Sample records for address specific science

  1. Space sciences - Keynote address

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.

    1990-01-01

    The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.

  2. Mi-STAR: Designing Integrated Science Curriculum to Address the Next Generation Science Standards and Their Foundations

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Huntoon, J. E.

    2015-12-01

    Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated

  3. Computer Science and Engineering Students Addressing Critical Issues Regarding Gender Differences in Computing: A Case Study

    ERIC Educational Resources Information Center

    Tsagala, Evrikleia; Kordaki, Maria

    2008-01-01

    This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…

  4. Addressing Equity within Science Education Courses: Sharing Approaches and Ideas.

    ERIC Educational Resources Information Center

    Wieseman, Katherine C.; Bryan, Lynn; Hammrich, Penny; Lynch, Sharon; McGinnis, Randy; Pyle, Eric

    A discussion session provided opportunities for individuals involved in science teacher education to exchange approaches and ideas on how equity issues in science teaching and learning are being addressed in science teacher education courses. Evaluative questions included: (1) What conceptions of equity in science education underpin individual…

  5. Scaling up to address data science challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne R.

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  6. Scaling up to address data science challenges

    DOE PAGES

    Wendelberger, Joanne R.

    2017-04-27

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  7. Preparing Science Teachers to Address Contentious and Sensitive Science Topics

    ERIC Educational Resources Information Center

    Ado, Gustave

    2015-01-01

    Purpose: Despite high HIV prevalence rates in Ivory Coast, the formal K-12 curriculum was not developed to address HIV/AIDS information completely for many African students. The purpose of this study was to identify factors that influenced Ivorian teachers' teaching of the HIV/AIDS curriculum in middle school science curricula in nine middle…

  8. Student Perceptions of Using Games to Address Science Literacy

    NASA Astrophysics Data System (ADS)

    Keller, Cara M.

    The purpose of this qualitative evaluative case study was to gain insight into how students perceived the efficacy of using games to address their science literacy concerns. Scientists in the United States are concerned with the lack of science literacy. The No Child Left Behind Act of 2001 requires proficiency in reading, mathematics, language arts, and science by the completion of the 2013--2014 school year. The high school participating in this study received substandard test scores on both the 2009 state graduation test and the science portion of the ACT test. The research question included understanding how students perceive the use of games in addressing their science literacy needs. The data from the student journals, field notes, and transcribed class discussions were analyzed using a 6 step method that included coding the data into main themes. The triangulated data were used to both gain insight into student perspective and inform game development. Constructivist theories formed the conceptual framework of the study. The findings of the study suggested that games may prove a valuable tool in science literacy attainment. The study indicated that games were perceived by the students to be effective tools in meeting their learning needs. Implications for positive social change included providing students, educators, and administrators with game resources that can be used to meet the science learning needs of struggling students, thereby improving science scores on high stakes tests.

  9. Teaching lesbian, gay, bisexual and transgender health in a South African health sciences faculty: addressing the gap.

    PubMed

    Müller, Alexandra

    2013-12-27

    People who identity as lesbian, gay, bisexual and transgender (LGBT) have specific health needs. Sexual orientation and gender identity are social determinants of health, as homophobia and heteronormativity persist as prejudices in society. LGBT patients often experience discrimination and prejudice in health care settings. While recent South African policies recognise the need for providing LGBT specific health care, no curricula for teaching about LGBT health related issues exist in South African health sciences faculties. This study aimed to determine the extent to which LGBT health related content is taught in the University of Cape Town's medical curriculum. A curriculum mapping exercise was conducted through an online survey of all academic staff at the UCT health sciences faculty, determining LGBT health related content, pedagogical methodology and assessment. 127 academics, across 31 divisions and research units in the Faculty of Health Sciences, responded to the survey, of which 93 completed the questionnaire. Ten taught some content related to LGBT health in the MBChB curriculum. No LGBT health related content was taught in the allied health sciences curricula. The MBChB curriculum provided no opportunity for students to challenge their own attitudes towards LGBT patients, and key LGBT health topics such as safer sex, mental health, substance abuse and adolescent health were not addressed. At present, UCTs health sciences curricula do not adequately address LGBT specific health issues. Where LGBT health related content is taught in the MBChB curriculum, it is largely discretionary, unsystematic and not incorporated into the overarching structure. Coordinated initiatives to integrate LGBT health related content into all health sciences curricula should be supported, and follow an approach that challenges students to develop professional attitudes and behaviour concerning care for patients from LGBT backgrounds, as well as providing them with specific LGBT

  10. Teaching lesbian, gay, bisexual and transgender health in a South African health sciences faculty: addressing the gap

    PubMed Central

    2013-01-01

    Background People who identity as lesbian, gay, bisexual and transgender (LGBT) have specific health needs. Sexual orientation and gender identity are social determinants of health, as homophobia and heteronormativity persist as prejudices in society. LGBT patients often experience discrimination and prejudice in health care settings. While recent South African policies recognise the need for providing LGBT specific health care, no curricula for teaching about LGBT health related issues exist in South African health sciences faculties. This study aimed to determine the extent to which LGBT health related content is taught in the University of Cape Town’s medical curriculum. Methods A curriculum mapping exercise was conducted through an online survey of all academic staff at the UCT health sciences faculty, determining LGBT health related content, pedagogical methodology and assessment. Results 127 academics, across 31 divisions and research units in the Faculty of Health Sciences, responded to the survey, of which 93 completed the questionnaire. Ten taught some content related to LGBT health in the MBChB curriculum. No LGBT health related content was taught in the allied health sciences curricula. The MBChB curriculum provided no opportunity for students to challenge their own attitudes towards LGBT patients, and key LGBT health topics such as safer sex, mental health, substance abuse and adolescent health were not addressed. Conclusion At present, UCTs health sciences curricula do not adequately address LGBT specific health issues. Where LGBT health related content is taught in the MBChB curriculum, it is largely discretionary, unsystematic and not incorporated into the overarching structure. Coordinated initiatives to integrate LGBT health related content into all health sciences curricula should be supported, and follow an approach that challenges students to develop professional attitudes and behaviour concerning care for patients from LGBT backgrounds, as

  11. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    ERIC Educational Resources Information Center

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  12. The Specificity Principle in Acculturation Science

    PubMed Central

    Bornstein, Marc H.

    2016-01-01

    The Specificity Principle in Acculturation Science asserts that specific setting conditions of specific people at specific times moderate specific domains in acculturation by specific processes. Our understanding of acculturation depends critically on what is studied where, in whom, how, and when. This article defines, explains, and illustrates the Specificity Principle in Acculturation Science. Research hypotheses about acculturation can be more adequately tested, inconsistencies and discrepancies in the acculturation literature can be satisfactorily resolved, acculturation interventions can be tailored to be more successful, and acculturation policies can be brought to new levels of effectiveness if the specificity principle that governs acculturation science is more widely recognized. PMID:28073331

  13. The Specificity Principle in Acculturation Science.

    PubMed

    Bornstein, Marc H

    2017-01-01

    The specificity principle in acculturation science asserts that specific setting conditions of specific people at specific times moderate specific domains in acculturation by specific processes. Our understanding of acculturation depends critically on what is studied where, in whom, how, and when. This article defines, explains, and illustrates the specificity principle in acculturation science. Research hypotheses about acculturation can be more adequately tested, inconsistencies and discrepancies in the acculturation literature can be satisfactorily resolved, acculturation interventions can be tailored to be more successful, and acculturation policies can be brought to new levels of effectiveness if the specificity principle that governs acculturation science is more widely recognized.

  14. Addressing Issues for Land Change Science

    NASA Astrophysics Data System (ADS)

    Braimoh, Ademola; Huang, He Qing

    2009-09-01

    Workshop on Vulnerability and Resilience of Land Systems in Asia; Beijing, China, 15-17 June 2009; There is a growing international community of scholars who work within the interdisciplinary field of land change science, a scientific domain that seeks to understand the dynamics of the land system as a coupled human-environment system. A coupled human-environment system is one in which the social and biophysical subsystems are intertwined so that the system's condition and responses to external forcing are based on the synergy of the two subsystems. Research on land system vulnerability, defined as a function of exposure and sensitivity to natural and anthropogenic perturbations, such as climate variability and sudden changes in macroeconomic conditions and the ability to cope with the impacts of those perturbations, is a fundamental component of land change science. To address issues related to land system vulnerability, the Global Land Project (GLP; http://www.glp-beijing.org.cn/index.php and http://www.glp.hokudai.ac.jp) brought together an interdisciplinary group of researchers with backgrounds ranging from environmental to social sciences. Participants came from both developed and developing countries. The workshop sought to (1) improve knowledge of the causal processes that affect a system's vulnerability and capacity to cope with different perturbations and (2) identify factors that hinder the integration of vulnerability assessment into policies and decision making.

  15. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  16. Addressing the Public About Science and Religion

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray

    2010-03-01

    Attacks on the integrity of science teaching in our public schools have recently become increasingly threatening. Geology and Darwinian evolution are the primary targets and cosmology is at risk. Up to now, the Supreme Court has excluded teachings based on religion from public schools for constitutional, not scientific, reasons. But now the incumbent Supreme Court seem less committed to strict separation of church and state than were their predecessors, and federal courts are beginning to judge the science itself. In this situation, we need to create a climate of public opinion favorable to the protection of good science by explaining the issues both to students and to others. I have been trying to do that by addressing audiences such as church groups, other community groups, and high school and college classes. I do not seek to convert committed anti-evolutionists. I am trying to inform the reasonable majority who do not really know what science is and does, or what a theory is and how we know when it's right, or why we tell them that all knowledge is provisional but still insist that we are teaching the right science. Many have been advised by their religious teachers that there is no conflict between science and their religious beliefs but do not see how that can be. I try to explain how they are disjoint discussions. I also discuss the likely consequences for our country if we degrade the teaching of science in the public schools. My audiences have generally been receptive. Here I will relate some lessons I have learned from my experience with such talks. Without doubt, the most important lesson is that most Americans have religious beliefs that are important to them and are willing to consider what I say only because they know I respect their beliefs. This work was partially supported by the U.S. Dept. of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  17. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  18. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  19. A Case Study on Science Teacher Leadership to Address Diversity and Equity Through Professional Development

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Nithya

    This qualitative case study focused on the multifaceted issue of exploring science teacher leaders understanding and addressing of issues of diversity and equity with peers through professional development. The purpose of the study was to highlight the opportunities and barriers to the addressing of issues of diversity and equity through the work of a community of teachers leaders in science professional development. To frame this study, the researcher drew from the interdisciplinary field of multicultural education, transformative learning, and teacher leadership. In drawing out the connections from these vast bodies of literature, the study speaks to the need of both, creating teacher leaders in science education who are capable of meeting the twin demands of excellence and equity, and also attending to the challenges in the professional learning continuums of teachers leaders and their peers towards addressing issues of diversity and equity in science education.

  20. Obama Emphasizes Science and Innovation in State of the Union Address

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    U.S. president Barack Obama emphasized innovation and competitiveness in his State of the Union address on 25 January. He also raised science and technology early in the hour-long speech, noting that nations like China and India are focusing on math and science education and investing in research and technology. To be competitive with those countries, “we need to out-innovate, out-educate, and out-build the rest of the world,” Obama said. “The first step in winning the future is encouraging American innovation.”

  1. Addressing the Mathematics-Specific Needs of Beginning Mathematics Teachers

    ERIC Educational Resources Information Center

    Britton, Edward

    2012-01-01

    Beginning mathematics teachers at the secondary level (middle and high school grades) have mathematics-specific needs that induction programs should address more substantially. However, a number of issues in how programs can accomplish this are more complex than often framed in discussions occurring in the induction programs and the field of…

  2. 46 CFR 107.317 - Addresses for submittal of plans, specifications, and calculations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Addresses for submittal of plans, specifications, and calculations. 107.317 Section 107.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Plan Approval § 107.317 Addresses for...

  3. 46 CFR 107.317 - Addresses for submittal of plans, specifications, and calculations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Addresses for submittal of plans, specifications, and calculations. 107.317 Section 107.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Plan Approval § 107.317 Addresses for...

  4. 46 CFR 107.317 - Addresses for submittal of plans, specifications, and calculations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Addresses for submittal of plans, specifications, and calculations. 107.317 Section 107.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Plan Approval § 107.317 Addresses for...

  5. 46 CFR 107.317 - Addresses for submittal of plans, specifications, and calculations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Addresses for submittal of plans, specifications, and calculations. 107.317 Section 107.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Plan Approval § 107.317 Addresses for...

  6. 46 CFR 107.317 - Addresses for submittal of plans, specifications, and calculations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Addresses for submittal of plans, specifications, and calculations. 107.317 Section 107.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Plan Approval § 107.317 Addresses for...

  7. Addressing Psychosocial Factors with Library Mentoring

    ERIC Educational Resources Information Center

    Farrell, Bridget; Alabi, Jaena; Whaley, Pambanisha; Jenda, Claudine

    2017-01-01

    The majority of articles on mentoring in the library and information science field address career development by emphasizing the orientation process for new librarians and building the requisite skills for a specific job. Few articles deal with the psychological and social challenges that many early-career and minority librarians face, which can…

  8. An Instrument Development Study for Determining Prospective Science Teachers' Science-Specific Epistemological Beliefs

    ERIC Educational Resources Information Center

    Koksal, Mustafa Serdar; Ertekin, Pelin

    2016-01-01

    The study is focusing on development of an instrument to determine science-specific epistemological beliefs of prospective science teachers. The study involved 364 (male = 82, female = 282) prospective science teachers enrolled in a science teacher education program. The confirmatory factor analysis, reliability analysis and correlation analysis…

  9. A Case Study on Science Teacher Leadership to Address Diversity and Equity through Professional Development

    ERIC Educational Resources Information Center

    Doraiswamy, Nithya

    2015-01-01

    This qualitative case study focused on the multifaceted issue of exploring science teacher leaders understanding and addressing of issues of diversity and equity with peers through professional development. The purpose of the study was to highlight the opportunities and barriers to the addressing of issues of diversity and equity through the work…

  10. Using the Planetary Science Institute’s Meteorite Mini-Kits to Address the Nature of Science

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Cañizo, Thea L.; Buxner, Sanlyn

    2014-11-01

    Hands-on learning allows students to understand science concepts by directly observing and experiencing the topics they are studying. The Planetary Science Institute (PSI) has created instructional rock kits that have been introduced to elementary and middle school teachers in Tucson, in our professional development workshops. PSI provides teachers with supporting material and training so that they can use the kits as tools for students’ hands-on learning. Use of these kits provides an important experience with natural materials that is essential to instruction in Earth and Space Science. With a stronger knowledge of science content and of how science is actually conducted, the workshops and kits have instilled greater confidence in teachers’ ability to teach science content. The Next Generation Science Standards (NGSS) Performance Expectations includes: “What makes up our solar system?” NGSS emphasizes the Crosscutting Concepts—Patterns Scale, Portion, and Quantity; and Systems and System Models. NGSS also states that the Nature of Science (NOS) should be an “essential part” of science education. NOS topics include understanding that scientific investigations use a variety of methods, that scientific knowledge is based on empirical evidence, that scientific explanations are open to revision in light of new evidence, and an understanding of the nature of scientific models.Addressing a need expressed by teachers for borrowing kits less expensive than our $2000 option, we created a Meteorite Mini-Kit. Each Mini-Kit contains eight rocks: an iron-bearing chondrite, a sliced chondrite (showing iron and chondrules), a tektite, a common Tucson rock, a river-polished rock, pumice, a small iron, and a rounded obsidian rock (false tektite). Also included in the Mini-Kits are magnets and a magnifier. The kits cost $40 to $50, depending on the sizes of the chondrites. A teacher can check out a classroom set of these which contains either 10 or 20 Mini-Kits. Each

  11. National Institutes of Health addresses the science of diversity.

    PubMed

    Valantine, Hannah A; Collins, Francis S

    2015-10-06

    The US biomedical research workforce does not currently mirror the nation's population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation's health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity's impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce.

  12. Science, Practitioners and Faith Communities: using TEK and Faith Knowledge to address climate issues.

    NASA Astrophysics Data System (ADS)

    Peterson, K.

    2017-12-01

    Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.

  13. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    NASA Astrophysics Data System (ADS)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  14. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  15. Customizing NASA's Earth Science Research Products for addressing MENA Water Challenges

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2012-01-01

    As projected by IPCC 2007 report, by the end of this century the Middle East North Mrica (MENA) region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. In late 2011, the World Bank, USAID and NASA have joined hands to establishing integrated, modem, up to date NASA developed capabilities for various countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making for societal benefits. The main focus of this undertaking is to address the most pressing societal issues which can be modeled and solved by utilizing NASA Earth Science remote sensing data products and hydrological models. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. NASA has over fifteen satellites and thirty instruments operating on these space borne platforms and generating over 2000 different science products on a daily basis. Some of these products are soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gasses, ice and snow measurements, and many more. All of the data products, models and research results are distributed via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products

  16. National Institutes of Health addresses the science of diversity

    PubMed Central

    Valantine, Hannah A.; Collins, Francis S.

    2015-01-01

    The US biomedical research workforce does not currently mirror the nation’s population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation’s health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity’s impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce. PMID:26392553

  17. Addressing Earth Science Data Access Challenges through User Experience Research

    NASA Astrophysics Data System (ADS)

    Hemmings, S. N.; Banks, B.; Kendall, J.; Lee, C. M.; Irwin, D.; Toll, D. L.; Searby, N. D.

    2013-12-01

    The NASA Capacity Building Program (Earth Science Division, Applied Sciences Program) works to enhance end-user capabilities to employ Earth observation and Earth science (EO/ES) data in decision-making. Open data access and user-tailored data delivery strategies are critical elements towards this end. User Experience (UX) and User Interface (UI) research methods can offer important contributions towards addressing data access challenges, particularly at the interface of science application/product development and product transition to end-users. This presentation focuses on developing nation contexts and describes methods, results, and lessons learned from two recent UX/UI efforts conducted in collaboration with NASA: the SERVIRglobal.net redesign project and the U.S. Water Partnership (USWP) Portal development effort. SERVIR, a collaborative venture among NASA, USAID, and global partners, seeks to improve environmental management and climate change response by helping governments and other stakeholders integrate EO and geospatial technologies into decision-making. The USWP, a collaboration among U.S. public and private sectors, harnesses U.S.-based resources and expertise to address water challenges in developing nations. SERVIR's study, conducted from 2010-2012, assessed and tested user needs, preferences, and online experiences to generate a more user-friendly online data portal at SERVIRglobal.net. The portal provides a central access interface to data and products from SERVIR's network of hubs in East Africa, the Hindu Kush Himalayas, and Mesoamerica. The second study, conducted by the USWP Secretariat and funded by the U.S. Department of State, seeks to match U.S.-based water information resources with developing nation stakeholder needs. The USWP study utilizes a multi-pronged approach to identify key design requirements and to understand the existing water data portal landscape. Adopting UX methods allows data distributors to design customized UIs that

  18. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    NASA Astrophysics Data System (ADS)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size <55, and proximity to tidal salt marsh or barrier islands (< 2 miles). Fourteen teachers and approximately 240 students participated in the SCAC program between 2010 and 2013. The SCAC framework uses a scaffolding and multi-pronged approach for teacher professional development and student engagement. The scaffolding approach to curriculum implementation focuses on one grade level per year (Year 1 = 3rd; Year 2 = 4th, and Year 3 = 5th), thus building student and teacher literacy in ocean sciences. The coach-mentor model of teacher professional development was also used for the implementation of the program which differs from the traditional 'train the trainer' method in allowing for more frequent and consistent interaction by COSEE SE staff with the students and teachers during the school year. The coach mentor model enabled the creation of a community of practice where teachers served as both learners and practitioners of student learning. Methods for student engagement aligned with the NGSS and included hands-on classroom activities, use of 'hook' species such as loggerhead sea turtles (Caretta caretta), diamondback terrapins (Malaclemys terrapin) and smooth cord grass (Spartina alterniflora), field experiences to explore local ecosystems, interactions with

  19. Dilemmas with Dilemmas...Exploring the Suitability of Dilemma Stories as a Way of Addressing Ethical Issues in Science Education.

