Sample records for address flammable gas

  1. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  2. Flammable gas technical basis document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-22

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls.

  3. Flammable Gas Technical Basis Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-07-30

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls. Revision 1 incorporates comments received from ORP.

  4. Thermal Flammable Gas Production from Bulk Vitrification Feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less

  5. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  6. Flammable Gas Safety Self-Study 52827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    2016-03-17

    This course, Flammable Gas Safety Self-Study (COURSE 52827), presents an overview of the hazards and controls associated with commonly used, compressed flammable gases at Los Alamos National Laboratory (LANL).

  7. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  8. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  9. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  10. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  11. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  12. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... each flammable gas detection system that is in a gas-dangerous space or area must meet §§ 154.1000... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section 154.1350 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  13. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... each flammable gas detection system that is in a gas-dangerous space or area must meet §§ 154.1000... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas detection system. 154.1350 Section 154.1350 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  14. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  15. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  16. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  17. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  18. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  19. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flammable gas concentration over the concentration or volume ranges under paragraph (t) or (u) of this... a cargo concentration that is 30% or less of the lower flammable limit in air of the cargo carried... the space where the gas detection system's readout is located and must meet § 154.1365. (h) Remote...

  20. A risk-based approach to flammable gas detector spacing.

    PubMed

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  1. Flammable gas data evaluation. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.D.; Meyer, P.A.; Miller, N.E.

    1996-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements formore » insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.« less

  2. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... believes that actions are necessary to install real time monitoring to measure tank ventilation flowrates... monitoring. In its August letter, the Board noted that DOE's SAC for flammable gas monitoring exhibited a... flammable gas monitoring, it remained inadequate as a credited safety control. The SAC is less reliable than...

  3. Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-07-30

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.

  4. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  5. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  6. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  7. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  8. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  9. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  10. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NOEMAIL), J; David Allison; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that amore » nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.« less

  11. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  12. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  13. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  14. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  15. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  16. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE...

  17. Interstage Flammability Analysis Approach

    NASA Technical Reports Server (NTRS)

    Little, Jeffrey K.; Eppard, William M.

    2011-01-01

    The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.

  18. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  19. Flammability of gas mixtures. Part 1: fire potential.

    PubMed

    Schröder, Volkmar; Molnarne, Maria

    2005-05-20

    International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.

  20. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review.

  1. Offsite radiological consequence analysis for the bounding flammable gas accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-19

    The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST).more » A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.« less

  2. Polymer flammability

    DOT National Transportation Integrated Search

    2005-05-01

    This report provides an overview of polymer flammability from a material science perspective and describes currently accepted test methods to quantify burning behavior. Simplifying assumptions about the gas and condensed phase processes of flaming co...

  3. Flammability Indices for Refrigerants

    NASA Astrophysics Data System (ADS)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  4. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less

  5. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  6. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  7. Potential impact radius formulae for flammable gases other than natural gas subject to 49 CFR 192 : final report.

    DOT National Transportation Integrated Search

    2005-06-01

    This report was prepared in accordance with the Statement of Work and proposal submitted in : response to RFP for Technical Task Order Number 13 (TTO 13) entitled Potential Impact Radius : Formulae for Flammable Gases Other Than Natural Gas. : ...

  8. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  9. Flammability tests for regulation of building and construction materials

    Treesearch

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  10. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic

  11. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Lambert, D.

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. Tomore » address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability

  12. Initial parametric study of the flammability of plume releases in Hanford waste tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less

  13. Flammable and noxious gas sensing using a microtripolar electrode sensor with diameter and chirality sorted single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Duan, Zhe min; Zhang, Yong

    2013-08-01

    We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.

  14. Flow Effects on the Flammability Diagrams of Solid Fuels

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.

    1997-01-01

    A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.

  15. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable solids...

  16. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less

  17. 75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Flammable Solid'' and ``Flammable Solid'' AGENCY: Consumer Product Safety Commission. ACTION: Final rule... to correct internal citations to the definitions of ``extremely flammable solid'' and ``flammable solid'' in our regulations. DATES: This rule is effective on August 13, 2010. FOR FURTHER INFORMATION...

  18. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The...

  19. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  20. Flammability as an ecological and evolutionary driver

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.; Schwilk, Dylan W.

    2017-01-01

    We live on a flammable planet yet there is little consensus on the origin and evolution of flammability in our flora.We argue that part of the problem lies in the concept of flammability, which should not be viewed as a single quantitative trait or metric. Rather, we propose that flammability has three major dimensions that are not necessarily correlated: ignitability, heat release and fire spread rate. These major axes of variation are controlled by different plant traits and have differing ecological impacts during fire.At the individual plant scale, these traits define three flammability strategies observed in fire-prone ecosystems: the non-flammable, the fast-flammable and the hot-flammable strategy (with low ignitability, high flame spread rate and high heat release, respectively). These strategies increase the survival or reproduction under recurrent fires, and thus, plants in fire-prone ecosystems benefit from acquiring one of them; they represent different (alternative) ways to live under recurrent fires.Synthesis. This novel framework based on different flammability strategies helps us to understand variability in flammability across scales, and provides a basis for further research.

  1. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...

  2. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...

  3. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...

  4. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...

  5. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  6. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  7. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  8. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  9. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  10. Prediction and assessment of flammability hazards associated with metered-dose inhalers containing flammable propellants.

    PubMed

    Dalby, R N

    1992-05-01

    Several potential replacements for chlorofluorocarbons (CFCs) in metered-dose inhalers (MDIs) are flammable. The flammability hazard associated with their use was assessed using a range of MDIs containing 0-100% (w/w) n-butane (flammable) in HFC-134a (non-flammable) fitted with either 25-, 63-, or 100-microliters metering valves or continuous valves. In flame projection tests each MDI was fired horizontally into a flame, and the ignited flume length emitted from the MDI was measured. Flame projections of greater than or equal to 60 cm were produced by all formulations fitted with continuous valves which contained greater than or equal to 40% (w/w) n-butane in HFC-134a. Using metering valves the maximum flame projection obtained was 30 cm. This was observed with a formulation containing 90% (w/w) n-butane in HFC-134a and a 100-microliters valve. For a particular formulation, smaller metering valves produced shorter flame projections. Because many MDIs are used in conjunction with extension devices, the likelihood of accidental propellant vapor ignition was determined in Nebuhaler and Inspirease reservoirs and a Breathancer spacer. Ignition was predictable based on propellant composition, metered volume, number of actuations, and spacer capacity. Calculated n-butane concentrations in excess of the lower flammability limit [LFL; 1.9% (v/v)] but below the upper flammability limit [UFL; 8.5% (v/v)] were usually predictive of flammability following ignition by a glowing nichrome wire mounted inside the extension device. No ignition was predicted or observed following one or two 25-microliters actuations of 100% n-butane into large volume Nebuhaler (750 ml) or Inspirease (660 ml) devices.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  12. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  13. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  14. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  15. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  16. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a red...

  17. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a red...

  18. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  19. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability test. 1611.4 Section 1611.4... FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The... protect the igniter flame and specimen from air currents during tests, yet contain a suitable door or...

  20. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  1. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  2. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  3. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  4. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  5. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  6. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  7. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  8. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  9. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable...

  10. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable...

  11. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  12. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  13. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  14. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  15. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  16. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519, the...

  17. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519, the...

  18. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  19. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  20. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  1. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  2. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.

    PubMed

    Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok

    2015-03-25

    In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.

  3. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable and flammable contents of self-pressurized containers. 1500.45 Section 1500.45 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND...

  4. Modelling leaf, plant and stand flammability for ecological and operational decision making

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however

  5. Control of Materials Flammability Hazards

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis E.

    2003-01-01

    This viewgraph presentation provides information on selecting, using, and configuring spacecraft materials in such a way as to minimize the ability of fire to spread onboard a spacecraft. The presentation gives an overview of the flammability requirements of NASA-STD-6001, listing specific tests and evaluation criteria it requires. The presentation then gives flammability reduction methods for specific spacecraft items and materials.

  6. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    DTIC Science & Technology

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  7. 16 CFR § 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability-general requirement. § 1611.3 Section § 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  8. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  9. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  10. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  11. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  12. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  13. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  14. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  15. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  16. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  17. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  18. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  19. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  20. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  1. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conflict with flammability standards. 423.9... TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability standards. If there is a conflict between this regulation and any regulations issued under the Flammable Fabrics...

  2. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  3. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desiresmore » a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected

  4. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... protective devices. (4) Means available for controlling or extinguishing a fire, such as stopping flow of...

  5. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  6. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  7. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  8. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  9. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in...

  10. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in...

  11. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  12. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  13. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  14. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  15. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  16. A study on flammability limits of fuel mixtures.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira

    2008-07-15

    Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula. As for the upper limits, however, some are close to the calculated values but some are not. It has been found that the deviations of the observed values of upper flammability limits from the calculated ones are mostly to lower concentrations. Modification of Le Chatelier's formula was made to better fit to the observed values of upper flammability limits. This procedure reduced the average difference between the observed and calculated values of upper flammability limits to one-third of the initial value.

  17. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact...

  18. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact adhesives, also known as contact bonding cements, when distributed in containers intended or suitable for...

  19. Antimisting kerosene atomization and flammability

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.

    1982-01-01

    Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.

  20. Bark flammability as a fire-response trait for subalpine trees

    PubMed Central

    Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher

    2013-01-01

    Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473

  1. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  2. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  3. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  4. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  5. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  6. Plant traits determine forest flammability

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this

  7. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  8. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  9. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  10. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  11. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  12. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  13. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  14. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  15. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  16. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  17. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  18. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  19. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  20. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  1. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  2. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  3. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  4. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  5. Spacecraft and Navy Materials Flammability: Review of Some Concepts and Test Methods

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2004-01-01

    The agenda covered by this viewgraph presentation includes: 1) Concepts of Spacecraft Fire Safety; 2) Spacecraft materials flammability test methods; 3) Evaluation of flight hardware flammability; 4) Review of flammability data in conditions of interest to the Navy; 5) Overview of some flammability test methods recommended for the Navy.

  6. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000 ...

  7. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000 ...

  8. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Class 3 (flammable liquid) materials in tank cars... CARRIAGE BY RAIL Detailed Requirements for Class 3 (Flammable Liquid) Materials § 174.304 Class 3 (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other...

  9. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  10. On the temperature dependence of flammability limits of gases.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... detection system must not pass through any gas-safe space, except the gas-safe space in which the gas... system in a gas-safe space must: (1) Have a shut-off valve in each sampling line from an enclosed space...

  12. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... detection system must not pass through any gas-safe space, except the gas-safe space in which the gas... system in a gas-safe space must: (1) Have a shut-off valve in each sampling line from an enclosed space...

  13. Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.

    1999-01-01

    The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the

  14. The Effect of the Presence of Ozone on the Lower Flammability Limit (LFL) of Hydrogen in Vessels Containing Savannah River Site High Level Waste - 12387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherburne, Carol; Osterberg, Paul

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen ismore » flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of

  15. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Fire and Flammability Characteristics of Materials Used in Rail Passenger Cars. A Literature Survey.

    DTIC Science & Technology

    1980-04-01

    Charac- teristics of Fiber -Reinforced Organic-Matrix Composites ," Report No. MAT-77-21, David W. Taylor Naval Ship R&D Center, Annapolis, MD 21402, June...were limited to poly- vinyl chloride, urethanes, wool, and Nomex fiber ;and gas analysis was limited to carbon monoxide, hydrogen cyanide, and...liberation, smoke emission, combustion products, toxicity, pyrolysis, plastics, polymers, synthetic fibers , flammability test methods. 20, A MT’NACT (mftM m

  17. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under the Consumer Product Safety Act extremely flammable contact adhesives covered by this labeling... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...

  18. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... under the Consumer Product Safety Act extremely flammable contact adhesives covered by this labeling... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...

  19. Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike

    2010-01-01

    The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.

  20. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Class 3 (flammable and combustible liquids). (a) General. Exceptions for hazardous materials shipments... flammable liquids (Class 3) and combustible liquids are excepted from labeling requirements, unless the... aircraft, the following combination packagings are authorized: (1) For flammable liquids in Packing Group I...

  1. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  2. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  3. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  4. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  5. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  6. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable...

  7. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...

  8. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...

  9. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...

  10. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Rassat; CW Stewart; BE Wells

    2000-01-26

    Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate howmore » added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant

  11. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...

  12. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...

  13. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings for certain flammable solids. 173.223 Section 173.223 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk xylene...

  14. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packagings for certain flammable solids. 173.223 Section 173.223 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk xylene...

  15. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity & Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J.

    2001-01-01

    One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.

  16. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  17. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  18. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  19. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  20. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  1. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... Apparatus Views ER25MR08.001 ...

  2. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... Apparatus Views ER25MR08.001 ...

  3. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  4. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  5. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  6. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  7. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  8. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  9. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  10. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  11. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  12. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing...

  13. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  14. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  15. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  16. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  17. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  18. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  19. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  20. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  1. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  2. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  3. Flammability of litter from southeastern trees: a preliminary assessment

    Treesearch

    J. Morgan Varner; Jeffrey M. Kane; Erin M. Banwell; Jesse K. Kreye

    2015-01-01

    The southeastern United States possesses a great diversity of woody species and an equally impressive history of wildland fires. Species are known to vary in their flammability, but little is known about southeastern species. We used published data and our own collections to perform standard litter flammability tests on a diverse suite of 25 native overstory trees from...

