together with the experimental results, proving that the process can be easily predicted with an essentially physical model based on heat transport at different wavelengths and fluence regimes. The numerical model helps to establish the optimal operation fluence regime for the annealing process.

  16. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4247 Section 60.4247 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  17. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  18. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Petition (Animal Use); Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed... regulations be amended to provide for the safe use of electron beam and x-ray sources for irradiation of... use of electron beam and x- ray sources for irradiation of poultry feed and poultry feed...

  19. Ge/Si, Ca/Sr and 87Sr/86Sr tracers of biogeochemical sources and cycling of Si and Ca at the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Derry, L. A.; Meek, K.; Sparks, J. P.

    2014-12-01

    Plant uptake and cycling of nutrients is commonly the largest flux of nutrients in terrestrial ecosystems. Hydrologic and other losses are offset by inputs from atmospheric deposition and weathering. We measured elemental and isotopic compositions from soil solution, soil exchange complex, leaves and sapwater from two canopy species, soil and rock samples, and stream and ground waters at the Shale Hills CZO. Xylem fluid and leaf samples have similar Ge/Si < 1 μmo/mol, consistent with fractionation at the root-soil water interface. Ge/Si in soil waters is higher Ge/Si near the surface and increases over the growing season, indicating preferential uptake of Si. Ca/Sr in leaves of Quercus are significantly higher (450±150) than for Acer (200±100), and Ca/Sr is generally higher in leaves than in xylem, consistent with Ca uptake during transpiration. 87Sr/86Sr in both are similar for a given site, implying that the trees access similar pools of Sr and Ca, although there are site-to-site differences. Data on litterfall rates and transpiration rates yield similar estimates of plant cycling of Ca and Si. 87Sr/86Sr in soil solutions from ridgtop and swale sites are well explained by mixing Sr derived from shale and atmospheric deposition. Valley bottom soil solutions and stream and groundwater samples include Sr and Ca derived from dissolution of diagenetic carbonates, found in drill cuttings. A preliminary estimate of the Sr and Ca stream fluxes and isotopic mass balances imply propagation of a carbonate weathering front of ca. 200 m/Ma, faster than previously reported regolith weathering advance rates based on on cosmogenic nuclides and U series (Jin et al., 2010; Ma et al., 2010). These rates are not strictly comparable and differences are at least in part consistent with the greater depth of the carbonate weathering front (Brantley et al, 2013). The data for Ca, Sr, Si and Ge in soil, soil solutions and stream waters reflects the interaction of slower weathering

  20. Analysis of SiC Deposition Rate in a Tubular Hot-Wall Reactor with Polymeric Source Using the DoE Method

    NASA Astrophysics Data System (ADS)

    Jamali Keikha, A.; Fanaei Sheikholeslami, T.; Behzadmehr, A.

    2013-06-01

    Atmospheric-pressure chemical vapor deposition of silicon carbide in a tubular hot-wall reactor using a polymeric source was studied. A three-dimensional model of the reactor was solved numerically based on the finite-volume method. To achieve the best desired conditions, the effects of substrate temperature, mass fraction of polycarbosilane (-Si[CH3]2-), inlet velocity, and substrate location on the SiC deposition rate were considered. These effects were investigated to obtain the optimum conditions by using the design of experiments (DoE) method. Finally, several contours are presented to help designers find suitable reactor conditions for higher performance.

  1. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  2. Superconducting Properties of MgB2 with Addition of Other AlB2-type Diborides and Carbon Sources, Prepared Using High Energy Ball Milling and HIP

    NASA Astrophysics Data System (ADS)

    Rodrigues, Durval; Silva, Lucas B. S. da; Metzner, Vivian C. V.; Hellstrom, Eric E.

    In the present work it is described the production of MgB2 samples by using the mixture of MgB2 with other diborides, (TaB2, VB2, and AlB2) which have the same C32 hexagonal structure as the MgB2, and simultaneous addition with the diborides and SiC, that contribute with C, to replace B in the crystalline structure of the matrix. As an important result, the critical current density (Jc) was improved at low magnetic fields when just the diborides are added. However, when SiC is added simultaneously with the diborides, the result is the improvement of Jc at high fields. The critical temperature (Tc) was maintained high.

  3. Process optimizations to recessed e-SiGe source/drain for performance enhancement in 22 nm all-last high-k/metal-gate pMOSFETs

    NASA Astrophysics Data System (ADS)

    Qin, Changliang; Wang, Guilei; Hong, Peizhen; Liu, Jinbiao; Yin, Huaxiang; Yin, Haizhou; Ma, Xiaolong; Cui, Hushan; Lu, Yihong; Meng, Lingkuan; Xiang, Jinjuan; Zhong, Huicai; Zhu, Huilong; Xu, Qiuxia; Li, Junfeng; Yan, Jian; Zhao, Chao; Radamson, Henry H.

    2016-09-01

    In this paper, the technology of recessed embedded SiGe (e-SiGe) source/drain (S/D) module is optimized for the performance enhancement in 22 nm all-last high-k/metal-gate (HK/MG) pMOSFETs. Different Si recess-etch techniques were applied in S/D regions to increase the strain in the channel and subsequently, improve the performance of transistors. A new recess-etch method consists of a two-step etch method is proposed. This process is an initial anisotropic etch for the formation of shallow trench followed by a final isotropic etch. By introducing the definition of the upper edge distance (D) between the recessed S/D region and the channel region, the process advantage of the new approach is clearly presented. It decreases the value of D than those by conventional one-step isotropic or anisotropic etch of Si. Therefore, the series resistance is reduced and the channel strain is increased, which confirmed by the simulation results. The physical reason of D reducing is analyzed in brief. Applying this recess design, the implant conditions for S/D extension (SDE) are also optimized by using a two-step implantation of BF2 in SiGe layers. The overlap space between doping junction and channel region has great effect on the device's performance. The designed implantation profile decreases the overlap space while keeps a shallow junction depth for a controllable short channel effect. The channel resistance as well as the transfer ID-VG curves varying with different process conditions are demonstrated. It shows the drive current of the device with the optimized SDE implant condition and Si recess-etch process is obviously improved. The change trend of on-off current distributions extracted from a series of devices confirmed the conclusions. This study provides a useful guideline for developing high performance strained PMOS SiGe technology.

  4. Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Nagao, Shijo; Suganuma, Katsuaki

    2015-10-01

    To improve the high-temperature reliability of sintered Ag joints, three types of silicon carbide particle (SiCp) of different size and morphology were added to Ag micron-flake paste. Quality sintered joints between Cu dummy chips and Cu substrate were obtained at a relatively low temperature (250°C), in air, under low load (0.4 MPa), and 35 MPa die-shear strength was achieved. High-temperature stability was investigated by means of aging tests at 150, 200, and 250°C for 500 h, and by thermal cycling between -50°C and 250°C for up to 170 cycles. The best distribution and compatibility with porous sintered Ag structures was observed for sub-micron SiC particles with an average diameter of 600 nm. After high-temperature storage for 500 h at 250°C, mean Ag grain size of the SiC-containing joints was unchanged whereas that for pure sintered Ag increased from 1.1 to 2.5 μm. Ag joints containing the optimum amount (2 wt.%) of SiCp retained their original strength (20 MPa) after storage at 250°C for 500 h. The shear strength of Ag joints without added SiCp decreased from 27 to 7 MPa after 500 h because of grain growth, which obeyed the classical parabolic law. Grain growth in pure Ag joints is discussed in terms of a temperature-dependent exponent n and activation energy Q. Our SiCp-containing joints resisted the grain growth that induces interfacial cracks during thermal cycling.

  5. Escaping the Tyranny of Carbothermal Reduction: Fumed Silica from Sustainable, Green Sources without First Having to Make SiCl4.

    PubMed

    Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M

    2016-02-12

    Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2)  g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. PMID:26699804

  6. Impact of pattern dependency of SiGe layers grown selectively in source/drain on the performance of 22 nm node pMOSFETs

    NASA Astrophysics Data System (ADS)

    Wang, Guilei; Moeen, M.; Abedin, A.; Xu, Yefeng; Luo, Jun; Guo, Yiluan; Qin, Changliang; Tang, Zhaoyun; Yin, Haizhou; Li, Junfeng; Yan, Jiang; Zhu, Huilong; Zhao, Chao; Chen, Dapeng; Ye, Tianchun; Kolahdouz, M.; Radamson, Henry H.

    2015-12-01

    Pattern dependency of selective epitaxy of Si1-xGex (0.20 ⩽ x ⩽ 0.45) grown in recessed source/drain regions of 22 nm pMOSFETs has been studied. A complete substrate mapping over 200 mm wafers was performed and the transistors' characteristics were measured. The designed SiGe profile included a layer with Ge content of 40% at the bottom of recess (40 nm) and capped with 20% Ge as a sacrificial layer (20 nm) for silicide formation. The induced strain in the channel was simulated before and after silicidation. The variation of strain was localized and its effect on the transistors' performance was determined. The chips had a variety of SiGe profile depending on their distance (closest, intermediate and central) from the edge of the 200 mm wafer. SiGe layers with poor epi-quality were observed when the coverage of exposed Si of the chip was below 1%. This causes high Ge contents with layer thicknesses above the critical thickness.

  7. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs.

    PubMed

    Case, C L; Carlson, M S

    2002-07-01

    Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding

  8. In situ sol-gel composition of multicomponent hybrid precursors to luminescent novel unexpected microrod of Y 2SiO 5:Eu 3+ employing different silicate sources

    NASA Astrophysics Data System (ADS)

    Huang, Honghua; Yan, Bing

    2004-12-01

    Y 2SiO 5 doped with Eu 3+ were in situ synthesized by a hybrid precursor assembly sol-gel technology employing four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM result shows that there exist some novel unexpected morphological microrod structures owing to using the crosslinking reagents other than TEOS as silicate source. The photoluminescent properties of Y 2SiO 5:Eu 3+ have been studied as a function of Eu 3+ doping concentration. A cross-relaxation process between identical Eu 3+ ions results in the quenching of the 5D 1 emission for high concentration sample.

  9. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  10. Combinations of siRNAs against La Autoantigen with NS5B or hVAP-A Have Additive Effect on Inhibition of HCV Replication

    PubMed Central

    Mandal, Anirban; Ganta, Krishna Kumar

    2016-01-01

    Hepatitis C virus is major cause of chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Presently available direct-acting antiviral drugs have improved success rate; however, high cost limits their utilization, especially in developing countries like India. In the present study, we evaluated anti-HCV potential of several siRNAs targeted against the HCV RNA-dependent RNA polymerase NS5B and cellular factors, La autoantigen, PSMA7, and human VAMP-associated protein to intercept different steps of viral life cycle. The target genes were downregulated individually as well as in combinations and their impact on viral replication was evaluated. Individual downregulation of La autoantigen, PSMA7, hVAP-A, and NS5B resulted in inhibition of HCV replication by about 67.2%, 50.7%, 39%, and 52%, respectively. However, antiviral effect was more pronounced when multiple genes were downregulated simultaneously. Combinations of siRNAs against La autoantigen with NS5B or hVAP-A resulted in greater inhibition in HCV replication. Our findings indicate that siRNA is a potential therapeutic tool for inhibiting HCV replication and simultaneously targeting multiple viral steps with the combination of siRNAs is more effective than silencing a single target. PMID:27446609

  11. Combinations of siRNAs against La Autoantigen with NS5B or hVAP-A Have Additive Effect on Inhibition of HCV Replication.

    PubMed

    Mandal, Anirban; Ganta, Krishna Kumar; Chaubey, Binay

    2016-01-01

    Hepatitis C virus is major cause of chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Presently available direct-acting antiviral drugs have improved success rate; however, high cost limits their utilization, especially in developing countries like India. In the present study, we evaluated anti-HCV potential of several siRNAs targeted against the HCV RNA-dependent RNA polymerase NS5B and cellular factors, La autoantigen, PSMA7, and human VAMP-associated protein to intercept different steps of viral life cycle. The target genes were downregulated individually as well as in combinations and their impact on viral replication was evaluated. Individual downregulation of La autoantigen, PSMA7, hVAP-A, and NS5B resulted in inhibition of HCV replication by about 67.2%, 50.7%, 39%, and 52%, respectively. However, antiviral effect was more pronounced when multiple genes were downregulated simultaneously. Combinations of siRNAs against La autoantigen with NS5B or hVAP-A resulted in greater inhibition in HCV replication. Our findings indicate that siRNA is a potential therapeutic tool for inhibiting HCV replication and simultaneously targeting multiple viral steps with the combination of siRNAs is more effective than silencing a single target. PMID:27446609

  12. Dissociation of Si{sup +} ion implanted and as-grown thin SiO{sub 2} layers during annealing in ultra-pure neutral ambient by emanation of SiO

    SciTech Connect

    Beyer, V.; Borany, J. von; Heinig, K.-H.

    2007-03-01

    We have observed a very inhomogeneous dissociation of stoichiometric and non-stoichiometric thin SiO{sub 2} layers (thermally grown on Si substrates) during high temperature annealing at a low partial pressure of oxygen. During this process some silicon of the (100)Si substrate and, in case of Si ion implantation, and additionally, excess Si is consumed. The SiO{sub 2} dissociation has been studied by electron microscopy and Rutherford backscattering spectrometry. Large holes (>1 {mu}m) in non-implanted oxide layers have been observed which evolve probably from defects located at the Si/SiO{sub 2} interface. For Si implanted SiO{sub 2} additionally the formation of voids within the oxide during annealing has been observed preferably at the position of the implanted Si excess. Oxygen vacancies are possibly emitted from Si/SiO{sub 2} interfaces into the oxide and migrate through SiO{sub 2} with long-range distortions of the oxide network. In that way the hole and void formation in the oxide can be explained by oxygen-vacancy formation, migration and silicon-monoxide (SiO) emanation. As a driving force for growth of the large holes we identified oxygen diffusion from the Si/SiO{sub 2} interface to the bare Si surface. This surface is a sink of oxygen diffusion due to the emanation of volatile SiO, whereas the Si/SiO{sub 2} interface serves as an oxygen source. The predicted mechanism is consistent with the geometry of the holes in the SiO{sub 2} layer.

  13. Monitoring the kinetic evolution of self-assembled SiGe islands grown by Ge surface thermal diffusion from a local source.

    PubMed

    Vanacore, G M; Zani, M; Bollani, M; Bonera, E; Nicotra, G; Osmond, J; Capellini, Giovanni; Isella, G; Tagliaferri, A

    2014-04-01

    In this paper we experimentally study the growth of self-assembled SiGe islands formed on Si(001) by exploiting the thermally activated surface diffusion of Ge atoms from a local Ge source stripe in the temperature range 600-700 °C. This new growth strategy allows us to vary continuously the Ge coverage from 8 to 0 monolayers as the distance from the source increases, and thus enables the investigation of the island growth over a wide range of dynamical regimes at the same time, providing a unique birds eye view of the factors governing the growth process and the dominant mechanism for the mass collection by a critical nucleus. Our results give experimental evidence that the nucleation process evolves within a diffusion limited regime. At a given annealing temperature, we find that the nucleation density depends only on the kinetics of the Ge surface diffusion resulting in a universal scaling distribution depending only on the Ge coverage. An analytical model is able to reproduce quantitatively the trend of the island density. Following the nucleation, the growth process appears to be driven mainly by short-range interactions between an island and the atoms diffusing within its vicinities. The islands volume distribution is, in fact, well described in the whole range of parameters by the Mulheran's capture zone model. The complex growth mechanism leads to a strong intermixing of Si and Ge within the island volume. Our growth strategy allows us to directly investigate the correlation between the Si incorporation and the Ge coverage in the same experimental conditions: higher intermixing is found for lower Ge coverage. This confirms that, besides the Ge gathering from the surface, also the Si incorporation from the substrate is driven by the diffusion kinetics, thus imposing a strict constraint on the initial Ge coverage, its diffusion properties and the final island volume. PMID:24594569

  14. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)

    NASA Astrophysics Data System (ADS)

    Wang, G. L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C. L.; Zhu, H. L.; Yan, J.; Yin, H. Z.; Li, J. F.; Zhao, C.; Radamson, H. H.

    2013-09-01

    SiGe has been widely used for source/drain (S/D) engineering in pMOSFETs to enhance channel mobility. In this study, selective Si1-xGex growth (0.25 ≤ x ≤ 0.35) with boron concentration of 1-3 × 1020 cm-3 in the process for 22 nm node complementary metal-oxide semiconductor (CMOS) has been investigated and optimized. The growth parameters were carefully tuned to achieve deposition of high quality and highly strained material. The thermal budget was decreased to 800 °C to suppress dopant diffusion, to minimize Si loss in S/D recesses, and to preserve the S/D recess shape. Two layers of Si1-xGex were deposited: a bottom layer with high Ge content (x = 0.35) which filled the recess and a cap layer with low Ge content (x = 0.25) which was elevated in the S/D regions. The elevated SiGe cap layer was intended to be consumed during the Ni-silicidation process in order to avoid strain reduction in the channel region arising from strain relaxation in SiGe S/D. In this study, a kinetic gas model was also applied to predict the pattern dependency of the growth and to determine the epi-profile in different transistor arrays. The input parameters include growth temperature, partial pressures of reactant gases, and chip layout. By using this model, the number of test wafers for epitaxy experiments can be decreased significantly. When the epitaxy process parameters can be readily predicted by the model for epi-profile control in an advanced chip design, fast and cost-effective process development can be achieved.

  15. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2

  16. Study on the lifetime of Mo/Si multilayer optics with pulsed EUV-source at the ETS

    NASA Astrophysics Data System (ADS)

    Schürmann, Mark; Yulin, Sergiy; Nesterenko, Viatcheslav; Feigl, Torsten; Kaiser, Norbert; Tkachenko, Boris; Schürmann, Max C.

    2011-06-01

    As EUV lithography is on its way into production stage, studies of optics contamination and cleaning under realistic conditions become more and more important. Due to this fact an Exposure Test Stand (ETS) has been constructed at XTREME technologies GmbH in collaboration with Fraunhofer IOF and with financial support of Intel Corporation. This test stand is equipped with a pulsed DPP source and allows for the simultaneous exposure of several samples. In the standard set-up four samples with an exposed area larger than 35 mm2 per sample can be exposed at a homogeneous intensity of 0.25 mW/mm2. A recent update of the ETS allows for simultaneous exposures of two samples with intensities up to 1.0 mW/mm2. The first application of this alternative set-up was a comparative study of carbon contamination rates induced by EUV radiation from the pulsed source with contamination rates induced by quasicontinuous synchrotron radiation. A modified gas-inlet system allows for the introduction of a second gas to the exposure chamber. This possibility was applied to investigate the efficiency of EUV-induced cleaning with different gas mixtures. In particular the enhancement of EUV-induced cleaning by addition of a second gas to the cleaning gas was studied.

  17. Effect of the addition of Mn on the tensile properties of a spray-formed and extruded Al-9Si-4Cu-1Fe alloy

    NASA Astrophysics Data System (ADS)

    Benetti, G. D.; Jorge, A. M., Jr.; Kiminami, C. S.; Botta, W. J.; Bolfarini, C.

    2009-01-01

    The microstructure and the tensile properties of a spray-formed and extruded Al- 9Si-4Cu-1Fe alloy were investigated. Manganese (0.3, 1, 2 in wt%) was added to the alloy to avoid the formation of the needle-like β-AlFeSi intermetallic phases that are highly detrimental to the alloy's ductility. The deposits were extruded at 623K with a n area reduction of 5 to 1. Small faceted dispersoids surrounding the equiaxial α-Al matrix, mainly in the form of silicon particles, were identified by SEM-EDS, as well as the Mn-containing α-Al15(Fe,Mn)3Si2 phase. The presence of the needle-like β-Al(Fe,Mn)Si was scanty, even with the lowest Mn content. The room temperature tensile tests of all the extruded alloys showed a significant increase in elongation to fracture when compared with the values observed fo r the as-spray formed deposits.This result can be ascribed to the elimination of porosity promoted by the extrusion process and to the smaller grain size of the extruded samples. PUBLISHER'S NOTE This article by Benetti et al was published in error, it was a duplicate of article 012114 which appears later in this volume, the duplicate PDF and references have been deleted. The missing article by S Jayalakshmi, E Fleury and D J Sordelet, which forms part of the section HYDROGEN IN METASTABLE ALLOYS, now appears at the end of the volume (012120).

  18. Sintering behavior of mullite with addition of SiO2-MgO-Y2O3-SrCO3

    NASA Astrophysics Data System (ADS)

    Lim, Chang-Bin; Yeo, Dong-Hun; Shin, Hyo-Soon

    2013-12-01

    As the size of semiconducting silicon (Si) wafers increases, that of the ceramic substrate, which is main part of a semiconductor probing system, has also increased. The increased number of layers due to high integrity of Si wafers and the narrow pattern linewidths for impedance matching require the use of Cu-Mo conducting paste, rather than conventional Mo paste, for low electrical resistivity. For co-firing of a Cu-Mo electrode with a ceramic substrate, a green ceramic substrate with a printed pattern must be sintered at a temperature below 1400 °C. To obtain a mullite composition that can be co-fired with a Cu-Mo electrode at a temperature below 1400 °C, we added 1.0 wt% of SiO2, 1.0 wt% of MgO, 1.5 wt% of Y2O3, and 7.0 wt% of SrCO3 to a commercial mullite composition, and we sintered the specimen with that composition at 1350 °C in a reducing atmosphere to obtain a density of 3.20 g/cm3. The sintered specimen's coefficient of thermal expansion at temperatures from room temperature to 200 °C was 4.53 ppm/°C, which is acceptable for a semiconductor probing system.

  19. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  20. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  1. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  2. 26 CFR 31.6001-5 - Additional records in connection with collection of income tax at source on wages.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue Code of 1954) § 31.6001-5 Additional... (Forms W-4 and W-4E) filed with the employer by the employee. (14) The agreement, if any, between...

  3. Fluorescence enhancement of single-phase red-blue emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors via Dy3+ addition for plant cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Ling-Yun; Wang, Da-Jian; Mao, Zhi-Yong; Liu, Yan-Hua; Li, Xue-Zheng; Lu, Qi-Fei

    2009-01-01

    Fluorescence enhancement of red and blue concurrently emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors for plant cultivation has been investigated by Dy3+ addition. The Ba3MgSi2O8:Eu2+,Mn2+,Dy3+(BMS-EMD) phosphors have two-color emissions at the wavelength peak values of 437 nm and 620 nm at the excitation of 350 nm. The two emission bands are coincident with the absorption spectrum for photosynthesis of plants. An obvious enhancement effect has been observed upon addition of Dy3+ with amount of 0.03 mol%, in which the intensities of both blue and red bands reach a maximum. The origin of red and blue emission bands is analysed. The photochromic parameters of the samples at the nearly UV excitation are tested. This fluoresence enhancement is of great significance for special solid state lighting equipment used in plant cultivation.

  4. Observations on the Influence of Secondary Me Oxides Additives (Me=Si,Al, Mg) on the Microstructural Evolution and Mechanical Behavior of Silicon Nitride Ceramics Containing RE2O3 (RE=La, Gd, Lu)

    SciTech Connect

    Becher, Paul F; Averill, Frank; Lin, Hua-Tay; Waters, Shirley B; Shibata, Naoya; Painter, Gayle S; van Benthem, Klaus

    2010-01-01

    The evolution of β Si3N4 microstructures is influenced by the adsorption of rare earth elements at grain surfaces and by the viscosity of the intergranular phases. Theoretical and STEM studies show that the RE atoms exhibit different tendencies to segregate from the liquid phase to grain surfaces and different binding strengths at these surfaces. When combined with MgO (or Al2O3) secondary additions, the rare earth additives are combined in low viscosity intergranular phases during densification and the α to β phase transformation and microstructural evolution are dominated by the RE adsorption behavior. On the other hand, a much higher viscosity intergranular phase forms when the RE2O3 are combined with SiO2. While the rare earth adsorption behavior remains the same, the phase transformation and microstructure are now dominated by Si3N4 solubility and transport in the high liquid phase. By understanding these additive effects, one can develop reinforced microstructures leading silicon nitride ceramics with greatly improved mechanical behavior.

  5. Effects of addition of supramolecular assembly on the anatase nanocrystalline precipitation of sol-gel derived SiO2-TiO2 coating films by hot-water treatment.

    PubMed

    Katagiri, Kiyofumi; Harada, Genki; Matsuda, Atsunori; Kogure, Toshihiro; Muto, Hiroyuki; Sakai, Mototsugu

    2006-06-01

    Effects of the addition of a supramolecular assembly of cetyltrimethylammonium bromide in SiO2-TiO2 gel films on the formation of anatase type TiO2 nanocrystals with hot-water treatment were investigated. Anatase nanocrystals were formed in the whole SiO2-TiO2 gel films with the addition of cetyltrimethylammonium bromide by the treatment, whereas the nanocrystals were formed only on the film surface in the case of gel films without cetyltrimethylammonium bromide. Cetyltrimethylammonium bromide molecules in the SiO2-TiO2 gel films were completely removed by the hot-water treatment and the following UV irradiation. In the usual procedure for preparation of porous materials, the removal of template molecular assemblies required high temperature treatment over 400 degrees C. In this system, all the processes were performed at temperatures less than 100 degrees C. Additionally, the porous structure produced by the removal of micellar assembly allowed anatase nanocrystals to be formed inside the films. Therefore, the method presented in this work provides us with the novel photocatalyst coatings of porous membrane with highly-dispersed TiO2 nanocrystals via low temperature process. PMID:17025087

  6. Photochemical additions of cyclo-(Ar{sub 2}Si){sub 4} and (Ar{sub 2}Ge){sub 4} to C{sub 60}

    SciTech Connect

    Kusukawa, Takahiro; Kabe, Yoshio; Ando, Wataru

    1995-05-01

    The photochemical reaction of cyclotetrasilane 1a with C{sub 60} afforded stable 1:1 adducts 2a and 3a; the latter was obtained from a rearrangement of the cyclotetrasilane unit. Similarly, cyclotetragermane 1c gave 2c and the rearranged product 3c. In the case of cyclotetrasilane 1b, only the rearranged product 3b was obtained in high yield. The structures of all compounds were determined by spectroscopic methods, including {sup 29}Si-{sup 1}H HMBC hetero nuclear shift correlation experiments. 15 refs., 1 fig.

  7. In situ sol-gel composition of multicomponent hybrid precursor to hexagon-like Zn 2SiO 4:Tb 3+ microcrystalline phosphors with different silicate sources

    NASA Astrophysics Data System (ADS)

    Huang, Honghua; Yan, Bing

    2006-02-01

    Zn 2SiO 4 doped with Tb 3+ were in situ synthesized by a modified sol-gel technology with the assembly hybrid precursor employed four different silicate sources, i.e. 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM result shows that there exist some novel unexpected micromorphological structures of hexagon-like with the dimension of 0.5-1.0 μm. The photoluminescent properties of Zn 2SiO 4:Tb 3+ phosphors have been studied as a function of Tb 3+ doping concentration. Cross-relaxation process between identical Tb 3+ ions results in the quenching of the 5D 3 emission for high concentration sample.

  8. Identification of the SiCC radical toward IC +10216 - The first molecular ring in an astronomical source

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Cummins, S. E.; Linke, R. A.

    1984-01-01

    In the radio spectrum of the envelope of the evolved carbon star IRC +10216, the fraction of lines from exotic molecules seldom or never observed in the terrestrial laboratory is exceptionally high. At least 20 lines have not been identified, and it is not known whether one, two, or a number of new molecules are involved. It is shown in the present investigation that nine of the previously unidentified lines in IRC +10216 are produced by SiCC, a radical long known to exist in stellar atmospheres. The true ground-state geometry of this radical has only been obtained recently on the basis of an elegant two-photon ionization experiment in a supersonic molecular beam. Information regarding the molecular geometry and lower rotational levels of SiCC is presented in a graph. The intensities of the SiCC lines confirm the assignments, yield new data on the temperature and density in the envelope of IRC +10216, and indicate that the amount of SiCC there is substantial.

  9. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    NASA Astrophysics Data System (ADS)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  10. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  11. Effect of SiO2 and Al2O3 addition on the density, Tg and CTE of mixed alkali - alkaline earth borate glass

    NASA Astrophysics Data System (ADS)

    Deshpande, A. M.; Deshpande, V. K.

    2009-07-01

    Mixed alkali — alkaline earth borate glasses, with the addition of silica and alumina, have been studied for their density, Tg and CTE with a view of exploring the applicability of these glasses in glass to metal sealing applications. It has been observed that silica addition results in an increase in density and Tg while the alumina addition decreases the density and Tg. The variation in CTE exhibits minima with the addition of both, silica and alumina. An attempt is made here to explain the observed variations in the properties on the basis of different mass of the additives, number of non bridging oxygens (NBOs) and other changes in the glass network.

  12. Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source.

    PubMed

    Sassano, Carlos E N; Carvalho, João C M; Gioielli, Luiz A; Sato, Sunao; Torre, Paolo; Converti, Attilio

    2004-03-01

    The cyanobacterium Spirulina platensis was cultivated in bench-scale miniponds on bicarbonate/carbonate solutions using urea as nitrogen source. To minimize limitation and inhibition phenomena, urea was supplied semicontinuously using exponentially increasing feeding rates. The average growth rates obtained alternately varying the total mass of urea added per unit reactor volume (275 < mT < 725 mg/L) and the total feeding time (9 < tT < 15 d) clearly evidenced nitrogen limitation for mT< 500 mg/L and excess nitrogen inhibition above this threshold. The time behavior of the specific growth rate at variable urea feeding patterns allowed estimation of the time-dependent Gibbs energy dissipation for cell growth under the actual depletion conditions of fed-batch cultivations. Comparison of the yield of growth on Gibbs energy obtained using either urea or KNO3 pointed to the preference of S. platensis for the former nitrogen source, likely owing to more favorable bioenergetic conditions. PMID:15007182

  13. Role of adsorption kinetics in the low-temperature Si growth by gas-source molecular beam epitaxy: In situ observations and detailed modeling of the growth

    SciTech Connect

    Murata, Takeshi; Nakazawa, Hideki; Tsukidate, Yoshikazu; Suemitsu, Maki

    2001-08-06

    The growth rate and surface hydrogen coverage during Si gas-source molecular beam epitaxy using disilane have been obtained as functions of both the growth temperature and the source-gas pressure. The activation energy of the low-temperature (<600{sup o}C) growth rate was found to increase with the source-gas pressure, indicating a contribution by the adsorption process in these low-temperature growth kinetics. Several growth models have been constructed based on the results, among which the two-site/four-site-adsorption model [M. Suemitsu Jpn. J. Appl. Phys., Part 236, L625 (1997)] showed the best fit to both the growth rate and the hydrogen coverage. {copyright} 2001 American Institute of Physics.

  14. In situ time-resolved X-ray diffraction of tobermorite formation in autoclaved aerated concrete: Influence of silica source reactivity and Al addition

    SciTech Connect

    Matsui, Kunio; Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Sato, Masugu

    2011-05-15

    The hydrothermal formation of tobermorite during the processing of autoclaved aerated concrete was investigated by in situ X-ray diffraction (XRD) analysis. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. To investigate the effects of the silica source, reactive quartz from chert and less-reactive quartz from quartz sand were used as starting materials. The effect of Al addition on tobermorite formation was also studied. In all cases, C-S-H, hydroxylellestadite and katoite were clearly observed as intermediates. Acceleration of tobermorite formation by Al addition was clearly observed. However, Al addition did not affect the dissolution rate of quartz. Two pathways, via C-S-H and katoite, were also observed in the Al-containing system. These results suggest that the structure of initially formed C-S-H is important for the subsequent tobermorite formation reactions.

  15. Sources of lunar magnetic anomalies and their bulk directions of magnetization - Additional evidence from Apollo orbital data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1982-01-01

    A relatively high-amplitude magnetic anomaly directly detected with the Apollo 15 subsatellite magnetometer and centered near the crater Gerasimovich on the southeastern lunar far side is found to correlate with the location of a conspicuous Reiner Gamma-type swirl marking visible on a Zond 8 photograph. Examinations of available direct and indirect orbital magnetics measurements demonstrate that most strong anomalies occur in areas where morphologically similar markings are concentrated. Even though photogeologic studies indicate an impact-related origin for the swirls, both the swirls and their associated strong anomalies tend to exist preferentially in or near areas that have been seismically modified. Modeling of improved vector magnetic anomaly maps is used to infer 28 independent bulk directions of magnetization for relatively strong and isolated lunar magnetic anomaly sources.

  16. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source.

    PubMed

    Bhargava, Swapnil; Wenger, Kevin S; Rane, Kishore; Rising, Vanessa; Marten, Mark R

    2005-03-01

    For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. PMID:15643626

  17. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    USGS Publications Warehouse

    Moseman-Valtierra, S.; Gonzalez, R.; Kroeger, K.D.; Tang, J.; Chao, W.C.; Crusius, J.; Bratton, J.; Green, A.; Shelton, J.