    ERIC Educational Resources Information Center

    Settelmaier, Elisabeth

    Traditionally, many science educators have taught science without addressing ethical questions. However, the inclusion of moral discourse in science teaching may help educators to bring to the fore problematic issues in relation to science, and it may offer an opportunity for students to practice their future engagement in the public discourse…

  20. Subject-Specific Science Teachers' Views of Alternative Assessment

    ERIC Educational Resources Information Center

    Kolomuç, Ali

    2017-01-01

    This study aimed to discover subject-specific science teachers' views of alternative assessment. The questionnaire by Okur (2008) was adapted and deployed for data collection. The sample consisted of 80 subject-specific science teachers drawn from the cities of Trabzon, Rize and Erzurum in Turkey. In analyzing data, descriptive analysis was…

  1. Grade 3 Science Curriculum Specifications.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    The specific content areas and objectives from which the Alberta, Canada, Grade 3 Science Achievement Test questions were derived are outlined in this bulletin. The document contains: (1) curriculum summary (providing a general listing of the process skills, psychomotor skills, attitudes, and subject matter covered at the grade 3 level); (2) a…

  2. Secondary Education Systemic Issues: Addressing Possible Contributors to a Leak in the Science Education Pipeline and Potential Solutions

    ERIC Educational Resources Information Center

    Young, Hollie

    2005-01-01

    To maintain the legacy of cutting edge scientific innovation in the United States our country must address the many pressing issues facing science education today. One of the most important issues relating to science education is the under-representation of African Americans and Hispanics in the science, technology, and engineering workforce.…

  3. Addressing Student Diversity and Equity: The "Next Generation Science Standards" Are Leading a New Wave of Reform

    ERIC Educational Resources Information Center

    Januszyk, Rita; Miller, Emily C.; Lee, Okhee

    2016-01-01

    While student demographics continue to change nationwide, science achievement gaps persist, as measured by the National Assessment of Educational Progress (NCES 2012). As traditional racial and ethnic minority students have become the numeric majority (NCES 2013), teaching science for all increasingly means addressing diverse student populations.…

  4. Keynote Address: Science Since the Medicean Stars and the Beagle

    NASA Astrophysics Data System (ADS)

    Partridge, B.; Hillenbrand, L. A.; Grinspoon, D.

    2010-08-01

    In 2009, the world celebrates both the International Year of Astronomy (IYA), commemorating the 400th anniversary of Galileo's first observations of the heavens with his telescope, and the 200th anniversary of the birth of Charles Darwin and the 150th anniversary of the publication of his Origin of Species, a key impetus for the 2009 Year of Science. In this keynote address, the three presenters (distinguished scientists themselves) will reflect on how these recent centuries of astronomical and scientific discovery have changed our perspectives about the universe, the natural world, and ourselves—and underpin our education and public outreach efforts to help ensure continued scientific advance in the future.

  5. Convocation address.

    PubMed

    Swaminathan, M S

    1998-07-01

    This address delivered to the 40th convocation of the International Institute for Population Sciences in India in 1998 opens by noting that a shortage of jobs for youth is India's most urgent problem but that the problems that attend the increasing numbers of elderly also require serious attention. The address then notes that the Earth's population is growing at an unsustainable rate while economic inequities among countries are increasing, so that, while intellectual property is becoming the most important asset in developed countries, nutritional anemia among pregnant women causes their offspring to be unable to achieve their full intellectual potential from birth. Next, the address uses a discussion of the 18th-century work on population of the Marquis de Condorcet and of Thomas Malthus to lead into a consideration of estimated increased needs of countries like India and China to import food grains in the near future. Next, the progress of demographic transition in Indian states is covered and applied to Mahbub ul Haq's measure of human deprivation developed for and applied to the region of the South Asian Association for Regional Cooperation (India, Pakistan, Bangladesh, Nepal, Sri Lanka, Bhutan, and the Maldives). The address continues by reiterating some of the major recommendations forwarded by a government of India committee charged in 1995 with drafting a national population policy. Finally, the address suggests specific actions that could be important components of the Hunger-Free India Programme and concludes that all success rests on the successful implementation of appropriate population policies.

  6. T. Kuhn Meets T. Rex: Critical Conversations and New Directions in Science Centres and Science Museums.

    ERIC Educational Resources Information Center

    Pedretti, Erminia

    2002-01-01

    Examines the debate about how science should be re/presented in informal science settings, specifically the possibility of science centers and science museums addressing socio-scientific issues. Situates the debate within the current science education literature on the nature of science (NOS) and science, technology, society and environment (STSE)…

  7. 2017 Hans O. Mauksch Address: Using the Science of Learning to Improve Student Learning in Sociology Classes

    ERIC Educational Resources Information Center

    Messineo, Melinda

    2018-01-01

    The 2017 Mauksch Address invites readers to consider how the field of sociology might benefit from greater inclusion of the science of learning into its pedagogy. Results from a survey of 92 teaching and learning experts in sociology reveal the degree to which the discipline's understanding of teaching and learning is informed by the science of…

  8. Science for What Public? Addressing Equity in American Science Museums and Science Centers

    ERIC Educational Resources Information Center

    Feinstein, Noah Weeth; Meshoulam, David

    2014-01-01

    Science museums and science centers exist (in large part) to bring science to the public. But what public do they serve? The challenge of equity is embodied by the gulf that separates a museum's actual public and the more diverse publics that comprise our society. Yet despite growing scholarly interest in museums and science centers, few…

  9. Doing Science that Matters to Address India's Water Crisis.

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.

    2017-12-01

    Addressing water security in developing regions involves predicting water availability under unprecedented rates of population and economic growth. India is one of the most water stressed countries in the world. Despite appreciable increases in funding for water research, high quality science that is usable by stakeholders remains elusive. The absence of usable research, has been driven by notions of what is publishable in the developed world. This can be attributed to the absence of problem driven research on questions that actually matter to stakeholders, unwillingness to transcend disciplinary boundaries and the demise of a field-work research culture in favour of computer simulation. Yet the combination of rapid change, inadequate data and human modifications to watersheds poses a challenge, as researchers face a poorly constrained water resources modelling problem. Instead, what India and indeed all developing regions need is to approach the problem from first principles, identifying the most critical knowledge gaps, then prioritizing data collection using novel sensing and modelling approaches to address them. This might also necessitate consideration of underlying social and governance drivers of hydrologic change. Using examples from research in the Cauvery Basin, a highly contentious inter-state river basin, I offer some insights into framing "use-inspired" research agenda and show how the research generates not just new scientific insights but may be translated into practice.

  10. Enabling a new Paradigm to Address Big Data and Open Science Challenges

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan; Fisher, Ward

    2017-04-01

    Data are not only the lifeblood of the geosciences but they have become the currency of the modern world in science and society. Rapid advances in computing, communi¬cations, and observational technologies — along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system — are revolutionizing nearly every aspect of our field. Modern data volumes from high-resolution ensemble prediction/projection/simulation systems and next-generation remote-sensing systems like hyper-spectral satellite sensors and phased-array radars are staggering. For example, CMIP efforts alone will generate many petabytes of climate projection data for use in assessments of climate change. And NOAA's National Climatic Data Center projects that it will archive over 350 petabytes by 2030. For researchers and educators, this deluge and the increasing complexity of data brings challenges along with the opportunities for discovery and scientific breakthroughs. The potential for big data to transform the geosciences is enormous, but realizing the next frontier depends on effectively managing, analyzing, and exploiting these heterogeneous data sources, extracting knowledge and useful information from heterogeneous data sources in ways that were previously impossible, to enable discoveries and gain new insights. At the same time, there is a growing focus on the area of "Reproducibility or Replicability in Science" that has implications for Open Science. The advent of cloud computing has opened new avenues for not only addressing both big data and Open Science challenges to accelerate scientific discoveries. However, to successfully leverage the enormous potential of cloud technologies, it will require the data providers and the scientific communities to develop new paradigms to enable next-generation workflows and transform the conduct of science. Making data readily available is a necessary but not a sufficient condition. Data providers

  11. The Presidential Address 2013: Promoting Enthusiasm, Imparting Knowledge! Science for the General Population and Science for Future Researchers Must All Start in the School Curriculum

    ERIC Educational Resources Information Center

    Rees, Martin

    2013-01-01

    This article provides a transcript of the Presidential Address delivered by Martin Rees, Lord Rees of Ludlow, to the Association for Science Education (ASE) Annual Conference at the University of Reading, January 2013. The address is divided into five sections under the following headings: (1) Three Reasons Why the ASE's Mission Is So Important;…

  12. SKyTeach: Addressing the need for Science and Math Teachers in Kentucky

    NASA Astrophysics Data System (ADS)

    Bonham, Scott

    2008-10-01

    The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.

  13. Big Data Science: Opportunities and Challenges to Address Minority Health and Health Disparities in the 21st Century

    PubMed Central

    Zhang, Xinzhi; Pérez-Stable, Eliseo J.; Bourne, Philip E.; Peprah, Emmanuel; Duru, O. Kenrik; Breen, Nancy; Berrigan, David; Wood, Fred; Jackson, James S.; Wong, David W.S.; Denny, Joshua

    2017-01-01

    Addressing minority health and health disparities has been a missing piece of the puzzle in Big Data science. This article focuses on three priority opportunities that Big Data science may offer to the reduction of health and health care disparities. One opportunity is to incorporate standardized information on demographic and social determinants in electronic health records in order to target ways to improve quality of care for the most disadvantaged populations over time. A second opportunity is to enhance public health surveillance by linking geographical variables and social determinants of health for geographically defined populations to clinical data and health outcomes. Third and most importantly, Big Data science may lead to a better understanding of the etiology of health disparities and understanding of minority health in order to guide intervention development. However, the promise of Big Data needs to be considered in light of significant challenges that threaten to widen health disparities. Care must be taken to incorporate diverse populations to realize the potential benefits. Specific recommendations include investing in data collection on small sample populations, building a diverse workforce pipeline for data science, actively seeking to reduce digital divides, developing novel ways to assure digital data privacy for small populations, and promoting widespread data sharing to benefit under-resourced minority-serving institutions and minority researchers. With deliberate efforts, Big Data presents a dramatic opportunity for reducing health disparities but without active engagement, it risks further widening them. PMID:28439179

  14. Big Data Science: Opportunities and Challenges to Address Minority Health and Health Disparities in the 21st Century.

    PubMed

    Zhang, Xinzhi; Pérez-Stable, Eliseo J; Bourne, Philip E; Peprah, Emmanuel; Duru, O Kenrik; Breen, Nancy; Berrigan, David; Wood, Fred; Jackson, James S; Wong, David W S; Denny, Joshua

    2017-01-01

    Addressing minority health and health disparities has been a missing piece of the puzzle in Big Data science. This article focuses on three priority opportunities that Big Data science may offer to the reduction of health and health care disparities. One opportunity is to incorporate standardized information on demographic and social determinants in electronic health records in order to target ways to improve quality of care for the most disadvantaged populations over time. A second opportunity is to enhance public health surveillance by linking geographical variables and social determinants of health for geographically defined populations to clinical data and health outcomes. Third and most importantly, Big Data science may lead to a better understanding of the etiology of health disparities and understanding of minority health in order to guide intervention development. However, the promise of Big Data needs to be considered in light of significant challenges that threaten to widen health disparities. Care must be taken to incorporate diverse populations to realize the potential benefits. Specific recommendations include investing in data collection on small sample populations, building a diverse workforce pipeline for data science, actively seeking to reduce digital divides, developing novel ways to assure digital data privacy for small populations, and promoting widespread data sharing to benefit under-resourced minority-serving institutions and minority researchers. With deliberate efforts, Big Data presents a dramatic opportunity for reducing health disparities but without active engagement, it risks further widening them.

  15. Visualisation and interaction design solutions to address specific demands in shared home care.

    PubMed

    Scandurra, Isabella; Hägglund, Maria; Koch, Sabine

    2006-01-01

    When care professionals from different organisations are involved in patient care, their different views on the care process may not be meaningfully integrated. To use visualisation and interaction design solutions addressing the specific demands of shared care in order to support a collaborative work process. Participatory design, comprising interdisciplinary seminar series with real users and iterative prototyping, was applied. A set of interaction and visualisation design solutions to address care professionals' requirements in shared home care is presented, introducing support for identifying origin of information, holistic presentation of information, user group specific visualisation, avoiding cognitive overload, coordination of work and planning, and quick overviews. The design solutions are implemented in an integrated virtual health record system supporting cooperation and coordination in shared home care for the elderly. The described requirements are, however, generalized to comprise all shared care work. The presented design considerations allow healthcare professionals in different organizations to share patient data on mobile devices. Visualization and interaction design facilitates specific work situations and assists in handling specific demands in shared care. The user interface is adapted to different user groups with similar yet distinct needs. Consequently different views supporting cooperative work and presenting shared information in holistic overviews are developed.

  16. President Barack Obama addresses the 146th Annual Meeting of the National Academy of Sciences

    PubMed Central

    2009-01-01

    On April 27, 2009, President Barack Obama addressed members of the National Academy of Sciences (NAS) gathered at its 146th annual meeting in Washington, D.C. In his speech, the president shared his plans to give science and technology a central role in the nation's future and an immediate place in America's economic renewal. He outlined steps he is taking to increase research spending, achieve energy independence, and improve science education. Included was what Mr. Obama cited as the largest commitment to scientific research in American history—devoting more than 3% of our gross domestic product to research and development. “Next, we are restoring science to its rightful place,” Mr. Obama told a packed NAS auditorium audience. “Under my administration, the days of science taking a backseat to ideology are over.” He appealed to scientists' sense of personal responsibility to reach and educate young Americans: “I want to challenge you to use your love and knowledge of science to spark a sense of wonder and excitement in a new generation.” President Obama was welcomed to the National Academy of Sciences by President Ralph J. Cicerone and John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy. The following is a transcript of that speech.* PMID:19502426

  17. President Barack Obama addresses the 146th annual meeting of the National Academy of Sciences.

    PubMed

    2009-06-16

    On April 27, 2009, President Barack Obama addressed members of the National Academy of Sciences (NAS) gathered at its 146th annual meeting in Washington, D.C. In his speech, the president shared his plans to give science and technology a central role in the nation's future and an immediate place in America's economic renewal. He outlined steps he is taking to increase research spending, achieve energy independence, and improve science education. Included was what Mr. Obama cited as the largest commitment to scientific research in American history-devoting more than 3% of our gross domestic product to research and development. "Next, we are restoring science to its rightful place," Mr. Obama told a packed NAS auditorium audience. "Under my administration, the days of science taking a backseat to ideology are over." He appealed to scientists' sense of personal responsibility to reach and educate young Americans: "I want to challenge you to use your love and knowledge of science to spark a sense of wonder and excitement in a new generation." President Obama was welcomed to the National Academy of Sciences by President Ralph J. Cicerone and John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy. The following is a transcript of that speech.

  18. EPA Leadership on Science, Innovation, and Decision Support Tools for Addressing Current and Future Challenges.

    PubMed

    Hecht, Alan D; Ferster, Aaron; Summers, Kevin

    2017-10-16

    When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequent landmark environmental legislations which in turn significantly reduced threats to the Nation's environment and public health. A key element of historic legislation is research aimed at dealing with current and future problems. Today we face national and global challenges that go beyond classic media-specific (air, land, water) environmental legislation and require an integrated paradigm of action and engagement based on (1) innovation based on science and technology, (2) stakeholder engagement and collaboration, and (3) public education and support. This three-pronged approach recognizes that current environmental problems, include social as well as physical and environmental factors, are best addressed through collaborative problem solving, the application of innovation in science and technology, and multiple stakeholder engagement. To achieve that goal, EPA's Office of Research and Development (ORD) is working directly with states and local communities to develop and apply a suite of accessible decision support tools (DST) that aim to improve environmental conditions, protect human health, enhance economic opportunity, and advance a resilient and sustainability society. This paper showcases joint EPA and state actions to develop tools and approaches that not only meet current environmental and public health challenges, but do so in a way that advances sustainable, healthy, and resilient communities well into the future. EPA's future plans should build on current work but aim to effectively respond to growing external pressures. Growing pressures from megatrends are a major challenge for the new Administration and for cities and states across the country. The recent hurricanes hitting

  19. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  20. States of Consciousness and State-Specific Sciences

    ERIC Educational Resources Information Center

    Tart, Charles T.

    1972-01-01

    Proposes the development of state-specific sciences" to overcome the problems of scientifically studying altered states of consciousness induced by drugs or meditation from the paradigm of the ordinary consciousness state. The requirements of good observation, public nature of the observation, logical theorizing, and testing of theories by…

  1. Induction Programs for the Support and Development of Beginning Teachers of Science. National Science Teachers Association Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2007

    2007-01-01

    The National Science Teachers Association (NSTA) recommends that schools and teacher preparation programs provide new teachers of science with comprehensive induction programs. Research suggests these programs should address specifics for teachers of science, involve trained mentors, provide adequate time to support continual learning of new…

  2. Safety and Science Teaching.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond. Div. of Sciences and Elementary Administration.

    This 10-chapter handbook (designed for science teachers and school administrators) describes known hazards associated with science teaching and provides information to develop a framework for local safety programs specifically designed to avoid or neutralize the effects of such hazards. Major areas addressed in the chapters include: (1) the nature…

  3. Addressing controversies in science education: a pragmatic approach to evolution education

    NASA Astrophysics Data System (ADS)

    Hildebrand, David; Bilica, Kimberly; Capps, John

    2008-09-01

    Science education controversies typically prove more intractable than those in scientific research because they involve a wider range of considerations (e.g., epistemic, social, ethical, political, and religious). How can educators acknowledge central issues in a controversy (such as evolution)? How can such problems be addressed in a way that is ethically sensitive and intellectually responsible? Drawing in part on pragmatic philosopher John Dewey, our solution is politically proactive, philosophically pragmatic, and grounded in research. Central to our proposal is (1) steps toward creating a philosophical “total attitude” that is democratic, imaginative, and hypothetical; (2) a deeper understanding of how scientific theories can be pragmatically true; and (3) an assessment of differing pedagogical approaches for teaching evolution in the classroom.

  4. Vitamin D: Moving Forward to Address Emerging Science

    PubMed Central

    Sempos, Christopher T.; Davis, Cindy D.; Brannon, Patsy M.

    2017-01-01

    The science surrounding vitamin D presents both challenges and opportunities. Although many uncertainties are associated with the understandings concerning vitamin D, including its physiological function, the effects of excessive intake, and its role in health, it is at the same time a major interest in the research and health communities. The approach to evaluating and interpreting the available evidence about vitamin D should be founded on the quality of the data and on the conclusions that take into account the totality of the evidence. In addition, these activities can be used to identify critical data gaps and to help structure future research. The Office of Dietary Supplements (ODS) at the National Institutes of Health has as part of its mission the goal of supporting research and dialogues for topics with uncertain data, including vitamin D. This review considers vitamin D in the context of systematically addressing the uncertainty and in identifying research needs through the filter of the work of ODS. The focus includes the role of systematic reviews, activities that encompass considerations of the totality of the evidence, and collaborative activities to clarify unknowns or to fix methodological problems, as well as a case study using the relationship between cancer and vitamin D. PMID:29194368

  5. Discrimination, developmental science, and the law: addressing dramatic shifts in civil rights jurisprudence.

    PubMed

    Levesque, Roger J R

    2014-01-01

    The civil rights movement fostered dramatic shifts in legal responses to discrimination based on race, gender, and a host of other group characteristics. The legal system now evinces yet another dramatic shift, as it moves from considering difference to focusing on neutrality, from efforts that seek to counter subjugation to those that adopt a "color-blind" approach. The shifting approach already has reached laws regulating responses to the group that spurred massive civil rights reform: minority youth. The shift requires a different body of empirical evidence to address it and a new look at equality jurisprudence. This article notes the need to turn to the current understanding of prejudice and discrimination for guidance, and uses, as illustration, developmental science to shed light on the development, manifestation, and alleviation of invidious discrimination. Using that understanding, the analysis details how the legal system can benefit from that research and better address discrimination in light of dramatic changes in law. The article articulates the need to address discrimination by recognizing and enlisting the law's inculcative powers through multiple sites of inculcation, ranging from families, schools, health and justice systems to religious and community groups. The discussion concludes with brief suggestions for reform benefiting from understandings of prejudice and its expression. (c) 2014 APA, all rights reserved.

  6. NGSS and the Next Generation of Science Teachers

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger W.

    2014-03-01

    This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.

  7. A Discipline-Specific Approach to the History of U.S. Science Education

    ERIC Educational Resources Information Center

    Otero, Valerie K.; Meltzer, David E.

    2017-01-01

    Although much has been said and written about the value of using the history of science in teaching science, relatively little is available to guide educators in the various science disciplines through the educational history of their own discipline. Through a discipline-specific approach to a course on the history of science education in the…

  8. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.

  9. The Defense Science Board 2001 Summer Study on Defense Science and Technology

    DTIC Science & Technology

    2002-05-01

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION...Today, it takes roughly 10 to 15 years to develop a safe drug for a specific purpose. The task force believes that it is possible for the United...performance in later screens. DSB Summer Study on Defense Science and Technology ___________________________________________ 10 The

  10. From Professional Development to Classroom Instruction: Addressing Issues Related to Science Inquiry Discourse

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.

    2009-01-01

    In this rejoinder, I first provide a more detailed account of the discourse-focused professional development activities facilitated as part of the SMIT'N program, specifically addressing issues raised by van Zee with regard to the institute's overall format, goals and development strategies. Next, I resort to Peter Medawar's metaphorical view of…

  11. Addressing Student Diversity and Equity

    ERIC Educational Resources Information Center

    Januszyk, Rita; Miller, Emily C.; Lee, Okhee

    2016-01-01

    While student demographics continue to change nationwide, science achievement gaps persist, as measured by the National Assessment of Educational Progress (NCES 2012). As traditional racial and ethnic minority students have become the numeric majority (NCES 2013), teaching science for all increasingly means addressing diverse student populations.…

  12. High Hopes--Few Opportunities: The Status of Elementary Science Education in California. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Dorph, R.; Shields, P.; Tiffany-Morales, J.; Hartry, A.; McCaffrey, T.