  4. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  5. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  6. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  7. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  8. A new numerical formulation of gas leakage and spread into a residential space in terms of hazard analysis.

    PubMed

    Nagaosa, Ryuichi S

    2014-04-30

    This study proposes a new numerical formulation of the spread of a flammable gas leakage. A new numerical approach has been applied to establish fundamental data for a hazard assessment of flammable gas spread in an enclosed residential space. The approach employs an extended version of a two-compartment concept, and determines the leakage concentration of gas using a mass-balance based formulation. The study also introduces a computational fluid dynamics (CFD) technique for calculating three-dimensional details of the gas spread by resolving all the essential scales of fluid motions without a turbulent model. The present numerical technique promises numerical solutions with fewer uncertainties produced by the model equations while maintaining high accuracy. The study examines the effect of gas density on the concentration profiles of flammable gas spread. It also discusses the effect of gas leakage rate on gas concentration profiles. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. 16 CFR § 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... under the Consumer Product Safety Act extremely flammable contact adhesives covered by this labeling... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Extremely flammable contact adhesives; labeling. § 1500.133 Section § 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...

  10. Compression testing of flammable liquids

    NASA Technical Reports Server (NTRS)

    Briles, O. M.; Hollenbaugh, R. P.

    1979-01-01

    Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.

  11. Flammability on textile of flight crew professional clothing

    NASA Astrophysics Data System (ADS)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  12. Species Composition and Fire: Non-Additive Mixture Effects on Ground Fuel Flammability

    PubMed Central

    van Altena, Cassandra; van Logtestijn, Richard S. P.; Cornwell, William K.; Cornelissen, Johannes H. C.

    2012-01-01

    Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e., differ from expected flammability based on the component species in monospecific fuel. In standardized fire experiments on ground fuels, including monospecific fuels and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration, and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects for temporal dynamics – fire speed and duration. Fuel types with the more flammable value for a characteristic determined the rate of fire speed and duration of the whole mixture; in contrast, maximum temperature of the fire was determined by the biomass-weighted mean of the mixture. These results suggest that ecological invasions by highly flammable species may have effects on ground-fire dynamics well out of proportion to their biomass. PMID:22639656

  13. Estimation of the lower flammability limit of organic compounds as a function of temperature.

    PubMed

    Rowley, J R; Rowley, R L; Wilding, W V

    2011-02-15

    A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Rassat; PA Gauglitz; SM Caley

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann etmore » al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  15. 29 CFR 1910.125 - Additional requirements for dipping and coating operations that use flammable or combustible...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that use flammable or combustible liquids. 1910.125 Section 1910.125 Labor Regulations Relating to... requirements for dipping and coating operations that use flammable or combustible liquids. If you use flammable...: And: •The flashpoint of the flammable or combustible liquid is 200 °F (93.3 °C) or above •The liquid...

  16. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954. The...

  17. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954. The...

  18. Credit PSR. The flammable waste materials shed appears as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  19. Flammability Limits of Gases Under Low Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.

    1985-01-01

    The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities.

  20. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  1. ISO 14624 Series - Space Systems - Safety and Compatibility of Materials Flammability Assessment of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2007-01-01

    A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation

  2. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  3. Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2006-11-02

    Carbon dioxide dilution effect on the flammability limits was measured for various flammable gases. The obtained values were analyzed using the extended Le Chatelier's formula developed in a previous study. As a result, it has been found that the flammability limits of methane, propane, propylene, methyl formate, and 1,1-difluoroethane are adequately explained by the extended Le Chatelier's formula using a common set of parameter values. Ethylene, dimethyl ether, and ammonia behave differently from these compounds. The present result is very consistent with what was obtained in the case of nitrogen dilution.

  4. Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.

    PubMed

    Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko

    2015-03-01

    One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.

  5. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  6. 46 CFR 147A.43 - Other sources of ignition; flammable fumigants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sources of ignition; flammable fumigants. While the space that is fumigated is being sealed or during fumigation, no person may use matches, smoking materials, fires, open flames, or any other source of ignition... 46 Shipping 5 2010-10-01 2010-10-01 false Other sources of ignition; flammable fumigants. 147A.43...

  7. Clothing Flammability and Burn Injuries: Public Opinion Concerning an Overlooked, Preventable Public Health Problem.

    PubMed

    Frattaroli, Shannon; Spivak, Steven M; Pollack, Keshia M; Gielen, Andrea C; Salomon, Michele; Damant, Gordon H

    2016-01-01

    The objective of this study was to describe knowledge of clothing flammability risk, public support for clothing flammability warning labels, and stronger regulation to reduce the risk. As part of a national survey of homeowners about residential sprinkler systems, the authors included questions about clothing flammability. The authors used an online web panel to sample homeowners and descriptive methods to analyze the resulting data. The sample included 2333 homeowners. Knowledge of clothing flammability and government oversight of clothing flammability risk was low. Homeowners were evenly split about the effectiveness of current standards; however, when presented with clothing-related burn injury and death data, a majority (53%) supported stricter standards. Most homeowners (64%) supported warning labels and indicated that such labels would either have no effect on their purchasing decisions (64%) or be an incentive (24%) to purchase an item. Owners of sprinkler-equipped homes were more likely to support these interventions than owners of homes without sprinkler systems. Public knowledge about clothing flammability risks is low. Most homeowners supported clothing labels to inform consumers of this risk and increased government intervention to reduce the risk.

  8. 29 CFR 1910.125 - Additional requirements for dipping and coating operations that use flammable liquids or liquids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that use flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). 1910.125... flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). If you use flammable liquids... provide: (i) Manual fire extinguishers that are suitable for flammable and combustible liquid fires and...

  9. 29 CFR 1910.125 - Additional requirements for dipping and coating operations that use flammable liquids or liquids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that use flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). 1910.125... flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). If you use flammable liquids... provide: (i) Manual fire extinguishers that are suitable for flammable and combustible liquid fires and...

  10. Evaluation of Less-Flammable Insulation Fluids and Fire-Prevention Guidance for Transformers

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akira; Sugawa, Osami

    This paper concerns the definition and evaluation of less-flammable of insulation fluids for transformers. In particular it focuses on the ISO5660 cone calorimeter method, which is widely used as an evaluation method for the less-flammable of solids, and proposes that such method is also valid for quantitative evaluation of the less-flammable of insulating fluids. Quantifying the combustion characteristics of insulation fluids and analyzing the causes of fires can be said to be the first step toward implementing appropriate safety measures that will render electric utility equipment more fire retardant or fireproof in the future.

  11. Flammability test for sunglasses: developing a system

    NASA Astrophysics Data System (ADS)

    Magri, Renan; Ventura, Liliane

    2014-02-01

    Recent investigations show the need for certificating sunglasses to ensure the safety and health to population. The Brazilian Standard ABNT NBR 15111 regulates features to sunglasses, however, there is not a sunglasses certification office in Brazil, therefore, our lab has been developing several equipment for sunglasses testing. This work refers to one of them: the flammability test system for sunglasses in compliance with the NBR 15111. The standard provides requirements for the flammability test procedure which requires that the equipment must operate at a temperature of 650 °C +/- 20 °C the end of a steel rod of 300 mm length and 6 mm diameter should be heated and pressed over the surface of the lenses for five seconds; the flammability is checked by visual inspection. The furnace is made of ceramic. We used a power electronic circuit to control the power in the furnace using ON/OFF mode and for measuring the temperature, we used a K-type thermocouple. A stepper motor with pulley lifts the steel rod. The system reaches the working temperature in 15 minutes for a step input of 61 V in open loop system. The electronics control are under development in order to shorten the time necessary to reach the working temperature and maintain the temperature variation in the furnace within the limits imposed by the standard as next steps.

  12. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  13. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  14. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  15. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  16. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  17. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  18. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  19. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Definition of Terms Used in This Part § 105.10-15 Flammable... vapor pressure of 14 pounds or more. 1 American Society of Testing Materials Standard D 323...

  20. Characterization of flammability properties of some thermoplastic and thermoset resins. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.

  1. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance work...

  2. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....11), when transported via motor vehicle, vessel, or rail, is not subject to the requirements of this... containing ethyl alcohol classed as a flammable liquid or flammable solid containing not more than 70% ethyl alcohol by volume for liquids, by weight for solids are excepted from the HMR provided that: (i) For non...

  3. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  4. Space Systems - Safety and Compatibility of Materials - Method to Determine the Flammability Thresholds of Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2009-01-01

    Spacecraft fire safety emphasizes fire prevention, which is achieved primarily through the use of fire-resistant materials. Materials selection for spacecraft is based on conventional flammability acceptance tests, along with prescribed quantity limitations and configuration control for items that are non-pass or questionable. ISO 14624-1 and -2 are the major methods used to evaluate flammability of polymeric materials intended for use in the habitable environments of spacecraft. The methods are upward flame-propagation tests initiated in static environments and using a well-defined igniter flame at the bottom of the sample. The tests are conducted in the most severe flaming combustion environment expected in the spacecraft. The pass/fail test logic of ISO 14624-1 and -2 does not allow a quantitative comparison with reduced gravity or microgravity test results; therefore their use is limited, and possibilities for in-depth theoretical analyses and realistic estimates of spacecraft fire extinguishment requirements are practically eliminated. To better understand the applicability of laboratory test data to actual spacecraft environments, a modified ISO 14624 protocol has been proposed that, as an alternative to qualifying materials as pass/fail in the worst-expected environments, measures the actual upward flammability limit for the material. A working group established by NASA to provide recommendations for exploration spacecraft internal atmospheres realized the importance of correlating laboratory data with real-life environments and recommended NASA to develop a flammability threshold test method. The working group indicated that for the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extravehicular landers and habitats

  5. Species mixture effects on flammability across plant phylogeny: the importance of litter particle size and the special role for non-Pinus Pinaceae.

    PubMed

    Zhao, Weiwei; Cornwell, William K; van Pomeren, Marinda; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2016-11-01

    Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non- Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non- Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.

  6. 46 CFR 132.390 - Added requirements for carriage of flammable or combustible cargo.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... if GT ITC is not assigned). (b) Cargo tanks containing flammable or combustible liquids must not be located beneath the accommodations or machinery space. Separation by cofferdams is not acceptable for... cubic meters or more intended for the carriage of flammable or combustible liquids with a closed-cup...

  7. Flammability testing of 22 conventional European pediculicides.

    PubMed

    Dörge, Dorian D; Kuhn, Thomas; Klimpel, Sven

    2017-04-01

    Lice have been parasitizing humans for at least 10,000 years. Since then, humans have tried to rid themselves of these unpleasant and potentially disease-carrying insects. Despite various plant extracts and chemical compounds being used to combat recurring infestations to this date, several lice populations have developed resistance to some of the abundantly used compounds. This resulted in the development of anti-louse products that physically kill the different lice stages. Today, a widely used group of delousing agents are dimethicones (polydimethylsiloxane PDMS) which function by suffocating the lice. However, many dimethicones and related products are highly flammable which makes them potentially dangerous for treatment. In the present study, we tested the flammability of 22 delousing agents in order to shed some light onto this currently unresolved problem in the product design of pediculicides. Thirteen products were easily ignitable, some even by distant contact with a sparkler.

  8. The possibility of a reversal of material flammability ranking from normal gravity to microgravity

    NASA Technical Reports Server (NTRS)

    T'Ien, James S.

    1990-01-01

    The purpose of the discussion is to show, by a theoretical model, that one of the material flammability indices, the flammability limit, can be reversed in proper circumstances. A stagnation-point diffusion flame adjacent to a spherical solid-fuel surface is considered. It is shown that a reversal of the limiting oxygen indices from normal gravity and microgravity is possible. Although the example is based on a particular theoretical model with a particular flame configuration and specifically for an oxygen limit, the flammability-limit reversal phenomenon is believed to be more general.

  9. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEBER RA

    2009-01-16

    waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.« less

  10. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  11. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  12. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  13. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  14. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... storage tanks shall be mounted securely on firm foundations. Outlet piping shall be provided with flexible connections or other special fittings to prevent adverse effects from tank settling. (c) Fuel lines shall be... hazards. (d) Areas surrounding flammable-liquid storage tanks and electric substations and transformers...

  15. A New Screening Method for Methane in Soil Gas Using Existing Groundwater Monitoring Wells

    EPA Science Inventory

    Methane in soil gas may have undesirable consequences. The soil gas may be able to form a flammable mixture with air and present an explosion hazard. Aerobic biodegradation of the methane in soil gas may consume oxygen that would otherwise be available for biodegradation of gasol...

  16. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less

  17. Logging slash flammability after five years

    Treesearch

    George R. Fahnestock; John H. Dieterich

    1962-01-01

    This paper reports the final phase of research that has determined the flammability of slash for nine species of northern Rocky Mountain conifers at three ages. Visual characteristics, rate of fire spread, and fire intensity for 5-year-old slash were studied by essentially the same methods as had been used previously on freshly cut and 1-year-old material. Final...

  18. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  19. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  20. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  1. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  2. DOE/DOE Tight Oil Flammability & Transportation Spill Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, David L.

    2014-12-01

    This presentation describes crude oils, their phase behavior, the SPR vapor pressure program, and presents data comparisons from various analytical techniques. The overall objective is to describe physical properties of crude oil relevant to flammability and transport safety

  3. 49 CFR 177.838 - Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division 4.2 (pyroforic...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2014-10-01 2014-10-01 false Class 4 (flammable solid) materials, Class 5...