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m-2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged -33 ??mol N2O m-2 day-1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 ??mol N2O m-2 day-1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half the magnitude of typical

  18. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N 2O

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John; Green, Adrian; Shelton, James

    2011-08-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N 2O, CH 4, and CO 2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N 2O, CH 4 and respiratory CO 2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO 3 equivalent to 1.4 g N m -2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N 2O and CH 4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N 2O in July 2009 averaged -33 μmol N 2O m -2 day -1. However, within 1 h of nutrient additions, N 2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH 4 fluxes were not significantly affected. N 2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N 2O m -2 day -1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N 2O and CH 4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N 2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N 2O and CH 4 fluxes observed, exceeded half

  19. Effects of MgO and Al2O3 Addition on Redox State of Chromium in CaO-SiO2-CrO x Slag System by XPS Method

    NASA Astrophysics Data System (ADS)

    Wang, Li-jun; Yu, Ji-peng; Chou, Kuo-chih; Seetharaman, Seshadri

    2015-08-01

    The effects of MgO and Al2O3 on the redox state of chromium in CaO-SiO2-CrO x system have been investigated at 1873 K (1600 °C) under Ar-CO-CO2 atmosphere and analyzed by means of X-ray photoelectron spectroscopy. From the analysis of the Cr 2p core level spectra, it was found that both Cr(II) and Cr(III) exist simultaneously in CaO-MgO/Al2O3-SiO2-CrO x , and the quantitative ratio Cr(II)/Cr(III) has been obtained by deducing from the area under the computer-resolved peaks. Substitutions of CaO by MgO, SiO2 by Al2O3 favored the Cr(II) state existing in the system in the composition ranges of 3 to 10 wt pct MgO and 5 to 20 pct Al2O3. Meanwhile, from the analysis of the O1s spectra in CaO-MgO-SiO2-CrO x , it was found that the ratio of the non-bridging oxygen content increased first due to the CrO contribution to the electron distribution uniformly as O- at MgO low content. Afterward, it went to decreasing with continuing addition of MgO because ionic contribution of MgO is less than that of CaO and the influence of the CrO clustering on the non-Bridging oxygen is limited due to only 5 wt pct CrO x . In CaO-Al2O3-SiO2-CrO x system, Cr(II) acts as a network modifier to compensate Al3+ charge balance to make the structure stable, so the non-bridge oxygen in this system continues decreasing.

  20. Stem effect of a Ce3+ doped SiO2 optical dosimeter irradiated with a 192Ir HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Carrara, Mauro; Tenconi, Chiara; Guilizzoni, Roberta; Borroni, Marta; Cavatorta, Claudia; Cerrotta, Annamaria; Fallai, Carlo; Gambarini, Grazia; Vedda, Anna; Pignoli, Emanuele

    2014-11-01

    Fiber-optic-coupled scintillation dosimeters are characterized by their small active volume if compared to other existing systems. However, they potentially show a greater stem effect, especially in external beam radiotherapy where the Cerenkov effect is not negligible. In brachytherapy, due to the lower energies and the shorter high dose range of the employed sources, the impact of the stem effect to the detector accuracy might be low. In this work, the stem effect of a Ce3+ doped SiO2 scintillation detector coupled to a SiO2 optical fiber was studied for high dose rate brachytherapy applications. Measurements were performed in a water phantom at changing source-detector mutual positions. The same irradiations were performed with a passive optical fiber, which doesn't have the dosimeter at its end. The relative contribution of the passive fiber with respect to the uncorrected readings of the detector in each one of the investigated source dwell positions was evaluated. Furthermore, the dosimeter was calibrated both neglecting and correcting its response for the passive fiber readings. The obtained absolute dose measurements were then compared to the dose calculations resulting from the treatment planning system. Dosimeter uncertainties with and without taking into account the passive fiber readings were generally below 2.8% and 4.3%, respectively. However, a particular exception results when the source is positioned near to the optical fiber, where the detector underestimates the dose (-8%) or at source-detector longitudinal distances higher than 3 cm. The obtained results show that the proposed dosimeter might be adopted in high dose rate prostate brachytherapy with satisfactory accuracy, without the need for any stem effect correction. However, accuracy further improves by subtraction of the noise signal produced by the passive optical fiber.

  1. The influence of Ga additions on electric and magnetic properties of Co{sub 47}Fe{sub 21}B{sub 21}Si{sub 5}Nb{sub 6} alloy in crystal and liquid states

    SciTech Connect

    Sidorov, V. Rojkov, I.; Mikhailov, V.; Svec, P.; Janickovic, D.

    2015-08-17

    The influence of small additions of gallium on electric resistivity and magnetic susceptibility of the bulk glass forming Co{sub 47}Fe{sub 20.9}B{sub 21.2}Si{sub 4.6}Nb{sub 6.3} alloy was studied in a wide temperature range up to 1830 K. Gallium atoms were found to increase resistivity but decrease susceptibility of the alloy. The suppositions about clusters surrounding Ga atoms in the melt and new GFA criterion are given.

  2. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants. PMID:24411365

  3. Promotional effects of Al{sub 2}O{sub 3} addition to Co/SiO{sub 2} catalysts for Fischer-Tropsch synthesis

    SciTech Connect

    Yi Zhang; Satoshi Nagamori; Sukamon Hinchiranan; Tharapong Vitidsant; Noritatsu Tsubaki

    2006-03-15

    The addition of a small amount of Al{sub 2}O{sub 3} to silica-supported cobalt catalysts significantly increased the dispersion of cobalt and Co-metallic surface area, resulting in the remarkable enhancement of the Fischer-Tropsch synthesis (FTS) activity in the slurry-phase reaction. The addition of Al{sub 2}O{sub 3} adjusted the interaction between cobalt and the silica support quite well, realizing the favored dispersion and reduction degree of supported cobalt and leading to high catalytic activity in FTS. The properties of various catalysts were characterized by in situ DRIFT, XRD, TPR, N{sub 2} physisorption, and H{sub 2} chemisorption. 16 refs., 3 figs., 2 tabs.

  4. Fabrication and Characteristics of an nc-Si/c-Si Heterojunction MOSFETs Pressure Sensor

    PubMed Central

    Zhao, Xiaofeng; Wen, Dianzhong; Li, Gang

    2012-01-01

    A novel nc-Si/c-Si heterojunction MOSFETs pressure sensor is proposed in this paper, with four p-MOSFETs with nc-Si/c-Si heterojunction as source and drain. The four p-MOSFETs are designed and fabricated on a square silicon membrane by CMOS process and MEMS technology where channel resistances of the four nc-Si/c-Si heterojunction MOSFETs form a Wheatstone bridge. When the additional pressure is P, the nc-Si/c-Si heterojunction MOSFETs pressure sensor can measure this additional pressure P. The experimental results show that when the supply voltage is 3 V, length-width (L:W) ratio is 2:1, and the silicon membrane thickness is 75 μm, the full scale output voltage of the pressure sensor is 15.50 mV at room temperature, and pressure sensitivity is 0.097 mV/kPa. When the supply voltage and L:W ratio are the same as the above, and the silicon membrane thickness is 45 μm, the full scale output voltage is 43.05 mV, and pressure sensitivity is 2.153 mV/kPa. Therefore, the sensor has higher sensitivity and good temperature characteristics compared to the traditional piezoresistive pressure sensor. PMID:22778646

  5. Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer

    NASA Astrophysics Data System (ADS)

    Linder, K. K.; Zhang, F. C.; Rieh, J.-S.; Bhattacharya, P.; Houghton, D.

    1997-06-01

    The reduction of the dislocation density in relaxed SiGe/Si heterostructures using a low-temperature Si(LT-Si) buffer has been investigated. We have shown that a 0.1 μm LT-Si buffer reduces the threading dislocation density in mismatched Si0.85Ge0.15/Si epitaxial layers as low as ˜104cm-2. Samples were grown by both gas-source molecular beam epitaxy and ultrahigh vacuum chemical vapor deposition.

  6. Strain mapping of tensiley strained silicon transistors with embedded Si1-yCy source and drain by dark-field holography

    NASA Astrophysics Data System (ADS)

    Hüe, Florian; Hÿtch, Martin; Houdellier, Florent; Bender, Hugo; Claverie, Alain

    2009-08-01

    Dark-field holography, a new transmission electron microscopy technique for mapping strain distributions at the nanoscale, is used to characterize strained-silicon n-type transistors with a channel width of 65 nm. The strain in the channel region, which enhances electron mobilities, is engineered by recessed Si0.99C0.01 source and drain stressors. The strain distribution is measured across an array of five transistors over a total area of 1.6 μm wide. The longitudinal tensile strain reaches a maximum of 0.58%±0.02% under the gate oxide. Theoretical strain maps obtained by finite element method agree well with the experimental results.

  7. Addition Reactions of Me3 SiCN with Aldehydes Catalyzed by Aluminum Complexes Containing in their Coordination Sphere O, S, and N Ligands.

    PubMed

    Yang, Zhi; Yi, Yafei; Zhong, Mingdong; De, Sriman; Mondal, Totan; Koley, Debasis; Ma, Xiaoli; Zhang, Dongxiang; Roesky, Herbert W

    2016-05-10

    The reaction of one equivalent of LAlH2 (1; L=HC(CMeNAr)2 , Ar=2,6-iPr2 C6 H3 , β-diketiminate ligand) with two equivalents of 2-mercapto-4,6-dimethylpyrimidine hydrate resulted in LAl[(μ-S)(m-C4 N2 H)(CH2 )2 ]2 (2) in good yield. Similarly, when N-2-pyridylsalicylideneamine, N-(2,6-diisopropylphenyl)salicylaldimine, and ethyl 3-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxylate were used as starting materials, the corresponding products LAl[(μ-O)(o-C6 H4 )CN(C5 NH4 )]2 (3), LAlH[(μ-O)(o-C4 H4 )CN(2,6-iPr2 C6 H3 )] (4), and LAl[(μ-NH)(o-C8 SH8 )(COOC2 H5 )]2 (5) were isolated. Compounds 2-5 were characterized by (1) H and (13) C NMR spectroscopy as well as by single-crystal X-ray structural analysis. Surprisingly, compounds 2-5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN). PMID:27062461

  8. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

    NASA Astrophysics Data System (ADS)

    Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.

    2014-07-01

    When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).

  9. Effects of N,N-Dimethylacetamide as Drying Control Chemical Additive on Characteristics of Zn2SiO4:Mn,Ba Phosphor Powders Prepared by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Hye Young; Lee, Sang Ho; Kang, Yun Chan

    2008-09-01

    Zn2SiO4:Mn,Ba phosphor powders were prepared by ultrasonic spray pyrolysis from spray solutions with and without a drying control chemical additive (DCCA). N,N-dimethylacetamide (DMA) used as the DCCA affected the morphology, surface area, mean crystallite size, and photoluminescence intensity of Zn2SiO4:Mn,Ba phosphor powders. The phosphor powders prepared from a spray solution with an optimum concentration of DMA of 1 M had a finer size and narrower size distribution than those prepared from a spray solution without DMA. The mean crystallite size of the phosphor powders was changed from 37 to 44 nm depending on the concentration of DMA added to the spray solutions. The Brunauer-Emmett-Teller (BET) surface areas of the phosphor powders prepared from spray solutions with concentrations of DMA of 0.5, 1, and 3 M were 5.1, 3.2, and 2.1 m2/g, respectively. The phosphor powders prepared from the spray solution with an optimum concentration of DMA of 1 M had an 8% higher photoluminescence intensity than the commercial product.

  10. Electrophoretic deposition of porous CaO-MgO-SiO2 glass-ceramic coatings with B2O3 as additive on Ti-6Al-4V alloy.

    PubMed

    Zhang, Wei; Chen, Xianchun; Liao, Xiaoming; Huang, Zhongbing; Dan, Xiuli; Yin, Guangfu

    2011-10-01

    The sub-micron glass-ceramic powders in CaO-MgO-SiO(2) system with 10 wt% B(2)O(3) additive were synthesized by sol-gel process. Then bioactive porous CaO-MgO-SiO(2) glass-ceramic coatings on Ti-6Al-4V alloy substrates were fabricated using electrophoretic deposition (EPD) technique. After being calcined at 850°C, the above coatings with thickness of 10-150 μm were uniform and crack-free, possessing porous structure with sub-micron and micron size connected pores. Ethanol was employed as the most suitable solvent to prepare the suspension for EPD. The coating porous appearance and porosity distribution could be controlled by adjusting the suspension concentration, applied voltage and deposition time. The heat-treated coatings possessed high crystalline and was mainly composed of diopside, akermanite, merwinite, calcium silicate and calcium borate silicate. Bonelike apatite was formed on the coatings after 7 days of soaking in simulated body fluid (SBF). The bonding strength of the coatings was needed to be further improved. PMID:21858723

  11. Mo/Si and MoSi2/Si nanostructures for multilayer Laue lens

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Ichimaru, S.; Ohchi, T.; Koyama, T.; Tsuji, T.; Takano, H.; Kagoshima, Y.

    2009-09-01

    To develop a multilayer Laue lens (MLL), we fabricated depth-graded Mo/Si and MoSi2/Si multilayers with each boundary according to the Fresnel zone configuration. The multilayers were deposited by magnetron sputtering. From the result of SEM image analysis of the multilayer cross sections, MoSi2/Si multilayer had smaller layer-thickness errors than Mo/Si multilayer. In addition, from the result of the focusing test by using 20-keV X-rays, the measured beam size of MoSi2/Si MLL had a small blurring from the diffraction limited beam size. These results suggest that MoSi2/Si multilayer is better suited than Mo/Si multilayer for use as an MLL in hard x-ray nanofocusing.

  12. Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite.

    PubMed

    Kamitakahara, M; Ohtsuki, C; Inada, H; Tanihara, M; Miyazaki, T

    2006-07-01

    Some ceramics show bone-bonding ability, i.e. bioactivity. Apatite formation on ceramics is an essential condition to bring about direct bonding to living bone when implanted into bony defects. A controlled surface reaction of the ceramic is an important factor governing the bioactivity and biodegradation of the implanted ceramic. Among bioactive ceramics, glass-ceramic A-W containing apatite and wollastonite shows high bioactivity, as well as high mechanical strength. In this study, glass-ceramics containing zinc oxide were prepared by modification of the composition of the glass-ceramic A-W. Zinc oxide was selected to control the reactivity of the glass-ceramics since zinc is a trace element that shows stimulatory effects on bone formation. Glass-ceramics were prepared by heat treatment of glasses with the general composition: xZnOx(57.0-x)CaOx35.4SiO(2)x7.2P(2)O(5)x0.4CaF(2) (where x=0-14.2mol.%). Addition of ZnO increased the chemical durability of the glass-ceramics, resulting in a decrease in the rate of apatite formation in a simulated body fluid. On the other hand, the release of zinc from the glass-ceramics increased with increasing ZnO content. Addition of ZnO may provide bioactive CaO-SiO(2)-P(2)O(5)-CaF(2) glass-ceramics with the capacity for appropriate biodegradation, as well as enhancement of bone formation. PMID:16765885

  13. Ultrahigh B doping ({<=}10{sup 22} cm{sup -3}) during Si(001) gas-source molecular-beam epitaxy: B incorporation, electrical activation, and hole transport

    SciTech Connect

    Glass, G.; Kim, H.; Desjardins, P.; Taylor, N.; Spila, T.; Lu, Q.; Greene, J. E.

    2000-03-15

    Si(001) layers doped with B concentrations C{sub B} between 1x10{sup 17} and 1.2x10{sup 22} cm{sup -3} (24 at %) were grown on Si(001)2x1 at temperatures T{sub s}=500-850 degree sign C by gas-source molecular-beam epitaxy from Si{sub 2}H{sub 6} and B{sub 2}H{sub 6}. C{sub B} increases linearly with the incident precursor flux ratio J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and B is incorporated into substitutional electrically active sites at concentrations up to C{sub B}{sup *}(T{sub s}) which, for T{sub s}=600 degree sign C, is 2.5x10{sup 20} cm{sup -3}. At higher B concentrations, C{sub B} increases faster than J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and there is a large and discontinuous decrease in the activated fraction of incorporated B. However, the total activated B concentration continues to increase and reaches a value of N{sub B}=1.3x10{sup 21} cm{sup -3} with C{sub B}=1.2x10{sup 22} cm{sup -3}. High-resolution x-ray diffraction (HR-XRD) and reciprocal space mapping measurements show that all films, irrespective of C{sub B} and T{sub s}, are fully strained. No B precipitates or misfit dislocations were detected by HR-XRD or transmission electron microscopy. The lattice constant in the film growth direction a{sub (perpendicular} {sub sign)} decreases linearly with increasing C{sub B} up to the limit of full electrical activation and continues to decrease, but nonlinearly, with C{sub B}>C{sub B}{sup *}. Room-temperature resistivity and conductivity mobility values are in good agreement with theoretical values for B concentrations up to C{sub B}=2.5x10{sup 20} and 2x10{sup 21} cm{sup -3}, respectively. All results can be explained on the basis of a model which accounts for strong B surface segregation to the second-layer with a saturation coverage {theta}{sub B,sat} of 0.5 ML (corresponding to C{sub B}=C{sub B}{sup *}). At higher C{sub B} (i.e., {theta}{sub B}>{theta}{sub B,sat}), B accumulates in the upper layer as

  14. Nano Sized Powder Additives of SiC and Diamond to MgB2 as Artificially Inductor of Pinning Force for the Dense Samples Obtained by High Pressure Technologies

    NASA Astrophysics Data System (ADS)

    Morawski, A.; Pachla, W.; Kuzmenko, D.; Łada, T.; Zaleski, A.; Eibl, O.; Haessler, W.; Kovac, P.

    2006-09-01

    The nano-powder additives of SiC (11nm) and diamond (6 nm) were mixed with Mg and amorphous B powders in the production route of MgB2 bulk and wires samples. Special attention was paid to the precursor powders with the respect to chemical purity, grain morphology and secondary phases. Commercially available MgB2 powders (ex-situ technology) and also mixtures of MgH2 and amorphous B powders (in-situ technology) were applied as the starting precursors. Electron microscopy was used extensively for the characterization of these powders applying both SEM and TEM analysis. Superconducting bulks and wires samples have been produced, by hot pressing, hot isostatic pressing and hydrostatic extrusion processes. High grain refinement and density in the final wire samples have been achieved by the severe plastic deformation (reduction over 99.98%) with the use of the cumulative (multi-step) hydrostatic extrusion. Superconducting properties of these samples were measured, with particular attention paid to the Jc(B) characteristics. Critical currents at lower and higher magnetic fields depended sensitively on the amount of the additives and grain refinement. TEM imaging and electron spectroscopic imaging were used to evaluate the size and distribution of the both of additives within the microstructure. The strain field of the additives resulted from the misfit in thermal expansion coefficient between the additives and the MgB2 matrix was imaged in bright and dark field TEM and is particularly important for the flux-pinning properties of these materials. Influence of such synthesis parameters as pressure, temperature and time on the superconducting properties and the morphology of the products were examined and obtained results were compared. This allowed to choose the optimal conditions for the improvement of the bulk MgB2 characteristics of the wire samples.

  15. Zircon Hf isotopic constraints on the mantle source of felsic magmatic rocks in the Phan Si Pan uplift and Tu Le basin, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Usuki, T.; Lan, C.; Tran, T.; Pham, T.; Wang, K.

    2013-12-01

    Permian plume-related rocks, such as picrites, flood basalts and silicic volcanic rocks occur in northern Vietnam. This area was displaced 600 km southeastward along the Ailao Shan-Red River fault during mid-Tertiary in response to the India-Eurasia collision. The original location of the area was situated at the central Emeishan Large Igneous Province (ELIP) in SW China before Tertiary. The picrites and flood basalts in northern Vietnam have been investigated by many authors and are comparable with the ELIP. While, felsic magmatisms in northern Vietnam has been poorly studied. Zircon U-Pb age and Hf isotopic data are useful to compare the felsic magmatism in northern Vietnam with that in the ELIP, because the magmatisms of the ELIP had a characteristic time period (260-250 Ma) and the Hf isotopes show a remarkable mantle signature. Therefore, this study carried out in-situ U-Pb ages and Hf isotopic compositions for 300 zircon grains in eighteen granitoids and rhyolites in Phan Si Pan uplift and Tu Le basin in northern Vietnam. Zircons from the granitoids and rhyolites occasionally show development of {101} pyramid and {100} prism crystal facies, suggesting typical zircons crystallized from high temperature alkaline granite. 206Pb/238U ages of granitoid and rhyolite yield consistently in a narrow range of 260 to 250 Ma, which coincides with those from peralkaline to metaluminous granites in the ELIP. ɛHf(t) values of zircons in rhyolites and granites of this study dominate in the range of +5 to +10, which is consistent with those from the ELIP. U-Pb ages and Hf isotopic compositions of zircons indicate that felsic magmatic rocks in the Phan Si Pan uplift and Tu La basin have been derived from the same mantle source with the ELIP.

  16. Grain growth, densification, and gyromagnetic properties of LiZnTi ferrites with H3BO3-Bi2O3-SiO2-ZnO glass addition

    NASA Astrophysics Data System (ADS)

    Zhou, Tingchuan; Zhang, Huaiwu; Jia, Lijun; Li, Jie; Liao, Yulong; Jin, LiChuan; Su, Hua

    2014-05-01

    LiZnTi (Li0.43Zn0.27Ti0.13Fe2.17O4) ferrites doped with 0.35 wt. %-1.5 wt. % H3BO3-Bi2O3-SiO2-ZnO (BBSZ) were synthesized through a low temperature ceramic sintering process. The grain growth of LiZnTi ferrites was discussed by using the liquid phase sintering mechanism. BBSZ promoted grain growth via liquid phase sintering, and the optimum addition of BBSZ could reduce porosity of the sample. Meanwhile, selected parameters including saturation induction (BS), coercivity (HC) and ferromagnetic resonance line width (ΔH) were measured as functions of doping content, and their relationships with ferrite porosity and microstructure were also discussed. The LiZnTi ferrite samples containing x = 0.5, 0.65, and 0.8 sintered at 920 °C, 900 °C, and 880 °C, respectively, exhibited high BS and low ΔH values at 9.3 GHz. The addition of proper content of BBSZ can not only improve BS but also reduce HC and ferromagnetic resonance line width (ΔH) by low temperature (˜900 °C) liquid phase sintering.

  17. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.

  18. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    We present an ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer superlattices grown by MBE at low temperature (500 C), and compare our results with X-ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. We show that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. We also note that we do not observe any strain effect on the E1 critical point.

  19. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo

    PubMed Central

    Primak, Andrew N.; Giraldo, Juan Carlos Ramirez; Eusemann, Christian D.; Schmidt, Bernhard; Kantor, B.; Fletcher, Joel G.; McCollough, Cynthia H.

    2010-01-01

    Purpose To investigate the effect on radiation dose and image quality of the use of additional spectral filtration for dual-energy CT (DECT) imaging using dual-source CT (DSCT). Materials and Methods A commercial DSCT scanner was modified by adding tin filtration to the high-kV tube, and radiation output and noise measured in water phantoms. Dose values for equivalent image noise were compared among DE-modes with and without tin filtration and single-energy (SE) mode. To evaluate DECT material discrimination, the material-specific DEratio for calcium and iodine were determined using images of anthropomorphic phantoms. Data were additionally acquired in 38 and 87 kg pigs, and noise for the linearly mixed and virtual non-contrast (VNC) images compared between DE-modes. Finally, abdominal DECT images from two patients of similar sizes undergoing clinically-indicated CT were compared. Results Adding tin filtration to the high-kV tube improved the DE contrast between iodine and calcium as much as 290%. Pig data showed that the tin filtration had no effect on noise in the DECT mixed images, but decreased noise by as much as 30% in the VNC images. Patient VNC-images acquired using 100/140 kV with added tin filtration had improved image quality compared to those generated with 80/140 kV without tin filtration. Conclusion Tin filtration of the high-kV tube of a DSCT scanner increases the ability of DECT to discriminate between calcium and iodine, without increasing dose relative to SECT. Furthermore, use of 100/140 kV tube potentials allows improved DECT imaging of large patients. PMID:20966323

  20. Effect of high-pressure/temperature (HP/T) treatments of in-package food on additive migration from conventional and bio-sourced materials.

    PubMed

    Mauricio-Iglesias, M; Jansana, S; Peyron, S; Gontard, N; Guillard, V

    2010-01-01

    Migration was assessed during and after two high-pressure/temperature (HP/T) treatments intended for a pasteurization (800 MPa for 5 min, from 20 to 40 degrees C) and a sterilization treatment (800 MPa for 5 min, from 90 to 115 degrees C) and were compared with conventional pasteurization and sterilization, respectively. The specific migration of actual packaging additives used as antioxidants and ultraviolet light absorbers (Irganox 1076, Uvitex OB) was investigated in a number of food-packaging systems combining one synthetic common packaging (LLDPE) and a bio-sourced one (PLA) in contact with the four food-simulating liquids defined by European Commission regulations. After standard HP/T processing, migration kinetics was followed during the service life of the packaging material using Fourier transform infrared spectrometer (FTIR) spectroscopy. LLDPE withstood the high-pressure sterilization, whereas it melted during the conventional sterilization. No difference was observed on migration from LLDPE for both treatments. In the case of PLA, migration of Uvitex OB was very low or not detectable for all the cases studied. PMID:19809898

  1. MoSi2-Base Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2003-01-01

    Addition of 30 to 50 vol% of Si3N4 particulate to MoSi2 eliminated its low temperature catastrophic failure, improved room temperature fracture toughness and the creep resistance. The hybrid composite SCS-6/MoSi2-Si3N4 did not show any matrix cracking and exhibited excellent mechanical and environmental properties. Hi-Nicalon continuous fiber reinforced MoSi2-Si3N4 also showed good strength and toughness. A new MoSi2-base composite containing in-situ whisker-type (Beta)Si3N4 grains in a MoSi2 matrix is also described.

  2. Compositional Heterogeneity in Orgueil SiC: Further Comparisons with Murchison

    NASA Astrophysics Data System (ADS)

    Huss, G. R.; Deloule, E.; Hutcheon, I. D.; Wasserburg, G. J.

    1993-07-01

    Murchison SiC. The increasingly disparate array of isotopic abundances requires additional stellar sources. 'X'-grains point to supernovae [3]. 'Y' and 'Z' grains are consistent with an AGB source but the dominant nucleosynthetic processes must differ substantially from those responsible for the main SiC population. The Si isotope array remains a distinguishing feature of SiC, but its origin is poorly understood. Theoretical models [6,7] either fail to produce the observed slope or require nucleosynthesis in extreme conditions, which violate other observational constraints. References: [1] Stone J. et al. (1991) EPSL, 107, 570-581. [2] Virag A. et al. (1992) GCA, 56, 1715-1733. [3] Aman S. et al. (1992) Ap. J., 394, L43-L46. [4] Huss G. R. et al. (1993) LPS XXIV, 687-688. [5] Amari S. et al. (1992) LPS XXIII, 27-28. [6] Gallino R. et al. (1990) Nature, 348, 298-302. [7] Brown L. E. and Clayton D. D. (1992) Ap. J., 392, L79-L82. Division contribution #5274 (816); NASA, NAGW 3297 and 3040.

  3. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    SciTech Connect

    Szymański, Tomasz Wośko, Mateusz; Paszkiewicz, Bogdan; Paszkiewicz, Regina

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grown with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.

  4. Crystallization and mechanical properties of MgO/Al 2O 3/SiO 2/ZrO 2 glass-ceramics with and without the addition of yttria

    NASA Astrophysics Data System (ADS)

    Dittmer, Marc; Yamamoto, Cíntia Fumi; Bocker, Christian; Rüssel, Christian

    2011-12-01

    Glasses in the system of MgO/Al 2O 3/SiO 2 were melted using yttria stabilized tetragonal zirconia or monoclinic zirconia as nucleation agent. In some of them, MgO was partially replaced by ZnO. After melting and casting the glasses, the samples were annealed in the temperature range from 950 to 1150 °C. The obtained glass-ceramics were colourless and transparent to opaque. This is in contrast to glass-ceramics doped with titania or a mixture of titania and zirconia which appear purple to blue. In compositions using 4 mol% tetragonal zirconia stabilized with 3 mol% yttria only β-quartz solid solution was detected. Using monoclinic zirconia or doped zirconia with concentrations >4 mol% resulted in the formation of α-quartz solid solutions. Additionally the crystal phases spinel or gahnite/spinel-solid solution were formed. The formation of these crystal phases also leads to improved mechanical properties. Bending strengths up to 475 MPa, Young's moduli up to 131 GPa, Vickers hardness up to 12.5 GPa and fracture toughness up to 2.3 MPa m 1/2 were obtained.

  5. Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Chen, Dingqiong; Liao, Wenjuan; Yang, Yang; Zhao, Jinbao

    2016-05-01

    A novel polyvinyl alcohol (PVA) hydrogel method is developed to synthesize Si/CNT/C composites. The Si nanoparticles and CNTs are 'position' locked up by PVA hydrogel in a simple aqueous solution process, and then the Si-CNT-PVA hydrogel has pyrolyzed to form Si/CNT/C composites. In this unique structured Si/CNT/C composites, the CNTs form a porous network acting both as conductive agent for electron transfer and buffer space to accommodate huge Si volume change during lithiation/delithiation process, while the coating layer of carbon carbonized from polyvinyl alcohol (PVA) hydrogel is conducive to stabilize the interweaved composite structure. The complex structures of Si/CNT/C composites and their electrochemical properties are presented in this paper. The Si/CNT/C composites exhibit an initial reversible capacity of nearly 800 mAhg-1, an excellent capacity retention of 97.1% after 100 cycles at the rate of 0.1 C, and high capacity retention even at high current rate.

  6. Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Chen, Dingqiong; Liao, Wenjuan; Yang, Yang; Zhao, Jinbao

    2016-05-01

    A novel polyvinyl alcohol (PVA) hydrogel method is developed to synthesize Si/CNT/C composites. The Si nanoparticles and CNTs are 'position' locked up by PVA hydrogel in a simple aqueous solution process, and then the Si-CNT-PVA hydrogel has pyrolyzed to form Si/CNT/C composites. In this unique structured Si/CNT/C composites, the CNTs form a porous network acting both as conductive agent for electron transfer and buffer space to accommodate huge Si volume change during lithiation/delithiation process, while the coating layer of carbon carbonized from polyvinyl alcohol (PVA) hydrogel is conducive to stabilize the interweaved composite structure. The complex structures of Si/CNT/C composites and their electrochemical properties are presented in this paper. The Si/CNT/C composites exhibit an initial reversible capacity of nearly 800 mAhg-1, an excellent capacity retention of 97.1% after 100 cycles at the rate of 0.1 C, and high capacity retention even at high current rate.

  7. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data.

    PubMed

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  8. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data

    PubMed Central

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  9. Spectrometric analysis of process etching solutions of the photovoltaic industry--determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms.

    PubMed

    Bücker, Stefan; Acker, Jörg

    2012-05-30

    The surface of raw multicrystalline silicon wafers is treated with HF-HNO(3) mixtures in order to remove the saw damage and to obtain a well-like structured surface of low reflectivity, the so-called texture. The industrial production of solar cells requires a consistent level of texturization for tens of thousands of wafers. Therefore, knowing the actual composition of the etch bath is a key element in process control in order to maintain a certain etch rate through replenishment of the consumed acids. The present paper describes a novel approach to quantify nitric acid (HNO(3)), hydrofluoric acid (HF), and hexafluosilicic acid (H(2)SiF(6)) using a high-resolution continuum source graphite furnace absorption spectrometer. The concentrations of Si (via Si atom absorption at the wavelength 251.611 nm, m(0),(Si)=130 pg), of nitrate (via molecular absorption of NO at the wavelength 214.803 nm, [Formula: see text] ), and of total fluoride (via molecular absorption of AlF at the wavelength 227.46 nm, m(0,F)=13 pg) were measured against aqueous standard solutions. The concentrations of H(2)SiF(6) and HNO(3) are directly obtained from the measurements. The HF concentration is calculated from the difference between the total fluoride content, and the amount of fluoride bound as H(2)SiF(6). H(2)SiF(6) and HNO(3) can be determined with a relative uncertainty of less than 5% and recoveries of 97-103% and 96-105%, respectively. With regards to HF, acceptable results in terms of recovery and uncertainty are obtained for HF concentrations that are typical for the photovoltaic industry. The presented procedure has the unique advantage that the concentration of both, acids and metal impurities in etch solutions, can be routinely determined by a single analytical instrument. PMID:22608457

  10. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  11. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance

    PubMed Central

    Forsberg, Simon K. G.; Andreatta, Matthew E.; Huang, Xin-Yuan; Danku, John; Salt, David E.; Carlborg, Örjan

    2015-01-01

    Genome-wide association (GWA) analyses have generally been used to detect individual loci contributing to the phenotypic diversity in a population by the effects of these loci on the trait mean. More rarely, loci have also been detected based on variance differences between genotypes. Several hypotheses have been proposed to explain the possible genetic mechanisms leading to such variance signals. However, little is known about what causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms of importance in natural populations. Previously, we identified a variance-heterogeneity GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here, fine-mapping of this association reveals that the vGWA emerges from the effects of three independent genetic polymorphisms that all are in strong LD with the markers displaying the genetic variance-heterogeneity. By revealing the genetic architecture underlying this vGWA signal, we uncovered the molecular source of a significant amount of hidden additive genetic variation or “missing heritability”. Two of the three polymorphisms underlying the genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOT1), and the third a variant located ~25 kb downstream of this gene. A fourth independent association was also detected ~600 kb upstream of MOT1. Use of a T-DNA knockout allele highlights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this association. Our results show that an extended LD across a complex locus including multiple functional alleles can lead to a variance-heterogeneity between genotypes in natural populations. Further, they provide novel insights into the genetic regulation of ion homeostasis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods are a valuable tool to detect novel associations of biological importance in natural populations. PMID:26599497

  12. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  13. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  14. Introduction of SiGe/Si heterojunction into novel multilayer tunnel FinFET

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Fukuda, Koichi; Mori, Takahiro; Mizubayashi, Wataru; Migita, Shinji; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Matsukawa, Takashi; Ota, Hiroyuki

    2016-04-01

    A novel tunnel FinFET equipped with a SiGe/Si heterojunction and a multilayer fin-channel has been experimentally demonstrated. A high-quality SiGe layer is epitaxially grown on a heavily doped Si source as a tunnel junction. A FinFET-like hetero-multilayer channel with a trigate configuration significantly increases the drain current compared with conventional SiGe/Si heterojunction parallel-plate tunnel FETs.