    2011-01-01

    This report addresses how well California is doing to prepare its young people for the evolving economy and societal challenges. Specifically, it describes the status of science teaching and learning in California public elementary schools. This study was conducted in support of "Strengthening Science Education in California," a…

  13. Fostering Spaces of Student Ownership in Middle School Science

    ERIC Educational Resources Information Center

    O'Neill, Tara B.

    2010-01-01

    A critical challenge in urban science education is determining how to provide empowering science learning experiences for all students. In an effort to address the achievement gap in science education, I have focused on the concept of ownership, specifically when and how students gain ownership in science learning. This paper presents a teacher…

  14. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    ERIC Educational Resources Information Center

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  15. High School Science Teachers' Receptivity to the Next Generation Science Standards: An Examination of Discipline Specific Factors

    NASA Astrophysics Data System (ADS)

    Shapiro, Lesley Jacqueline

    The Next Generation Science Standards (NGSS), are the biggest change to American science education since the National Science Education Standards (NSES) were published. While inquiry was central to the NSES, science assessment largely addressed factual knowledge acquisition. The NGSS represent a significant practical change for teachers as they mark a return to the ideals specified in the National Science Education Standards (NSES) and Benchmarks for Science Literacy. The purpose of this explanatory sequential, mixed-methods study was to identify and compare the factors that influenced high school science teachers' receptivity to the curricular shifts necessitated by the adoption of the NGSS. The survey data identified three factors as significant predictors of teacher receptivity: teachers' non-monetary cost-benefit analysis, alignment between the NGSS and their current teaching style, and concerns about student readiness. To understand how these factors operate in the classroom, both receptive and non-receptive teachers were interviewed. In terms of cost-benefit analysis, all teachers agree that time is a significant cost. This includes the time it takes to adapt lessons to the NGSS, and the time it takes to teach in a way that integrates the three parts of the NGSS which are the practices of science and engineering, the crosscutting concepts, and the disciplinary core ideas. In terms of alignment between their teaching style and the NGSS, teachers talked about the lack of examples of what NGSS-aligned instruction looks like and the dearth of accessible high quality professional development. Finally, concerns about students' readiness focused on both inadequate preparation for college-level science coursework and deficits in science instruction in the lower grades.

  16. Position paper: the science of deep specification.

    PubMed

    Appel, Andrew W; Beringer, Lennart; Chlipala, Adam; Pierce, Benjamin C; Shao, Zhong; Weirich, Stephanie; Zdancewic, Steve

    2017-10-13

    We introduce our efforts within the project 'The science of deep specification' to work out the key formal underpinnings of industrial-scale formal specifications of software and hardware components, anticipating a world where large verified systems are routinely built out of smaller verified components that are also used by many other projects. We identify an important class of specification that has already been used in a few experiments that connect strong component-correctness theorems across the work of different teams. To help popularize the unique advantages of that style, we dub it deep specification , and we say that it encompasses specifications that are rich , two-sided , formal and live (terms that we define in the article). Our core team is developing a proof-of-concept system (based on the Coq proof assistant) whose specification and verification work is divided across largely decoupled subteams at our four institutions, encompassing hardware microarchitecture, compilers, operating systems and applications, along with cross-cutting principles and tools for effective specification. We also aim to catalyse interest in the approach, not just by basic researchers but also by users in industry.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Author(s).

  17. NASA Citizen Science: Looking at Impact in the Science Community and Beyond

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2017-12-01

    NASA's Science Mission Directorate has invested in several citizen scinece programs with the goal of addressing specific scientific goals which will lead to publishable results. For a complete list of these programs, go to https://science.nasa.gov/citizenscientists. In this paper, we will look at preliminary evalution of the impact of these programs, both in the production of scientific papers and the participation of the general public.

  18. DOI Climate Science Centers--Regional science to address management priorities

    USGS Publications Warehouse

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  19. NGSS and the Next Generation of Science Teachers

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2014-01-01

    This article centers on the "Next Generation Science Standards" (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts--interconnecting science and engineering…

  20. The influence of role-specific self-concept and sex-role identity on career choices in science

    NASA Astrophysics Data System (ADS)

    Baker, Dale R.

    Despite much effort on the part of educators the number of females who choose science careers remains low. This research focuses on two factors which may be influencing females in their choice of careers. These factors are role-specific self-concept in science and self perception in terms of stereotypical masculine and feminine characteristics. In addition logical ability and mathematics and science courses were also examined as factors in career choice. Females preferring science related careers and females preferring nontraditional careers such as police, military and trades were found to have a positive role-specific self-concept and a masculine perception of themselves. Females preferring traditional careers such as teacher or hairdresser had a poor role-specific self-concept and a more feminine perception of themselves. Males as a group were found to have a more positive role-specific self-concept than females. Logical ability was also related to a science career preference for both males and females. Males expected to take more higher level math courses than females, while females preferring science careers expected to take the most higher level science courses.

  1. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. JIM GREEN ADDRESSES THE MARSHALL ASSOCIATION

    NASA Image and Video Library

    2016-06-28

    JIM GREEN, DIRECTOR OF PLANETARY SCIENCE AT NASA HEADQUARTERS, ADDRESSES MARSHALL TEAM MEMBERS DURING A JUNE 28 LUNCHEON HOSTED BY THE MARSHALL ASSOCIATION. OVER THE COURSE OF HIS 35-YEAR CAREER AT NASA, HE HAS SUPPORTED A DIVERSE ARRAY OF PLANETARY SCIENCE MISSIONS, AND RECENTLY SERVED AS SCIENCE ADVISOR FOR THE FILM ADAPTATION OF "THE MARTIAN." GREEN'S PRESENTATION WAS TITLED "THE MARTIAN: SCIENCE FICTION VS. SCIENCE FACT," IN WHICH HE DISCUSSED THE MOVIE AND THE NATION'S JOURNEY TO MARS. THE MARSHALL ASSOCIATION IS THE CENTER'S PROFESSIONAL, EMPLOYEE SERVICE ORGANIZATION.

  3. Assessing what to address in science communication.

    PubMed

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-08-20

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions.

  4. An Integrated Assessment Approach to Address Artisanal and Small-Scale Gold Mining in Ghana.

    PubMed

    Basu, Niladri; Renne, Elisha P; Long, Rachel N

    2015-09-17

    Artisanal and small-scale gold mining (ASGM) is growing in many regions of the world including Ghana. The problems in these communities are complex and multi-faceted. To help increase understanding of such problems, and to enable consensus-building and effective translation of scientific findings to stakeholders, help inform policies, and ultimately improve decision making, we utilized an Integrated Assessment approach to study artisanal and small-scale gold mining activities in Ghana. Though Integrated Assessments have been used in the fields of environmental science and sustainable development, their use in addressing specific matter in public health, and in particular, environmental and occupational health is quite limited despite their many benefits. The aim of the current paper was to describe specific activities undertaken and how they were organized, and the outputs and outcomes of our activity. In brief, three disciplinary workgroups (Natural Sciences, Human Health, Social Sciences and Economics) were formed, with 26 researchers from a range of Ghanaian institutions plus international experts. The workgroups conducted activities in order to address the following question: What are the causes, consequences and correctives of small-scale gold mining in Ghana? More specifically: What alternatives are available in resource-limited settings in Ghana that allow for gold-mining to occur in a manner that maintains ecological health and human health without hindering near- and long-term economic prosperity? Several response options were identified and evaluated, and are currently being disseminated to various stakeholders within Ghana and internationally.

  5. An Integrated Assessment Approach to Address Artisanal and Small-Scale Gold Mining in Ghana

    PubMed Central

    Basu, Niladri; Renne, Elisha P.; Long, Rachel N.

    2015-01-01

    Artisanal and small-scale gold mining (ASGM) is growing in many regions of the world including Ghana. The problems in these communities are complex and multi-faceted. To help increase understanding of such problems, and to enable consensus-building and effective translation of scientific findings to stakeholders, help inform policies, and ultimately improve decision making, we utilized an Integrated Assessment approach to study artisanal and small-scale gold mining activities in Ghana. Though Integrated Assessments have been used in the fields of environmental science and sustainable development, their use in addressing specific matter in public health, and in particular, environmental and occupational health is quite limited despite their many benefits. The aim of the current paper was to describe specific activities undertaken and how they were organized, and the outputs and outcomes of our activity. In brief, three disciplinary workgroups (Natural Sciences, Human Health, Social Sciences and Economics) were formed, with 26 researchers from a range of Ghanaian institutions plus international experts. The workgroups conducted activities in order to address the following question: What are the causes, consequences and correctives of small-scale gold mining in Ghana? More specifically: What alternatives are available in resource-limited settings in Ghana that allow for gold-mining to occur in a manner that maintains ecological health and human health without hindering near- and long-term economic prosperity? Several response options were identified and evaluated, and are currently being disseminated to various stakeholders within Ghana and internationally. PMID:26393627

  6. EDITORIAL: Dialog on Science and Policy to Address the Climate Crisis to conclude the International Association of Research Universities Climate Congress, Copenhagen, Denmark Dialog on Science and Policy to Address the Climate Crisis to conclude the International Association of Research Universities Climate Congress, Copenhagen, Denmark

    NASA Astrophysics Data System (ADS)

    Baer, Paul; Kammen, Daniel M.

    2009-06-01

    This is not the usual Editor-in-Chief letter, namely one that focuses on the accomplishments of the journal—and for ERL they have been numerous this year—but a recognition of the critical time that we are now in when it comes to addressing not only global climate change, but also the dialog between science and politics. In recognition of the many 'tipping points' that we now confront—ideally some of them positive social moments—as well as the clear scientific conclusion that environmental tipping points are points of long-lasting disruption, this paper takes a different form than I might have otherwise written. While the scientific body of knowledge around global environmental change mounts, so too, do the hopeful signs that change can happen. The election of Barack Obama is unquestionably one such sign, witnessed by the exceptional interest that his story has brought not only to US politics, but also to global views of the potential of the United States, as well as to the potential role of science and investigation in addressing pressing issues. In light of these inter-related issues, reproduced here—largely due to the efforts of Paul Baer to transcribe a remarkable conversation—is a dialog not only on the science of global warming and the potential set of means to address this issue, but also on the interaction between research, science and the political process. The dialog itself is sufficiently important that I will dispense with the usual discussion of the exciting recognition that ERL has received with an ISI rating (a factor rapidly increasing), the high levels of downloads of our papers (for some articles over 5000 and counting), and the many news and scientific publications picking up ERL articles (in recent days alone Science, Environmental Science and Technology, and The Economist). This conversation was the concluding plenary session of the 10-12 March International Association of Research Universities (IARU) Conference on Climate Change

  7. Citizen Science Data and Scaling

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Wasser, L. A.

    2013-12-01

    There is rapid growth in the collection of environmental data by non experts. So called ';citizen scientists' are collecting data on plant phenology, precipitation patterns, bird migration and winter feeding, mating calls of frogs in the spring, and numerous other topics and phenomena related to environmental science. This data is generally submitted to online programs (e.g Project BudBurst, COCORaHS, Project Feederwatch, Frogwatch USA, etc.)and is freely available to scientists, educators, land managers, and decisions makers. While the data is often used to address specific science questions, it also provides the opportunity to explore its utility in the context of ecosystem scaling. Citizen science data is being collected and submitted at an unprecedented rate and is of a spatial and temporal scale previously not possible. The amount of citizen science data vastly exceeds what scientists or land managers can collect on their own. As such, it provides opportunities to address scaling in the environmental sciences. This presentation will explore data from several citizen science programs in the context of scaling.

  8. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, listens to a question during the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  9. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, talks with NASA's 2013 astronaut candidates at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  10. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention

    ERIC Educational Resources Information Center

    Frerichs, Leah; Lich, Kristen Hassmiller; Young, Tiffany L.; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-01-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural…

  11. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, smiles along with 16-year-old Joey Hudy, a former White House Science Fair participant and self-described “Maker” at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. Addressing dual agency: getting specific about the expectations of professionalism.

    PubMed

    Tilburt, Jon C

    2014-01-01

    Professionalism requires that physicians uphold the best interests of patients while simultaneously insuring just use of health care resources. Current articulations of these obligations like the American Board of Internal Medicine (ABIM) Foundation's Physician Charter do not reconcile how these obligations fit together when they conflict. This is the problem of dual agency. The most common ways of dealing with dual agency: "bunkering"--physicians act as though societal cost issues are not their problem; "bailing"--physicians assume that they are merely agents of society and deliver care typically based on a strongly consequentialist public health ethic; or "balancing"--a vaguely specified attempt to uphold both patient welfare and societal need for judicious resource use simultaneously--all fail. Here I propose how the problem of dual agency might begin to be addressed with rigor and consistency. Without dealing with the dual agency problem and getting more specific about how to reconcile its norms when they conflict, the expectations of professionalism risk being written off as cute, nonbinding aphorisms from the medical profession.

  13. Moving beyond "Those Kids": Addressing Teacher Beliefs Regarding the Role of Culture within Effective Science Pedagogy for Diverse Learners

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Bolshakova, Virginia L. J.

    2015-01-01

    This study focused on intensive work within a large, urban, low-performing middle school in the southwest to address and transform teacher beliefs regarding the role of culture within their science pedagogy. Given the recent, rapid growth of numbers of students from Hispanic/Latino(a) backgrounds in the United States, it is critical that a…

  14. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  15. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy is interviewed by TIME for Kids reporter Kristen Rigsby, ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  16. Shaping NASA's Earth Science Enterprise Workforce Development Initiative to Address Industry Needs

    NASA Technical Reports Server (NTRS)

    Rosage, David; Meeson, Blanche W. (Technical Monitor)

    2001-01-01

    It has been well recognized that the commercial remote sensing industry will expand in new directions, resulting in new applications, thus requiring a larger, more skilled workforce to fill the new positions. In preparation for this change, NASA has initiated a Remote Sensing Professional Development Program to address the workforce needs of this emerging industry by partnering with the private sector, academia, relevant professional societies, and other R&D organizations. Workforce needs will in part include understanding current industry concerns, personnel competencies, current and future skills, growth rates, geographical distributions, certifications, and sources of pre-service and in-service personnel. Dave Rosage of the NASA Goddard Space Flight Center and a panel of MAPPS members will lead a discussion to help NASA specifically address private firms' near and long-term personnel needs to be included in NASA's Remote Sensing Professional Development Program. In addition, Dave Rosage will present perspectives on how remote sensing technologies are evolving, new NASA instruments being developed, and what future workforce skills are expected to support these new developments.

  17. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, right, is interviewed by National Geographic Kids reporter Trevor Jehl ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by TIME for Kids reporter Grace Clark ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  19. Research in health sciences library and information science: a quantitative analysis.

    PubMed Central

    Dimitroff, A

    1992-01-01

    A content analysis of research articles published between 1966 and 1990 in the Bulletin of the Medical Library Association was undertaken. Four specific questions were addressed: What subjects are of interest to health sciences librarians? Who is conducting this research? How do health sciences librarians conduct their research? Do health sciences librarians obtain funding for their research activities? Bibliometric characteristics of the research articles are described and compared to characteristics of research in library and information science as a whole in terms of subject and methodology. General findings were that most research in health sciences librarianship is conducted by librarians affiliated with academic health sciences libraries (51.8%); most deals with an applied (45.7%) or a theoretical (29.2%) topic; survey (41.0%) or observational (20.7%) research methodologies are used; descriptive quantitative analytical techniques are used (83.5%); and over 25% of research is funded. The average number of authors was 1.85, average article length was 7.25 pages, and average number of citations per article was 9.23. These findings are consistent with those reported in the general library and information science literature for the most part, although specific differences do exist in methodological and analytical areas. PMID:1422504

  20. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by TIME for Kids reporter Kristen Rigsby, as Moira Vahey, Deputy Assistant Director for Strategic Communications at the White House Office of Science & Technology Policy, right, takes notes ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Joey Hudy, Anthem, AZ, 16-year-old self-described “Maker” answers a question from the audience at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Joey sat with the First Lady at the President’s 2014 State of the Union Address after his first shot to fame in 2012 when he attended the White House Science Fair where the President took a turn using his “extreme marshmallow cannon” to launch a marshmallow across the East Room of the White House. Photo Credit: (NASA/Bill Ingalls)

  3. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    National Geographic Kids reporter Trevor Jehl, right, interviews Joey Hudy, Anthem, AZ, 16-year-old self-described “Maker” at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Joey sat with the First Lady at the President’s 2014 State of the Union Address after his first shot to fame in 2012 when he attended the White House Science Fair where the President took a turn using his “extreme marshmallow cannon” to launch a marshmallow across the East Room of the White House. Photo Credit: (NASA/Bill Ingalls)

  4. Role Specific Pupil/Science Teacher Interpersonal Compatibility and Science Attitudes.

    ERIC Educational Resources Information Center

    Vargo, Robert A.; Schafer, Larry E.

    As science teaching becomes more inquiry oriented, science teachers are interacting more frequently with individual students. With increased interaction, pupil/science teacher interpersonal compatibility most likely contributes significantly to the development of students' science attitudes. The purpose of the present study was to examine the…

  5. Spacelab Life Sciences-1

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg

    1995-01-01

    This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.

  6. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    NASA Astrophysics Data System (ADS)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing

  7. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    PubMed

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc

  8. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by Montgomery Blair High School Student Newspaper “Silver Chips” Online Editor-in-Chief Aanchal Johri, center, and Photo Editor Emma Howells, from Silver Spring, MD. ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  9. Integrating Science and Literacy Instruction: A Framework for Bridging the Gap

    ERIC Educational Resources Information Center

    Freeman, Gene; Taylor, Vickie

    2006-01-01

    There is vast research that substantiates the integration of science and literacy; however, there are very few books that correlate findings and address specific practices. "Integrating Science and Literary Instruction" connects scientifically based research and best instructional practices in literacy and integrates this with the inquiry-based…

  10. A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Kremic, Tibor; Dankanich, John

    The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.

  11. Europa Science Platforms and Kinetic Energy Probes

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Klein, G. A.

    2003-01-01

    This presentation will outline a proposed mission for the Jupiter Icy Moons Orbiter (JIMO). The mission outlined will concentrate on an examination of Europa. Some of the primary science goals for the JIMO mission are: 1) to answer broad science questions, 2) improved knowledge of Jovian system; specifically, lunar geological and geophysical properties, 3) chemical composition of Jovian lunar surfaces and subterranean matter, and 4) the search for life. In order to address these issues, the experiment proposed here will deploy orbiting, surface, and subterranean science platforms.

  12. A review of strategies to address the shortage of science and mathematics educators in grades 10-12

    NASA Astrophysics Data System (ADS)

    Magano, Florence Lesedi

    For an education system to function effectively it is important that its planning functions are executed effectively and efficiently. Among others this implies that the system must know what the teacher supply and demand is and how it will change in time. If the teacher supply and demand is known it could result in sound intervention strategies being developed and implemented. Education planners will be able to plan for the number of bursaries to be awarded and in which subject fields; it will be known how many foreign teachers to employ and for which subjects. This is the basic rationale that underpins this study. This study explored the problem of teacher demand and supply in the Further Education and Training (FET) phase (Grades 10 to 12) in South Africa and offers a critical analysis of strategies adopted by Provincial Education Departments in an endeavour to diminish the demand for teachers, specifically for Mathematics and Science, in rural and poor schools. Initially the study involved a secondary data analysis to extrapolate the demand and supply of teachers in Mathematics and Science over the next ten years. The first key finding of the study was that the data needed for such an analysis does not exist in any reliable form that would facilitate the development of such a projection. What the study had to rely on was anecdotal evidence that suggests that a shortage of Mathematics and Science teachers does exist and that posts are often filled by unqualified and under-qualified staff. In the second phase of the research in which the study explored the effectiveness of strategies developed to address the shortage of Mathematics and Science teachers, a qualitative research approach was adopted within a descriptive interpretive design. The views and opinions of human resource managers responsible for post provisioning in schools were explored through in-depth interviews to understand the types of strategy adopted by the provinces, their potential to alleviate

  13. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Panels participants, from left, Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, former White House Science Fair participant Joey Hudy, Environmentalist and third-year law student at Elon University School of Law Tyrone Davis, White House innovation expert Cristin Dorgelo, and Defense Advanced Research Projects Agency (DARPA) Gill Pratt, take a question from the audience during the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. Relationship between students' understandings of nature of science and instructional context

    NASA Astrophysics Data System (ADS)

    Khishfe, Rola Fouad

    The study investigated and compared two different instructional approaches (integrated and nonintegrated), which address the explicit teaching of nature of science (NOS), in relation to improving students' understanding of NOS. Participants were three teachers and their students---a total of 129---which comprised six groups of 89 ninth and 40 10th/11th graders. Each teacher taught two intact sections of the same grade level within a specific science discipline (environmental science, chemistry, or biology). The treatment for all groups spanned five to six weeks and involved teaching a unit, which included both the regular science content and NOS. Participants in each of the two intact classes were taught by the same teacher about their regular science content, with the difference being the context in which NOS was explicitly taught (integrated or nonintegrated). In the integrated group, NOS instruction was related to the science content addressed in the unit. In the nonintegrated group, NOS was taught through a set of generic (non content-embedded) activities that specifically addressed NOS aspects and were "interspersed" across the science content addressed in the unit. An open-ended questionnaire, in conjunction with semi-structured interviews, was used to assess participants' views prior to and following instruction. Data analysis involved a systematic process consistent with analytic induction. Results showed general improvements in participants' views of NOS regardless of whether or not NOS was integrated within the regular science content. The results of this study do not support the appealing assumption held by many science educators that integrating NOS within the context of the science content would better enhance the learning of NOS. However, the results suggest the possibility of an interaction between the type of change (naive to transitional, transitional to informed, naive to informed, no changes, regression) in students' views and the explicit

  15. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective

    NASA Astrophysics Data System (ADS)

    Manning, C.; Buhr, S. M.