  4. 49 CFR 177.838 - Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division 4.2 (pyroforic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2013-10-01 2013-10-01 false Class 4 (flammable solid) materials, Class 5...

  5. 49 CFR 177.838 - Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division 4.2 (pyroforic...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2012-10-01 2012-10-01 false Class 4 (flammable solid) materials, Class 5...

  6. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...

  7. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...

  8. Wire insulation degradation and flammability in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.

  9. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  10. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  11. Epidemiology of burns due to domestic flammable agents.

    PubMed

    Pegg, S P; Beecham, L; Dore, N; Hrdlicka, D; Hukins, C

    1990-04-01

    An analysis of the epidemiological factors relating to domestic flammable agents has shown that 17.7 per cent of admissions over a 5-year period were involved in domestic flammable injuries; 87.7 per cent of the patients were male, with 38.9 per cent being young males between 12 and 19 years old. Petrol and diesel accounted for 56.8 per cent of the burns and the average body surface area burned was 17.7 per cent. Most commonly the face, hands and limbs were burned, and the average length of stay was 18.25 days, 69.2 per cent of the burns were due to human error and were thus potentially preventable, 21.2 per cent had predisposing conditions with 8.9 per cent being due to alcohol. It was considered that the strategies to prevent these burns injuries should be aimed particularly at young males.

  12. RF number as a new index for assessing combustion hazard of flammable gases.

    PubMed

    Kondo, Shigeo; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira

    2002-08-05

    A new index called RF number has been proposed for assessing the combustion hazard of all sorts of flammable gases and their mixtures. RF number represents the total expectancy of combustion hazard in terms of flammability limits and heat of combustion for each known and unknown compounds. The advantage of RF number over others such as R-index and F-number for classification of combustion hazard has been highlighted.

  13. Flame Retardant Chemicals in College Dormitories: Flammability Standards Influence Dust Concentrations.

    PubMed

    Dodson, Robin E; Rodgers, Kathryn M; Carey, Gale; Cedeno Laurent, Jose Guillermo; Covaci, Adrian; Poma, Giulia; Malarvannan, Govindan; Spengler, John D; Rudel, Ruthann A; Allen, Joseph G

    2017-05-02

    Furniture flammability standards are typically met with chemical flame retardants (FRs). FRs can migrate out of products into dust and are linked to cancer, neurological impairment, and endocrine disruption. We collected 95 dust samples from dormitory common areas and student rooms on two U.S. college campuses adhering to two different furniture flammability standards: Technical Bulletin 117 (TB117) and Technical Bulletin 133 (TB133). Because TB133 requires furniture to withstand a much-more-demanding test flame than TB117, we hypothesized that spaces with TB133 furniture would have higher levels of FRs in dust. We found all 47 targeted FRs, including 12 polybrominated diphenyl ether (PBDE) congeners, 19 other brominated FRs, 11 phosphorus FRs (PFRs), 2 Dechlorane-Plus (DP) isomers, and 3 hexabromocyclododecane (HBCDD) isomers in the 95 dust samples. We measured the highest reported U.S. concentrations for a number of FRs, including BDE 209 (up to 990 000 ng/g), which may be used to meet the TB133 standard. We prioritized 16 FRs and analyzed levels in relation to flammability standard as well as presence and age of furniture and electronics. Adherence to TB133 was associated with higher concentrations of BDE 209, decabromodiphenylethane (DBDPE), DPs, and HBCDD compared to adherence to TB117 in univariate models (p < 0.05). Student dormitory rooms tended to have higher levels of some FRs compared to common rooms, likely a result of the density of furniture and electronics. As flammability standards are updated, it is critical to understand their impact on exposure and health risks.

  14. Review of the Flammability Hazard of Jet A Fuel Vapor in Civil Transport Aircraft Fuels Tanks

    DOT National Transportation Integrated Search

    1998-06-01

    This report documents the findings of a Fuel Flammability Task Group made up of recognized fuel and combustion specialists investigating the flammability and explosiveness of fuel within an aircraft fuel tank. The task group reviewed all available re...

  15. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or soldering, and exposure to flammable liquids. (b) Liquefied and nonliquefied compressed gas... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  16. Development of a Flammability Test Method for Aircraft Blankets

    DOT National Transportation Integrated Search

    1996-03-01

    Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...

  17. A flammability study of thin plastic film materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1990-01-01

    The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.

  18. 16 CFR 1500.46 - Method for determining flashpoint of extremely flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... extremely flammable contents of self-pressurized containers. 1500.46 Section 1500.46 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND... extremely flammable contents of self-pressurized containers. Use the apparatus described in § 1500.43a. Use...

  19. Non-Flammable Containment Bag and Enclosure Development for International Space Station Use

    NASA Technical Reports Server (NTRS)

    Inamdar, Sunil; Cadogan, Dave; Worthy, Erica

    2014-01-01

    Work conducted on the International Space Station (ISS) requires the use of a significant quantity of containment bags to hold specimens, equipment, waste, and other material. The bags are in many shapes and sizes, and are typically manufactured from polyethylene materials. The amount of bags being used on ISS has grown to the point where fire safety has become a concern because of the flammability of polyethylene. Recently, a new re-sealable bag design has been developed that is manufactured from a specialized non-flammable material called Armorflex 301 that was designed specifically for this application. Besides being non-flammable, Armorflex 301 is also FDA compliant, clear, flexible, and damage tolerant. The bags can be made with closure mechanisms that resemble ZipLoc® bags, or can be open top. Sample bags have been laboratory tested by NASA to verify materials properties, and evaluated by astronauts on the ISS in 2012. Flexloc bag manufacturing will commence in 2014 to support a transition away from polyethylene on ISS. In addition to re-sealable bags, other larger containment systems such as flexible gloveboxes, deployable clean rooms, and other devices manufactured from Armorflex 301 are being explored for use on ISS and in similar confined space locations where flammability is an issue. This paper will describe the development of the Armorflex 301 material, the Flexloc bag, and other containment systems being explored for use in confined areas

  20. Non-flammable polyphosphonate electrolytes

    NASA Astrophysics Data System (ADS)

    Dixon, Brian G.; Morris, R. Scott; Dallek, Steven

    This research is directed towards the development of safe, and thermally stable polymeric electrolytes. Advanced electrolytes are described, including thermal test data, which are ionically highly conductive, and non-flammable. These novel multi-heteropolymer electrolytes represent a significant advance in the design of high-performance rechargeable lithium systems that possess superior safety and handling characteristics. Representative results are shown by the figures contained in this text. These DSC/TGA results compare a typical liquid carbonate-based electrolyte system, ethylene carbonate and ethyl methyl carbonate, with novel polyphosphonates as synthesized in this program. These tests were performed with the electrolytes in combination with lithium metal, and the impressive relative thermal stability of the phosphonates is apparent.

  1. Safe Handling and Use of Flammable and Combustible Materials. Module SH-30. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safe handling and use of flammable and combustible materials is one of 50 modules concerned with job safety and health. This module introduces the student to the hazards of flammable and combustible materials and the measures necessary to control those hazards. Following the introduction, 14 objectives (each keyed to a page…

  2. The Safety of Small Containers for Flammable Fluids.

    ERIC Educational Resources Information Center

    Shanley, Edward S.

    1988-01-01

    Highlights aspects of safety that are unfamiliar to most laypersons and to many chemists as well. Presents findings that may lend themselves to presentation in chemistry classes. Details flammability tests, vapor space hazards, and the special case of gasoline containers. Provides experimental data relating vent area and internal pressure. (CW)

  3. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid shutoff means: EWIS. 25.1727 Section 25.1727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection...

  4. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection: EWIS. 25.1723 Section 25.1723 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection...

  5. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  6. Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas

    DTIC Science & Technology

    2014-08-01

    and combat support vehicles, ships, and aircraft, the adoption of natural gas —whether as compressed natural gas (CNG) or liquefied natural gas (LNG...dangers to U.S. forces and vehicles. Natural gas has different flammability properties than traditional liquid fuels, and as CNG tanks are under high...tacticaldefensemedia.com16 | DoD Power & Energy Fall 2014 For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas By Bret

  7. A quantitative risk-assessment system (QR-AS) evaluating operation safety of Organic Rankine Cycle using flammable mixture working fluid.

    PubMed

    Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan

    2017-09-15

    Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Rheological behavior of FM-9 solutions and correlation with flammability test results and interpretations. [fuel thickening additive

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1983-01-01

    The rheological behavior of progressively shear thickening FM-9 solutions, a time-dependent shear thickening material with characteristics of threshold behavior, is investigated as part of a study of the rheological properties of antimisting jet fuel. Flammability test results and test configurations from various sources are evaluated. A correlation is obtained between the rheological behavior and the flammability tests such that, for a given system, such as a fixed solvent system and the FM-9 polymer system, the flammability criterion can be applied to a wide range of concentrations and temperatures.

  9. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection.

    PubMed

    Clarke, Peter J; Prior, Lynda D; French, Ben J; Vincent, Ben; Knox, Kirsten J E; Bowman, David M J S

    2014-12-01

    We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.

  10. Thermochemical characterization of some thermoplastic materials. [flammability and toxicity properties for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1977-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.

  11. Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances

    EPA Pesticide Factsheets

    Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.

  12. Flammability and Thermophysical Characterization of Thermoplastic Elastomer Nanocomposites

    DTIC Science & Technology

    2004-08-01

    montmorillonite organoclays, POSS®, carbon nanofibers to develop a flame resistant material Thermophysical and flammability properties of these...elastomer manufactured by Dow Chemical. Its typical applications include seals, gaskets, belting, and others. Montmorillonite Nanoclays – Cloisite...30B is a surface treated montmorillonite [Tallow bishydroxyethyl methyl, T(EOH)2M] manufactured by Southern Clay Products Carbon Nanofibers (CNFs

  13. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since informationmore » was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.« less

  14. Assessing and ranking the flammability of some ornamental plant species to select firewise plants for landscaping in WUI (SE France).

    NASA Astrophysics Data System (ADS)

    Ganteaume, A.; Jappiot, M.; Lampin, C.

    2012-04-01

    The increasing urbanization of Wildland-Urban Interfaces (WUI) as well as the high fire occurrence in these areas requires the assessment and the ranking of the flammability of the ornamental vegetation surrounding houses especially that planted in hedges. Thus, the flammability of seven species, among those most frequently planted in hedges in Provence (South-Eastern France), were studied at particle level and at dead surface fuel level (litters) under laboratory conditions. The flammability parameters (ignition frequency, time-to-ignition, flaming duration) of the very fine particles (live leaves and particles <2 mm in diameter) were measured using an epiradiator as burning device. The flammability parameters (ignition frequency, time-to-ignition, flaming duration and initial flame propagation) of the undisturbed litter samples were recorded during burning experiments performed on fire bench. Burning experiments using the epiradiator showed that live leaves of Phyllostachys sp., Photinia frasei and Prunus laurocerasus had the shortest time-to-ignition and the highest ignition frequency and flaming duration whereas Pittosporum tobira and Nerium oleander were the longest to ignite with a low frequency. Phyllostachys sp. and Nerium oleander litters were the shortest to ignite while Prunus laurocerasus litter had the lowest bulk density and long time-to-ignition, but high flame propagation. Photinia fraseri litter ignited frequently and had a high flame spread while Pittosporum tobira litter ignited the least frequently and for the shortest duration. Cupressus sempervirens litter had the highest bulk density and the longest flaming duration but the lowest flame propagation. Pyracantha coccinea litter was the longest to ignite and flame propagation was low but lasted a long time. Hierarchical cluster analysis performed on the flammability parameters of live leaves and of litters ranked the seven species in four distinct clusters from the most flammable (Prunus

  15. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth's gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth's gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA's KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns. In November of 2003, this new apparatus was used on the KC-135 aircraft to test cotton and cotton/polyester blend fabric specimens in microgravity. These materials were also been tested using the same apparatus in 1-g, and using a standard vertical flammability test that utilizes a flame. In this presentation, the design of the test apparatus will be briefly described. Examples of results from the KC-135 tests will be provided, including

  16. Effect of stirring on the safety of flammable liquid mixtures.

    PubMed

    Liaw, Horng-Jang; Gerbaud, Vincent; Chen, Chan-Cheng; Shu, Chi-Min

    2010-05-15

    Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations

  18. Spruce beetle-induced changes to Engelmann spruce foliage flammability

    Treesearch

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2014-01-01

    Intermountain Engelmann spruce (Picea engelmannii Parry ex Engelm) stands affected by the spruce beetle (Dendroctonus rufipennis Kirby) represent a unique and growing fuel complex. In this study, we quantified and compared the changes in moisture content, chemistry, and flammability of foliage from trees in three crown condition classes: unattacked (green [G]),...

  19. A Method for Assessing Material Flammability for Micro-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Steinhaus, T.; Olenick, S. M.; Sifuentes, A.; Long, R. T.; Torero, J. L.

