Sample records for additives renewable fuel

  1. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2011-0542; FRL-9642-3] RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under... of Sec. 80.1426 to identify additional renewable fuel production pathways and pathway components that...

  2. 78 FR 12005 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2012-0546; FRL-9784-4] RIN 2060-AR43 Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... Additives: 2013 Renewable Fuel Standards,'' which was published separately in the Federal Register on...

  3. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... and Security Act of 2007 (EISA) to reduce the use of fossil fuels and encourage increased production... renewable fuel to replace or reduce the quantity of fossil fuel present in transportation fuel. Under EPA's... quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel...

  4. 75 FR 37733 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2005-0161; FRL-9169-9] RIN 2060-AQ31 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY...: June 24, 2010. Lisa P. Jackson, Administrator. PART 80--REGULATION OF FUELS AND FUEL ADDITIVES 0...

  5. Renewable Fuel Standard (RFS2): Final Rule Additional Resources

    EPA Pesticide Factsheets

    The final rule of fuels and fuel additives: renewable fuel standard program is published on March 26, 2010 and is effective on July 1, 2010. You will find the links to this final rule and technical amendments supporting this rule.

  6. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Sampling methods for gasoline, diesel... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels. The sampling methods specified in this section shall be used to collect samples of gasoline, diesel fuel...

  7. Renewable Fuel Standard Program (RFS1): Final Rule Additional Resources

    EPA Pesticide Factsheets

    The final rule of fuels and fuel additives: renewable fuel standard program is published on May 1, 2007 and is effective on September 1, 2007. You will find the links to this final rule and technical amendments supporting this rule.

  8. 77 FR 462 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... included in Table 1 for renewable diesel. Energy grasses: Based on our comparison of switchgrass and the..., representing at most a 6% change in the energy grass lifecycle impacts in comparison to the petroleum fuel... conversion of previously unfarmed land in other countries into cropland for energy grass-based renewable fuel...

  9. 76 FR 18066 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program CFR Correction In Title 40 of the Code of Federal Regulations, Parts 72 to 80, revised as of July 1, 2010, on page 1160, in Sec. 80.1466, in paragraph (h)(1), the equation is...

  10. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.

  11. 78 FR 9281 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ...Under section 211(o) of the Clean Air Act, the Environmental Protection Agency is required to set the renewable fuel standards each November for the following year. In general the standards are designed to ensure that the applicable volumes of renewable fuel specified in the statute are used. However, the statute specifies that EPA is to project the volume of cellulosic biofuel production for the upcoming year and must base the cellulosic biofuel standard on that projected volume if it is less than the applicable volume set forth in the Act. EPA is today proposing a projected cellulosic biofuel volume for 2013 that is below the applicable volume specified in the Act. EPA is proposing that the applicable volumes of advanced biofuel and total renewable fuel would remain at the statutory levels for 2013. Finally, today's action also proposes annual percentage standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and renewable fuels that would apply to all gasoline and diesel produced or imported in year 2013.

  12. 78 FR 77119 - Proposed Information Collection Request; Comment Request; Regulation of Fuels and Fuel Additives...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Collection Request; Comment Request; Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards... collection request (ICR), ``Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards--Petition... whose disclosure is restricted by statute. FOR FURTHER INFORMATION CONTACT: Geanetta Heard, Fuels...

  13. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and renewable fuels that would... volume of biomass- based diesel that would apply in 2013. DATES: The public hearing will be held on July...

  14. 40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...

  15. 40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...

  16. 40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...

  17. 40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...

  18. 40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...

  19. 75 FR 26049 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... conducted by ``a licensed professional engineer or foreign equivalent who works in the chemical engineering... chemical engineering field. EPA views renewable fuel production to fall generally within the chemical... basic organic chemical manufacturers. Industry 424690 5169 Chemical and allied products merchant...

  20. Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  1. 75 FR 26025 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, will be publicly available only in hard copy. Publicly available docket materials are available either... materials, as provided in 40 CFR part 2. IV. Renewable Fuel Standard (RFS2) Program Amendments EPA is taking...

  2. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ...EPA published a direct final rule on October 9, 2012 to amend the definition of heating oil in 40 CFR 80.1401 in the Renewable Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also amended requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur locomotive and marine (LM) diesel fuel to allow for solvent yellow 124 marker to transition out of the distribution system. Because EPA received adverse comments on the heating oil definition and transmix amendments, we are withdrawing those portions of the direct final rule. Because EPA did not receive adverse comments with respect to the yellow marker amendments, those amendments will become effective as indicated in the direct final rule.

  3. 78 FR 49411 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...-AR55 Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass... Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume. DATES: EPA's denials of the petitions... requires that EPA determine the applicable volume of biomass-based diesel to be used in setting annual...

  4. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Science.gov Websites

    Production Renewable Natural Gas (Biomethane) Production to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Twitter Bookmark Alternative Fuels

  5. 40 CFR 80.1126 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... crude-based renewable fuels produced in a facility or unit that coprocesses renewable crudes and fossil... renewable crudes and fossil fuels may submit a petition to the Agency requesting the use of volumes of...

  6. 40 CFR 80.1126 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... crude-based renewable fuels produced in a facility or unit that coprocesses renewable crudes and fossil... renewable crudes and fossil fuels may submit a petition to the Agency requesting the use of volumes of...

  7. Annual Compliance Data for Obligated Parties and Renewable Fuel Exporters under the Renewable Fuel Standard (RFS) Program

    EPA Pesticide Factsheets

    Gasoline and diesel refiners and importers (Obligated Parties) demonstrate compliance with each of the four annual standards under the Renewable Fuel Standard by meeting the Renewable Volume Obligations (RVO).

  8. [U.S. renewable fuel standard implementation mechanism and market tracking].

    PubMed

    Kang, Liping; Earley, Robert; An, Feng; Zhang, Yu

    2013-03-01

    U.S. Renewable Fuel Standard (RFS) is a mandatory policy for promoting the utilization of biofuels in road transpiration sector in order to reduce the country's dependency on foreign oil and greenhouse gas emissions. U.S. Environmental Protection Agency (EPA) defines the proportion of renewable fuels according to RFS annual target, and requests obligated parties such like fossil fuel refiner, blenders and importer in the U.S. to complete Renewable Volume Obligation (RVO) every year. Obligated parties prove they have achieved their RVO through a renewable fuels certification system, which generates Renewable Identification Numbers (RINs) for every gallon of qualified renewable fuels produced or imported into U.S., RINs is a key for tracking renewable fuel consumption, which in turn is a key for implementing the RFS in the U.S., separated RINs can be freely traded in market and obligated parties could fulfill their RVO through buying RINs from other stakeholders. This briefing paper highlights RFS policy implementing mechanism and marketing tracking, mainly describes importance of RINs, and the method for generating and tracking RINs by both government and fuels industry participants.

  9. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  11. 40 CFR 80.1130 - Requirements for exporters of renewable fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gallons of renewable fuel. k = A discrete volume of renewable fuel. VOLk = The standardized volume of discrete volume k of exported renewable fuel, in gallons, calculated in accordance with § 80.1126(d)(7). EVk = The equivalence value associated with discrete volume k. = Sum involving all volumes of...

  12. 2013 Renewable Fuel Standards for Renewable Fuel Standard Program (RFS2) Final Rulemaking

    EPA Pesticide Factsheets

    EPA is establishing the volume requirements and associated percentage standards that apply under the RFS2 program in calendar year 2013 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  13. 2014 Renewable Fuel Standards under Renewable Fuel Standard Program: Notice of Proposed Rulemaking

    EPA Pesticide Factsheets

    EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS2 program in calendar year 2014 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  14. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process energy 6 F Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual... biomass and petroleum 4 G Biodiesel, heating oil Canola/Rapeseed oil Trans-Esterification using natural gas or biomass for process energy 4 H Biodiesel, renewable diesel, jet fuel and heating oil Soy bean...

  15. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Science.gov Websites

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark

  16. 40 CFR 80.1430 - Requirements for exporters of renewable fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or... associated with discrete volume k. Σ = Sum involving all volumes of biodiesel or renewable diesel exported.... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or...

  17. 40 CFR 80.1430 - Requirements for exporters of renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or... associated with discrete volume k. Σ = Sum involving all volumes of biodiesel or renewable diesel exported.... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or...

  18. 40 CFR 80.1430 - Requirements for exporters of renewable fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or... associated with discrete volume k. Σ = Sum involving all volumes of biodiesel or renewable diesel exported.... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or...

  19. 40 CFR 80.1430 - Requirements for exporters of renewable fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or... associated with discrete volume k. Σ = Sum involving all volumes of biodiesel or renewable diesel exported.... VOLk = The standardized volume of discrete volume k of exported renewable fuel that is biodiesel or...

  20. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov Websites

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  1. Renewable Fuels Module - NEMS Documentation

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  2. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema

    None

    2018-02-14

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  3. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  4. Final Rule to Identify Additional Fuel Pathways under the Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    This final rule describes EPA’s evaluation of biofuels produced from camelina oil and energy cane, as well as renewable gasoline and renewable gasoline blendstock made from certain qualifying feedstocks.

  5. Production of renewable diesel fuel from biologically based feedstocks.

    DOT National Transportation Integrated Search

    2014-09-01

    Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...

  6. Production of Renewable Diesel Fuel

    DOT National Transportation Integrated Search

    2012-06-01

    Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...

  7. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... annual covercrops Fermentation using natural gas, biomass, or biogas for process energy 6 F Biodiesel...-Esterification Hydrotreating Excluding processes that co-process renewable biomass and petroleum 4 G Biodiesel... Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual covercrops; Algal oil...

  8. 40 CFR 80.1430 - Requirements for exporters of renewable fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calendar year i, in gallons. k = A discrete volume of exported renewable fuel. VOLk = The standardized volume of discrete volume k of exported renewable fuel that the exporter knows or has reason to know is... associated with discrete volume k. Σ = Sum involving all volumes of cellulosic biofuel exported. DCB,i-1...

  9. Renewable Fuel Solutions for Petroleum Refineries

    DOT National Transportation Integrated Search

    1995-03-01

    This National Renewable Energy Laboratory (NREL) factsheet, one in a series, : BioFacts: Fueling a Stronger Economy, explains how biomass research is helping : to produce new ways to condition synthesis gas (syngas) produced from refinery : byproduct...

  10. Market cost of renewable jet fuel adoption in the United States.

    DOT National Transportation Integrated Search

    2013-03-01

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet : fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines : of meeting this goal using renewable fuel produ...

  11. 40 CFR 80.1405 - What are the Renewable Fuel Standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Renewable Fuel Standards? (a) (1) Renewable Fuel Standards for 2010. (i) The value of the cellulosic biofuel... shall be 1.10 percent. (iii) The value of the advanced biofuel standard for 2010 shall be 0.61 percent... Standards for 2011. (i) The value of the cellulosic biofuel standard for 2011 shall be 0.003 percent. (ii...

  12. 40 CFR 80.1405 - What are the Renewable Fuel Standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Renewable Fuel Standards? (a) (1) Renewable Fuel Standards for 2010. (i) The value of the cellulosic biofuel... shall be 1.10 percent. (iii) The value of the advanced biofuel standard for 2010 shall be 0.61 percent... Standards for 2011. (i) The value of the cellulosic biofuel standard for 2011 shall be 0.003 percent. (ii...

  13. 40 CFR 80.1405 - What are the Renewable Fuel Standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Renewable Fuel Standards? (a) (1) Renewable Fuel Standards for 2010. (i) The value of the cellulosic biofuel... shall be 1.10 percent. (iii) The value of the advanced biofuel standard for 2010 shall be 0.61 percent... Standards for 2011. (i) The value of the cellulosic biofuel standard for 2011 shall be 0.003 percent. (ii...

  14. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  15. 40 CFR 80.1405 - What are the Renewable Fuel Standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Renewable Fuel Standards? (a) Renewable Fuel Standards for 2011. (1) The value of the cellulosic biofuel... be 0.69 percent. (3) The value of the advanced biofuel standard for 2011 shall be 0.78 percent. (4... ER10MY10.003 ER10MY10.004 Where: StdCB,i = The cellulosic biofuel standard for year i, in percent. StdBBD,i...

  16. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    EIA Publications

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  17. Oilseeds for use in biodiesel and drop-in renewable jet fuel

    USDA-ARS?s Scientific Manuscript database

    Oilseeds, primarily soybean and canola, are currently used as feedstocks for biodiesel production. Oilseeds can also be used to produce drop-in renewable jet fuel and diesel products. While soybean and canola are the most common oilseed crops used for renewable fuel production in the U.S., many othe...

  18. Renewable Fuels Volume Standards Timeline Announced Documents

    EPA Pesticide Factsheets

    Consent Decrees where plaintiffs filed March 18, 2015 in alleging that EPA has violated a nondiscretionary duty under CAA to establish renewable fuel obligations applicable to the calendar year 2014 and 2015.

  19. 76 FR 15855 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: Changes to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... reconsideration. SUMMARY: On May 24, 2010, the Clean Air Task Force (CATF), the National Wildlife Federation, the... the applicable land use restrictions. Additionally, the CATF alleged that EPA did not properly account... impacts of renewable fuel production and use. On February 17, 2011, the Administrator denied the petitions...

  20. Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways under Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.

  1. Opportunities and challenges for developing an oilseed to renewable jet fuel industry

    USDA-ARS?s Scientific Manuscript database

    Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...

  2. 40 CFR 80.1416 - Petition process for evaluation of new renewable fuels pathways.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... renewable fuels pathways. 80.1416 Section 80.1416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Petition process for evaluation of new renewable fuels pathways. (a) Pursuant to this section, a party may... fuel pathway has not been evaluated by EPA to determine if it qualifies for a D code pursuant to § 80...

  3. 40 CFR 80.1416 - Petition process for evaluation of new renewable fuels pathways.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... renewable fuels pathways. 80.1416 Section 80.1416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Petition process for evaluation of new renewable fuels pathways. (a) Pursuant to this section, a party may... fuel pathway has not been evaluated by EPA to determine if it qualifies for a D code pursuant to § 80...

  4. 40 CFR 80.1416 - Petition process for evaluation of new renewable fuels pathways.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... renewable fuels pathways. 80.1416 Section 80.1416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Petition process for evaluation of new renewable fuels pathways. (a) Pursuant to this section, a party may... fuel pathway has not been evaluated by EPA to determine if it qualifies for a D code pursuant to § 80...

  5. 40 CFR 80.1416 - Petition process for evaluation of new renewable fuels pathways.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... renewable fuels pathways. 80.1416 Section 80.1416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Petition process for evaluation of new renewable fuels pathways. (a) Pursuant to this section, a party may... fuel pathway has not been evaluated by EPA to determine if it qualifies for a D code pursuant to § 80...

  6. 78 FR 36041 - Regulation of Fuels and Fuel Additives: RFS Pathways II and Technical Amendments to the RFS 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ...In this Notice of Proposed Rulemaking, EPA is proposing amendments to three separate sets of regulations relating to fuels. First, EPA is proposing to amend certain of the renewable fuels standard (RFS2) program regulations. We believe these proposals will facilitate the introduction of new renewable fuels as well as improve implementation of the program. This proposal includes various changes related to biogas, including changes related to the revised compressed natural gas (CNG)/liquefied natural gas (LNG) pathway and amendments to various associated registration, recordkeeping, and reporting provisions. This proposed regulation includes the addition of new pathways for renewable diesel, renewable naphtha, and renewable electricity (used in electric vehicles) produced from landfill biogas. Adding these new pathways will enhance the ability of the biofuels industry to supply advanced biofuels, including cellulosic biofuels, which greatly reduce the greenhouse gas emissions (GHG) compared to the petroleum-based fuels they replace. It also addresses ``nameplate capacity'' issues for certain production facilities that do not claim exemption from the 20% greenhouse gas (GHG) reduction threshold. In this notice, EPA addresses issues related to crop residue and corn kernel fiber and proposes an approach to determining the volume of cellulosic RINs produced from various cellulosic feedstocks. We also include a lifecycle analysis of advanced butanol and discuss the potential to allow for commingling of compliant products at the retail facility level as long as the environmental performance of the fuels would not be detrimental. Several other amendments to the RFS2 program are included. Second, EPA is also proposing various changes to the E15 misfueling mitigation regulations (E15 MMR). Among the E15 changes proposed are technical corrections and amendments to sections dealing with labeling, E15 surveys, product transfer documents, and prohibited acts. We also propose

  7. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. Themore » unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.« less

  8. EPA's Denial of Petitions for Reconsideration of the Final Rule Establishing the 2013 Biomass-Based Diesel Volume Documents under the Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    EPA is denying two petitions for reconsideration of the final rule entitled Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume. Find the documents supporting this notice here.

  9. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulosemore » (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.« less

  10. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    PubMed

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  11. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    PubMed

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  12. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less

  13. Algae Oil: A Sustainable Renewable Fuel of Future

    PubMed Central

    Paul Abishek, Monford; Prem Rajan, Anand

    2014-01-01

    A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come. PMID:24883211

  14. Regional analysis of renewable transportation fuels - production and consumption

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshuai

    The transportation sector contributes more than a quarter of total U.S. greenhouse gas emissions. Replacing fossil fuels with renewable fuels can be a key solution to mitigate GHG emissions from the transportation sector. Particularly, we have focused on land-based production of renewable fuels from landfills and brownfield in the southeastern region of the United States. These so call marginal lands require no direct land-use change to avoid environmental impact and, furthermore, have rendered opportunities for carbon trading and low-carbon intensity business. The resources potential and production capacity were derived using federal and state energy databases with the aid of GIS techniques. To maximize fuels production and land-use efficiency, a scheme of co-location renewable transportation fuels for production on landfills was conducted as a case study. Results of economic modeling analysis indicate that solar panel installed on landfill sites could generate a positive return within the project duration, but the biofuel production within the landfill facility is relatively uncertain, requiring proper sizing of the onsite processing facility, economic scale of production and available tax credits. From the consumers' perspective, a life-cycle cost analysis has been conducted to determine the economic and environmental implications of different transportation choices by consumers. Without tax credits, only the hybrid electric vehicles have lifetime total costs equivalent to a conventional vehicles differing by about 1 to 7%. With tax credits, electric and hybrid electric vehicles could be affordable and attain similar lifetime total costs as compared to conventional vehicles. The dissertation research has provided policy-makers and consumers a pathway of prioritizing investment on sustainable transportation systems with a balance of environmental benefits and economic feasibility.

  15. 75 FR 59622 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Canola Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... also finalizes our regulatory determination that canola oil biodiesel meets the biomass-based diesel... biodiesel fuel to generate biomass-based diesel Renewable Identification Numbers (RINs), providing that the fuel meets other definitional criteria for renewable fuel (e.g., produced from renewable biomass as...

  16. Redefining RECs: Additionality in the voluntary Renewable Energy Certificate market

    NASA Astrophysics Data System (ADS)

    Gillenwater, Michael Wayne

    In the United States, electricity consumers are told that they can "buy" electricity from renewable energy projects, versus fossil fuel-fired facilities, through participation in a voluntary green power program. The marketing messages communicate to consumers that their participation and premium payments for a green label will cause additional renewable energy generation and thereby allow them to claim they consume electricity that is absent pollution as well as reduce pollutant emissions. Renewable Energy Certificates (RECs) and wind energy are the basis for the majority of the voluntary green power market in the United States. This dissertation addresses the question: Do project developers respond to the voluntary REC market in the United States by altering their decisions to invest in wind turbines? This question is investigated by modeling and probabilistically quantifying the effect of the voluntary REC market on a representative wind power investor in the United States using data from formal expert elicitations of active participants in the industry. It is further explored by comparing the distribution of a sample of wind power projects supplying the voluntary green power market in the United States against an economic viability model that incorporates geographic factors. This dissertation contributes the first quantitative analysis of the effect of the voluntary REC market on project investment. It is found that 1) RECs should be not treated as equivalent to emission offset credits, 2) there is no clearly credible role for voluntary market RECs in emissions trading markets without dramatic restructuring of one or both markets and the environmental commodities they trade, and 3) the use of RECs in entity-level GHG emissions accounting (i.e., "carbon footprinting") leads to double counting of emissions and therefore is not justified. The impotence of the voluntary REC market was, at least in part, due to the small magnitude of the REC price signal and lack of

  17. 40 CFR 80.1115 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraph (c) of this section shall be calculated using the following formula: EV = (R / 0.931) * (EC / 77,550) Where: EV = Equivalence Value for the renewable fuel, rounded to the nearest tenth. R = Renewable...

  18. 40 CFR 80.1115 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraph (c) of this section shall be calculated using the following formula: EV = (R / 0.931) * (EC / 77,550) Where: EV = Equivalence Value for the renewable fuel, rounded to the nearest tenth. R = Renewable...

  19. 40 CFR 80.1115 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paragraph (c) of this section shall be calculated using the following formula: EV = (R / 0.931) * (EC / 77,550) Where: EV = Equivalence Value for the renewable fuel, rounded to the nearest tenth. R = Renewable...