  15. Ultraviolet Emission Lines of Si ii in Quasars: Investigating the "Si ii Disaster"

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.

    2016-07-01

    The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the “Si ii disaster,” and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity (∼ 500 {km} {{{s}}}-1) may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.

  16. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  17. Preparation and photoluminescence of nc-Si/SiO2 MQW

    NASA Astrophysics Data System (ADS)

    Cheng, Buwen; Yu, Jinzhong; Yu, Zhuo; Lei, Zhenlin; Li, Daizong; Wang, Qiming

    1998-08-01

    The deposition rate and refractive index for a-Si(amorphous silicon) and SiO2 grown by PECVD were studied under different pressure, power and proportion of reactant source gases. a-Si/SiO2 MQW(multi-quantum well) with high quality was deposited under suitable conditions, in which the thickness of the a-Si layers is several nanometers. The sample of a-Si/SiO2 MQW was crystallized by laser annealing. Because of the confinement of the SiO2 layers, crystalline grains were formed during the a-Si layers were being crystallized. The size of the crystalline grains were not more than the thickness of the a-Si layers. The a-Si layers were crystallized to be nanometer crystalline silicon (nc-Si), therefore, nc-Si/SiO2 MQW was formed. For the a-Si/SiO2 MQW with 4.0 nm a-Si wells separated by 5 nm SiO2 barriers, most of the a-Si were crystallized to silicon grains after laser annealing, and the size of the grains is 3.8 nm. Strong photoluminescence with three peaks from the nc-Si/SiO2 MQW was detected at 10 K. The wavelength of the peaks were 810 nm, 825 nm and 845 nm, respectively.

  18. Inherent paramagnetic defects in layered Si/SiO2 superstructures with Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Jivanescu, M.; Stesmans, A.; Zacharias, M.

    2008-11-01

    An extensive electron spin resonance (ESR) analysis has been carried out on structures comprised of Si nanoparticles (˜2 nm across) embedded in a regular pattern in an amorphous SiO2 matrix, fabricated by the SiO/SiO2 superlattice approach, with the intent to reveal and quantify occurring paramagnetic defects. The as-grown state is found to exhibit only a Si dangling bond (DB) signal, which through combination of first and second harmonic X-, K-, and Q-band observations in combination with computer spectra simulation, could be conclusively disentangled as solely comprised of overlapping powder pattern spectra of Pb(0) and Pb1 defects, the archetypal intrinsic defects of the Si/SiO2 interface, with no evidence for a D line (Si DBs in disordered Si). This indicates a full crystalline system of randomly oriented Si nanocrystals (NCs). The Pb(0)/Pb1 defect system, pertaining to the NC-Si/SiO2 interfaces, is found to be both qualitatively and quantitatively much alike that of standard (high-quality) thermal Si/SiO2. The system is inherent, remaining unaffected by subsequent UV/vacuum UV irradiations. Relying on the known properties of Pb-type defects in standard microscopic Si/SiO2, the data would comply with Si nanocrystallites, in average, predominantly bordered by (111) and (100) facets, perhaps with morphology, schematically, of [100] truncated (111) octahedrons. Based on independent NC particles counting, there appears a Pb-type center at ˜71% of the Si NCs indicating the latter to be comprised of two subsystems-with or without an incorporated strain relaxing interface defect-which in that case will exhibit drastically different defect-sensitive properties, such as, e.g., photoluminescence (PL). Upon additional optical irradiation, two more defects appear, i.e., the SiO2-associated Eγ' and EX centers, where the observed density of the former, taken as criterion, indicates the SiO2 matrix to be of standard thermal oxide quality. Thus, the properties of the

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. Long-Wavelength Stacked SiGe/Si Heterojunction Internal Photoemission Infrared Detectors Using Multiple SiGe/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; Gunapala, S. D.

    1994-01-01

    Utilizing low temperature silicon molecular beam epitaxy (MBE) growth, long-wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Si layers have been fabricated and demonstrated. Using an elemental boron source, high doping concentrations (approximately equal to 4 x 10(sup 20) cm(sup -3)) has been achieved and high crystalline quality multiple Si(sub 0.7)Ge(sub 0.3)/Si layers have been obtained. The detector structure consists of several periods of degenerately boron doped (approximately equal to 4 x 10(sup 20) cm(sup -3)) thin (less than or equal to 50 u Si(sub 0.7)Ge(sub 0.3) layers and undoped thick (approximately equal to 300u Si layers. The multiple p(sup +) - Si(sub 0.7)Ge(sub 0.3)/undoped-Si layers show strong infrared absorption in the long-wavelength regime mainly through free carrier absorption. The stacked Si(sub 0.7)Ge(sub 0.3)/Si HIP detectors with p = 4 x 10(sup 20) cm(sup -3) exhibit strong photoresponse at wavelengths ranging from 2 to 20 (micro)m with quantum efficiencies of about 4% and 1.5% at 10 and 15 (micro)m wavelengths, respectively. The detectors show near ideal thermionic-emission limited dark current characteristics.

  1. Microstructural Simulation of Three-Point Bending Test with Mo-Si-B Alloy at High Temperature: Sources of Strain Field Localization

    NASA Astrophysics Data System (ADS)

    Chollacoop, Nuwong; Alur, Amruthavalli P.; Kumar, K. Sharvan

    Deformation behavior in three-point bending test of Mo-Si-B alloy was investigated by recourse to finite element analysis (FEA) with microstructure incorporated. This Mo-Si-B alloy consists of hard, brittle T2 (Mo5SiB2) phase embedded in soft matrix of Mo solid solution. The sample contains pre-crack configuration at the middle in order to study the effect of the second phase (T2 particles) onto a crack tip during the bending test. Various optical micrographs were scanned, digitized and meshed for FEA. It was found that strain localization from the second phase at the crack tip was interfered with that from the loading pin in three-point bending test. Such interference could be reduced by replacement with end moment loading, in order to identify sole strain localization effect from the second phase at the crack tip.

  2. Diffuse and point sources of silica in the Seine River watershed.

    PubMed

    Sferratore, Agata; Garnier, Josette; Billen, Gilles; Conley, Daniel I; Pinault, Séverine

    2006-11-01

    Dissolved silica (DSi) is believed to enter aquatic ecosystems primarily through diffuse sources by weathering. Point sources have generally been considered negligible, although recent reports of DSi inputs from domestic and industrial sources suggest otherwise. In addition, particulate amorphous silica (ASi) inputs from terrestrial ecosystems during soil erosion and in vegetation can dissolve and also be a significant source of DSi. We quantify here both point and diffuse sources of DSi and particulate ASi to the Seine River watershed. The total per capita point source inputs of Si (DSi + ASi) were found to be 1.0 and 0.8 g Si inhabitant(-1) d(-1) in raw and treated waters of the Achères wastewater treatment plant, in agreement with calculations based on average food intake and silica-containing washing products consumption. A mass balance of Si inputs and outputs for the Seine drainage network was established for wet and dry hydrological conditions (2001 and 2003, respectively). Diffuse sources of Si are of 1775 kg Si km(-2) y(-1) in wet conditions and 762 kg Si km(-2) y(-1) in dry conditions, with the proportion of ASi around 6%. Point sources of Si from urban discharge can contribute to more than 8% of the total Si inputs at the basin scale in hydrologically dry years. An in-stream retention of 6% of total inputs in dry conditions and 12% in wet conditions is inferred from the budget. PMID:17144288

  3. Sol-gel synthesis and luminescence of unexpected microrod crystalline Ca 5La 5(SiO 4) 3(PO 4) 3O 2:Dy 3+ phosphors employing different silicate sources

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Huang, Honghua

    2007-08-01

    Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol-gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.

  4. Band offsets in c-Si/Si-XII heterojunctions

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Malone, Brad D.; Cohen, Marvin L.; Louie, Steven G.

    2014-08-01

    Silicon has a rich phase diagram with a multitude of phases existing over a wide range of pressures and temperatures, in addition to the common cubic silicon (c-Si) phase. One such phase, Si-XII, was first observed less than 2 decades ago in diamond anvil experiments, and more recently as a product of nanoindentation. In some of these latter experiments, I-V measurements were performed to characterize the c-Si/Si-XII interface that results when Si-XII is formed in cubic silicon substrates. In this paper we describe calculations of the band offsets in c-Si/Si-XII heterojunctions. We find that the heterojunction is of Type I and that the band offsets are estimated to be ΔEv=0.3 eV and ΔEc=0.5 eV for the valence bands and conduction bands, respectively.

  5. Astrometrically registered simultaneous observations of the 22 GHz H{sub 2}O and 43 GHz SiO masers toward R Leonis Minoris using KVN and source/frequency phase referencing

    SciTech Connect

    Dodson, Richard; Rioja, María J.; Jung, Tae-Hyun; Sohn, Bong-Won; Byun, Do-Young; Cho, Se-Hyung; Lee, Sang-Sung; Kim, Jongsoo; Kim, Kee-Tae; Oh, Chung-Sik; Han, Seog-Tae; Je, Do-Heung; Chung, Moon-Hee; Wi, Seog-Oh; Kang, Jiman; Lee, Jung-Won; Chung, Hyunsoo; Kim, Hyo-Ryoung; Kim, Hyun-Goo; Lee, Chang-Hoon; and others

    2014-11-01

    Oxygen-rich asymptotic giant branch (AGB) stars can be intense emitters of SiO (v = 1 and 2, J = 1 → 0) and H{sub 2}O maser lines at 43 and 22 GHz, respectively. Very long baseline interferometry (VLBI) observations of the maser emission provide a unique tool to probe the innermost layers of the circumstellar envelopes in AGB stars. Nevertheless, the difficulties in achieving astrometrically aligned H{sub 2}O and v = 1 and v = 2 SiO maser maps have traditionally limited the physical constraints that can be placed on the SiO maser pumping mechanism. We present phase-referenced simultaneous spectral-line VLBI images for the SiO v = 1 and v = 2, J = 1 → 0, and H{sub 2}O maser emission around the AGB star R LMi, obtained from the Korean VLBI Network (KVN). The simultaneous multi-channel receivers of the KVN offer great possibilities for astrometry in the frequency domain. With this facility, we have produced images with bona fide absolute astrometric registration between high-frequency maser transitions of different species to provide the positions of the H{sub 2}O maser emission and the center of the SiO maser emission, hence reducing the uncertainty in the proper motions for R LMi by an order of magnitude over that from Hipparcos. This is the first successful demonstration of source frequency phase referencing for millimeter VLBI spectral-line observations and also where the ratio between the frequencies is not an integer.

  6. -SiC Composites

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shirshendu; Debnath, Debashish; Mallick, Azizur Rahaman; Das, Probal Kumar

    2014-12-01

    ZrB2-SiC composites were hot pressed at 2473 K (2200 °C) with graded amounts (5 to 20 wt pct) of SiC and the effect of the SiC addition on mechanical properties like hardness, fracture toughness, scratch and wear resistances, and thermal conductivity were studied. Addition of submicron-sized SiC particles in ZrB2 matrices enhanced mechanical properties like hardness (15.6 to 19.1 GPa at 1 kgf), fracture toughness (2 to 3.6 MPa(m)1/2) by second phase dispersion toughening mechanism, and also improved scratch and wear resistances. Thermal conductivity of ZrB2-SiC (5 wt pct) composite was higher [121 to 93 W/m K from 373 K to 1273 K (100 °C to 1000 °C)] and decreased slowly upto 1273 K (1000 °C) in comparison to monolithic ZrB2 providing better resistance to thermal fluctuation of the composite and improved service life in UHTC applications. At higher loading of SiC (15 wt pct and above), increased thermal barrier at the grain boundaries probably reduced the thermal conductivity of the composite.

  7. Growth of cubic SiC single crystals by the physical vapor transport technique

    NASA Astrophysics Data System (ADS)

    Semmelroth, K.; Krieger, M.; Pensl, G.; Nagasawa, H.; Püsche, R.; Hundhausen, M.; Ley, L.; Nerding, M.; Strunk, H. P.

    2007-10-01

    Suitable process parameters for the growth of cubic 3C-SiC single crystals via the seeded physical vapor transport (PVT) technique, also known as the modified Lely method, have been determined. Free-standing, 200 μm thick 3C-SiC epilayers with (0 0 1)- or (0 0 1¯)-face grown on undulant Si (0 0 1) as well as 3C-SiC platelets with [1 1 1]- or [1¯ 1¯ 1¯]-orientation grown by thermal decomposition of methyl trichlorosilane in hydrogen were employed as seed crystals. The source material consisted of stoichiometric SiC; in addition, a separate Si source was deposited in the furnace at a temperature of about 1500 °C. The temperature of the seed crystals was kept at about 1900 °C. Stable growth of 3C-SiC bulk material of high crystalline quality was reached on 3C-SiC seed crystals with (0 0 1)-face providing a low density of planar defects and at near-thermal-equilibrium conditions resulting in a reduction of internal stress and as a consequence in avoiding the generation of new extended crystal defects. The growth rate achieved under these conditions was approximately 0.05 mm/h. The nitrogen donor concentration in the grown 3C-SiC crystals was determined to be equal to (2-6)×10 18 cm -3.

  8. Axial SiGe Heteronanowire Tunneling Field-Effect Transistors

    SciTech Connect

    Le, Son T.; Jannaty, P.; Luo, Xu; Zaslavsky, A.; Perea, Daniel E.; Dayeh, Shadi A.; Picraux, Samuel T.

    2012-10-31

    We present silicon-compatible tri-gated p-Ge/i-Si/n-Si axial heteronanowire tunneling field-effect transistors (TFETs), where on-state tunneling occurs in the Ge drain section, while off-state leakage is dominated by the Si junction in the source. Our TFETs have high ION ~ 2 µA/µm, fully suppressed ambipolarity, and a sub-threshold slope SS ~ 140 mV/decade over 4 decades of current with lowest SS ~ 50 mV/decade. Device operation in the tunneling mode is confirmed by three-dimensional TCAD simulation. Interestingly, in addition to the TFET mode, our devices work as standard nanowire FETs with good ION/IOFF ratio when the source-drain junction is forward-biased. The improved transport in both biasing modes confirms the benefits of utilizing bandgap engineered axial nanowires for enhancing device performance.

  9. SI Notes.

    ERIC Educational Resources Information Center

    Nelson, Robert A.

    1983-01-01

    Discusses legislation related to SI (International Systems of Units) in the United States. Indicates that although SI metric units have been officially recognized by law in the United States, U.S. Customary Units have never received a statutory basis. (JN)

  10. High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Homma, Keiichiro; Kambara, Makoto; Yoshida, Toyonobu

    2014-04-01

    Nanocomposite Si/SiO x powders were produced by plasma spray physical vapor deposition (PS-PVD) at a material throughput of 480 g h-1. The powders are fundamentally an aggregate of primary ˜20 nm particles, which are composed of a crystalline Si core and SiO x shell structure. This is made possible by complete evaporation of raw SiO powders and subsequent rapid condensation of high temperature SiO x vapors, followed by disproportionation reaction of nucleated SiO x nanoparticles. When CH4 was additionally introduced to the PS-PVD, the volume of the core Si increases while reducing potentially the SiO x shell thickness as a result of the enhanced SiO reduction, although an unfavorable SiC phase emerges when the C/Si molar ratio is greater than 1. As a result of the increased amount of Si active material and reduced source for irreversible capacity, half-cell batteries made of PS-PVD powders with C/Si = 0.25 have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g-1 after 100 cycles at the same time.

  11. Breeding Pierce’s disease resistant table and raisin grapes and the development of markers for additional sources of resistance 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-two seedless x seedless crosses to develop additional BC2 and BC3 V. arizonica and BC1 SEUS BD5-117 families were made in 2008. Powdery mildew resistance was included in five of these crosses. These crosses produced 5,148 berries, 8,824 ovules and 1,861 embryos. Nine seeded BC1 crosses bas...

  12. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  13. EFFECT OF VITAMIN C ADDITION TO GROUND BEEF FROM GRASS-FED OR GRAIN-FED SOURCES ON COLOR AND LIPID STABILITY, AND PREDICTION OF FATTY ACID COMPOSITION BY NEAR INFRARED REFLECTANCE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of postmortem vitamin C addition (VITC) versus no VITC (CONTROL) to ground beef from grass-fed (GRASS) or grain-fed (GRAIN) sources on color and lipid stability during 8 d of illuminated display at 4°C. The use of near infrared reflectance (NIR) spectro...

  14. Theoretical Study of Excess Si Emitted from Si-oxide/Si Interfaces

    NASA Astrophysics Data System (ADS)

    Kageshima, Hiroyuki; Uematsu, Masahi; Akagi, Kazuto; Tsuneyuki, Shinji; Akiyama, Toru; Shiraishi, Kenji

    2004-12-01

    The excess Si emitted from the Si-oxide/Si interface is studied using the first-principles calculations. It is shown that the excess Si can have many (meta-) stable positions around the interface. In addition, some positions in the oxide do not have any dangling bonds or floating bonds in contrast to those in the bulk crystalline Si. The results indicate that the emitted Si can be located in the oxide layer but they do not necessarily cause charge traps in the oxide. The emitted Si atoms are thought to just be oxidized and absorbed into the oxide while a portion of them cause the E' centers, the Pb centers or charge traps.

  15. SI and Non-SI Units of Concentration: A Truce?

    ERIC Educational Resources Information Center

    Rich, Ronald L.

    1986-01-01

    Questions the current usage of the International System of Units (called SI units) in representing chemical notation and terminology. Suggests several additions to the system that relate to concentrations. Outlines new symbols for distinguishing between "concentration" and "molality." Includes tables to illustrate the proposed SI units. (TW)

  16. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. PMID:24780435

  17. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N–H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  18. Chemical vapor deposition of Si:C and Si:C:P films-Evaluation of material quality as a function of C content, carrier gas and doping

    NASA Astrophysics Data System (ADS)

    Dhayalan, Sathish Kumar; Loo, Roger; Hikavyy, Andriy; Rosseel, Erik; Bender, Hugo; Richard, Olivier; Vandervorst, Wilfried

    2015-09-01

    Incorporation of source-drain stressors (S/D) for FinFETs to boost the channel mobility is a promising scaling approach. Typically SiGe:B S/D stressors are used for p FinFETs and Si:C:P S/D stressors for n FinFETs. The deposition of such Si:C:P S/D stressors requires a low thermal budget to freeze the C in substitutional sites and also to avoid problems associated with surface reflow of Si fins. In this work, we report the material properties of Si:C and Si:C:P epitaxial layers grown by chemical vapor deposition, in terms of their defectivity and C incorporation as a function of different process conditions. The undoped Si:C layers were found to be defect free for total C contents below 1%. Above this concentration defects were incorporated and the defect density increased with increasing C content. Abrupt epitaxial breakdown occurred beyond a total C content of 2.3% resulting in amorphous layers. P doping of Si:C layers brought down the resistivity and also thicker Si:C:P films underwent epitaxial breakdown. Additionally, the use of nitrogen instead of hydrogen as carrier gas resulted in an increase of the growth rate and substitutional C incorporation both by a factor of two, while the surface defect density reduced.

  19. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  20. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  1. Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition

    PubMed Central

    Kennedy, Martin J.; Hedin, Lars O.; Derry, Louis A.

    2002-01-01

    An experimental tracer addition of 84Sr to an unpolluted temperate forest site in southern Chile, as well as the natural variation of 87Sr/86Sr within plants and soils, indicates that mechanisms in shallow soil organic horizons are of key importance for retaining and recycling atmospheric cation inputs at scales of decades or less. The dominant tree species Nothofagus nitida feeds nearly exclusively (>90%) on cations of atmospheric origin, despite strong variations in tree size and location in the forest landscape. Our results illustrate that (i) unpolluted temperate forests can become nutritionally decoupled from deeper weathering processes, virtually functioning as atmospherically fed ecosystems, and (ii) base cation turnover times are considerably more rapid than previously recognized in the plant available pool of soil. These results challenge the prevalent paradigm that plants largely feed on rock-derived cations and have important implications for understanding sensitivity of forests to air pollution. PMID:12119394

  2. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-01

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %. PMID:24665070

  3. Potential biofuel additive from renewable sources--Kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol.

    PubMed

    Ali, Sami H; Al-Rashed, Osama; Azeez, Fadhel A; Merchant, Sabiha Q

    2011-11-01

    Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and Amberlyst 15-catalyzed transesterification is studied in a batch reactor over a range of catalyst loading (6-12 wt.%), alcohol to ester feed ratio (1:3 to 3:1), and temperature (303.15-333.15K). A butanol mole fraction of 0.2 in the feed is found to be optimum. Amberlite IR 120 promotes faster kinetics under these conditions. The transesterifications studied are slightly exothermic. The moles of solvent sorbed per gram of catalyst decreases (ethanol>butanol>ethyl acetate>butyl acetate) with decrease in solubility parameter. The dual site models, the Langmuir Hinshelwood and Popken models, are the most successful in correlating the kinetics over Amberlite IR 120 and Amberlyst 15, respectively. PMID:21908187

  4. The Stellar Imager (SI) Vision Mission and the Benefits of an Ares V Launch

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth F.

    2008-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. In this paper we briefly discuss the science goals, technology needs, and baseline design of the SI Mission, and then describe the benefits to the mission that a launch on an Ares V, with its larger payload shroud, would produce. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  5. Formation of lateral nanowires by Ge deposition on Si(111) at high temperatures

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. А.; Latyshev, А. V.

    2016-05-01

    The lattice strain is the main factor which governs the surface morphology formation during the Si/Ge heteroepitaxial growth. Its influence becomes significantly weakened at high growth temperatures due to strong Si-Ge intermixing, giving an advantage of other factors which may produce unusual effects. We observed the formation of lateral SiGe nanowires (NWs) after Ge deposition on Si(111) at 830-860 °С using solid-source molecular beam epitaxy. An additional factor to the strain minimization is associated with an energy barrier for the misfit dislocation network introduction at the NW/substrate interface, which causes the NWs to be straight. However, the requirement to attain a certain SiGe composition provides the formation of winding NWs, reflecting the subtle aspects of the growth process.

  6. NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol

    SciTech Connect

    Sandoval, M Analisa; Uribe, Eva C; Sandoval, Marisa N; Boyer, Brian D; Stevens, Rebecca S

    2009-01-01

    In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describes how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.

  7. Graphene synthesis on SiC: Reduced graphitization temperature by C-cluster and Ar-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Li, H.; Zhang, Z. D.; Wang, Z. S.; Zhou, S. Y.; Wang, Z.; Li, T. C.; Liu, J. R.; Fu, D. J.

    2015-08-01

    Thermal decomposition of SiC is a promising method for high quality production of wafer-scale graphene layers, when the high decomposition temperature of SiC is substantially reduced. The high decomposition temperature of SiC around 1400 °C is a technical obstacle. In this work, we report on graphene synthesis on 6H-SiC with reduced graphitization temperature via ion implantation. When energetic Ar, C1 and C6-cluster ions implanted into 6H-SiC substrates, some of the Si-C bonds have been broken due to the electronic and nuclear collisions. Owing to the radiation damage induced bond breaking and the implanted C atoms as an additional C source the graphitization temperature was reduced by up to 200 °C.

  8. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  9. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity

  10. Effects of different fibre sources and fat addition on cholesterol and cholesterol-related lipids in blood serum, bile and body tissues of growing pigs.

    PubMed

    Kreuzer, M; Hanneken, H; Wittmann, M; Gerdemann, M M; Machmuller, A

    2002-04-01

    Knowledge is limited on the efficacy of hindgut-fermentable dietary fibre to reduce blood, bile and body tissue cholesterol levels. In three experiments with growing pigs the effects of different kinds and levels of bacterially fermentable fibre (BFS) on cholesterol metabolism were examined. Various diets calculated to have similar contents of metabolizable energy were supplied for complete fattening periods. In the first experiment, a stepwise increase from 12 to 20% BFS was performed by supplementing diets with fermentable fibre from sugar beet pulp (modelling hemicelluloses and pectin). Beet pulp, rye bran (modelling cellulose) and citrus pulp (pectin) were offered either independently or in a mixture in the second experiment. These diets were opposed to rations characterized in carbohydrate type by starch either mostly non-resistant (cassava) or partly resistant (maize) to small intestinal digestion. The third experiment was planned to explore the interactions of BFS from citrus pulp with fat either through additional coconut oil/palm kernel oil blend or full-fat soybeans. In all experiments the increase of the BFS content was associated with a constant (cellulose) or decreasing (hemicelluloses, pectin) dietary proportion of non-digestible fibre. In experiment 1 an inverse dose-response relationship between BFS content and cholesterol in blood serum and adipose tissue as well as bile acid concentration in bile was noted while muscle cholesterol did not respond. In experiment 2 the ingredients characterized by cellulose and hemicelluloses/pectin reduced cholesterol-related traits relative to the low-BFS-high-starch controls whereas, except in adipose tissue cholesterol content, the pectinous ingredient had the opposite effect. However, the changes in serum cholesterol mainly affected HDL and not LDL cholesterol. Adipose tissue cholesterol also was slightly lower with partly resistant starch compared to non-resistant starch in the diet. Experiment 3 showed that

  11. Substrate-Free Self-Assembled SiOx-Core Nanodots from Alkylalkoxysilane as a Multicolor Photoluminescence Source for Intravital Imaging

    PubMed Central

    Lin, Pei-Ying; Hsieh, Chiung-Wen; Kung, Mei-Lang; Hsieh, Shuchen

    2013-01-01

    Intravital fluorescence imaging has great potential in biological and biomedical research, as it provides the ability to directly observe biological structures and processes in their natural state. Contrast agents for intravital imaging applications should exhibit good biocompatibility, multiphoton fluorescence, and long emission. Carbon nanodots and semiconductor nanocrystals meet these requirements in most cases, with the added benefit that their properties can be ‘tuned' for specific applications by controlling the size and surface chemistry of the nanoparticles. Here, we report on a simple heat-assisted strategy to fabricate SiOx-core self-assembled nanodots using self-assembled monolayer (SAM) materials. Our results demonstrate that substrate-free self-assembled nanodots from alkylalkoxysilane exhibit controllable structural and chemical characteristics that are well suited for applications in biological, biomedical, and clinical research, and may find further use in optoelectronic and sensor devices. PMID:23609156

  12. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  13. Additive usage levels.

    PubMed

    Langlais, R

    1996-01-01

    With the adoption of the European Parliament and Council Directives on sweeteners, colours and miscellaneous additives the Commission is now embarking on the project of coordinating the activities of the European Union Member States in the collection of the data that are to make up the report on food additive intake requested by the European Parliament. This presentation looks at the inventory of available sources on additive use levels and concludes that for the time being national legislation is still the best source of information considering that the directives have yet to be transposed into national legislation. Furthermore, this presentation covers the correlation of the food categories as found in the additives directives with those used by national consumption surveys and finds that in a number of instances this correlation still leaves a lot to be desired. The intake of additives via food ingestion and the intake of substances which are chemically identical to additives but which occur naturally in fruits and vegetables is found in a number of cases to be higher than the intake of additives added during the manufacture of foodstuffs. While the difficulties are recognized in contributing to the compilation of food additive intake data, industry as a whole, i.e. the food manufacturing and food additive manufacturing industries, are confident that in a concerted effort, use data on food additives by industry can be made available. Lastly, the paper points out that with the transportation of the additives directives into national legislation and the time by which the food industry will be able to make use of the new food legislative environment several years will still go by; food additives use data by the food industry will thus have to be reviewed at the beginning of the next century. PMID:8792135

  14. Vapor-liquid-soild growth of group IV (Si, Ge, Si1-xGe x) single and heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Minassian, Sharis

    In this thesis, an alternative Si source, disilane (Si2H 6) has been investigated which is of interest since it is more reactive than SiH4 and therefore may enable higher growth rates at lower temperature and lower partial pressures. The lower thermal stability of Si 2H6 could also be an advantage to enable the growth of Si 1-xGex nanowires over the entire composition range at lower temperatures which are more compatible with the range of conditions typically used for Ge nanowire growth and in turn may enable the fabrication of different types of heterostructures. To fulfill the objective of this research, a systematic study has been developed to explore the growth of group IV (Si, Ge, and Si 1-xGex alloy) single and heterostructured nanowires from Si2H6 and GeH4 precursors. First, the growth kinetics of individual SiNWs from Si2H 6 was investigated by examining the effects of growth parameters on their growth rate. The results were compared to that obtained with SiH 4. In addition, to gain a better insight into the SiNW growth process, the results were also compared with Si films deposited under similar conditions inside the same reactor. Overall compared to SiH4, the use of Si 2H6 enabled higher growth rates for both SiNWs and Si films. For both gases, a nonlinearity was observed in the growth rate of nanowire as a function of gas partial pressure which was explained by a simple decomposition mechanism including the adsorption, desorption and incorporation of precursor molecule on the Au droplet surface. The apparent activation energy of the process was found to be identical for both gases under the conditions examined in the present study, suggesting similar rate-determining step in the nanowire growth process from the two precursors. Upon completion of studies on SiNW growth, the synthesis parameter space was then determined for undoped GeNWs and the influence of growth conditions on their morphology as well as their growth rate was examined. It was found that

  15. Plasma etching of SiO2 using remote-type pin-to-plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Park, Jae Beom; Kyung, Se Jin; Yeom, Geun Young

    2008-10-01

    Atmospheric pressure plasma etching of SiO2 was examined using a modified remote-type dielectric barrier discharge (DBD), called "pin-to-plate DBD." The effect of adding four gases CF4, C4F8, O2, and Ar to the base gas mixture containing N2 (60 slm) (slm denotes standard liters per minute)/NF3 (600 SCCM) (SCCM denotes cubic centimeter per minute at STP) on the SiO2 etch characteristics was investigated. The results showed that the SiO2 etch rate decreased continuously with increasing C4F8 (200-800 SCCM) addition, whereas the SiO2 etch rate increased with increasing CF4 (1-10 slm) addition up to 7 slm CF4. This increase in the SiO2 etch rate up to 7 slm CF4 was attributed to the effective removal of Si in SiO2 by F atoms through the removal of oxygen in SiO2 by carbon in the CFX in the plasma. However, the decrease in SiO2 etch rate with further increases in CF4 flow rate above 7 slm was attributed to the formation of a thick C-F polymer layer on the SiO2 surface. A SiO2 etch rate of approximately 243 nm/min was obtained with a gas mixture of N2 (60 slm)/NF3 (600 SCCM)/CF4 (7 slm), and an input voltage and operating frequency to the source of 10 kV and 30 kHz, respectively. The addition of 200 SCCM Ar to the above gas mixture increased the SiO2 etch rate to approximately 263 nm/min. This is possibly due to the increased ionization and dissociation of reactive species through penning ionization of Ar.

  16. Formation of size-controlled and luminescent Si nanocrystals from SiOxNy/Si3N4 hetero-superlattices

    NASA Astrophysics Data System (ADS)

    Zelenina, A.; Sarikov, A.; Gutsch, S.; Zakharov, N.; Werner, P.; Reichert, A.; Weiss, C.; Zacharias, M.