    1999-01-01

    On a spacecraft, one of the greatest fears during a mission is the outbreak of a fire. Since spacecraft are enclosed spaces and depend highly on technical electronics, a small fire could cause a large amount of damage. NASA uses upward flame spread as a "worst case scenario" evaluation for materials and the Heat and Visible Smoke Release Rates Test to assess the damage potential of a fire. Details of these tests and the protocols followed are provided by the "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion" document. As pointed by Ohlemiller and Villa, the upward flame spread test does not address the effect of external radiation on ignition and spread. External radiation, as that coming from an overheated electrical component, is a plausible fire scenario in a space facility and could result in a reversal of the flammability rankings derived from the upward flame spread test. The "Upward Flame Propagation Test" has been the subject of strong criticism in the last few years. In many cases, theoretical exercises and experimental results have demonstrated the possibility of a reversal in the material flammability rankings from normal to micro-gravity. Furthermore, the need to incorporate information on the effects of external radiation and opposed flame spread when ranking materials based on their potential to burn in micro-gravity has been emphasized. Experiments conducted in a 2.2 second drop tower with an ethane burner in an air cross flow have emphasized that burning at the trailing edge is deterred in micro-gravity due to the decreased oxygen transport. For very low air flow velocities (U<0.005 m/s) the flame envelopes the burner and a slight increase in velocity results in extinction of the trailing edge (U>0.01 m/s). Only for U>0.l m/s extinction is observed at the leading edge (blow-off). Three dimensional numerical calculations performed for thin cellulose centrally

  20. Oxygen Concentration Flammability Threshold Tests for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Williams, James H.

    2007-01-01

    CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.

  1. Flammability and Photo-Stability of Selected Polymer Systems

    DTIC Science & Technology

    1981-06-01

    modifications. The 13. following methods have been used(2 8 ) : 1. Etherification or esterification of the phenolic hydroxyl groups, 2. Complex...is initiated with a view to making modifications of the flammability behaviors of phenolic resin by using substituted phenols. Also. esterification of...n-substituted phenolic resins. Modification by esterification has also been reported by Lei(29) in the synthesis of n-chloro- phenolic fiber. The

  2. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    PubMed

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  3. Flammable Fabrics. Distributive Education. Teacher's Guide. No.2-T.

    ERIC Educational Resources Information Center

    Consumer Product Safety Commission, Washington, DC.

    This miniproduct safety unit is designed as a flexible resource unit and has material for one or several class periods. It is intended to give students some basic information about flammable fabrics and government rules regulating them. There is also information about the new flame resistant materials and their care and maintenance. The unit…

  4. 46 CFR 147A.43 - Other sources of ignition; flammable fumigants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in any spaces that are not determined to be safe for occupancy under § 147A.11(b)(1)(i). ... sources of ignition; flammable fumigants. While the space that is fumigated is being sealed or during...

  5. Identifying and addressing student difficulties with the ideal gas law

    NASA Astrophysics Data System (ADS)

    Kautz, Christian Hans

    This dissertation reports on an in-depth investigation of student understanding of the ideal gas law. The research and curriculum development were mostly conducted in the context of algebra- and calculus-based introductory physics courses and a sophomore-level thermal physics course. Research methods included individual demonstration interviews and written questions. Student difficulties with the quantities: pressure, volume, temperature, and the number of moles were identified. Data suggest that students' incorrect and incomplete microscopic models about gases contribute to the difficulties they have in answering questions posed in macroscopic terms. In addition, evidence for general reasoning difficulties is presented. These research results have guided the development of curriculum to address the student difficulties that have been identified.

  6. Non-Toxic, Non-Flammable, -80 C Phase Change Materials

    NASA Technical Reports Server (NTRS)

    Cutbirth, J. Michael

    2013-01-01

    The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.

  7. Low-Flammability PTFE for High-Oxygen Environments

    NASA Technical Reports Server (NTRS)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  8. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; hide

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  9. Testing of Flame Screens and Flame Arresters as Devices Designed to Prevent the Passage of Flame (DPPF) into Tanks Containing Flammable Atmospheres According to an IMO Standard

    DTIC Science & Technology

    1989-10-01

    flashback tests FM does not speci- fy the type of enclosure to contain the explosive fuel/air mix -ture. 3.4 INTERNATIONAL CONVENTION FOR THE SAFETY OF...2) Continuous burn tests: ... "Same mix - ture and concentration as for explosion tests; flow rate of the gasoline vapor-air mixture is specified as a...gas temperature of the flammable hexane/air mix - ture on the tank side was used as the representative endu ance burn test temperature for the following

  10. 46 CFR 70.05-30 - Combustible and flammable liquid cargo in bulk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL PROVISIONS Application § 70.05-30 Combustible and flammable liquid cargo in bulk. Note... in a portable tank, including a marine portable tank, in accordance with subpart 98.30 or 98.33 of...

  11. Assessment of relative flammability and thermochemical properties of some thermoplastic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.

  12. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  13. 49 CFR 176.400 - Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Stowage of Division 1.5, Class 4 (flammable solids... Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 4 (Flammable...

  14. 49 CFR 176.400 - Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of Division 1.5, Class 4 (flammable solids... Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 4 (Flammable...

  15. 49 CFR 176.400 - Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of Division 1.5, Class 4 (flammable solids... Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 4 (Flammable...

  16. Determination of Time Required for Materials Exposed to Oxygen to Return to Reduced Flammability

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Hirsch, David; Smith, Sarah

    2009-01-01

    Increased material flammability due to exposure to high oxygen concentrations is a concern from both a safety and operational perspective. Localized, high oxygen concentrations can occur when exiting a higher oxygen concentration environment due to material saturation, as well as oxygen entrapment between barrier materials. Understanding of oxygen diffusion and permeation and its correlation to flammability risks can reduce the likelihood of fires while improving procedures as NASA moves to longer missions with increased extravehicular activities in both spacecraft and off-Earth habitats. This paper examines the time required for common spacecraft materials exposed to oxygen to return to reduced flammability after removal from the increased oxygen concentration environment. Specifically, NASA-STD-6001A maximum oxygen concentration testing and ASTM F-1927 permeability testing were performed on Nomex 4 HT90-40, Tiburon 5 Surgical Drape, Cotton, Extravehicular Mobility Unit (EMU) Liquid-Cooled Ventilation Garment, EMU Thermal Comfort Undergarment, EMU Mosite Foam with Spandex Covering, Advanced Crew Escape Suit (ACES) Outer Cross-section, ACES Liquid Cooled Garment (LCG), ACES O2 Hose Material, Minicel 6 Polyethylene Foam, Minicel Polyethylene Foam with Nomex Covering, Pyrell Polyurethane Foam, and Zotek 7 F-30 Foam.

  17. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most departmentmore » personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.« less

  18. A Guide to Flammable Products and Ignition Sources for Elementary Schools.

    ERIC Educational Resources Information Center

    Consumer Product Safety Commission, Washington, DC.

    This guide is intended as a resource manual and activity sourcebook for elementary school teachers, librarians, administrators, curriculum planners, and teacher educators for teaching proper methods for selecting, using, maintaining, and disposing of flammable products and ignition sources. Basic product safety messages are developed for matches,…

  19. A Guide to Flammable Products and Ignition Sources for Secondary Schools.

    ERIC Educational Resources Information Center

    Consumer Product Safety Commission, Washington, DC.

    This guide is intended as a resource manual and activity source book for secondary school teachers, librarians, administrators, curriculum planners, and teacher educators for teaching proper methods for selecting, using, maintaining, and disposing of flammable products and ignition sources. Particular emphasis is placed on methods for including…

  20. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  1. Flammability and thermal properties studies of nonwoven flax reinforced acrylic based polyester composites

    NASA Astrophysics Data System (ADS)

    Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.

    2017-12-01

    In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.

  2. Explosion protection for vehicles intended for the transport of flammable gases and liquids--an investigation into technical and operational basics.

    PubMed

    Förster, Hans; Günther, Werner

    2009-05-30

    In Europe, the transport of flammable gases and liquids in tanks has been impacted by new developments: for example, the introduction of the vapour-balancing technique on a broad scale and the steady increase in the application of electronic components with their own power sources; furthermore, new regulatory policies like the ATEX Directives are being enforced in the European Union. With this background in mind, the present investigation aims to provide a basis for future developments of the relevant explosion protection regulations in the safety codes for the transport of dangerous goods (RID/ADR). Specifically, the concentration of gas in the air was measured under various practical conditions while tank vehicles were being loaded with flammable gases or liquids. These spot-test data were supplemented by systematic investigations at a road tanker placed in our test field. With respect to non-electrical ignition sources, a closer investigation of the effect of hot surfaces was carried out. With regard to improving the current regulations, the results of our investigation show that it would be reasonable to implement a stronger differentiation of the characteristics of the dangerous goods (gaseous/liquid, flashpoint) on the one hand and of the techniques applied (loading with and without vapour-balancing system) on the other hand. Conclusions for the further development of the current international regulations are proposed.

  3. Fleet Composition of Rail Tank Cars That Transport Flammable Liquids: 2013-2016

    DOT National Transportation Integrated Search

    2017-09-05

    Section 7308 of the Fixing America's Surface Transportation Act (FAST Act; P. L. 114-94; December 4, 2015) requires the U.S. Department of Transportation (DOT) to assemble and collect data on rail tank cars transporting Class 3 flammable liquids (box...

  4. Flammability limits of hydrated and anhydrous ethanol at reduced pressures in aeronautical applications.

    PubMed

    Coronado, Christian J R; Carvalho, João A; Andrade, José C; Mendiburu, Andrés Z; Cortez, Ely V; Carvalho, Felipe S; Gonçalves, Beatriz; Quintero, Juan C; Velásquez, Elkin I Gutiérrez; Silva, Marcos H; Santos, José C; Nascimento, Marco A R

    2014-09-15

    There is interest in finding the flammability limits of ethanol at reduced pressures for the future use of this biofuel in aeronautical applications taking into account typical commercial aviation altitude (<40,000 ft). The lower and upper flammability limits (LFL and UFL, respectively) for hydrated ethanol and anhydrous ethanol (92.6% and 99.5% p/p, respectively) were determined for a pressure of 101.3 kPa at temperatures between 0 and 200°C. A heating chamber with a spherical 20-l vessel was used. First, LFL and the UFL were determined as functions of temperature and atmospheric pressure to compare results with data published in the scientific literature. Second, after checking the veracity of the data obtained for standard atmospheric pressure, the work proceeded with reduced pressures in the same temperature range. 295 experiments were carried out in total; the first 80 were to calibrate the heating chamber and compare the results with those given in the published scientific literature. 215 experiments were performed both at atmospheric and reduced pressures. The results had a correlation with the values obtained for the LFL, but values for the UFL had some differences. With respect to the water content in ethanol, it was shown that the water vapor contained in the fuel can act as an inert substance, narrowing flammability. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.

  6. 49 CFR Appendix B to Part 238 - Test Methods and Performance Criteria for the Flammability and Smoke Emission Characteristics of...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...

  7. 49 CFR Appendix B to Part 238 - Test Methods and Performance Criteria for the Flammability and Smoke Emission Characteristics of...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...

  8. 49 CFR Appendix B to Part 238 - Test Methods and Performance Criteria for the Flammability and Smoke Emission Characteristics of...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...

  9. 49 CFR Appendix B to Part 238 - Test Methods and Performance Criteria for the Flammability and Smoke Emission Characteristics of...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...

  10. 49 CFR 176.400 - Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of Division 1.5, Class 4 (flammable solids... Solids), Class 5 (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.400 Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides) materials. (a) Class...

  11. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  12. Applying Flammability Limit Probabilities and the Normoxic Upward Limiting Pressure Concept to NASA STD-6001 Test 1

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Beeson, Harold; Fernandez-Pello, A. Carlos

    2014-01-01

    Repeated Test 1 extinction tests near the upward flammability limit are expected to follow a Poisson process trend. This Poisson process trend suggests that rather than define a ULOI and MOC (which requires two limits to be determined), it might be better to define a single upward limit as being where 1/e (where e (approx. equal to 2.7183) is the characteristic time of the normalized Poisson process) of the materials burn, or, rounding, where approximately 1/3 of the samples fail the test (and burn). Recognizing that spacecraft atmospheres will not bound the entire oxygen-pressure parameter space, but actually lie along the normoxic atmosphere control band, we can focus the materials flammability testing along this normoxic band. A Normoxic Upward Limiting Pressure (NULP) is defined that determines the minimum safe total pressure for a material within the constant partial pressure control band. Then, increasing this pressure limit by a factor of safety, we can define the material as being safe to use at the NULP + SF (where SF is on the order of 10 kilopascal, based on existing flammability data). It is recommended that the thickest material to be tested with the current Test 1 igniter should be 3 mm thick (1/8 inches) to avoid the problem of differentiating between an ignition limit and a true flammability limit.

  13. Research of Flammability of Fireproof Materials in Ship Safety

    NASA Astrophysics Data System (ADS)

    Jiang, Yizhou; Han, Duanfeng; Zhang, Ziwei

    2017-09-01

    This paper analyzes the classification, performance and application of ship fireproof and heat insulating materials, and describes the test standard and performance evaluation criteria of the non-combustibility, low flame-spread characteristics and smoke and toxicity of marine fireproof materials in detail. So the paper has certain reference value and guidance significance for the selection of heat insulating materials with fire divisions and the use of flammable materials on board in accordance with requirements.

  14. Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    NASA Technical Reports Server (NTRS)

    Niehaus, Justin; Ferkul, Paul V.; Gokoglu, Suleyman; Ruff, Gary

    2015-01-01

    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed flow flame spread, horizontal and angled flame spread, forced flow upward and downward flame spread. In addition to these configurations, upward and downward tests were also conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Upward tests in air with an added forced flow were more flammable. Complementary analyses using SEM and TGA techniques suggest the importance of the silica layer formed on the burned sample surface. As silicone burns upward, silica deposits downstream •If the silicone is ignited in the downward configuration, it burns the entire length of the sample •Burning upward at an angle increases the burn length in some cases possibly due to less silica deposition

  15. Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    NASA Technical Reports Server (NTRS)

    Niehaus, Justin E.; Ferkul, Paul V.; Gokoglu, Suleyman A.; Ruff, Gary A.