    2012-12-01

    teachers who are willing to change how science is being taught right now. There will be specific examples of clearly written, evidence-based tools that address the general public's lack of critical climate knowledge and help to identify and change students' misconceptions. Specific content areas that continue to be overlooked as "common knowledge" but that need to be addressed in both pre- and in-service teacher instruction, textbooks, and online resources will be identified.

  16. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    PubMed

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Optimizing regional collaborative efforts to achieve long-term discipline-specific objectives

    USDA-ARS?s Scientific Manuscript database

    Current funding programs focused on multi-disciplinary, multi-agency approaches to regional issues can provide opportunities to address discipline-specific advancements in scientific knowledge. Projects funded through the Agricultural Research Service, Joint Fire Science Program, and the Natural Re...

  18. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Montgomery Blair High School Student Newspaper “Silver Chips” Online Editor-in-Chief Aanchal Johri, right, and Photo Editor Emma Howells, left, from Silver Spring, MD. interview Joey Hudy, Anthem, AZ, 16-year-old self-described “Maker” at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Joey sat with the First Lady at the President’s 2014 State of the Union Address after his first shot to fame in 2012 when he attended the White House Science Fair where the President took a turn using his “extreme marshmallow cannon” to launch a marshmallow across the East Room of the White House. Photo Credit: (NASA/Bill Ingalls)

  19. Addressing Three Common Myths about the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huff, Kenneth L.

    2016-01-01

    Science education is central to the lives of all Americans. Students face a world where they will frequently be required to make important decisions on issues that range from health care to the environment. Achieving literacy in science will require coherence at all levels and across components of the system including curriculum, assessment, and…

  20. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  1. A Case Study Investigating Secondary Science Teachers' Perceptions of Science Literacy Instruction

    NASA Astrophysics Data System (ADS)

    Blackmon, Phyllis Ann

    This project study addressed the lack of inclusion of discipline literacy pedagogy in secondary classrooms in a rural school district in eastern North Carolina. Discipline literacy practices are recommended in the Common Core Standards for History/Social Studies, Science, and Technical Subjects. The district had implemented content area reading strategies across content areas, yet no significant progress in secondary students' reading abilities had been demonstrated in statewide or national assessments. The conceptual framework that drove this study was disciplinary literacy, founded by the literacy research of Shanahan, Shanahan, and Zygouris-Coe. Within a qualitative case study method, this investigation of 8 secondary science teachers' experiences teaching literacy during content instruction focused on practices of embedding science-specific reading strategies into lessons and factors that influence teachers' decisions to participate in professional development to advance their learning of discipline-specific literacy methods. Data were collected and triangulated using a focus group and 8 individual interviews. Data from both methods were analyzed into codes and categories that developed into emergent themes. Findings from the focus group and individual interviews revealed that the science teachers possessed limited knowledge of science-specific reading strategies; used random, general literacy practices; and had completed inadequate professional development on science-related topics. Positive change may occur if district leaders support teachers in expanding their knowledge and application of discipline literacy strategies through participation in discipline literacy-focused professional development. The study may provide educators and researchers a deeper understanding of disciplinary literacy and increase research on the topic.

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, center, poses for a group photograph with NASA's 2013 astronaut candidates, from left, Josh A. Cassada, Nicole Aunapu Mann, Jessica U. Meir, Tyler N. "Nick" Hague, Holdren, Victor J. Glover, Christina M. Hammock, Andrew R. Morgan, and, Anne C. McClain at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Content and Design Features of Academic Health Sciences Libraries' Home Pages.

    PubMed

    McConnaughy, Rozalynd P; Wilson, Steven P

    2018-01-01

    The goal of this content analysis was to identify commonly used content and design features of academic health sciences library home pages. After developing a checklist, data were collected from 135 academic health sciences library home pages. The core components of these library home pages included a contact phone number, a contact email address, an Ask-a-Librarian feature, the physical address listed, a feedback/suggestions link, subject guides, a discovery tool or database-specific search box, multimedia, social media, a site search option, a responsive web design, and a copyright year or update date.

  4. The Use of Illustrations in Large-Scale Science Assessment: A Comparative Study

    ERIC Educational Resources Information Center

    Wang, Chao

    2012-01-01

    This dissertation addresses the complexity of test illustrations design across cultures. More specifically, it examines how the characteristics of illustrations used in science test items vary across content areas, assessment programs, and cultural origins. It compares a total of 416 Grade 8 illustrated items from the areas of earth science, life…

  5. State of the Union Address Student Guests

    NASA Image and Video Library

    2011-01-25

    White House Office of Science and Technology Policy Associate Director for Science Carl Wieman, left, talks with West Philadelphia High School student Brandon Ford, left, and Montana Central Catholic High School student Mikayla Nelson at the New Executive Office Building, Tuesday, Jan. 25, 2011 in Washington. The students are all young achievers in science and technology and will be amongst other guests seated in the First Lady’s Box in the U.S. Capitol during the President’s State of the Union Address. Photo Credit: (NASA/Bill Ingalls)

  6. Hispanic women overcoming deterrents to computer science: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Herling, Lourdes

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty

  7. Addressing Common Student Technical Errors in Field Data Collection: An Analysis of a Citizen-Science Monitoring Project.

    PubMed

    Philippoff, Joanna; Baumgartner, Erin

    2016-03-01

    The scientific value of citizen-science programs is limited when the data gathered are inconsistent, erroneous, or otherwise unusable. Long-term monitoring studies, such as Our Project In Hawai'i's Intertidal (OPIHI), have clear and consistent procedures and are thus a good model for evaluating the quality of participant data. The purpose of this study was to examine the kinds of errors made by student researchers during OPIHI data collection and factors that increase or decrease the likelihood of these errors. Twenty-four different types of errors were grouped into four broad error categories: missing data, sloppiness, methodological errors, and misidentification errors. "Sloppiness" was the most prevalent error type. Error rates decreased with field trip experience and student age. We suggest strategies to reduce data collection errors applicable to many types of citizen-science projects including emphasizing neat data collection, explicitly addressing and discussing the problems of falsifying data, emphasizing the importance of using standard scientific vocabulary, and giving participants multiple opportunities to practice to build their data collection techniques and skills.

  8. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    NASA Astrophysics Data System (ADS)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    hurricanes. Second, participants in the research benefitted from a specific focus on environmental science content during their teacher education courses, particularly when the teaching of the content was modeled in a way congruent with research-based approaches to active learning in science. For example, there was a 38% gain in participants' understanding that an item lifted vertically gains potential energy and a 33% gain in understanding that the costs associated with climate change are likely to outweigh the economic benefits for most countries in the world. Results of the focus groups indicate that participants derive a good amount of their conceptual understanding of environmental science through the media, making it all the more important that they have a space to explore their understandings in a teacher education program. The research has also suggested some important questions worthy of future consideration. Our research has revealed pre-post gains on soil and energy concepts of between 10-15% in both years. However, our gains were only of the order of 5-7% with respect to concepts associated with water systems, and climate change and the greenhouse effect. Are these concepts inherently more challenging to our participants? Are more robust interventions required? Future research will address these and other questions.

  9. Engaging underserved audiences in informal science education through community-based partnerships

    NASA Astrophysics Data System (ADS)

    Bouzo, Suzanne

    This thesis explores the impact of the Science Education and Engagement of Denver (SEED) Partnership on three of its participant families. The partnership, consisting of large informal science organizations, as well as small community-based organizations, created its programming based on prior research identifying barriers to minority participation in informal science education programs. SEED aims to engage youth and families of emerging populations in science and nature. Three families were examined as a case study to have an in depth investigation about their involvement in the programs sponsored by the partnership. Findings suggest a positive impact on participant feelings and engagement in science and nature. Future recommendations are made for furthering programming as well as conducting a larger scale, more comprehensive program evaluation. This research addresses prior studies that have identified several barriers toward participation of underserved audiences in informal science education programs and how the SEED partnership has addressed specific identified barriers.

  10. The Integration of HIV and AIDS as a Socio-Scientific Issue in the Life Sciences Curriculum

    ERIC Educational Resources Information Center

    Wolff, Eugenie; Mnguni, Lindelani

    2015-01-01

    The potential of science to transform lives has been highlighted by a number of scholars. This means that critical socio-scientific issues (SSIs) must be integrated into science curricula. Development of context-specific scientific knowledge and twenty-first-century learning skills in science education could be used to address SSIs such as…

  11. Promoting Translational Research Among Movement Science, Occupational Science, and Occupational Therapy.

    PubMed

    Sainburg, Robert L; Liew, Sook-Lei; Frey, Scott H; Clark, Florence

    2017-01-01

    Integration of research in the fields of neural control of movement and biomechanics (collectively referred to as movement science) with the field of human occupation directly benefits both areas of study. Specifically, incorporating many of the quantitative scientific methods and analyses employed in movement science can help accelerate the development of rehabilitation-relevant research in occupational therapy (OT) and occupational science (OS). Reciprocally, OT and OS, which focus on the performance of everyday activities (occupations) to promote health and well-being, provide theoretical frameworks to guide research on the performance of actions in the context of social, psychological, and environmental factors. Given both fields' mutual interest in the study of movement as it relates to health and disease, the authors posit that combining OS and OT theories and principles with the theories and methods in movement science may lead to new, impactful, and clinically relevant knowledge. The first step is to ensure that individuals with OS or OT backgrounds are academically prepared to pursue advanced study in movement science. In this article, the authors propose 2 strategies to address this need.

  12. The Frequency and Type of Graphical Representations in Science Trade Books for Children

    ERIC Educational Resources Information Center

    Coleman, Julianne M.; Dantzler, John A.

    2016-01-01

    This study sought to examine the frequency and type of graphical representations in science trade books for children from 1972 to 2007. Specifically questions addressed differences in graphical forms in science discipline and for intended audience age for books. The results revealed that there is an increase in the presence and variation of…

  13. Social science in the national park service: an evolving mission and program

    Treesearch

    Richard H. Briceland

    1992-01-01

    In 1988 the director of the National Park Service requested that a social science program be established. Since that time a number of new research initiatives have been developed to address this need. This paper describes seven major steps taken thus far to meet social science needs of park superintendents, program managers, and park planners. Specific examples are...

  14. Investigating Science Discourse in a High School Science Classroom

    NASA Astrophysics Data System (ADS)

    Swanson, Lauren Honeycutt

    Science classrooms in the United States have become more diverse with respect to the variety of languages spoken by students. This qualitative study used ethnographic methods to investigate the discourse and practices of two ninth grade science classrooms. Approximately 44% of students included in the study were designated as English learners. The present work focused on addressing the following questions: 1) In what ways is science discourse taken up and used by students and their teacher? 2) Are there differences in how science discourse is used by students depending on their English language proficiency? Data collection consisted of interviewing the science teacher and the students, filming whole class and small group discussions during two lesson sequences, and collecting lesson plans, curricular materials, and student work. These data were analyzed qualitatively. Findings indicated that the teacher characterized science discourse along three dimensions: 1) the use of evidence-based explanations; 2) the practice of sharing one's science understandings publically; and 3) the importance of using precise language, including both specialized (i.e., science specific) and non-specialized academic words. Analysis of student participation during in-class activities highlighted how students progressed in each of these science discourse skills. However, this analysis also revealed that English learners were less likely to participate in whole class discussions: Though these students participated in small group discussions, they rarely volunteered to share individual or collective ideas with the class. Overall, students were more adept at utilizing science discourse during class discussions than in written assignments. Analysis of students' written work highlighted difficulties that were not visible during classroom interactions. One potential explanation is the increased amount of scaffolding the teacher provided during class discussions as compared to written

  15. How Singapore Junior College Science Teachers Address Curriculum Reforms: A Theory

    ERIC Educational Resources Information Center

    Lim, Patrick; Pyvis, David

    2012-01-01

    Using grounded theory research methodology, a theory was developed to explain how Singapore junior college science teachers implement educational reforms underpinning the key initiatives of the "Thinking Schools, Learning Nation" policy. The theory suggests Singapore junior college science teachers "deal with" implementing…

  16. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    White House innovation expert Cristin Dorgelo speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  17. Choosing Science: A Mixed-Methods Study of Factors Predicting Latino and Latina High School Students' Decisions to Pursue Science Degrees

    NASA Astrophysics Data System (ADS)

    Stein, Rachel S.

    Latino/as are an increasingly large subset of the United States population; however, they continue to be underrepresented in science careers. Because of this increase, research regarding Latino/as has improved, but there are still many gaps in regards to gender-specific predictors to pursue science careers. To address this lack of literature, the purpose of this study is to extend previous research and to develop a model of variables that significantly contribute to science career choice among Latino and Latina students when they graduate from high school. In particular the study addressed the following research questions: (1) What are the differences in science outcomes for Latino and Latina students? (2) What are the differences in factors involved in science outcomes for Latino and Latina students? (3) For Latino and Latina students what are the differences in the factors that predict students' choice to pursue a science degree and/or high scores on the Future Plans in Science Scale? (4) What are the differences in how Latino and Latina students experience science, which account for high achieving students to choose to pursue a science major? This study utilized an explanatory mixed-method approach to examine how cognitive, institutional, and motivational factors may be interrelated and play a role in Latino/as choice to pursue science. The first phase of the study incorporated the collection of survey and database information from 12th grade students at two Southern California high schools. The second phase of the study utilized follow-up focus group interviews to explore the specific differential experiences and views of Latino and Latina students. The results of the study demonstrated multiple significant predictors. Science self-concept and views towards science outside of school were the most significant predictors of students' choice to pursue science. Male students also had major predictors of Spanish proficiency, teacher encouragement, religious views

  18. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    ERIC Educational Resources Information Center

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  19. Promoting Technology-Assisted Active Learning in Computer Science Education

    ERIC Educational Resources Information Center

    Gao, Jinzhu; Hargis, Jace

    2010-01-01

    This paper describes specific active learning strategies for teaching computer science, integrating both instructional technologies and non-technology-based strategies shown to be effective in the literature. The theoretical learning components addressed include an intentional method to help students build metacognitive abilities, as well as…

  20. English for Scientific Purposes (EScP): Technology, Trends, and Future Challenges for Science Education

    ERIC Educational Resources Information Center

    Liu, Gi-Zen; Chiu, Wan-Yu; Lin, Chih-Chung; Barrett, Neil E.

    2014-01-01

    To date, the concept of English for Specific Purposes has brought about a great impact on English language learning across various disciplines, including those in science education. Hence, this review paper aimed to address current English language learning in the science disciplines through the practice of computer-assisted language learning to…

  1. Addressing Diversity in Health Science Students by Enhancing Flexibility through e-Learning

    ERIC Educational Resources Information Center

    Penman, Joy; Thalluri, Jyothi

    2014-01-01

    The technological advancements for teaching and learning sciences for health science students are embedded in the Thalluri-Penman Good Practice Model, which aims to improve the learning experiences of science students and increase student retention and success rates. The model also links students from urban and rural areas, studying both on-and…

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Defense Advanced Research Projects Agency (DARPA) Gill Pratt speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Science communication in the field of fundamental biomedical research (editorial).

    PubMed

    Illingworth, Sam; Prokop, Andreas

    2017-10-01

    The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. U-Science (Invited)

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  5. Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.

    PubMed

    Yoshinobu, Tatsuo; Miyamoto, Ko-Ichiro; Werner, Carl Frederik; Poghossian, Arshak; Wagner, Torsten; Schöning, Michael J

    2017-06-12

    A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

  6. Mars 2020 Science Rover: Science Goals and Mission Concept

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Beaty, D.; Bass, D.

    2013-10-01

    The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses

  7. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    NASA associate administrator for education and former astronaut Leland Melvin speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  8. Extending the Purposes of Science Education: Addressing Violence within Socio-Economic Disadvantaged Communities

    ERIC Educational Resources Information Center

    Castano, Carolina

    2012-01-01

    Current discourses about science education show a wide concern towards humanisation and a more socio-cultural perspective of school science. They suggest that science education can serve diverse purposes and be responsive to social and environmental situations we currently face. However, these discourses and social approaches to science education…

  9. Cheaper Adjoints by Reversing Address Computations

    DOE PAGES

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  10. Addressing prehospital patient safety using the science of injury prevention and control.

    PubMed

    Meisel, Zachary F; Hargarten, Stephen; Vernick, Jon

    2008-01-01

    There is inadequate information about the scope and character of adverse events in prehospital care. However, there is ample evidence to suggest that prehospital patient safety hazards are often unique and underrecognized. We first summarize what is currently understood about prehospital patient safety and identify the specific aspects of emergency medical services (EMS) care that may make conventional approaches to the evaluation and improvement of patient safety more difficult. Next we introduce the concept of using injury prevention and control science to analyze prehospital adverse events and to help develop EMS patient safety solutions. Injury prevention and control is a proven public health approach for the study and reduction of both intentional and unintentional injuries. It includes the use of a Haddon phase-factor matrix to identify possible interventions, especially environmental modifications that provide automatic protection. We demonstrate how this method can be used as a complementary approach in efforts to prevent injuries caused by prehospital adverse medical events.

  11. Photosensitive biosensor array system using optical addressing without an addressing circuit on array biochips

    NASA Astrophysics Data System (ADS)

    Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong

    2010-09-01

    This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.

  12. Science Objectives and Design of the European Seas Observatory NETwork (ESONET)

    NASA Astrophysics Data System (ADS)

    Ruhl, H.; Géli, L.; Karstensen, J.; Colaço, A.; Lampitt, R.; Greinert, J.; Phannkuche, O.; Auffret, Y.

    2009-04-01

    important feedbacks of potential ecological change be on biogeochemical cycles? What are the factors that control the distribution and abundance of marine life and what will the influence of anthropogenic change be? We will outline a set of science objectives and observation parameters to be collected at all ESONET sites, as well as a set of rather specific objectives and thus parameters that might only be measured at some sites. We will also present the preliminary module specifications now being considered by ESONET. In a practical sense the observatory design has been divided into those that will be included in a so called ‘generic' module and those that will be part of science-specific modules. Outlining preliminary module specifications is required to move forward with studies of observatory design and operation. These specifications are importantly provisional and can be updated as science needs and feasibility change. A functional cleavage not only comes between aspects that are considered generic or specific, but also the settings in which those systems will be used. For example, some modules will be on the seabed and some will be moored in the water column. In order to address many of the questions posed above ESONET users will require other supporting data from other programs from local to international levels. Examples of these other data sources include satellite oceanographic data, climatic data, air-sea interface data, and the known distribution and abundances of marine fauna. Thus the connection of ESONET to other programs is integral to its success. The development of ESONET provides a substantial opportunity for ocean science to evolve in Europe. Furthermore, ESONET and several other developing ocean observatory programs are integrating into larger science frameworks including the Global Earth Observation System of Systems (GEOSS) and Global Monitoring of Environment and Security (GMES) programs. It is only in a greater integrated framework that the full

  13. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    ERIC Educational Resources Information Center

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  14. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    ERIC Educational Resources Information Center

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  15. De-Marginalizing Science in the Early Elementary Classroom: Fostering Reform-Based Teacher Change through Professional Development, Accountability, and Addressing Teachers' Dilemmas

    NASA Astrophysics Data System (ADS)

    Berg, Alissa

    To develop a scientifically literate populace, students must acquire the motivation and foundational skills for success in science beginning at an early age. Unfortunately, science instruction is often marginalized in elementary schools for reasons including teachers' lack of confidence in teaching science and an overemphasis on literacy and mathematics. This study employed a case study design to examine the impact of teachers' dilemmas, career stage, coaching, and other forms of support on elementary teachers' abilities to teach science more often and in more reform-based ways. The conceptual lenses used to guide this dissertation include the theory related to teacher change, dilemmas, reform-oriented science teaching, and the professional learning continuum. Findings suggest that teachers' dilemmas must be addressed in order for them to move toward more reform-based science teaching practices. It was found that how teachers reconcile their dilemmas is due in part to their career stage, level of readiness, and access to a more knowledgeable other who can assist them in learning and enacting reform-based instruction. Moreover, the likelihood and extent of teacher change appears to be related to teachers recognizing a need to change their practice, developing the capacity to change, feeling accountable to change, and possessing the motivation to change. Implications for teacher educators, professional development providers, and curriculum developers are presented. It is argued that teachers require support the length of their career and, to be effective, this support must be personalized to their diverse and changing needs and responsive to the context in which they teach.