    2015-05-01

    Silicon nanocrystals formed in the annealed SiNx/Si3N4 superlattices are attractive for research due to the smaller band offsets of Si3N4 matrix to Si in comparison with commonly used SiOx/SiO2 superlattices. However, the annealed SiNx/Si3N4 structures contain an increased number of nanocrystal interface defects, which completely suppress nanocrystal emission spectrum. In this work, we study a novel SiOxNy/Si3N4 hetero multilayer combination, which compromises the major issues of SiOx/SiO2 and SiNx/Si3N4 superlattices. The annealed SiOxNy/Si3N4 superlattices are investigated by TEM, demonstrating a precise sublayer thicknesses control. The PL spectra of the annealed SiOxNy/Si3N4 superlattices are centered at 845-950 nm with an expected PL peak shift for silicon nanocrystals of different sizes albeit the PL intensity is drastically reduced as compared to SiO2 separation barriers. The comparison of PL spectra of annealed SiOxNy/Si3N4 superlattice with those of SiOxNy/SiO2 superlattice enables the analysis of the interface quality of silicon nanocrystals. Using the literature data, the number of the interface defects and their distribution on the nanocrystal facets are estimated. Finally, it is shown that the increase of the Si3N4 barrier thickness leads to the increased energy transfer from the Si nanocrystals into the Si3N4 matrix, which explains an additional drop of the nanocrystal PL intensity.

  17. Using JVLA Observations of SiO Masers to Probe the Extended Atmosphere of an AGB Star: W Hydrae

    NASA Astrophysics Data System (ADS)

    Kamieneski, Patrick S.; Matthews, Lynn D.

    2015-01-01

    The Asymptotic Giant Branch star W Hydrae (W Hya) is known to be a strong source of silicon monoxide (SiO) masers in its extended atmosphere. Jansky Very Large Array imaging observations obtained in February 2014 were used to target eleven SiO J=1-0 rotational transitions near 43 GHz. The vibrational ground state (v=0) lines for the 28SiO, 29SiO, and 30SiO isotopologues were successfully detected, as were the v=1,2,3 lines for 28SiO. Non-detections included the v=1,2 transitions for 29SiO and 30SiO, and the v=4 line for 28SiO. We will summarize the relative shape, size, and intensity of the emission regions of the detected transitions. We have discovered spatially extended ground-state 28SiO emission in a region located approximately 300 to 600 milliarcseconds (projected distance of 34 to 69 AU) from the star. We will discuss a saddle-like distribution and a small gradient in the velocity field for the 28SiO v=1 line, which may help to confirm the existence of a bipolar outflow in W Hya. Additionally, our results indicate that the observed transitions have differing spatial distributions. Peak 28SiO v=1,2,3 emission primarily occupies a region 12 - 42 mas (projected distance of 1.4 - 4.8 AU) west of the star, while the 29SiO and 30SiO isotopologues are located in disparate regions around 45 - 70 mas (5.2 - 8.1 AU) to the northwest of the star.This work was sponsored by a grant from the National Science Foundation Research Experience for Undergraduate program to MIT Haystack Observatory.

  18. Inherent paramagnetic defects in layered Si/SiO{sub 2} superstructures with Si nanocrystals

    SciTech Connect

    Jivanescu, M.; Stesmans, A.; Zacharias, M.

    2008-11-15

    An extensive electron spin resonance (ESR) analysis has been carried out on structures comprised of Si nanoparticles ({approx}2 nm across) embedded in a regular pattern in an amorphous SiO{sub 2} matrix, fabricated by the SiO/SiO{sub 2} superlattice approach, with the intent to reveal and quantify occurring paramagnetic defects. The as-grown state is found to exhibit only a Si dangling bond (DB) signal, which through combination of first and second harmonic X-, K-, and Q-band observations in combination with computer spectra simulation, could be conclusively disentangled as solely comprised of overlapping powder pattern spectra of P{sub b(0)} and P{sub b1} defects, the archetypal intrinsic defects of the Si/SiO{sub 2} interface, with no evidence for a D line (Si DBs in disordered Si). This indicates a full crystalline system of randomly oriented Si nanocrystals (NCs). The P{sub b(0)}/P{sub b1} defect system, pertaining to the NC-Si/SiO{sub 2} interfaces, is found to be both qualitatively and quantitatively much alike that of standard (high-quality) thermal Si/SiO{sub 2}. The system is inherent, remaining unaffected by subsequent UV/vacuum UV irradiations. Relying on the known properties of P{sub b}-type defects in standard microscopic Si/SiO{sub 2}, the data would comply with Si nanocrystallites, in average, predominantly bordered by (111) and (100) facets, perhaps with morphology, schematically, of [100] truncated (111) octahedrons. Based on independent NC particles counting, there appears a P{sub b}-type center at {approx}71% of the Si NCs indicating the latter to be comprised of two subsystems-with or without an incorporated strain relaxing interface defect-which in that case will exhibit drastically different defect-sensitive properties, such as, e.g., photoluminescence (PL). Upon additional optical irradiation, two more defects appear, i.e., the SiO{sub 2}-associated E{sub {gamma}}{sup '} and EX centers, where the observed density of the former, taken as

  19. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  20. Effect of the addition of B{sub 2}O{sub 3} and BaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses on the microstructure and dielectric properties of giant dielectric constant material CaCu{sub 3}Ti{sub 4}O{sub 12}

    SciTech Connect

    Shri Prakash, B.; Varma, K.B.R.

    2007-06-15

    The effect of the addition of glassy phases on the microstructure and dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics was investigated. Both single-component (B{sub 2}O{sub 3}) and multi-component (30 wt% BaO-60 wt% B{sub 2}O{sub 3}-10 wt% SiO{sub 2} (BBS)) glass systems were chosen to study their effect on the density, microstructure and dielectric properties of CCTO. Addition of an optimum amount of B{sub 2}O{sub 3} glass facilitated grain growth and an increase in dielectric constant. However, further increase in the B{sub 2}O{sub 3} content resulted in its segregation at the grain boundaries associated with a reduction in the grain size. In contrast, BBS glass addition resulted in well-faceted grains and increase in the dielectric constant and decrease in the dielectric loss. An internal barrier layer capacitance (IBLC) model was invoked to correlate the dielectric constant with the grain size in these samples. - Graphical abstract: Scanning electron micrograph of 30 wt% BaO-60 wt% B{sub 2}O{sub 3}-10 wt% SiO{sub 2} (BBS) glass-added CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic on sintering.

  1. NiPt silicide agglomeration accompanied by stress relaxation in NiSi(010) ∥ Si(001) grains

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Pagès, Xavier; Vanormelingen, Koen; Smits, Martin; Granneman, Ernst; Fujisawa, Masahiko; Hattori, Nobuyoshi

    2015-04-01

    Pt-doped Ni (NiPt) silicide agglomeration in terms of NiSi crystal orientation, Pt segregation at the NiSi/Si interface, and residual stress is studied for the first time. In the annealing of Ni monosilicide (NiSi), the growth of NiSi grains whose NiSi b-axes are aligned normal to Si(001) [NiSi(010) ∥ Si(001)] with increasing Pt segregation at the NiSi/Si interface owing to a high annealing temperature was observed. The residual stress in NiSi(010) ∥ Si(001) grains also increases with increasing annealing temperature. Furthermore, the recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress continues through additional annealing after NiSi formation. After the annealing of NiSi(010) ∥ Si(001) grains with their strain at approximately 2%, the start of NiPt silicide agglomerates accompanied by stress relaxation was observed. This preferential recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress is considered to enhance the NiPt silicide agglomeration.

  2. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  3. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    PubMed

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. PMID:26655791

  4. Kinetics of epitaxial growth of Si and SiGe films on (1 1 0) Si substrates

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Moriyama, Y.; Nakaharai, S.; Tezuka, T.; Mizuno, T.; Takagi, S.

    2004-03-01

    The epitaxial growth of Si and SiGe layers on (1 1 0) Si substrates using UHV-CVD is studied with comparing that on (1 0 0) substrates. It is revealed that, while the growth rate on (1 1 0) surfaces is quite lower than that on (1 0 0) surfaces, the Ge content of SiGe is the same between (1 0 0) and (1 1 0) surfaces, meaning that the ratio of decomposition yields of source molecules for Si and Ge are same in both the (1 0 0) and (1 1 0) substrates. This characteristic is expected to lead to the epitaxial growth of SiGe films with uniform Ge content over the three-dimensional patterned structure, which can be utilized for vertical FET and Fin-FETs. Actually, it has been experimentally confirmed that the SiGe films grown over trench structures has a uniform Ge content.

  5. Vacuum-UV irradiation-based formation of methyl-Si-O-Si networks from poly(1,1-dimethylsilazane-co-1-methylsilazane).

    PubMed

    Prager, Lutz; Wennrich, Luise; Heller, Roswitha; Knolle, Wolfgang; Naumov, Sergej; Prager, Andrea; Decker, Daniel; Liebe, Hubert; Buchmeiser, Michael R

    2009-01-01

    The vacuum-UV (VUV)-induced conversion of commercially available poly(1,1-dimethylsilazane-co-1-methylsilazane) into methyl-Si-O-Si networks was studied using UV sources at wavelengths around 172, 185, and 222 nm, respectively. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray photo electron spectroscopy (XPS), and Fourier transform infrared (FTIR) measurements, as well as kinetic investigations, were carried out to elucidate the degradation process. First-order kinetics were found for the photolytically induced decomposition of the Si-NH-Si network, the subsequent formation of the methyl-Si-O-Si network and the concomitant degradation of the Si-CH(3) bond, which were additionally independent of the photon energy above a threshold of about 5.5 eV (225 nm). The kinetics of these processes were, however, dependent on the dose actually absorbed by the layer and, in the case of Si-O-Si formation, additionally on the oxygen concentration. The release of ammonia and methane accompanied the conversion process. Quantum-chemical calculations on methyl substituted cyclotetrasilazanes as model compounds substantiate the suggested reaction scheme. Layers <100 nm in thickness based on mixtures of poly(1,1-dimethylsilazane-co-1-methylsilazane) and perhydropolysilazane (PHPS) were coated onto polyethylene terephthalate (PET) foils by a continuous roll to roll process and cured by VUV irradiation by using wavelengths <200 nm and investigated for their O(2) and water vapor-barrier properties. It was found that the resulting layers displayed oxygen and water vapor transmission rates (OTR and WVTR, respectively) of <1 cm(3) m(-2) d(-1) bar(-1) and <4 g m(-2) d(-1), respectively. PMID:19040228

  6. A detailed coupled-mode-space non-equilibrium Green's function simulation study of source-to-drain tunnelling in gate-all-around Si nanowire metal oxide semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Seoane, N.; Martinez, A.

    2013-09-01

    In this paper we present a 3D quantum transport simulation study of source-to-drain tunnelling in gate-all-around Si nanowire transistors by using the non-equilibrium Green's function approach. The impact of the channel length, device cross-section, and drain and gate applied biases on the source-to-drain tunnelling is examined in detail. The overall effect of tunnelling on the ID-VG characteristics is also investigated. Tunnelling in devices with channel lengths of 10 nm or less substantially enhances the off-current. This enhancement is more important at high drain biases and at larger cross-sections where the sub-threshold slope is substantially degraded. A less common effect is the increase in the on-current due to the tunnelling which contributes as much as 30% of the total on-current. This effect is almost independent of the cross-section, and it depends weakly on the studied channel lengths.

  7. PECVD deposition of a-B/C on Si using a surface-ECR plasma source and O-carborane precursor gas

    SciTech Connect

    Geddes, J.B.; Getty, W.D.

    1995-12-31

    Vacuum wall deposition of a-B/C films has had tremendous positive impact on the performance of tokamak fusion reactors. In the present work, sublimed gas from o-carborane and helium carrier gas are used to create a plasma using the surface-ECR source. The plasma operates in a pressure range of 5 to 15 mTorr and typical flow rates are 5 sccm He plus 0.5--1 sccm o-carborane vapor. The film deposition rate is approximately 200 {angstrom}/minute. Microwave power levels range 200--500 W at 2.45 GHz. The authors present data from the deposition plasma, including Langmuir probe measurements and time-of-flight (TOF) analyzer measurements of elemental and molecular ion species concentrations. Plasma electron densities on the order of n{sub e} = 10{sup 11}cm{sup {minus}3} and electron temperatures of T{sub e} {approx} 2eV were measured. Using these measurements a self-consistent plasma equilibrium is being modeled. The films have been analyzed for atomic constituency using XPS. Thickness is measured by profilometry. Preliminary x-ray diffraction analysis has been performed. Films with a thickness of a few thousand {angstrom} are routinely obtained.

  8. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  9. Fabrication and measurement of quantum dots in double gated, dopantless Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Ward, Daniel; Mohr, Robert; Prance, Jonathan; Gamble, John; Savage, Don; Lagally, Max; Coppersmith, Susan; Eriksson, Mark

    2012-02-01

    Significant progress has been made towards quantum dot spin qubits in Si/SiGe single and double quantum dots. In the past, these structures have been created by depleting a modulation-doped 2DEG that forms at the Si/SiGe interface. The modulation doping in such devices is believed to be a source of charge noise. Recently, undoped structures have been explored for the formation of both 2DEGs and quantum dots in Si/SiGe. Here we discuss measurements on double gated, dopantless quantum dots in Si/SiGe heterostructures. The devices are based on a new ``island mesa'' design incorporating micro-ohmic contacts. We present transport measurements on a double quantum dot showing a smooth transition from single dot to double dot behavior.

  10. Structural Characterization of Polycrystalline 3C-SiC Films Prepared at High Rates by Atmospheric Pressure Plasma Chemical Vapor Deposition Using Monomethylsilane

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Hiroaki; Ohmi, Hiromasa; Nakamura, Ryota; Aketa, Masatoshi; Yasutake, Kiyoshi

    2006-10-01

    Polycrystalline cubic silicon carbide (3C-SiC) films were deposited at a relatively low temperature of 1070 K on Si(001) substrates by atmospheric pressure plasma chemical vapor deposition. Monomethylsilane (CH3SiH3) was used as the single source. CH4 and SiH4 dual sources were also used to compare deposition characteristics. Under the present deposition conditions, very high deposition rates of more than 3 nm/s were obtained. The structure of the SiC films was evaluated by reflection high-energy electron diffraction, Fourier transform infrared absorption spectroscopy and cross-sectional transmission electron microscopy. In addition, optical emission spectroscopy was employed to study the chemical reactions in the CH4/SiH4 and CH3SiH3 plasmas. The results showed that increasing H2 concentration is essential in forming a high quality 3C-SiC film by enhancing the hydrogen elimination reaction at the film-growing surface. From the optical emission spectra, it was found that atomic hydrogen generated by adding H2 in the plasma increase the amount of principal precursors for the film growth. The utilization of CH3SiH3 also led to a higher concentration of principal precursors in the plasma, enhancing the incorporation of Si-C bonds into the film. As a consequence of simultaneously using a high H2 concentration and the CH3SiH3 single source, the columnar growth of 3C-SiC crystallites was achieved.

  11. Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI, and LC-ion booster ESI.

    PubMed

    Ballesteros-Gómez, Ana; Jonkers, Tim; Covaci, Adrian; de Boer, Jacob

    2016-04-01

    Plastics are complex mixtures consisting of a polymer and additives with different physico-chemical properties. We developed a broad screening method to elucidate the nature of compounds present in plastics used in electrical/electronic equipment commonly found at homes (e.g., electrical adaptors, computer casings, heaters). The analysis was done by (a) solvent extraction followed by liquid chromatography coupled to high accuracy/resolution time-of-flight mass spectrometry (TOFMS) with different ionization sources or (b) direct analysis of the solid by ambient mass spectrometry high accuracy/resolution TOFMS. The different ionization methods showed different selectivity and sensitivity for the different compound classes and were complementary. A variety of antioxidants, phthalates, UV filters, and flame retardants were found in most samples. Furthermore, some recently reported impurities or degradation products derived from flame retardants were identified, such as hydroxylated triphenyl phosphate and tetrabromobisphenol A monoglycidyl ether. PMID:26758596

  12. Effect of protein source and protease addition on performance, blood metabolites and nutrient digestibility of turkeys fed on low-protein diets from 28 to 55 d post hatch.

    PubMed

    Shahir, M H; Rahimi, R; Taheri, H R; Heidariniya, A; Baradaran, N; Asadi Kermani, Z

    2016-06-01

    The objective of this study was to investigate the effect of a monocomponent protease and dietary inclusion of canola meal (CM) and poultry by-product meal (PBM) on growth performance, carcass characteristics and blood metabolites of turkeys fed on low crude protein (CP) diets from 28 to 55 d post hatch. Experimental treatments included control, maize-soybean meal diet including 258.3 g/kg CP; negative control 1 (NC1), maize-soybean meal diet with reduced CP (232.4 g/kg); NC2, control diet (CP, 258.3 g/kg) including CM (80 g/kg) and PBM (80 g/kg); NC3, maize-soybean meal diet with reduced CP (232.4 g/kg) including CM (80 g/kg) and PBM (80 g/kg). Also, the NC1 + P and NC3 + P diets were created by addition of protease enzyme (30 000 units/kg of diet) to the NC1 and NC3 diets, respectively. The NC3 group had lower body weight gain (BWG) compared to those fed on the control diet, and no improvement with enzyme addition (NC3 + P) was achieved. The protease addition to the NC1 diet (NC1 + P) improved BWG to the level of the control diet. The NC1 group had higher feed conversion ratio (FCR) compared to the control and NC3 + P, but protease addition to the NC1 diet improved FCR. Protease addition to the low CP diets resulted in higher nitrogen (N) retention than in the control and NC2 groups. Also, the NC1 + P and NC3 + P diets increased apparent ileal digestibility (AID) of CP compared to the control group. It was concluded that addition of CM (up to 80 g/kg) and PBM (up to 80 g/kg) to turkey diets had no negative effect on growth performance from 28 to 55 d of age. The NC1 + P group achieved the BWG of the control group which was partially due to increases in N retention and AID of CP, but the NC3 + P group failed to recover the growth losses. This difference implies that the efficacy of the protease may depend upon the protein source in the ration. PMID:27074290

  13. Si-H bond activation at {(NHC)₂Ni⁰} leading to hydrido silyl and bis(silyl) complexes: a versatile tool for catalytic Si-H/D exchange, acceptorless dehydrogenative coupling of hydrosilanes, and hydrogenation of disilanes to hydrosilanes.

    PubMed

    Schmidt, David; Zell, Thomas; Schaub, Thomas; Radius, Udo

    2014-07-28

    The unique reactivity of the nickel(0) complex [Ni2(iPr2Im)4(COD)] (1) (iPr2Im = 1,3-di-isopropyl-imidazolin-2-ylidene) towards hydrosilanes in stoichiometric and catalytic reactions is reported. A series of nickel hydrido silyl complexes cis-[Ni(iPr2Im)2(H)(SiH(n-1)R(4-n))] (n = 1, 2) and nickel bis(silyl) complexes cis-[Ni(iPr2Im)2(SiH(n-1)R(4-n))2] (n = 1, 2, 3) were synthesized by stoichiometric reactions of 1 with hydrosilanes H(n)SiR(4-n), and fully characterized by X-ray diffraction and spectroscopic methods. These hydrido silyl complexes are examples where the full oxidative addition step is hindered. They have, as a result of the remaining Si-H interactions, remarkably short Si-H distances and feature a unique dynamic behavior in solution. Cis-[Ni(iPr2Im)2(H)(SiMePh2)] (cis-5) shows in solution at room temperature a dynamic site exchange of the NHC ligands, H-D exchange with C6D6 to give the deuteride complex cis-[Ni(iPr2Im)2(D)(SiMePh2)] (cis-5-D), and at elevated temperatures an irreversible isomerization to trans-[Ni(iPr2Im)2(D)(SiMePh2)] (trans-5-D). Reactions with sterically less demanding silanes give cis-configured bis(silyl) complexes accompanied by the release of dihydrogen. These complexes display, similarly to the hydrido silyl complexes, interestingly short Si-Si distances. Complex 1 reacts with 4 eq. HSi(OEt)3, in contrast to all the other silanes used in this study, to give the trans-configured bis(silyl) complex trans-[Ni(iPr2Im)2Ni(Si(OEt)3)2] (trans-12). The addition of two equivalents of Ph2SiH2 to 1 results, at elevated temperatures, in the formation of the dinuclear complex [{(iPr2Im)Ni-μ(2)-(HSiPh2)}2] (6). This diamagnetic, formal Ni(I) complex exhibits a long Ni-Ni bond in the solid state, as established by X-ray diffraction. The capability of the electron rich {Ni(iPr2Im)2} complex fragment to activate Si-H bonds was applied catalytically in the deuteration of Et3Si-H to Et3Si-D employing C6D6 as a convenient deuterium source

  14. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1979-01-01

    Cold pressing and sintering techniques were used to produce ceramic test specimens in which the major phase was either Si3N4 or a solid solution having the beta Si3N4 structure. Additional components were incorporated to promote liquid phase sintering. Glass and/or crystalline phase were consequently retained in boundaries between Si3N4 grains which largely determined the physical properties of the bodies. Systems investigated most extensively included R-Si-Al-O-N (R = rare earth element) Zr-Si-Al-O-N, Y-Si-Be-O-N, and R1-R2-Si-O-N. Room temperature and 1370 C modulus of ruptured, 1370 C creep, and oxidation behavior are discussed in terms of phase relationships in a parent quinery, and relavent oxide systems.

  15. Synthesis and properties of Si and SiGe/Si nanowires

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Lew, Kok-Keong; Bogart, Timothy E.; Pan, Ling; Dickey, Elizabeth C.; Carim, A. H.; Wang, Yanfeng; Cabassi, Marco A.; Mayer, Theresa S.

    2004-06-01

    The fabrication of semiconductor nanowires, in which composition, size and conductivity can be controlled in both the radial and axial direction of the wire is of interest for fundamental studies of carrier confinement as well as nanoscale device development. In this study, group IV semiconductor nanowires, including Si, Ge and SixGe1-x alloy nanowires were fabricated by vapor-liquid-solid (VLS) growth using gaseous precursors. In the VLS process, gold is used to form a liquid alloy with Si and Ge which, upon supersaturation, precipitates a semiconductor nanowire. Nanoporous alumina membranes were used as templates for the VLS growth process, in order to control the diameter of the nanowires over the range from 45 nm to 200 nm. Intentional p-type and n-type doping was achieved through the addition of either trimethylboron, diborane or phosphine gas during nanowire growth. The electrical properties of undoped and intentionally doped silicon nanowires were characterized using field-assisted assembly to align and position the wires onto pre-patterned test bed structures. The depletion characteristics of back-gated nanowire structures were used to determine conductivity type and qualitatively compare dopant concentration. SiGe and SiGe/Si axial heterostructure nanowires were also prepared through the addition of germane gas during VLS growth. The Ge concentration in the wires was controllable over the range from 12 % to 25% by varying the inlet GeH4/SiH4 ratio.

  16. Fusion of Si28+Si28,30: Different trends at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Jiang, C. L.; Corradi, L.; Courtin, S.; Fioretto, E.; Grebosz, J.; Haas, F.; Jia, H. M.; Mazzocco, M.; Michelagnoli, C.; Mijatović, T.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Torresi, D.

    2014-10-01

    Background: The fusion excitation function of the system Si28+Si28 at energies near and below the Coulomb barrier is known only down to ≃15 mb. This precludes any information on both coupling effects on sub-barrier cross sections and the possible appearance of hindrance. For Si28+Si30 even if the fusion cross section is measured down to ≃50 μb, the evidence of hindrance is marginal. Both systems have positive fusion Q values. While Si28 has a deformed oblate shape, Si30 is spherical. Purpose: We investigate 1. the possible influence of the different structure of the two Si isotopes on the fusion excitation functions in the deep sub-barrier region and 2. whether hindrance exists in the Si+Si systems and whether it is strong enough to generate an S-factor maximum, thus allowing a comparison with lighter heavy-ion systems of astrophysical interest. Methods: Si28 beams from the XTU Tandem accelerator of the INFN Laboratori Nazionali di Legnaro were used. The setup was based on an electrostatic beam separator, and fusion evaporation residues (ER) were detected at very forward angles. Angular distributions of ER were measured. Results: Fusion cross sections of Si28+Si28 have been obtained down to ≃600 nb. The slope of the excitation function has a clear irregularity below the barrier, but no indication of a S-factor maximum is found. For Si28+Si30 the previous data have been confirmed and two smaller cross sections have been measured down to ≃4 μb. The trend of the S-factor reinforces the previous weak evidence of hindrance. Conclusions: The sub-barrier cross sections for Si28+Si28 are overestimated by coupled-channels calculations based on a standard Woods-Saxon potential, except for the lowest energies. Calculations using the M3Y+repulsion potential are adjusted to fit the Si28+Si28 and the existing Si30+Si30 data. An additional weak imaginary potential (probably simulating the effect of the oblate Si28 deformation) is required to fit the low-energy trend of

  17. Consolidation of silicon nitride without additives

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1977-01-01

    The feasibility of producing a sound, dense Si3N4 body without additives was explored, using conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. These two techniques produce much higher pressure 275-413 MN/m sq (40,000 - 60,000 psi) than hot-pressing techniques. Evaluation was based on density measurement, microscopic examination, both optical and electron, and X-ray diffraction analysis. The results are summarized as follows: (1) Si3N4 can be densified to high density, greater than 95% of theoretical, without additions. (2) The higher density Si3N4 specimens appear to be associated with a greater amount of alpha to beta transformation. (3) Under high pressure, the alpha to beta transformation can occur at a temperature as low as 1150 C. (4) Grain deformation and subsequent recrystallization and grain refinement result from hot isostatic pressing of Si3N4.

  18. Oxidation of TaSi2-Containing ZrB2-SiC Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Smith, Jim; Levine, Stanley R.; Lorincz, Jonathan; Reigel, Marissa

    2010-01-01

    Hot pressed coupons of composition ZrB2-20 v% SiC-5 v% TaSi2 and ZrB2-20 v% SiC-20 v% TaSi2 were oxidized in stagnant air at temperatures of 1627 and 1927C for one, five and ten 10-minute cycles. The oxidation reactions were characterized by weight change kinetics, x-ray diffraction, and SEM/EDS. Detailed WDS/microprobe quantitative analyses of the oxidation products were conducted for the ZrB2-20 v% SiC-20 v% TaSi2 sample oxidized for five 10-minute cycles at 1927C. Oxidation kinetics and product formation were compared to ZrB2-20 v% SiC with no TaSi2 additions. It was found that the 20 v% TaSi2 composition exhibited improved oxidation resistance relative to the material with no TaSi2 additions at 1627C. However, for exposures at 1927C less oxidation resistance and extensive liquid phase formation were observed compared to the material with no TaSi2 additions. Attempts to limit the liquid phase formation by reducing the TaSi2 content to 5 v% were unsuccessful. In addition, the enhanced oxidation resistance at 1627C due to 20 v% TaSi2 additions was not achieved at the 5 v% addition level. The observed oxidation product evolution is discussed in terms of thermodynamics and phase equilibria for the TaSi2-containing ZrB2-SiC material system. TaSi2-additions to ZrB2-SiC at any level are not recommended for ultra-high temperature (>1900C) applications due to excessive liquid phase formation.

  19. Effect of the addition of B 2O 3 and BaO-B 2O 3-SiO 2 glasses on the microstructure and dielectric properties of giant dielectric constant material CaCu 3Ti 4O 12

    NASA Astrophysics Data System (ADS)

    Shri Prakash, B.; Varma, K. B. R.

    2007-06-01

    The effect of the addition of glassy phases on the microstructure and dielectric properties of CaCu 3Ti 4O 12 (CCTO) ceramics was investigated. Both single-component (B 2O 3) and multi-component (30 wt% BaO-60 wt% B 2O 3-10 wt% SiO 2 (BBS)) glass systems were chosen to study their effect on the density, microstructure and dielectric properties of CCTO. Addition of an optimum amount of B 2O 3 glass facilitated grain growth and an increase in dielectric constant. However, further increase in the B 2O 3 content resulted in its segregation at the grain boundaries associated with a reduction in the grain size. In contrast, BBS glass addition resulted in well-faceted grains and increase in the dielectric constant and decrease in the dielectric loss. An internal barrier layer capacitance (IBLC) model was invoked to correlate the dielectric constant with the grain size in these samples.

  20. Ultra-high mobility two-dimensional electron gas in a SiGe/Si/SiGe quantum well

    SciTech Connect

    Melnikov, M. Yu. Shashkin, A. A.; Dolgopolov, V. T.; Huang, S.-H.; Liu, C. W.; Kravchenko, S. V.

    2015-03-02

    We report the observation of an electron gas in a SiGe/Si/SiGe quantum well with maximum mobility up to 240 m{sup 2}/Vs, which is noticeably higher than previously reported results in silicon-based structures. Using SiO, rather than Al{sub 2}O{sub 3}, as an insulator, we obtain strongly reduced threshold voltages close to zero. In addition to the predominantly small-angle scattering well known in the high-mobility heterostructures, the observed linear temperature dependence of the conductivity reveals the presence of a short-range random potential.

  1. Reactive sintering of SiC

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Lee, J. G.

    1984-01-01

    Investigation of the sintering processes involved in the sintering of SiC revealed a connection between the types and quantities of sintering additives or catalysts and densification, initial shrinkage, and weight loss of the sintered SiC material. By sintering processes, is meant the methods of mass transport, namely solid vapor transport and grain boundary diffusion.

  2. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  3. Binding waste anthracite fines with Si-containing materials as an alternative fuel for foundry cupola furnaces.

    PubMed

    Huang, He; Fox, John T; Cannon, Fred S; Komarneni, Sridhar; Kulik, Joseph; Furness, Jim

    2011-04-01

    An alternative fuel to replace foundry coke in cupolas was developed from waste anthracite fines. Waste anthracite fines were briquetted with Si-containing materials and treated in carbothermal (combination of heat and carbon) conditions that simulated the cupola preheat zone to form silicon carbide nanowires (SCNWs). SCNWs can provide hot crushing strengths, which are important in cupola operations. Lab-scale experiments confirmed that the redox level of the Si-source significantly affected the formation of SiC. With zerovalent silicon, SCNWs were formed within the anthracite pellets. Although amorphous Si (+4) plus anthracite formed SiC, these conditions did not transform the SiC into nanowires. Moreover, under the test conditions, SiC was not formed between crystallized Si (+4) and anthracite. In a full-scale demonstration, bricks made from anthracite fines and zerovalent silicon successfully replaced a part of the foundry coke in a full-scale cupola. In addition to saving in fuel cost, replacing coke by waste anthracite fines can reduce energy consumption and CO2 and other pollution associated with conventional coking. PMID:21366305

  4. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Tape Casting TiC+Si Powders

    SciTech Connect

    Henager, Charles H.; Kurtz, Richard J.; Canfield, Nathan L.; Shin, Yongsoon; Luscher, Walter G.; Mansurov, Jirgal; Roosendaal, Timothy J.; Borlaug, Brennan A.

    2013-08-06

    The use of SiC composites in fusion environments likely requires joining of plates using reactive joining or brazing. One promising reactive joining method uses solid-state displacement reactions between Si and TiC to produce Ti3SiC2 + SiC. We continue to explore the processing envelope for this joint for the TITAN collaboration in order to produce optimal joints to undergo irradiation studies in HFIR. One noted feature of the joints produced using tape-calendared powders of TiC+Si has been the large void regions that have been apparently unavoidable. Although the produced joints are very strong, these voids are undesirable. In addition, the tapes that were made for this joining were produced about 20 years ago and were aging. Therefore, we embarked on an effort to produce some new tape cast powders of TiC and Si that could replace our aging tape calendared materials.

  5. Modification of Mg{sub 2}Si in Mg–Si alloys with gadolinium

    SciTech Connect

    Ye, Lingying; Hu, Jilong Tang, Changping; Zhang, Xinming; Deng, Yunlai; Liu, Zhaoyang; Zhou, Zhile

    2013-05-15

    The modification effect of gadolinium (Gd) on Mg{sub 2}Si in the hypereutectic Mg–3 wt.% Si alloy has been investigated using optical microscope, scanning electron microscope, X-ray diffraction and hardness measurements. The results indicate that the morphology of the primary Mg{sub 2}Si is changed from coarse dendrite into fine polygon with the increasing Gd content. The average size of the primary Mg{sub 2}Si significantly decreases with increasing Gd content up to 1.0 wt.%, and then slowly increases. Interestingly, when the Gd content is increased to 4.0 and 8.0 wt.%, the primary and eutectic Mg{sub 2}Si evidently decrease and even disappear. The modification and refinement of the primary Mg{sub 2}Si is mainly attributed to the poisoning effect. The GdMg{sub 2} phase in the primary Mg{sub 2}Si is obviously coarsened as the Gd content exceeds 2.0 wt.%. While the decrease and disappearance of the primary and eutectic Mg{sub 2}Si are ascribed to the formation of vast GdSi compound. Therefore, it is reasonable to conclude that proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. - Highlights: ► Proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. ► We studied the reaction feasibility between Mg and Si, Gd and Si in Mg–Gd–Si system. ► We explored the modification mechanism of Gd modifier on Mg{sub 2}Si.