    2015-01-01

    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed-flow flame spread, horizontal and angled flame spread, and forced-flow upward and downward flame spread. In addition to these configurations, upward and downward tests were conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. Upward tests in air with an added forced flow were more flammable. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Complementary analyses using EDS, TGA, and SEM techniques suggest the importance of the silica layer deposited downstream onto the unburned sample surface.

  16. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  17. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  18. 46 CFR 58.01-55 - Tanks for flammable and combustible oil.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-combustion machinery used for other than main propulsion, whose power output is equal to or greater than 500... AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-55 Tanks for flammable and combustible oil. (a) For the purposes of this section, a machinery space of category A is a space that...

  19. 46 CFR 58.01-55 - Tanks for flammable and combustible oil.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-combustion machinery used for other than main propulsion, whose power output is equal to or greater than 500... AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-55 Tanks for flammable and combustible oil. (a) For the purposes of this section, a machinery space of category A is a space that...

  20. 46 CFR 58.01-55 - Tanks for flammable and combustible oil.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-combustion machinery used for other than main propulsion, whose power output is equal to or greater than 500... AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-55 Tanks for flammable and combustible oil. (a) For the purposes of this section, a machinery space of category A is a space that...

  1. 46 CFR 58.01-55 - Tanks for flammable and combustible oil.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-combustion machinery used for other than main propulsion, whose power output is equal to or greater than 500... AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-55 Tanks for flammable and combustible oil. (a) For the purposes of this section, a machinery space of category A is a space that...

  2. 46 CFR 58.01-55 - Tanks for flammable and combustible oil.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-combustion machinery used for other than main propulsion, whose power output is equal to or greater than 500... AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-55 Tanks for flammable and combustible oil. (a) For the purposes of this section, a machinery space of category A is a space that...

  3. High methane natural gas/air explosion characteristics in confined vessel.

    PubMed

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. OPTIMIZING SYNTHESIS GAS YIELD FROM THE CROSS ...

    EPA Pesticide Factsheets

    Symposium Paper Biomass can be gasified to yield synthesis gas, tars, and ash. The process is governed by a number of parameters such as the temperature of the gasifying medium (in this case), and the moisture content of the feedstock. Synthesis gas from gasifying wood pellets was collected and analyzed as a function of inlet air temperature and feedstock moisture content. The air was introduced at temperatures ranging from 630 to 730 °C and the moisture content of the feedstock ranged from 8 to 20%. The data collected was used to establish the relationship between the outcome of gasification and these two parameters, and then to determine optimal operating parameters for maximizing the fuel value (maximizing the concentrations of flammable gases in the synthesis gas) while minimizing the production of gasification tars.

  5. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory aremore » presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.« less

  6. Theoretical calculation of heat of formation and heat of combustion for several flammable gases.

    PubMed

    Kondo, Shigeo; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2002-09-02

    Heats of formation have been calculated by the Gaussian-2 (G2) and/or G2MP2 method for a number of flammable gases. As a result, it has been found that the calculated heat of formation for compounds containing, such atoms as fluorine and chlorine tends to deviate from the observed values more than calculations for other molecules do. A simple atom additivity correction (AAC) has been found effective to improve the quality of the heat of formation calculation from the G2 and G2MP2 theories for these molecules. The values of heat of formation thus obtained have been used to calculate the heat of combustion and related constants for evaluating the combustion hazard of flammable gases.

  7. 30 CFR 56.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anticipated, will ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat.... Flammable means capable of being easily ignited and of burning rapidly. Flammable gas means a gas that will burn in the normal concentrations of oxygen in the air. Flammable liquid means a liquid that has a...

  8. Fire in Your Life: A Catalog of Flammable Products & Ignition Sources.

    ERIC Educational Resources Information Center

    Consumer Product Safety Commission, Washington, DC.

    To reduce the number of deaths and injuries caused by fires, this catalog (which is part of the Hap and Hazard Series) gives information about typical accident patterns and about the safest way to purchase, use, store, maintain, and dispose of flammable products. As a reference source, it is intended for use in formal teaching situations as well…

  9. Flammability, odor, offgassing, thermal vacuum stability, and compatibility with aerospace fluids of wire insulations

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Johnson, Harry

    1994-01-01

    The NASA Lewis Research Center requested NASA Johnson Space Center White Sands Test Facility to conduct flammability, odor, offgassing, thermal vacuum stability, and compatibility tests with aerospace fluids of several wire insulations.

  10. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Installation/construction/maintenance § 56.4531 Flammable or...) In addition, the buildings or rooms shall be— (1) Constructed to meet a fire resistance rating of at...

  11. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillen, Donna Post

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less

  12. Design of the liquefied natural gas (LNG) vehicle gas cylinder filling semi-physical simulation training and assessment system

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Zheng, Jianrong; Zhao, Yinghui

    2017-08-01

    With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.

  13. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  14. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  15. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  16. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  17. Flammability, Offgassing, and Compatibility Requirements and Test Procedures. Interim NASA Technical Standard

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.

  18. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Explosives (with no significant blast hazard) 173.50 1 1.5 Very insensitive explosives; blasting agents 173.50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4...

  19. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability Reduction Means M Appendix M to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. M Appendix M to Part...

  20. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Flammability Reduction Means M Appendix M to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. M Appendix M to Part...

  1. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  2. Flammability and Photo-Stability of Selected Polymer Systems

    NASA Technical Reports Server (NTRS)

    Lo, Jeelin

    1981-01-01

    A systematic approach to the improvement of the flammability of epoxy resins, bisphenol-A polycarbonate poly(butylene terephthalate), and Nylon 6.6 by introducing halogens and loop functionality into the flame retardants is described. The phthalides (the loop functionality containing molecules) include 3,3-bis(4-bromophenyl)-phthalide, 3,3-bis(4-chlorophenyl)phthalide, and phenolphthalein. The phthalide containing epoxy resins are synthesized and characterized in comparison with the bisphenol-A epoxy resins in terms of flammability in the copolymer systems. The resins include diglycidyl ethers of phenolphthalein, bisphenol-A. tetrabromobisphenol-A, and tetraoromophenolphthalein. The vaporization of the phthalide additive in the polymers is observed in Thermal Gravimetric Analysis. The flame retardancy is primarily due to the presence of halogens. In the poly(butylene terephthalate) system, the cleavage of the C(sub aromatic) -B bond of the flame retardant additive enhances the crosslinking react ions between the aromatic rings resulting in an increase of char formation. In the epoxy resin systems, loop functionality contributes to char formation to a larger extent. The interaction between the epoxy resin and poly-(butylene terephthalate) follows the mechanism of insertion of the oxirane ring into the ester bond. This mechanism is studied by FT-IR. The investigation of the thermal properties of the char-forming phenol-formaldehyde resins is conducted to provide information for the systematic design of high temperature flame-resistant phenolics. NMR and FT-IR are used to characterize the oligomeric resins and the cured resins. The curing agents used in the study include formaldehyde, s-trioxane and terephthaloyl chloride. The brominated phenolic resins are found to have higher oxygen indices with lower char yields.

  3. Evaluation of Additives to Reduce Solid Propellant Flammability in Ambient Air.

    DTIC Science & Technology

    1975-12-01

    been applied successfully to reduce the flammability of plastics and polymers. From that experimental data base, the following have been shown to be...consumption rate of the cube) are reported since they are more repeatable than the linear burning rate data . B. Free Convection Effects Several series of...Steady State Burning Rate Measurements Obtaining steady state burning rate data in air requires a technique for holding the characteristic length

  4. Multipoint Ignition of a Gas Mixture by a Microwave Subcritical Discharge with an Extended Streamer Structure

    NASA Astrophysics Data System (ADS)

    Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.

    2018-02-01

    The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.

  5. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  6. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  7. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  8. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  9. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  10. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  11. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  12. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...

  13. Gas Retention, Gas Release, and Fluidization of Spherical Resorcinol-Formaldehyde (sRF) Ion Exchange Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. When loaded with radioactive Cs, radiolysis of water in the LAW liquid will generate hydrogen gas. In normal operations, the generated hydrogen is expected to remainmore » dissolved in the liquid and be continuously removed by liquid flow. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin bed and below the bottom screen that supports the resin within the column, which creates a hydrogen flammability hazard. Because there is a potential for a large fraction of the retained hydrogen to be released over a short duration as a gas release event, there is a need to quantify the size and rate of potential gas release events. Due to the potential for a large, rapid gas release event, an evaluation of mitigation methods to eliminate the hydrogen hazard is also needed. One method being considered for mitigating the hydrogen hazard during a loss of flow accident is to have a secondary flow system, with two redundant pumps operating in series, that re-circulates liquid upwards through the bed and into a vented break tank where hydrogen gas is released from the liquid and removed by venting the headspace of the break tank. The mechanism for inducing release of gas from the sRF bed is to fluidize the bed, which should allow

  14. Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.

    PubMed

    Ye, Qin; Li, Zhimin; Wu, Hui

    2016-01-01

    Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.

  15. A study of nonflammable ArCO 2-hydrocarbon gas mixtures for limited streamer tubes

    NASA Astrophysics Data System (ADS)

    Cartwright, S.; Schneekloth, U.; Alpat, B.; Artemi, C.; Battiston, R.; Bilei, G.; Italiani, M.; Pauluzzi, M.; Servoli, L.; Messner, R.; Wyss, J.; Zdarko, R.; Johnson, J.

    1989-04-01

    The gas mixtures generally used until now in limited streamer tube detectors (Ar+C 4H 10 or Ar+CO 2+C 5H 12) are very flammable when leaked into air. The safety issues are therefore very relevant for large-volume underground experiments. We have found a set of completely safe (i.e. nonflammable) ternary mixtures of the kind Ar + hydrocarbon + CO 2 containing less than ˜ 5% of Ar and less than ˜ 10% of hydrocarbon. We tested C 4H 10, C 5H 12 and C 6H 14 as quenching agents. The main characteristics of the various mixtures have been measured: singles (untriggered) counting rate versus high voltage and with different dead times, and average charge. The stability of these mixtures is good, and their spurious streamer activity is compared with the standard binary or ternary mixture. We studied in particular the combination Ar(2.5%) + C 4H 10(9.5%) + CO 2(88%). All the data suggest that this or a similar gas mixture can successfully replace standard flammable mixtures both in tracking devices and hadron calorimeters.

  16. Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 1. Flammability.

    DOT National Transportation Integrated Search

    1983-05-01

    The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...

  17. Efficiency Assessment of Using Flammable Compounds from Water Treatment and Methanol Production Waste for Plasma Synthesis of Iron-Containing Pigments

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, Anastasia P.; Karengin, Alexander G.

    2016-08-01

    This article describes the possibility of applying the low-temperature plasma for obtaining iron-containing pigments from water purification and flammable methanol production waste. In this paper were calculated combustion parameters of water-saltorganic compositions (WSOC) with different consists. Authors determined the modes of energy- efficient processing of the previously mentioned waste in an air plasma. Having considered the obtained results there were carried out experiments with flammable dispersed water-saltorganic compositions on laboratory plasma stand. All the experimental results are confirmed by calculations.

  18. Addressing Theory and Performance Enhancements for the Independent Sustain and Address AC Plasma Display

    NASA Astrophysics Data System (ADS)

    Warren, Kevin Wilson

    The Independent Sustain and Address (ISA) AC plasma panel is a flat, flicker-free, gas discharge type of display device. This display technology promises to reduce both the cost of manufacturing and operation of AC plasma displays. The ISA technology uses a vastly different mechanism to change the state of the display pixels than the standard AC plasma technology. This addressing mechanism is an exploitation of some of the natural characteristics associated with the plasma that can form during strong gas discharges. This thesis presents detailed data from experiments that were designed to evaluate and test the effectiveness of this mechanism. Through these experiments, the theory that the addressing methodology is based upon is developed and evaluated. These experiments show that the address margin windows for this technology are very large, minimally two to three times larger than the address margins for the standard XY AC plasma addressing techniques. New capabilities are also described, such as global brightness control for the ISA technology and a technique for increasing the addressing rate. These advances were designed into working prototypes and transferred to industry where there are currently commercial products available based upon these advances. A technique for implementing gray scale using some of these advances is also proposed.

  19. Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion

    NASA Astrophysics Data System (ADS)

    Anggono, Willyanto; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, Slamet; Hamidi, Nurkholis; Hayakawa, Akihiro

    2013-04-01

    Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (phi) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from phi=0.6 till phi=1.3. The flame at phi >= 1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At phi<=0.5, it does not propagate as well since the heat of reaction is insufficient to burn the mixtures. The flame for biogas-air mixtures propagates in a narrower range, that is from phi=0.6 to phi=1.2. Different from the methane flame, the biogas flame does not propagate at phi>=1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at phi<=0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.

  20. 10 CFR 590.104 - Address for filing documents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Address for filing documents. 590.104 Section 590.104 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS General Provisions § 590.104 Address for...

  1. 10 CFR 590.104 - Address for filing documents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Address for filing documents. 590.104 Section 590.104 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS General Provisions § 590.104 Address for...

  2. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  3. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  4. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  5. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  6. 76 FR 59014 - Standard for the Flammability of Mattresses and Mattress Pads; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... in 1972 under the authority of the Flammable Fabrics Act (``FFA''), 15 U.S.C. 1191 et seq. When the... NIST Technical Note 1627; and Non-``Fire-Safe Cigarette'' (FSC) The first three descriptors are... the risk of the occurrence of fire leading to death, injury, or significant property damage; (2) is...