  16. Healthy me: A gender-specific program to address body image concerns and risk factors among preadolescents.

    PubMed

    McCabe, Marita P; Connaughton, Catherine; Tatangelo, Gemma; Mellor, David; Busija, Lucy

    2017-03-01

    This study evaluated a gender-specific, school-based program to promote positive body image and address risk factors for body dissatisfaction. In total, 652 children aged 8-10 years participated (335 intervention, 317 wait-list control). Children participated in four 60min sessions and a recap session at three months post-intervention. The broad content areas were body image, peer relationships, media awareness, healthy diet, and exercise. The activities and examples for each session were gender specific. The recap session was an overview of the four sessions. Assessment measures were completed at pre-intervention, post-intervention, and after the recap. Boys and girls in the intervention demonstrated higher muscle esteem and vegetable intake at post-intervention, compared to children in the control condition. Boys and girls demonstrated higher body esteem, muscle esteem and fruit and vegetable intake at the recap. Boys in the intervention demonstrated less investment in masculine gender norms at post-intervention and at recap. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Smith, W. Scott

    2013-01-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.

  18. Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities

    NASA Astrophysics Data System (ADS)

    Castano, Carolina

    2012-09-01

    Current discourses about science education show a wide concern towards humanisation and a more socio-cultural perspective of school science. They suggest that science education can serve diverse purposes and be responsive to social and environmental situations we currently face. However, these discourses and social approaches to science education tend to focus on global issues. They do not respond to the immediate needs and local context of some communities. I discuss in this paper why the purposes of science education need to be extended to respond to the local issue of violence. For this, I present a case study with a group of 38 students from a poor population in Bogotá, Colombia, located in one of the suburbs with highest levels of crime in the city. I examine the ways that science education contributes to and embodies its own forms of violence and explore how a new approach to science education could contribute to break the cycle of violence.

  19. Information Science Panel joint meeting with Imaging Science Panel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Specific activity in information extraction science (taken to include data handling) is needed to: help identify the bounds of practical missions; identify potential data handling and analysis scenarios; identify the required enabling technology; and identify the requirements for a design data base to be used by the disciplines in determining potential parameters for future missions. It was defined that specific analysis topics were a function of the discipline involved, and therefore no attempt was made to define any specific analysis developments required. Rather, it was recognized that a number of generic data handling requirements exist whose solutions cannot be typically supported by the disciplines. The areas of concern were therefore defined as: data handling aspects of system design considerations; enabling technology for data handling, with specific attention to rectification and registration; and enabling technology for analysis. Within each of these areas, the following topics were addressed: state of the art (current status and contributing factors); critical issues; and recommendations for research and/or development.

  20. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Environmentalist and third-year law student at Elon University School of Law Tyrone Davis speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  1. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    NASA Astronaut Joe Acaba, left, is interviewed by National Geographic Kids reporter Trevor Jehl ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    NASA Astronaut Joe Acaba, left, is interviewed by TIME for Kids reporter Grace Clark ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Choices in higher education: Majoring in and changing from the sciences

    NASA Astrophysics Data System (ADS)

    Minear, Nancy Ann

    This dissertation addresses patterns of retention of undergraduate science, engineering and mathematics (SEM) students, with special attention paid to female and under represented minority students. As such, the study is focused on issues related to academic discipline and institutional retention, rather than the retention of students in the overall system of higher education. While previous retention studies have little to say about rates of retention that are specific to the sciences (or any other specific area of study) or employ models that rely on students' performance at the college level, this work address both points by identifying the post secondary academic performance characteristics of persisters and non-persisters in the sciences by gender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in sciencegender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in science majors. A secondary goal of investigating the usefulness of institutional records for retention research is addressed. Models produced for the entire population and selected subpopulations consistently classified higher-performing (both SEM and non-SEM grade point averages) students into Bachelor of Science categories using the number of Introductory Chemistry courses attempted at the university. For lower performing students, those with more introductory chemistry courses were classified as changing majors out of the sciences, and in general as completing a Bachelor of Arts degree. Performance in gatekeeper courses as a predictor of terminal academic status was limited to Introductory Physics for a small number of cases. Performance in Introductory Calculus and Introductory Chemistry were not consistently utilized as predictor variables. The models produced for various subpopulations (women, ethnic groups and matriculation

  4. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  5. Using partnerships with scientists to enhance teacher capacity to address the NGSS

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Haine, D. B.; Drostin, M.

    2013-12-01

    Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina

  6. Curriculum Trends: Science.

    ERIC Educational Resources Information Center

    White, Edwin P.; Teumac, Karen

    1984-01-01

    Brief descriptions and addresses are provided for the following: four handbooks for elementary principals on science programs, a study on women in science, a renewal of National Science Foundation funding for precollege-level science teaching projects, and a report outlining proposals for educational improvement in science. (TE)

  7. The Presidential Address 2014. Teaching and Learning: The Long View

    ERIC Educational Resources Information Center

    Roberts, Alice

    2014-01-01

    This article presents the transcript of the Presidential Address delivered to the Association for Science Education Annual Conference held at the University of Birmingham in January 2014. In her address, Alice Roberts traces the evolution of various features that are often thought to make humans different from other animals. Examples such as…

  8. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  9. Psychometrics in action, science as practice.

    PubMed

    Pearce, Jacob

    2017-07-27

    Practitioners in health sciences education and assessment regularly use a range of psychometric techniques to analyse data, evaluate models, and make crucial progression decisions regarding student learning. However, a recent editorial entitled "Is Psychometrics Science?" highlighted some core epistemological and practical problems in psychometrics, and brought its legitimacy into question. This paper attempts to address these issues by applying some key ideas from history and philosophy of science (HPS) discourse. I present some of the conceptual developments in HPS that have bearing on the psychometrics debate. Next, by shifting the focus onto what constitutes the practice of science, I discuss psychometrics in action. Some incorrectly conceptualize science as an assemblage of truths, rather than an assemblage of tools and goals. Psychometrics, however, seems to be an assemblage of methods and techniques. Psychometrics in action represents a range of practices using specific tools in specific contexts. This does not render the practice of psychometrics meaningless or futile. Engaging in debates about whether or not we should regard psychometrics as 'scientific' is, however, a fruitless enterprise. The key question and focus should be whether, on what grounds, and in what contexts, the existing methods and techniques used by psychometricians can be justified or criticized.

  10. Concerns of early career agricultural science teachers and the perceived effectiveness of educator preparation programs in addressing those concerns

    NASA Astrophysics Data System (ADS)

    Pearson, Camilla E.

    Little is known about the concerns and needs of early career agricultural teachers associated with the various routes to certification and how these routes address those concerns. The purpose of this study is to determine how selected early career agriculture teachers perceive their teacher preparation program and how effective their programs were at addressing these concerns during their first year of teaching. The sample consisted of secondary agricultural teachers in Texas FFA Areas V and VI, who self-identified themselves as an early career agricultural teacher in their first 3 years of teaching. The first phase included a web-based survey administered to assess the concerns of early career agricultural teachers. Two Likert-type scales were used, and these were used to assess the perceived importance of problems faced by early career agricultural teachers and the frequency in which they encounter those problems. The second phase included a qualitative interview to better understand the perceived relationship between participants' undergraduate preparation, experiences in agriculture and related organizations, and other related activities in preparing them as agriculture science teachers. The teachers interviewed in this study indicated that overall, they were pleased with their preparation. Teacher educators from both programs should address the concerns presented from all teachers to further prepare them for issues faced by early career teachers because it is evident that these issues are not going away.

  11. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    PubMed

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Issues in Science Education: Changing Purposes of Science Education.

    ERIC Educational Resources Information Center

    Williamson, Stan

    This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…

  13. Science, Math, and Technology. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…

  14. Science Olympiad students' nature of science understandings

    NASA Astrophysics Data System (ADS)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  15. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    ERIC Educational Resources Information Center

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  16. Reasoning About Nature: Graduate students and teachers integrating historic and modern science in high school math and science classes

    NASA Astrophysics Data System (ADS)

    Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.

    2010-12-01

    Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.

  17. Address tracing for parallel machines

    NASA Technical Reports Server (NTRS)

    Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent

    1991-01-01

    Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.

  18. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Official address. 0.2 Section 0.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2... 20580, unless otherwise specifically directed. The Commission's Web site address is www.ftc.gov. [63 FR...

  19. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Official address. 0.2 Section 0.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2... 20580, unless otherwise specifically directed. The Commission's Web site address is www.ftc.gov. [63 FR...

  20. An Ethnomethodological Perspective on How Middle School Students Addressed a Water Quality Problem

    ERIC Educational Resources Information Center

    Belland, Brian R.; Gu, Jiangyue; Kim, Nam Ju; Turner, David J.

    2016-01-01

    Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem--socioscientific issue--requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by…

  1. Ozone and Interdisciplinary Science Teaching--Learning to Address the Things That Count Most.

    ERIC Educational Resources Information Center

    Hobson, Art

    1993-01-01

    Presents the ozone depletion story as an excellent case study for the integration of science-related social issues into the college science curriculum. Describes the history of ozone depletion and efforts to remedy the problem. Provides a lecture outline on ozone depletion. Discusses integrating other science-related interdisciplinary topics in…

  2. Gender Equality in Science--Who Cares?

    NASA Astrophysics Data System (ADS)

    Li, Lewyn

    2002-04-01

    In this article, I address three questions: first, and most important, why scientists at all levels should care about gender equity in research; second, why there are so few women in science, from graduate school all the way to top-level research in academia and industry; and finally, what can be done to redress the imbalance. I argue that we should strive for gender equity because of a sense of justice, a desire to advance scientific knowledge, and a wish to improve the public image of science. I also make specific proposals that would make scientific research friendlier toward women, especially in graduate education.

  3. Response to science education reforms: The case of three science education doctoral programs in the United States

    NASA Astrophysics Data System (ADS)

    Gwekwerere, Yovita Netsai

    who 'all students' refers to and what science literacy means for learners with diverse cultural, linguistic or economic backgrounds. Faculty members' views significantly influence the nature and content of the courses as well as the program focus. It was also shown that a relationship exists between faculty views and the views of their doctoral students and recent graduates. In general, faculty exhibited narrower and more in-depth views about issues they consider being important in the field of science education, than doctoral students and recent graduates. External funding is critical in doctoral studies as it enables faculty to enact their visions of achieving science literacy for all. The study provides some implications for practice, policy and research. In order to achieve both equity and excellence in science teaching, there is need for dialogue among science educators to enable them to address issues of equity more effectively than at present. If doctoral programs are to continue preparing graduates who can address important issues in the field, there is need for external funding for specific research programs.

  4. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  5. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope

  6. Science Teachers' Use of Mass Media to Address Socio-Scientific and Sustainability Issues

    ERIC Educational Resources Information Center

    Klosterman, Michelle L.; Sadler, Troy D.; Brown, Julie

    2012-01-01

    The currency, relevancy and changing nature of science makes it a natural topic of focus for mass media outlets. Science teachers and students can capitalize on this wealth of scientific information to explore socio-scientific and sustainability issues; however, without a lens on how those media are created and how representations of science are…

  7. Engineering Specifications derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc

    2013-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  8. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  9. Shrinking Sea Ice, Thawing Permafrost, Bigger Storms, and Extremely Limited Data - Addressing Information Needs of Stakeholders in Western Alaska Through Participatory Decisions and Collaborative Science.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Reynolds, J.

    2015-12-01

    Communities, Tribes, and decision makers in coastal western Alaska are being impacted by declining sea ice, sea level rise, changing storm patterns and intensities, and increased rates of coastal erosion. Relative to their counterparts in the contiguous USA, their ability to plan for and respond to these changes is constrained by the region's generally meager or non-existent information base. Further, the information needs and logistic challenges are of a scale that perhaps can be addressed only through strong, strategic collaboration. Landscape Conservation Cooperatives (LCCs) are fundamentally about applied science and collaboration, especially collaborative decision making. The Western Alaska LCC has established a process of participatory decision making that brings together researchers, agency managers, local experts from Tribes and field specialists to identify and prioritize shared information needs; develop a course of action to address them by using the LCC's limited resources to catalyze engagement, overcome barriers to progress, and build momentum; then ensure products are delivered in a manner that meets decision makers' needs. We briefly review the LCC's activities & outcomes from the stages of (i) collaborative needs assessment (joint with the Alaska Climate Science Center and the Alaska Ocean Observing System), (ii) strategic science activities, and (iii) product refinement and delivery. We discuss lessons learned, in the context of our recent program focused on 'Changes in Coastal Storms and Their Impacts' and current collaborative efforts focused on delivery of Coastal Resiliency planning tools and results from applied science projects. Emphasis is given to the various key interactions between scientists and decision makers / managers that have been promoted by this process to ensure alignment of final products to decision maker needs.

  10. Peer Review-Based Scripted Collaboration to Support Domain-Specific and Domain-General Knowledge Acquisition in Computer Science

    ERIC Educational Resources Information Center

    Demetriadis, Stavros; Egerter, Tina; Hanisch, Frank; Fischer, Frank

    2011-01-01

    This study investigates the effectiveness of using peer review in the context of scripted collaboration to foster both domain-specific and domain-general knowledge acquisition in the computer science domain. Using a one-factor design with a script and a control condition, students worked in small groups on a series of computer science problems…

  11. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    USGS Publications Warehouse

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  12. Catalog of lunar and Mars science payloads

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann (Editor)

    1994-01-01

    This catalog collects and describes science payloads considered for future robotic and human exploration missions to the Moon and Mars. The science disciplines included are geosciences, meteorology, space physics, astronomy and astrophysics, life sciences, in-situ resource utilization, and robotic science. Science payload data is helpful for mission scientists and engineers developing reference architectures and detailed descriptions of mission organizations. One early step in advanced planning is formulating the science questions for each mission and identifying the instrumentation required to address these questions. The next critical element is to establish and quantify the supporting infrastructure required to deliver, emplace, operate, and maintain the science experiments with human crews or robots. This requires a comprehensive collection of up-to-date science payload information--hence the birth of this catalog. Divided into lunar and Mars sections, the catalog describes the physical characteristics of science instruments in terms of mass, volume, power and data requirements, mode of deployment and operation, maintenance needs, and technological readiness. It includes descriptions of science payloads for specific missions that have been studied in the last two years: the Scout Program, the Artemis Program, the First Lunar Outpost, and the Mars Exploration Program.

  13. Addressing HIV/AIDS Education: A Look at Teacher Preparedness in Ghana

    ERIC Educational Resources Information Center

    Weiler, Jim Martin; Martin-Weiler, Cassandra J.

    2012-01-01

    Our research shows that social science university trained Ghanaian student/teachers do have the knowledge, confidence, and willingness to address HIV/AIDS issues in their teaching, yet they do not. The reason, we argue, is that teachers have little incentive to address contentious issues in the classroom. Questionnaires were administered to 382…

  14. The science between tsunami science and evacuation decisions

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Dewi, P. R.; Mundzir, I.; Rosemary, R.; Safrina, L.; Daly, P.; Patt, A.

    2014-12-01

    The science of rare natural hazards provides us an opportunity that our ancestors lacked: the chance to learn what hazards we could face, and how reliable any particular precursor may or may not be. Connecting hazard science to societal learning is far too complex a challenge for our intuitions to be of much use. Instead, we need to use evidence - the science of science communication - to identify what actually works. As practitioners, we first worked with NGOs and local governments in coastal Sumatran communities to develop tsunami evacuation guidance that is consistent with the science of tsunamis and suitable for the communities that face the threat. This work identified important practical questions that social science can address: how do people decide whether to evacuate, and how do hazard knowledge and experience influence this? How acceptable are false alarms? What modes of communicating tsunami science and its uncertainties may lead to greater willingness to evacuate, and greater acceptance of false alarms? Which parts of the vast body of research on communication, risk perception, and decision-making might be significant in these contexts? We are beginning research at the household level that will address these questions and feed back into our continuing science-communication practice.

  15. Subject-Specific Induction Programs: Lessons from Science

    ERIC Educational Resources Information Center

    Luft, Julie

    2012-01-01

    The author's research on beginning science teachers stemmed from her interest in the teaching abilities of her newly graduated students. She was certain that the teachers who participated in her classes were adequately prepared to plan and enact sound science lessons. As she followed her new graduates through their first years of teaching, the…

  16. Relationships among Prior Conceptual Knowledge, Metacognitive Awareness, Metacognitive Self-Management, Cognitive Style, Perception-Judgment Style, Attitude toward School Science, Self-Regulation, and Science Achievement in Grades 6-7 Students.

    ERIC Educational Resources Information Center

    Holden, Trudy G.; Yore, Larry D.

    This study explores the learner dimension in learning biological science topics in five elementary school classrooms instructed by different teachers using a common course of study and outcome measures. Specifically, the study addressed the associations among conceptual, metacognitive, cognitive, stylistic, and affective characteristics and…

  17. Closing the quality gap: revisiting the state of the science (vol. 3: quality improvement interventions to address health disparities).

    PubMed

    McPheeters, Melissa L; Kripalani, Sunil; Peterson, Neeraja B; Idowu, Rachel T; Jerome, Rebecca N; Potter, Shannon A; Andrews, Jeffrey C

    2012-08-01

    This review evaluates the effectiveness of quality improvement (QI) strategies in reducing disparities in health and health care. We identified papers published in English between 1983 and 2011 from the MEDLINE® database, the Cumulative Index of Nursing and Allied Health Literature (CINAHL), Web of Science Social Science Index, and PsycINFO. All abstracts and full-text articles were dually reviewed. Studies were eligible if they reported data on effectiveness of QI interventions on processes or health outcomes in the United States such that the impact on a health disparity could be measured. The review focused on the following clinical conditions: breast cancer, colorectal cancer, diabetes, heart failure, hypertension, coronary artery disease, asthma, major depressive disorder, cystic fibrosis, pneumonia, pregnancy, and end-stage renal disease. It assessed health disparities associated with race or ethnicity, socioeconomic status, insurance status, sexual orientation, health literacy/numeracy, and language barrier. We evaluated the risk of bias of individual studies and the overall strength of the body of evidence based on risk of bias, consistency, directness, and precision. Nineteen papers, representing 14 primary research studies, met criteria for inclusion. All but one of the studies incorporated multiple components into their QI approach. Patient education was part of most interventions (12 of 14), although the specific approach differed substantially across the studies. Ten of the studies incorporated self-management; this would include, for example, teaching individuals with diabetes to check their blood sugar regularly. Most (8 of 14) included some sort of provider education, which may have focused on the clinical issue or on raising awareness about disparities affecting the target population. Studies evaluated the effect of these strategies on disparities in the prevention or treatment of breast or colorectal cancer, cardiovascular disease, depression, or

  18. Learning from Science: Case Studies of Science Offerings in Afterschool Programs

    ERIC Educational Resources Information Center

    Lundh, Patrik; House, Ann; Means, Barbara; Harris, Christopher J.

    2013-01-01

    Afterschool programs have increasingly gained attention as settings that can help enrich students' science learning. Even though science is widely included in afterschool activities, sites often lack adequate materials and staff know-how to implement quality science. To address this need, this article examines afterschool science in light of the…

  19. The 2012 AANS Presidential Address. We are neurosurgery.

    PubMed

    McCormick, Paul C

    2012-12-01

    The theme of the 80th Annual Meeting of the American Association of Neurological Surgeons and the title of this presidential address, "We are neurosurgery," is a simple 3-word affirmation of who neurosurgeons are, what they have achieved, and how much there is yet to accomplish. Recent advances in neurobiology and the clinical neurosciences have brought an unprecedented understanding of the human nervous system in both health and disease. As a specialty, neurosurgery has translated knowledge, expanded techniques, and incorporated technology to exponentially expand the science and scope of neurosurgical practice. However, the rapidly advancing, divergently evolving growth of neurosurgery has had profound effects on all aspects of neurosurgery. In this address, the author examines the contemporary meaning of the annual meeting's theme as it relates to the science, practice, specialty, and profession of neurosurgery, as well as the neurosurgeon. In doing so, the author reveals his interpretation of "We are neurosurgery," which he hopes will have an effect on others.

  20. Cognitive science and the law.

    PubMed

    Busey, Thomas A; Loftus, Geoffrey R

    2007-03-01

    Numerous innocent people have been sent to jail based directly or indirectly on normal, but flawed, human perception, memory and decision making. Current cognitive-science research addresses the issues that are directly relevant to the connection between normal cognitive functioning and such judicial errors, and suggests means by which the false-conviction rate could be reduced. Here, we illustrate how this can be achieved by reviewing recent work in two related areas: eyewitness testimony and fingerprint analysis. We articulate problems in these areas with reference to specific legal cases and demonstrate how recent findings can be used to address them. We also discuss how researchers can translate their conclusions into language and ideas that can influence and improve the legal system.