  6. High temperature compounds for turbine vanes. [of SiC, Si3N4, and Si composites

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.; Cannon, R. M., Jr.

    1974-01-01

    Fabrication and microstructure control studies were conducted on SiC, Si3N and composites based on Si3N. Charpy mode impact testing to 2400 F established that Si3N4/Mo composites have excellent potential. Attempts to fabricate composites of Si3N4 with superalloys, both by hot pressing and infiltration were largely unsuccessful in comparison to using Mo, Re, and Ta which are less reactive. Modest improvements in impact strength were realized for monolithic Si3N4; however, SiC strengths increased by a factor of six and now equal values achieved for Si3N4. Correlations of impact strength with material properties are discussed. Reduced MgO densification aid additions to Si3N4 were found to decrease densification kinetics, increase final porosity, decrease room temperature bend strength, increase high temperature bend strength, and decrease bend stress rupture properties. The decrease in bend strength at high temperature for fine grain size SiC suggested that a slightly larger grain size material with a nearly constant strength-temperature relation may prove desirable in the creep and stress rupture mode.

  7. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2001-10-16

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction.

  8. Direct observation of nanometer-scale strain field around CoSi{sub 2}/Si interface using scanning moiré fringe imaging

    SciTech Connect

    Kim, Suhyun; Jung, Younheum; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Heabum

    2014-04-21

    We report the use of scanning moiré fringe (SMF) imaging through high-angle annular dark-field scanning transmission electron microscopy (STEM) to measure the strain field around a CoSi{sub 2} contact embedded in the source and drain (S/D) region of a transistor. The atomic arrangement of the CoSi{sub 2}/Si (111) interface was determined from the high-resolution (HR)-STEM images, and the strain field formed around the S/D region was revealed by nanometer-scale SMFs appearing in the STEM image. In addition, we showed that the strain field in the S/D region measured by SMF imaging agreed with results obtained via peak-pairs analysis of HR-STEM images.

  9. The Basic SI Model

    ERIC Educational Resources Information Center

    Hurley, Maureen; Jacobs, Glen; Gilbert, Melinda

    2006-01-01

    A general overview of the SI model is provided, including the SI philosophy, essential components of the program, program structures, key roles, outcomes, and evaluation. A review of what we have learned about the importance of planning SI sessions, providing ongoing training for leaders, conducting regular SI program assessments, and implementing…

  10. Reaction of an alkyne with dinickel-diphenylsilyl complexes. An emissive disilane formed via the consecutive Si-C and Si-Si bond-making processes.

    PubMed

    Tanabe, Makoto; Yumoto, Ryouhei; Osakada, Kohtaro

    2012-02-18

    [{Ni(dmpe)}(2)(μ-SiHPh(2))(2)] (dmpe = 1,2-bis(dimethylphosphino)ethane) reacted with PhC≡CPh to yield fluorescent 1,2-bis{(E)-1,2-diphenylethenyl}-1,1,2,2-tetraphenyldisilane via addition of the Si-H bond of the ligand to the alkyne and subsequent coupling of the tertiary silyl ligands forming the Si-Si bond. PMID:22241522

  11. Straight β-SiC nanorods synthesized by using C-Si-SiO2

    NASA Astrophysics Data System (ADS)

    Lai, H. L.; Wong, N. B.; Zhou, X. T.; Peng, H. Y.; Au, Frederick C. K.; Wang, N.; Bello, I.; Lee, C. S.; Lee, S. T.; Duan, X. F.

    2000-01-01

    Straight beta-silicon carbide nanorods have been grown on silicon wafers using hot filament chemical vapor deposition with iron particles as catalyst. A plate made of a C-Si-SiO2 powder mixture was used as carbon and silicon sources. Hydrogen, which was the only gas fed into the deposition system, acts both as a reactant and as a mass transporting medium. The diameter of the β-SiC nanorod ranged from 20 to 70 nm, while its length was approximately 1 μm. A growth mechanism of beta-silicon carbide nanorods was proposed. The field emission properties of the beta-silicon carbide nanorods grown on the silicon substrate are also reported.

  12. Effects of nitrogen and fluorine on the Si/SiO(2) interface

    NASA Astrophysics Data System (ADS)

    Dugan, Brian Michael

    Several fundamental properties of the nitrided and/or fluorinated (100) Si/SiOsb2 interface are investigated. Nitridation of SiOsb2 by Nsb2O annealing is extended to thick oxides and is shown to result in strain relaxation at the Si/SiOsb2 interface which manifests itself in a reduction in the gate-size dependence of radiation damage. In addition to suppressing boron diffusion, Nsb2O nitrided oxides suppress hydrogen diffusion to the Si/SiOsb2 interface as these oxides exhibit significantly less latent generation of interface traps than pure SiOsb2. The considerable improvement in oxide reliability observed for Nsb2O nitrided oxides is attributed to both strain relaxation and hydrogen diffusion suppression. The interface-trap transformation process (ITTP) is found to be qualitatively similar for pure SiOsb2, nitrided SiOsb2, and nitrided/fluorinated SiOsb2 devices despite the apparent ability of nitrided oxides to suppress hydrogen diffusion. This similarity contradicts a water diffusion ITTP model, and supports an ITTP model based upon occupancy-driven changes in the bonding configurations of Pb centers which are unaltered by either fluorination or nitridation. Despite dramatically impacting oxide reliability, interfacial strain, and diffusion barrier properties, neither nitridation nor fluorination alters the electrical signature of Psb{b0}/Psb{b1} centers at the Si/SiOsb2 interface. The time evolution of a.c. conductance data for damaged nitrided and nitrided/fluorinated (100) n-type Si MOS capacitors suggests a second ITTP, possibly a Psb{b0}/Psb{b1} exchange. A novel NFsb3 annealing process for incorporating F at the Nsb2O nitrided Si/SiOsb2 interface produces a nitrided/fluorinated oxide with significantly improved oxide reliability characteristics compared to pure SiOsb2, but slightly less reliable than nitrided SiOsb2 without F. Accompanying the fluorination of nitrided SiOsb2 is a decrease in fast and slow interface traps. Water-vapor annealing is shown to

  13. Continuous-wave laser annealing of Si-rich oxide: A microscopic picture of macroscopic Si-SiO{sub 2} phase separation

    SciTech Connect

    Khriachtchev, Leonid; Nikitin, Timur; Raesaenen, Markku; Domanskaya, Alexandra; Boninelli, Simona; Iacona, Fabio; Engdahl, Anders; Juhanoja, Jyrki; Novikov, Sergei

    2010-12-15

    We report on the first observation of the macroscopic (long-range) Si-SiO{sub 2} phase separation in Si-rich oxide SiO{sub x}(x<2) obtained by continuous-wave laser annealing of free-standing SiO{sub x} films. The effect is analyzed by a unique combination of microscopic methods (Raman, transmission, photoluminescence, and infrared spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy). Three regions can be distinguished on a SiO{sub x} free-standing film after 488 nm laser annealing at intensities above {approx}10{sup 4} W cm{sup -2}: central spot, ring around the central spot, and pristine film outside the irradiated area. In the pristine SiO{sub x} material, small Si nanocrystals (Si-nc) (diameters of a few nanometer) are surrounded by SiO{sub 2} with an addition of residual suboxides, the Si-nc being produced by annealing at 1100 deg. C in a furnace. The central spot of the laser-annealed area (up to {approx}30 {mu}m wide in these experiments) is practically free of Si excess and mainly consists of amorphous SiO{sub 2}. The ring around the central spot contains large spherical Si-nc (diameters up to {approx}100 nm) embedded in amorphous SiO{sub 2} without the presence of suboxides. Laser-induced temperatures in the structurally modified regions presumably exceed the Si melting temperature. The macroscopic Si-SiO{sub 2} phase separation is connected with extensive diffusion in temperature gradient leading to the Si concentration gradient. The present work demonstrates the advantages of high spatial resolution for analysis in materials research.

  14. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Ting; Yang, Kuo-Ching; Liao, Po-Hsiang; George, Tom; Li, Pei-Wen

    2016-02-01

    We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5‑90 nm), the SiO2 thickness (3‑4 nm), and as well the SiGe-shell thickness (2‑15 nm) has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS) devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5) in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge) MOS nanoelectronic and nanophotonic applications.

  15. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  16. Effects of SiC whiskers and particles on precipitation in aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Papazian, John M.

    1988-12-01

    The age-hardening precipitation reactions in aluminum matrix composites reinforced with discontinuous SiC were studied using a calorimetric technique. Composites fabricated with 2124, 2219, 6061, and 7475 alloy matrices were obtained from commercial sources along with unreinforced control materials fabricated in a similar manner. The 7475 materials were made by a casting process while the others were made by powder metallurgy: the SiC reinforcement was in the form of whiskers or particulate. It was found that the overall age-hardening sequence of the alloy was not changed by the addition of SiC, but that the volume fractions of various phases and the precipitation kinetics were substantially modified. Precipitation and dissolution kinetics were generally accelerated. A substantial portion of this acceleration was found to be due to the powder metallurgy process employed to make the composites, but the formation kinetics of some particular precipitate phases were also strongly affected by the presence of SiC. It was observed that the volume fraction of GP zones able to form in the SiC containing materials was significantly reduced. The presence of SiC particles also caused normally quench insensitive materials such as 6061 to become quench sensitive. The microstructural origins of these effects are discussed.

  17. Evidence from a hot atom experiment for the silylsilylene-to-disilene rearrangement: SiH/sub 3/SiH:. -->. SiH/sub 2/=SiH/sub 2/

    SciTech Connect

    Gaspar, P.P.; Boo, B.H.; Svoboda, D.L.

    1987-09-10

    Adducts of disilene (SiH/sub 2/=SiH/sub 2/) and silylsilylene (SiH/sub 3/SiH:) to butadiene have been found, in addition to the previously reported products from the reactions of recoiling silicon atoms in gaseous mixtures of phosphine (PH/sub 3/), butadiene (C-H/sub 2/=CH-CH=CH/sub 2/), and silane (SiH/sub 4/). The change in yields when neon moderator is present - the yield of the silylsilylene adduct increases while that of the disilene adduct decreases - is in accord with the formation of disilene via a silylsilylene intermediate. This is strong evidence for the rearrangement of silylsilylene to disilene: SiH/sub 3/SiH: ..-->.. SiH/sub 2/=SiH/sub 2/.

  18. Nanoscale SiC production by ballistic ion beam mixing of C/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Battistig, G.; Zolnai, Z.; Németh, A.; Panjan, P.; Menyhárd, M.

    2016-05-01

    The ion beam-induced mixing process using Ar+, Ga+, and Xe+ ion irradiation has been used to form SiC rich layers on the nanometer scale at the interfaces of C/Si/C/Si/C multilayer structures. The SiC depth distributions were determined by Auger electron spectroscopy (AES) depth profiling and were compared to the results of analytical models developed for ballistic ion mixing and local thermal spike induced mixing. In addition, the measured SiC depth distributions were correlated to the Si and C mixing profiles simulated by the TRIDYN code which can follow the ballistic ion mixing process as a function of ion fluence. Good agreement has been found between the distributions provided by AES depth profiling and TRIDYN on the assumption that the majority of the Si (C) atoms transported to the neighboring C (Si) layer form the SiC compound. The ion beam mixing process can be successfully described by ballistic atomic transport processes. The results show that SiC production as a function of depth can be predicted, and tailored compound formation on the nanoscale becomes feasible, thus leading to controlled synthesis of protective SiC coatings at room temperature.

  19. Uniform SiGe/Si quantum well nanorod and nanodot arrays fabricated using nanosphere lithography

    PubMed Central

    2013-01-01

    This study fabricates the optically active uniform SiGe/Si multiple quantum well (MQW) nanorod and nanodot arrays from the Si0.4Ge0.6/Si MQWs using nanosphere lithography (NSL) combined with the reactive ion etching (RIE) process. Compared to the as-grown sample, we observe an obvious blueshift in photoluminescence (PL) spectra for the SiGe/Si MQW nanorod and nanodot arrays, which can be attributed to the transition of PL emission from the upper multiple quantum dot-like SiGe layers to the lower MQWs. A possible mechanism associated with carrier localization is also proposed for the PL enhancement. In addition, the SiGe/Si MQW nanorod arrays are shown to exhibit excellent antireflective characteristics over a wide wavelength range. These results indicate that SiGe/Si MQW nanorod arrays fabricated using NSL combined with RIE would be potentially useful as an optoelectronic material operating in the telecommunication range. PMID:23924368

  20. SiC device development for high temperature sensor applications

    NASA Technical Reports Server (NTRS)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  1. SiC device development for high temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-09-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  2. Improving Thermomechanical Properties of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bhatt, Ramakrishna T.

    2006-01-01

    Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the

  3. Tunable, broadband and high-efficiency Si/Ge hot luminescence with plasmonic nanocavity array

    NASA Astrophysics Data System (ADS)

    Qi, Gongmin; Zhang, Miao; Wang, Lin; Mu, Zhiqiang; Ren, Wei; Li, Wei; Di, Zengfeng; Wang, Xi

    2016-06-01

    In addition to the massive application in the electronics industry for decades, silicon has been considered as one of the best candidates for the photonics industry. However, a high-efficiency, broadband light source is still a challenge. In this paper, we theoretically propose a Si/Ge based platform consisting of plasmonic nanocavity array to realize the tunable, broadband, and high-efficiency Si/Ge hot luminescence from infrared to visible region with large luminescence enhancement (about 103). It is demonstrated that the large luminescence enhancement is due to the resonance between the intrinsic hot luminescence and the plasmonic nanocavity modes with ultra-small effective mode volumes. And, the size and Ge composition of Si 1 - x Ge x nanowire can be tuned to realize the tunable and broadband luminescence. This study gives rise to many applications in silicon photonics, like ultrafast optical communications, sensors, and on-chip spectral measurements.

  4. Low temperature Silicon epitaxy on bare Si (100) and H terminated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Deng, Xiao; Namboodiri, Pradeep; Li, Kai; Wang, Xiqiao; Li, Tongbao; Silver, Richard

    Silicon on Silicon growth morphology is studied using an ultrahigh vacuum scanning tunneling microscopy (UHV-STM) and transmission electron microscopy (TEM). Sub-monolayer to 18 nm of silicon was evaporated using an all-silicon sublimation source (SUSI) onto a UHV prepared Si (100) sample at 250°C. The results are compared with the growth characteristics on hydrogen passivated surfaces (H: Si) under identical experimental conditions. STM images indicate that growth morphology of both Si on Si and Si on H: Si is of epitaxial nature at temperatures as low as 250°C. For Si on bare Si growth at 250°C, there exists a stable thickness regime where Si epitaxial growth front keeps the same morphology. Although the mobility of silicon is modestly affected on the H: Si surface because of the H atoms during the initial sub-monolayer regime, the growth proceeds epitaxially with the 3D island growth mode and noticeable surface roughening.

  5. Improvement of magnetic and structural stabilities in high-quality Co2FeSi1-xAlx/Si heterointerfaces

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Oki, S.; Kawano, M.; Miyao, M.; Hamaya, K.

    2014-08-01

    We study high-quality Co2FeSi1-xAlx Heusler compound/Si (0 ≤ x ≤ 1) heterointerfaces for silicon (Si)-based spintronic applications. In thermal treatment conditions, the magnetic and structural stabilities of the Co2FeSi1-xAlx/Si heterointerfaces are improved with increasing x in Co2FeSi1-xAlx. Compared with L21-ordered Co2FeSi/Si, B2-ordered Co2FeAl/Si can suppress the diffusion of Si atoms into the Heusler-compound structure. This experimental study will provide an important knowledge for applications in Si-based spin transistors with metallic source/drain contacts.

  6. Improvement of magnetic and structural stabilities in high-quality Co{sub 2}FeSi{sub 1−x}Al{sub x}/Si heterointerfaces

    SciTech Connect

    Yamada, S.; Tanikawa, K.; Oki, S.; Kawano, M.; Miyao, M.; Hamaya, K.

    2014-08-18

    We study high-quality Co{sub 2}FeSi{sub 1−x}Al{sub x} Heusler compound/Si (0 ≤ x ≤ 1) heterointerfaces for silicon (Si)-based spintronic applications. In thermal treatment conditions, the magnetic and structural stabilities of the Co{sub 2}FeSi{sub 1−x}Al{sub x}/Si heterointerfaces are improved with increasing x in Co{sub 2}FeSi{sub 1−x}Al{sub x}. Compared with L2{sub 1}-ordered Co{sub 2}FeSi/Si, B2-ordered Co{sub 2}FeAl/Si can suppress the diffusion of Si atoms into the Heusler-compound structure. This experimental study will provide an important knowledge for applications in Si-based spin transistors with metallic source/drain contacts.

  7. Advanced Si IR detectors using molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Jones, E. W.; George, T.; Ksendzov, A.; Huberman, M. L.

    1991-01-01

    SiGe/Si heterojunction internal photoemission (HIP) long wavelength infrared (LWIR) detectors have been fabricated by MBE. The SiGe/Si HIP detector offers a tailorable spectral response in the long wavelength infrared regime by varying the SiGe/Si heterojunction barrier. Degenerately doped p(+) SiGe layers were grown using elemental boron, as the dopant source allows a low growth temperature. Good crystalline quality was achieved for boron-doped SiGe due to the reduced growth temperature. The dark current density of the boron-doped HIP detectors was found to be thermionic emission limited. HIP detectors with a 0.066 eV were fabricated and characterized using activation energy analysis, corresponding to a 18 micron cutoff wavelength. Photoresponse of the detectors at wavelengths ranging from 2 to 12 microns has been characterized with corresponding quantum efficiencies of 5 - 0.1 percent.

  8. Experimental investigations of Si-isotope fractionation associated with Fe-Si co-precipitates in simulated Precambrian seawater

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Beard, B. L.; Reddy, T. R.; Johnson, C.

    2014-12-01

    The Si cycle was dramatically different in the Precambrian ocean due to the absence of marine Si-secreting organisms. Precambrian Si isotopic compositions were largely controlled by chemical precipitation of Si, input of Si with different isotopic compositions (e.g., continental versus hydrothermal sources) and later alteration and diagenetic processes associated with silicification. In Precambrian banded iron formations (BIFs) and chert deposits there is an over 4‰ spread of Si isotopes (δ30Si), which stands in marked contrast to the narrow range (<0.5) measured in igneous rocks, highlighting the potential of using Si isotopes to reconstruct those processes that controlled the Precambrian marine Si cycle. However, unequivocal interpretations of Si isotope compositions measured in Precambrian Fe-Si rich sediments is hampered by a lack of understanding of Si-isotope fractionation factors associated with formation of these sediments and subsequent diagenetic processes. This study experimentally investigates Si isotope fractionation during the formation of Fe-Si co-precipitates, and between aqueous Si and Fe-Si co-precipitates. All experiments are conducted in an artificially prepared medium that mimics Archean seawater (e.g. Si: ~60 ppm), rather than in a simple Fe-Si solution, because previous studies have revealed distinct Fe isotope fractionation behaviors in artificial Archean seawater (AAS) compared to simple solutions. One set of experiments investigated oxidation of Fe2+ in the AAS at room temperature, which produced amorphous Fe-Si precipitates. Preliminary results show that δ30Si values of Fe-Si co-precipitates are ~2‰ lower than the initial AAS (Δ30Siprecip-AAS = -2.13 ± 0.18‰ (2σ)). A second set of experiments trace Si-isotope exchange between aqueous Si (AAS) and Fe-Si co-precipitates in an anaerobic chamber, using a 29Si spike (i.e. three-isotope method). The results of these experiments will form a basis for reliable interpretations of Si

  9. Disilane-based cyclic deposition/etch of Si, Si:P and Si1-yCy:P layers: II. The CDE features

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Prévitali, B.; Batude, P.

    2013-02-01

    We have developed innovative cyclic deposition/etch (CDE) processes in order to grow Si, Si:P and Si1-yCy:P raised sources and drains (RSDs) on patterned wafers. A Si2H6 + PH3 + SiCH6 chemistry was used for the 550 °C growth steps. Meanwhile, the selective etch of poly-crystalline layers on dielectrics was conducted at 600 °C with HCl + GeH4. We have first studied the specifics of those isobaric (P = 20 Torr) CDE processes on bulk, blanket Si(0 0 1) substrates. CDE-grown Si, Si:P and Si1-yCy(:P) layers were high crystalline quality and smooth, although these also contained 2-3% of Ge. Due to the preferential incorporation of P atoms in the lattice, the ‘apparent’ substitutional C content was higher for intrinsic than for in situ phosphorous-doped layers (1.29% versus 1.17% and 1.59% versus 1.47% for the two SiCH6 mass-flows probed). The atomic P concentration in our Si1-yCy:P layers was close to 2.6 × 1020 cm-3, versus 2.1 × 1020 cm-3 in the Si:P layers. The Si, Si:P and Si1-yCy(:P) thickness deposited in each CDE cycle decreased linearly as the HCl+GeH4 etch time increased, with the ‘equivalent’ etch rate (i.e. the slope of this linear decrease) being lower in intrinsic than in in situ doped layers. Higher C contents resulted in lower ‘equivalent’ etch rates. A CDE strategy suppressed the surface roughening occurring for high C content, several tens of nm thick Si1-yCy:P layers grown in one step only. We have then calibrated, for 19-23 nm thick CDE-grown Si, Si:P and Si1-yCy:P RSDs, the HCl + GeH4 etch time per step necessary to achieve full selectivity on patterned silicon-on-insulator substrates. Selectivity was obtained for intrinsic Si once 180 s etch steps were used. Longer etch times were needed for Si:P and especially Si1-yCy:P (270 and 315 s/CDE cycle, respectively). The resulting S/D areas were rather smooth and slightly facetted, but the un-protected poly-Si layers sitting on top of the gate stacks were completely removed with these etch

  10. Reactivity of the isolable disilene R*PhSi=SiPhR* (R* = SitBu3).

    PubMed

    Wiberg, Nils; Niedermayer, Wolfgang; Polborn, Kurt; Mayer, Peter

    2002-06-17

    The disilene R*PhSi=SiPhR* (R* = supersilyl = SitBu3), which can be quantitatively prepared by dehalogenation of the disilane R*PhClSi-SiBrPhR* with NaR* (yellow, water- and air-sensitive crystals; decomp at ca. 70 degrees C; Si=Si distance 2.182 A), is comparatively reactive. It transforms 1) with Cl2, Br2, HCl, HBr, and HOH under 1,2-addition into disilanes R*PhXSi-SiX'PhR* (X/X' = Hal/Hal, H/Hal, H/OH), 2) with O2, S8, and Sen under insertion into 1,3-disiletanes R*PhSi(-Y-)2SiPhR* (Y = O, S, Se), 3) with Me2C=CH2 under ene reaction into the disilane R*PhRSi-SiHPhR* (R = CH2-CMe=CH2), 4) with N2O, Ten, tBuN identical to C, and Me3SiN=N=N under [2 + 1] cycloaddition into disiliranes -R*PhSi-Y-SiPhR*- (Y = O, Te, C=NtBu, NSiMe3; P4 adds 2 molecules of disilene), 5) with CO2, COS, PhCHO, and Ph2CS under [2 + 2] cycloaddition into disiletanes -R*PhSi-SiPhR*-Y-CO- (Y = O, S) as well as -R*PhSi-SiPhR*-Y-CRPh- (Y/R = O/H, S/Ph), 6) with CS2 and CSe2 under [2 + 3] cycloaddition into ethenes R*2Ph2Si2Y2C = CY2Si2Ph2R*2 (Y = S, Se), and 7) with CH2 = CMe-CMe=CH2 and Ph2CO under [2 + 4] cycloaddition into "Diels-Alder adducts". X-ray structure analyses of seven of these compounds are presented. PMID:12391651

  11. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  12. Rapid thermal annealing of ion beam synthesized {beta}-FeSi{sub 2} nanoparticles in Si

    SciTech Connect

    Sun, C. M.; Tsang, H. K.; Wong, S. P.; Cheung, W. Y.; Ke, N.; Hark, S. K.

    2008-05-26

    High crystal-quality {beta}-FeSi{sub 2} nanoparticles in silicon, prepared by ion beam synthesis and subjected to rapid thermal annealing (RTA), are investigated. Completely amorphous Fe-Si layers are formed by Fe implantation at cryogenic temperature, with a dosage of 5x10{sup 15} cm{sup -2}, into float-zone silicon. After RTA at 900 deg. C for 60 s, {beta}-FeSi{sub 2} precipitates are aggregated in the Si matrix and give {approx}1.5 {mu}m photoluminescence. High-resolution plan-view transmission electron microscopy revealed that some strain is present in the RTA treated FeSi{sub 2} particles. Silicon dislocations, coming from the strain relaxation during the additional long-term annealing, are observed around {beta}-FeSi{sub 2} particles.

  13. The Stellar Imager (SI) Project: A Deep Space UV/Optical Interferometer (UVOI) to Observe the Universe at 0.1 Milli-Arcsec Angular Resolution

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2008-01-01

    The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  14. Synthesis of α-Si3N4 crystallon by a solvothermal method at a low temperature of 180 °C

    NASA Astrophysics Data System (ADS)

    Wu, Zhao; Zhang, Zhiyong; Yun, Jiangni; Yan, Junfeng; You, Tiangui

    2013-11-01

    Alpha silicon nitride (α-Si3N4) crystallon has been synthesized by the solvothermal method with silica powder as the Si source, sodium azide (NaN3) as the N source, and thiosemicarbazide as the low-temperature additive at a low temperature of 180 ℃. The as-prepared sample has been characterized by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectrum (PL, type F-7000, Hitachi, Japan). The as-prepared α-Si3N4 micron-rod crystallon is single crystal with a smooth surface and a uniformed size, the maximum diameter being 2.0 μm. The main elements in the sample are Si and N with Si-N bonds and the ratio of Si and N are close to 3:4. The as-prepared α-Si3N4 micron-rod crystallon possesses good UV emission and its PL spectrum shows a strong ultraviolet emission at 380 nm.

  15. Distribution and sources of PCBs (Aroclor 1268) in the Sapelo Island National estuarine research reserve.

    PubMed

    Wirth, E F; Pennington, P L; Cooksey, C; Schwacke, L; Balthis, L; Hyland, J; Fulton, M H

    2014-12-01

    Aroclor 1268 is a highly chlorinated PCB mixture that was released into the aquatic environment near Brunswick, GA (BR), as a result of decades of local industrial activity. This extensive contamination has led to US EPA Superfund designation in estuarine areas in and around Purvis Creek, GA. Roughly 50 km to the northeast is the Sapelo Island National Estuarine Research Reserve (SI) where previous studies have documented unexpectedly high Aroclor 1268-like PCB levels in blubber and plasma samples of resident bottlenose dolphins. This result led to a collaborative effort to assess the PCB patterns and concentrations in SI sediment and fish (as potential vectors for PCB transfer to SI resident dolphins). Thirty SI randomly assigned stations were sampled for sediment PCB levels. Additionally, fish were collected and analyzed from SI (n = 31) and BR (n = 33). Results were pooled with regional assessments of PCB concentrations from South Carolina and North Carolina in an effort to determine the association of Aroclor 1268 levels in SI samples. Results indicated that PCB levels in sediment and fish are much lower in the SI estuary compared to BR sediment and fish concentrations. However, PCB congener profiles for both sediments and fish were similar between the two locations and consistent with the Aroclor 1268 signature, indicating possible transport from the Brunswick area. A likely source of Aroclor 1268 in dolphins from SI is contaminated fish prey. PMID:25208520

  16. Thermochemical analysis of chemical processes relevant to the stability and processing of SiC-reinforced Si3N4 composite

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1991-01-01

    Chemical processes relevant to the stability and processing of SiC-reinforced Si3N4 composites have been examined from thermochemical considerations. The thermodynamic stabilities of various interfaces, such as SiC-Si3N4, SiC-Si3N4-Si2ON2, and SiC-Si3N4-SiO2, have been examined as a function of temperature, and the temperatures above which these interfaces become unstable have been calculated. The degradation of SiC during the processing of the composite has been examined. The processing routes considered in this study include the reaction bonded silicon nitride (RBSN) process and the pressure-assisted sintering processes with suitable sintering additives.

  17. Characterization of Si/CoSi2/Si(111) heterostructures using Auger plasmon losses

    NASA Technical Reports Server (NTRS)

    Schowengerdt, F. D.; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    The Si/CoSi2/Si heterostructures prepared by codeposition and solid-phase epitaxy on Si(111) substrates were characterized using Auger plasmon data as a measure of Si overlayer thickness. The method of calibration is described, and the results of two studies, including a study of islanding in Si/CoSi2/Si and a study of diffusion in CoSi2/Si are presented, illustrating the utility of the Auger plasmon loss technique. It is shown that, most likely, the diffusion proceeds through residual defects in the CoSi2.

  18. Silica Sources and Water Flowpaths During Storm Events at Rio Icacos, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lugolobi, F.; Kurtz, A. C.; Salvucci, G. D.

    2006-12-01

    We employ germanium/silicon (Ge/Si) ratios as a novel tracer in hydrology, in conjunction with oxygen isotopes, hydrometric measurements, and physics-based models of water routing in the Rio Icacos watershed, Puerto Rico. Ge/Si ratios provide additional information on Si sources, an improvement over Si concentration- based models traditionally used to understand flowpaths. We hypothesize that at baseflow, streams deliver solutes derived from weathering at the saprolite-bedrock interface. During storm events, shallow subsurface stormflow is activated, delivering solutes derived from rapid reactions between rainwater and soil minerals. To test our hypothesis, we have installed nested tensiometers, crest piezometers, and lysimeters at four hillslope sites and two riparian sites in the Icacos watershed. Soil moisture retention curves are being measured on extracted cores to determine the water holding capacities of these soils. In addition, we will measure saturated hydraulic conductivity on these cores, and we will perform field infiltration experiments. We are measuring Ge/Si ratios on soilwaters, and streamwaters collected by automatic samplers during storm events. Combining geochemical studies with hydrometric studies will be useful in understanding the watershed's response to storm events. Ge/Si ratios in soilwater and streamwater reflect the reactions that deliver Si to solution. Streamwater Ge/Si ratios at baseflow (0.5μmol/mol) reflect weathering reactions (primarily plagioclase to kaolinite) near the saprolite-bedrock boundary. At peak discharge, streamwater Ge/Si ratios increase to values that are similar to those measured on porewaters from the upper 100cm (~2μmol/mol). At peak flow, the oxygen isotopic composition of stream water shifts away from baseflow values (from -0.7 to 3‰ in one typical event) suggesting a change in the source of water delivered to the stream. Both Ge/Si ratios and oxygen isotopes exhibit hysteresis with discharge indicating

  19. Improved electrical properties of n-n and p-n Si/SiC junctions with thermal annealing treatment

    NASA Astrophysics Data System (ADS)

    Liang, J.; Nishida, S.; Arai, M.; Shigekawa, N.

    2016-07-01

    The effects of annealing process on the electrical properties of n+-Si/n-SiC and p+-Si/n-SiC junctions fabricated by using surface-activated bonding are investigated. It is found by measuring the current-voltage (I-V) characteristics of n+-Si/n-SiC junctions that the reverse-bias current and the ideality factor decreased to 2.0 × 10-5 mA/cm2 and 1.10, respectively, after the junctions annealing at 700 °C. The flat band voltages of n+-Si/n-SiC and p+-Si/n-SiC junctions obtained from capacitance-voltage (C-V) measurements decreased with increasing annealing temperature. Furthermore, their flat band voltages are very close to each other irrespective of the annealing temperature change, which suggests that the Fermi level is still pinned at the bonding interface even for the junctions annealing at high temperature and the interface state density causing Fermi level pinning varies with the junctions annealing. The reverse characteristics of n+-Si/n-SiC junctions are in good agreement with the calculations based on thermionic field emission. In addition, the calculated donor concentration of 4H-SiC epi-layers and flat band voltage is consistent with the values obtained from C-V measurements.

  20. SiC polytypes process affected by Ge predeposition on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Nader, Richard; Moussaed, Elie; Kazan, Michel; Pezoldt, Joerg; Masri, Pierre

    2008-08-01

    Structural and optical measurements were performed on silicon carbide (SiC) samples containing several polytypes. The SiC samples investigated were grown on (111) Si substrates by solid source molecular beam epitaxy (SSMBE). Several quantities of Ge were predeposited before the growth procedure. The influence of Ge on the SiC polytypes formation was studied by X-Ray, FTIR and μ-Raman characterizations methods. The spectra of the samples with less than one Ge monolayer exhibit a mixture of 2H, 15R and 3C-SiC polytypes. This mixture is due to the mismatch between the heterostructure layers. We propose that the Ge predeposition in the heterostructure can be used to stabilize and unify the polytypes formation.