  7. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  8. Development of organic non-flammable spacecraft potting, encapsulating and conformal coating compounds

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1971-01-01

    The overall program objective was to develop a flexible compound which not only functioned in a manned aerospace environment as an effective electrical insulation, but whose flammability characteristics in 16.5 psia, 60% oxygen/40% nitrogen were evidenced by rapid self-extinguishment and minimal thermal (pyrolysis) degradation. The following polymeric matrices were examined in depth: fluoroelastomers, modified fluoroelastomers, silicone RTV's, and modified silicone and fluorosilicone RTV's. Almost none of these systems burned in air, but all burned in 6.2 psia oxygen. Inorganic, organic, and inorganic/organic additives were evaluated in conjunction with these polymers in order to achieve the required survival in the 16.5 psia 60/40 environment. Depending upon formulations, it was possible to achieve nonflammable products when tested in the 1/4 in. x 1/4 in. x 1 in. configuration, even up to and including 16.5 psia oxygen. However, in order to assure this level of flame resistance, it was found necessary to heavily load the matrix with the additives. This resulted in a significant reduction in mechanical properties and large increases in viscosities. Optimization of formulations to obtain a suitable balance between these properties and flammability resistance led to the final selection of Formulation 387 as the primary system.

  9. Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities.

    PubMed

    Santana, Victor M; Baeza, M Jaime; Valdecantos, Alejandro; Vallejo, V Ramón

    2018-06-01

    The extensive abandonment of agricultural lands in the Mediterranean basin has led to large landscapes being dominated by early-successional species, characterized by high flammability and an increasing fire risk. This fact promotes fire occurrence and places ecosystems in a state of arrested succession. In this work, we assessed the effectiveness of several restoration actions in redirecting these ecosystems toward more resilient communities dominated by resprouting species. These actions included the mechanical clearing of early-successional species, the plantation of resprouting species, and the combination of both treatments. For 13 years, we assessed shifts in the successional trajectory and ecosystem flammability by changes in: species composition, species richness, ecosystem evenness, the natural colonization of resprouting species, total biomass and proportion of dead biomass. We observed that the plantation and clearing combination was a suitable strategy to promote resilience. Species richness increased as well as the presence of the resprouting species introduced by planting. The natural colonization of the resprouting species was also enhanced. These changes in the successional trajectory were accompanied by a possible reduction of fire risk by reducing dead fuel proportion. These findings are relevant for the management of Mediterranean basin areas, but also suggest new tools for redirecting systems in fire-prone areas worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia.

    PubMed

    Inanloo, Bahareh; Tansel, Berrin

    2015-06-01

    The aim of this research was to investigate accidental releases of ammonia followed by an en-route incident in an attempt to further predict the consequences of hazardous cargo accidents. The air dispersion model Areal Locations of Hazardous Atmospheres (ALOHA) was employed to track the probable outcomes of a hazardous material release of a tanker truck under different explosion scenarios. The significance of identification of the flammable zones was taken into consideration; in case the flammable vapor causes an explosion. The impacted areas and the severity of the probable destructions were evaluated for an explosion by considering the overpressure waves. ALOHA in conjunction with ArcGIS was used to delineate the flammable and overpressure impact zones for different scenarios. Based on the results, flammable fumes were formed in oval shapes having a chief axis along the wind direction at the time of release. The expansions of the impact areas under the overpressure value which can lead to property damage for 2 and 20 tons releases, under very stable and unstable atmospheric conditions were estimated to be around 1708, 1206; 3742, 3527 feet, respectively, toward the wind direction. A sensitivity analysis was done to assess the significance of wind speed on the impact zones. The insight provided by this study can be utilized by decision makers in transportation of hazardous materials as a guide for possible rerouting, rescheduling, or limiting the quantity of hazardous cargo to reduce the possible impacts after hazardous cargo accidents during transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  12. 75 FR 5578 - Submission for OMB Review; Comment Request-Flammability Standards for Clothing Textiles and Vinyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Standards for Clothing Textiles and Vinyl Plastic Film AGENCY: Consumer Product Safety Commission. ACTION... Commission's flammability standards for clothing textiles and vinyl plastic film. DATES: Written comments on... collection requirements should be captioned ``Clothing Textiles and Film, Collection of Information'' and...

  13. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  14. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  15. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  16. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  17. ASTM Committee G-4 metals flammability test program - Data and discussion

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Homa, John M.; Williams, Ralph E.; Benz, Frank J.

    1988-01-01

    Results of metals flammability tests performed on twenty-six metals in the NASA/White Sands Test Facility are discussed together with the test systems. The promoted combustion and ignition characteristics of these metals are described, and the metals are ranked according to their suitability for use in oxygen systems. In general, alloys with high copper and nickel contents and low iron content were found to rank higher than those that had high iron content, while alloys that had high aluminum content were ranked the lowest.

  18. Microgravity Flammability of PMMA Rods in Concurrent Flow

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ferkul, Paul V.

    2015-01-01

    Microgravity experiments burning cast PMMA cylindrical rods in axial flow have been conducted aboard the International Space Station in the Microgravity Science Glovebox (MSG) facility using the Burning and Suppression of Solids (BASS) flow duct, as part of the BASS-II experiment. Twenty-four concurrent-flow tests were performed, focusing on finding flammability limits as a function of oxygen and flow speed. The oxygen was varied by using gaseous nitrogen to vitiate the working volume of the MSG. The speed of the flow parallel to the rod was varied using a fan at the entrance to the duct. Both blowoff and quenching limits were obtained at several oxygen concentrations. Each experiment ignited the rod at the initially hemispherical stagnation tip of the rod, and allowed the flame to develop and heat the rod at a sufficient flow to sustain burning. For blowoff limit tests, the astronaut quickly turned up the flow to obtain extinction. Complementary 5.18-second Zero Gravity Facility drop tests were conducted to compare blowoff limits in short and long duration microgravity. For quenching tests, the flow was incrementally turned down and the flame allowed to stabilize at the new flow condition for at least the solid-phase response time before changing it again. Quenching was observed when the flow became sufficiently weak that the flame could no longer provide adequate heat flux to compensate for the heat losses (conduction into the rod and radiation). A surface energy balance is presented that shows the surface radiative loss exceeds the conductive loss into the rod near the limit. The flammability boundary is shown to represent a critical Damkohler number, expressed in terms of the reaction rate divided by the stretch rate. For the blowoff branch, the boundary exhibits a linear dependence on oxygen concentration and stretch rate, indicating that the temperature at blowoff must be fairly constant. For the quenching branch, the dominance of the exponential nature of

  19. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials

  20. Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames

    NASA Technical Reports Server (NTRS)

    Ju, Yiguang; Masuya, Goro; Ronney, Paul D.

    1998-01-01

    Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.

  1. Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy).

    PubMed

    Ponzoni, Andrea; Baratto, Camilla; Cattabiani, Nicola; Falasconi, Matteo; Galstyan, Vardan; Nunez-Carmona, Estefania; Rigoni, Federica; Sberveglieri, Veronica; Zambotti, Giulia; Zappa, Dario

    2017-03-29

    This work reports the recent results achieved at the SENSOR Lab, Brescia (Italy) to address the selectivity of metal oxide based gas sensors. In particular, two main strategies are being developed for this purpose: (i) investigating different sensing mechanisms featuring different response spectra that may be potentially integrated in a single device; (ii) exploiting the electronic nose (EN) approach. The former has been addressed only recently and activities are mainly focused on determining the most suitable configuration and measurements to exploit the novel mechanism. Devices suitable to exploit optical (photoluminescence), magnetic (magneto-optical Kerr effect) and surface ionization in addition to the traditional chemiresistor device are here discussed together with the sensing performance measured so far. The electronic nose is a much more consolidated technology, and results are shown concerning its suitability to respond to industrial and societal needs in the fields of food quality control and detection of microbial activity in human sweat.

  2. Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy)

    PubMed Central

    Ponzoni, Andrea; Baratto, Camilla; Cattabiani, Nicola; Falasconi, Matteo; Galstyan, Vardan; Nunez-Carmona, Estefania; Rigoni, Federica; Sberveglieri, Veronica; Zambotti, Giulia; Zappa, Dario

    2017-01-01

    This work reports the recent results achieved at the SENSOR Lab, Brescia (Italy) to address the selectivity of metal oxide based gas sensors. In particular, two main strategies are being developed for this purpose: (i) investigating different sensing mechanisms featuring different response spectra that may be potentially integrated in a single device; (ii) exploiting the electronic nose (EN) approach. The former has been addressed only recently and activities are mainly focused on determining the most suitable configuration and measurements to exploit the novel mechanism. Devices suitable to exploit optical (photoluminescence), magnetic (magneto-optical Kerr effect) and surface ionization in addition to the traditional chemiresistor device are here discussed together with the sensing performance measured so far. The electronic nose is a much more consolidated technology, and results are shown concerning its suitability to respond to industrial and societal needs in the fields of food quality control and detection of microbial activity in human sweat. PMID:28353673

  3. Assessment of relative flammability and thermochemical properties of some thermoplastic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Thermomechanical properties, flammability, oxygen index, relative toxicity of pyrolysis effluents, and char yields were studied for 12 advanced polymers which are candidates for use in aircraft interiors as decorative films, compression- and injection-molded parts and thermoplastic parts. Polymers sampled included polyphenylene sulfide, 9,9 bis (4-hydroxyphenol) fluorene polycarbonate-poly (dimethylsiloxane), polyether sulfone, polyvinyl fluoride and polyvinylidene fluoride. Availability of these samples, whether in commercial form or in test quantities, is specified. An estimate of relative fire resistance for the materials was obtained; the five polymers listed above were found to be the most fire resistant of the 12 sampled.

  4. Anti-flammable vinyl ester resin nano-composite with nano-titania

    NASA Astrophysics Data System (ADS)

    Das, Rajib

    Anti-flammable material is a common expectation for any industry and household applications to protect the material from fire accident. Polymer composites also play a significant role in preparing anti flammable materials. Vinyl ester resins (VERs) are thermosetting resins that have excellent mechanical and thermal properties of epoxy resins and Nanotitania is an inexpensive, nontoxic and biocompatible inorganic material. In this paper to investigate the flame retardency of polymer nanocomposites VER is used as polymer matrix and TiO2 is used as inorganic nanofiller.3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (TATMS), a kind of silane is used as a coupling agent to functionalize the surface of nanoTiO2 to improve its flame retardency by adding Si and N2 group. TGA test and FTIR test have been performed and different peaks for Si and N2 in the modified nanofiller and weight loss of fabricated nanofiller confirmed that fabrication method was successful. After that, nanocomposite sample of VERs reinforced with nano TiO2 prepared and the effects of different loadings on mechanical and flame retardant properties are investigated after and before the modification of nanofillers. From tensile test result it is found that up to 5% loading of modified nanofiller the tensile strength is 62 MPa that is almost as same as pure VER and the tensile strength of unmodified nanofiller based PNC is 68 MPa which is not significant improvement in its mechanical property. From MCC test of flame retardancy it is found that the normalized heat release capacity of modified nanofiller based nanocomposite is decreased by 27.7% than unmodified nanofiller based PNC that is 9.8%. Also the normalized total heat release of modified nanofiller based PNC is 21.4% than unmodified PNC that is 12.4%.

  5. A New Test Method for Material Flammability Assessment in Microgravity and Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.

    2004-01-01

    The objective of this research is to modify the well-instrumented standard cone configuration to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. We will then develop a standard test method with pass-fail criteria for future use in spacecraft materials flammability screening. (For example, dripping of molten material will be an automatic fail.)

  6. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  7. Lean flammability limit of downward propagating hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1992-01-01

    Detailed multidimensional numerical simulations that include the effects of wall heat losses have been performed to study the dynamics of downward flame propagation and extinguishment in lean hydrogen-air mixtures. The computational results show that a downward propagating flame in an isothermal channel has a flammability limit of around 9.75 percent. This is in excellent agreement with experimental results. Also in excellent agreement are the detailed observations of the flame behavior at the point of extinguishment. The primary conclusion of this work is that detailed numerical simulations that include wall heat losses and the effect of gravity can adequately simulate the dynamics of the extinguishment process in downward-propagating hydrogen-air flames. These simulations can be examined in detail to gain understanding of the actual extinction process.

  8. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  9. 49 CFR 174.14 - Movements to be expedited.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  10. 49 CFR 174.14 - Movements to be expedited.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  11. 49 CFR 174.14 - Movements to be expedited.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  12. 49 CFR 174.14 - Movements to be expedited.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  13. 49 CFR 176.5 - Application to vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  14. 49 CFR 176.5 - Application to vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  15. 49 CFR 176.5 - Application to vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  16. 49 CFR 176.5 - Application to vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  17. 49 CFR 176.5 - Application to vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Lenna A.

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retainedmore » gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.« less

  19. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  20. 46 CFR 111.106-13 - Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pierced by fixed lights, drive shafts, and pump-engine control rods, provided that the shafts and rods are... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo handling devices or cargo pump rooms handling... OSVs § 111.106-13 Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes...