  1. Race and Ethnicity: Powerful Cultural Forecasters of Science Learning and Performance

    ERIC Educational Resources Information Center

    Atwater, Mary M.; Lance, Jennifer; Woodard, UrLeaka; Johnson, Natasha Hillsman

    2013-01-01

    This article addresses the impact of race and ethnicity on students' science learning in US schools. Specifically, it discusses (a) the constructs of race, ethnicity, and culture, and the racial and ethnic student composition in US public schools; (b) effective classroom practices for curriculum, instruction, and assessment related to race…

  2. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Environmentalist and third-year law student at Elon University School of Law Tyrone Davis is interviewed by TIME for Kids reporter Grace Clark ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Davis sat with the First Lady at the President’s 2014 State of the Union Address. As a Fellow with the Environmental Defense Fund in 2010, he helped show Elizabeth City State University how to save more than $31,000 a year and 200 tons of carbon emissions reductions annually by using technology and efficiency solutions. Photo Credit: (NASA/Bill Ingalls)

  3. Using Interactive Science Notebooks for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Chesbro, Robert

    2006-01-01

    The interactive science notebook (ISN) is a perfect opportunity for science educators to encapsulate and promote the most cutting-edge constructivist teaching strategies while simultaneously addressing standards, differentiation of instruction, literacy development, and maintenance of an organized notebook as laboratory and field scientists do.…

  4. Practical Issues in Having a Usable Library of Software Specifications.

    DTIC Science & Technology

    1981-03-01

    Specifications* DEC 1 5 1981 Ralph M. Weischedel H Department of Computer & Information Sciences University of Delaware Newark, DE 19711 *Research sponsored by...AREA 6 WORK UNIT NUMBERS University of Delaware I Newark, DE 19711 61102F 2304/A2 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Air Force...Irom Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED ISa. DECLASSIFICATION/DOWNGRADING SCHEDu LE 16. DISTRIBUTION STATEMENT (of

  5. Addressing data access challenges in seismology

    NASA Astrophysics Data System (ADS)

    Trabant, C. M.; Ahern, T.; Weertman, B.; Benson, R. B.; Van Fossen, M.; Weekly, R. T.; Casey, R. E.; Suleiman, Y. Y.; Stults, M.

    2016-12-01

    The development of web services at the IRIS Data Management Center (DMC) over the last 6 years represents the most significant enhancement of data access ever introduced at the DMC. These web services have allowed the us to focus our internal operations around a single, consistent data access layer while facilitating development of a new generation of tools and methods for researchers to conduct their work. This effort led the DMC to propose standardized web service interfaces within the International Federation of Digital Seismograph Networks (FDSN), enabling other seismological data centers to offer data using compatible interfaces. With this new foundation, we now turn our attention to more advanced data access challenges. In particular, we will present the status of two developments intending to address 1) access to data of consistent quality for science and 2) discovery and access of data from multiple data centers. To address the challenge of requesting high or consistent quality data we will introduce our Research-Ready Data Sets (RRDS) initiative. The purpose of the RRDS project is to reduce the time a researcher spends culling and otherwise identifying data appropriate for given study. RRDS will provide users with additional criteria related to data quality that can be specified when requesting data. Leveraging the data quality measurements provided by our MUSTANG system, these criteria will include ambient noise, completeness, dead channel identification and more. To address the challenge of seismological data discovery and access, we have built and continue to improve the IRIS Federator. The Federator takes advantage of the FDSN-standard web services at various data centers to help a user locate specific channels, wherever they may be offered globally. The search interface provides results that are pre-formatted requests, ready for submission to each data center that serves that data. These two developments are aimed squarely at reducing the time

  6. USGS Colorado Water Science Center bookmark

    USGS Publications Warehouse

    ,

    2016-12-05

    The U.S. Geological Survey Colorado Water Science Center conducts its water-resources activities primarily in Colorado in cooperation with more than 125 different entities. These activities include extensive data-collection efforts and studies of streamflow, water quality, and groundwater to address many specific issues of concern to Colorado water-management entities and citizens. The collected data are provided in the National Water Information System, and study results are documented in reports and information served on the Internet.

  7. Preservice Teachers' Perceptions of Learning Science Methods through Hybridizing Asynchronous and Traditional Experiences

    ERIC Educational Resources Information Center

    Thomas, Jeff

    2011-01-01

    This study addresses preservice teachers' perceptions toward online experiences, specifically, their perceptions about utilizing an online science methods curriculum versus a traditional methods curriculum. Thirty-eight senior level preservice teachers at a midwestern U.S. university completed surveys about their experiences during their methods…

  8. Science for Real Life

    ERIC Educational Resources Information Center

    Hammerman, Elizabeth

    2008-01-01

    State and national standards identify what students should know and be able to do, including what it means to "do" science, the historical significance of science achievement and its ethical underpinnings, and science from the human perspective. Middle level science programs that address the full range of science standards and connect learning to…

  9. The impact of creative tendency, academic performance, and self-concept on creative science problem-finding.

    PubMed

    Liu, Mingxin; Hu, Weiping; Adey, Philip; Cheng, Li; Zhang, Xingli

    2013-04-01

    This study was designed to address the impacts of science performance, science self-concept, and creative tendency on the creative science problem-finding (CSPF) ability of a sample of Chinese middle-school students. Structural equation modeling was used to indicate that CSPF could be directly predicted by creative tendency and academic performance, and indirectly predicted by science self-concept. The findings strongly support the idea that curiosity, imagination, and domain-specific knowledge are important for CSPF, and science self-concept could be mediated by knowledge that affects CSPF. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.

  10. Identifying Decision-Makers’ Science Needs for Adaptation to Climate-Related Impacts on Forest Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Gordon, E.; Lukas, J.

    2009-12-01

    Through the Western Water Assessment RISA program, we are conducting a research project that will produce science synthesis information to help local, state, and federal decision-makers in Colorado and Wyoming develop adaptation strategies to deal with climate-related threats to forest ecosystem services, in particular bark beetle infestations and stand-replacing wildfires. We begin by using the problem orientation framework, a policy sciences methodology, to understand how decision-makers can most effectively address policy problems that threaten the attainment of socially accepted goals. By applying this framework to the challenges facing decision-makers, we more accurately identify specific areas where scientific research can improve decision-making. WWA researchers will next begin to connect decision-makers with relevant scientific literature and identify specific areas of future scientific research that will be most effective at addressing their needs.

  11. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    ERIC Educational Resources Information Center

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  12. Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Kenna, T. C.

    2014-12-01

    The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a

  13. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    NASA associate administrator for education and former astronaut Leland Melvin, left, watches as astronauts, Rick Mastracchio, screen left, and Michael Hopkins, deliver a message from the International Space Station (ISS) to attendees of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    Montgomery Blair High School Student Newspaper “Silver Chips” Online Editor-in-Chief Aanchal Johri, right, and Photo Editor Emma Howells, left, from Silver Spring, MD. interview NASA Astronaut Joe Acaba at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention.

    PubMed

    Frerichs, Leah; Hassmiller Lich, Kristen; Young, Tiffany L; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-06-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural African American youth perspectives on childhood obesity and enhance their understanding of and support for obesity prevention solutions. The curriculum was designed so it could be integrated with existing positive youth development curricula that help youth advocate for and implement identified solutions. We conducted four workshop sessions with youth that engaged them in systems learning activities such as guided systems diagramming activities. The participants ( n = 21) completed validated surveys presession and postsession that assessed their causal attributions of obesity and support for obesity prevention policies. The youths' perception that environmental factors cause obesity increased ( p < .05), and perceptions that individual behavior and biology cause obesity did not change. Their support for policies that addressed food access and food pricing significantly increased ( p < .05). The youths' system diagrams elucidated links between multilevel factors such as personal attitudes, social influence, and the built environment, which provides important information for designing synergistic solutions. The changes we observed in youths' perceptions of obesity and support for policy changes have important implications for youths' interest and willingness to advocate for social and environmental changes in their community. The strategies have a promising role in supporting community mobilization to address childhood obesity.

  16. Examining the Beliefs and Practices of Four Effective Australian Primary Science Teachers

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Angela; Dawson, Vaille; Hackling, Mark

    2013-06-01

    With trends across many countries still indicating the decline of student interest in school science and diminishing numbers of students studying science beyond the compulsory years, it seems that the field remains in crisis. To address these unfortunate trends, there needs to be a greater emphasis on science education research that highlights the good news stories. For example, what are science teachers actually doing in their classrooms to increase student interest and understanding in science? This article focuses on the science teaching beliefs and practices of four Western Australian primary school teachers. The teachers were nominated by a professional colleague as effective practitioners. The study involved gathering information from classroom observations and teacher interviews to provide background information to assist in developing understandings of these teachers and their science teaching. This article reports on the initial findings drawn from Deanne A, Kate B, Lisa C and Rebecca D. Their practices were organised into the following six categories: classroom environment; conceptual knowledge and procedural skills; teaching strategies and approaches; student-specific considerations; teacher-specific considerations; and context-specific considerations. In examining the components contributing to these categories, it was evident that the teachers' beliefs, as well as the contextual factors inherent in each classroom environment, influenced how and why they teach science in the ways they do.

  17. Addressing Nature of Science Core Tenets with the History of Science: An Example with Sickle-Cell Anemia & Malaria

    ERIC Educational Resources Information Center

    Howe, Erica M.

    2007-01-01

    The history of science (HOS) has proven to be a useful pedagogical tool to help students learn about what has come to be regarded as an agreed upon set of core nature of science (NOS) tenets. The following article illustrates an example of how teachers can instrumentally use the history of research on heterozygote protection in sickle-cell anemia…

  18. Addressing Environmental Health Inequalities.

    PubMed

    Gouveia, Nelson

    2016-08-27

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), "Addressing Environmental Health Inequalities-Proceedings from the ISEE Conference 2015", we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics.

  19. Delaware Technical & Community College's response to the critical shortage of Delaware secondary science teachers

    NASA Astrophysics Data System (ADS)

    Campbell, Nancy S.

    This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.

  20. A Systematic Review: The Next Generation Science Standards and the Increased Cultural Diversity

    ERIC Educational Resources Information Center

    Asowayan, Alaa A.; Ashreef, Samaar Y.; Omar, Sozan H.

    2017-01-01

    This systematic review aims to explore the effect of NGSS on students' academic excellence. Specifically, considering increased cultural diversity, it is appropriate to identify student's science-related values, respectful features of teachers' cultural competence, and underlying challenges and detect in what ways these objectives are addressed by…

  1. Trends in Gender Differences in Mathematics and Science (TIMSS 1995-2003)

    ERIC Educational Resources Information Center

    Neuschmidt, Oliver; Barth, Juliane; Hastedt, Dirk

    2008-01-01

    This article investigates changes in gender differences evident in the performance of grade 8th grade students participating in the Trends in International Mathematics and Science Study (TIMSS) between 1995 and 2003. Gender specific results and patterns found in TIMSS 1995 were compared with later cycles of the study in order to address the…

  2. Argonne Director Eric Isaacs addresses the National Press Club

    ScienceCinema

    Eric Isaccs

    2017-12-09

    Argonne Director Eric Isaacs addresses the National Press Club on 9/15/2009. To build a national economy based on sustainable energy, the nation must first "reignite its innovation ecology," he said. Issacs makes the case for investing in science to secure America's future.

  3. Argonne Director Eric Isaacs addresses the National Press Club

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Isaccs

    2009-09-17

    Argonne Director Eric Isaacs addresses the National Press Club on 9/15/2009. To build a national economy based on sustainable energy, the nation must first "reignite its innovation ecology," he said. Issacs makes the case for investing in science to secure America's future.

  4. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  5. Teen Science Cafés: A Model for Addressing Broader Impacts, Diversity, and Recruitment

    NASA Astrophysics Data System (ADS)

    Hall, M.; Mayhew, M. A.

    2017-12-01

    Teen Science Café programs (TeenScienceCafe.org) are a free and fun way for teens to explore science and technology affecting their lives. Through lively presentations, conversation, and activities to explore a topic deeply, Café programs open doors for teens to learn from experts about exciting and rewarding STEM career pathways. The programs are local and led by teens with the help of an adult mentor. The Teen Science Café Network (teensciencecafe.org) provides mentoring and resources, including small grants, to help organizations get started with and then maintain successful "teen café" programs. Through membership in the Network, more than 80 Teen Science Cafés have sprung up across the country, from rural towns to major cities. They serve a critical need for teens - meeting and engaging with STEM professionals, learning about their career paths, and seeing their passion for the work they do. Teen Science Café programs can offer geoscience departments a substantive, yet low cost, way to meet the challenges many of them face: finding ways to increase enrollment, helping faculty satisfy the broader impacts requirements of funding agencies, connecting with the surrounding communities, and providing opportunities for faculty and graduate students to learn how to communicate their science effectively to the public audience. The typical experience of scientists who have presented in teen cafés throughout the Network is that the communication skills learned spill over into their courses, proposals, and presentations to administrators and program officers. A department might partner with one or more organizations in their surrounding communities—libraries, for example—and engage its faculty and its graduate students—and even its undergraduates—in providing geoscience programming across multiple disciplines to local teens. Besides the internal benefits to the department's personnel and the value of establishing connections with community organizations

  6. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    ERIC Educational Resources Information Center

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  7. Characteristics of effective professional development for early career science teachers

    NASA Astrophysics Data System (ADS)

    Simon, Shirley; Campbell, Sandra; Johnson, Sally; Stylianidou, Fani

    2011-04-01

    The research reported here set out to investigate the features in schools and science departments that were seen as effective in contributing to the continuing professional development (CPD) of early career science teachers. Ten schools took part in the study, selected on the basis of their reputation for having effective CPD practices. To gain different perspectives from within the organisations we conducted interviews with senior members of staff, heads of science departments and early career teachers. A thematic analysis of the interviews is presented, drawing on findings from across the 10 schools, and exemplified in more detail by a vignette to show specific features of effective CPD practice. The study has revealed a wealth of practice across the 10 schools, which included a focus on broadening experience beyond the classroom, having an open, sharing, non-threatening culture and systemic procedures for mentoring and support that involved ring-fenced budgets. The schools also deployed staff judiciously in critical roles that model practice and motivate early career science teachers. Early career teachers were concerned primarily with their overall development as teachers, though some science specific examples such as observing practical work and sessions to address subject knowledge were seen as important.

  8. Prevention of preterm birth: harnessing science to address the global epidemic.

    PubMed

    Rubens, Craig E; Sadovsky, Yoel; Muglia, Louis; Gravett, Michael G; Lackritz, Eve; Gravett, Courtney

    2014-11-12

    Preterm birth is a leading cause of infant morbidity and mortality worldwide, but current interventions to prevent prematurity are largely ineffective. Preterm birth is increasingly recognized as an outcome that can result from a variety of pathological processes. Despite current research efforts, the mechanisms underlying these processes remain poorly understood and are influenced by a range of biological and environmental factors. Research with modern techniques is needed to understand the mechanisms responsible for preterm labor and birth and identify targets for diagnostic and therapeutic solutions. This review evaluates the state of reproductive science relevant to understanding the causes of preterm birth, identifies potential targets for prevention, and outlines challenges and opportunities for translating research findings into effective interventions. Copyright © 2014, American Association for the Advancement of Science.

  9. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  10. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  11. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods

    NASA Astrophysics Data System (ADS)

    Hodson, Derek

    2014-10-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.

  12. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  13. NASA Propulsion Investments for Exploration and Science

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high

  14. Ushering in a New Frontier in Geospace Through Data Science

    NASA Astrophysics Data System (ADS)

    McGranaghan, Ryan M.; Bhatt, Asti; Matsuo, Tomoko; Mannucci, Anthony J.; Semeter, Joshua L.; Datta-Barua, Seebany

    2017-12-01

    Our understanding and specification of solar-terrestrial interactions benefit from taking advantage of comprehensive data-intensive approaches. These data-driven methods are taking on new importance in light of the shifting data landscape of the geospace system, which extends from the near Earth space environment, through the magnetosphere and interplanetary space, to the Sun. The space physics community faces both an exciting opportunity and an important imperative to create a new frontier built at the intersection of traditional approaches and state-of-the-art data-driven sciences and technologies. This brief commentary addresses the current paradigm of geospace science and the emerging need for data science innovation, discusses the meaning of data science in the context of geospace, and highlights community efforts to respond to the changing landscape.

  15. Optically Addressable, Ferroelectric Memory With NDRO

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1994-01-01

    For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.

  16. Exploring Ecosystems from the Inside: How Immersive Multi-User Virtual Environments Can Support Development of Epistemologically Grounded Modeling Practices in Ecosystem Science Instruction

    ERIC Educational Resources Information Center

    Kamarainen, Amy M.; Metcalf, Shari; Grotzer, Tina; Dede, Chris

    2015-01-01

    Recent reform efforts and the next generation science standards emphasize the importance of incorporating authentic scientific practices into science instruction. Modeling can be a particularly challenging practice to address because modeling occurs within a socially structured system of representation that is specific to a domain. Further, in the…

  17. Connecting Science and Technology

    ERIC Educational Resources Information Center

    Pleasants, Jacob

    2017-01-01

    Helping students understand the Nature of Science (NOS) is a long-standing goal of science education. One method is to provide students examples of science history in the form of short stories. This article modifies that approach, using historical case studies to address both the history of science and the history of technology, as well as the…

  18. Advancing Water Science through Improved Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI

  19. Effects of Collaborative Preteaching on Science Performance of High School Students with Specific Learning Disabilities

    ERIC Educational Resources Information Center

    Thornton, Amanda; McKissick, Bethany R.; Spooner, Fred; Lo, Ya-yu; Anderson, Adrienne L.

    2015-01-01

    Investigating the effectiveness of inclusive practices in science instruction and determining how to best support high school students with specific learning disabilities (SLD) in the general education classroom is a topic of increasing research attention in the field. In this study, the researchers conducted a single-subject multiple probe across…

  20. American Science Advocacy Organizations: Examining Their Strategies and Engagements with Religion

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jason T.

    Over the past several decades, science advocacy organizations have increasingly participated in discussions of the relationship between science and religion to the public, mainly to counteract the resurgence of anti-evolution activities across the country, to address misconceptions and misunderstandings about science and religion, and to help make science more palatable and less threatening to religious believers. These engagements with religion have primarily involved four organizations: the American Association for the Advancement of Science (AAAS), the National Academy of Sciences (NAS), the National Center for Science Education (NCSE), and the Smithsonian National Museum of Natural History (SNMNH). In their engagements with religion, each of these organizations has simultaneously employed two distinct lines of operation: (1) defending science against anti-science religions and movements and (2) engaging science-friendly religions and the religious public. These lines of operation are driven by key objectives and supported by specific strategies and tactics to achieve those objectives, which this paper seeks to explore and analyze. Key findings and recommendations for science advocacy organizations' ongoing and future engagements with religion are provided.

  1. Diversity in Laboratory Animal Science: Issues and Initiatives

    PubMed Central

    Alworth, Leanne; Ardayfio, Krystal L; Blickman, Andrew; Greenhill, Lisa; Hill, William; Sharp, Patrick; Talmage, Roberta; Plaut, Victoria C; Goren, Matt J

    2010-01-01

    Since diversity in the workplace began receiving scholarly attention in the late 1980s, many corporations and institutions have invested in programs to address and manage diversity. We encourage laboratory animal science to address the challenges and to build on the strengths that personal diversity brings to our field and workplaces. Diversity is already becoming increasingly relevant in the workplace and the laboratory animal science field. By addressing issues related to diversity, laboratory animal science could benefit and potentially fulfill its goals more successfully. To date, diversity has received minimal attention from the field as a whole. However, many individuals, workplaces, and institutions in industry, academia, and the uniformed services that are intimately involved with the field of laboratory animal science are actively addressing issues concerning diversity. This article describes some of these programs and activities in industry and academia. Our intention is that this article will provide useful examples of inclusion-promoting activities and prompt further initiatives to address diversity awareness and inclusion in laboratory animal science. PMID:20353686

  2. Diversity in laboratory animal science: issues and initiatives.

    PubMed

    Alworth, Leanne; Ardayfio, Krystal L; Blickman, Andrew; Greenhill, Lisa; Hill, William; Sharp, Patrick; Talmage, Roberta; Plaut, Victoria C; Goren, Matt

    2010-03-01

    Since diversity in the workplace began receiving scholarly attention in the late 1980s, many corporations and institutions have invested in programs to address and manage diversity. We encourage laboratory animal science to address the challenges and to build on the strengths that personal diversity brings to our field and workplaces. Diversity is already becoming increasingly relevant in the workplace and the laboratory animal science field. By addressing issues related to diversity, laboratory animal science could benefit and potentially fulfill its goals more successfully. To date, diversity has received minimal attention from the field as a whole. However, many individuals, workplaces, and institutions in industry, academia, and the uniformed services that are intimately involved with the field of laboratory animal science are actively addressing issues concerning diversity. This article describes some of these programs and activities in industry and academia. Our intention is that this article will provide useful examples of inclusion-promoting activities and prompt further initiatives to address diversity awareness and inclusion in laboratory animal science.