  20. 40 CFR 80.1115 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... paragraph (c) of this section shall be calculated using the following formula: EV = (R / 0.931) * (EC / 77,550) Where: EV = Equivalence Value for the renewable fuel, rounded to the nearest tenth. R = Renewable...

  1. Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel

    DOE PAGES

    Storey, John M. E.; Bunce, Michael P.; Clarke, Edwina M.; ...

    2016-06-14

    Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. Here, we present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. The physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence ofmore » EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its K ow was 1.8, and its Henry's Law constant was 1.04 x 10 -5 atm-m 3/mole. The anti-knock index values for 5% and 20% v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 d to 30 d which indicates that EEB is not likely to be a persistent organic pollutant. Combined, these results suggest a high potential for the use of EEB as a renewable fuel source.« less

  2. Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John M. E.; Bunce, Michael P.; Clarke, Edwina M.

    Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. Here, we present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. The physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence ofmore » EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its K ow was 1.8, and its Henry's Law constant was 1.04 x 10 -5 atm-m 3/mole. The anti-knock index values for 5% and 20% v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 d to 30 d which indicates that EEB is not likely to be a persistent organic pollutant. Combined, these results suggest a high potential for the use of EEB as a renewable fuel source.« less

  3. Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel.

    PubMed

    Storey, John M E; Bunce, Michael P; Clarke, Edwina M; Edmonds, Jennifer W; Findlay, Robert H; Ritchie, Stephen M C; Eyers, Laurent; McMurry, Zackery A; Smoot, James C

    2016-09-01

    Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. We present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. Physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence of EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its Kow was 1.8, and its Henry's Law constant was 1.04 × 10(-5) atm-m(3)/mole. The anti-knock index values for 5 and 20 % v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 to 30 days which indicates that EEB is not likely to be a persistent organic pollutant. In combination, these results suggest a high potential for the use of EEB as a renewable fuel source.

  4. Model documentation renewable fuels module of the National Energy Modeling System

    NASA Astrophysics Data System (ADS)

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogs and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost, and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  5. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... fuel produced by transmix processors. These amendments will allow locomotive and marine diesel fuel produced by transmix processors to meet a maximum 500 parts per million (ppm) sulfur standard provided that... processors while having a neutral or net positive environmental impact. EPA is also amending the fuel marker...

  6. Alternative Fuels Data Center: Latest Additions

    Science.gov Websites

    . May 2018 Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2017 Utility Vehicles Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Report 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers Ethanol Strong

  7. 78 FR 49793 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... produced in plants using waste materials to displace 90% or more of fossil fuel use under the then... made to our approach in evaluating the information that forms the basis for our projection of...

  8. 40 CFR 80.1429 - Requirements for separating RINs from volumes of renewable fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or fossil-based diesel to produce a transportation fuel, heating oil, or jet fuel. A party may... (ii) The neat renewable fuel or blend is used without further blending, in the designated form, as...

  9. 40 CFR 80.1429 - Requirements for separating RINs from volumes of renewable fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or fossil-based diesel to produce a transportation fuel, heating oil, or jet fuel. A party may... (ii) The neat renewable fuel or blend is used without further blending, in the designated form, as...

  10. 40 CFR 80.1429 - Requirements for separating RINs from volumes of renewable fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or fossil-based diesel to produce a transportation fuel, heating oil, or jet fuel. A party may... (ii) The neat renewable fuel or blend is used without further blending, in the designated form, as...

  11. 40 CFR 80.1154 - What are the provisions for renewable fuel producers and importers who produce or import less...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel producers and importers who produce or import less than 10,000 gallons of renewable fuel per year... than 10,000 gallons of renewable fuel each year, and importers who import less than 10,000 gallons of... provisions for renewable fuel producers and importers who produce or import less than 10,000 gallons of...

  12. 40 CFR 80.1154 - What are the provisions for renewable fuel producers and importers who produce or import less...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel producers and importers who produce or import less than 10,000 gallons of renewable fuel per year... than 10,000 gallons of renewable fuel each year, and importers who import less than 10,000 gallons of... provisions for renewable fuel producers and importers who produce or import less than 10,000 gallons of...

  13. Impacts of renewable fuel regulation and production on agriculture, energy, and welfare

    NASA Astrophysics Data System (ADS)

    McPhail, Lihong Lu

    The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We consider two federal ethanol policies: the Renewable Fuel Standard (RFS) contained in the Energy Security and Independence Act of 2007 and tax credits to ethanol blenders contained in the Food, Conservation, and Energy Act of 2008. My first essay estimates the distribution of short-run impacts of changing federal ethanol policies on U.S. energy prices, agricultural commodity prices, and welfare through a stochastic partial equilibrium model of U.S. corn, ethanol, and gasoline markets. My second essay focuses on studying the price behavior of the renewable fuel credit (RFC) market, which is the mechanism developed by the Environmental Protection Agency (EPA) to meet the RFS. RFCs are a tradable, bankable, and borrowable accounting mechanism to ensure that all obligated parties use a mandated level of renewable fuel. I first develop a conceptual framework to understand how the market works and then apply stochastic dynamic programming to simulate prices for RFCs, examine the sensitivity of prices to relevant shocks, and estimate RFC option premiums. My third essay assesses the impact of policy led U.S. ethanol on the markets of global crude oil and U.S. gasoline using a structural Vector Auto Regression model of global crude oil, U.S. gasoline and ethanol markets.

  14. Decision Analysis Using Value-Focused Thinking to Select Renewable Alternative Fuels

    DTIC Science & Technology

    2005-03-01

    39 3-9. Ground or Water Contaminant SDVF ................................................................42 3-10. Particulate...13. Ground or Water Contaminant SDVF ................................................................91 A-14. Renewable/Alternative SDVF...conventional fuels and other alternative fuels. Under optimal conditions, hydrogen would be produced from the electrolysis of water (Bechtold, 1997:32

  15. Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production

    DTIC Science & Technology

    2010-02-10

    PEM Fuel Cell Anode + -Cathode e- e- e- e- Electric load...BOP system. • Enables new product launch (C- Series) Proton PEM cell stack for UK Vanguard subs 18UNCLASSIFIED: Dist A. Approved for public release...UNCLASSIFIED: Dist A. Approved for public release “Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production” Alternative Energy

  16. Catalytic Hydrotreatment for the Development of Renewable Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Funkenbusch, LiLu Tian

    Biologically-derived feedstocks are a highly desirable source of renewable transportation fuel. They can be grown renewably and can produce fuels similar in composition to conventional fossil fuels. They are also versatile and wide-ranging. Plant oils can produce renewable diesel and wood-based pyrolysis oils can be made into renewable gasoline. Catalytic hydrotreatment can be used to reduce the oxygen content of the oils and increase their viability as a "drop-in" transportation fuel, since they can then easily be blended with existing petroleum-based fuels. However, product distribution depends strongly on feedstock composition and processing parameters, especially temperature and type of catalyst. Current literature contains relatively little relevant information for predicting process-level data in a way that can be used for proper life cycle or techno-economic assessment. For pyrolysis oil, the associated reaction pathways have been explored via experimental studies on model compounds in a bench scale hydrotreatment reactor. The reaction kinetics of each compound were studied as a function of temperature and catalyst. This experimental data is used to determine rate constants for a hybrid, lumped-parameter kinetic model of paradigm compounds and pyrolysis oil, which can be used to scale-up this process to simulate larger, pilot-scale reactors. For plant oils, some appropriate data was found in the literature and adapted for a preliminary model, while some experimental data was also collected using the same reactor constructed for the pyrolysis oil studies. With a systematic collection of kinetic data, hydrotreatment models can be developed that can predict important life cycle assessment inputs, such as hydrogen consumption, energy consumption and greenhouse gas production, which are necessary for regulatory and assessment purposes. As a demonstration of how this model can be incorporated into assessment tools, a technoeconomic analysis was performed on the

  17. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  18. Guidance on Biogas used to Produce CNG or LNG under the Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    Provides EPA’s interpretation of biogas quality and RIN generation requirements that apply to renewable fuel production pathways involving the injection into a commercial pipeline of biogas for use in producing renewable CNG or renewable LNG.

  19. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    PubMed Central

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142

  20. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    NASA Astrophysics Data System (ADS)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  1. EPA's Final Action Denying Petitions for Reconsideration of the 2013 Renewable Fuel Standards

    EPA Pesticide Factsheets

    These September 2016 letters from EPA denies the petition from Monroe Energy LLC, American Petroleum Institute, American Fuel and Petrochemical Manufacturers, regarding certain issues of the 2013 Renewable Fuel Standards Annual Rule.

  2. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  3. 2012 Standards for the Renewable Fuel Standard Program: Final Rulemaking

    EPA Pesticide Factsheets

    EPA is establishing the volume requirements and associated percentage standards that will apply under the RFS2 program in calendar year 2012 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  4. 2011 Standards for the Renewable Fuel Standard Program: Final Rulemaking

    EPA Pesticide Factsheets

    EPA is finalizing the volume requirements and associated percentage standards that will apply under the RFS2 program in calendar year 2011 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  5. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... consider your comment. Electronic files should avoid the use of special characters, any form of encryption... technical information and/or data that you used. If you estimate potential costs or burdens, explain how you... the quantity of fossil fuel present in transportation fuel. Under EPA's RFS program this is...

  6. NAPL migration and ecotoxicity of conventional and renewable fuels in accidental spill scenarios.

    PubMed

    Malk, Vuokko; Barreto Tejera, Eduardo; Simpanen, Suvi; Dahl, Mari; Mäkelä, Riikka; Häkkinen, Jani; Kiiski, Anna; Penttinen, Olli-Pekka

    2014-01-01

    Fuels derived from non-petroleum renewable resources have raised interest due to their potential in replacing petroleum-based fuels, but information on their fate and effects in the terrestrial and aquatic environments in accidental spill scenario is limited. In this study, migration of four fuels (conventional diesel, conventional gasoline, renewable diesel NExBTL, and ethanol-blended gasoline RE85 containing maximum 85% ethanol) as non-aqueous phase liquids (NAPL) in soil was demonstrated in a laboratory-scale experiment. Ecotoxicity data was produced for the same fuels. There was no significant difference in migration of conventional and renewable diesel, but gasoline migrated 1.5 times deeper and 7-9 times faster in sand than diesel. RE85 spread horizontally wider but not as deep (p < 0.05) as conventional gasoline. Conventional gasoline was the most toxic (lethal concentration [LC50] 20 mg/kg total hydrocarbon content [THC]) among the studied fuels in soil toxicity test with earthworm Eisenia fetida followed by ethanol-blended gasoline (LC50 1,643 mg/kg THC) and conventional diesel (LC50 2,432 mg/kg THC), although gasoline evaporated fast from soil. For comparison, the toxicity of the water-accommodated fractions (WAF) of the fuels was tested with water flea Daphnia magna and Vibrio fischeri, also demonstrating groundwater toxicity. The WAF of conventional gasoline and RE85 showed almost similar toxicity to both the aquatic test species. EC50 values of 1:10 (by volume) WAF were 9.9 %WAF (gasoline) and 9.3 %WAF (RE85) to D. magna and 9.3 %WAF (gasoline) and 12.3 %WAF (RE85) to V. fischeri. Low solubility decreased toxicity potential of conventional diesel in aquatic environment, but direct physical effects of oil phase pose a threat to organisms in nature. Renewable diesel NExBTL did not show clear toxicity to any test species.

  7. 40 CFR 80.1105 - What is the Renewable Fuel Standard?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pursuant to § 80.1141(e)). Celli = Beginning in 2013, the amount of renewable fuel that is required to come from cellulosic sources, in year i, in gallons. (e) Beginning with the 2013 compliance period, EPA will...

  8. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Neal P.

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  9. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    NASA Astrophysics Data System (ADS)

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  10. Renewable Fuel Standards | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    renewable fuels to be incorporated at these different levels each year. Depending on how the policy is cross-sector policy. States' experiences with the RFS will be very different depending on geography , resources, and the set goals. For example, different levels of incentives for production and distribution

  11. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  12. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  13. Ethyl 3-ethoxybutyrate, a new component of the transportation renewable fuel portfolio

    DOE PAGES

    Bunce, Michael P.; Storey, John M. E.; Edmonds, Jennifer W.; ...

    2015-08-15

    The vast majority of energy that powers our global economy is from combustion of fossil fuels with the unintended consequence of increased deposition of carbon dioxide in the atmosphere and oceans. The scientific and technical challenges for the energy sector are to develop renewable energy sources that are sufficient to meet human energy consumption, are economically viable, and are ecologically sustainable. We investigated ethyl 3-ethoxybutyrate (EEB) as a fuel oxygenate in ultra low sulfur diesel (ULSD) with a bench-scale research engine and determined its economic potential as a renewable fuel with technoeconomic modeling using wastewater treatment plant biosolids as themore » feedstock for poly-3-hydroxyalkanoates (PHB), a bacterial storage polymer from which EEB can be synthesized. EEB blended well with ULSD, and cetane values of 10% and 20% v/v EEB-ULSD blends exceeded 40. A diesel internal combustion engine fueled with 5%, 10%, and 20% EEB-ULSD blends met or exceeded all tested transportation diesel fuel emissions criteria. Inedible organic feedstocks may be used to produce PHB; and thus, EEB might contribute to carbon reductions without compromising performance or air pollutant emissions. However, further research is needed to determine its role in the overall fuel portfolio. (C) 2015 Elsevier Ltd. All rights reserved.« less

  14. Ethyl 3-ethoxybutyrate, a new component of the transportation renewable fuel portfolio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, Michael P.; Storey, John M. E.; Edmonds, Jennifer W.

    The vast majority of energy that powers our global economy is from combustion of fossil fuels with the unintended consequence of increased deposition of carbon dioxide in the atmosphere and oceans. The scientific and technical challenges for the energy sector are to develop renewable energy sources that are sufficient to meet human energy consumption, are economically viable, and are ecologically sustainable. We investigated ethyl 3-ethoxybutyrate (EEB) as a fuel oxygenate in ultra low sulfur diesel (ULSD) with a bench-scale research engine and determined its economic potential as a renewable fuel with technoeconomic modeling using wastewater treatment plant biosolids as themore » feedstock for poly-3-hydroxyalkanoates (PHB), a bacterial storage polymer from which EEB can be synthesized. EEB blended well with ULSD, and cetane values of 10% and 20% v/v EEB-ULSD blends exceeded 40. A diesel internal combustion engine fueled with 5%, 10%, and 20% EEB-ULSD blends met or exceeded all tested transportation diesel fuel emissions criteria. Inedible organic feedstocks may be used to produce PHB; and thus, EEB might contribute to carbon reductions without compromising performance or air pollutant emissions. However, further research is needed to determine its role in the overall fuel portfolio. (C) 2015 Elsevier Ltd. All rights reserved.« less

  15. Performance of Aqueous Film Forming Foam (AFFF) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires

    DTIC Science & Technology

    2011-12-01

    aqueous film forming foam ( AFFF ) firefighting agents and equipment are capable of...AFRL-RX-TY-TR-2012-0012 PERFORMANCE OF AQUEOUS FILM FORMING FOAM ( AFFF ) ON LARGE-SCALE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES...Performance of Aqueous Film Forming Foam ( AFFF ) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires FA4819-09-C-0030 0602102F 4915 D0

  16. 40 CFR 80.1115 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certain renewable fuels as follows: (1) Cellulosic biomass ethanol and waste derived ethanol produced on... other than cellulosic biomass ethanol or waste-derived ethanol which is denatured shall have an...

  17. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    PubMed

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  18. Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    PubMed

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng

    2017-01-01

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons

  19. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE PAGES

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...

    2017-11-09

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  20. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  1. Calculation of lifecycle greenhouse gas emissions for the renewable fuel standard

    DOT National Transportation Integrated Search

    2009-06-25

    The Energy Independence and Security Act of 2007 (EISA, P.L. 110-140), significantly expanded the renewable fuel standard (RFS) established in the Energy Policy Act of 2005 (EPAct 2005, P.L.109-58). The RFS requires the use of 9.0 billion gallons of ...

  2. 76 FR 14007 - Notice of Receipt of Petition From the Government of Canada for Application of the Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Renewable Fuel Standard renewable biomass provisions. This petition was submitted by the Government of... renewable biomass. EPA has previously determined that the aggregate compliance approach is applicable in the... the production of crops and crop residue meeting the definition of renewable biomass. In this notice...

  3. Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mante, Ofei D.; Butcher, Thomas A.; Wei, George

    The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced bymore » the fuels were examined. The flue gas was analyzed for O 2, CO, NO x, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 °C for 1 month. Fuel stability was examined at 80 °C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (~10%) suggests that the fuel could be compatible to legacy elastomers.« less

  4. Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil

    DOE PAGES

    Mante, Ofei D.; Butcher, Thomas A.; Wei, George; ...

    2015-09-18

    The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced bymore » the fuels were examined. The flue gas was analyzed for O 2, CO, NO x, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 °C for 1 month. Fuel stability was examined at 80 °C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (~10%) suggests that the fuel could be compatible to legacy elastomers.« less

  5. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  6. Mandating green: on the design of renewable fuel policies and cost containment mechanisms : a national center for sustainable transportation research report.

    DOT National Transportation Integrated Search

    2015-10-01

    Policymakers typically favor renewable fuel mandates over taxes and cap and trade programs to : reduce greenhouse gas emissions from the transportation sector. Because of delays in the development : of commercially viable renewable fuels and importan...

  7. 78 FR 71731 - 2014 Standards for the Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... of E85 Consumption c. Proposed Projection of E85 Consumption in 2014 d. Estimating Total Ethanol Consumption in 2014 2. Estimating Availability of Non-Ethanol Renewable Fuel Volumes a. Non-Ethanol Cellulosic... Biofuel c. Option 3: Availability, Growth, and Limits on Ethanol Consumption D. Summary of Proposed Volume...

  8. Waste-to-Fuel: A Case Study of Converting Food Waste to Renewable Natural Gas as a Transportation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintz, Marianne; Tomich, Matthew

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of organic waste—to fuel heavy-duty refuse trucks and other natural gas vehicles in Sacramento, California.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  10. EVermont Renewable Hydrogen Production and Transportation Fueling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressedmore » by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a

  11. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  12. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle's fuel system) and that is not intentionally removed prior to sale or use. (2) Neat biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The minimum...

  13. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicle's fuel system) and that is not intentionally removed prior to sale or use. (2) Neat biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The minimum...

  14. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The...

  15. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The...

  16. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The...

  17. Renewable Gasoline, Solvents, and Fuel Additives from 2,3-Butanediol.

    PubMed

    Harvey, Benjamin G; Merriman, Walter W; Quintana, Roxanne L

    2016-07-21

    2,3-Butanediol (2,3-BD) is a renewable alcohol that can be prepared in high yield from biomass sugars. 2,3-BD was selectively dehydrated in a solvent-free process to a complex mixture of 2-ethyl-2,4,5-trimethyl-1,3-dioxolanes and 4,5-dimethyl-2isopropyl dioxolanes with the heterogeneous acid catalyst Amberlyst-15. The purified dioxolane mixture exhibited an anti-knock index of 90.5, comparable to high octane gasoline, and a volumetric net heat of combustion 34 % higher than ethanol. The solubility of the dioxolane mixture in water was only 0.8 g per 100 mL, nearly an order of magnitude lower than the common gasoline oxygenate methyl tert-butyl ether. The dioxolane mixture has potential applications as a sustainable gasoline blending component, diesel oxygenate, and industrial solvent. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    USDA-ARS?s Scientific Manuscript database

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  19. The analysis of quantitative methods for renewable fuel processes and lubricant of materials derived from plastic waste

    NASA Astrophysics Data System (ADS)

    Rajagukguk, J. R.

    2018-01-01

    Plastic has become an important component in modern life today. Its role has replaced wood and metal, given its advantages such as light and strong, corrosion resistant, transparent and easy to color and good insulation properties. The research method is used with quantitative and engineering research methods. Research objective is to convert plastic waste into something more economical and to preserve the environment surrounding. Renewable fuel and lubricant variables are simultaneously influenced significantly to the sustainable environment. This is based on Fh> Ft of 62.101> 4.737) and its significance is 0.000 < 0.05. Then Ho concluded rejected Ha accepted which means that the variable of renewable fuels and lubricants or very large effect on the environment sustainable, the value of correlation coefficient 0.941 or 94.1% which means there is a very strong relationship between renewable fuel variables and lubricants to the sustainable environment. And utilizing plastic waste after being processed by pyrolysis method produces liquid hydrocarbons having elements of compounds such as crude oil and renewable fuels obtained from calculations are CO2 + H2O + C1-C4 + Residual substances. Then the plastic waste can be processed by isomerization process + catalyst to lubricating oil and the result of chemical calculation obtained is CO2, H2O, C18H21 and the rest.