  1. Wire Insulation Flammability Experiment: USML-1 One Year Post Mission Summary

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1994-01-01

    Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility on the USML-1 mission. This experiment explored various aspects of electrically induced fire scenarios in a reduced gravity environment. Under quiescent microgravity conditions, heat and mass transfer are dominated by diffusive and radiative transport; while in normal-gravity buoyancy induced convection often dominates. Of considerable scientific and practical interest is the intermediate situation of combustion occurring in the presence of imposed gas flows, with lower characteristic velocities than those induced by buoyancy in noma1 gravity. Two distinct cases naturally arise: flow direction opposed to, or concurrent with, the flame spread direction. Two tests of each kind were conducted in the WIF experiment, providing the first controlled demonstration of flame spreading in forced convection ever conducted in space. Four test modules were flown. The wire insulation, 1.5 mm in diameter, was polyethylene, extruded onto nichrome wire. Temperatures of the wh3 cores and insulation heated in quiescent and flowing environments were measured. Video and still-camera images of the samples, burning in air flowing at approximately 10 cm/sec, were recorded to obtain flame characteristics including spread rate, structure and temperature. Flame spread rates in concurrent flow were approximately twice those in opposed flow. In concurrent and opposed flow regimes, the spreading flames stabilized around a bead of molten insulation material, within which bubble nucleation was observed. An ignition attempt without flow mated a quiescent cloud of vaporized fuel which ignited dramatically yet failed to sustain normal flame spread. Finally, all tests produced substantial soot agglomerates, particularly the concurrent flow tests; and the collected soot has a morphology very distinct from soot formed in normal gravity flames. Several unexpected and unique microgravity

  2. 49 CFR 177.834 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transporting certain flammable material—(i) Use of combustion cargo heaters. A motor vehicle equipped with a combustion cargo heater may be used to transport Class 3 (flammable liquid) or Division 2.1 (flammable gas...) Heater requirements under § 393.77 of this title are complied with. (ii) Effective date for combustion...

  3. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... in which any flammable liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically...

  4. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... in which any flammable liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically...

  5. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... in which any flammable liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically...

  6. Non-flammable polyimide materials for aircraft and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Supkis, D. E.

    1979-01-01

    Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.

  7. Environmental Protection for Hazardous Materials Incidents. Volume 1. Hazardous Materials Incident Management System

    DTIC Science & Technology

    1990-11-01

    radioactive) - Determine class of HAZMAT (Class A Explosive, Class B Explosive, Class C Explosive, Blasting Agent , Flammable Gas , Non- flammable Gas ... agent . Specific health and safety plans related to IRP actions amy be obtained from the same source. 2. Interaction of Fire Departments with the...such as digging near a gas line, a fuel tank, or buried explo- sives, the fire department would be briefed before beginning the work, and, under

  8. Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not

  9. 49 CFR 174.200 - Special handling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...

  10. 49 CFR 174.200 - Special handling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...

  11. 49 CFR 174.200 - Special handling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...

  12. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subjected to sudden shock, pressure, or high temperature. Flammable means a chemical that falls into one of...: (A) A gas that, at ambient temperature and pressure, forms a flammable mixture with air at a concentration of 13 percent by volume or less; or (B) A gas that, at ambient temperature and pressure, forms a...

  13. 49 CFR 174.200 - Special handling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...

  14. 49 CFR 174.200 - Special handling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...

  15. 16 CFR 1500.43 - Method of test for flashpoint of volatile flammable materials by Tagliabue open-cup apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flammable materials by Tagliabue open-cup apparatus. 1500.43 Section 1500.43 Commercial Practices CONSUMER... materials by Tagliabue open-cup apparatus. Scope 1. (a) This method describes a test procedure for the..., that is, ignite but not continue to burn. Apparatus 3. The Tag open-cup tester is illustrated in Fig. 1...

  16. 16 CFR 1500.43 - Method of test for flashpoint of volatile flammable materials by Tagliabue open-cup apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flammable materials by Tagliabue open-cup apparatus. 1500.43 Section 1500.43 Commercial Practices CONSUMER... materials by Tagliabue open-cup apparatus. Scope 1. (a) This method describes a test procedure for the..., that is, ignite but not continue to burn. Apparatus 3. The Tag open-cup tester is illustrated in Fig. 1...

  17. Upward Flame Propagation and Wire Insulation Flammability: 2006 Round Robin Data Analysis

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2007-01-01

    This viewgraph document reviews test results from tests of different material used for wire insulation for flame propagation and flammability. The presentation focused on investigating data variability both within and between laboratories; evaluated the between-laboratory consistency through consistency statistic h, which indicates how one laboratory s cell average compares with averages from other labs; evaluated the within-laboratory consistency through the consistency statistic k, which is an indicator of how one laboratory s within-laboratory variability compares with the variability of other labs combined; and extreme results were tested to determine whether they resulted by chance or from nonrandom causes (human error, instrument calibration shift, non-adherence to procedures, etc.)

  18. Flammability properties and radiant fraction of FRT wood plastic composites using mass loss calorimeter under HRR hood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman; Nicole Stark

    2017-01-01

    A special test arrangement was used to assess the flammability of 4 different wood plastic composites (WPC), most with fire retardants, all of which has a tendency to high smoke production leading to high radiant energy losses to the apparatus walls. The mass loss calorimeter (MLC) was modified to include a thermopile on the exhaust pipe stack to compensate for radiant...

  19. Premixed Flame Propagation in an Optically Thick Gas

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Ronney, Paul D.

    1993-01-01

    Flame propagation in both the optically thin and the optically thick regime of radiative transport was studied experimentally using particle-laden gas mixtures. Data on flame shapes, propagation rates, peak pressure, maximum rate of pressure rise, and thermal decay in the burned gases are consistent with the hypothesis that, at low particle loadings, the particles act to increase the radiative loss from the gases, whereas at higher loadings, reabsorption of emitted radiation becomes significant. The reabsorption acts to decrease the net radiative loss and augment conductive heat transport. It is speculated that, in sufficiently large systems, in which the absorption length is much smaller than the system size, flammability limits might not exist at microgravity conditions because emitted radiation would not constitute a loss mechanism.

  20. 49 CFR Appendix B to Part 238 - Test Methods and Performance Criteria for the Flammability and Smoke Emission Characteristics of...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., etc.) shall be designed against acting as passageways for fire and smoke and representative... structural flooring assembly to perform as a barrier against under-vehicle fires. The fire resistance period... Flammability and Smoke Emission Characteristics of Materials Used in Passenger Cars and Locomotive Cabs B...

  1. Screening the Hanford tanks for trapped gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less

  2. 46 CFR 111.05-20 - Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with closed-cup flashpoints not exceeding 60 °C (140 °F). 111.05-20 Section 111.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS...

  3. Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2001-01-01

    This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.

  4. Application of CFD (Fluent) to LNG spills into geometrically complex environments.

    PubMed

    Gavelli, Filippo; Bullister, Edward; Kytomaa, Harri

    2008-11-15

    Recent discussions on the fate of LNG spills into impoundments have suggested that the commonly used combination of SOURCE5 and DEGADIS to predict the flammable vapor dispersion distances is not accurate, as it does not account for vapor entrainment by wind. SOURCE5 assumes the vapor layer to grow upward uniformly in the form of a quiescent saturated gas cloud that ultimately spills over impoundment walls. The rate of spillage is then used as the source term for DEGADIS. A more rigorous approach to predict the flammable vapor dispersion distance is to use a computational fluid dynamics (CFD) model. CFD codes can take into account the physical phenomena that govern the fate of LNG spills into impoundments, such as the mixing between air and the evaporated gas. Before a CFD code can be proposed as an alternate method for the prediction of flammable vapor cloud distances, it has to be validated with proper experimental data. This paper describes the use of Fluent, a widely-used commercial CFD code, to simulate one of the tests in the "Falcon" series of LNG spill tests. The "Falcon" test series was the only series that specifically addressed the effects of impoundment walls and construction obstructions on the behavior and dispersion of the vapor cloud. Most other tests, such as the Coyote and the Burro series, involved spills onto water and relatively flat ground. The paper discusses the critical parameters necessary for a CFD model to accurately predict the behavior of a cryogenic spill in a geometrically complex domain, and presents comparisons between the gas concentrations measured during the Falcon-1 test and those predicted using Fluent. Finally, the paper discusses the effect vapor barriers have in containing part of the spill thereby shortening the ignitable vapor cloud and therefore the required hazard area. This issue was addressed by comparing the Falcon-1 simulation (spill into the impoundment) with the simulation of an identical spill without any

  5. Early Leakage Protection System of LPG (Liquefied Petroleum Gas) Based on ATMega 16 Microcontroller

    NASA Astrophysics Data System (ADS)

    Sriwati; Ikhsan Ilahi, Nur; Musrawati; Baco, Syarifuddin; Suyuti'Andani Achmad, Ansar; Umrianah, Ejah

    2018-04-01

    LPG (Liquefied Petroleum Gas). LPG is a hydrocarbon gas production from refineries and gas refinery with the major components of propane gas (C3H8) and butane (C4H10). Limit flame (Flammable Range) or also called gas with air. Value Lower Explosive Limit (LEL) is the minimum limit of the concentration of fuel vapor in the air which if there is no source of fire, the gas will be burned. While the value of the Upper Explosive Limit (UEL), which limits the maximum concentration of fuel vapor in the air, which if no source of fire, the gas will be burned. Protection system is a defend mechanism of human, equipment, and buildings around the protected area. Goals to be achieved in this research are to design a protection system against the consequences caused by the leakage of LPG gas based on ATmega16 microcontroller. The method used in this research is to reduce the levels of leaked LPG and turned off the power source when the leakage of LPG is on the verge of explosive limit. The design of this protection system works accurately between 200 ppm up to 10000 ppm, which is still below the threshold of explosive. Thus protecting the early result of that will result in the leakage of LPG gas.

  6. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  7. Implementation of a dynamic data entry system for the PHENIX gas system

    NASA Astrophysics Data System (ADS)

    Hagiwara, Masako

    2003-10-01

    The PHENIX detector at the BNL RHIC facility uses multiple detector technologies that require a precise gas delivery system, including flammable gases that require additional monitoring. During operation of the detector, it is crucial to maintain stable and safe operating conditions by carefully monitoring flows, pressures, and various other gas properties. These systems are monitored during running periods on a continuous basis. For the most part, these records were kept by hand, filling out a paper logsheet every four hours. A dynamic data entry system was needed to replace the paper logsheets. The solution created was to use a PDA or laptop computer with a wireless connection to enter the data directly into a MySQL database. The system uses PHP to dynamically create and update the data entry pages. The data entered can be viewed in graphs as well as tables. As a result, the data recorded will be easily accessible during PHENIX's next running period. It also allows for long term archiving, making the data available during the analysis phase, providing knowledge of the operating conditions of the gas system.

  8. The USML-1 wire insulation flammability glovebox experiment

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1995-01-01

    Flame spreading tests have been conducted using thin fuels in microgravity where buoyant convection is suppressed. In spacecraft experiments flames were ignited in quiescent atmospheres with an elevated oxygen content, demonstrating that diffusional mechanisms can be sufficient alone to sustain flame spreading. In ground-based facilities (i.e. drop towers and parabolic aircraft) low-speed convection sustains flames at much lower concentrations of atmospheric oxygen than in quiescent microgravity. Ground-based experiments are limited to very thin fuels (e.g., tissue paper); practical fuels, which are thicker, require more test time than is available. The Glovebox Facility provided for the USML 1 mission provided an opportunity to obtain flame spreading data for thicker fuel Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility. This experiment explored the heating, ignition and burning of 0.65 mm thick polyethylene wire insulation in low-speed flows in a reduced gravity environment. Four tests were conducted, two each in concurrent flow (WIF A and C) and opposed flow (WIF B and D), providing the first demonstration of flame spreading in controlled forced convection conducted in space.

  9. Flammability and oxidation kinetics of hydrophobic silica aerogels.

    PubMed

    Li, Zhi; Cheng, Xudong; Shi, Long; He, Song; Gong, Lunlun; Li, Congcong; Zhang, Heping

    2016-12-15

    Silica aerogels (SAs) present great application prospects especially on thermal insulation, but their flammability is usually ignored. A combined study on the combustion behaviors and oxidation kinetics of hydrophobic silica aerogels prepared by ambient pressure drying (SA-apd) and supercritical drying (SA-sd) was performed by employing cone calorimeter and thermal analysis. The whole combustion process for SAs could be divided into three stages in which a fire propagation phenomenon was observed with the radial propagation velocity of 6.6-8.3cms -1 . Current investigations forcefully demonstrated that hydrophobic SAs were combustible and easy to flashover when exposed to a heat flux higher than 25kWm -2 . Compared between the two SAs, the SA-sd owned a less fire risk with presenting a less fire hazard and a lower smoke toxicity than those of SA-apd. The oxidation kinetics by Ozawa-Flynn-Wall method revealed that SA-sd had larger apparent activation energies than those of SA-apd which conformed to the thermal stability analysis by TG-DSC. Furthermore, a two-step combustion mechanism was proposed to explain the combustion behaviors of SAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland-urban interface

    Treesearch

    Anna L. Behm; Mary L. Duryea; Alan J. Long; Wayne C. Zipperer

    2004-01-01

    Six understory species from five pine flatwood sites and six understory species from five hardwood hammock sites were harvested for biomass analyses to compare potential flammability between two ecosystems. In the south-eastern coastal plain of the United States. Plant components were separated into live and dead foliage, accumulated litter on and under the plant, and...

  11. Experimental Verification of Material Flammability in Space

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Balashov, Y. V.; Andreeva, T. V.; Melikhov, A. S.