  1. Molten Salt Electrodeposition of Silicon in Cu-Si

    NASA Astrophysics Data System (ADS)

    Sokhanvaran, Samira

    Widespread use of solar energy has not been realized to date because its cost is not competitive with conventional energy sources. The high price of solar grade silicon has been one of the barriers against photovoltaic industry achieving its much anticipated growth. Therefore, developing a method, which is energy efficient and will deliver inexpensive silicon feedstock material is essential. The electrodeposition of Si from a cryolite-based melt was investigated in the present work as a possible solution. This study proposed electrowinning of Si in molten Cu-Si alloy, to decrease the working temperature and increase the efficiency. Solvent refining can be used to recover Si from Cu-Si and also as a second purification method. The physicochemical properties of the potential electrolyte, cryolite-SiO 2 melts, were studied in the first step of this work. The deposition potential of Si on a graphite cathode was measured to determine the working potential and the effect of SiO2 concentration on it. In the next step, the deposition potential of Si from cryolite--SiO2 melt on Cu and Cu-Si cathodes was determined using cyclic voltammetry. Next, the cathodic and the anodic current inefficiencies of the process were measured. Continuous analysis of the evolved gas enabled the instantaneous measurement of the current efficiency and the kinetics of the deposition. Finally, the effectiveness of the process in delivering high purity Si was investigated. Si dendrites were precipitated out of the Cu-Si cathode and recovered to determine the purity of the final product as the final step of this study. The produced Si was separated from the alloy matrix by crushing and acid leaching and the purity was reported. The findings of this research show that the proposed method has the potential to produce high purity silicon with low B content. Further development is required to remove some metallic impurities that are remained in Si.

  2. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    PubMed

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference. PMID:26457572

  3. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering

    NASA Astrophysics Data System (ADS)

    Ke, S. Y.; Yang, J.; Qiu, F.; Wang, Z. Q.; Wang, C.; Yang, Y.

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  4. Solution-Derived Sodalite Made with Si- and Ge-Ethoxide Precursors for Immobilizing electrorefiner salt

    SciTech Connect

    Riley, Brian J.; Lepry, William C.; Crum, Jarrod V.

    2016-01-01

    Chlorosodalite has the general form of Na8(AlSiO4)6Cl2 and this paper describes experiments conducted to synthesize sodalite to immobilize a mixed chloride salt using solution-based techniques. Sodalites were made using different Group IV contributions from either Si(OC2H5)4 or Ge(OC2H5)4, NaAlO2, and a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. Additionally, 6 glass binders at low loadings of 5 mass% were evaluated as sintering aids for the consolidation process. The approach of using the organic Group IV additives can be used to produce large quantities of sodalite at room temperature and shows promise over a method where colloidal silica is used as the silica source. However, the small particle sizes inhibited densification during pressure-less sintering.

  5. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Lepry, William C.; Crum, Jarrod V.

    2016-01-01

    Chlorosodalite has the general form of Na8(AlSiO4)6Cl2 and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO2, and either Si(OC2H5)4 or Ge(OC2H5)4. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  6. Si=Si Double Bonds: Synthesis of an NHC-Stabilized Disilavinylidene.

    PubMed

    Ghana, Priyabrata; Arz, Marius I; Das, Ujjal; Schnakenburg, Gregor; Filippou, Alexander C

    2015-08-17

    An efficient two-step synthesis of the first NHC-stabilized disilavinylidene (Z)-(SIdipp)Si=Si(Br)Tbb (2; SIdipp=C[N(C6H3-2,6-iPr2)CH2]2, Tbb=C6H2-2,6-[CH(SiMe3)2]2-4-tBu, NHC=N-heterocyclic carbene) is reported. The first step of the procedure involved a 2:1 reaction of SiBr2(SIdipp) with the 1,2-dibromodisilene (E)-Tbb(Br)Si=Si(Br)Tbb at 100 °C, which afforded selectively an unprecedented NHC-stabilized bromo(silyl)silylene, namely SiBr(SiBr2Tbb)(SIdipp) (1). Alternatively, compound 1 could be obtained from the 2:1 reaction of SiBr2(SIdipp) with LiTbb at low temperature. 1 was then selectively reduced with C8K to give the NHC-stabilized disilavinylidene 2. Both low-valent silicon compounds were comprehensively characterized by X-ray diffraction analysis, multinuclear NMR spectroscopy, and elemental analyses. Additionally, the electronic structure of 2 was studied by various quantum-chemical methods. PMID:26136260

  7. Fe-Si networks in Na2FeSiO4 cathode materials.

    PubMed

    Wu, P; Wu, S Q; Lv, X; Zhao, X; Ye, Z; Lin, Z; Wang, C Z; Ho, K M

    2016-08-24

    Using a combination of adaptive genetic algorithm search, motif-network search scheme and first-principles calculations, we have systematically studied the low-energy crystal structures of Na2FeSiO4. We show that the low-energy crystal structures with different space group symmetries can be classified into several families based on the topologies of their Fe-Si networks. In addition to the diamond-like network which is shared by most of the low-energy structures, another three robust Fe-Si networks are also found to be stable during the charge/discharge process. The electrochemical properties of representative structures from these four different Fe-Si networks in Na2FeSiO4 and Li2FeSiO4 are investigated and found to be strongly correlated with the Fe-Si network topologies. Our studies provide a new route to characterize the crystal structures of Na2FeSiO4 and Li2FeSiO4 and offer useful guidance for the design of promising cathodes for Na/Li ion batteries. PMID:27523264

  8. siRNA Delivery to the Glomerular Mesangium Using Polycationic Cyclodextrin Nanoparticles Containing siRNA

    PubMed Central

    Gale, Aaron; Wu, Peiwen; Ma, Rong; Davis, Mark E.

    2015-01-01

    There is an urgent need for new therapies that can halt or reverse the course of chronic kidney disease with minimal side-effect burden on the patient. Small interfering RNA (siRNA) nanoparticles are new therapeutic entities in clinical development that could be useful for chronic kidney disease treatment because they combine the tissue-specific targeting properties of nanoparticles with the gene-specific silencing effects of siRNA. Recent reports have emerged demonstrating that the kidney, specifically the glomerulus, is a readily accessible site for nanoparticle targeting. Here, we explore the hypothesis that intravenously administered polycationic cyclodextrin nanoparticles containing siRNA (siRNA/CDP-NPs) can be used for delivery of siRNA to the glomerular mesangium. We demonstrate that siRNA/CDP-NPs localize to the glomerular mesangium with limited deposition in other areas of the kidney after intravenous injection. Additionally, we report that both mouse and human mesangial cells rapidly internalize siRNA/CDP-NPs in vitro and that nanoparticle uptake can be enhanced by attaching the targeting ligands mannose or transferrin to the nanoparticle surface. Lastly, we show knockdown of mesangial enhanced green fluorescent protein expression in a reporter mouse strain following iv treatment with siRNA/CDP-NPs. Altogether, these data demonstrate the feasibility of mesangial targeting using intravenously administered siRNA/CDP-NPs. PMID:25734248

  9. Wettability of binary and ternary alloys of the system Al-Si-Mg with SiC particulates

    SciTech Connect

    Narciso, J.; Alonso, A.; Pamies, A.; Garcia-Cordovilla, C. . Centro de Investigacion y Desarrollo); Louis, E. . Centro de Investigacion y Desarrollo Univ. de Alicante . Dept. de Fisica Aplicada)

    1994-12-01

    The authors have presented results of an investigation of wettability of SiC particulates by liquid alloys of the Al-Si-Mg system. The evaluation of wetting has been carried out through the determination of the threshold pressure for infiltration of packed SiC particulates by the liquid alloy. The results indicate that whereas Si and Mg additions do not affect wetting, in the case of the ternary alloys the contact angle decreases in an amount proportional to the content of Mg[sub 2]Si.

  10. Luminescence properties of SiO{sub x}N{sub y} irradiated by IR laser 808 nm: The role of Si quantum dots and Si chemical environment

    SciTech Connect

    Ruggeri, Rosa; Neri, Fortunato; Sciuto, Antonella; Privitera, Vittorio; Spinella, Corrado; Mannino, Giovanni

    2012-01-23

    We investigated optical, structural, and chemical properties of SiO{sub x}N{sub y} layers irradiated by CW IR laser during a time lapse of few milliseconds. We observed tunable photoluminescence signal at room temperature in the range 750-950 nm, without Si/SiO{sub 2} phase separation, depending on the IR laser power irradiation. Furthermore, no photoluminescence signal was recorded when the IR laser power density was high enough to promote phase separation forming Si quantum dots. By chemical analysis the source of the luminescence signal has been identified in a change of silicon chemical environment induced by IR laser annealing inside the amorphous matrix.

  11. Recent Results From a Si/CdTe Semiconductor Compton Telescope

    SciTech Connect

    Tanaka, T.; Watanabe, S.; Takeda, S.; Oonuki, K.; Mitani, T.; Nakazawa, K.; Takashima, T.; Takahashi, T.; Tajima, H.; Sawamoto, N.; Fukazawa, Y.; Nomachi, M.; /JAXA, Sagamihara /Tokyo U. /SLAC /Hiroshima U. /Osaka U.

    2007-01-23

    We are developing a Compton telescope based on high resolution Si and CdTe detectors for astrophysical observations in sub-MeV/MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma-rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9{sup o} (FWHM) at 511 keV, and the energy resolution is 14 keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating {sup 137}Cs source, we successfully obtained an image and a spectrum of 662 keV line emission with this method. As a next step, development of larger double-sided Si strip detectors with a size of 4 cm x 4 cm is underway to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well.

  12. Si Isotopes of Brownleeite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  13. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V.; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G.; Pisano, Albert P.

    2013-02-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C-SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C-SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C-SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C-SiC/Si multilayer structure exhibits a phase velocity of 5528 m s-1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C-SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C-SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C-SiC layers are applicable to timing and sensing applications in harsh environments.

  14. Raman studies of Ge-promoted stress modulation in 3C-SiC grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Zgheib, Ch.; McNeil, L. E.; Kazan, M.; Masri, P.; Morales, F. M.; Ambacher, O.; Pezoldt, J.

    2005-07-01

    We present a study of the stress state in cubic silicon carbide (3C-SiC) thin films (120 and 300 nm) grown by solid-source molecular-beam epitaxy (SSMBE) on Si(111) substrates modified by the deposition of germanium prior to the carbonization of Si. μ-Raman measurements were used to determine the residual stress existing in the 3C-SiC layers. The stress is found to decrease linearly with increasing Ge quantity but with different strength depending on the 3C-SiC thickness deposited after the introduction of Ge. Based on secondary ions mass spectroscopy (SIMS) and transmission electron microscopy (TEM) analyses it is suggested that the Ge introduced prior to the carbonization step remains in the near-interface region and reduces the Si outdiffusion, which further reduces the stress state of the 3C-SiC layers.

  15. The role of multifunctional kinetics during early-stage silicon hydride pyrolysis: reactivity of Si2H2 isomers with SiH4 and Si2H6.

    PubMed

    Adamczyk, Andrew J; Broadbelt, Linda J

    2011-03-24

    Kinetic parameters for the dominant pathways during the addition of the four Si(2)H(2) isomers, i.e., trans-HSiSiH, SiSiH(2), Si(H)SiH, and Si(H(2))Si, to monosilane, SiH(4), and disilane, Si(2)H(6), have been calculated using G3//B3LYP, statistical thermodynamics, conventional and variational transition state theory, and internal rotation corrections. The direct addition products of the multifunctional Si(2)H(2) isomers were monofunctional substituted silylenes, hydrogen-bridged species, and silenes. During addition to monosilane and disilane, the SiSiH(2) isomer was found to be most reactive over the temperature range of 800 to 1200 K. Revised parameters for the Evans-Polanyi correlation and a representative pre-exponential factor for multifunctional silicon hydride addition and elimination reaction families under pyrolysis conditions were regressed from the reactions in this study. This revised kinetic correlation was found to capture the activation energies and rate coefficients better than the current literature methods. PMID:21361329

  16. MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Munuera, Carmen; Varela del Arco, Maria; Soria, Federico; Ocal, Carmen; Ruiz, Ana; Alonso, Maria

    2006-01-01

    Two types of fairly regular distributions of Si nanostructures, of interest as templates to grow spatially controlled ensembles of metal (Co, Fe, Ag, etc.) nanostructures, are presented in this paper. Both of them are achieved by self-assembling processes during Si homoepitaxy. One corresponds to films grown by molecular beam epitaxy (MBE) on Si(0 0 1)-2 x 1 surfaces with low (<1 degree) miscut angles. In this case, arrays of 3D Si-islands displaying well defined pyramid-like shapes can be obtained, as evidenced by Scanning Force Microscopy (SFM) and Scanning Transmission Electron Microscopy (STEM). Such arrays exhibit strong similarities with those reported for Ge and SiGe islands on Si(0 0 1), and may thus serve as a simpler route to produce ordered distributions of metallic nanodots. On the other hand, on Si(1 1 1)-7 x 7 vicinal substrates misoriented 4 degrees toward the View the MathML source direction, step rearrangement during homoepitaxy permits to produce nanopatterned surfaces, the building-blocks of which are triangular (1 1 1) platforms, with lateral dimensions of hundreds of nanometers, bound by step bunches about 30 nm high. Furthermore, different Ag deposition experiments support this spontaneous patterning on Si(1 1 1) as a promising approach to achieve regular distributions of metallic nanocrystals with an overall homogeneity in sizes, shapes and spacing.

  17. Low Temperature Deposition of PECVD Polycrystalline Silicon Thin Films using SiF4 / SiH4 mixture

    NASA Astrophysics Data System (ADS)

    Syed, Moniruzzaman; Inokuma, Takao; Kurata, Yoshihiro; Hasegawa, Seiichi

    2016-03-01

    Polycrystalline silicon films with a strong (110) texture were prepared at 400°C by a plasma-enhanced chemical vapor deposition using different SiF4 flow rates ([SiF4] = 0-0.5 sccm) under a fixed SiH4 flow rate ([SiH4] = 1 or 0.15 sccm). The effects of the addition of SiF4 to SiH4 on the structural properties of the films were studied by Raman scattering, X-ray diffraction (XRD), Atomic force microscopy and stress measurements. For [SiH4] = 1 sccm, the crystallinity and the (110) XRD grain size monotonically increased with increasing [SiF4] and their respective maxima reach 90% and 900 Å. However, for [SiH4] = 0.15 sccm, both the crystallinity and the grain size decreased with [SiF4]. Mechanisms causing the change in crystallinity are discussed, and it was suggested that an improvement in the crystallinity, due to the addition of SiF4, is likely to be caused by the effect of a change in the surface morphology of the substrates along with the effect of in situ chemical cleaning.

  18. Understanding the role of silicon oxide shell in oxide-assisted SiNWs growth

    SciTech Connect

    Wu, Shunqing; Wang, Cai-Zhuang Z; Zhu, Z Z; Ho, Kai-Ming

    2014-12-01

    The role of silicon oxide shell in oxide-assisted SiNWs growth is studied by performing ab initio molecular dynamics simulations on the structural and dynamical properties of the interface between crystalline Si(111) surface and disorder SiO thin film. Si atoms in the SiO film tends to aggregate into the vicinity of the Si(111)/SiO interface. In addition, the diffusion of Si atoms at the interface is anisotropic - the diffusion along the interface is several times faster than that perpendicular to the interface. The segregation and anisotropic diffusion of Si atoms at the Si(111)/SiO interface shed interesting light into the mechanism of oxide-assisted silicon nanowire growth.

  19. New approach to the growth of low dislocation relaxed SiGe material

    NASA Astrophysics Data System (ADS)

    Powell, A. R.; Iyer, S. S.; LeGoues, F. K.

    1994-04-01

    In this growth process a new strain relief mechanism operates, whereby the SiGe epitaxial layer relaxes without the generation of threading dislocations within the SiGe layer. This is achieved by depositing SiGe on an ultrathin silicon on insulator (SOI) substrate with a superficial silicon thickness less than the SiGe layer thickness. Initially, the thin Si layer is put under tension due to an equalization of the strain between the Si and SiGe layers. Thereafter, the strain created in the thin Si layer relaxes by plastic deformation. Since the dislocations are formed and glide in the thin Si layer, no threading dislocation is ever introduced in to the upper SiGe material, which appeared dislocation free to the limit of the cross sectional transmission electron microscopy analysis. We thus have a method for producing very low dislocation, relaxes SiGe films with the additional benefit of an SOI substrate.

  20. Formation and characterization of SiC/Si heterostructures by MEVVA implantation

    NASA Astrophysics Data System (ADS)

    Chen, Dihu

    High dose carbon implantation into Si to form silicon carbide (SiC) was performed using a metal vapor vacuum arc (MEVVA) ion source under various conditions. The phase formation characteristics, nucleation and growth kinetics, microstructures and other properties were systematically studied using Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), transmission electron microscopy (TEM), Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM), and electron field emission measurements. A consistent scheme to de-convolute the FTIR spectra of SiC layers into amorphous and crystalline SiC components was devised. Results showed that at a fixed dose, the total amount of SiC formed increased linearly with the implant energy and at a fixed energy, it increased with a fractional power of the implant dose (D0.41). It was also found that there is a critical implant energy at a fixed implant dose and a critical dose at a fixed implant energy, at which the crystalline 3C-SiC fraction increases abruptly. Existence of the critical energy and dose is discussed in terms of the ion beam induced crystallization (IBIC) effect. The crystalline 3C-SiC fraction in the as-implanted samples was found to depend significantly on the order of the dual-energy implantation as a result of the IBIC effect. The phase formation characteristics and growth kinetics of the SiC layers during annealing were studied by deconvolution of the FTIR spectra. It was found that the total amount of SiC formed increased upon annealing, indicating that in the as-implanted samples, not all the implanted C atoms were bonded to Si atoms. During annealing, besides the transformation reaction of a-SiC to 3C-SiC, there is also the reaction between the unbonded C atoms and the host Si atoms to form 3C-SiC. It was also shown that the carbon composition depth profile in the as-implanted samples was a Gaussian

  1. A model for thermal oxidation of Si and SiC including material expansion

    SciTech Connect

    Christen, T. Ioannidis, A.; Winkelmann, C.

    2015-02-28

    A model based on drift-diffusion-reaction kinetics for Si and SiC oxidation is discussed, which takes the material expansion into account with an additional convection term. The associated velocity field is determined self-consistently from the local reaction rate. The approach allows a calculation of the densities of volatile species in an nm-resolution at the oxidation front. The model is illustrated with simulation results for the growth and impurity redistribution during Si oxidation and for carbon and silicon emission during SiC oxidation. The approach can be useful for the prediction of Si and/or C interstitial distribution, which is particularly relevant for the quality of metal-oxide-semiconductor electronic devices.

  2. Si6H12/Polymer Inks for Electrospinning a-Si Nanowire Lithium Ion Battery Anodes

    SciTech Connect

    Schulz, Douglas L.; Hoey, Justin; Smith, Jeremiah; Elangovan, Arumugasamy; Wu, Xiangfa; Akhatov, Iskander; Payne, Scott; Moore, Jayma; Boudjouk, Philip; Pederson, Larry; Xiao, Jie; Zhang, Jiguang

    2010-08-04

    Amorphous silicon nanowires 'a-SiNWs' have been prepared by electrospinning a liquid silane-based precursor. Cyclohexasilane 'Si6H12' was admixed with poly-methyl methacrylate (PMMA) in toluene giving an ink that was electrospun into the Si6H12/PPMA wires with diameters of 50-2000 nm. Raman spectroscopy revealed that thermal treatment at 350 C transforms this deposit into a-SiNWs. These materials were coated with a thin carbon layer and then tested as half-cells where a reasonable plateau in electrochemical cycling was observed after an initial capacity fade. Additionally, porous a-SiNWs were realized when the thermally decomposable binder polypropylene carbonate/polycyclohexene carbonate was used as the polymer carrier.

  3. Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Wu, Wengang; Mao, Haiyang; Han, Xiang; Xu, Jun; Wang, Weibing

    2016-07-01

    This work presents arrays of heterogeneous nanopillars stacked with Si bodies and SiO2 heads for biomedical applications. Novel crossed and overlapped spacer techniques are proposed to fabricate the nanopillar arrays in controllable dimensions. For the nanopillars in the arrays, the minimum spacing, body diameter and head tip-radius reach 100 nm, 23 nm and 11 nm, respectively. The maximum height is 1.2 μm. In addition, because of hydrophilic/hydrophobic selectivity between the SiO2 heads and Si bodies, localized nanoliter water-droplet condensing, fluorescein solution extraction and protein capturing are observed on the SiO2 pillar heads. These experiments demonstrate the great potential of heterogeneous nanopillars in biomedical applications.

  4. Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays.

    PubMed

    Wu, Wengang; Mao, Haiyang; Han, Xiang; Xu, Jun; Wang, Weibing

    2016-07-29

    This work presents arrays of heterogeneous nanopillars stacked with Si bodies and SiO2 heads for biomedical applications. Novel crossed and overlapped spacer techniques are proposed to fabricate the nanopillar arrays in controllable dimensions. For the nanopillars in the arrays, the minimum spacing, body diameter and head tip-radius reach 100 nm, 23 nm and 11 nm, respectively. The maximum height is 1.2 μm. In addition, because of hydrophilic/hydrophobic selectivity between the SiO2 heads and Si bodies, localized nanoliter water-droplet condensing, fluorescein solution extraction and protein capturing are observed on the SiO2 pillar heads. These experiments demonstrate the great potential of heterogeneous nanopillars in biomedical applications. PMID:27319739

  5. The bis metallacyclic anion [U(N{SiMe3}2)(CH2SiMe2N{SiMe3})2]-.

    PubMed

    Bénaud, Olivier; Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel

    2010-09-01

    A series of bis metallacyclic compounds [M(THF)(x)UN*(CH(2)SiMe(2)N{SiMe(3)})(2)](n) [M = Na (2), Li (3), or K (4), N* = N(SiMe(3))(2)] were isolated from reactions of UCl(4) or [UN*(3)Cl] with MN* or by treatment of [UN*(2)(CH(2)SiMe(2)N{SiMe(3)})] (1) or [UN*(3)] with MN*, MH, or LiCH(2)SiMe(3) in tetrahydrofuran (THF). Crystals of 2a x 1/6n-pentane (x = 0), 2b (x = 1), 2c (x = 2), and 4b (x = 1) were obtained by crystallization of 2 and 4 from pentane, and [Na(18-crown-6)(THF)][UN*(CH(2)SiMe(2)N{SiMe(3)})(2)] (2d) and [Na(15-crown-5)][UN*(CH(2)SiMe(2)N{SiMe(3)})(2)] (2e) were formed upon addition of the crown ether. The crystal structures of 2a-2e and 4b exhibit the same [UN*(CH(2)SiMe(2)N{SiMe(3)})(2)] units which are linked to Na or K atoms via methylene or methyl groups, giving either tight cation-anion pairs (2d and 2e) or one-dimensional (1D) or two-dimensional (2D) polymeric compounds with Na or K atoms in bridging position between methylene groups of adjacent units. Reaction of 2 with CO gave the double insertion derivative [Na(2)(THF)U(2)N*(2)(OC{=CH(2)}SiMe(2)N{SiMe(3)})(4)] (5b) and [Na(15-crown-5)UN*(OC{=CH(2)}SiMe(2)N{SiMe(3)})(2)] (5c) in the presence of the crown ether. Thermal decomposition of 5b gave [Na(2)(THF)U(OC{=CH(2)}SiMe(2)N{SiMe(3)})(3)](2) (6), the product of CO insertion into the putative tris metallacycle [Na(2)(THF)(x)U(CH(2)SiMe(2)N{SiMe(3)})(3)]. The crystal structures of 5b, 5c, and 6 show the interaction of the Na atoms with the exocyclic C=CH(2) bonds. Diffusion of CO(2) into a THF solution of 2 led to the formation of [Na(THF)(x)UN*(OC{O}CH(2)SiMe(2)N{SiMe(3)})(2)] (7) which crystallized from pyridine/pentane to give [Na(THF)(2)(py)(2)UN*(OC{O}CH(2)SiMe(2)N{SiMe(3)})(2)] x 0.5 py (8 x 0.5 py), the first crystallographically characterized complex resulting from CO(2) insertion into a M(CH(2)SiMe(2)N{SiMe(3)}) metallacycle. Compound 2 reacted with I(2) to give [UN*(CH(2)SiMe(2)N{SiMe(3)})(N{SiMe(3)}SiMe(2)CH(2)I)] (9) which would

  6. δ30Si systematics in a granitic saprolite, Puerto Rico

    USGS Publications Warehouse

    Ziegler, Karen; Chadwick, Oliver A.; White, Arthur F.; Brzezinski, Mark A.

    2005-01-01

    Granite weathering and clay mineral formation impart distinct and interpretable stable Si isotope (δ30Si) signatures to their solid and aqueous products. Within a saprolite, clay minerals have δ30Si values ∼2.0‰ more negative than their parent mineral and the δ30Si signature of the bulk solid is determined by the ratio of primary to secondary minerals. Mineral-specific weathering reactions predominate at different depths, driving changes in differing δ30Sipore watervalues. At the bedrock-saprolite interface, dissolution of plagioclase and hornblende creates δ30Sipore water signatures more positive than granite by up to 1.2‰; these reactions are the main contributor of Si to stream water and determine its δ30Si value. Throughout the saprolite, biotite weathering releases Si to pore waters but kaolinite overgrowth formation modulates its contribution to pore-water Si. The influence of biotite on δ30Sipore water is greatest near the bedrock where biotite-derived Si mixes with bulk pore water prior to kaolinite formation. Higher in the saprolite, biotite grains have become more isolated by kaolinite overgrowth, which consumes biotite-derived Si that would otherwise influence δ30Sipore water. Because of this isolation, which shifts the dominant source of pore-water Si from biotite to quartz, δ30Sipore water values are more negative than granite by up to 1.3‰ near the top of the saprolite.

  7. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  8. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects. PMID:24772784

  9. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  10. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  11. Process-property relationships of SiC chemical vapor deposition in the Si/H/C/O system

    SciTech Connect

    Richardson, C.; Takoudis, C.G.

    1999-09-01

    The thermal, chemical, and physical properties of SiC make it an attractive material for a wide range of applications from wear resistant coatings on tools to high temperature microelectronics operations. A comprehensive thermodynamic analysis has been performed for the Si/H/C/O system from which a priori process-property relationships of the chemical vapor deposition (CVD) of silicon carbide (SiC) are obtained. The parameter space for pure silicon carbide growth is reported for five orders of magnitude of the system water vapor level (1 ppb--100 ppm), four orders of magnitude of system pressure (0.1--760 Torr), and two orders of magnitude of C/Si feed ratio (0.25--20) and H{sub 2}/Si feed ratio (50--10,000). Lower growth temperatures for pure SiC are predicted in clean systems with low system water vapor levels, at stoichiometric to near carbon excess conditions (C/Si {approx{underscore}equal} 1 to C/Si {gt} 1), at high carrier gas flow rates (large H{sub 2}/Si feed ratios), and at low operating pressures. Because relative C/Si and H{sub 2}/Si feed ratios have been considered, the predictions in this study are applicable to both multiple and single precursor systems. Further, these results are valid for the CVD of {alpha}-SiC as well as {beta}-SiC. Experimental data reported on the growth of {alpha}-SiC and {beta}-SiC are found to be in satisfactory agreement with the theoretical predictions, for numerous systems that include multiple and single source, silicon and carbon, species.

  12. The 28Si(p,t)26Si*(p) reaction and implications for the astrophysical 25Al(p,gamma)26Si reaction rate

    SciTech Connect

    Chipps, K.; Bardayan, Daniel W; Chae, K. Y.; Cizewski, J. A.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Schmitt, Kyle; Smith, Michael Scott

    2010-10-01

    Several resonances in 25Al(p, )26Si have been studied via the 28Si(p,t)26Si reaction. Triton energies and angular distributions were measured using a segmented annular detector array. An additional silicon detector array was used to simultaneously detect the coincident protons emitted from the decay of states in 26Si above the proton threshold, in order to determine branching ratios. A resonance at 5927 4 keV has been experimentally confirmed as the first = 0 state above the proton threshold, with a proton branching ratio consistent with one.

  13. Ge/Si in Hamersley BIF as tracer of hydrothermal Si and Ge inputs to the Paleoproterozoic ocean

    NASA Astrophysics Data System (ADS)

    Alibert, Chantal; Kinsley, Leslie

    2016-07-01

    Ge/Si and Ge/Fe ratios have been measured by laser ablation ICP-MS in selected sections of the Hamersley banded iron-formation (BIF), including 'chert-siderite' bands (i.e. carbonate- and silicate-facies BIF). The major Ge carriers are magnetite and hematite in the oxide-facies, and the Fe-rich silicates greenalite, minnesotaite and stilpnomelane in chert-siderite bands, while quartz has the lowest Ge/Si ratios (0.15-0.7 μmol/mol), in accord with discrimination against Ge in quartz. The homogeneous Si/Fe ratio of 1.25 for Dales Gorge oxide-facies BIF is consistent with Si-ferrihydrite as precursor phase. This Si concentration is sufficiently high for formation of iron-free silica clusters at the surface of ferrihydrite, so that only a minor fractionation of the Ge/Si ratio should result from preferential Ge adsorption relative to Si. Hematite-chert bands that have been minimally altered by metamorphic reactions and/or fluid metasomatism, are the preferred material to determine the sources of silica in Hamersley BIF. Variations of Fe/Si and Ge/Si ratios in chert mesobands are interpreted as the result of diagenetic mineral segregation. A consistent Ge/Si ≈3 μmol/mol is then derived by extrapolation of measured Ge/Si ratios to the average Fe/Si composition of Dales Gorge BIF. Simple mass balance calculations indicate hydrothermal inputs to the ocean of the order of 25% for Si and 90% for Ge, assuming Ge/Si = 10 μmol/mol for high-temperature hydrothermal fluids. The high Si concentration in siderite-chert bands (Si/Fe ≈ 4) demands only a small amount of Si-ferrihydrite precursor and some excess silica likely precipitated in pore-water oversaturated with regard to amorphous silica. The average Ge/Si = 0.80 ± 0.1 μmol/mol for bulk chert-siderite samples, including some stilpnomelane-rich cherts, is within the compositional range of modern riverine and aeolian inputs, pointing to a continental Si source during their deposition.

  14. Axial Ge/Si nanowire heterostructure tunnel FETs.

    SciTech Connect

    Dayeh, Shadi A.; Gin, Aaron V.; Huang, Jian Yu; Picraux, Samuel Thomas

    2010-03-01

    }20{sup o} off the <111> axis at about 300 nm away from the Ge/Si interface. This provides a natural marker for placing the gate contact electrodes and gate metal at appropriate location for desired high-on current and reduced ambipolarity as shown in Fig. 2. The 1D heterostructures allow band-edge engineering in the transport direction, not easily accessible in planar devices, providing an additional degree of freedom for designing tunnel FETs (TFETs). For instance, a Ge tunnel source can be used for efficient electron/hole tunneling and a Si drain can be used for reduced back-tunneling and ambipolar behavior. Interface abruptness on the other hand (particularly for doping) imposes challenges in these structures and others for realizing high performance TFETs in p-i-n junctions. Since the metal-semiconductor contacts provide a sharp interface with band-edge control, we use properly designed Schottky contacts (aided by 3D Silvaco simulations) as the tunnel barriers both at the source and drain and utilize the asymmetry in the Ge/Si channel bandgap to reduce ambipolar transport behavior generally observed in TFETs. Fig. 3 shows the room-temperature transfer curves of a Ge/Si heterostructure TFET (H-TFET) for different V{sub DS} values showing a maximum on-current of {approx}7 {micro}A, {approx}170 mV/decade inverse subthreshold slope and 5 orders of magnitude I{sub on}/I{sub off} ratios for all V{sub DS} biases considered here. This high on-current value is {approx}1750 X higher than that obtained with Si p-i-n{sup +} NW TFETs and {approx}35 X higher than that obtained with CNT TFET. The I{sub on}/I{sub off} ratio and inverse subthreshold slope compare favorably to that of Si {approx} 10{sup 3} I{sub on}/I{sub off} and {approx} 800 mV/decade SS{sup -1} but lags behind those of CNT TFET due to poor PECVD nitride gate oxide quality ({var_epsilon}{sub r} {approx} 3-4). The asymmetry in the Schottky barrier heights used here eliminates the stringent requirements of abrupt

  15. Atomic state and characterization of nitrogen at the SiC/SiO{sub 2} interface

    SciTech Connect

    Xu, Y.; Garfunkel, E. L.; Zhu, X.; Lee, H. D.; Xu, C.; Shubeita, S. M.; Gustafsson, T.; Ahyi, A. C.; Sharma, Y.; Williams, J. R.; Lu, W.; Ceesay, S.; Tuttle, B. R.; Pantelides, S. T.; Wan, A.; Feldman, L. C.