  3. Addressable-Matrix Integrated-Circuit Test Structure

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  4. How Partners are Producing Science and Addressing Issues of Scale for Springs Management in the Desert Southwest

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Springer, A. E.; Misztal, L.; Grabau, M.

    2017-12-01

    Climate changes in the arid Southwest are expected to further stress critical water sources, such as springs, in the near future. Springs are abundant features in the Southwest, providing habitat for listed species and water for wildlife, agricultural, cities, recreation, and the base flow for many rivers. But springs occupy a small fraction of the land area and, as a result, they have not been significantly studied or mapped. Managers recognize that effective stewardship of these critical resources requires a landscape-scale understanding of distribution, ecological integrity, and risks; access to comprehensive inventory, assessment and restoration protocols; and local implementation. They need easy access to information at varying scales to respond to stressors like climate change. The Desert Landscape Conservation Cooperative, Sky Island Alliance, and Springs Stewardship Institute worked with scientists, resource managers, and conservationists to develop and increase access to data by involving them in the entire research process through field surveys, workshops, trainings, and development of products needed to solve critical management challenges. We built on and connected existing efforts underway in the Southwest, including developing: 1) Springs Inventory Protocol, 2) an online geospatial database, 3) methodologies for climate-savvy monitoring and 4) a springs restoration handbook. We also worked with partners to evaluate the condition and risk of springs' resources at the local scale to create products used in site-specific management planning. Our results indicate that coproduction resulted in more understanding of common issues, more focus on solving management challenges, and increased use of the science and protocols produced. Information developed through this project assists managers in understanding how their springs contribute at local and landscape scales. New information developed through this project is being used in support of planning and

  5. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    PubMed

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  6. What Type of Faculty and Training Are Required for a Successful Basic Sciences Program?

    ERIC Educational Resources Information Center

    Adams, Anthony

    1992-01-01

    Science education for optometry must go beyond therapeutic patient management to more preparation for biologically based care. Optometry faculty should be involved in research driven by specific patient problems and should prepare professionals to address patient quality-of-life and daily living needs. Interdisciplinary collaboration is needed.…

  7. Nature of Science or Nature of the Sciences?

    ERIC Educational Resources Information Center

    Schizas, Dimitrios; Psillos, Dimitris; Stamou, George

    2016-01-01

    The present essay examines the emerging issue of domain-general versus domain-specific nature of science (NOS) understandings from a perspective that illuminates the value of domain-specific philosophies of science for the growth and development of the NOS educational field. Under the assumption that individual sciences do have their own…

  8. Keynote address second sudden oak death science symposium Monterey California, January 19, 2005

    Treesearch

    Lynn Woolsey

    2006-01-01

    It is my great pleasure to be with you today at this impressive gathering of women and men of science. As a member of the House Science Committee, I am privileged to regularly hear from people from many disciplines in the scientific community. I so enjoy those hearings with not only brilliant, rigorous thinkers, but also people with a passion for the truth and...

  9. Brookhaven Women in Science Lecture

    ScienceCinema

    Johanna Levelt Sengers

    2017-12-09

    Sponsored by Brookhaven Women in Science (BWIS), Johanna Levelt Sengers, Scientist Emeritus at the National Institute of Standards & Technology (NIST), presents a talk titled "The World's Science Academies Address the Under-Representation of Women in Science and Technology."

  10. Dimensions of science capital: exploring its potential for understanding students' science participation

    NASA Astrophysics Data System (ADS)

    DeWitt, Jennifer; Archer, Louise; Mau, Ada

    2016-11-01

    As concerns about participation rates in post-compulsory science continue unabated, considerable research efforts have been focused on understanding and addressing the issue, bringing various theoretical lenses to bear on the problem. One such conceptual lens is that of 'science capital' (science-related forms of social and cultural capital), which has begun to be explored as a tool for examining differential patterns of aspiration and participation in science. This paper continues this line of work, attempting to further refine our conceptualisation of science capital and to consider potential insights it might offer beyond existing, related constructs. We utilise data from two surveys conducted in England as part of the wider Enterprising Science project, a broader national survey and a more targeted survey, completed by students from schools generally serving more disadvantaged populations. Logistic regression analyses indicated that science capital was more closely related than cultural capital to science aspirations-related outcome variables. In addition, further analyses reflected that particular dimensions of science capital (science literacy, perceived transferability and utility of science, family influences) seem to be more closely related to anticipated future participation and identity in science than others. These patterns held for both data sets. While these findings are generally in alignment with previous research, we suggest that they highlight the potential value of science capital as a distinct conceptual lens, which also carries particular implications for the types of interventions that may prove valuable in considering ways to address disparities in science engagement and participation.

  11. Fort Collins Science Center: Policy Analysis and Science Assistance

    USGS Publications Warehouse

    Lamb, Berton L.

    2004-01-01

    PASA's mission is to integrate biological, social, and economic research so that resource managers can use the resulting information to make informed decisions and resolve resource management conflicts. PASA scientists pursue and conduct scientific analyses that help agencies and Native American tribes to (1) identify impending policy controversies and areas where social and natural science research is needed to address future policy questions; (2) develop methods and approaches to assist researchers in preparing scientific evidence; (3) assess habitat alteration in a manner consistent with policy needs; and (4) evaluate policy options. Branch scientists also evaluate policy options (e.g., effects of different land treatments, fish and wildlife management practices, or visitor/recreation management practices) in response to specific questions faced by policymakers and managers.

  12. Hydrocomplexity: Addressing water security and emergent environmental risks

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen

    2015-07-01

    Water security and emergent environmental risks are among the most significant societal concerns. They are highly interlinked to other global risks such as those related to climate, human health, food, human migration, biodiversity loss, urban sustainability, etc. Emergent risks result from the confluence of unanticipated interactions from evolving interdependencies between complex systems, such as those embedded in the water cycle. They are associated with the novelty of dynamical possibilities that have significant potential consequences to human and ecological systems, and not with probabilities based on historical precedence. To ensure water security we need to be able to anticipate the likelihood of risk possibilities as they present the prospect of the most impact through cascade of vulnerabilities. They arise due to a confluence of nonstationary drivers that include growing population, climate change, demographic shifts, urban growth, and economic expansion, among others, which create novel interdependencies leading to a potential of cascading network effects. Hydrocomplexity aims to address water security and emergent risks through the development of science, methods, and practices with the potential to foster a "Blue Revolution" akin to the Green revolution for food security. It blends both hard infrastructure based solution with soft knowledge driven solutions to increase the range of planning and design, management, mitigation and adaptation strategies. It provides a conceptual and synthetic framework to enable us to integrate discovery science and engineering, observational and information science, computational and communication systems, and social and institutional approaches to address consequential water and environmental challenges.

  13. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    NASA Astronaut Joe Acaba, center, moderates a panel discussion with NASA's 2013 astronaut candidates, from left, Christina M. Hammock, Andrew R. Morgan, Victor J. Glover, Jessica U. Meir, Tyler N. "Nick" Hague, Josh A. Cassada, Anne C. McClain, and, Nicole Aunapu Mann, at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. State of STEM (SoSTEM) Address

    NASA Image and Video Library

    2014-01-29

    A student ask a question to NASA Astronaut Joe Acaba, center, and NASA's 2013 astronaut candidates, from left, Christina M. Hammock, Andrew R. Morgan, Victor J. Glover, Jessica U. Meir, Tyler N. "Nick" Hague, Josh A. Cassada, Anne C. McClain, and, Nicole Aunapu Mann, at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. The integrated rangeland fire management strategy actionable science plan

    USGS Publications Warehouse

    Aldridge, Cameron L.; Berg, Ken; Boyd, Chad S.; Boyte, Stephen P.; Bradford, John B.; Brunson, Ed; Cissel, John H.; Conway, Courtney J.; Chalfoun, Anna D.; Chambers, Jeanne C.; Clark, Patrick; Coates, Peter S.; Crist, Michele R.; Davis, Dawn M.; DeCrappeo, Nicole; Deibert, Patricia A.; Doherty, Kevin E.; Evers, Louisa B.; Finch, Deborah M.; Finn, Sean P.; Germino, Matthew J.; Glenn, Nancy F.; Gucker, Corey; Hall, John A.; Hanser, Steven E.; Havlina, Douglas W.; Heinrichs, Julie; Heller, Matt; Homer, Collin G.; Hunter, Molly E.; Jacobs, Ruth W.; Karl, Jason W.; Kearney, Richard; Kemp, Susan K; Kilkenny, Francis F.; Knick, Steven T.; Launchbaugh, Karen; Manier, Daniel J.; Mayer, Kenneth E.; Meyer, Susan E.; Monroe, Adrian; MontBlanc, Eugénie; Newingham, Beth A.; Pellant, Michael L.; Phillips, Susan L.; Pilliod, David S.; Ricca, Mark A.; Richardson, Bryce A.; Rose, Jeffrey A.; Shaw, Nancy; Sheley, Roger L.; Shinneman, Douglas J.; Wiechman , Lief A.; Wylie, Bruce K.

    2016-01-01

    The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration, sagebrush and greater sage-grouse (Centrocercus urophasianus), and climate and weather.

  16. To What Extent Is Criminal Justice Content Specifically Addressed in MSW Programs?

    ERIC Educational Resources Information Center

    Epperson, Matthew W.; Roberts, Leslie E.; Ivanoff, Andre; Tripodi, Stephen J.; Gilmer, Christy N.

    2013-01-01

    This study examined the extent to which criminal justice content is addressed in all CSWE-accredited MSW programs in the United States ("N"?=?192). Criminal justice content was measured in three areas: (1) dual or joint degree programs, (2) concentrations or specializations, and (3) coursework. Excluding social work and law classes, 22%…

  17. From Science To Design: Systems Engineering For The Lsst

    NASA Astrophysics Data System (ADS)

    Claver, Chuck F.; Axelrod, T.; Fouts, K.; Kantor, J.; Nordby, M.; Sebag, J.; LSST Collaboration

    2009-01-01

    The LSST is a universal-purpose survey telescope that will address scores of scientific missions. To assist the technical teams to convergence to a specific engineering design, the LSST Science Requirements Document (SRD) selects four stressing principle scientific missions: 1) Constraining Dark Matter and Dark Energy; 2) taking an Inventory of the Solar System; 3) Exploring the Transient Optical Sky; and 4) mapping the Milky Way. From these 4 missions the SRD specifies the needed requirements for single images and the full 10 year survey that enables a wide range of science beyond the 4 principle missions. Through optical design and analysis, operations simulation, and throughput modeling the systems engineering effort in the LSST has largely focused on taking the SRD specifications and deriving system functional requirements that define the system design. A Model Based Systems Engineering approach with SysML is used to manage the flow down of requirements from science to system function to sub-system. The rigor of requirements flow and management assists the LSST in keeping the overall scope, hence budget and schedule, under control.

  18. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  19. Life sciences payload definition and integration study, task C and D. Volume 4: Preliminary equipment item specification catalog

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A specification catalog to define the equipment to be used for conducting life sciences experiments in a space laboratory is presented. The specification sheets list the purpose of the equipment item, and any specific technical requirements which can be identified. The status of similar hardware for ground use is stated with comments regarding modifications required to achieve spaceflight qualified hardware. Pertinent sketches, commercial catalog sheets, or drawings of the applicable equipment are included.

  20. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  1. Incorporating History into the Science Classroom

    ERIC Educational Resources Information Center

    Rudge, David W.; Howe, Eric M.

    2004-01-01

    Many science teachers recognize that teaching aspects of the history of science helps students learn science content and the nature of science (NOS). The use of history can potentially humanize science, help students refine their critical thinking skills, promote a deeper understanding of scientific concepts, and address common student…

  2. The (Im)possibility of the Project: Radford Address

    ERIC Educational Resources Information Center

    Green, Bill

    2010-01-01

    In this address, the author engages both with the possibility "and" the impossibility of the educational project--and suggests something of what it means to say this. His presentation is specifically addressed to the theme of the (im)possibility of the educational project. He draws from philosophy, literature, psychoanalysis and history,…

  3. U.S. Geological Survey climate and land use change science strategy: a framework for understanding and responding to global change

    USGS Publications Warehouse

    Burkett, Virginia R.; Kirtland, David A.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Loveland, Thomas R.; Milly, Paul C.D.; ,; ,; ,; Robert, S.; Maule, Alec G.; McMahon, Gerard; Striegl, Robert G.

    2013-01-01

    In addition to the seven thematic goals, we address the central role of monitoring in accordance with the USGS Science Strategy recommendation that global change research should rely on existing “…decades of observational data and long-term records to interpret consequences of climate variability and change to the Nation’s biological populations, ecosystems, and land and water resources” (U.S. Geological Survey, 2007, p. 19). We also briefly describe specific needs and opportunities for coordinating USGS global change science among USGS Mission Areas and address the need for a comprehensive and sustained communications strategy.

  4. Addressing tomorrow's DMO technical challenges today

    NASA Astrophysics Data System (ADS)

    Milligan, James R.

    2009-05-01

    Distributed Mission Operations (DMO) is essentially a type of networked training that pulls in participants from all the armed services and, increasingly, allies to permit them to "game" and rehearse highly complex campaigns, using a mix of local, distant, and virtual players. The United States Air Force Research Laboratory (AFRL) is pursuing Science and Technology (S&T) solutions to address technical challenges associated with distributed communications and information management as DMO continues to progressively scale up the number, diversity, and geographic dispersal of participants in training and rehearsal exercises.

  5. Secondary Data Analysis: An Important Tool for Addressing Developmental Questions

    ERIC Educational Resources Information Center

    Greenhoot, Andrea Follmer; Dowsett, Chantelle J.

    2012-01-01

    Existing data sets can be an efficient, powerful, and readily available resource for addressing questions about developmental science. Many of the available databases contain hundreds of variables of interest to developmental psychologists, track participants longitudinally, and have representative samples. In this article, the authors discuss the…

  6. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  7. Bioinformatic training needs at a health sciences campus.

    PubMed

    Oliver, Jeffrey C

    2017-01-01

    Health sciences research is increasingly focusing on big data applications, such as genomic technologies and precision medicine, to address key issues in human health. These approaches rely on biological data repositories and bioinformatic analyses, both of which are growing rapidly in size and scope. Libraries play a key role in supporting researchers in navigating these and other information resources. With the goal of supporting bioinformatics research in the health sciences, the University of Arizona Health Sciences Library established a Bioinformation program. To shape the support provided by the library, I developed and administered a needs assessment survey to the University of Arizona Health Sciences campus in Tucson, Arizona. The survey was designed to identify the training topics of interest to health sciences researchers and the preferred modes of training. Survey respondents expressed an interest in a broad array of potential training topics, including "traditional" information seeking as well as interest in analytical training. Of particular interest were training in transcriptomic tools and the use of databases linking genotypes and phenotypes. Staff were most interested in bioinformatics training topics, while faculty were the least interested. Hands-on workshops were significantly preferred over any other mode of training. The University of Arizona Health Sciences Library is meeting those needs through internal programming and external partnerships. The results of the survey demonstrate a keen interest in a variety of bioinformatic resources; the challenge to the library is how to address those training needs. The mode of support depends largely on library staff expertise in the numerous subject-specific databases and tools. Librarian-led bioinformatic training sessions provide opportunities for engagement with researchers at multiple points of the research life cycle. When training needs exceed library capacity, partnering with intramural and

  8. An implementation science perspective on psychological science and cancer: what is known and opportunities for research, policy, and practice.

    PubMed

    Rabin, Borsika; Glasgow, Russell E

    2015-01-01

    We discuss the role of implementation science in cancer and summarize the need for this perspective. Following a summary of key implementation science principles and lessons learned, we review the literature on implementation of cancer prevention and control activities across the continuum from prevention to palliative care. We identified 10 unique relevant reviews, four of which were specific to cancer. Multicomponent implementation strategies were found to be superior to single-component interventions, but it was not possible to draw conclusions about specific strategies or the range of conditions across which strategies were effective. Particular gaps identified include the need for more studies of health policies and reports of cost, cost-effectiveness, and resources required. Following this review, we summarize the types of evidence needed to make research findings more actionable and discuss emerging implementation science opportunities for psychological research on cancer prevention and control. These include innovative study designs (i.e., rapid learning designs, simulation modeling, comparative effectiveness, pragmatic studies, mixed-methods research) and measurement science (i.e., development of context-relevant measures; practical, longitudinal measures to gauge improvement; cost-effectiveness data; and harmonized patient report data). We conclude by identifying a few grand challenges for psychologists that if successfully addressed would accelerate integration of evidence into cancer practice and policy more consistently and rapidly. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  9. Women in Computer Sciences.

    ERIC Educational Resources Information Center

    Rose, Clare; Menninger, Sally Ann

    The keynote address of a conference that focused on the future of women in science and engineering fields and the opportunities available to them in the computer sciences is presented. Women's education in the sciences and education and entry into the job market in these fields has steadily been increasing. Excellent employment opportunities are…

  10. Cognitive and Neural Sciences Division 1991 Programs

    DTIC Science & Technology

    1991-08-01

    FUNDING NUMBERS Cognitive and Neural Sciences Division 1991 Programs PE 61153N 6. AUTHOR(S) Edited by Willard S. Vaughan 7. PERFORMING ORGANIZATION...NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Office of Naval Research 0CNR !1491-19 Cognitive and Neural Sciences Division Code 1142...NOTES iN This is a compilation of abstracts representing R&D sponsored by the ONR Cognitive and Neural Sciences Division. 12a. DISTRIBUTION

  11. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    NASA Astrophysics Data System (ADS)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  12. Tracing "Ethical Subjectivities" in Science Education: How Biology Textbooks Can Frame Ethico-Political Choices for Students

    NASA Astrophysics Data System (ADS)

    Bazzul, Jesse

    2015-02-01

    This article describes how biology textbooks can work to discursively constitute a particular kind of "ethical subjectivity." Not only do textbooks constrain the possibilities for thought and action regarding ethical issues, they also require a certain kind of "subject" to partake in ethical exercises and questions. This study looks at how ethical questions/exercises found in four Ontario textbooks require students and teachers to think and act along specific lines. These include making ethical decisions within a legal-juridical frame; deciding what kinds of research should be publically funded; optimizing personal and population health; and regulation through policy and legislation. While engaging ethical issues in these ways is useful, educators should also question the kinds of (ethical) subjectivities that are partially constituted by discourses of science education. If science education is going to address twenty-first century problems such as climate change and social inequality, educators need to address how the possibilities for ethical engagement afforded to students work to constitute specific kinds of "ethical actors."

  13. The randomised controlled trial design: unrecognized opportunities for health sciences librarianship.

    PubMed

    Eldredge, Jonathan D

    2003-06-01

    to describe the essential components of the Randomised Controlled Trial (RCT) and its major variations; to describe less conventional applications of the RCT design found in the health sciences literature with potential relevance to health sciences librarianship; to discuss the limited number of RCTs within health sciences librarianship. narrative review supported to a limited extent with PubMed and Library Literature database searches consistent with specific search parameters. In addition, more systematic methods, including handsearching of specific journals, to identify health sciences librarianship RCTs. While many RCTs within the health sciences follow more conventional patterns, some RCTs assume certain unique features. Selected examples illustrate the adaptations of this experimental design to answering questions of possible relevance to health sciences librarians. The author offers several strategies for controlling bias in library and informatics applications of the RCT and acknowledges the potential of the electronic era in providing many opportunities to utilize the blinding aspects of RCTs. RCTs within health sciences librarianship inhabit a limited number of subject domains such as education. This limited scope offers both advantages and disadvantages for making Evidence-Based Librarianship (EBL) a reality. The RCT design offers the potential to answer far more EBL questions than have been addressed by the design to date. Librarians need only extend their horizons through use of the versatile RCT design into new subject domains to facilitate making EBL a reality.

  14. Results from the Science Instrument Definition Team for the Gondola for High Altitude Planetary Science Project

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.

    2016-10-01

    The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.

  15. Should Science Teaching Involve the History of Science? An Assessment of Kuhn's View

    ERIC Educational Resources Information Center

    Kindi, Vasso

    2005-01-01

    Thomas Kuhn draws the distinction between textbook history of science and history of science proper. The question addressed in the paper is whether Kuhn recommends the inclusion of distortive textbook history in science education. It is argued, pace Fuller, that Kuhn does not make normative suggestions. He does not urge the teaching of bad history…

  16. Engaging Women in Computer Science and Engineering: Promising Practices for Promoting Gender Equity in Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Kim, Karen A.; Fann, Amy J.; Misa-Escalante, Kimberly O.

    2011-01-01

    Building on research that identifies and addresses issues of women's underrepresentation in computing, this article describes promising practices in undergraduate research experiences that promote women's long-term interest in computer science and engineering. Specifically, this article explores whether and how REU programs include programmatic…

  17. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa.

    PubMed

    Hiatt, Robert A; Engmann, Natalie J; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M; Macfarlane, Sarah B; Ngugi, Anthony K; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W

    2017-04-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches.A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education.Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa.

  18. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa

    PubMed Central

    Engmann, Natalie J.; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M.; Macfarlane, Sarah B.; Ngugi, Anthony K.; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W.