  20. Flex fuel polygeneration: Integrating renewable natural gas

    NASA Astrophysics Data System (ADS)

    Kieffer, Matthew

    Flex Fuel Polygeneration (FFPG) is the use of multiple primary energy sources for the production of multiple energy carriers to achieve increased market opportunities. FFPG allows for adjustments in energy supply to meet market fluctuations and increase resiliency to contingencies such as weather disruptions, technological changes, and variations in supply of energy resources. In this study a FFPG plant is examined that uses a combination of the primary energy sources natural gas and renewable natural gas (RNG) derived from MSW and livestock manure and converts them into energy carriers of electricity and fuels through anaerobic digestion (AD), Fischer-Tropsch synthesis (FTS), and gas turbine cycles. Previous techno-economic analyses of conventional energy production plants are combined to obtain equipment and operating costs, and then the 20-year NPVs of the FFPG plant designs are evaluated by static and stochastic simulations. The effects of changing operating parameters are investigated, as well as the number of anaerobic digestion plants on the 20-year NPV of the FTS and FFPG systems.

  1. Renewable Energy

    NASA Astrophysics Data System (ADS)

    Boyle, Godfrey

    2004-05-01

    Stimulated by recent technological developments and increasing concern over the sustainability and environmental impact of conventional fuel usage, the prospect of producing clean, sustainable power in substantial quantities from renewable energy sources arouses interest around the world. This book provides a comprehensive overview of the principal types of renewable energy--including solar, thermal, photovoltaics, bioenergy, hydro, tidal, wind, wave, and geothermal. In addition, it explains the underlying physical and technological principles of renewable energy and examines the environmental impact and prospects of different energy sources. With more than 350 detailed illustrations, more than 50 tables of data, and a wide range of case studies, Renewable Energy, 2/e is an ideal choice for undergraduate courses in energy, sustainable development, and environmental science. New to the Second Edition ·Full-color design ·Updated to reflect developments in technology, policy, attitides ·Complemented by Energy Systems and Sustainability edited by Godfrey Boyle, Bob Everett and Janet Ramage, all of the Open University, U.K.

  2. Waste cooking oil as source for renewable fuel in Romania

    NASA Astrophysics Data System (ADS)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  3. Notice of Approval of the Renewable Fuel Standard Program Municipal Solid Waste Separation Plan

    EPA Pesticide Factsheets

    EPA's response documents and federal register notices on Fiberight's plan to separate recyclables from municipal solid waste intended for use as feedstock for renewable fuel production at its biorefinery in Blairstown, Iowa.

  4. Program Benefits Guidance: Analysis of Benefits Associated with Projects and Technologies Supported by the Alternative and Renewable Fuel and Vehicle Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Warner, Ethan; Sun, Yongling

    The Alternative and Renewable Fuel and Vehicle Technologies Program (ARFVTP) supports a wide range of alternative, low-carbon fuel and vehicle projects in California. This report focuses on two types of ARFVTP benefits. Expected benefits reflect successful deployment of vehicles and fuels supported through program projects. Market transformation benefits represent benefits resulting from project influences on future market conditions to accelerated technology adoption rates. Data collected directly from ARFVTP projects funded from 2009 to first quarter 2014 are used as inputs to the benefits analysis, where possible. Expected benefit estimation methods rely primarily upon project-level data and result in year single-pointmore » estimates within the 2011 to 2025 analysis period. Results suggest that the 178 projects evaluated for expected benefits, representing an investment of $351.3 million in ARFVTP funds, could result in a reduction in petroleum fuel use by 236 million gallons per year and greenhouse gases (GHGs) by 1.7 million metric tonnes carbon dioxide equivalent (MMTCO2e) per year by 2025. Market transformation benefits are described as accruing in addition to expected benefits. They are inherently more uncertain and theoretical than expected benefits, and are therefore reported as high and low ranges, with results suggesting reductions of 1.1 MMTCO2e to 2.5 MMTCO2e per year in GHG reductions and 102 million to 330 million gallons per year in petroleum fuel reductions by 2025. Taking both benefit types into account, results suggest that ARFVTP projects have the potential to make substantial progress toward meeting California's long-term GHG and petroleum fuel use reduction goals. As additional project data become available and market success with alternative and renewable fuels and vehicles grows, the analytic framework relied upon to develop these estimates will become more rigorous and will have a greater capacity to inform future ARFVTP activities.« less

  5. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion airmore » had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.« less

  6. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  7. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    PubMed

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  8. Model documentation Renewable Fuels Module of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  9. 77 FR 59994 - Nuclear Fuel Services, Inc., Erwin, TN; Issuance of License Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-143; NRC-2009-0435] Nuclear Fuel Services, Inc., Erwin, TN; Issuance of License Renewal AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001...

  10. An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives

    NASA Astrophysics Data System (ADS)

    Ghamari, Mohsen

    In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate. In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated. Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also

  11. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  12. Proposed Renewable Fuel Standards for 2017, and the Biomass-Based Diesel Volume for 2018

    EPA Pesticide Factsheets

    EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS program in calendar years 2016, 2017 and 2018 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  13. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single

  14. Techno-Economic Analysis of Camelina-Derived Hydroprocessed Renewable Jet Fuel and its Implications on the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    Although the aviation industry contributes toward global economic growth via transportation of passengers and cargo, the increasing demand for air transportation causes concern due to the corresponding increase in aircraft engine exhaust emissions. Use of alternative fuels is one pathway that has been explored for reducing emissions in the aviation industry. Hydroprocessed renewable jet (HRJ) (also known as Hydroprocessed Esters and Fatty Acids - HEFA) fuels have been approved for blending with traditional jet fuel up to 50% by volume to be used as drop-in fuels. However, limited information exists on the economic viability of these fuels. While techno-economic studies have been conducted on the HRJ production process using soybean oil, different vegetable oils possess different hydrocarbon structures that affect the yield of HRJ fuels. This study involves the techno-economic analysis of producing Camelina-derived HRJ fuel using the option of hydro-deoxygenation (HDO). The hydrodeoxygenation option requires extra hydrogen and hence affects the overall cost of HRJ fuel production. Similar studies have been conducted on the production of Camelina-derived HRJ fuels using the same path of hydrodeoxygenation with minor contributions from both decarbonylation and decarboxylation reactions. This study, however, employs the UOP Honeywell procedure using the hydrodeoxygenation chemical reaction to estimate the breakeven price of Camelina-derived HRJ fuel. In addition, the study treats the cultivation of Camelina oilseeds, extraction of oilseeds, and the conversion of HRJ fuel as separate entities. The production of Camelina oilseed, Camelina oil, and finally Camelina-derived HRJ fuel is modeled in order to estimate the breakeven price of the fuel. In addition, the information obtained from the techno-economic analysis is used to assess the breakeven carbon price. All costs are analyzed based on 2016 US dollars. The breakeven price of Camelina oilseeds is found to be 228

  15. Cow Power: A Case Study of Renewable Compressed Natural Gas as a Transportation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintz, Marianne; Tomich, Matthew

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of dairy manure—to fuel 42 heavy-duty milk tanker trucks operating in Indiana, Michigan, Tennessee, and Kentucky.

  16. 7 CFR 3201.103 - Gasoline fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired engines...

  17. 78 FR 69628 - Public Hearing for the 2014 Standards for the Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ..., biomass-based diesel, advanced biofuel, and renewable fuels that would apply to all gasoline and diesel... biomass-based diesel applicable volume for 2015. DATES: The public hearing will be held on December 5...

  18. 77 FR 70752 - Notice of Decision Regarding Requests for a Waiver of the Renewable Fuel Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ...The Governors of several States requested that EPA waive the national volume requirements for the renewable fuel standard program (RFS or RFS program), pursuant to section 211(o)(7) of the Clean Air Act (the Act), based on the effects of the drought on feedstocks used to produce renewable fuel in 2012-2013. Several other parties submitted similar requests. Based on a thorough review of the record in this case, EPA finds that the evidence and information does not support a determination that implementation of the RFS program during the 2012- 2013 time period would severely harm the economy of a State, a region, or the United States. EPA is therefore denying the requests for a waiver.

  19. Integration and dynamics of a renewable regenerative hydrogen fuel cell system

    NASA Astrophysics Data System (ADS)

    Bergen, Alvin Peter

    2008-10-01

    This thesis explores the integration and dynamics of residential scale renewable-regenerative energy systems which employ hydrogen for energy buffering. The development of the Integrated Renewable Energy Experiment (IRENE) test-bed is presented. IRENE is a laboratory-scale distributed energy system with a modular structure which can be readily re-configured to test newly developed components for generic regenerative systems. Key aspects include renewable energy conversion, electrolysis, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability to accept dynamic inputs from and provide dynamic loads to real devices as well as from simulated energy sources/sinks. The integration issues encountered while developing IRENE and innovative solutions devised to overcome these barriers are discussed. Renewable energy systems that employ a regenerative approach to enable intermittent energy sources to service time varying loads rely on the efficient transfer of energy through the storage media. Experiments were conducted to evaluate the performance of the hydrogen energy buffer under a range of dynamic operating conditions. Results indicate that the operating characteristics of the electrolyser under transient conditions limit the production of hydrogen from excess renewable input power. These characteristics must be considered when designing or modeling a renewable-regenerative system. Strategies to mitigate performance degradation due to interruptions in the renewable power supply are discussed. Experiments were conducted to determine the response of the IRENE system to operating conditions that are representative of a residential scale, solar based, renewable-regenerative system. A control algorithm, employing bus voltage constraints and device current limitations, was developed to guide system operation. Results for a two week operating period that indicate that the system response is very dynamic but repeatable are

  20. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  1. Renewable Electricity: Insights for the Coming Decade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Camila; Pless, Jacquelyn; Logan, Jeffrey

    2015-02-01

    A sophisticated set of renewable electricity (RE) generation technologies is now commercially available. Globally, RE captured approximately half of all capacity additions since 2011. The cost of RE is already competitive with fossil fuels in some areas around the world, and prices are anticipated to continue to decline over the next decade. RE options, led by wind and solar, are part of a suite of technologies and business solutions that are transforming electricity sectors around the world. Renewable deployment is expected to continue due to: increasingly competitive economics; favorable environmental characteristics such as low water use, and minimal local airmore » pollution and greenhouse gas (GHG) emissions; complementary risk profiles when paired with natural gas generators; strong support from stakeholders. Despite this positive outlook for renewables, the collapse in global oil prices since mid-2014 and continued growth in natural gas supply in the United States--due to the development of low-cost shale gas--raise questions about the potential impacts of fossil fuel prices on RE. Today, oil plays a very minor role in the electricity sectors of most countries, so direct impacts on RE are likely to be minimal (except where natural gas prices are indexed on oil). Natural gas and RE generating options appear to be more serious competitors than oil and renewables. Low gas prices raise the hurdle for RE to be cost competitive. Additionally, although RE emits far less GHG than natural gas, both natural gas and RE offer the benefits of reducing carbon relative to coal and oil (see Section 4.1 for more detail on the GHG intensity of electricity technologies). However, many investors and decision makers are becoming aware of the complementary benefits of pairing natural gas and renewables to minimize risk of unstable fuel prices and maintain the reliability of electricity to the grid.« less

  2. Beyond Solar Fuels: Renewable Energy-Driven Chemistry.

    PubMed

    Lanzafame, Paola; Abate, Salvatare; Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Centi, Gabriele; Perathoner, Siglinda

    2017-11-23

    The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Diesel fuel detergent additive performance and assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, M.W.; Papachristos, M.J.; Williams, D.

    Diesel fuel detergent additives are increasingly linked with high quality automotive diesel fuels. Both in Europe and in the USA, field problems associated with fuel injector coking or fouling have been experienced. In Europe indirect injection (IDI) light duty engines used in passenger cars were affected, while in the USA, a direct injection (DI) engine in heavy duty truck applications experienced field problems. In both cases, a fuel additive detergent performance test has evolved using an engine linked with the original field problem, although engine design modifications employed by the manufacturers have ensured improved operation in service. Increasing awareness ofmore » the potential for injector nozzle coking to cause deterioration in engine performance is coupled with a need to meet ever more stringent exhaust emissions legislation. These two requirements indicate that the use of detergency additives will continue to be associated with high quality diesel fuels. The paper examines detergency performance evaluated in a range of IDI and DI engines and correlates performance in the two most widely recognised test engines, namely the Peugeot 1.9 litre IDI, and Cummins L10 DI engines. 17 refs., 18 figs., 5 tabs.« less

  4. Emission control devices, fuel additive, and fuel composition changes.

    PubMed Central

    Piver, W T

    1977-01-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  5. 76 FR 38843 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Feedstocks To Produce 1.28 Billion Gallons Of Biodiesel 3. Production Capacity 4. Consumption Capacity 5... circumstances that came to light after the RFS2 program went into effect on July 1, 2010. Additionally, this... the factors specified in the statute, including a consideration of biodiesel production, consumption...

  6. Programs in Renewable Energy

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The U.S. Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10 percent of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet.

  7. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    NASA Astrophysics Data System (ADS)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this

  8. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    PubMed

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  9. Low-Temperature Additive Performance in Jet A Fuels

    DTIC Science & Technology

    2013-04-01

    coking issues for the U-2 aircraft while still retaining the required low temperature flow improvement. For the Global Hawk a lower optimum ...employ the additive at the lower concentration (2,000 mg/L), so the failure at 4,000 mg/L should not be a problem . Fuel POSF-3602 shows a JFTOT...combustor, may experience no problems due to the increased fuel viscosity caused by the additive. However, another fuel system that puts less heat into the

  10. Renewable Diesel Testing in UPS Fleet Vehicles | Transportation Research |

    Science.gov Websites

    impact of renewable diesel fuel use in medium- and heavy-duty vehicles operated by UPS. Photo by Dennis Partnership, NREL is comparing the fuel economy and emissions impact of renewable diesel versus petroleum Fuels and Lubricants Laboratory to determine the fuel economy and emissions impact of renewable versus

  11. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  12. Evaluation of a biocidal turbine-fuel additive.

    DOT National Transportation Integrated Search

    1967-08-01

    Growth of microorganisms in water-contaminated, kerosene-type fuels is a widespread problem in aviation. One approach to the solution of this problem is the introduction into fuel of a chemical additive which could stop or retard growth of microbes. ...

  13. New Earth-abundant Materials for Large-scale Solar Fuels Generation.

    PubMed

    Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David

    2018-05-30

    The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

  14. 2014 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  15. 2015 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Tian, Tian

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  16. 2015 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Tian, Tian

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  17. 2016 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp C; Elchinger, Michael A; Tian, Tian

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  18. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  19. NREL Research on Converting Biomass to Liquid Fuels

    ScienceCinema

    None

    2017-12-09

    Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines.

  20. 78 FR 11869 - Proposed Information Collection Request; Comment Request; Registration of Fuels and Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... biodiesel, water/diesel emulsions, several atypical additives, and renewable gasoline and diesel fuels. Tier... health effects. Tier 2 data have been submitted for baseline diesel, biodiesel, and water/diesel...

  1. The production of hydrogen fuel from renewable sources and its role in grid operations

    NASA Astrophysics Data System (ADS)

    Barton, John; Gammon, Rupert

    Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen

  2. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  3. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less

  4. Final Renewable Fuel Standards for 2014, 2015 and 2016, and the Biomass-Based Diesel Volume for 2017

    EPA Pesticide Factsheets

    EPA is proposing the volume requirements and associated percentage standards that would apply under the RFS program in calendar years 2014, 2015, and 2016 for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel.

  5. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    NASA Astrophysics Data System (ADS)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  6. 2013 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  7. 2011 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  8. 78 FR 71607 - Notice of Receipt of Petitions for a Waiver of the Renewable Fuel Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... refining companies submitted individual petitions to the Administrator that also request a waiver of the... waiver of the 2014 applicable volumes under the RFS. Subsequently, several refining companies submitted... renewable fuel (and RINs) will lead to an inadequate supply of gasoline and diesel, because refiners and...

  9. 2012 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  10. Energy and chemicals from the selective electrooxidation of renewable diols by organometallic fuel cells.

    PubMed

    Bellini, Marco; Bevilacqua, Manuela; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Miller, Hamish A; Oberhauser, Werner; Vizza, Francesco; Annen, Samuel P; Grützmacher, H

    2014-09-01

    Organometallic fuel cells catalyze the selective electrooxidation of renewable diols, simultaneously providing high power densities and chemicals of industrial importance. It is shown that the unique organometallic complex [Rh(OTf)(trop2NH)(PPh3)] employed as molecular active site in an anode of an OMFC selectively oxidizes a number of renewable diols, such as ethylene glycol , 1,2-propanediol (1,2-P), 1,3-propanediol (1,3-P), and 1,4-butanediol (1,4-B) to their corresponding mono-carboxylates. The electrochemical performance of this molecular catalyst is discussed, with the aim to achieve cogeneration of electricity and valuable chemicals in a highly selective electrooxidation from diol precursors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    NASA Technical Reports Server (NTRS)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  12. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  13. Future Costs, Benefits, and Impacts of Renewables Used to Meet U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This brochure provides a brief overview of the report titled 'A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards.' The report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plantmore » operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less

  14. Results of industrial tests of carbonate additive to fuel oil

    NASA Astrophysics Data System (ADS)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  15. Alternative Fuels Data Center

    Science.gov Websites

    format to determine RINs for each physical gallon of renewable fuel produced in or imported into the -character number assigned to each physical gallon of renewable fuel produced or imported. Obligated parties Transaction System (EMTS). The RIN is attached to the physical gallon of renewable fuel as it is transferred

  16. Influence of bio-additives on combustion of liquid fuels

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  17. 77 FR 35677 - Regulation of Fuel and Fuel Additives; Modification to Octamix Waiver (TOLAD)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... to the Texas Methanol Corporation (Texas Methanol) under the Clean Air Act on February 8, 1988. This... titled ``Fuel and Fuel Additives; Modification of a Fuel Waiver Granted to the Texas Methanol Corporation.'' Today's notice approves the use of an alternative corrosion inhibitor, TOLAD MFA-10A, in Texas Methanol...

  18. Evaluation of Cetane Improver Additive in Alternative Jet Fuel Blends

    DTIC Science & Technology

    2016-07-01

    diesel engines are sensitive to cetane values of fuel. Some fuels originating from nonpetroleum sources contain low cetane numbers that have trouble...Improver Additive, Diesel Fuel, JP-8, Kerosene, Aviation Fuel, Alternative Fuel 16. SECURITY CLASSIFICATION OF: a. REPORT ,,b. ABSTRACT r· THIS...performance of a diesel fuel oil obtained by comparing it to reference fuels in a standardized engine test (1). The cetane number has an inverse

  19. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  20. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  1. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  2. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  3. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  4. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...

  5. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...

  6. Renewable energy.

    PubMed

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  7. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    NASA Astrophysics Data System (ADS)

    Hajbabaei, Maryam

    There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines. Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure. NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus. Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine

  8. Modeling and Optimization of Renewable and Hybrid Fuel Cell Systems for Space Power and Propulsion

    DTIC Science & Technology

    2010-11-14

    For that the project achieved: the optimization of SOFC and PEMFC internal structure and external shape under a volume constraint; an initial set of...subcomponent models for regenerative, renewable fuel cell system (RFC); the integration of PEMFC into RFC systems were developed; power electronic...with the same objectives and goals but using a PEMFC regenerative system instead. This research group studied and published on the optimization and

  9. Photocatalytic conversion of CO2 into value-added and renewable fuels

    NASA Astrophysics Data System (ADS)

    Yuan, Lan; Xu, Yi-Jun

    2015-07-01

    The increasing energy crisis and the worsening global climate caused by the excessive utilization of fossil fuel have boosted tremendous research activities about CO2 capture, storage and utilization. Artificial photosynthesis that uses solar light energy to convert CO2 to form value-added and renewable fuels such as methane or methanol has been consistently drawing increasing attention. It is like killing two birds with one stone since it can not only reduce the greenhouse effects caused by CO2 emission but also produce value added chemicals for alternative energy supplying. This review provides a brief introduction about the basic principles of artificial photosynthesis of CO2 and the progress made in exploring more efficient photocatalysts from the viewpoint of light harvesting and photogenerated charge carriers boosting. Moreover, the undergoing mechanisms of CO2 photoreduction are discussed with selected examples, in terms of adsorption of reactants, CO2 activation as well as the possible reaction pathways. Finally, perspectives on future research directions and open issues in CO2 photoreduction are outlined.

  10. Alternative Fuels Data Center

    Science.gov Websites

    Renewable Fuel Retailer Tax Incentive A licensed retail motor fuel dealer may receive a quarterly incentive for selling and dispensing renewable fuels, including biodiesel. A qualified motor fuel dealer is funding is available for this incentive through June 30, 2018 (confirmed July 2017). (Reference Kansas

  11. Drop-in Jet and Diesel Fuels from Renewable Oils

    DTIC Science & Technology

    2011-05-11

    Feed Stock Availability • Commercialization Approach 3 Current Alternate Fuel Technologies • Fischer-Tropsch (FT) and Syngas Fuels • First used in...FL • CH Crude oil production • > 24-hour continuous operation • Steady-state performance • 90-93% FA conversion • 5+ gal/hr • Camelina oil feed ...byproduct recovery/value • Demonstrate water management • Optimization hydrotreating • Evaluate additional feed stocks • Algal oil, Camelina oil, other

  12. Alternative Fuel Light-Duty Vehicles: Summary of Results From the National Renewable Energy Laboratory's Vehicle Evaluation Data Collection Efforts

    DOT National Transportation Integrated Search

    1996-05-01

    The U.S. Department of Energy's National Renewable Energy Laboratory conducted : a data collection project for light-duty, alternative fuel vehicles (AFVs) for : about 4 years. The project has collected data on 10 vehicle models (from the : original ...