    2014-01-21

    We report on the concentration, chemical bonding, and etching behavior of N at the SiC(0001)/SiO{sub 2} interface using photoemission, ion scattering, and computational modeling. For standard NO processing of a SiC MOSFET, a sub-monolayer of nitrogen is found in a thin inter-layer between the substrate and the gate oxide (SiO{sub 2}). Photoemission shows one main nitrogen related core-level peak with two broad, higher energy satellites. Comparison to theory indicates that the main peak is assigned to nitrogen bound with three silicon neighbors, with second nearest neighbors including carbon, nitrogen, and oxygen atoms. Surprisingly, N remains at the surface after the oxide was completely etched by a buffered HF solution. This is in striking contrast to the behavior of Si(100) undergoing the same etching process. We conclude that N is bound directly to the substrate SiC, or incorporated within the first layers of SiC, as opposed to bonding within the oxide network. These observations provide insights into the chemistry and function of N as an interface passivating additive in SiC MOSFETs.

  16. Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, H.-T.; Stone, I. C.; Fan, Z.

    2012-01-01

    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.

  17. X-Ray Videomicroscopy Studies of Eutectic Al-Si Solidification in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Mathiesen, R. H.; Arnberg, L.; Li, Y.; Meier, V.; Schaffer, P. L.; Snigireva, I.; Snigirev, A.; Dahle, A. K.

    2011-01-01

    Al-Si eutectic growth has been studied in-situ for the first time using X-ray video microscopy during directional solidification (DS) in unmodified and Sr-modified Al-Si-Cu alloys. In the unmodified alloys, Si is found to grow predominantly with needle-like tip morphologies, leading a highly irregular progressing eutectic interface with subsequent nucleation and growth of Al from the Si surfaces. In the Sr-modified alloys, the eutectic reaction is strongly suppressed, occurring with low nucleation frequency at undercoolings in the range 10 K to 18 K. In order to transport Cu rejected at the eutectic front back into the melt, the modified eutectic colonies attain meso-scale interface perturbations that eventually evolve into equiaxed composite-structure cells. The eutectic front also attains short-range microscale interface perturbations consistent with the characteristics of a fibrous Si growth. Evidence was found in support of Si nucleation occurring on potent particles suspended in the melt. Yet, both with Sr-modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form at the Si-particle interfaces.

  18. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    NASA Astrophysics Data System (ADS)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    Silicon carbide (SiC) coatings with varying thickness (ranging from 0.14 μm to 2.67 μm) were deposited onto the surfaces of Type KD-I SiC fibres with native carbonaceous surface using chemical vapour deposition (CVD) process. Then, two dimensional SiC fibre reinforced SiC matrix (2D SiCf/SiC) composites were fabricated using polymer infiltration and pyrolysis (PIP) process. Influences of the fibre coating thickness on mechanical properties of SiC fibre and SiCf/SiC composite were investigated using single-filament test and three-point bending test. The results indicated that flexural strength of the composites initially increased with the increasing CVD SiC coating thickness and reached a peak value of 363 MPa at the coating thickness of 0.34 μm. Further increase in the coating thickness led to a rapid decrease in the flexural strength of the composites. The bending modulus of composites showed a monotonic increase with increasing coating thickness. A chemical attack of hydrogen or other ions (e.g. a C-H group) on the surface of SiC fibres during the coating process, owing to the formation of volatile hydrogen, lead to an increment of the surface defects of the fibres. This was confirmed by Wang et al. [35] in their work on the SiC coating of the carbon fibre. In the present study, the existing ˜30 nm carbon on the surface of KD-I fibre [36] made the fibre easy to be attacked. Deposition of non-stoichiometric SiC, causing a decrease in strength. During the CVD process, a small amount of free silicon or carbon always existed [35]. The existence of free silicon, either disordered the structure of SiC and formed a new source of cracks or attacked the carbon on fibre surface resulting in properties degeneration of the KD-I fibre. The effect of residual stress. The different thermal expansion coefficient between KD-I SiC fibre and CVD SiC coating, which are 3 × 10-6 K-1 (RT ˜ 1000 °C) and 4.6 × 10-6 K-1 (RT ˜ 1000 °C), respectively, could cause residual stress

  19. Effect composition of SiCp and TiB to the mechanical properties of composite Al7Si-Mg-SiCp by the method of semi solid stir casting

    NASA Astrophysics Data System (ADS)

    Bhiftime, E. I.; Sulardjaka, Nugroho, Sri

    2016-04-01

    Recently, studies on Aluminum Matrix Composite (AMC) were growing rapidly. AMC reinforced with SiCp particles in the semi solid stir casting method was the most simple way. In particular, the purpose of the present study was to investigate the effect composition of SiCp and TiB to the mechanical properties of the composites Al7Si-Mg-SiCp and Al7Si-Mg-TiB-SiCp. The composites used were Al7Si as the matrix and SiCp as the reinforcement (10, 15, 20 wt%). The casting method used on the study was the semi solid stir casting. The matrix was melted at the temperature of 800 °C. Then, the stirring process started at 590 °C with the speed of 500 rpm for 180 seconds. The composites was heated again until the pouring temperature was at 750 °C. The results of the present study indicated to be successful in which SiCp particles dispersed uniformly in the matrix composites. Further, the hardness value and porosity of the composites Al7Si-Mg-SiCp and Al7Si-Mg-TiB-SiCp increased along with the addition of TiB. Besides, the hardness value increased in the average of 10.5% at the variation of 20% SiCp. Whereas, the porosity value increased in the average of 54.3% at the variation of 20% SiCp.

  20. Si transfers during Archean weathering processes traced by silicon isotopes and Ge/Si ratios

    NASA Astrophysics Data System (ADS)

    Delvigne, Camille; Opfergelt, Sophie; Hofmann, Axel; Cardinal, Damien; André, Luc

    2015-04-01

    Weathering conditions in the Mesoarchean are poorly constrained. Recent advances in analytical capabilities have added Si isotopes and Ge/Si ratios to the repertoire of tracers used in the study of soil formation processes: neoformation of secondary clay minerals is associated with large Si isotope and Ge/Si fractionation in response to desilication processes and the weathering degree [1, 2, 3, 4]. Here we combine Si isotopes and Ge/Si ratios of a Mesoarchean paleosol (~2.95 Ga) and of nearly coeval but younger shales as proxies of weathering processes and Si mass transfer at the early Earth's surface. The paleosol is developed on andesite and shows a well defined mineralogical and chemical differentiation. In a first step, similar to modern soils, neoformation of secondary clay minerals in the paleosol was associated with fractionation of Si isotopes and Ge/Si ratios in response to chemical weathering degree and soil desilication. In a second step, the loss of Fe(II)-rich minerals, likely Fe-rich smectites, due to low pO2 conditions produced additional control on Si and Ge mobilities. Opposite fractionation behaviors are observed: products of desilication acted as 28Si and Ge sink while the leaching of Fe(II)-rich minerals released 28Si and Ge to soil solutions. Furthermore, the shales deposited immediately after the paleosol display δ30Si and Ge/Si compositions which may be explained as mixtures of the recognized Archean paleosols components. Their recording within the sedimentary pile suggests that the observed weathering-induced desilication might have been widely effective during the Mesoarchean as well as Fe(II)-rich minerals leaching in a lesser extent and pointing out these processes as determinant in the Si transfers from continents to hydrosphere. [1] Kurtz et al., (2002) Geochim. Cosmochim. Acta 66, 1525-1537 [2] Ziegler et al., (2005) Geochim. Cosmochim. Acta 69, 4597-4610. [3] Opfergelt et al., (2010) Geochim. Cosmochim. Acta 74, 225-240. [4

  1. An additional middle cuneiform?

    PubMed Central

    Brookes-Fazakerley, S.D.; Jackson, G.E.; Platt, S.R.

    2015-01-01

    Additional cuneiform bones of the foot have been described in reference to the medial bipartite cuneiform or as small accessory ossicles. An additional middle cuneiform has not been previously documented. We present the case of a patient with an additional ossicle that has the appearance and location of an additional middle cuneiform. Recognizing such an anatomical anomaly is essential for ruling out second metatarsal base or middle cuneiform fractures and for the preoperative planning of arthrodesis or open reduction and internal fixation procedures in this anatomical location. PMID:26224890

  2. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-08-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.

  3. Controlling the half-metallicity of Heusler/Si(1 1 1) interfaces by a monolayer of Si-Co-Si.

    PubMed

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Ghasemi, Arsham; Kuerbanjiang, Balati; Hasnip, Philip J; Yamada, Shinya; Hamaya, Kohei; Ramasse, Quentin M; Hirohata, Atsufumi; Lazarov, Vlado K

    2016-10-01

    By using first-principles calculations we show that the spin-polarization reverses its sign at atomically abrupt interfaces between the half-metallic Co2(Fe,Mn)(Al,Si) and Si(1 1 1). This unfavourable spin-electronic configuration at the Fermi-level can be completely removed by introducing a Si-Co-Si monolayer at the interface. In addition, this interfacial monolayer shifts the Fermi-level from the valence band edge close to the conduction band edge of Si. We show that such a layer is energetically favourable to exist at the interface. This was further confirmed by direct observations of CoSi2 nano-islands at the interface, by employing atomic resolution scanning transmission electron microscopy. PMID:27501822

  4. Size-dependent structure and magnetic properties of co-evaporated Fe-SiO2 nanoparticle composite film under high magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui; Li, Guojian; Du, Jiaojiao; Li, Mengmeng; Wang, Jianhao; Wang, Qiang

    2016-05-01

    Composite film of Fe nanoparticles embedded in a SiO2 matrix has been prepared by the co-evaporation of Fe and SiO2. Both source temperature and in-situ high magnetic field (HMF) have been used to adjust the Fe particle size and the growth of Fe-SiO2 film. The size of Fe particle decreased with increasing the source temperature without HMF. When HMF was presented during the growth of the film, the size of Fe particle was enlarged and reduced for source temperatures of 1300 °C and 1400 °C, respectively. Meanwhile, the preferred orientation of the film grown at 1400 °C became uniform with the application of HMF. In addition, it is also found that the film was formed in two layers. One layer is formed by the Fe particle, while the other is free of Fe particles due to the existence of more SiO2. The structural variation has a significant effect on the magnetic properties. The coercivity (90 Oe) of the 1300 °C film is much higher than that (6 Oe) of the 1400 °C film with a small particle size and uniform orientation. The saturation magnetization can be increased by increasing the Fe particle volume fraction. This study develops a new method to tune the soft magnetic properties by the co-evaporation of Fe and SiO2.

  5. SiGe nanostructure fabrication through selective epitaxial growth using self-assembled nanotemplates

    NASA Astrophysics Data System (ADS)

    Park, Sang-Joon; Hwang, In Chan; Lee, Heung Soon; Yeog Son, Jong; Kim, Hyungjun

    2009-11-01

    Ordered SiGe nanostructures including nanodots (NDs) and nanowires (NWs) were fabricated via selective epitaxial growth (SEG) of SiGe using ultrahigh vacuum chemical vapour deposition (UHV-CVD) on Si openings fabricated using self-assembled nanotemplates of anodic anluminum oxide (AAO) and diblock copolymer (DBC) of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), exhibiting hexagonally arranged nanoholes. SiGe SEG was processed through repeating the unit cycle composed of two separated steps of SiGe growth using disilane (Si2H6) and Germane (GeH4) and chlorine (Cl2 exposure. Cl2 was used to improve the selectivity of SiGe SEG between the Si openings and the oxide area. Ordered SiGe NDs and NWs were fabricated through SiGe SEG of 20 cycles and 400 cycles on AAO/Si, respectively. In addition, ordered SiGe NDs were obtained via SiGe SEG of 20 cycles on SiO2 template, fabricated through pattern transfer of nanoholes of PS-b-PMMA to SiO2/Si. SiGe nanostructure fabrication using both AAO and PS-b-PMMA showed good replication of the nanohole size of the nanotemplates. An erratum to this article was added by the author on 18 May 2010. The text of the erratum is appended to the PDF.

  6. Thin-film formation of Si clathrates on Si wafers

    NASA Astrophysics Data System (ADS)

    Ohashi, Fumitaka; Iwai, Yoshiki; Noguchi, Akihiro; Sugiyama, Tomoya; Hattori, Masashi; Ogura, Takuya; Himeno, Roto; Kume, Tetsuji; Ban, Takayuki; Nonomura, Shuichi

    2014-04-01

    In this study, we prepared Si clathrate films (Na8Si46 and NaxSi136) using a single-crystalline Si substrate. Highly oriented film growth of Zintl-phase sodium silicide, which is a precursor of Si clathrate, was achieved by exposing Na vapour to Si substrates under an Ar atmosphere. Subsequent heat treatment of the NaSi film at 400 °C (3 h) under vacuum (<10-2 Pa) resulted in a film of Si clathrates having a thickness of several micrometres. Furthermore, this technique enabled the selective growth of Na8Si46 and NaxSi136 using the appropriate crystalline orientation of Si substrates.

  7. Oxidation and sulfidation resistant alloys with silicon additions

    SciTech Connect

    Dunning, John S.; Alman, David E.; Poston, J.A., Jr.; Siriwardane, R.

    2003-01-01

    The Albany Research Center (ARC) has considerable experience in developing lean chromium, austenitic stainless steels with improved high temperature oxidation resistance. Using basic alloy design principles, a baseline composition of Fe-16Cr-16Ni-2Mn-1Mo alloys with Si and Al addition at a maximum of 5 weight percent was selected for potential application at temperatures above 700ºC for supercritical and ultra-supercritical power plant application. The alloys were fully austenitic. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700ºC to 800ºC. Oxidation resistances of alloys with Si only additions were outstanding, particularly at 800ºC (i.e., these alloys possessed weight gains 4 times less than a standard type-304 alloy). In addition, Si alloys pre-oxidized at 800ºC, showed a zero weight gain in subsequent testing for 1000 hours at 700ºC. Similar improvements were observed for Si only alloy after H2S exposure at 700ºC compared with type 304 stainless steel. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms at ARC. Depth profile analysis and element concentration profiles (argon ion etching/x-ray photoelectron spectroscopy) were conducted on oxidized specimens and base material at the National Energy Technology Laboratory.

  8. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2001-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  9. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4 whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2002-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  10. Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery.

    PubMed

    Xie, Xiangyang; Yang, Yanfang; Lin, Wen; Liu, Hui; Liu, Hong; Yang, Yang; Chen, Ying; Fu, Xudong; Deng, Jianping

    2015-12-01

    Due to the absence of effective in vivo delivery systems, the employment of small interference RNA (siRNA) in the clinic has been hindered. In this paper, a new siRNA targeting system for EphA2-positive tumors was developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, a CPP-siRNA conjugate (CPP-siRNA) was entrapped in an ephrin mimetic peptide (YSA peptide)-modified NB (CPP-siRNA/YSA-NB) and the penetration of the CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research demonstrated that the CPP-siRNA/YSA-NBs had particle sizes of approximately 200 nm and a siRNA entrapment efficiency of more than 85%. The in vitro release results showed that over 90% of the encapsulated CPP-siRNA released from the NBs in the presence of ultrasound, while less than 1.5% of that (30 min) released without ultrasound. Cell experiments showed a the higher CPP-siRNA cellular uptake of CPP-siRNA/YSA-NB among the various formulations in human breast adenocarcinoma cells (MCF-7, EphA2 positive cells). Additionally, after systemic administration in mice, CPP-siRNA/YSA-NB accumulated in the tumor, augmented c-Myc silencing and delayed tumor progression. In conclusion, the application of CPP-siRNA/YSA-NB with ultrasound may provide a strategy for the selective and efficient delivery of siRNA. PMID:26492155

  11. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  12. a Study on the Role of Sintering Additives for Fabrication of sic Ceramic

    NASA Astrophysics Data System (ADS)

    Yoon, Han Ki; Lee, Young Ju; Cho, Ho Jun; Kim, Tae Gyu

    Silicon carbide (SiC) materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. The SiC ceramics have been fabricated by a NITE (Nano Infiltration Transient Eutectic Phase) Process, using Nano-SiC powder. The sintering additives used for forming liquid phase under sintering process, used the sintering additives ratios were an Al2O3-Y2O3 system or add SiO2 contents. A major R&D focus for the SiC ceramics is the production to obtain high purity SiC ceramics. In this study, we investigated roles of the sintering additives(Al2O3:Y2O3) to fabrication of the SiC ceramics. The effects of SiO2 contents and density properties of the SiC ceramics were also investigated. To investigate the effects of SiO2, Al2O3/Y2O3 composition were fixed and then SiO2 ratios were changed as several kinds, and to confirm the effects of sintering additives ratios (Al2O3:Y2O3) they were changed between 4:6 and 6:4 in x wt.%.

  13. On the Effect of the Film Hydrogen Content and Deposition Type on the Grain Nucleation and Grain Growth During Crystallization of a-Si:H Films: Preprint

    SciTech Connect

    Mahan, A. H.; Ahrenkiel, S. P.; Roy, B.; Schropp, R.E.I.; Li, H.; Ginley, D. S.

    2006-05-01

    We report the effect of the initial film hydrogen content (CH) on the crystallization kinetics, crystallite nucleation rate and grain growth rate when HWCVD and PECVD a-Si:H films are crystallized by annealing at 600 C. For the HWCVD films, both the incubation time and crystallization time decrease, and the full width at half maximum (FWHM) of the XRD (111) peak decreases with decreasing film CH. However, other sources of XRD line broadening exist in such materials in addition to crystallite size, including the density of crystallite defects. To address these issues, TEM measurements have also been performed on a-Si:H films deposited directly onto TEM grids.

  14. Electron impact collision strengths in Si IX, Si X, and Si XI

    SciTech Connect

    Liang Guiyun; Zhao Gang . E-mail: gzhao@bao.ac.cn; Zeng Jiaolong

    2007-05-15

    Electron impact collision strengths among 560 levels of Si IX, 320 levels of Si X, and 350 levels of Si XI have been calculated using the Flexible Atomic Code of Gu [M.F. Gu, Astrophys. J. 582 (2003) 1241]. Collision strengths {omega} at 10 scattered electron energies, namely 10, 50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 eV, are reported. Assuming a Maxwellian energy distribution, effective collision strengths Y are obtained on a finer electron temperature grid of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 MK, which covers the typical temperature range of astrophysical hot plasmas. Additionally, radiative rates A and weighted oscillator strengths gf are given for the more probable transitions among these levels. Comparisons of our results with available predictions reported in earlier literature are made and the accuracy of the data is assessed. Most transitions exhibit a good agreement, but large differences in gf appear for a few cases, which are due to the different configuration interactions included in different theoretical calculations. For excitations among levels of the ground and lower excited configurations, large discrepancies of Y may have resulted from the consideration of resonance effects in earlier works.

  15. Bioprocessing of “Hair Waste” by Paecilomyces lilacinus as a Source of a Bleach-Stable, Alkaline, and Thermostable Keratinase with Potential Application as a Laundry Detergent Additive: Characterization and Wash Performance Analysis

    PubMed Central

    Cavello, Ivana A.; Hours, Roque A.; Cavalitto, Sebastián F.

    2012-01-01

    Paecilomyces lilacinus (Thom) Samson LPS 876, a locally isolated fungal strain, was grown on minimal mineral medium containing “hair waste,” a residue from the hair-saving unhairing process, and produced a protease with keratinolytic activity. This enzyme was biochemically characterized. The optimum reaction conditions, determined with a response surface methodology, were 60°C and pH 6.0. It was remarkably stable in a wide range of pHs and temperatures. Addition of Ca2+, Mg2+, or sorbitol was found to be effective in increasing thermal stability of the protease. PMSF and Hg2+ inhibited the proteolytic activity indicating the presence of a thiol-dependent serine protease. It showed high stability toward surfactants, bleaching agents, and solvents. It was also compatible with commercial detergents (7 mg/mL) such as Ariel, Skip, Drive, and Ace, retaining more than 70% of its proteolytic activity in all detergents after 1 h of incubation at 40°C. Wash performance analysis revealed that this protease could effectively remove blood stains. From these properties, this enzyme may be considered as a potential candidate for future use in biotechnological processes, as well as in the formulation of laundry detergents. PMID:23365760

  16. Bioprocessing of "Hair Waste" by Paecilomyces lilacinus as a Source of a Bleach-Stable, Alkaline, and Thermostable Keratinase with Potential Application as a Laundry Detergent Additive: Characterization and Wash Performance Analysis.

    PubMed

    Cavello, Ivana A; Hours, Roque A; Cavalitto, Sebastián F

    2012-01-01

    Paecilomyces lilacinus (Thom) Samson LPS 876, a locally isolated fungal strain, was grown on minimal mineral medium containing "hair waste," a residue from the hair-saving unhairing process, and produced a protease with keratinolytic activity. This enzyme was biochemically characterized. The optimum reaction conditions, determined with a response surface methodology, were 60°C and pH 6.0. It was remarkably stable in a wide range of pHs and temperatures. Addition of Ca(2+), Mg(2+), or sorbitol was found to be effective in increasing thermal stability of the protease. PMSF and Hg(2+) inhibited the proteolytic activity indicating the presence of a thiol-dependent serine protease. It showed high stability toward surfactants, bleaching agents, and solvents. It was also compatible with commercial detergents (7 mg/mL) such as Ariel, Skip, Drive, and Ace, retaining more than 70% of its proteolytic activity in all detergents after 1 h of incubation at 40°C. Wash performance analysis revealed that this protease could effectively remove blood stains. From these properties, this enzyme may be considered as a potential candidate for future use in biotechnological processes, as well as in the formulation of laundry detergents. PMID:23365760

  17. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang

    2016-07-01

    A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe2 , PtSn4 , and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (˜1020 cm-3 ) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.

  18. Investigation of various phases of Fe-Si structures formed in Si by low energy Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Lakshantha, Wickramaarachchige J.; Dhoubhadel, Mangal S.; Reinert, Tilo; McDaniel, Floyd D.; Rout, Bibhudutta

    2015-12-01

    The compositional phases of ion beam synthesized Fe-Si structures at two high fluences (0.50 × 1017 atoms/cm2 and 2.16 × 1017 atoms/cm2) were analyzed using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The distribution of Fe implanted in Si was simulated using a dynamic simulation code (TRIDYN) incorporating target sputtering effects. The Fe depth profiles in the Si matrix were confirmed with Rutherford backscattering spectrometry (RBS) and XPS depth profiling using Ar-ion etching. Based on XPS binding energy shift and spectral asymmetry, the distribution of stable Fe-Si phases in the substrate was analyzed as a function of depth. Results indicate Fe implantation with a fluence of 0.50 × 1017 atoms/cm2 and subsequent thermal annealing produce mainly the β-FeSi2 phase in the whole thickness of the implanted region. But for the samples with a higher fluence Fe implantation, multiple phases are formed. Significant amount of Fe3Si phase are found at depth intervals of 14 nm and 28 nm from the surface. Initially, as-implanted samples show amorphous Fe3Si formation and further thermal annealing at 500 °C for 60 min formed crystalline Fe3Si structures at the same depth intervals. In addition, thermal annealing at 800 °C for 60 min restructures the Fe3Si clusters to form FeSi2 and FeSi phases.

  19. Effect of traveling magnetic field on separation and purification of Si from Al-Si melt during solidification

    NASA Astrophysics Data System (ADS)

    Zou, Q. C.; Jie, J. C.; Liu, S. C.; Wang, T. M.; Yin, G. M.; Li, T. J.

    2015-11-01

    Separation and purification of the Si crystal during solidification process of hypereutectic Al-30Si melt under traveling magnetic field (TMF) were investigated in the present study. The results showed that under a proper condition the Si-rich layer can be formed in the periphery of the ingot while the inner microstructure is mainly the Al-Si eutectic structure. The intense melt flow carries the bulk liquid with higher Si content to promote the growth of the primary Si phase which is first precipitated close to the inner wall of the crucible with a relatively lower temperature, which resulting in the remarkable segregation of the primary Si phase. The impurity contents of the refined Si can be reduced to a very low level. The typical metallic impurities have removal fraction higher than 99.5%. In addition, there is a significant difference in the P contents between the primary and eutectic Si phases, which might be ascribed to the formation of AlP phase that acts as the heterogeneous nucleation sites. Furthermore, a considerable amount of Fe-containing particles with a size about 100-300 nm is found inside the eutectic Si phase, indicating an unintended entrapment of Fe in Si.

  20. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  1. Resolving 45-pm-separated Si-Si atomic columns with an aberration-corrected STEM.

    PubMed

    Sawada, Hidetaka; Shimura, Naoki; Hosokawa, Fumio; Shibata, Naoya; Ikuhara, Yuichi

    2015-06-01

    Si-Si atomic columns separated by 45 pm were successfully resolved with a 300-kV aberration-corrected scanning transmission electron microscope (STEM) equipped with a cold-field emission gun. Using a sufficiently small Gaussian effective source size and a 0.4-eV energy spread at 300 kV, the focused electron probe on the specimen was simulated to be sub-50 pm. Image simulation showed that the present probe condition was sufficient to resolve 45 pm Si-Si dumbbells. A silicon crystalline specimen was observed from the [114] direction with a high-angle annular dark field STEM and the intensity profile showed 45 pm separation. A spot corresponding to (45 pm)(-1) was confirmed in the power spectrum of the Fourier transform. PMID:25825509

  2. Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures

    PubMed Central

    Tsuchiya, Taku; Tsuchiya, Jun

    2011-01-01

    Ultrahigh-pressure phase relationship of SiO2 silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe2P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 GPa through a careful structure search by means of ab initio density functional computations over various structure models. This is the first evidential result of the pressure-induced phase transition to the Fe2P-type structure among all dioxide compounds. The crystal structure consists of closely packed, fairly regular SiO9 tricapped trigonal prisms with a significantly compact lattice. Additional investigation further elucidates large effects of this phase change in SiO2 on the stability of MgSiO3 and CaSiO3 at multimegabar pressures. A postperovskite phase of MgSiO3 breaks down at 1.04 TPa along an assumed adiabat of super-Earths and yields Fe2P-type SiO2 and CsCl (B2)-type MgO. CaSiO3 perovskite, on the other hand, directly dissociates into SiO2 and metallic CaO, skipping a postperovskite polymorph. Predicted ultrahigh-pressure and temperature phase diagrams of SiO2, MgSiO3, and CaSiO3 indicate that the Fe2P-type SiO2 could be one of the dominant components in the deep mantles of terrestrial exoplanets and the cores of gas giants. PMID:21209327

  3. Heteroepitaxial growth of β-SiC thin films on Si(100) substrate using bis-trimethylsilylmethane

    NASA Astrophysics Data System (ADS)

    Bahng, Wook; Kim, Hyeong Joon

    1996-12-01

    A non-toxic and non-flammable organosilicon source having alternate Si-C bonding structure, bis-trimethylsilylmethane [C7H20Si2], was first used to deposit epitaxial β-SiC films at low growth temperature by chemical vapor deposition. Epitaxial β-SiC films were successfully grown on carburized Si(100) substrates at temperatures as low as 1100 °C, although the carburized buffer layer was a well-oriented, (100) polycrystalline film. Transmission electron microscopy analysis revealed that the films contain twins, stacking faults, and antiphase boundaries. Without the carburized buffer layer, highly (111) preferred oriented β-SiC films were grown by increasing the growth temperature.

  4. Improvement of Si Adhesion and Reduction of Electron Recombination for Si Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Wang, Yuting; Sato, Muneharu; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-01-01

    Quantum dots (QDs) based on multiple exciton generation have attracted much attention. They are capable of generating multiple electrons by single-photon absorption. Si is one of the good QD sources and its nontoxicity and abundance are advantageous for photovoltaics. In this work, Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition, and they were applied to Si QD-sensitized solar cells. Their initial performance was poor because of the weak adhesion of Si and charge recombination. In this work, we solved these problems through the functionalization of Si QDs and a ZnO barrier. Functionalized Si QDs were more adsorbed on TiO2 with strengthened adhesion and the ZnO barrier prevented the contact between TiO2 and the redox electrolyte. Consequently, the improved adhesion and the reduced electron recombination led to the enhancement of overall photovoltaic characteristics.

  5. Thermally Active Screw Dislocations in Si, SiC, PbSe, and SiGe Nanowires

    NASA Astrophysics Data System (ADS)

    Al-Ghalith, Jihong; Ni, Yuxiang; Xiong, Shiyun; Volz, Sebastian; Dumitrica, Traian

    We elucidate thermal conductivity along the screw dislocation line, which represents a transport direction inaccessible to classical theories. By using equilibrium and non-equilibrium molecular dynamics simulations, and the atomistic Green function method, we uncover a Burgers vector dependent thermal conductivity reduction in Si, SiC, PbSe, and SiGe nanowires. The effect is uncorrelated with the classical theory of Klemens. The influence of dislocations on thermal transport originates in the highly deformed core region, which represents a significant source of anharmonic phonon-phonon scattering. High strain reduces the phonon relaxation time, especially in the longitudinal acoustic branches, and creates an effective internal thermal resistance around the dislocation axis. The effect can be distinguished from the thermal transport reduction caused by the nanowire surface imperfections and vacancies. Our results have implications for designing materials useful for high-temperature electronics and thermoelectric applications.

  6. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix

  7. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    NASA Technical Reports Server (NTRS)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  8. Si surface preparation with Si beam irradiation on the growth on III-V on Si

    SciTech Connect

    Kawanami, H.; Baskar, K.; Sakata, I.; Sekigawa, T.

    1998-12-31

    The preliminary results of the effects of the Si beam irradiation for the Si surface preparation on the growth of GaAs on Si by MBE are reported. The effects are combined with thermal cyclic anneal (TCA). A slight improvement in the crystalline quality is observed on the photoluminescence spectra of the films grown with Si irradiation, In experimental conditions, Si irradiation during the Si surface preparation has not indicated large effects on the FWHM of XRD. It is also indicated that initial substrate surface treatment affects the quality of thicker film through TCA treatment. Higher substrate temperature during Si beam irradiation is expected to indicate positive Si beam irradiation effects.

  9. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  10. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, Joseph; Ksendzov, A.; Huberman, Mark L.; Terhune, R.; Krabach, T. N.

    1990-01-01

    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.

  11. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  12. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  13. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor; Delvaux, Claire; Hughes, Harold; Ronchi, Benedicta; Clymans, Wim; Barao, Ana Lucia; Govers, Gerard; Cornelis, Jean Thomas; André, Luc; Struyf, Eric

    2015-04-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61%), intermediate in pasture (+1.05%) and young cropland (+0.89%) and lowest in forest soil water (+0.62%). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential

  14. Landscape cultivation alters δ30Si signature in terrestrial ecosystems.

    NASA Astrophysics Data System (ADS)

    Vandevenne, F. I.; Delvaux, C.; Huyghes, H.; Ronchi, B.; Govers, G.; Barão, A. L.; Clymans, W.; Meire, P.; André, L.; Struyf, E.

    2014-12-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological properties (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61‰), intermediate in pasture (+1.05‰) and young cropland (+0.89 ‰) and lowest in forest soil water (+0.62‰). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have

  15. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  16. Radiation-induced structural changes in highly irradiated N3-1 SiC/SiC f composite

    NASA Astrophysics Data System (ADS)

    Bastürk, M.; Dai, Y.; Rauch, H.; Trinker, M.

    2006-08-01

    Fiber-reinforced silicon carbide ceramic composites (SiC/SiC f) have been employed in studies of the first wall and structural material in fusion reactors due to the required high thermal efficiency. Porosity and void swelling in the fiber reinforced materials, due to the high flux of radiation, are the main problems considered. Void swelling of SiC/SiC f composites under high radiation cause a reduction of the thermal conductivity and a limitation of the producible thickness. In order to investigate the radiation-induced changes like swelling in the fiber reinforced SiC/SiC composite, a small N3-1 SiC/SiC f composite was irradiated under high neutron and proton radiation in the target of the SINQ spallation source. Neutron measurements of the highly irradiated N3-1 SiC/SiC f and of non-irradiated reference samples were performed at the neutron radiography NEUTRA and small angle neutron scattering SANS facilities at PSI. The results contribute to a better understanding of pore formation and showed the porosity swelling under high neutron and proton radiation. A contrast enhancement at the edges was achieved by means of phase contrast neutron radiography and structural changes like void swelling were observed within the irradiated sample in comparison to reference samples.

  17. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  18. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  19. Additional Types of Neuropathy

    MedlinePlus

    ... A A Listen En Español Additional Types of Neuropathy Charcot's Joint Charcot's Joint, also called neuropathic arthropathy, ... can stop bone destruction and aid healing. Cranial Neuropathy Cranial neuropathy affects the 12 pairs of nerves ...

  20. Mechanical instabilities and piezoresistivity of SiGe/Si microtubes

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Dong, Lixin; Nelson, Bradley J.