    1999-01-01

    The flammability in microgravity of three US-furnished materials, Delrin, polymethylmethacrylate (PMMA), and high-density polyethylene, was determined using a Russian-developed combustion tunnel on Mir. Four 4.5-mm-diameter cylindrical samples of each plastic were ignited under concurrent airflow (in the direction of flame spread) with velocities from no flow to 8.5 cm/s. The test results identify a limiting air-flow velocity V(sub lim) for each material, below which combustion ceases. Nominal values are V(sub lim) < 0.3 cm/s for Delrin, 0.5 cm/s for PMMA, and 0.3 to 0.5 cm/s for polyethylene. These values are lower than those obtained in prior ground testing. Nevertheless, they demonstrate that flow shutoff is effective for extinguishment in the microgravity environment of spacecraft. Microgravity test results also show that the plastic materials maintain a stable melt ball within the spreading flame zone. In general, as the concurrent flow velocity V decreases, the flame-spread rate V(sub F) decreases, from an average (for all three materials) of V(sub F)= 0.5-0.75 mm/s at V = 8.5 cm/s to V(sub F)= 0.05-0.01 mm/s at V = 0.3-0.5 cm/s. Also, as V decreases, the flames become less visible but expand, increasing the probability of igniting an adjacent surface.

  12. 49 CFR 172.604 - Emergency response telephone number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicle. Carbon dioxide, solid. Castor bean. Castor flake. Castor meal. Castor pomace. Consumer commodity. Dry ice. Engines, internal combustion. Fish meal, stabilized. Fish scrap, stabilized. Refrigerating machine. Vehicle, flammable gas powered. Vehicle, flammable liquid powered. Wheelchair, electric. (3...

  13. The Use of a Laser Doppler Velocimeter in a Standard Flammability Tube

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Flynn, E. M.

    1985-01-01

    The use of the Laser Doppler Velocimeter, (LDV), to measure the flow associated with the passage of a flame through a standard flammability limit tube (SFLT) was studied. Four major results are presented: (1) it is shown that by using standard ray tracing calculations, the displacement of the LDV volume and the fringe rotation within the experimental error of measurement can be predicted; (2) the flow velocity vector field associated with passage of an upward propagating flame in an SFLT is determined; (3) it is determined that the use of a light interruption technique to track particles is not feasible; and (4) it is shown that a 25 mW laser is adequate for LDV measurements in the Shuttle or Spacelab.

  14. Impacts of initial temperature and cylindrical obstacles on the dispersing flammable limits of accidental methane releases in an LNG bunkering terminal.

    PubMed

    Choi, Byung Chul; Park, Kweon-Ha; Doh, Deog-Hee

    2018-05-16

    This paper presents a numerical study on the dispersing flammable limits with respect to the initial methane releases at T CH4,0  = -50 and -150 °C in the crosswind of ambient air according to the arrangement of (a) No Tank, (b) Tank I, (c) Tank II, and (d) Tank I and II on the ground. To provide a better physical insight on the dispersion behaviors of the methane releases, the spatial distributions of the quasi-averaged methane concentration and flow fields were mainly analyzed using 3-D large eddy simulations. Consequently, the results of both the parameters can be summarized in that the vortex characteristics of the rotating direction and vorticity generated by the interactions not only between the crosswind and cylindrical obstacles but also between the crosswind and releasing methane flows played important roles in determining the dispersing flammable limits depending on the mixing characteristics. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    PubMed

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  16. Method for Predicting Hypergolic Mixture Flammability Limits

    DTIC Science & Technology

    2017-02-01

    liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition and the interactions...of what happens in the liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition...and the interactions of all these phases. The ignition happens in the gas -phase but products formed here and there (in the liquid phase or at

  17. A New Test Method for Material Flammability Assessment in Microgravity and Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.

    2004-01-01

    The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of three at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results [2] demonstrate the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material s flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates materials flammability with a much higher inherent buoyant convective flow.

  18. Fire blocking systems for aircraft seat cushions

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A. (Inventor)

    1984-01-01

    A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.

  19. Purification process for .sup.153Gd produced in natural europium targets

    DOEpatents

    Johnsen, Amanda M; Soderquist, Chuck Z; McNamara, Bruce K; Risher, Darrell R

    2013-04-23

    An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu.sup.2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.

  20. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, Myra L.; Pratt, Joseph William; Bran Anleu, Gabriela A.

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cellmore » room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.« less

  1. A Chemist's View of Labeling Hazardous Materials as Required by the U.S. Department of Transportation.

    ERIC Educational Resources Information Center

    Shurpik, Anton J.; Beim, Howard J.

    1982-01-01

    Discusses characteristics of materials and labels used by the Department of Transportation, including label design and color: red (flammable and spontaneously combustible), white/yellow (radioactives), orange (explosives), white (poisons), yellow (oxidizers), green (non-flammable gas), black/white (corrosive), blue (dangerous when wet). Includes…

  2. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules

    PubMed Central

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-01-01

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO2) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires. PMID:28793434

  3. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-02

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.

  4. Environmental Training Modules. Module 3 - Shipyard Incident Response Training

    DTIC Science & Technology

    1999-05-01

    112 1.4 Explosives (no significant blast hazard) Orange 114 1.5 Insensitive Explosives; Blasting Agents Orange 112 2.1 Flammable Gas Red 118 2.2 Non...manufacture, distribution, importation, and use of pesticides . Broadly defined, a pesticide is any agent used to kill or control undesired insects...Orange 112 1.4 Explosives (no significant blast hazard) Orange 114 1.5 Very Insensitive Explosives; Blasting Agents Orange 112 2.1 Flammable Gas Red

  5. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  6. Aviation security : additional controls needed to address weaknesses in carriage of weapons regulations

    DOT National Transportation Integrated Search

    2000-09-01

    Federal aviation security regulations prohibit passengers from carrying firearms and other dangerous items, such as explosives and flammable liquids, on board commercial aircraft. The prohibition against these items is intended to protect the traveli...

  7. Preliminary Results of the Third Test Series of Nonmetal Material Flammability Evaluation In SKOROST Apparatus on the Space Station Mir

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Alymov, V. F.; Smirnov, A. B.; Shalayev, S. P.; Ye.Belov, D.; Balashov, Ye.V.; Andreeva, T. V.; Semenov, A. V.; Melikhov, A. S.; Bolodyan, I. A.; hide

    1999-01-01

    The work has been done according to the US/Russian Joint Project "Experimental Evaluation of the Material Flammability in Microgravity" a continued combustion study in the SKOROST test apparatus on the OS Mir. The objective of the project was to evaluate the flammability and flame-spread rate for the selected polymer materials in low velocity flow in microgravity. Lately, the issue of nonmetal material combustion in microgravity has become of great importance, based on the necessity to develop the fire safety system for the new International Space Station (ISS). Lack of buoyant flow in microgravity reduces oxygen transfer into the combustion zone, which leads to flame extinction when the flow velocity is less than the limiting flow velocity V(sub lim) for the material. The ISS FGB fire-safety system was developed based on this phenomenon. The existence of minimum flow velocity V(sub lim) to sustain fire for the selected materials was determined both theoretically and experimentally. In the latter, it is shown that, even for thermally thin nonmetal materials with a very low oxygen index C(sub lim) of 12.5% (paper sheets with the thickness of 0.1 mm), a limiting flow velocity V(sub lim) exists at oxygen concentration Co(sub OX) = 17-21%, and is about 1.0 - 0.1 cm/sec. This might be explained by the relative increase in thermal losses due to radiation from the surface and from the gaseous phase. In the second series of experiments in Skorost apparatus on Orbital Station Mir the existence of the limiting flow velocity V(sub lim) for combustion was confirmed for PMMA and glass-epoxy composite strip samples 2 mm thick at oxygen concentration C(sub OX) = 21.5%. It was concluded that V(sub lim) depends on C(sub OX) for the PMMA sample with a low oxygen index of 15.5%, the limiting flow velocity V(sub lim) was less than 0.5 cm/sec, and for the glass-epoxy composite sample with a high oxygen index of 19%, the limiting flow velocity V(sub lim) was higher than 15 cm/sec. As of

  8. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    PubMed

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  9. Gas chromatographic determination of 1,4-dioxane at low parts-per-million levels in glycols.

    PubMed

    Pundlik, M D; Sitharaman, B; Kaur, I

    2001-02-01

    1,4-Dioxane is a flammable liquid and tends to form explosive peroxides. Its formation in glycols (low parts-per-million levels), which are used as dehumidifying agents in refineries, may take place by condensation. 1,4-Dioxane thus formed gets distilled over with benzene in the refinery process. Therefore, it is necessary to identify and determine the levels of 1,4-dioxane in glycols as well as benzene. Gas chromatography (GC) is probably the best technique for this purpose. GC analysis may be carried out using a flame ionization detector. Results show that 1,4-dioxane can be comfortably determined down to 2 ppm in glycols and benzene.

  10. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  11. 49 CFR 393.95 - Emergency equipment on all power units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...

  12. 49 CFR 393.95 - Emergency equipment on all power units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...

  13. 49 CFR 393.95 - Emergency equipment on all power units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...

  14. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  15. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  16. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  17. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    NASA Astrophysics Data System (ADS)

    Jia, Shaojin; Zhang, Zhicheng; Du, Zhiwen; Teng, Renrui; Wang, Zhengzhou

    2003-04-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO 2 from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated.

  18. More environment-friendly and safer working gas mixtures for Bakelite RPCs operated in streamer mode

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Lv, Zhipeng; Lv, Jinge; Zhang, Jiawen; Xu, Jilei; Ning, Zhe

    2017-08-01

    This paper presents experimental results of RPCs performances with different working gas mixtures. Owing to Freon's high global warming potential, its threat to RPCs aging and its large consumption in large particle physics experiments, studies to minimize the concentration of HFC-134A, and even its complete replacement, have been undertaken. In addition, the reduction of iso-butane is also a favorable strategy, due to the flammability level of the gas mixture. Freon-less working gas mixture of Ar/HFC-134A/i-C4H10/CO2=20/0/8/72 was chosen with plateau efficiency of 86.3% and noise rate of 0.61 Hz/cm2. For working gas with lower ratio of Freon, Ar/HFC-134A/i-C4H10/CO2=20/20/8/52 was suggested with plateau efficiency of 91.0% and noise rate of 0.19 Hz/cm2, in which Freon was decreased by 22% compared to the BESIII RPC gas mixture. Furthermore, iso-butane was decreased to 6% with RPC's efficiency of 90% and noise rate of 0.20 Hz/cm2 achieved. Finally, the explanation of RPC's different performances at various working gas mixtures has been validated by the investigation of secondary streamers. This study will be helpful for RPC's application in future large particle physics experiments, in which RPCs can run in streamer mode.

  19. Smell of danger: an analysis of LP-gas odorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, W.S.; Turk, A.

    1985-03-01

    LP-gas derives warning properties from the odorants ethyl mercaptan or thiophane. Laboratory tests have implied that the average person has the ability to smell the odors before leaking LP-gas reaches one-fifth its lower limit of flammability. Generally, however, laboratory tests ignore or discard persons with a poor sense of smell, especially the elderly and persons with certain types of hyposmia. Some persons who apparently can smell the warning agents when directed may otherwise fail to notice or identify them. Elderly men seem particularly vulnerable to instances of incidental anosmia and olfactory agnosia. Psychophysical testing of the warning agents has beenmore » rather unsophisticated. There exists neither a standard protocol for testing nor adequate specification of the perceptual properties that might make one warning agent better than another. Without such developments, improvement in warning agents will fail to occur. Possible improvements include increases in concentration, the use of blends to insure more uniform delivery of agent and, to decrease the perceptual vulnerability of relatively insensitive people, use of agents with favorable psychophysical (stimulus-response) functions and use of agents with favorable adaptation characteristics. Even without a change in existing products, it seems advisable to learn more about the vulnerability of LP-gas users and to employ educational means to reduce risks.« less

  20. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years.

    PubMed

    Belcher, Claire M; Yearsley, Jonathan M; Hadden, Rory M; McElwain, Jennifer C; Rein, Guillermo

    2010-12-28

    Atmospheric oxygen (O(2)) is estimated to have varied greatly throughout Earth's history and has been capable of influencing wildfire activity wherever fuel and ignition sources were present. Fires consume huge quantities of biomass in all ecosystems and play an important role in biogeochemical cycles. This means that understanding the influence of O(2) on past fire activity has far-reaching consequences for the evolution of life and Earth's biodiversity over geological timescales. We have used a strong electrical ignition source to ignite smoldering fires, and we measured their self-sustaining propagation in atmospheres of different oxygen concentrations. These data have been used to build a model that we use to estimate the baseline intrinsic flammability of Earth's ecosystems according to variations in O(2) over the past 350 million years (Ma). Our aim is to highlight times in Earth's history when fire has been capable of influencing the Earth system. We reveal that fire activity would be greatly suppressed below 18.5% O(2), entirely switched off below 16% O(2), and rapidly enhanced between 19-22% O(2). We show that fire activity and, therefore, its influence on the Earth system would have been high during the Carboniferous (350-300 Ma) and Cretaceous (145-65 Ma) periods; intermediate in the Permian (299-251 Ma), Late Triassic (285-201 Ma), and Jurassic (201-145 Ma) periods; and surprisingly low to lacking in the Early-Middle Triassic period between 250-240 Ma. These baseline variations in Earth's flammability must be factored into our understanding of past vegetation, biodiversity, evolution, and biogeochemical cycles.