  13. Synthesis of renewable high-density fuel with isophorone.

    PubMed

    Wang, Wei; Liu, Yanting; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    1,1,3-Trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane, a renewable high density fuel, was first produced in a high overall carbon yield (~70%) with isophorone which can be derived from hemicellulose. The synthetic route used this work contains three steps. In the first step, 3,3,5-trimethylcyclohexanone was synthesized by the selective hydrogenation of isophorone. Among the investigated catalysts, the Pd/C exhibited the highest activity and selectivity. Over this catalyst, a high carbon yield (99.0%) of 3,3,5-trimethylcyclohexanone was achieved under mild conditions (298 K, 2 MPa H 2 , 1 h). In the second step, 3,5,5-trimethyl-2-(3,3,5-trimethylcyclohexylidene)cyclohexanone was produced in a high carbon yield (76.4%) by the NaOH catalyzed self-aldol condensation of 3,3,5-trimethylcyclohexanone which was carried out in a round bottom flask attached to the Dean-Stark apparatus. In the third step, the 3,5,5-trimethyl-2-(3,3,5-trimethylcyclohexylidene)cyclohexanone was hydrodeoxygenated under solvent-free conditions. High carbon yield (93.4%) of 1,1,3-trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane was obtained over the Ni/SiO 2 catalyst. The 1,1,3-trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane as obtained has a density of 0.858 g mL -1 and a freezing point of 222.2 K. As a potential application, it can be blended into conventional fuels (such as RP-1, RG-1, etc.) for rocket propulsion.

  14. Performance of nickel-based oxygen carrier produced using renewable fuel aloe vera

    NASA Astrophysics Data System (ADS)

    Afandi, NF; Devaraj, D.; Manap, A.; Ibrahim, N.

    2017-04-01

    Consuming and burning of fuel mainly fossil fuel has gradually increased in this upcoming era due to high-energy demand and causes the global warming. One of the most effective ways to reduce the greenhouse gases is by capturing carbon dioxide (CO2) during the combustion process. Chemical looping combustion (CLC) is one of the most effective methods to capture the CO2 without the need of an energy intensive air separation unit. This method uses oxygen carrier to provide O2 that can react with fuel to form CO2 and H2O. This research focuses on synthesizing NiO/NiAl2O4 as an oxygen carrier due to its properties that can withstand high temperature during CLC application. The NiO/NiAl2O4 powder was synthesized using solution combustion method with plant extract renewable fuel, aloe vera as the fuel. In order to optimize the performance of the particles that can be used in CLC application, various calcination temperatures were varied at 600°C, 800°C, 1050°C and 1300°C. The phase and morphology of obtained powders were characterized using X-ray diffraction (XRD) and Field Emission Microscopy (FESEM) respectively together with the powder elements. In CLC application, high reactivity can be achieved by using smaller particle size of oxygen carrier. This research succeeded in producing nano-structured powder with high crystalline structure at temperature 1050°C which is suitable to be used in CLC application.

  15. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional... Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A. Executive Order 12866...

  16. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    NASA Astrophysics Data System (ADS)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  17. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong

    lignocellulosic biomass with LDPE were transformed into aromatics via co-feed catalytic microwave pyrolysis. It was also found that close to 40% carbon yield of hydrogenated organics were garnered. Based on these outcomes, the reaction kinetics regarding non-catalytic co-pyrolysis and catalytic co-pyrolysis of biomass with plastics were also presented. In addition, the techno-economic analysis of the catalytically integrated processes from lignocellulosic biomass to renewable cycloalkanes for jet fuels was evaluated in the dissertation as well.

  18. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  19. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... proposing to allow refiners and laboratories to use an alternative test method for olefin content in... test method for compliance measurement while maintaining environmental benefits achieved from our fuels...

  20. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  1. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  2. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver

    PubMed Central

    Wang, Bruce; Zhao, Ludan; Fish, Matt; Logan, Catriona Y.; Nusse, Roel

    2015-01-01

    Summary The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thus differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity. PMID:26245375

  3. Renewable Energy Development on Fort Mojave Reservation Feasiblity Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell Gum, ERCC analytics LLC

    2008-03-17

    The Ft. Mojave tribe, whose reservation is located along the Colorado River in the states of Arizona, California, and Nevada near the point where all three states meet, has a need for increased energy supplies. This need is a direct result of the aggressive and successful economic development projects undertaken by the tribe in the last decade. While it is possible to contract for additional energy supplies from fossil fuel sources it was the desire of the tribal power company, AHA MACAV Power Service (AMPS) to investigate the feasibility and desirability of producing power from renewable sources as an alternativemore » to increased purchase of fossil fuel generated power and as a possible enterprise to export green power. Renewable energy generated on the reservation would serve to reduce the energy dependence of the tribal enterprises on off reservation sources of energy and if produced in excess of reservation needs, add a new enterprise to the current mix of economic activities on the reservation. Renewable energy development would also demonstrate the tribe’s support for improving environmental quality, sustainability, and energy independence both on the reservation and for the larger community.« less

  4. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. Essays in renewable energy and emissions trading

    NASA Astrophysics Data System (ADS)

    Kneifel, Joshua D.

    Environmental issues have become a key political issue over the past forty years and has resulted in the enactment of many different environmental policies. The three essays in this dissertation add to the literature of renewable energy policies and sulfur dioxide emissions trading. The first essay ascertains which state policies are accelerating deployment of non-hydropower renewable electricity generation capacity into a states electric power industry. As would be expected, policies that lead to significant increases in actual renewable capacity in that state either set a Renewables Portfolio Standard with a certain level of required renewable capacity or use Clean Energy Funds to directly fund utility-scale renewable capacity construction. A surprising result is that Required Green Power Options, a policy that merely requires all utilities in a state to offer the option for consumers to purchase renewable energy at a premium rate, has a sizable impact on non-hydro renewable capacity in that state. The second essay studies the theoretical impacts fuel contract constraints have on an electricity generating unit's compliance costs of meeting the emissions compliance restrictions set by Phase I of the Title IV SO2 Emissions Trading Program. Fuel contract constraints restrict a utility's degrees of freedom in coal purchasing options, which can lead to the use of a more expensive compliance option and higher compliance costs. The third essay analytically and empirically shows how fuel contract constraints impact the emissions allowance market and total electric power industry compliance costs. This paper uses generating unit-level simulations to replicate results from previous studies and show that fuel contracts appear to explain a large portion (65%) of the previously unexplained compliance cost simulations. Also, my study considers a more appropriate plant-level decisions for compliance choices by analytically analyzing the plant level decision-making process to

  6. Review of Biojet Fuel Conversion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less

  7. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biomass pursuant to the reporting requirements of § 80.1451 and the recordkeeping requirements of § 80.1454. (A) Feedstocks meeting the requirements of renewable biomass through the aggregate compliance provision at § 80.1454(g) are deemed to be renewable biomass. (B) [Reserved] (2) To generate RINs for...

  8. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  9. Production scheduling with discrete and renewable additional resources

    NASA Astrophysics Data System (ADS)

    Kalinowski, K.; Grabowik, C.; Paprocka, I.; Kempa, W.

    2015-11-01

    In this paper an approach to planning of additional resources when scheduling operations are discussed. The considered resources are assumed to be discrete and renewable. In most research in scheduling domain, the basic and often the only type of regarded resources is a workstation. It can be understood as a machine, a device or even as a separated space on the shop floor. In many cases, during the detailed scheduling of operations the need of using more than one resource, required for its implementation, can be indicated. Resource requirements for an operation may relate to different resources or resources of the same type. Additional resources are most often referred to these human resources, tools or equipment, for which the limited availability in the manufacturing system may have an influence on the execution dates of some operations. In the paper the concept of the division into basic and additional resources and their planning method was shown. A situation in which sets of basic and additional resources are not separable - the same additional resource may be a basic resource for another operation is also considered. Scheduling of operations, including greater amount of resources can cause many difficulties, depending on whether the resource is involved in the entire time of operation, only in the selected part(s) of operation (e.g. as auxiliary staff at setup time) or cyclic - e.g. when an operator supports more than one machine, or supervises the execution of several operations. For this reason the dates and work times of resources participation in the operation can be different. Presented issues are crucial when modelling of production scheduling environment and designing of structures for the purpose of scheduling software development.

  10. High Temperature Hot Corrosion Control by Fuel Additives (Contaminated Fuels).

    DTIC Science & Technology

    1987-06-01

    ABSTRACT The potential of fuel additives to minimize corrosion of blade material in gas turbine engines has been analyzed by the following series of steps...INTRODUCTION High chrome steels and superalloys, which are used extensively for high temperature boilers and gas turbine (GT) engines and related...combustion gases onto turbine blades and other hot components. Among the factors expected to affect the corrosion resis

  11. Alternative Fuels Data Center: Glossary

    Science.gov Websites

    the electricity used is from renewable sources, such as solar or wind, the resulting hydrogen will be considered renewable as well. Electronic control module (ECM) The ECM controls the fuel mixture, ignition as a generator and storing the captured energy in the battery. Renewable Fuels Standard A regulation

  12. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any diesel...

  13. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any diesel...

  14. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any diesel...

  15. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any diesel...

  16. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any diesel...

  17. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Pan, De-an; Wang, Xin-feng; Tian, Jian-jun; Wang, Jian; Zhang, Shen-gen; Volinsky, Alex A.

    2011-03-01

    Nanocrystalline ZnFe 2O 4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe 2O 4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe 3O 4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.

  18. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  19. Fuels from renewable resources

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Schnell, C.; Gieseler, G.

    Consideration is given to fuel substitution based on regenerative plants. Methanol can be produced from regenerative plants by gasification followed by the catalytic hydration of carbon oxides. Ethanol can be used as a replacement fuel in gasoline and diesel engines and its high-knock rating allows it to be mixed with lead-free gasoline. Due to the depletion of oil and gas reserves, fermentation alcohol is being considered. The raw materials for the fermentation process can potentially include: (1) sugar (such as yeasts, beet or cane sugar); (2) starch (from potatoes or grain) and (3) cellulose which can be hydrolized into glucose for fermentation.

  20. Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts.

    PubMed

    Chen, Bo-Ren; Nguyen, Van-Huy; Wu, Jeffrey C S; Martin, Reli; Kočí, Kamila

    2016-02-14

    The efficient gas phase photocatalytic hydrogenation of CO2 into a desirable renewable fuel was achieved using a Cu-loaded TiO2 photocatalyst system. Enhancing the amount of Ti(3+) relative to Ti(4+) in a Cu-loaded TiO2 photocatalyst provided an excellent opportunity to promote the photohydrogenation of CO2. The coexistence of Cu and Cu(+) species during the photoreaction was shown to efficiently enhance the photocatalytic activity by prolonging the lifetime of the electrons. To achieve the best photoactivity, the Cu species must be maintained at an appropriately low concentration (≤1 wt%). The highest CH4 yield obtained was 28.72 μmol g(-1). This approach opens a feasible route not only to store hydrogen by converting it into a desirable renewable fuel, but also to reduce the amount of the greenhouse gas CO2 in the atmosphere.

  1. 40 CFR 80.1425 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... follows: (1) D has the value of 3 to denote fuel categorized as cellulosic biofuel. (2) D has the value of... categorized as advanced biofuel. (4) D has the value of 6 to denote fuel categorized as renewable fuel. (5) D...

  2. 40 CFR 80.1425 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... follows: (1) D has the value of 3 to denote fuel categorized as cellulosic biofuel. (2) D has the value of... categorized as advanced biofuel. (4) D has the value of 6 to denote fuel categorized as renewable fuel. (5) D...

  3. 40 CFR 80.1425 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... follows: (1) D has the value of 3 to denote fuel categorized as cellulosic biofuel. (2) D has the value of... categorized as advanced biofuel. (4) D has the value of 6 to denote fuel categorized as renewable fuel. (5) D...

  4. 40 CFR 80.1425 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... follows: (1) D has the value of 3 to denote fuel categorized as cellulosic biofuel. (2) D has the value of... categorized as advanced biofuel. (4) D has the value of 6 to denote fuel categorized as renewable fuel. (5) D...

  5. 40 CFR 80.1425 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... follows: (1) D has the value of 3 to denote fuel categorized as cellulosic biofuel. (2) D has the value of... categorized as advanced biofuel. (4) D has the value of 6 to denote fuel categorized as renewable fuel. (5) D...

  6. Renewable Energy used in State Renewable Portfolio Standards Yielded

    Science.gov Websites

    . Renewable Portfolio Standards also shows national water withdrawals and water consumption by fossil-fuel methodologies, while recognizing that states could perform their own more-detailed assessments," NREL's , respectively. Ranges are presented as the models and methodologies used are sensitive to multiple parameters

  7. 78 FR 12157 - RFS Renewable Identification Number (RIN) Quality Assurance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... conducting their own audits of renewable fuel production facilities. Given the time and effort to conduct... that invalid RINs are replaced with valid RINs. Requirements for audits of renewable fuel production... production and RIN generation. Most conduct some form of on-site audit including a review of production...

  8. 49 CFR 525.10 - Renewal of exemption.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Renewal of exemption. 525.10 Section 525.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.10 Renewal of...

  9. Alternative Fuels Data Center

    Science.gov Websites

    each year. A certain percentage of this renewable fuel must be advanced biofuel, which includes fuels derived from approved renewable biomass, excluding corn starch-based ethanol. Other advanced biofuels may exist in the future. All advanced biofuels must achieve a minimum of a 50% greenhouse gas (GHG

  10. Reference News Release: U.S. Files Complaint, Announces Settlement to Address Alleged Renewable Fuel Standard Violations by NGL Crude Logistics and Western Dubuque Biodiesel

    EPA Pesticide Factsheets

    Reference news release on the complaint against NGL Crude Logistics, LLC and Western Dubuque Biodiesel, LLC and a settlement with Western Dubuque to address alleged violations of the Renewable Fuel Standard.

  11. NREL Ignites New Renewable Fuels Heating Plant | News | NREL

    Science.gov Websites

    the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable beetle epidemic and waste wood. Operating smoke-free and odor-free, the plant will offset about 4.8

  12. Ethanol production from renewable resources.

    PubMed

    Gong, C S; Cao, N J; Du, J; Tsao, G T

    1999-01-01

    Vast amounts of renewable biomass are available for conversion to liquid fuel, ethanol. In order to convert biomass to ethanol, the efficient utilization of both cellulose-derived and hemicellulose-derived carbohydrates is essential. Six-carbon sugars are readily utilized for this purpose. Pentoses, on the other hand, are more difficult to convert. Several metabolic factors limit the efficient utilization of pentoses (xylose and arabinose). Recent developments in the improvement of microbial cultures provide the versatility of conversion of both hexoses and pentoses to ethanol more efficiently. In addition, novel bioprocess technologies offer a promising prospective for the efficient conversion of biomass and recovery of ethanol.

  13. Performance of a peroxide-based cetane improvement additive in different diesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, M.K.; Jacobs, D.C.; Liotta, F.J. Jr.

    The implementation of stringent diesel engine emissions regulations is growing worldwide. The use of high cetane diesel fuels is a cost-effective option that can be used to reduce engine emissions. A direct comparison of heavy-duty diesel engine emissions for three different low sulfur diesel fuels treated with di-t-butyl peroxide and 2-ethylhexyl nitrate, at the same cetane level, was evaluated. Both the peroxide and the nitrate cetane improvement additive significantly reduced all regulated and unregulated emissions including the oxides of nitrogen (NOx) emission. Di-t-butyl peroxide shows a small advantage over ethylhexyl nitrate in reducing NOx in all the three fuels. Compatibilitymore » of the peroxide and the nitrate additives, when mixed in a fuel blend, has been demonstrated by cetane response and engine emissions for the fuel blend. 13 refs., 2 figs., 9 tabs.« less

  14. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...\\ For a similar discussion see page 46 of Stratton, R.W., Wong, H.M., Hileman, J.I. 2010. Lifecycle... submitting comments. Email: a-and-r[email protected] , Attention Air and Radiation Docket ID EPA-HQ-OAR-2011... protected through www.regulations.gov or email. The www.regulations.gov Web site is an ``anonymous access...

  15. 78 FR 14190 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... section above. Outline of This Preamble I. Executive Summary A. Purpose of the Regulatory Action B... Supply, Distribution, or Use I. National Technology Transfer and Advancement Act J. Executive Order 12898.... Congressional Review Act V. Statutory Provisions and Legal Authority I. Executive Summary A. Purpose of This...

  16. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    NASA Astrophysics Data System (ADS)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  17. An optimal renewable energy mix for Indonesia

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Patrizio, Piera; Yowargana, Ping; Kraxner, Florian

    2016-04-01

    Indonesia has experienced a constant increase of the use of petroleum and coal in the power sector, while the share of renewable sources has remained stable at 6% of the total energy production during the last decade. As its domestic energy demand undeniably continues to grow, Indonesia is committed to increase the production of renewable energy. Mainly to decrease its dependency on fossil fuel-based resources, and to decrease the anthropogenic emissions, the government of Indonesia has established a 23 percent target for renewable energy by 2025, along with a 100 percent electrification target by 2020 (the current rate is 80.4 percent). In that respect, Indonesia has abundant resources to meet these targets, but there is - inter alia - a lack of proper integrated planning, regulatory support, investment, distribution in remote areas of the Archipelago, and missing data to back the planning. To support the government of Indonesia in its sustainable energy system planning, a geographic explicit energy modeling approach is applied. This approach is based on the energy systems optimization model BeWhere, which identifies the optimal location of energy conversion sites based on the minimization of the costs of the supply chain. The model will incorporate the existing fossil fuel-based infrastructures, and evaluate the optimal costs, potentials and locations for the development of renewable energy technologies (i.e., wind, solar, hydro, biomass and geothermal based technologies), as well as the development of biomass co-firing in existing coal plants. With the help of the model, an optimally adapted renewable energy mix - vis-à-vis the competing fossil fuel based resources and applicable policies in order to promote the development of those renewable energy technologies - will be identified. The development of the optimal renewable energy technologies is carried out with special focus on nature protection and cultural heritage areas, where feedstock (e.g., biomass

  18. 78 FR 11870 - Proposed Information Collection Request; Comment Request; Renewable Fuels Standard (RFS2) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ...-products Report RFS0801: RFS2 Renewable Biomass Report RFS0901: RFS2 Production Outlook Report EMTS: RFS2...,992 users due to the additional response burden for mapping foreign and domestic plantation/forest...

  19. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects

    NASA Astrophysics Data System (ADS)

    Alam, Syed Shah; Nor, Nor Fariza Mohd; Ahmad, Maisarah; Hashim, Nik Hazrul Nik

    2016-05-01

    Energy demand in Malaysia is increasing over seven per cent a year, while forty per cent of the energy is supplied from conventional fossil fuel. However, a number of social barriers have mired the social acceptance of renewable energy among the users. This study investigates the current status of renewable energy, problems and future outlook of renewable energy in Malaysia. A total of 200 respondents were surveyed from Klang Valley in Malaysia. Majority of the respondents use energy to generate electricity. Although some respondents reported using solar energy, there is lack of retail availability for solar energy. The findings show that limited information on renewable energy technologies, lack of awareness, and limited private sector engagement emerged as major barriers to sustainable renewable energy development. In addition, the respondents suggest for increasing policy support from the government to make information more accessible to mass users, provide economic incentives to investors and users, and promote small-community based renewable energy projects. The study suggests that the government begin small scale projects to build awareness on renewable energy, while academically, higher learning institutions include renewable energy syllabus in their academic curriculum. The study concluded that to have sustainable renewable energy development, government's initiative, private sector engagement and users awareness must be given priority.

  20. Changing the renewable fuel standard to a renewable material standard: bioethylene case study.

    PubMed

    Posen, I Daniel; Griffin, W Michael; Matthews, H Scott; Azevedo, Inês L

    2015-01-06

    The narrow scope of the U.S. renewable fuel standard (RFS2) is a missed opportunity to spur a wider range of biomass use. This is especially relevant as RFS2 targets are being missed due to demand-side limitations for ethanol consumption. This paper examines the greenhouse gas (GHG) implications of a more flexible policy based on RFS2, which includes credits for chemical use of bioethanol (to produce bioethylene). A Monte Carlo simulation is employed to estimate the life-cycle GHG emissions of conventional low-density polyethylene (LDPE), made from natural gas derived ethane (mean: 1.8 kg CO2e/kg LDPE). The life-cycle GHG emissions from bioethanol and bio-LDPE are examined for three biomass feedstocks: U.S. corn (mean: 97g CO2e/MJ and 2.6 kg CO2e/kg LDPE), U.S. switchgrass (mean: -18g CO2e/MJ and -2.9 kg CO2e/kg LDPE), and Brazilian sugar cane (mean: 33g CO2e/MJ and -1.3 kg CO2e/kg LDPE); bioproduct and fossil-product emissions are compared. Results suggest that neither corn product (bioethanol or bio-LDPE) can meet regulatory GHG targets, while switchgrass and sugar cane ethanol and bio-LDPE likely do. For U.S. production, bioethanol achieves slightly greater GHG reductions than bio-LDPE. For imported Brazilian products, bio-LDPE achieves greater GHG reductions than bioethanol. An expanded policy that includes bio-LDPE provides added flexibility without compromising GHG targets.