    2007-10-01

    Mechanical instabilities and piezoresistivity of individual rolled-up SiGe/Si microtubes are investigated using nanorobotic manipulation. By applying this technique, as-fabricated one-end-fixed SiGe/Si microtubes can be cut and picked up from the substrate to examine their mechanical and electromechanical properties in a free space. Individual SiGe/Si microtubes show typical Euler buckling when the uniaxial compressive load is larger than a critical value. Moreover, experiments show that 1.6-turn rolled-up SiGe/Si microtubes have similar mechanical stability to ideal seamless tubes though the former ones have a spiral-like cross sectional area instead of an ideal ring. According to the measured I-V properties, SiGe/Si microtubes show positive piezoresistivity under compressive loads.

  1. Mechanism of tantalum adhesion on SiLK{sup TM}

    SciTech Connect

    Hu Yue; Yang Shuowang; Chen Xiantong; Lu Dong; Feng Yuanping; Wu Ping

    2005-09-19

    Tantalum adhesion on SiLK{sup TM} was investigated using first-principles method based on density functional theory. Phenylene groups were found to play a major role and the adjacent semi-benzene rings also contribute significantly to Ta adhesion on SiLK{sup TM}. In addition, the degradation effects of H{sub 2}/He reactive plasma clean on Ta adhesion on SiLK{sup TM} was investigated. Based on our findings, argon plasma treatment was suggested and implemented after reactive plasma cleaning process, which resulted in integration of SiLK{sup TM} with Cu up to seven metal layers.

  2. Characterization of Si/SiO 2 interface defects by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Poindexter, Edward H.; Caplan, Philip J.

    The defect structure of the Si/SiO 2 interface is increasingly important as the size of metal-oxide-semiconductor (MOS) integrated circuits shrinks into the submicron regime. Extensive electrical studies of the interface over the past two decades, interpreted via indirect physico-chemical theory, have yielded useful, but empirical, interface models. Electron spin resonance (ESR) has now given a spectroscopic identification of the trivalent silicon or P b center (·Si≡Si 3) at the interface. This center is perhaps the most important characteristic defect at the interface. Its specific detection and identification allow a better diagnosis of interface and oxide electrical properties. This paper reviews the present status and historical development of ESR application to the Si/SiO 2 system, and includes a background of relevant ESR research on other materials systems. A very brief overview of popular electrical characterization methods is included, and also a short review of the basic principles of ESR spectroscopy. The detection and identification of the critical trivalent silicon defect (·Si≡Si 3) on oxidized Si wafers (111, 110, 100 orientations) is presented in detail. The correlation of this center with interface traps is shown over a variety of device-pertinent thermal processes. The nearly 1:1 quantitative relation between ·Si≡Si 3 and interface trap concentration is emphasized. The response of ·Si≡Si 3 to light and electric field is explored in order to define its physical and electrical nature. These results, in comparison with similar defects in bulk Si and SiO 2, are interpreted to yield a tentative working model of the ·Si≡Si 3 interface defect. It is thus shown to be a plausible source for the majority of interface bandgap traps. A variety of other pertinent ESR centers in oxidized Si, including radiation-induced defects, is surveyed briefly. A few oft-expected centers, such as the silica E‧ center, are not found in significant

  3. The use of Ge/Si ratios to quantify Si transformations in grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Blecker, S. W.; Derry, L. A.; Chadwick, O. A.; Kelly, E. F.

    2005-12-01

    . The data suggest that stream water Si is not derived entirely from ground water and that biogenic sources are plausible.

  4. Bulk quadrupole and interface dipole contribution for second harmonic generation in Si(111)

    NASA Astrophysics Data System (ADS)

    Reitböck, Cornelia; Stifter, David; Alejo-Molina, Adalberto; Hingerl, Kurt; Hardhienata, Hendradi

    2016-03-01

    The second harmonic generation (SHG) response was measured for arbitrarily oriented linear input polarization on Si(111) surfaces in rotational anisotropy experiments. We show for the first time, using the simplified bond hyperpolarizability model (SBHM), that the observed angular shifts of the nonlinear peaks and symmetry features—related to changes in the input polarization—help to identify the corresponding interface dipolar and bulk quadrupolar SHG sources, yielding excellent agreement with the experiment. Additionally, we evaluate for the s-in/p-out (sp) and p-in/p-out (pp)-polarization SHG intensities the contributions from the individual Si bonds. Furthermore, a relation between the four parameters arising from SBHM and six coefficients of the phenomenological SHG theory needed to reproduce experimental data is established.

  5. Radio searches for additional interstellar molecules

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Suenram, R. D.; Lovas, F. J.; Snyder, L. E.

    1983-01-01

    Observations in the 2-mm wavelength range are reported which yield new interstellar molecular transitions of NH2CHO, SO2, H2CCO, U150820.5, and U150850.0 toward Sgr B2, and SO2, CH2CHCN, HCOOCH3, and U153513.0 toward Orion A. The first interstellar searches for HOCl, CH3CH2CCH, and CH3SiH3 were conducted, but these species were not detected. During these observations limits were also obtained on 2-mm wave transitions of N2O and NaOH toward several galactic sources of molecular emission.

  6. Characterization of UV laser ablation for microprocessing of a-Si:H thin films

    NASA Astrophysics Data System (ADS)

    Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.; Villar, F.; Escarré, J.; Bertomeu, J.; Andreu, J.

    2006-04-01

    Hydrogenated amorphous silicon has been widely studied last years, both from the basic research and industrial points of view, due to the important set of potential applications that this material offers, ranging from Thin Films Transistors (TFTs) to solar cells technologies. In different fabrication steps of a-Si:H based devices, laser sources have been used as appropriate tools for cutting, crystallising, contacting, patterning, etc., and more recent research lines are undertaking the problem of a-Si:H selective laser ablation for different applications. The controlled ablation of photovoltaic materials with minimum debris and small heat affected zone with low processing costs, is one of the main difficulties for the successful implementation of laser micromachining as competitive technology in this field. This work presents a detailed study of a-Si:H laser ablation in the ns regime. Ablation curves are measured and fluence thresholds are determined. Additionally, and due to the improved performance in optolectronic properties associated to the nanocrystalline silicon (nc-Si:H), some samples of this material have been also studied.

  7. Probing the defect state of individual precipitates grown in an Al-Mg-Si alloy

    SciTech Connect

    Klobes, Benedikt; Korff, Bjoern; Balarisi, Osman; Eich, Patrick; Haaks, Matz; Maier, Karl; Sottong, Reinhard; Huehne, Sven-Martin; Mader, Werner; Staab, Torsten E. M.

    2010-08-01

    Precipitates forming in decomposable aluminum alloys such as Al-Mg-Si evolve toward the corresponding intermetallic phase, which is {beta} (Mg{sub 2}Si) in this case, depending on heat-treatment conditions. Individual {beta} precipitates were produced in an Al-1.11 at. % Mg-0.77 at. % Si alloy and identified using optical as well as electron microscopy. The individual {beta} precipitates could be investigated with regard to their intrinsic crystal defects using a finely focused positron microbeam provided by the Bonn Positron Microprobe. Comparison with theoretical calculations of the Doppler broadening of annihilation radiation reveals that {beta} precipitates most likely do not contain vacancies in either sublattice and that 0.16 is the upper bound of the fraction of trapped positrons. The usage of different enhancement factors had only little influence on the calculations whereas the general gradient approximation affected the contribution of Si orbitals, in particular. Additional measurements of the Doppler broadening based on the radioactive source {sup 68}Ge, which emits high-energy positrons probing bulk regions of the sample, were carried out. These measurements show that {beta} precipitates are sparsely distributed in the Al matrix.

  8. Probing the defect state of individual precipitates grown in an Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Klobes, Benedikt; Korff, Björn; Balarisi, Osman; Eich, Patrick; Haaks, Matz; Maier, Karl; Sottong, Reinhard; Hühne, Sven-Martin; Mader, Werner; Staab, Torsten E. M.

    2010-08-01

    Precipitates forming in decomposable aluminum alloys such as Al-Mg-Si evolve toward the corresponding intermetallic phase, which is β (Mg2Si) in this case, depending on heat-treatment conditions. Individual β precipitates were produced in an Al- 1.11at.% Mg- 0.77at.% Si alloy and identified using optical as well as electron microscopy. The individual β precipitates could be investigated with regard to their intrinsic crystal defects using a finely focused positron microbeam provided by the Bonn Positron Microprobe. Comparison with theoretical calculations of the Doppler broadening of annihilation radiation reveals that β precipitates most likely do not contain vacancies in either sublattice and that 0.16 is the upper bound of the fraction of trapped positrons. The usage of different enhancement factors had only little influence on the calculations whereas the general gradient approximation affected the contribution of Si orbitals, in particular. Additional measurements of the Doppler broadening based on the radioactive source G68e , which emits high-energy positrons probing bulk regions of the sample, were carried out. These measurements show that β precipitates are sparsely distributed in the Al matrix.

  9. Partitioning of Si and platinum group elements between liquid and solid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Morard, G.; Siebert, J.; Badro, J.

    2014-05-01

    Crystallization of the Earth's inner core fractionates major and minor elements between the solid and liquid metal, leaving physical and geochemical imprints on the Earth's core. For example, the density jump observed at the Inner Core Boundary (ICB) is related to the preferential partitioning of lighter elements in the liquid outer core. The fractionation of Os, Re and Pt between liquid and solid during inner core crystallization has been invoked as a process that explains the observed Os isotopic signature of mantle plume-derived lavas (Brandon et al., 1998; Brandon and Walker, 2005) in terms of core-mantle interaction. In this article we measured partitioning of Si, Os, Re and Pt between liquid and solid metal. Isobaric (2 GPa) experiments were conducted in a piston-cylinder press at temperatures between 1250 °C and 1600 °C in which an imposed thermal gradient through the sample provided solid-liquid coexistence in the Fe-Si system. We determined the narrow melting loop in the Fe-Si system using Si partitioning values and showed that order-disorder transition in the Fe-Si solid phases can have a large effect on Si partitioning. We also found constant partition coefficients (DOs, DPt, DRe) between liquid and solid metal, for Si concentrations ranging from 2 to 12 wt%. The compact structure of Fe-Si liquid alloys is compatible with incorporation of Si and platinum group elements (PGEs) elements precluding solid-liquid fractionation. Such phase diagram properties are relevant for other light elements such as S and C at high pressure and is not consistent with inter-elemental fractionation of PGEs during metal crystallization at Earth's inner core conditions. We therefore propose that the peculiar Os isotopic signature observed in plume-derived lavas is more likely explained by mantle source heterogeneity (Meibom et al., 2002; Baker and Krogh Jensen, 2004; Luguet et al., 2008).

  10. Wafer edge protection kit for MEMS and TSV Si-etching

    NASA Astrophysics Data System (ADS)

    Wieland, Robert; Nguyen, K.; Seidelmann, U.; Scholz, M.; Schrag, G.

    2015-05-01

    A new process kit for a SPTS Pegasus DRIE Si-Etch tool has been developed and tested for several different process regimes, e.g. bulk-Si cavity etching and TSV (through-Silicon-Via) etching with high aspect ratios <10:1, using the socalled Bosch process. Additionally, Si-etch back (recess etching) with a single step process has been tested as well. The especially developed "edge protection kit", consisting of Al2O3 material and optionally of PEEK material, covers the edge of a wafer, preventing it from being etched or even being etched away. However, placing such a part on top of the cathode, results in changes of the electric field distribution and the gas flow behavior compared to the standard process kit supplied by SPTS. The consequences may be altered Si-etch rates combined with changes of the tilt and side wall taper of the etched structures, mainly near the outside regions of the wafer. To this end, extensive investigations on the mask and bulk-Si etch rates, the tilt and taper angle of various MEMS test structures and their respective uniformity over the wafer surface have been performed. Additionally, simulations applying Comsol Multiphysics have been carried out to visualize the potential impact of the new process kit on the electrical field distribution. A simplex-optimization was carried out, varying the platen power and source power, in order to improve the tilt and to maintain the proper taper angle. One major advantage of the new process kit design compared to the original one is the reduction of movable parts to a minimum.

  11. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  12. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound.

    PubMed

    Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang

    2016-06-01

    Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas <1.5% (30 min) was released in the absence of ultrasound. Cell experiments indicated higher cellular CPP-siRNA uptake of (CPP-siRNA)-NBs with ultrasound among the various formulations in human breast adenocarcinoma cells (HT-1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. PMID:27012462

  13. Self-aligned Si-Zn diffusion into GaAs and AlGaAs

    SciTech Connect

    Zou, W.X.; Corzine, S.; Vawter, G.A.; Merz, J.L.; Coldren, L.A.; Hu, E.L.

    1988-08-15

    A practical technology for self-aligned Si-Zn diffusion into GaAs and AlGaAs has been developed. It is found that the use of a Si film alone for self-aligned Si-Zn diffusion is subject to serious problems of morphology degradation and doping contamination during the process of the Si diffusion. A procedure combining the use of a SiO/sub 2/ film as an encapsulant with a sputtered Si film as source for Si diffusion and mask for Zn diffusion is investigated in detail. Optimum thicknesses of the Si and SiO/sub 2/ films are determined to be 180 and 550 A, respectively.

  14. Influence of irradiation with swift heavy ions on multilayer Si/SiO{sub 2} heterostructures

    SciTech Connect

    Kachurin, G. A. Cherkova, S. G.; Marin, D. V.; Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh.; Kamaev, G. N.; Skuratov, V. A.

    2013-03-15

    The influence of Xe ions with an energy of 167 MeV and a dose in the range 10{sup 12}-3 Multiplication-Sign 10{sup 13} cm{sup -2} on heterostructures consisting of six pairs of Si/SiO{sub 2} layers with the thicknesses {approx}8 and {approx}10 nm, correspondingly, is studied. As follows from electron microscopy data, the irradiation breaks down the integrity of the layers. At the same time, Raman studies give evidence for the enhancement of scattering in amorphous silicon. In addition, a yellow-orange band inherent to small-size Si clusters released from SiO{sub 2} appears in the photoluminescence spectra. Annealing at 800 Degree-Sign C recovers the SiO{sub 2} network, whereas annealing at 1100 Degree-Sign C brings about the appearance of a more intense photoluminescence peak at {approx}780 nm typical of Si nanocrystals. The 780-nm-peak intensity increases, as the irradiation dose is increased. It is thought that irradiation produces nuclei, which promote Si-nanocrystal formation upon subsequent annealing. The processes occur within the tracks due to strong heating because of ionization losses of the ions.

  15. Epitaxial CoSi2 on MOS devices

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Petrov, Ivan Georgiev; Greene, Joseph E.

    2005-01-25

    An Si.sub.x N.sub.y or SiO.sub.x N.sub.y liner is formed on a MOS device. Cobalt is then deposited and reacts to form an epitaxial CoSi.sub.2 layer underneath the liner. The CoSi.sub.2 layer may be formed through a solid phase epitaxy or reactive deposition epitaxy salicide process. In addition to high quality epitaxial CoSi.sub.2 layers, the liner formed during the invention can protect device portions during etching processes used to form device contacts. The liner can act as an etch stop layer to prevent excessive removal of the shallow trench isolation, and protect against excessive loss of the CoSi.sub.2 layer.

  16. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  17. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2012 CFR

    2009-07-01

    ... 40 Protection of Environment 28 2009-07-01 2009-07-01 false Additional measures. 412.37 Section 412.37 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other Than Veal Calves § 412.37 Additional...

  18. Nanoscale structure of Si/SiO2/organics interfaces.

    PubMed

    Steinrück, Hans-Georg; Schiener, Andreas; Schindler, Torben; Will, Johannes; Magerl, Andreas; Konovalov, Oleg; Li Destri, Giovanni; Seeck, Oliver H; Mezger, Markus; Haddad, Julia; Deutsch, Moshe; Checco, Antonio; Ocko, Benjamin M

    2014-12-23

    X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources. PMID:25401294

  19. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  20. Nitrogen content and morphology dependent field emission properties of nitrogen-doped SiC nanowires and density functional calculations.

    PubMed

    Zhao, Jian; Meng, Alan; Zhang, Meng; Ren, Weipeng; Li, Zhenjiang

    2015-11-21

    Nitrogen-doped SiC nanowires (N-doped SiC NWs) with a nitrogen content from 0.975 wt% to 2.265 wt% have been synthesized via a one-step chemical vapor reaction (CVR), where melamine served as both the carbon and nitrogen source. Interestingly, the morphology of the products changed from slightly curled to very curled with crowding together with the increase of N dopants, which was interpreted reasonably by the proposed N-doping growth model of SiC NWs. In addition, according to the electronic structure calculation results, the band gap is narrowed progressively with the increase of N content, which greatly enhances the field emission (FE) properties. However, the experimental results of the FE measurements substantiate that only when the N content takes an optimal value can the N-doped SiC NWs act as candidates for field emitters with very low turn-on fields (E(to)) of 1.5 V μm(-1) and threshold fields (E(thr)) of 4 V μm(-1). On the basis of the aforementioned phenomenon, a universal cooperativity mechanism was put forward to explain the effect of the N content and morphology on the FE properties of the N-doped SiC NWs. PMID:26444303

  1. An Intermittent Live Cell Imaging Screen for siRNA Enhancers and Suppressors of a Kinesin-5 Inhibitor

    PubMed Central

    Tsui, Melody; Xie, Tiao; Orth, James D.; Carpenter, Anne E.; Rudnicki, Stewart; Kim, Suejong; Shamu, Caroline E.; Mitchison, Timothy J.

    2009-01-01

    Kinesin-5 (also known as Eg5, KSP and Kif11) is required for assembly of a bipolar mitotic spindle. Small molecule inhibitors of Kinesin-5, developed as potential anti-cancer drugs, arrest cell in mitosis and promote apoptosis of cancer cells. We performed a genome-wide siRNA screen for enhancers and suppressors of a Kinesin-5 inhibitor in human cells to elucidate cellular responses, and thus identify factors that might predict drug sensitivity in cancers. Because the drug's actions play out over several days, we developed an intermittent imaging screen. Live HeLa cells expressing GFP-tagged histone H2B were imaged at 0, 24 and 48 hours after drug addition, and images were analyzed using open-source software that incorporates machine learning. This screen effectively identified siRNAs that caused increased mitotic arrest at low drug concentrations (enhancers), and vice versa (suppressors), and we report siRNAs that caused both effects. We then classified the effect of siRNAs for 15 genes where 3 or 4 out of 4 siRNA oligos tested were suppressors as assessed by time lapse imaging, and by testing for suppression of mitotic arrest in taxol and nocodazole. This identified 4 phenotypic classes of drug suppressors, which included known and novel genes. Our methodology should be applicable to other screens, and the suppressor and enhancer genes we identified may open new lines of research into mitosis and checkpoint biology. PMID:19802393

  2. X-Ray And Polarized Neutron Reflectometry: Characterization Of Si/Co/Si And Si/Ni/Si Systems

    SciTech Connect

    Bhattacharya, Debarati; Basu, Saibal; Poswal, A. K.; Roy, S.; Dev, B. N.

    2010-12-01

    Technologically important metal silicides formed through interdiffusion in metal/Si systems has been probed using two complementary techniques viz. x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Both structural and magnetic characterization with good depth resolution has been achieved in these systems. We have studied two systems Si/Co/Si and Si/Ni/Si which relate to important applications in ferromagnetic/ non-magnetic semiconductor layered structures for memory devices.

  3. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  4. Thermoelectric properties of -FeSi2

    SciTech Connect

    Parker, David S; Singh, David J; Pandey, Tribhuwan; Singh, Abhishek

    2013-01-01

    We investigate the thermoelectric properties of -FeSi2 using first principles electronic structure and Boltzmann trans- port calculations. We report a high thermopower for both p- and n-type -FeSi2 over a wide range of carrier concentra- tion and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 1020 - 2 1021 cm 3 may optimize the thermoelectric performance.

  5. Interfacial Thickness Guidelines for SiC(Fiber)/SiC(Matrix) Composites

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1998-01-01

    Researchers at the NASA Lewis Research Center have developed a guideline for the interface thickness necessary for SiC(Fiber)/SiC(Matrix) composites to demonstrate good composite properties. These composite materials have potential commercial applications for high-temperature structural components such as engine hot sections. Several samples of each were composed from three different small-diameter (less than 20 mm), polymer-derived SiC fibers that were woven into two-dimensional cloths and laid up as preforms. The preforms were treated with a chemical-vapor-infiltrated boron nitride layer as an interfacial coating on the fiber surfaces to provide the necessary debonding characteristics for successful composite behavior. Then, the preforms were filled with additional SiC as a matrix phase.

  6. Laser induced sponge-like Si in Si-rich oxides for photovoltaics.

    PubMed

    Gundogdu, S; Ozen, E Sungur; Hübner, R; Heinig, K H; Aydinli, A

    2013-10-01

    We show that a sponge-like structure of interconnected Si nanowires embedded in a dielectric matrix can be obtained by laser annealing of silicon rich oxides (SRO). Due to quantum confinement, the large bandgap displayed by these percolated nanostructures can be utilized as a tandem stage in 3rd generation thin-film solar cells. Well passivated by the SiO₂ dielectric matrix, they are expected to overcome the difficulty of carrier separation encountered in the case of isolated crystalline quantum dots. In this study PECVD grown SRO were irradiated by a cw Ar⁺ laser. Raman spectroscopy has been used to assess the crystallinity of the Si nanostructures and thus to optimize the annealing conditions as dwell times and power densities. In addition, Si plasmon imaging in the transmission electron microscope was applied to identify the sponge-like structure of phase-separated silicon. PMID:24104345

  7. Preparation, characterization and photoluminescence properties of ultra long SiC/SiOx nanocables

    NASA Astrophysics Data System (ADS)

    Cai, K. F.; Zhang, A. X.; Yin, J. L.; Wang, H. F.; Yuan, X. H.

    2008-06-01

    SiC core and SiOx shell nanocables of a few millimeters long have been prepared by pyrolysis of SiO2 nanopowder added poly(dimethyl siloxane) without catalyst in a tube furnace at 1050 °C in Ar. The influence of the synthesis conditions (synthesis temperature and cooling time) on the products is studied. The products obtained from different conditions are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution electron microscopy equipped with energy dispersive X-ray spectroscopy, and photoluminescence spectroscopy. The results show that the cores and the shells are crystalline and amorphous, respectively, and that the addition of SiO2 nanopowder and prolongation of cooling time both increase the diameter of the cores. The growth process of the nanocables is discussed. The photoluminescence emission bands of the nanocables are mainly from their shells.

  8. Aperiodic Mo/Si multilayers for hard x-rays.

    PubMed

    Pardini, Tom; Alameda, Jennifer; Platonov, Yuriy; Robinson, Jeff; Soufli, Regina; Spiller, Eberhard; Walton, Chris; Hau-Riege, Stefan P

    2016-08-01

    In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thickness of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources. PMID:27505826

  9. Variations in the Delivery of SI to the Oceans from the Continents: Implications of a Dynamic Terrestrial SI Cycle

    NASA Astrophysics Data System (ADS)

    Frings, P.; Conley, D. J.; Clymans, W.; Fontorbe, G.; De La Rocha, C. L.

    2014-12-01

    A common assumption is that the modern day continental Si cycle is at steady-state. However, a new paradigm is emerging regarding the terrestrial biogeochemical Si cycle and its importance. We now know that the terrestrial Si cycle is strongly biologically mediated, which creates and recycles a pool of reactive Si in soils and sediments that ultimately buffers the export of dissolved silicate (DSi) to the oceans. Our recent results show that imbalances in the continental Si pool on millennial scales may have caused systematic mis-estimation of silicate weathering rates, particularly when using river chemistry at large spatial scales to calculate weathering rates. Quantifying this imbalance is essential to understand ocean-terrestrial biogeochemical interactions. On short (human) timescales large-scale changes in land cover, erosion and eutrophication have significantly altered the fluvial flux of Si. Likewise, periods of glacial-interglacial transitions produce new weathering products from the continents with subsequent impacts on oceanic DSi. Over still longer timescales significant changes in fluvial Si fluxes have probably occurred with large-scale changes in chemical weathering due to orogeny, climate change, the emplacement of large igneous provinces, or changes in volcanic activity. We will discuss the timescale dependency of processes and the assumption of steady state. In addition, we will examine how a changing terrestrial Si cycle impacts the ocean Si cycle. Finally, we will address unresolved questions regarding the delivery of Si to the oceans from the continents.

  10. Thermomechanical Performance of Si-Ti-C-O and Sintered SiC Fiber-Bonded Ceramics at High Temperatures

    SciTech Connect

    Matsunaga, Tadashi; Lin, Hua-Tay; Singh, Mrityunjay; Kajii, Shinji; Matsunaga, Kenji; Ishikawa, Toshihiro

    2011-01-01

    The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stress decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.

  11. Microstructural and mechanical characterization of Al–Zn–Si nanocomposites

    SciTech Connect

    García-Villarreal, S.; Chávez-Valdez, A.; Moreno, K.J.; Leyva, C.; Aguilar-Martínez, J.A.; Hurtado, A.; Arizmendi-Morquecho, A.

    2013-09-15

    In this paper the addition of silicon nanoparticles into Al–Zn alloys to form metallic matrix nanocomposites by mechanical alloying process was investigated. The influence of various process parameters such as milling time and Si concentration in the Al–Zn matrix has an interesting effect on the microstructure and mechanical properties of the synthesized nanocomposites. The microstructural characterization of the nanocomposites was evaluated by transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM–EDXS) and the mechanical properties were measured by nanoindentation and micro-hardness tests. The results showed that during mechanical milling Si is added to the Al–Zn matrix achieving a uniform and homogeneous dispersion. After solidification, it forms small particles of AlZnSi with blocky morphology in interdendritic regions. The nanoindentation profiles showed that the elastic modulus and hardness properties increase with increasing milling time. However, a high concentration of Si (> 1.2 wt.%) results in a saturation of Si in the Al–Zn matrix, which adversely affects the mechanical properties. Thus, it is important to tune the milling time and concentration of Si added to the Al–Zn alloys to control the growth of brittle phases that result in reduction of the mechanical properties of the material. - Highlights: • A novel technique for addition of Si nanocomposites into Al–Zn liquid alloy is reported. • Good dispersion and homogeneity of Si in the Al–Zn matrix are obtained. • Increasing Si content above 1.2 wt.% decreases the mechanical properties of Al–Zn alloy. • The saturation point of Si in 1.2 wt.% differs from Galvalume® composition. • The Al–Zn–1.5Si alloy with addition of nanocomposite shows 5.7 GPa of hardness.

  12. Kapitza resistance of Si/SiO2 interface

    SciTech Connect

    Bowen Deng; Aleksandr Chenatynskiy; Marat Khafizov; David Hurley; Simon Phillpot

    2014-02-01

    A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.

  13. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  14. Multifunctional fuel additives

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-26

    This paper discusses a composition comprising a major amount of a liquid hydrocarbyl fuel and a minor low-temperature flow properties improving amount of an additive product of the reaction of a suitable diol and product of a benzophenone tetracarboxylic dianhydride and a long-chain hydrocarbyl aminoalcohol.

  15. Changes in Quartz During Heating and the Possible Effects on Si Production

    NASA Astrophysics Data System (ADS)

    Ringdalen, Eli

    2015-02-01

    In Si and FeSi production, the main Si source is SiO2, in the form of quartz. Reactions with SiO2 generate SiO gas that further reacts with SiC to Si. During heating, quartz will transform to other SiO2 modifications with cristobalite as the stable high-temperature phase. Transformation to cristobalite is a slow process. Its rate has been investigated for several industrial quartz sources and has been shown to vary considerably among the different quartz types. Other differences in behavior during heating between these quartz sources, such as softening temperature and volume expansion, have also been studied. The quartz-cristobalite ratio will affect the rate of reactions involving SiO2. The industrial consequences and other implications of the observed difference between quartz types are discussed. Initial studies of industrial quartz were published by Ringdalen et al. In the current work, a new experimental method has been developed, and an investigation of several new quartz sources has confirmed the earlier observed large variation between different sources. The repeatability of the data has been studied and the effect of gas atmosphere investigated. The results from the earlier work are included as a basis for the discussion.

  16. Plastic relaxation in GeSi layers on Si (001) and Si (115) substrates

    SciTech Connect

    Drozdov, Yu. N. Drozdov, M. N.; Yunin, P. A.; Yurasov, D. V.; Shaleev, M. A.; Novikov, A. V.

    2015-01-15

    It is demonstrated using X-ray diffraction and atomic force microscopy that elastic stresses in GeSi layers on Si (115) substrates relax more effectively than in the same layers on Si (001) substrates. This fact is attributed to the predominant contribution of one of the (111) slip planes on the (115) cut. The atomicforce-microscopy image of the GeSi/Si(115) surface reveals unidirectional slip planes, while the GeSi/Si(001) image contains a grid of orthogonal lines and defects at the points of their intersection. As a result, thick GeSi layers on Si (115) have a reduced surface roughness. A technique for calculating the parameters of relaxation of the layer on the Si (115) substrate using X-ray diffraction data is discussed.

  17. Adsorption of TiCl[sub 4], SiH[sub 4], and HCl on Si(100): Application to TiSi[sub 2] chemical vapor deposition and Si etching

    SciTech Connect

    Mendicino, M.A.; Seebauer, E.G. . Dept. of Chemical Engineering)

    1993-06-01

    The interactions of TiCl[sub 4], SiH[sub 4], and HCl with Si(100) have been investigated by temperature programmed desorption (TPD) with the goal of better understanding the initial stages of TiSi[sub 2] chemical vapor deposition for circuit metallization and wafer etching with HCl/H[sub 2]. Coadsorption experiments with TiCl[sub 4] and SiH[sub 4] show that under most conditions H[sub 2] and SiCl[sub 2] are the main desorption products, with Ti being left behind on the surface. HCl is a minor product. However, at sufficiently low exposures of either TiCl[sub 4] or SiH[sub 4], the desorption of SiCl[sub 2] or H[sub 2], respectively, is inhibited in favor of HCl. A kinetic model involving formation of an HCl complex at defects has been formulated which explains the results quantitatively. HCl adsorption gives rise to the principal desorption products SiCl[sub 2] and H[sub 2], with HCl as a minor product. The kinetic behavior can also be explained quantitatively with the proposed model. Implications for TiSi[sub 2] growth are discussed with reference to possible growth temperatures and source gas pressures. The mechanism for etching by HCl is further elucidated.

  18. Si quantum dots in silicon nitride: Quantum confinement and defects

    SciTech Connect

    Goncharova, L. V. Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.; Nguyen, P. H.

    2015-12-14

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiN{sub x}:H) matrix was examined over a broad range of stoichiometries from Si{sub 3}N{sub 2.08} to Si{sub 3}N{sub 4.14}, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiN{sub x} films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH{sub 4} and NH{sub 3} gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si{sub 3}N{sub x} compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si{sub 3}N{sub 3.15}) in which the maximum of light emission is observed.

  19. Si quantum dots in silicon nitride: Quantum confinement and defects

    NASA Astrophysics Data System (ADS)

    Goncharova, L. V.; Nguyen, P. H.; Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.

    2015-12-01

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiNx:H) matrix was examined over a broad range of stoichiometries from Si3N2.08 to Si3N4.14, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiNx films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH4 and NH3 gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si3Nx compositions. There is a red-shift of the measured peaks from ˜2.3 eV to ˜1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (˜Si3N3.15) in which the maximum of light emission is observed.

  20. Fast SiPM Readout of the PANDA TOF Detector

    NASA Astrophysics Data System (ADS)

    Böhm, M.; Lehmann, A.; Motz, S.; Uhlig, F.

    2016-05-01

    For the identification of low momentum charged particles and for event timing purposes a barrel Time-of-Flight (TOF) detector surrounding the interaction point is planned for the PANDA experiment at FAIR . Since the boundary conditions in terms of available radial space and radiation length are quite strict the favored layout is a hodoscope composed of several thousand small scintillating tiles (SciTils) read out by silicon photomultipliers (SiPMs). A time resolution of well below 100 ps is aimed for. With the originally proposed 30 × 30 × 5 mm3 SciTils read out by two single 3 × 3 mm2 SiPMs at the rims of the scintillator the targeted time resolution can be just reached, but with a considerable position dependence across the scintillator surface. In this paper we discuss other design options to further improve the time resolution and its homogeneity. It will be shown that wide scintillating rods (SciRods) with a size of, e.g., 50 × 30 × 5 mm3 or longer and read out at opposite sides by a chain of four serially connected SiPMs a time resolution down to 50 ps can be reached without problems. In addition, the position dependence of the time resolution is negligible. These SciRods were tested in the laboratory with electrons of a 90Sr source and under real experimental conditions in a particle beam at CERN. The measured time resolutions using fast BC418 or BC420 plastic scintillators wrapped in aluminum foil were consistently between 45 and 75 ps dependent on the SciRod design. This is a significant improvement compared to the original SciTil layout.