  1. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  2. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals.

    PubMed

    Maher, K D; Bressler, D C

    2007-09-01

    Conversion of vegetable oils and animal fats composed predominantly of triglycerides using pyrolysis type reactions represents a promising option for the production of renewable fuels and chemicals. The purpose of this article was to collect and review literature on the thermo-chemical conversion of triglyceride based materials. The literature was divided and discussed as (1) direct thermal cracking and (2) combination of thermal and catalytic cracking. Typically, four main catalyst types are used including transition metal catalysts, molecular sieve type catalysts, activated alumina, and sodium carbonate. Reaction products are heavily dependant on the catalyst type and reaction conditions and can range from diesel like fractions to gasoline like fractions. Research in this area is not as advanced as bio-oil and bio-diesel research and there is opportunity for further study in the areas of reaction optimization, detailed characterization of products and properties, and scale-up.

  3. Biocidal Properties of Anti-Icing Additives for Aircraft Fuels

    PubMed Central

    Neihof, R. A.; Bailey, C. A.

    1978-01-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol. PMID:646356

  4. Prospective Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, Jenny S; Mai, Trieu T; Bird, Lori A

    These slides were presented at a webinar on January 9, 2017. The slides overview a report that evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specificmore » benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less

  5. Renewable energy - Target for 2050

    NASA Astrophysics Data System (ADS)

    Rowe, W. D.

    1982-02-01

    The possibilities of various renewable energy technologies to supply a projected world demand for 40,000 GW years of energy each year by the year 2050 are examined. Noting that industrial processes consume 50% of all energy needs, fossil fuel reserves are shown to be sufficient for a maximum of 370 yr in the U.S., when all supplies become depleted. Breeder reactors have a doubling time which is 30 yr too long for meeting more than 0.5% of world energy demand in 2050, while fusion, even considering ocean-derived deuterium as a fuel source, will not be supplying energy for another 35-70 yr. Among the solar technologies, the installation of ten million 100 m tall 4 MW wind generators is feasible to meet all the projected energy needs, and solar cells with 10% conversion efficiency could do the same with 14 times less land. Further discussion is given to geothermal, fuel cell, and OTEC technologies, as well as the forty trillion dollars necessary to erect the fully renewable systems.

  6. 100% Renewables as a Focus for Environmental Education

    ERIC Educational Resources Information Center

    Adlong, William

    2012-01-01

    The rapid development of renewable energy technologies has a number of implications for environmental educators and educators more generally. The costs of a number of renewable energy technologies are expected to be competitive with fossil fuels within 10-15 years and some installations are competitive already. From 2006-2011 global installations…

  7. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  8. Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol

    Science.gov Websites

    advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean Cities provides advanced biofuel, which includes fuels derived from approved renewable biomass, excluding corn starch-based ethanol. Other advanced biofuels may include sugarcane-based fuels, renewable diesel co-processed with

  9. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  10. Power conversion and control methods for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  11. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  12. Acute toxicity evaluation of JP-8 jet fuel and JP-8 jet fuel containing additives. Final report, November 1995-February 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.E.; Kinead, E.R.; Feldmann, M.L.

    1996-11-01

    To reduce fuel fouling in current U.S Navy and Air Force aircraft systems and to provide additional heat sink and thermal stability for future systems, the Air Force is developing an improved JP-8 jet fuel (JP-8 + 100). Two companies (Betz and Mobil) have developed additive packages that are currently being tested in aircraft systems. To determine if the additive packages will produce health effects for flightline personnel, acute testing was performed on JP-8 and the two JP-8 + 100 jet fuels. A single oral dose at 5 mg jet fuel/kg body weight to five male and five female F-344more » rats, and a single dermal application of 2 g jet fuel/kg body weight applied to five male and five female NZW rabbits resulted in no deaths. No signs of toxic stress were observed, and all animals gained weight over the 14-day observation periods. Single treatment of 0.5 mL neat jet fuel to rabbit skin produced negative results for skin irritation. Guinea pigs tailed to elicit a sensitization response following repeated applications of the jet fuels. Inhalation vapor exposure to JP-8, JP-8 + 100 (Betz), and JP-8 (Mobil) were determined to be >3.43, >3.52, and >3.57 mg/L, respectively. LD% values for aerosol exposure to JP-8, JP-8 + 100 (Betz), and JP-8 + 100 (Mobil) were >4.44, >4.39, and >4.54 mg/L, respectively. Under the conditions of these tests, the additive packages did not potentiate the acute effects normally associated with JP-8 jet fuel exposures.« less

  13. Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality

    EPA Science Inventory

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...

  14. DOE perspective on fuel cells in transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less

  15. Hydrogen: A Promising Fuel and Energy Storage Solution - Continuum

    Science.gov Websites

    Magazine | NREL Hydrogen: A Promising Fuel and Energy Storage Solution Fuel cell electric Ainscough, NREL Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated hydrogen may provide a solution to fluctuations in renewable-sourced energy. As electricity from renewable resources

  16. Effect of Additional Incentives for Aviation Biofuels: Results from the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J; Newes, Emily K

    2017-12-05

    The National Renewable Energy Laboratory supported the Department of Energy, Bioenergy Technologies Office, with analysis of alternative jet fuels in collaboration with the U.S. Department of Transportation, Federal Aviation Administration. Airlines for America requested additional exploratory scenarios within FAA analytic framework. Airlines for America requested additional analysis using the same analytic framework, the Biomass Scenario Model. The results were presented at a public working meeting of the California Air Resources Board on including alternative jet fuel in the Low Carbon Fuel Standard on March 17, 2017 (https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/lcfs_meetings.htm). This presentation clarifies and annotates the slides from the public working meeting, andmore » provides a link to the full data set. NREL does not advocate for or against the policies analyzed in this study.« less

  17. Effect of Additional Incentives for Aviation Biofuels: Results from the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J; Newes, Emily K

    The National Renewable Energy Laboratory supported the Department of Energy, Bioenergy Technologies Office, with analysis of alternative jet fuels in collaboration with the U.S. Department of Transportation, Federal Aviation Administration. Airlines for America requested additional exploratory scenarios within FAA analytic framework. Airlines for America requested additional analysis using the same analytic framework, the Biomass Scenario Model. The results were presented at a public working meeting of the California Air Resources Board on including alternative jet fuel in the Low Carbon Fuel Standard on March 17, 2017 (https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/lcfs_meetings.htm). This presentation clarifies and annotates the slides from the public working meeting, andmore » provides a link to the full data set. NREL does not advocate for or against the policies analyzed in this study.« less

  18. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    NASA Astrophysics Data System (ADS)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  19. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  20. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Refineries. Industry 325193 2869 Ethyl alcohol manufacturing. Industry 325199 2869 Other basic organic... as fertilizer).\\2\\ Therefore in the final rule EPA concluded that since biofuel made from the... showed an average yield of 15 dry tons per acre with no nitrogen fertilizer applied after the first year...

  1. Artificial photosynthesis for solar fuels.

    PubMed

    Styring, Stenbjörn

    2012-01-01

    This contribution was presented as the closing lecture at the Faraday Discussion 155 on artificial photosynthesis, held in Edinburgh Scotland, September 5-7 2011. The world needs new, environmentally friendly and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap and "endless" resources that are available everywhere. The new research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis expands rapidly and most of the different scientific visions for solar fuels are briefly overviewed. Research strategies and the development of artificial photosynthesis research to produce solar fuels are overviewed. Some conceptual aspects of research for artificial photosynthesis are discussed in closer detail.

  2. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Ben W; Hadley, Stanton W; Xu, Yan

    2011-08-01

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, andmore » cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis

  3. Renewal of the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M.

    2008-12-31

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}more » $$1.5B facility is estimated to be {approx}$$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.« less

  4. 75 FR 11873 - Notice of Fuel Cell Pre-Solicitation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Notice of Fuel Cell Pre... Cell Pre-Solicitation Workshop. SUMMARY: The Fuel Cell Technologies Program, under the DOE Office of Energy Efficiency and Renewable Energy, is inviting the fuel cell research community and other...

  5. How might renewable energy technologies fit in the food-water-energy nexus?

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  6. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

  7. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less

  8. Renewable Electrolysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    variable-input power conditions Designing and developing shared power-electronics packages and controllers Development NREL develops power electronics interfaces for renewable electrolysis systems to characterize and constant voltage DC bus and power electronics to regulate power output and to convert wild alternating

  9. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... further testing under the provisions of Tier 3 or to support regulatory decisions affecting that fuel or... elements or classes of compounds other than those permitted in the base fuel for the respective fuel family... all of the following criteria: (1) Contain no elements other than carbon, hydrogen, oxygen, nitrogen...

  10. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    NASA Technical Reports Server (NTRS)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  11. Species Composition and Fire: Non-Additive Mixture Effects on Ground Fuel Flammability

    PubMed Central

    van Altena, Cassandra; van Logtestijn, Richard S. P.; Cornwell, William K.; Cornelissen, Johannes H. C.

    2012-01-01

    Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e., differ from expected flammability based on the component species in monospecific fuel. In standardized fire experiments on ground fuels, including monospecific fuels and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration, and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects for temporal dynamics – fire speed and duration. Fuel types with the more flammable value for a characteristic determined the rate of fire speed and duration of the whole mixture; in contrast, maximum temperature of the fire was determined by the biomass-weighted mean of the mixture. These results suggest that ecological invasions by highly flammable species may have effects on ground-fire dynamics well out of proportion to their biomass. PMID:22639656

  12. Alternative Fuels Data Center

    Science.gov Websites

    biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery from biomass. Ethanol is ethyl alcohol derived from biomass that meets ASTM D4806-04a and federal quality requirements. Synthetic transportation fuel is a liquid fuel produced from biomass by a

  13. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Treesearch

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  14. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Science.gov Websites

    , biodiesel is a mono-alkyl ester, which has different physical properties and hence different fuel specifications (ASTM D6751 and EN 14214). The two fuels are also produced through very different processes. While

  15. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  16. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    DTIC Science & Technology

    2016-07-01

    DOER) program, diesel fuel additives were tested to evaluate their potential for reducing diesel fuel consumption and cost. Four fuel additives were...tested to evaluate their potential for reducing diesel fuel consumption and cost: • An ethanol injection system • Envirofuels Diesel Fuel Catalyst...reduction in select operation conditions, only the ethanol injection system consistently showed potential to reduce diesel fuel consumption , which may be

  17. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging

  18. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    PubMed

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  19. Assessment of Mexico's program to use ethanol as transportation fuel: impact of 6% ethanol-blended fuel on emissions of light-duty gasoline vehicles.

    PubMed

    Schifter, Isaac; Díaz, Luis; Rodríguez, Rene; Salazar, Lucia

    2011-02-01

    Recently, the Mexican government launched a national program encouraging the blending of renewable fuels in engine fuel. To aid the assessment of the environmental consequences of this move, the effect of gasoline fuel additives, ethanol and methyl tert-butyl ether, on the tailpipe and the evaporative emissions of Mexico sold cars was investigated. Regulated exhaust and evaporative emissions, such as carbon monoxide, non-methane hydrocarbons, and nitrogen oxides, and 15 unregulated emissions were measured under various conditions on a set of 2005-2008 model light-duty vehicles selected based on sales statistics for the Mexico City metropolitan area provided by car manufacturers. The selected car brands are also frequent in Canada, the USA, and other parts of the world. This paper provides details and results of the experiment that are essential for evaluation of changes in the emission inventory, originating in the low-blend ethanol addition in light vehicle fuel.

  20. Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliersmore » must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.« less

  1. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section, on...

  2. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section, on...

  3. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section, on...

  4. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section, on...

  5. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section, on...

  6. Exergetic life cycle assessment of hydrogen production from renewables

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  7. Cost of non-renewable energy in production of wood pellets in China

    NASA Astrophysics Data System (ADS)

    Wang, Changbo; Zhang, Lixiao; Liu, Jie

    2013-06-01

    Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials. Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J, of which only 0.09 J was derived from NE, indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable. Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%), during which electricity and diesel are the two major forms of NE used, respectively. Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly. Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

  8. Alternative Fuels Data Center: quasar energy group Turns Organic Waste into

    Science.gov Websites

    Renewable Energy in Ohio quasar energy group Turns Organic Waste into Renewable Energy in Ohio to someone by E-mail Share Alternative Fuels Data Center: quasar energy group Turns Organic Waste group Turns Organic Waste into Renewable Energy in Ohio on Twitter Bookmark Alternative Fuels Data

  9. Lubricity of biobased diesel fuels and additives

    USDA-ARS?s Scientific Manuscript database

    Modern diesel engines rely on the fuel itself to lubricate moving parts in the fuel and engine systems. Prior to the late 1990s, diesel fuel from petroleum provided sufficient lubricity to effectively reduce wear in injectors and fuel pumps. Increasingly stringent limitations on the sulfur content o...

  10. Renewable power production in a Pan-Caribbean energy grid

    NASA Astrophysics Data System (ADS)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  11. Bleaching and Hydroprocessing of Algal Biomass-Derived Lipids to Produce Renewable Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Jacob S.; Christensen, Earl D.; Dong, Tao

    Algal lipids represent a promising feedstock for production of renewable diesel, but there is little information available regarding the integration of pretreatment, extraction, and catalytic upgrading steps. In this work, we examined oil bleaching by two methods and the effects of bleaching on oil deoxygenation over Pd/C and hydroisomerization over Pt/SAPO-11 catalysts. The raw oil was completely deoxygenated and 90% denitrogenated after dilution to 25 wt % in hexanes. The bleaching operations (using either a polar adsorbent or concentrated H 3PO 4) removed 85-90% of the nitrogen and led to 95-99% nitrogen removal after deoxygenation. Oil processability was also improvedmore » by bleaching. Here, the bulk chemistry of the deoxygenation and isomerization was not strongly affected by bleaching, as post-isomerization products with cloud points less than -10 °C and boiling ranges within or close to specification for No. 2 diesel fuel were obtained through 10 h time on stream with or without bleaching.« less

  12. Bleaching and Hydroprocessing of Algal Biomass-Derived Lipids to Produce Renewable Diesel Fuel

    DOE PAGES

    Kruger, Jacob S.; Christensen, Earl D.; Dong, Tao; ...

    2017-08-22

    Algal lipids represent a promising feedstock for production of renewable diesel, but there is little information available regarding the integration of pretreatment, extraction, and catalytic upgrading steps. In this work, we examined oil bleaching by two methods and the effects of bleaching on oil deoxygenation over Pd/C and hydroisomerization over Pt/SAPO-11 catalysts. The raw oil was completely deoxygenated and 90% denitrogenated after dilution to 25 wt % in hexanes. The bleaching operations (using either a polar adsorbent or concentrated H 3PO 4) removed 85-90% of the nitrogen and led to 95-99% nitrogen removal after deoxygenation. Oil processability was also improvedmore » by bleaching. Here, the bulk chemistry of the deoxygenation and isomerization was not strongly affected by bleaching, as post-isomerization products with cloud points less than -10 °C and boiling ranges within or close to specification for No. 2 diesel fuel were obtained through 10 h time on stream with or without bleaching.« less

  13. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  14. Defense Infrastructure: Department of Defense Renewable Energy Initiatives

    DTIC Science & Technology

    2010-04-26

    Operational 2005 No 2009 10 280 Dept Navy NAVFAC Hawaii HI Solar Water Heating Systems, Fort Kamehameha WWTF Solar Thermal Fully Operational 2006 Yes... Kamehameha WWTF 0.00 50.00 Reduces fossil fuel use, increases energy security Supports 10 USC 2911 renewable energy goal Supports 10 USC 2911...renewable energy goal Solar Water Heating Systems, Fort Kamehameha WWTF 281 Dept Navy NAVFAC Hawaii HI Solar Water Heating System, Building X-11

  15. Addition agents effects on hydrocarbon fuels burning

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.

    2016-01-01

    Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.

  16. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.

    PubMed

    Ritchie, Glenn; Still, Kenneth; Rossi, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl

    2003-01-01

    Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over 5 billion gallon of JP-8 by the militaries of the United States and other NATO countries. JP-8, for example, represents the largest single chemical exposure in the U.S. military (2.53 billion gallon in 2000), while Jet A and A-1 are among the most common sources of nonmilitary occupational chemical exposure. Although more recent figures were not available, approximately 4.06 billion gallon of kerosene per se were consumed in the United States in 1990 (IARC, 1992). These exposures may occur repeatedly to raw fuel, vapor phase, aerosol phase, or fuel combustion exhaust by dermal absorption, pulmonary inhalation, or oral ingestion routes. Additionally, the public may be repeatedly exposed to lower levels of jet fuel vapor/aerosol or to fuel combustion products through atmospheric contamination, or to raw fuel constituents by contact with contaminated groundwater or soil. Kerosene-based hydrocarbon fuels are complex mixtures of up to 260+ aliphatic and aromatic hydrocarbon compounds (C(6) -C(17+); possibly 2000+ isomeric forms), including varying concentrations of potential toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes (including polycyclic aromatic hydrocarbons [PAHs], and certain other C(9)-C(12) fractions (i.e., n-propylbenzene, trimethylbenzene isomers). While hydrocarbon fuel exposures occur typically at concentrations below current permissible exposure limits (PELs) for the parent fuel or its constituent chemicals, it is unknown whether additive or synergistic interactions among hydrocarbon constituents, up to six

  17. Accounting Methodology for Source Energy of Non-Combustible Renewable Electricity Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohoo-Vallett, Paul

    As non-combustible sources of renewable power (wind, solar, hydro, and geothermal) do not consume fuel, the “source” (or “primary”) energy from these sources cannot be accounted for in the same manner as it is for fossil fuel sources. The methodology chosen for these technologies is important as it affects the perception of the relative size of renewable source energy to fossil energy, affects estimates of source-based building energy use, and overall source energy based metrics such as energy productivity. This memo reviews the methodological choices, outlines implications of each choice, summarizes responses to a request for information on this topic,more » and presents guiding principles for the U.S. Department of Energy, (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to use to determine where modifying the current renewable source energy accounting method used in EERE products and analyses would be appropriate to address the issues raised above.« less

  18. Alternative Fuels Data Center

    Science.gov Websites

    specified volumes of renewable fuels according to the categories below. EISA established life cycle GHG demonstrate a 20% reduction in life cycle GHG emissions. Advanced Biofuel: Any fuel derived from cellulosic or categories may be used to meet this category. Fuels in this category must demonstrate a life cycle GHG

  19. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals

    PubMed Central

    Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan

    2017-01-01

    Abstract The worldwide unrestrained emission of carbon dioxide (CO2) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal–organic complexes, metals, metal alloys, inorganic metal compounds and carbon‐based metal‐free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO−), monoxide carbon (CO), formaldehyde (HCHO), methane (CH4), ethylene (C2H4), methanol (CH3OH), ethanol (CH3CH2OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO2 electroreduction. PMID:29375961

  20. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals.

    PubMed

    Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan; Jin, Zhong

    2018-01-01

    The worldwide unrestrained emission of carbon dioxide (CO 2 ) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO 2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO 2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO 2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal-organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO - ), monoxide carbon (CO), formaldehyde (HCHO), methane (CH 4 ), ethylene (C 2 H 4 ), methanol (CH 3 OH), ethanol (CH 3 CH 2 OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO 2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO 2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO 2 electroreduction.

  1. Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles.

    PubMed

    Zhang, Junfeng Jim; Lee, Ki-Bum; He, Linchen; Seiffert, Joanna; Subramaniam, Prasad; Yang, Letao; Chen, Shu; Maguire, Pierce; Mainelis, Gediminas; Schwander, Stephan; Tetley, Teresa; Porter, Alexandra; Ryan, Mary; Shaffer, Milo; Hu, Sheng; Gong, Jicheng; Chung, Kian Fan

    2016-10-12

    Nanoceria (i.e., CeO 2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox™ in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles in North America, largely due to limited data on the potential health impact. In this study, we characterized a variety of physicochemical properties of DEPs emitted from the same engine. Our methods include novel techniques such as Raman spectrometry for analyzing particle surface structure and an assay for DEP oxidative potential. Results show that with increasing Envirox™ concentrations in the fuel (0×, 0.1×, 1×, and 10× of manufacturer recommended 0.5 mL Envirox™ per liter fuel), DEP sizes decreased from 194.6 ± 20.1 to 116.3 ± 14.8 nm; the zeta potential changed from -28.4 mV to -22.65 mV; DEP carbon content decreased from 91.8% to 79.4%; cerium and nitrogen contents increased from 0.3% to 6.5% and 0.2% to 0.6%, respectively; the ratio of organic carbon (OC) to elemental carbon (EC) increased from 22.9% to 38.7%; and the ratio of the disordered carbon structure to the ordered carbon structure (graphitized carbon) in DEPs decreased. Compared to DEPs emitted from 0×, 0.1×, and 1× fuels, DEPs from the 10× fuel had a lower oxidative potential likely due to the increased ceria content because pure ceria nanoparticles exhibited the lowest oxidative potential compared to all the DEPs. Since the physicochemical parameters tested here are among the determinants of particle toxicity, our findings imply that adding ceria nanoparticles into diesel may alter the toxicity of DEPs. The findings from the present study, hence, can help future studies that will examine the impact of nanoceria additives on DEP toxicities.

  2. A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Wiser, Ryan; Barbose, Galen

    This report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts,more » renewable energy workforce and economic development, and natural gas price suppression. This analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less

  3. Alternative Fuels Data Center: Mississippi Transportation Data for

    Science.gov Websites

    with other local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source Renewable Power Plants 0 Renewable Power Plant Capacity (nameplate, MW) 0 Source: BioFuels Atlas from the $2.19/GGE $2.50/gallon $2.50/GGE Diesel $2.61/gallon $2.35/GGE $2.96/gallon $2.66/GGE Source: Average

  4. Alternative Fuels Data Center: Nevada Transportation Data for Alternative

    Science.gov Websites

    . Gasoline Diesel Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System Renewable Power Plant Capacity (nameplate, MW) 1,684 Source: BioFuels Atlas from the National Renewable Source: Average prices per gasoline gallon equivalent (GGE) for the West Coast PADD from the Alternative

  5. The role of renewable energy on animal farms

    NASA Astrophysics Data System (ADS)

    Csatári, Nándor; Vántus, András

    2015-04-01

    The recent measures in the European Union promote the usage of renewable energies and enhancing the energy efficiency. These measures also effect agriculture, on the one hand by using biofuels mixed into fuel for machinery. Besides biofuels animal farms have opportunities in using renewable energy in several other ways. There are sectors in animal farming, where the energy demand is continuously high in electricity (e.g. forage grinders, mixers, milk coolers, air ventilation systems) or in heating (e.g. stables for poultry or piglets). Beside the energy demand in agricultural sector there are several products and side products suitable for energy production. For example different kinds of organic manures and corn silage could be raw materials for biogas production; plant residues like cereal straw and corn stalk bales could be combusted in boilers. Furthermore solar cells or solar collectors can be mounted on the big roof surfaces of animal farm buildings. Among animal farming sectors, dairy farming in the most energy intensive, and uses the widest variety of energy forms. It is often mentioned as the "heavy industry" of animal farming. In this research 14 dairy farms were examined in Hajdú-Bihar County in the topic of energy demand, renewable energy usage. The questioned farms covers 35% of the dairy cow population in Hajdú-Bihar County. The questions covered the general attributes of the farms and the details of the (existing or planned) renewable energy application. In terms of economic analysis saving, the investment return time and the employment effect was examined. The results show wide variety of applied renewable energy application. Fifty percent of farms uses at least one kind of renewable energy. Two biogas plants, 6 boilers for solid biomass, 2 solar cells. Regarding employment effect biogas plants created some full time workplaces, biomass boilers also needs some work hours to maintain, but none of the farms applied more labour. Besides renewable

  6. Fuel Testing for Sylvatex: Cooperative Research and Development Final Report, CRADA Number CRD-16-636

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, Jonathan L.

    Sylvatex is a green nano-chemistry company that has developed a platform technology utilizing renewable, non-toxic inputs to create a stable nanoparticle that can be used in multiple applications. Their mission is to increase the use of renewables globally, to empower a cleaner and healthier future. The main application is a fuel technology product - MicroX - that utilizes proprietary knowledge to scale low-cost, cleaner-burning renewable diesel fuel and additives by using a co-location commercial model. The aspects of this project will include testing of two Sylvatex MicroX fuels on an engine dynamometer platform. Industry standard ultra-low sulfur diesel (ULSD) B3more » fuel and a ULSD B20 will both be used for comparison of the Sylvatex fuels (U.S. standard diesel fuel at the pump contains an average of approximately 3% biodiesel; this is why B3 would be used as a baseline comparison). Sylvatex is currently using a prototype formulation (MicroX 1) that applies a high cost surfactant. An experimental formulation (MicroX 2) that uses lower cost materials is under development. The MicroX 1 will be blended at a 10% level into the B3 ULSD fuel and the MicroX 2 will be blended at a 10% level into both the B3 and the B20 ULSD fuels for study on the engine dynamometer test platform. All fuel blends will be tested over the FTP transient engine test cycle and a steady state ramped modal engine test cycle. Each test cycle will be performed a minimum of 3 times for each fuel. Tailpipe and/or engine out gaseous exhaust emissions (CO2, CO, NOx, THC, O2,), engine out PM emissions, and brake-specific fuel consumption rates will be evaluated for all test cycles.« less

  7. Renewable energy scenario in India: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav

    2016-10-01

    Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources

  8. 40 CFR 80.1416 - Petition process for evaluation of new renewable fuels pathways.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... definition of renewable biomass. (ii) Market value of the feedstock. (iii) List of other uses for the feedstock. (iv) List of chemical inputs needed to produce the renewable biomass source of the feedstock and prepare the renewable biomass for processing into feedstock. (v) Identify energy needed to obtain the...

  9. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oilmore » and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A

  10. Hydrogen Fueling via Guanidine

    NASA Astrophysics Data System (ADS)

    van Vechten, J. A.

    2007-03-01

    Three related materials, ammonia (NH3), urea (OCN2H4), and guanidine (CN3H5) are practicable hydrogen-based fuels^1 that could be produced in the giga-tonne quantities required from air, water and renewable energy. NH3 has long been established as a fuel for internal combustion engines and can be cracked to H2 for use in fuelcells, but is a gas at STP and extremely toxic, so general use is problematic. Urea and guanidine can easily be converted to NH3 and CO2 by addition of hot water from oxidation of NH3. Both are solids at STP, non-toxic, non-explosive and commonly shipped in plastic bags. The energy density in kWhr/L of guanidine is 4.7 compared with 3.0 for urea, 3.5 for liquid NH3, and 0.8 for H gas in 10,000 psi tanks. The specific energies in kWhr/kg for these materials are respectively 3.58, 2.35, 5.2, and (including the tank) 1.8. Guanidine melts at 50 C and is infinitely soluble in both ethanol and water. 1) http://www.energy.iastate.edu/renewable/biomass/AmmoniaMtg06.html

  11. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    PubMed

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO 2 , standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO 2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  12. Alternative Fuels Data Center: Maine Transportation Data for Alternative

    Science.gov Websites

    connect with other local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source Renewable Power Plants 58 Renewable Power Plant Capacity (nameplate, MW) 984 Source: BioFuels Atlas from the $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the New England

  13. Alternative Fuels Data Center: Montana Transportation Data for Alternative

    Science.gov Websites

    . Gasoline Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta Renewable Power Plant Capacity (nameplate, MW) 2,955 Source: BioFuels Atlas from the National Renewable /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Rocky Mountain PADD

  14. Experimental investigations of the hydrogen addition effects on diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  15. Increasing Resiliency Through Renewable Energy Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Katherine H; DiOrio, Nicholas A; Cutler, Dylan S

    This paper describes a methodology to quantify the economic and resiliency benefit provided by renewable energy (RE) in a hybrid RE-storage-diesel microgrid. We present a case study to show how this methodology is applied to a multi-use/ multi-function telecommunications facility in southern California. In the case study, we first identify photovoltaic (PV) and battery energy storage system (BESS) technologies that minimize the lifecycle cost of energy at the site under normal, grid-connected operation. We then evaluate how those technologies could be incorporated alongside existing diesel generators in a microgrid to increase resiliency at the site, where resiliency is quantified inmore » terms of the amount of time that the microgrid can sustain the critical load during a grid outage. We find that adding PV and BESS to the existing backup diesel generators with a fixed fuel supply extends the amount of time the site could survive an outage by 1.8 days, from 1.7 days for the existing diesel-only backup system to 3.5 days for the PV/diesel/BESS hybrid system. Furthermore, even after diesel fuel supplies are exhausted, the site can continue to operate critical loads during daytime hours using just the PV/BESS when there is sufficient solar resource. We find that the site can save approximately $100,000 in energy costs over the 25-year lifecycle while doubling the amount of time they can survive an outage. The methodology presented here provides a template for increasing resiliency at telecomm sites by implementing renewable energy solutions, which provide additional benefits of carbon emission reduction and energy cost savings.« less

  16. 75 FR 2860 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee...

  17. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R.C.; Bushnell, D.M.

    2009-01-01

    Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.

  18. Renewable Energy Resources in Lebanon

    NASA Astrophysics Data System (ADS)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  19. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs).

    PubMed

    Puig, S; Serra, M; Coma, M; Balaguer, M D; Colprim, J

    2011-01-01

    Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.

  20. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost

  1. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-02-28

    Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of "green" gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants' metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio

  2. Alternative Fuels Data Center: Arkansas Transportation Data for Alternative

    Science.gov Websites

    Diesel Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on Renewable Power Plant Capacity (nameplate, MW) 1,349 Source: BioFuels Atlas from the National Renewable $2.50/gallon $2.50/GGE Diesel $2.61/gallon $2.35/GGE $2.96/gallon $2.66/GGE Source: Average prices per

  3. Hybrid Design of Electric Power Generation Systems Including Renewable Sources of Energy

    ERIC Educational Resources Information Center

    Wang, Lingfeng; Singh, Chanan

    2008-01-01

    With the stricter environmental regulations and diminishing fossil-fuel reserves, there is now higher emphasis on exploiting various renewable sources of energy. These alternative sources of energy are usually environmentally friendly and emit no pollutants. However, the capital investments for those renewable sources of energy are normally high,…

  4. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    DTIC Science & Technology

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use...Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  5. Alternative Fuels Data Center: Widgets

    Science.gov Websites

    Efficiency and Renewable Energy Get Widget Code × Widget Code Select All Close Vehicle Cost Calculator Share a tool to calculate annual fuel cost and greenhouse gas emissions for alternative fuel and advanced technology vehicles. Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a

  6. Integrated assessment of the health and economic benefits of long-term renewable energy development in China

    NASA Astrophysics Data System (ADS)

    Dai, H.; Xie, Y.; Zhang, Y.

    2017-12-01

    Context/Purpose: Power generation from renewable energy (RE) could substitute huge amount of fossil energy in the power sector and have substantial co-benefits of air quality and human health improvement. In 2016, China National Renewable Energy Center (CNREC) released China Renewable Energy Outlook, CREO2016 and CREO2017, towards 2030 and 2050, respectively, in which two scenarios are proposed, namely, a conservative "Stated Policy" scenario and a more ambitious "High RE" scenario. This study, together with CNREC, aims to quantify the health and economic benefits of developing renewable energy at the provincial level in China up to 2030 and 2050. Methods: For this purpose, we developed an integrated approach that combines a power dispatch model at CNREC, an air pollutant emission projection model using energy consumption data from the Long-range Energy Alternatives Planning System (LEAP) model, an air quality model (GEOS-Chem at Harvard), an own-developed health model, and a macro economic model (Computable General Equilibrium model). Results: All together, we attempt to quantify how developing RE could reduce the concentration of PM2.5 and ozone in 30 provinces of China, how the human health could be improved in terms of mortality, morbidity and work hour loss, and what is the economic value of the health improvement in terms of increased GDP and the value of statistical life lost. The results show that developing RE as stated in the CREO2016 could prevent chronic mortality of 286 thousand people in China in 2030 alone, the value of saved statistical life is worthy 1200 billion Yuan, equivalent to 1.2% of GDP. In addition, averagely, due to reduced mortality and improved morbidity each person could work additionally by 1.16 hours per year, this could contribute to an increase of GDP by 0.1% in 2030. The assessment up to 2050 is still underway. Interpretation: The results imply that when the external benefit of renewable energy is taken into account, RE could be

  7. Panel estimation for renewable and non-renewable energy consumption, economic growth, CO2 emissions, the composite trade intensity, and financial openness of the commonwealth of independent states.

    PubMed

    Rasoulinezhad, Ehsan; Saboori, Behnaz

    2018-04-13

    This article investigates the long-run and causal linkages between economic growth, CO 2 emissions, renewable and non-renewable (fossil fuels) energy consumption, the Composite Trade Intensity (CTI) as a proxy for trade openness, and the Chinn-Ito index as a proxy for financial openness for a panel of the Commonwealth of Independent States (CIS) region including Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan over the period of 1992-2015. It is the first time that CTI and the Chinn-Ito indexes are used in an economic-pollution model. Employing three panel unit root tests, panel cointegration estimation methods (DOLS and FMOLS), and two panel causality tests, the main empirical results provided evidence for the bidirectional long-run relationship between all the variables in all 12 sampled countries except for economic growth-renewable energy use linkage. The findings of causality tests indicated that there is a unidirectional short-run panel causality running from economic growth, financial openness, and trade openness to CO 2 emissions and from fossil fuel energy consumption to renewable energy use.

  8. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  9. Preparation of polyurethane foams using liquefied oil palm mesocarp fibre (OPMF) and renewable monomer from waste cooking oil

    NASA Astrophysics Data System (ADS)

    Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.

    2017-09-01

    The aim of this research is the production of polyurethane (PU) foams with biopolyols from liquefied oil palm mesocarp fibre (OPMF) and renewable monomer. Liquefaction of OPMF was studied using polyhydric alcohol (PA) which is PEG-400 as liquefaction solvents in conventional glass flask. In the second part of this paper was obtained the PU foams which presented good results when compared with commercial foams and include polyols from of fossil fuels. PU foams were prepared by mixing liquefied OPMF biopolyol, renewable monomer from waste cooking, additives and methylene diphenyl diisocyanate (MDI). Water was used as an environmental friendly blowing agent. The factors that influence the cell structure of foams (i.e., catalyst, surfactant, dosage of blowing agent, and mass ratio of biopolyol to renewable monomer were studied. The synthesized PU foams were characterized by FTIR and SEM. The formulation of the PU foams should be improved, but the results show that is possible the use biopolyols and renewable monomer to produce industrial foams with lower cost.

  10. Alternative Fuels Data Center: St. Landry Parish Turns Garbage into

    Science.gov Websites

    Renewable Natural GasA> St. Landry Parish Turns Garbage into Renewable Natural Gas to someone by natural gas to fuel its vehicles. For information about this project, contact Louisiana Clean Fuels - Television's Original Automotive Magazine Provided by Maryland Public Television Related Videos Photo of a car

  11. Renewable Energy and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less

  12. 75 FR 42237 - Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... chemical manufacturing. Industry 424690 5169 Chemical and allied products merchant wholesalers. Industry...-chemical process to gasify separated MSW and other waste products and then use a catalyst to convert the...

  13. 77 FR 1319 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... of the Domestic Aggregate Compliance Approach E. Assessment of the Canadian Aggregate Compliance Approach II. Projection of Cellulosic Volume and Assessment of Biomass-Based Diesel and Advanced Biofuel... Price for Cellulosic Biofuel Waiver Credits B. Assessment of the Domestic Aggregate Compliance Approach...

  14. 75 FR 76789 - Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... have the potential to produce qualifying cellulosic biofuel volumes for consumption as transportation... oxygen content. KiOR currently has a small pilot facility capable of producing 10-15 barrels of bio-crude...

  15. Alternative Fuels in Transportation

    ERIC Educational Resources Information Center

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  16. Emission Reduction of Fuel-Staged Aircraft Engine Combustor Using an Additional Premixed Fuel Nozzle.

    PubMed

    Yamamoto, Takeshi; Shimodaira, Kazuo; Yoshida, Seiji; Kurosawa, Yoji

    2013-03-01

    The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NO x threshold of the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP)/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine's landing and takeoff (LTO) cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NO x standard. However, the reduction in smoke at thrust conditions higher than the 30% MTO condition and of CO emission at thrust conditions lower than the 85% MTO condition are necessary. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NO x emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.

  17. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated, enclosed... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Additional production and fuel gas system...

  18. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Additional production and fuel gas system...

  19. Effect of primary-zone equivalence ratio and hydrogen addition on exhaust emission in a hydrocarbon-fueled combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1974-01-01

    The effects of reducing the primary-zone equivalence ratio on the exhaust emission levels of oxides of nitrogen, carbon monoxide, and unburned hydrocarbons in experimental hydrocarbon-fueled combustor segments at simulated supersonic cruise and idle conditions were investigated. In addition, the effects of the injection of hydrogen fuel (up to 4 percent of the total weight of fuel) on the stability of the hydrocarbon flame and exhaust emissions were studied and compared with results obtained without hydrogen addition.

  20. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark A; Wiser, Ryan

    2008-09-15

    (relative to conventional fuels), we do seek to quantify the magnitude of these two individual benefits. We also note that these benefits are not unique to renewable electricity: other generation (or demand-side) resources whose costs are not tied to natural gas would provide similar benefits.« less

  1. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  2. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  3. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  4. An evaluation of the impact of state Renewable Portfolio Standards (RPS) on retail, commercial, and industrial electricity prices

    NASA Astrophysics Data System (ADS)

    Puram, Rakesh

    renewable energy generation as well as non-renewable energy generation have an impact on residential, industrial, and commercial price. In addition coal price, personal income, and the number of net metering customers in a state impact commercial, industrial and residential electricity rates. There are two main policy implications that stem from this study. First is that while RPS has an impact on residential and commercial electricity rates, the magnitude is small, especially given the average consumption patterns of households and commercial customers. The second policy implication is that it is that given the significance of several explanatory variables in the theoretical model it is important to discuss the relevance of RPS within the context of electricity sources, both renewable and non-renewable, demand side programs, economic factors, as well as fuel costs.

  5. Certification of alternative aviation fuels and blend components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson III, George R.; Edwards, Tim; Corporan, Edwin

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meetingmore » the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  6. 40 CFR 80.1125 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (2) D has the value of 2 if the renewable fuel cannot be categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (h) SSSSSSSS...

  7. 40 CFR 80.1125 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (2) D has the value of 2 if the renewable fuel cannot be categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (h) SSSSSSSS...

  8. 40 CFR 80.1125 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (2) D has the value of 2 if the renewable fuel cannot be categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (h) SSSSSSSS...

  9. 40 CFR 80.1125 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (2) D has the value of 2 if the renewable fuel cannot be categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (h) SSSSSSSS...

  10. 40 CFR 80.1125 - Renewable Identification Numbers (RINs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (2) D has the value of 2 if the renewable fuel cannot be categorized as cellulosic biomass ethanol as defined in § 80.1101(a). (h) SSSSSSSS...

  11. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    PubMed

    Monirul, Islam Mohammad; Masjuki, Haji Hassan; Kalam, Mohammad Abdul; Zulkifli, Nurin Wahidah Mohd; Shancita, Islam

    2017-08-01

    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NO X ) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NO X emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

  12. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    PubMed

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  13. Combustion Enhancement of Liquid Fuels via Nanoparticle Additions: Screening, Dispersion, and Characterization

    DTIC Science & Technology

    2015-06-04

    These include but are not limited to aluminum, boron, boron carbide (B4C), carbon (graphene), titanium, and tungsten nano-sized particles. When...of plots displaying calculated values for aluminum, titanium, and tungsten additives are shown in Figure 1 to illustrate the potential benefits...of additive weight percent and oxidizer/fuel mixture ratio for aluminum, titanium, and tungsten . With recent improvements in the production and

  14. Making use of renewable energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.C.

    1984-01-01

    This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source,more » small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.« less

  15. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    PubMed

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  16. Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Peters, Mike; Muratori, Matteo

    The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.

  17. Correction: All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-01-31

    Correction for 'All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel' by Ping Li et al., Chem. Commun., 2015, 51, 800-803.

  18. Soybean-derived biofuels and home heating fuels.

    PubMed

    Mushrush, George W; Wynne, James H; Willauer, Heather D; Lloyd, Christopher L

    2006-01-01

    It is environmentally enticing to consider replacing or blending petroleum derived heating fuels with biofuels for many reasons. Major considerations include the soaring worldwide price of petroleum products, especially home heating oil, the toxicity of the petroleum-derived fuels and the environmental damage that leaking petroleum tanks afford. For these reasons, it has been suggested that domestic renewable energy sources be considered as replacements, or at the least, as blending stocks for home heating fuels. If recycled soy restaurant cooking oils could be employed for this purpose, this would represent an environmental advantage. Renewable plant sources of energy tend to be less toxic than their petroleum counterparts. This is an important consideration when tank leakage occurs. Home fuel oil storage tanks practically always contain some bottom water. This water environment has a pH value that factors into heating fuel stability. Therefore, the question is: would the biofuel help or exacerbate fuel stability and furnace maintenance issues?

  19. Alternative Fuels Data Center

    Science.gov Websites

    include any fuel derived from co-processing biomass with a feedstock that is not biomass. This tax credit renewable diesel does not include any fuel derived from co-processing biomass with a feedstock that is not ) Second Generation Biofuel Production Property Depreciation Allowance Expired: 12/31/2017 NOTE: This

  20. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    NASA Astrophysics Data System (ADS)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  1. Photon Science for Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's lightmore » sources possible scientific directions for addressing these profound yet urgent challenges.« less

  2. Reimagining Energy in the North: Developing Solutions for Improving Renewable Energy Security in Northern Communities

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Poelzer, G.; Noble, B.; Beatty, B.; Belcher, K.; Chung, T.; Loring, P. A.

    2017-12-01

    The global energy sector is at a crossroads. Efforts to reduce greenhouse gas emissions, volatile fossil fuel prices, the emergence of sustainability markets, and advances in renewable energy technologies are setting the foundation for what could be one of the most significant societal transitions since the industrial revolution. There is a growing movement to "re-energize" Canada, through embracing pathways to facilitate a societal transition a low-carbon future. For example, circumpolar jurisdictions are poised for a transition to renewable energy. There are more than 250 remote, off-grid communities across Canada's North, of which approximately 170 are Indigenous, that rely largely on diesel-fueled generators. Diesel-fueled generation is generally reliable when properly maintained; however, supply is limited, infrastructure is at capacity or in need of major upgrading, and the volatile price of fuel can mean significant social, community and economic opportunity loss. Renewable energy projects offer one possible opportunity to address these challenges. But, given the challenges of human capacity, limited fiscal resources, and regulatory barriers, how can Northern communities participate in the global energy transition and not be left behind? To answer this question, the University of Saskatchewan, together with partners from the circumpolar North, are leading an initiative to develop a cross-sectoral and multi-national consortium of communities, utilities, industries, governments, and academics engaged in renewable energy in the North. This consortium will reimagine energy security in the North by co-creating and brokering the knowledge and understanding to design renewable energy systems that enhance social and economic value. Northern communities and utilities will learn directly from other northern communities and utilities across Canada and internationally about what can be achieved in renewable energy development and the solutions to current and future

  3. Of paradise and clean power: The effect of California's renewable portfolio standard on in-state renewable energy generation

    NASA Astrophysics Data System (ADS)

    Yin, Clifton Lee

    Renewable portfolio standards (RPS), policies that encourage acquisition of electricity from renewable energy sources, have become popular instruments for discouraging the use of climate change inducing-fossil fuels. There has been limited research, however, that empirically evaluates their effectiveness. Using data gathered by three governmental entities -- the federal-level Energy Information Administration and two California agencies, the Employment Development Department and the Department of Finance -- this paper investigates the impact of California's RPS, one of the nation's most ambitious such policies, on in-state renewable energy generation. It finds that the California RPS did not bring about a one-time increase in generation with its inception, nor did it compel an increase in generation over time. These results raise questions as to the best way to structure RPS policies in light of growing interest in the establishment of a national RPS.

  4. Acceleration of Rural Industrialization Using Renewable Energy Technolgoy

    NASA Astrophysics Data System (ADS)

    Abdullah, Kamaruddin

    2007-10-01

    Solar, wind, biomass and micro-hydro can be found in abundant in almost all rural area throughout the world. Despite of the fact that there are already so many research results showing the potential application of these renewable resources to substitute fossil fuel and to increase added value of local products, however, up to now very view if any result that has been realized in significant way. A concept of Small Provessing Unit using renewable energy sources have been introduced in Indonesia since 1999, in which domestically developed conversion technology, such as the greenhouse effect (GHE) solar drying system has been applied to process agricultural products such as coffee, cocoa, soices, various types of fishes and sea weeds. In addition, hybrid nocturnal cooling method has also beeing developed and used to help the farmer in extending shelf life of tropical fruits and vegetables and therefore, contributed in reducing post harvest losses. The Small Processing Unit concept as well as the developed renewable energy technology are now gradually being appreciated by both the central and local authorities, the private sectors including the NGO. The demand of such system is also gradually increasing each year and the area of applications have been extended not only within the heavtily inhavited Java Island but also to the other island of Indonesia. Our experiences in dealing with the system have also been transferred to fellow ASEAN engineers as well as those coming from the African continent through training and workshops activities. The future direction of the development will be to enhace the role of the Small Processing Unit (SPU) by providing more value added facilities driven by renewable energy technology.

  5. Epibenthic assessment of a renewable tidal energy site.

    PubMed

    Sheehan, Emma V; Gall, Sarah C; Cousens, Sophie L; Attrill, Martin J

    2013-01-01

    Concern over global climate change as a result of fossil fuel use has resulted in energy production from renewable sources. Marine renewable energy devices provide clean electricity but can also cause physical disturbance to the local environment. There is a considerable paucity of ecological data at potential marine renewable energy sites that is needed to assess potential future impacts and allow optimal siting of devices. Here, we provide a baseline benthic survey for the Big Russel in Guernsey, UK, a potential site for tidal energy development. To assess the suitability of proposed sites for marine renewable energy in the Big Russel and to identify potential control sites, we compared species assemblages and habitat types. This baseline survey can be used to select control habitats to compare and monitor the benthic communities after installation of the device and contribute towards the optimal siting of any future installation.

  6. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  7. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System

    PubMed Central

    Bugarski, Aleksandar D.; Hummer, Jon A.; Stachulak, Jozef S.; Miller, Arthur; Patts, Larry D.; Cauda, Emanuele G.

    2015-01-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  8. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    PubMed

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (<223 K) branched alkanes with 13 carbons within jet fuel ranges were obtained over a Pd/NbOPO 4 catalyst. Furthermore, C 18,23 fuel precursors could be easily synthesized through Michael addition of 2,4-pentanedione with DFA (double-condensation product of furfural and acetone) under mild conditions and the molar ratio of C 18 /C 23 is dependent on the reaction conditions of Michael addition. After hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Meng, Xiangguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-01-14

    An all-solid-state Z-scheme system array consisting of an Fe2V4O13 nanoribbon (NR)/reduced graphene oxide (RGO)/CdS nanoparticle grown on the stainless-steel mesh was rationally designed for photoconversion of gaseous CO2 into renewable hydrocarbon fuels (methane: CH4).

  10. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    PubMed

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  11. U.S. Laws and Regulations for Renewable Energy Grid Interconnections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyakhovskiy, Ilya; Tian, Tian; McLaren, Joyce

    Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliabilitymore » while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.« less

  12. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  13. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    PubMed Central

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  14. EXPERIMENTAL EVALUATION OF FUEL OIL ADDITIVES FOR REDUCING EMISSIONS AND INCREASING EFFICIENCY OF BOILERS

    EPA Science Inventory

    The report gives results of an evaluation of the effectiveness of combustion-type fuel oil additives to reduce emissions and increase efficiency in a 50-bhp (500 kw) commercial oil-fired packaged boiler. Most additive evaluation runs were made during continuous firing, constant-l...

  15. Technology Validation: Fuel Cell Bus Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie

    This presentation describing the FY 2016 accomplishments for the National Renewable Energy Laboratory's Fuel Cell Bus Evaluations project was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 7, 2016.

  16. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  17. Fuel for the Future: Biodiesel - A Case study

    NASA Astrophysics Data System (ADS)

    Lutterbach, Márcia T. S.; Galvão, Mariana M.

    High crude oil prices, concern over depletion of world reserves, and growing apprehension about the environment, encouraged the search for alternative energy sources that use renewable natural resources to reduce or replace traditional fossil fuels such as diesel and gasoline (Hill et al., 2006). Among renewable fuels, biodiesel has been attracting great interest, especially in Europe and the United States. Biodiesel is defined by the World Customs Organization (WCO) as 'a mixture of mono-alkyl esters of long-chain [C16-C18] fatty acids derived from vegetable oils or animal fats, which is a domestic renewable fuel for diesel engines and which meets the US specifications of ASTM D 6751'. Biodiesel is biodegradable and non toxic, produces 93% more energy than the fossil energy required for its production, reduces greenhouse gas emissions by 40% compared to fossil diesel (Peterson and Hustrulid, 1998; Hill et al., 2006) and stimulates agriculture.

  18. Energy use and greenhouse gas emissions from an algae fractionation process for producing renewable diesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegallapati, Ambica K.; Frank, Edward D.

    In one approach to algal biofuel production, lipids are extracted and converted to renewable diesel and non-lipid remnants are converted to biogas, which is used for renewable heat and power to support the process. Since biofuel economics benefit from increased fuel yield, the National Renewable Energy Laboratory analyzed an alternative pathway that extracts lipids and also makes ethanol from carbohydrates in the biomass. In this paper, we examine the environmental sustainability of this "fractionation pathway" through life-cycle analysis (LCA) of greenhouse gas emissions and energy use. When the feedstock productivity was 30 (18) g/m(2)/d, this pathway emitted 31 (36) gCO(2)e/MJmore » of total fuel, which is less than the emissions associated with conventional low sulfur petroleum diesel (96 gCO(2)e/MJ). The fractionation pathway performed well in this model despite the diversion of carbon to the ethanol fuel.« less

  19. Electrofuels: A New Paradigm for Renewable Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrado, Robert J.; Haynes, Chad A.; Haendler, Brenda E.

    2013-01-01

    Biofuels are by now a well-established component of the liquid fuels market and will continue to grow in importance for both economic and environmental reasons. To date, all commercial approaches to biofuels involve photosynthetic capture of solar radiation and conversion to reduced carbon; however, the low efficiency inherent to photosynthetic systems presents significant challenges to scaling. In 2009, the US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) created the Electrofuels program to explore the potential of nonphotosynthetic autotrophic organisms for the conversion of durable forms of energy to energy-dense, infrastructure-compatible liquid fuels. The Electrofuels approach expands the boundariesmore » of traditional biofuels and could offer dramatically higher conversion efficiencies while providing significant reductions in requirements for both arable land and water relative to photosynthetic approaches. The projects funded under the Electrofuels program tap the enormous and largely unexplored diversity of the natural world, and may offer routes to advanced biofuels that are significantly more efficient, scalable and feedstock-flexible than routes based on photosynthesis. Here, we describe the rationale for the creation of the Electrofuels program, and outline the challenges and opportunities afforded by chemolithoautotrophic approaches to liquid fuels.« less

  20. Economic dispatch optimization for system integrating renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  1. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  2. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOEpatents

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  3. Solid biopolymer electrolytes came from renewable biopolymer

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Xingxiang; Qiao, Zhijun; Liu, Haihui

    2009-07-01

    Solid polymer electrolytes (SPEs) have attracted many attentions as solid state ionic conductors, because of their advantages such as high energy density, electrochemical stability, and easy processing. SPEs obtained from starch have attracted many attentions in recent years because of its abundant, renewable, low price, biodegradable and biocompatible. In addition, the efficient utilization of biodegradable polymers came from renewable sources is becoming increasingly important due to diminishing resources of fossil fuels as well as white pollution caused by undegradable plastics based on petroleum. So N, N-dimethylacetamide (DMAc) with certain concentration ranges of lithium chloride (LiCl) is used as plasticizers of cornstarch. Li+ can complexes with the carbonyl atoms of DMAc molecules to produce a macro-cation and leave the Cl- free to hydrogen bond with the hydroxyl or carbonyl of starch. This competitive hydrogen bond formation serves to disrupt the intra- and intermolecular hydrogen bonding existed in starch. Therefore, melt extrusion process conditions are used to prepare conductive thermoplastic starch (TPS). The improvements of LiCl concentration increase the water absorption and conductance of TPS. The conductance of TPS containing 0.14 mol LiCl achieve to 10-0.5 S cm-1 with 18 wt% water content.

  4. A review of the performance and structural considerations of paraffin wax hybrid rocket fuels with additives

    NASA Astrophysics Data System (ADS)

    Veale, Kirsty; Adali, Sarp; Pitot, Jean; Brooks, Michael

    2017-12-01

    Paraffin wax as a hybrid rocket fuel has not been comprehensively characterised, especially regarding the structural feasibility of the material in launch applications. Preliminary structural testing has shown paraffin wax to be a brittle, low strength material, and at risk of failure under launch loading conditions. Structural enhancing additives have been identified, but their effect on motor performance has not always been considered, nor has any standard method of testing been identified between research institutes. A review of existing regression rate measurement techniques on paraffin wax based fuels and the results obtained with various additives are collated and discussed in this paper. The review includes 2D slab motors that enable visualisation of liquefying fuel droplet entrainment and the effect of an increased viscosity on the droplet entrainment mechanism, which can occur with the addition of structural enhancing polymers. An increased viscosity has been shown to reduce the regression rate of liquefying fuels. Viscosity increasing additives that have been tested include EVA and LDPE. Both these additives increase the structural properties of paraffin wax, where the elongation and UTS are improved. Other additives, such as metal hydrides, aluminium and boron generally offer improvements on the regression rate. However, very little consideration has been given to the structural effects these additives have on the wax grain. A 40% aluminised grain, for example, offers a slight increase in the UTS but reduces the elongation of paraffin wax. Geometrically accurate lab-scale motors have also been used to determine the regression rate properties of various additives in paraffin wax. A concise review of all available regression rate testing techniques and results on paraffin wax based hybrid propellants, as well as existing structural testing data, is presented in this paper.

  5. Clean energy choices: Tips on buying and using renewable energy at home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL

    This brochure provides information on how consumers can use renewable energy in and around the home. Information on buying green power; using renewables to generate power; using passive and active solar and geothermal heat pumps to heat, cool and light buildings; and using alternative fuels and vehicles is included. Resources at the end of each chapter help readers find more information.

  6. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-01-01

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilitiesmore » (biorefineries).« less

  7. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  8. Used fuel extended storage security and safeguards by design roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. Amore » set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.« less

  9. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewablemore » Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.« less

  10. Sustainable energy policy: the impact of government subsidies on ethanol as a renewable fuel

    NASA Astrophysics Data System (ADS)

    Osuagwu, Denis Ahamarula

    The United States Congress passed the Energy Policy Act of 1978 to promote ethanol production and reduce American dependence on foreign oil. The provision of subsidies in the act is indicative of the importance of energy in the economy. America needs a national energy policy that is economically, socially, and environmentally sustainable. Considering the importance of these needs, this study examines (a) the implementation of the Energy Policy Act of 1978 in regard to government subsidies and its effect on ethanol production, (b) the effect of gasoline consumption and cost on ethanol production, (c) the effect of corn production and price on ethanol fuel, and (d) the role of mandates and global crises on ethanol production. Secondary qualitative and quantitative data collected from various sources in 1978 through 2005 study the effect of ethanol subsidies on ethanol production. An autoregression error model is used to estimate the relevance of the explanatory variables on variations in ethanol production. The following are major study findings: (1) there is a positive correlation between corn production and ethanol production, is statistically significant; (2) government subsidies have a statistically significant positive correlation with ethanol production; (3) oil import has a statistically significant positive correlation with ethanol production, but has not contributed to a reduction the quantity of imported oil; (4) the price of corn has a statistically significant inverse relationship with ethanol production; (5) though not statistically significant, the price per barrel of oil is inversely related to ethanol production; (6) the budget surplus or deficit is associated with ethanol production; and (7) advocacy and lobbying for renewable fuel have encouraged support of ethanol production. The findings also show that global crises in the oil producing regions tend to influence the passage of favorable legislation for ethanol production. Furthermore, the

  11. Fuel ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the currentmore » local feedstock requirement.« less

  12. Pyrolysis bio-oil upgrading to renewable fuels.

    DOT National Transportation Integrated Search

    2014-01-01

    This study aims to upgrade woody biomass pyrolysis bio-oil into transportation fuels by catalytic hydrodeoxygenation : (HDO) using nanospring (NS) supported catalyst via the following research objectives: (1) develop nanospring-based : catalysts (nan...

  13. Renewable Fuel Standard (RFS2): Program Amendments Additional Resources

    EPA Pesticide Factsheets

    The final rule amends the RFS2 regulations of 40 CFR Part 80 Subpart M to correct regulatory language that was inconsistent or that inadvertently misrepresented EPA’s intent as reflected in the preamble to the final RFS2 regulations.

  14. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality.

    PubMed

    Erdakos, Garnet B; Bhave, Prakash V; Pouliot, George A; Simon, Heather; Mathur, Rohit

    2014-11-04

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.

  15. Renewable energy delivery systems and methods

    DOEpatents

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  16. 10 CFR 72.42 - Duration of license; renewal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Duration of license; renewal. 72.42 Section 72.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Issuance and...

  17. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-01

    and purification of methane -rich biogas was conducted at the US Air Force Academy. Cost and performance of the technology with respect to renewable...SUBJECT TERMS Food waste, FOG, solid waste, anaerobic digestion, methane , biogas, biomethane, biogas purification, vehicle fuel, renewable energy...The project demonstrated the ability to digest these wastes in a controlled and predictable manner to maximize the generation of biogas, a methane

  18. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  19. Evaluating Renewable Cornstarch/biochar Fillers as Potential Substitutes for Carbon Black in SBR Composites

    USDA-ARS?s Scientific Manuscript database

    The continually growing demand for fossil fuels coupled with the potential risk of relying on foreign sources for these fuels strengthens the need to find renewable substitutes for petroleum products. Carbon black is a petroleum product that dominates the rubber composite filler market. Agricultur...

  20. Sustainability of biofuels and renewable chemicals production from biomass.

    PubMed

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Environmental economics of lignin derived transport fuels.

    PubMed

    Obydenkova, Svetlana V; Kouris, Panos D; Hensen, Emiel J M; Heeres, Hero J; Boot, Michael D

    2017-11-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability. The first factor, the logistics scheme, exhibited the disadvantage of the centralized approach, owing to prohibitively expensive transportation costs of the low energy-dense lignin. Life cycle analysis (LCA) displayed the second critical factor related to alternative energy carrier selection. Natural gas (NG) chosen over additional biomass boosts well-to-wheel greenhouse gas emissions (WTW GHG) to a level incompatible with the reduction targets set by the U.S. renewable fuel standard (RFS). Adversely, the process' economics revealed higher profits vs. fossil energy carrier. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  3. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    NASA Astrophysics Data System (ADS)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  4. Biomass to Liquid Fuels and Electrical Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steven; McDonald, Timothy; Gallagher, Thomas

    This research program provided data on immediate applicability of forest biomass production and logistics models. Also, the research further developed and optimized fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents. Finally, additional research established systematic techniques to determine economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program continued our efforts to educate the next generation of engineers and scientists needed to implement these technologies.

  5. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Science.gov Websites

    Renewable Energy Laboratory Case Studies Video thumbnail for Alabama Prisons Adopt Propane, Establish Fuel , 2016 Video thumbnail for City of Hoover Fleet Boasts 200-Plus Flex Fuel Vehicles City of Hoover Fleet Boasts 200-Plus Flex Fuel Vehicles May 24, 2013 Video thumbnail for Biodiesel Fuels Education in Alabama

  6. Fuel ethanol production from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  7. NREL Dedicates Advanced Hydrogen Fueling Station | News | NREL

    Science.gov Websites

    5 » NREL Dedicates Advanced Hydrogen Fueling Station News Release: NREL Dedicates Advanced Hydrogen Fueling Station October 8, 2015 The Energy Department's National Renewable Energy Laboratory (NREL ) today dedicated its 700 bar hydrogen fueling station, the first of its kind in Colorado and in the

  8. Synthesis of Renewable Triketones, Diketones, and Jet-Fuel Range Cycloalkanes with 5-Hydroxymethylfurfural and Ketones.

    PubMed

    Li, Shanshan; Chen, Fang; Li, Ning; Wang, Wentao; Sheng, Xueru; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-02-22

    A series of renewable C 9 -C 12 triketones with repeating [COCH 2 CH 2 ] units were synthesized in high carbon yields (ca. 90 %) by the aqueous-phase hydrogenation of the aldol-condensation products of 5-hydroxylmethylfurfural (HMF) and ketones over an Au/TiO 2 catalyst. Compared with the reported routes, this new route has many advantages such as being environmentally friendly, having fewer steps, using a cheaper and reusable catalyst, etc. The triketones as obtained can be used as feedstocks in the production of conducting or semi-conducting polymers. Through a solvent-free intramolecular aldol condensation over solid-base catalysts, the triketones were selectively converted to diketones, which can be used as intermediates in the synthesis of useful chemicals or polymers. As another application, the tri- and diketones can also be utilized as precursors for the synthesis of jet-fuel range branched cycloalkanes with low freezing points (224-248 K) and high densities (ca. 0.81 g mL -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kumagai, Naokazu; Izumiya, Koichi; Takano, Hiroyuki; Shinomiya, Hiroyuki; Sasaki, Yusuke; Yoshida, Tetsuya; Kato, Zenta

    2016-12-01

    The history reveals the continuous increase in world energy consumption and carbon emissions. For prevention of intolerable global warming and complete exhaustion of fossil fuels we need complete conversion from fossil fuel consumption to renewable energy. We have been performing the research and development of global carbon dioxide recycling for more than 25 years to supply renewable energy to the world in the form of methane produced by the reaction of carbon dioxide captured from chimney with hydrogen generated electrolytically using electricity generated by renewable energy. We created the cathode and anode for electrolytic hydrogen generation and the catalyst for carbon dioxide methanation by the reaction with hydrogen. The methane formation from renewable energy will be the most convenient and efficient key technology for the use of renewable energy by storage of intermittent and fluctuating electricity generated from renewable energy and by regeneration of stable electricity. Domestic and international cooperation of companies for industrialization is in progress.

  10. Nanomaterials for renewable energy production and storage.

    PubMed

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-07

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  11. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  12. Bulk Fuel Pricing: DOD Needs to Take Additional Actions to Establish a More Reliable Methodology

    DTIC Science & Technology

    2015-11-19

    Page 1 GAO-16-78R Bulk Fuel Pricing 441 G St. N.W. Washington, DC 20548 November 19, 2015 The Honorable Ashton Carter The Secretary of...Defense Bulk Fuel Pricing : DOD Needs to Take Additional Actions to Establish a More Reliable Methodology Dear Secretary Carter: Each fiscal...year, the Office of the Under Secretary of Defense (Comptroller), in coordination with the Defense Logistics Agency, sets a standard price per barrel

  13. 24 CFR 583.235 - Renewal grants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... as in effect before October 28, 1992, may be renewed on a noncompetitive basis to continue ongoing leasing, operations, and supportive services for additional years beyond the initial funding period. To be considered for renewal funding for leasing, operating costs, or supportive services, recipients must submit a...

  14. 24 CFR 583.235 - Renewal grants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as in effect before October 28, 1992, may be renewed on a noncompetitive basis to continue ongoing leasing, operations, and supportive services for additional years beyond the initial funding period. To be considered for renewal funding for leasing, operating costs, or supportive services, recipients must submit a...

  15. Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition.

    PubMed

    Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina

    2007-09-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.

  16. Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Glasser, Melodie

    Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the contextmore » of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.« less

  17. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; mixed alkyl esters of plant and/or animal origin (biodiesel). For each such group, the representative to... following concentration: (A) For biodiesel groups, the representative shall be 100 percent biodiesel fuel...

  18. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; mixed alkyl esters of plant and/or animal origin (biodiesel). For each such group, the representative to... following concentration: (A) For biodiesel groups, the representative shall be 100 percent biodiesel fuel...

  19. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; mixed alkyl esters of plant and/or animal origin (biodiesel). For each such group, the representative to... following concentration: (A) For biodiesel groups, the representative shall be 100 percent biodiesel fuel...

  20. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; mixed alkyl esters of plant and/or animal origin (biodiesel). For each such group, the representative to... following concentration: (A) For biodiesel groups, the representative shall be 100 percent biodiesel fuel...

  1. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less

  2. A vernonia diacylglycerol acyltransferase can increase renewable oil production

    USDA-ARS?s Scientific Manuscript database

    Increasing the production of plant oils such as soybean oil, a critical renewable resource for food and fuel, will be highly valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a h...

  3. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    NASA Astrophysics Data System (ADS)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  4. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    USDA-ARS?s Scientific Manuscript database

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  5. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong.

    PubMed

    Woon, Kok Sin; Lo, Irene M C

    2016-01-01

    Hong Kong is experiencing a pressing need for food waste management. Currently, approximately 3600 tonnes of food waste are disposed of at landfills in Hong Kong daily. The landfills in Hong Kong are expected to be exhausted by 2020. In the long run, unavoidable food waste should be sorted out from the other municipal solid waste (MSW) and then valorized into valuable resources. A simple sorting process involving less behavioural change of residents is, therefore, of paramount importance in order to encourage residents to sort the food waste from other MSW. In this paper, a sustainable framework of food waste collection and recycling for renewable biogas fuel production is proposed. For an efficient separation and collection system, an optic bag (i.e. green bag) can be used to pack the food waste, while the residual MSW can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations in the conventional way (i.e. refuse collection vehicles). At the refuse transfer stations, the food waste is separated from the residual MSW using optic sensors which recognize the colours of the bags. The food waste in the optic bags is then delivered to the proposed Organic Waste Treatment Facilities, in which biogas is generated following the anaerobic digestion technology. The biogas can be further upgraded via gas upgrading units to a quality suitable for use as a vehicle biogas fuel. The use of biogas fuel from food waste has been widely practiced by some countries such as Sweden, France, and Norway. Hopefully, the proposed framework can provide the epitome of the waste-to-wealth concept for the sustainable collection and recycling of food waste in Hong Kong. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Alternative Fuel for Portland Cement Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were

  7. Consumer Views: Importance of Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on the importance of fuel economy amongst other vehicle attributes and views on which alternative fuel types would be the best and worst replacements for gasoline.

  8. Promoting STEM to Young Students by Renewable Energy Applications

    ERIC Educational Resources Information Center

    Pecen, Recayi; Humston, Jill L.; Yildiz, Faruk

    2012-01-01

    The Math-Science-Engineering Technology in Iowa on Applied Renewable Energy Areas (MSETI-AREA) projects are aimed at providing area school teachers with an applied mathematics and science curriculum package based on photovoltaic (PV) power, wind power, human power and hydrogen fuel-cell fundamentals. The MSETI-AREA project has established a…

  9. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Additional requirements for vessels carrying vehicles... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel...

  10. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Additional requirements for vessels carrying vehicles... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel...

  11. Learning about Renewable Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to renewable energy, discussing: (1) the production of electricity from sunlight; (2) wind power; (3) hydroelectric power; (4) geothermal energy; and (5) biomass. Also provided are nine questions to answer (based on the readings), four additional questions to answer (which require additional information), and…

  12. 77 FR 65542 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee... Updates Congressional Fuel Cell Caucuses NREL Reports on Hydrogen in Natural Gas Pipelines and...

  13. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management,more » energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.« less

  14. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel.

    PubMed

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S; Vallinayagam, R

    2018-06-01

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO X emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO X emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO X emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO X emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  15. Energy Efficiency and Renewable Energy Legislation in the 109th Congress

    DTIC Science & Technology

    2006-08-14

    law November 19. H.R. 2498 ( Hulshof )/S. 1076 (Lincoln) Extends through December 31, 2010, the tax credit for biodiesel used as fuel and the excise...Resources. H.R. 5650 ( Hulshof ) Renewable Fuels and Energy Independence Promotion Act of 2006. The bill would make permanent certain tax incentives for...Committee on Armed Services. Includes $60 million authorization. Reported (S.Rept. 109-69) May 17. S. 1076 (Lincoln)/H.R. 2498 ( Hulshof ) Extends

  16. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  17. Design, analysis, operation, and advanced control of hybrid renewable energy systems

    NASA Astrophysics Data System (ADS)

    Whiteman, Zachary S.

    Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data

  18. Building renewable electricity supply in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, L.M.

    1997-12-31

    Bangladesh is experiencing a severe electric power capacity crisis that is only likely to worsen over the next 15 years. Further, over 80% of Bangladesh`s population still lives with no electricity, and the rate of grid expansion to connect rural villages is threatened by the looming capacity shortage. There are a number of underlying reasons for the crisis, but ultimately the country lacks the fossil fuel resources required to conduct a large scale grid-expansion program. Alternative approaches to electrifying the country must be found. This paper outlines the prospects for wind and solar power in Bangladesh, and estimates the potentialmore » for commercial applications now and in the future. This includes a technical assessment, a market assessment, an environmental assessment, and a policy assessment. The paper concludes that Bangladesh holds the potential to cost-effectively meet a significant fraction of its future electricity demand through the use of renewable generation technologies, possibly adding as much renewable capacity as the current overall electric power capacity of the country. Many parts of the country have favorable solar and wind conditions and there are many potentially cost-effective applications. But the country must develop a policy framework that allows and encourages private investors to develop renewable energy projects in order to realize the enormous potential of renewables.« less

  19. Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells.

    PubMed

    Miyahara, Morio; Sakamoto, Akihiro; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-12-01

    Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial fuel cells. Microbiological analyses show that iron and sulfate separately affect anode microbiomes, and the increase in power output is associated with the increases in bacteria affiliated with the families Geobacteraceae and/or Desulfuromonadaceae. We suggest that poly iron sulfate is an effective additive for increasing the electric output from microbial fuel cells. Other utilities of poly iron sulfate in microbial fuel cells are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Reporting Codes and Fuel Pathways for the EPA Moderated Transaction System (EMTS)

    EPA Pesticide Factsheets

    Users should reference this document for a complete list of all reporting codes and all possible fuel pathways for Renewable Fuel Standard (RFS) and Fuels Averaging, Banking and Trading (ABT) users of the EPA Moderated Transaction System (EMTS).

  1. Microalgae Feedstocks for Aviation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigmosta, Mark S.; Coleman, Andre; Venteris, Erik

    There is significant global interest in developing, testing, and using alternative jet fuels for both commercial and military use in an effort to create a sustainable and stable fuel supply while reducing greenhouse gas emissions. Currently, the aviation industry is entirely dependent on a finite-supply of petroleum based fuel sourced in part by politically and economically unstable regions of the world. Commercial jet fuel use within the contiguous United States (CONUS) was 17.8 billion gallons per year (BGY) in 2009, while jet fuel use in 2010 by the U.S. Air Force (USAF), Navy, and Army was 1.5 BGY, 0.6 BGY,more » and 0.8 BGY, respectively (Carter et al., 2011). U.S. commercial and military aviation sectors have set ambitious near-term alternative fuel and environmental performance targets. This includes a tentative Federal Aviation Administration (FAA) goal of 1 BGY alternative fuel use by commercial aircraft by 2018. The USAF has set a target of 50% for USAF domestic aviation via alternative fuels by 2016 (0.73 BGY), and 50% of the Navy’s total energy consumption afloat (0.3 BGY) will come from alternative fuels by 2020 (Carter et al., 2011). If these targets become policy, at least 2 BGY of domestically-produced alternative jet fuel will be required by 2020. The Energy Independence and Security Act (EISA) of 2007 established production requirements for domestic alternative fuels under the Renewable Fuel Standard (RFS). For example, 36 billion gallons of renewable fuel must be produced by 2022, of which 21 billion gallons shall be advanced biofuels. EISA defines advanced biofuels as non-corn starch derived biofuels having lifecycle greenhouse gas emissions 50% lower than gasoline. There a number of potential fuel pathways for meeting the RFS. One of these is biomass-based diesel, including jet fuel (Schnepf and Yacobucci, 2013). The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) has a stated goal in its 2013 Multi-Year Program Plan

  2. Exergy-based efficiency and renewability assessment of biofuel production.

    PubMed

    Dewulf, J; Van Langenhove, H; Van De Velde, B

    2005-05-15

    This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy.

  3. Toward a Regional Geography of Renewable Electrical Energy Resources.

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  4. A Data Envelopment Analysis Model for Renewable Energy Technology Selection

    USDA-ARS?s Scientific Manuscript database

    Public and media interest in alternative energy sources, such as renewable fuels, has rapidly increased in recent years due to higher prices for oil and natural gas. However, the current body of research providing comparative decision making models that either rank these alternative energy sources a...

  5. Alternative Fuel Fleet Vehicle Evaluations | Transportation Research | NREL

    Science.gov Websites

    renewable resources. The renewable diesel under study, produced by Solazyme, is an algae-derived drop-in on the engines and fuel systems of Ford cargo vans and Mack tractor trucks. The results of this study International Truck and Engine Corporation. The results of this study are featured in the Final Operability and

  6. BIO-ETHANOL FUELS: SHORT-TERM SOLUTIONS, LONG-TERM DISASTERS

    EPA Science Inventory

    Ethanol derived from bio-mass is often advocated as a significant contributor to possible solutions to our need for a sustainable transportation fuel. Substituting bio-ethanol for conventional fuel immediately addresses the issue of reducing our use of non-renewable resources (f...

  7. Additive Manufacturing: Unlocking the Evolution of Energy Materials

    PubMed Central

    Zhakeyev, Adilet; Wang, Panfeng; Shu, Wenmiao; Wang, Huizhi

    2017-01-01

    Abstract The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near‐complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage. PMID:29051861

  8. Additive Manufacturing: Unlocking the Evolution of Energy Materials.

    PubMed

    Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin

    2017-10-01

    The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.

  9. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  10. Rewards of renewables

    NASA Astrophysics Data System (ADS)

    McNamee, Gregory

    2008-09-01

    In 1987 an American-style fridge freezer would use about 950 kWh of electricity and cost about 150 (£80) a year to run. Two decades on, a comparable appliance uses half the electricity and costs less than half as much to run. In 1975 there were about 3780 000 cars on the streets of Los Angeles, whereas today there are more than 5200 000 - yet air-pollution levels have fallen by half and an increasing number of those vehicles are hybrids or rely on renewable fuels like bio-diesel. Last year, half a million homes in Southern California were receiving direct solar power, either from solar electricity plants or from rooftop photovoltaic panels.

  11. 75 FR 79964 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... after July 1, 2010, may only be generated and transferred using the EPA Moderated Transaction System.... 80.1426; --Sec. 80.1426(f)(12), which clarified the requirements for gas used for process heat at a... (RINs) are treated under each program. However, in the final RFS2 rule, the section on product transfer...

  12. The Palm Desert renewable [hydrogen] transportation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less

  13. Alternative Fuels Data Center: West Virginia Transportation Data for

    Science.gov Websites

    Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon (bbl/day) 20,000 Renewable Power Plants 13 Renewable Power Plant Capacity (nameplate, MW) 751 Source Source: Average prices per gasoline gallon equivalent (GGE) for the Lower Atlantic PADD from the

  14. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation frommore » 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in

  15. 10 CFR 70.73 - Renewal of licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Renewal of licenses. 70.73 Section 70.73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special Nuclear Material § 70.73 Renewal of...

  16. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  17. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  18. Renewability and sustainability aspects of nuclear energy

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, 233U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO2/RG-PuO2) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG-PuO2 + 96 % ThO2; 6 % RG-PuO2 + 94 % ThO2; 10 % RG-PuO2 + 90 % ThO2; 20 % RG-PuO2 + 80 % ThO2; 30 % RG-PuO2 + 70 % ThO2, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ˜ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ˜ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG-PuO2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ˜160 kg 233U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ˜1.3.

  19. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch

  20. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa.

    PubMed

    Hanif, Imran

    2018-05-01

    The present study explores the impact of economic growth; urban expansion; and consumption of fossil fuels, solid fuels, and renewable energy on environmental degradation in developing economies of Sub-Saharan Africa. To demonstrate its findings in detail, the study adopts a system generalized method of moment (GMM) on a panel of 34 emerging economies for the period from 1995 to 2015. The results describe that the consumption of fossil and solid fuels for cooking and expansion of urban areas are significantly contributing to carbon dioxide emissions, on one end, and stimulating air pollution, on the other. The results also exhibit an inverted U-shape relationship between per capita economic growth and carbon emissions. This relation confirms the existence of an environmental Kuznets curve (EKC) in middle- and low-income economies of Sub-Saharan Africa. Furthermore, the findings reveal that the use of renewable energy alternatives improves air quality by controlling carbon emissions and lowering the direct interaction of households with toxic gases. Thus, the use of renewable energy alternatives helps the economies to achieve sustainable development targets.

  1. Social Media Listening and Title IX Training Crisis: Implications for Discourse of Renewal

    ERIC Educational Resources Information Center

    Mazer, Joseph P.; Dutchak, Iaroslava; Thatcher, Jason Bennett

    2017-01-01

    Courses: Undergraduate or graduate organizational/crisis communication or public relations courses. Objective: The goal for this single class activity is for students to apply discourse of renewal to an organizational crisis fueled through social media.

  2. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Additional requirements for vessels carrying vehicles with fuel in their tanks. 111.105-39 Section 111.105-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels...

  3. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Additional requirements for vessels carrying vehicles with fuel in their tanks. 111.105-39 Section 111.105-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels...

  4. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Additives. 79.31 Section 79.31... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives... persons or property on a street or highway. For purposes of this registration, however, additives...

  5. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Additives. 79.31 Section 79.31... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives... persons or property on a street or highway. For purposes of this registration, however, additives...

  6. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Additives. 79.31 Section 79.31... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives... persons or property on a street or highway. For purposes of this registration, however, additives...

  7. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Additives. 79.31 Section 79.31... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives... persons or property on a street or highway. For purposes of this registration, however, additives...

  8. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Additives. 79.31 Section 79.31... OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.31 Additives. (a) All additives... persons or property on a street or highway. For purposes of this registration, however, additives...

  9. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  10. Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil - A case study in Malaysia.

    PubMed

    Cheah, Kin Wai; Yusup, Suzana; Gurdeep Singh, Haswin Kaur; Uemura, Yoshimitsu; Lam, Hon Loong

    2017-12-01

    This work describes the economic feasibility of hydroprocessed diesel fuel production via catalytic decarboxylation of rubber seed oil in Malaysia. A comprehensive techno-economic assessment is developed using Aspen HYSYS V8.0 software for process modelling and economic cost estimates. The profitability profile and minimum fuels selling price of this synthetic fuels production using rubber seed oil as biomass feedstock are assessed under a set of assumptions for what can be plausibly be achieved in 10-years framework. In this study, renewable diesel processing facility is modelled to be capable of processing 65,000 L of inedible oil per day and producing a total of 20 million litre of renewable diesel product per annual with assumed annual operational days of 347. With the forecasted renewable diesel retail price of 3.64 RM per kg, the pioneering renewable diesel project investment offers an assuring return of investment of 12.1% and net return as high as 1.35 million RM. Sensitivity analysis conducted showed that renewable diesel production cost is most sensitive to rubber seed oil price and hydrogen gas price, reflecting on the relative importance of feedstock prices in the overall profitability profile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nanofluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  12. 76 FR 28759 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Advisory Committee (HTAC) was established under section 807 of the Energy Policy Act of 2005 (EPACT... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of Energy Efficiency and Renewable Energy, Department of...

  13. Sustainable and Renewable Energy Resources — Alternative Forms of Energy

    NASA Astrophysics Data System (ADS)

    Rao, M. C.

    In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.

  14. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    NASA Astrophysics Data System (ADS)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  15. Alternative Fuels Data Center

    Science.gov Websites

    Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005), eligible producers of advanced biofuels, or fuels derived from renewable biomass other than corn kernel starch, may receive payments to support expanded production of advanced biofuels. Payment amounts will depend on the quantity

  16. Impact of Energy Policy Act of 2005 Section 206 Rebates on Consumers and Renewable Energy Consumption, With Projections to 2010

    EIA Publications

    2006-01-01

    The Energy Information Administration (EIA), with the agreement of the Department, interpreted section 206(d) as calling for a listing of the types of renewable fuels available today, and a listing of those that will be available in the future based on the incentives provided in section 206(d). This report provides that information, and also provides information concerning renewable energy equipment and renewable energy consumption.

  17. g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels.

    PubMed

    Tonda, Surendar; Kumar, Santosh; Bhardwaj, Monika; Yadav, Poonam; Ogale, Satishchandra

    2018-01-24

    2D/2D interface heterostructures of g-C 3 N 4 and NiAl-LDH are synthesized utilizing strong electrostatic interactions between positively charged 2D NiAl-LDH sheets and negatively charged 2D g-C 3 N 4 nanosheets. This new 2D/2D interface heterojunction showed remarkable performance for photocatalytic CO 2 reduction to produce renewable fuels such as CO and H 2 under visible-light irradiation, far superior to that of either single phase g-C 3 N 4 or NiAl-LDH nanosheets. The enhancement of photocatalytic activity could be attributed mainly to the excellent interfacial contact at the heterojunction of g-C 3 N 4 /NiAl-LDH, which subsequently results in suppressed recombination, and improved transfer and separation of photogenerated charge carriers. In addition, the optimal g-C 3 N 4 /NiAl-LDH nanocomposite possessed high photostability after successive experimental runs with no obvious change in the production of CO from CO 2 reduction. Our findings regarding the design, fabrication and photophysical properties of 2D/2D heterostructure systems may find use in other photocatalytic applications including H 2 production and water purification.

  18. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  19. 76 FR 46329 - Notice of Issuance of Renewed Materials License No. SNM-2504; Department of Energy; Fort St...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Materials License No. SNM-2504; Department of Energy; Fort St. Vrain Independent Spent Fuel Storage... INFORMATION CONTACT: Christopher Staab, Project Manager, Division of Spent Fuel Storage and Transportation... issued renewed Materials License No. SNM-2504 to the Department of Energy (DOE) for the receipt...

  20. The Use of Hydrogen as a Fuel for Engines in the Energy Cycle of Remote Production Facilities

    NASA Astrophysics Data System (ADS)

    Ivanov, M. F.; Kiverin, A. D.; Smygalina, A. E.; Zaichenko, V. M.

    2018-01-01

    The approach to using hydrogen as fuel, which ensures the smooth operation of autonomous power systems that use renewable energy sources (wind or solar power installations) with the stochastic mode of power generation, has been presented. The fundamental possibility of implementing the nondetonation combustion of hydrogen via the addition of ecologically clean components or a small percentage of methane has been demonstrated by methods of mathematical modeling.