    2017-01-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches. A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education. Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa. PMID:27508343

  19. Mathematical Modeling in Science: Using Spreadsheets to Create Mathematical Models and Address Scientific Inquiry

    ERIC Educational Resources Information Center

    Horton, Robert M.; Leonard, William H.

    2005-01-01

    In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…

  20. A multi-level systems perspective for the science of team science.

    PubMed

    Börner, Katy; Contractor, Noshir; Falk-Krzesinski, Holly J; Fiore, Stephen M; Hall, Kara L; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2010-09-15

    This Commentary describes recent research progress and professional developments in the study of scientific teamwork, an area of inquiry termed the "science of team science" (SciTS, pronounced "sahyts"). It proposes a systems perspective that incorporates a mixed-methods approach to SciTS that is commensurate with the conceptual, methodological, and translational complexities addressed within the SciTS field. The theoretically grounded and practically useful framework is intended to integrate existing and future lines of SciTS research to facilitate the field's evolution as it addresses key challenges spanning macro, meso, and micro levels of analysis.

  1. Statistics on Science and Technology in Latin America, Experience with UNESCO Pilot Projects, 1972-1974.

    ERIC Educational Resources Information Center

    Thebaud, Schiller

    This report examines four UNESCO pilot projects undertaken in 1972 in Brazil, Colombia, Peru, and Uruguay to study the methods used for national statistical surveys of science and technology. The projects specifically addressed the problems of comparing statistics gathered by different methods in different countries. Surveys carried out in Latin…

  2. Science News of the Year.

    ERIC Educational Resources Information Center

    Science News, 1987

    1987-01-01

    Provides a review of science news stories reported in "Science News" during 1987. References each item to the volume and page number in which the subject was addressed. Contains references on astronomy, behavior, biology, biomedicine, chemistry, earth sciences, environment, mathematics and computers, paleontology and anthropology, physics, science…

  3. Science Literacy for All Students.

    ERIC Educational Resources Information Center

    Brown, Peggy, Ed.

    1982-01-01

    Selected college programs designed to increase students' science literacy are described, and perspectives on science education are addressed in an article by E. James Rutherford, "Sputnik, Halley's Comet, and Science Education." The article suggests that leadership and consensus are needed at the national level to improve science…

  4. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1987

    1987-01-01

    Contains 31 activities and experiments from the biological and physical sciences. Addresses such areas as reproduction, biotechnology, ecology, proteins, nitrates, aerosols, metal crystallinity, circuit boards, and photoswitching. (ML)

  5. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  6. Graphing Calculators, the CBL2[TM] and TI-Interactive[TM] in High School Science.

    ERIC Educational Resources Information Center

    Molnar, Bill

    This collection of activities is designed to show how TI-Interactive[TM] and Calculator-based Laboratories (CBL) can be used to explore topics in high school science. The activities address such topics as specific heat, Boyle's Law, Newton's Law of Cooling, and Antarctic Ozone Levels. Teaching notes and calculator instructions are included as are…

  7. Preservice Elementary Teachers' Beliefs about Nature of Science and Constructivist Teaching in the Content-Specific Context

    ERIC Educational Resources Information Center

    Yoon, Hye-Gyoung; Kim, Byoung Sug

    2016-01-01

    The purpose of this study was to explore how Korean preservice elementary teachers' beliefs about nature of science (NOS) and their beliefs about constructivist teaching were structured and related and if any relation was prevalent in the content-specific contexts. As the same format, three versions of questionnaires were developed in three…

  8. Ronald Reagan's "Star Wars" Address: Mythic Containment of Technical Reasoning.

    ERIC Educational Resources Information Center

    Rushing, Janice Hocker

    1986-01-01

    Views Reagan's "Star Wars" address as part of the culturally evolving myth of the New Frontier. Discusses how the speech creates the illusion of both preserving and transcending science by (1) subordinating technical reasoning to prevent nuclear holocaust and (2) using technoscience to rescript history and remove temporal and spacial…

  9. Science access, career choices, achievement, and motivation: Perceptions of female science olympians

    NASA Astrophysics Data System (ADS)

    Price, Kelly Rae

    Women remain under-represented in science career fields and this is especially evident in the physical sciences. Female students maintain equal science interest and achievement to male students in elementary school but by middle and high school they fall behind their male peers. Reasons cited for girls' declining interest in science include battling traditional gender stereotypes, lack of encouragement, and lack of female role models. Four main science concerns related to girls/women as indicated by research literature were science access, career choices, achievement, and motivation. In Georgia, some girls have made a break from the research trends by demonstrating their fervor for science through participation in the academic activity, Science Olympiad. The purpose of this study was to examine the science perceptions of girls who demonstrated science success by their participation in Science Olympiad. Utilizing phenomenological and feminist perspectives, the qualitative research method of focus group interviewing was used to address the research questions comprising the four science concerns of female science access, career choices, achievement, and motivation. The study participants were all girls/women who participated in Science Olympiad. A total of five focus groups were studied. One of the focus groups had current college undergraduates, former Science Olympians, in it while the others were composed of high school girls. Through the description of their science experiences, the participants shared their perceptions of the four science concerns. When addressing these science concerns, the participants revealed four factors that had most affected their science perceptions: the importance of support, science needs Serious Fun, teachers matter, and the bonuses of extracurricular involvement. In their experiences, the participants found success in science because they had teachers, parents, and peers who supported their academic interests, including science, and

  10. Short-Form Science

    ERIC Educational Resources Information Center

    Murphy, Beth; Hedwall, Melissa; Dirks, Andrew; Stretch, Elizabeth

    2017-01-01

    Reading provides a unique window into the history and nature of science and the norms of scientific communication and supports students in developing critical-reading skills in engaging ways. Effective use of reading promotes a spirit of inquiry and an understanding of science concepts while also addressing expectations of the Common Core State…

  11. Cooperative Project To Develop a Database of Discipline-Specific Workbook Exercises for Agricultural and Biological Engineering, Entomology, and Biological Sciences Courses.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…

  12. Science Teacher Education Partnerships with Schools (STEPS): Partnerships in Science Teacher Education

    ERIC Educational Resources Information Center

    Kenny, John Daniel; Hobbs, Linda; Herbert, Sandra; Chittleborough, Gail; Campbell, Coral; Jones, Mellita; Gilbert, Andrew; Redman, Christine

    2014-01-01

    This paper reports on the STEPS project which addressed international concerns about primary teachers' lack of confidence to teach science, and on-going questions about the effectiveness of teacher education. The five universities involved had each independently established a science education program incorporating school-based partnerships…

  13. Science of science.

    PubMed

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Practical guidelines addressing ethical issues pertaining to the curation of human locus-specific variation databases (LSDBs)

    PubMed Central

    Povey, Sue; Al Aqeel, Aida I; Cambon-Thomsen, Anne; Dalgleish, Raymond; den Dunnen, Johan T; Firth, Helen V; Greenblatt, Marc S; Barash, Carol Isaacson; Parker, Michael; Patrinos, George P; Savige, Judith; Sobrido, Maria-Jesus; Winship, Ingrid; Cotton, Richard GH

    2010-01-01

    More than 1,000 Web-based locus-specific variation databases (LSDBs) are listed on the Website of the Human Genetic Variation Society (HGVS). These individual efforts, which often relate phenotype to genotype, are a valuable source of information for clinicians, patients, and their families, as well as for basic research. The initiators of the Human Variome Project recently recognized that having access to some of the immense resources of unpublished information already present in diagnostic laboratories would provide critical data to help manage genetic disorders. However, there are significant ethical issues involved in sharing these data worldwide. An international working group presents second-generation guidelines addressing ethical issues relating to the curation of human LSDBs that provide information via a Web-based interface. It is intended that these should help current and future curators and may also inform the future decisions of ethics committees and legislators. These guidelines have been reviewed by the Ethics Committee of the Human Genome Organization (HUGO). Hum Mutat 31:–6, 2010. © 2010 Wiley-Liss, Inc. PMID:20683926

  15. Polysemy in the Domain-Specific Pedagogical Use of Graphs in Science Textbooks: The Case of an Electrocardiogram

    NASA Astrophysics Data System (ADS)

    van Eijck, Michiel; Goedhart, Martin J.; Ellermeijer, Ton

    2011-01-01

    Polysemy in graph-related practices is the phenomenon that a single graph can sustain different meanings assigned to it. Considerable research has been done on polysemy in graph-related practices in school science in which graphs are rather used as scientific tools. However, graphs in science textbooks are also used rather pedagogically to illustrate domain-specific textbook content and less empirical work has been done in this respect. The aim of this study is therefore to better understand polysemy in the domain-specific pedagogical use of graphs in science textbooks. From socio-cultural and cultural-historical perspectives, we perceive polysemy as irreducible to either the meaning-making (semiotic) resources provided by the graph or its readers who assign meaning to it. Departing from this framework, we simultaneously investigated: (a) the meanings 44 pre-university biology students assigned to the Cartesian plane of a graph that is commonly used as a pedagogical tool in Dutch high school biology textbooks (an electrocardiogram); (b) the semiotic resources provided by this graph; and (c) the educational practices of which it is supposedly a part according to the actions constituted by the textbooks that were to be conducted by students. Drawing on this case, we show polysemy in the pedagogical use of graphs in science textbooks. In turn, we show how this polysemy can be explained dialectically as the result of both the meaning-making resources provided by the textbooks and the graph-related practices in which students supposedly engaged by using their textbooks. The educational implications of these findings are discussed.

  16. 75 FR 33616 - Science Advisory Board Staff Office; Notification of Closed Meetings of the Science Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Closed Meetings of the Science Advisory Board's Scientific and Technological Achievement Awards Committee... Agency's (EPA), Science Advisory Board (SAB) Staff Office announces a meeting and teleconference of the....gov . The SAB Mailing address is: U.S. EPA Science Advisory Board (1400F), U.S. Environmental...

  17. Can You Read Me Now? Disciplinary Literacy Reading Strategies in the 7th Grade Science Classroom

    ERIC Educational Resources Information Center

    McQuaid, Kelly Kathleen

    2017-01-01

    Adolescent readers require a broad range of reading skills to deal with the challenges of reading complex text. Some researchers argue for a discipline-specific focus to address the low reading proficiency rates among secondary students. Disciplinary literacy attends to the different ways disciplines, such as science, generate and communicate…

  18. Defending Science Denial in Cyberspace

    NASA Astrophysics Data System (ADS)

    Rosenau, J.

    2013-12-01

    Blogs, Facebook, Twitter, and other social media have proven themselves powerful vectors for science denial. Left unchecked, these attacks on foundational sciences like evolution and climate change undermine public confidence in science and spawn attacks on science-based policy and science education. Scientists can blunt such attacks by being vigorous advocates for their own research and their discipline's core findings, by seeking wide and unexpected audiences for discussions of their science, and by understanding and addressing the social, political, and cultural roots of science denial.

  19. The Future of Pharmaceutical Manufacturing Sciences.

    PubMed

    Rantanen, Jukka; Khinast, Johannes

    2015-11-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Energy balance at a crossroads: translating the science into action.

    PubMed

    Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie

    2014-07-01

    One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.

  1. 78 FR 17234 - Advisory Committee for Mathematical Sciences and Physical Sciences #66; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Officer at the above address or the Web site at http://www.nsf.gov/mps/advisory.jsp . Purpose of Meeting... Opportunities in Science and Engineering, and the Advisory Committee for International Science and Engineering...

  2. E-Learning and Virtual Science Centers

    ERIC Educational Resources Information Center

    Hin, Leo Tan Wee, Ed.; Subramaniam, R., Ed.

    2005-01-01

    "E-Learning and Virtual Science Centers" addresses an aspect of Web-based education that has not attracted sufficient attention in the international research literature--that of virtual science centers, the cyberspace annex of traditional science centers. It is the first book to be published on the rapidly advancing field of science education.…

  3. Feasibility Study: Library Instruction in Specific Science Disciplines Using the Self-Paced Workbook Adapted to Departmental Needs, Mitchell Memorial Library, Fall 1981.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    Student library assistants and undergraduate and graduate students from agricultural and biological engineering, biological sciences, and entomology participated in a study to determine the effectiveness of instructional materials adapted to specific science disciplines for developing practical skills in the use of library resources. All students…

  4. Minds-on and Hands-on Activity: Improving Instruction in Science for All Students. Presidential Address, 1995.

    ERIC Educational Resources Information Center

    Andre, Thomas

    1997-01-01

    Reviews evidence on gender inequities in science education and gender differences in "ways of knowing" and argues that making science instruction more effective can promote greater equity. Describes a conceptual change approach to science instruction that explicitly activates students' preexisting conceptions and misconceptions and helps students…

  5. 76 FR 44912 - Science Advisory Board Staff Office; Notification of Closed Meetings of the Science Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Closed Meetings of the Science Advisory Board's Scientific and Technological Achievement Awards Committee... Agency's (EPA), Science Advisory Board (SAB) Staff Office announces a meeting and teleconference of the[email protected] . The SAB Mailing address is: U.S. EPA Science Advisory Board (1400R), U.S. Environmental...

  6. Quebec Science Education: Which Directions? Proceedings of a Symposium Sponsored by the Science Council of Canada and the Association des Professeurs de Sciences du Quebec (March 1982). P82/2.

    ERIC Educational Resources Information Center

    Souque, Jean-Pascal, Ed.; Dufour, Paul, Ed.

    Proceedings are presented of a symposium on science education in Quebec, which was sponsored by the Science Council of Canada and the Association des Professeurs de Sciences du Quebec. Papers and authors addressing the background and present state of Quebec science education are as follows: "Science Teaching at the Secondary Level: An…

  7. A Science Products Inventory for Citizen-Science Planning and Evaluation

    PubMed Central

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867254

  8. A Science Products Inventory for Citizen-Science Planning and Evaluation

    PubMed Central

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867253

  9. A science products inventory for citizen-science planning and evaluation

    USGS Publications Warehouse

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K.; Weltzin, Jake F.

    2018-01-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  10. A Science Products Inventory for Citizen-Science Planning and Evaluation.

    PubMed

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-06-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  11. Report of the Organic Contamination Science Steering Group

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Beaty, D. W.; Anderson, M. S.; Aveni, G.; Bada, J. L.; Clemett, S. J.; DesMaris, D. J.; Douglas, S.; Dworkin, J. P.; Kern, R. G.

    2004-01-01

    The exploration of the possible emergence and duration of life on Mars from landed platforms requires attention to the quality of measurements that address these objectives. In particular, the potential impact of terrestrial contamination on the measurement of reduced carbon with sensitive in situ instruments must be addressed in order to reach definitive conclusions regarding the source of organic molecules. Following the recommendation of the Mars Exploration Program Analysis Group (MEPAG) at its September 2003 meeting [MEPAG, 2003], the Mars Program Office at NASA Headquarters chartered the Organic Contamination Science Steering Group (OCSSG) to address this issue. The full report of the six week study of the OCSSG can be found on the MEPAG web site [1]. The study was intended to define the contamination problem and to begin to suggest solutions that could provide direction to the engineering teams that design and produce the Mars landed systems. Requirements set by the Planetary Protection Policy in effect for any specific mission do not directly address this question of the potential interference from terrestrial contaminants during in situ measurements.

  12. Safari Science: Assessing the reliability of citizen science data for wildlife surveys

    USGS Publications Warehouse

    Steger, Cara; Butt, Bilal; Hooten, Mevin B.

    2017-01-01

    Protected areas are the cornerstone of global conservation, yet financial support for basic monitoring infrastructure is lacking in 60% of them. Citizen science holds potential to address these shortcomings in wildlife monitoring, particularly for resource-limited conservation initiatives in developing countries – if we can account for the reliability of data produced by volunteer citizen scientists (VCS).This study tests the reliability of VCS data vs. data produced by trained ecologists, presenting a hierarchical framework for integrating diverse datasets to assess extra variability from VCS data.Our results show that while VCS data are likely to be overdispersed for our system, the overdispersion varies widely by species. We contend that citizen science methods, within the context of East African drylands, may be more appropriate for species with large body sizes, which are relatively rare, or those that form small herds. VCS perceptions of the charisma of a species may also influence their enthusiasm for recording it.Tailored programme design (such as incentives for VCS) may mitigate the biases in citizen science data and improve overall participation. However, the cost of designing and implementing high-quality citizen science programmes may be prohibitive for the small protected areas that would most benefit from these approaches.Synthesis and applications. As citizen science methods continue to gain momentum, it is critical that managers remain cautious in their implementation of these programmes while working to ensure methods match data purpose. Context-specific tests of citizen science data quality can improve programme implementation, and separate data models should be used when volunteer citizen scientists' variability differs from trained ecologists' data. Partnerships across protected areas and between protected areas and other conservation institutions could help to cover the costs of citizen science programme design and implementation.

  13. Sisters in Science: Using Sports as a Vehicle for Science Learning.

    ERIC Educational Resources Information Center

    Hammrich, Penny L.; Richardson, Greer M.; Green, Tina Sloan; Livingston, Beverly

    This paper describes a project for upper elementary and middle school minority girl students called the Sisters in Sport Science (SISS). The SISS program addresses the needs of urban girls in gaining access to equal education in science and mathematics by using athletics as a vehicle for learning. The program provides a non-competitive and…

  14. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    USGS Publications Warehouse

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  15. Cannabis regulatory science: risk-benefit considerations for mental disorders.

    PubMed

    Borodovsky, Jacob T; Budney, Alan J

    2018-05-29

    The evolving legal cannabis landscape in the US continues to present novel regulatory challenges that necessitate the development of a Cannabis Regulatory Science. Two specific issues of concern within Cannabis Regulatory Science are (1) the impact that cannabis use has on the incidence, prevalence, and severity of mental disorders, and (2) how cannabis laws and regulations modify this impact. This paper first provides several conceptual points that are useful for evaluating the relationship between cannabis use and mental disorders. Second, it selectively reviews and comments on data relevant to the relationship between cannabis use and depression, several forms of anxiety, post-traumatic stress disorder, schizophrenia, and bipolar disorder. Next, regulatory and public health parallels between the nascent cannabis industry and the pharmaceutical, tobacco, and alcohol industries are discussed. The focus is on specific types of industry practices that may harm those with or at risk for mental disorders. Recommendations are then offered for legal cannabis regulations that could mitigate this harm. Last, future research goals are discussed for building the field of Cannabis Regulatory Science and addressing the potential negative impact of cannabis on those with mental disorders.

  16. 21 CFR 20.119 - Lists of names and addresses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Lists of names and addresses. 20.119 Section 20.119 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC INFORMATION Availability of Specific Categories of Records § 20.119 Lists of names and addresses...

  17. Science in Sync: Integrating Science with Literacy Provides Rewarding Learning Opportunities in Both Subjects

    ERIC Educational Resources Information Center

    Wallace, Carolyn S.; Coffey, Debra

    2016-01-01

    The "Next Generation Science Standards'" ("NGSS") eight scientific and engineering practices invite teachers to develop key investigative skills while addressing important disciplinary science ideas (NGSS Lead States 2013). The "NGSS" can also provide direct links to "Common Core English Language Arts…

  18. The dawn of Structural One Health: a new science tracking disease emergence along circuits of capital.

    PubMed

    Wallace, Robert G; Bergmann, Luke; Kock, Richard; Gilbert, Marius; Hogerwerf, Lenny; Wallace, Rodrick; Holmberg, Mollie

    2015-03-01

    The One Health approach integrates health investigations across the tree of life, including, but not limited to, wildlife, livestock, crops, and humans. It redresses an epistemological alienation at the heart of much modern population health, which has long segregated studies by species. Up to this point, however, One Health research has also omitted addressing fundamental structural causes underlying collapsing health ecologies. In this critical review we unpack the relationship between One Health science and its political economy, particularly the conceptual and methodological trajectories by which it fails to incorporate social determinants of epizootic spillover. We also introduce a Structural One Health that addresses the research gap. The new science, open to incorporating developments across the social sciences, addresses foundational processes underlying multispecies health, including the place-specific deep-time histories, cultural infrastructure, and economic geographies driving disease emergence. We introduce an ongoing project on avian influenza to illustrate Structural One Health's scope and ambition. For the first time researchers are quantifying the relationships among transnational circuits of capital, associated shifts in agroecological landscapes, and the genetic evolution and spatial spread of a xenospecific pathogen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  20. Lessons Learned from Citizen Science in the Classroom. A Response to "The Future of Citizen Science."

    ERIC Educational Resources Information Center

    Gray, Steven A.; Nicosia, Kristina; Jordan, Rebecca C.

    2012-01-01

    Mueller, Tippins, and Bryan's contrast of the current limitations of science education with the potential virtues of citizen science provides an important theoretical perspective about the future of democratized science and K-12 education. However, the authors fail to adequately address the existing barriers and constraints to moving…

  1. Argumentation in elementary science education: addressing methodological issues and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Kaya, Ebru

    2017-11-01

    In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth's paper titled "Dialogical argumentation in elementary science classrooms", which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students' argumentation in school science, their paper makes a contribution to research on children's argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth's paper: (a) methodological issues including conducting a quantitative study on children's argumentation levels and focusing on children's written argumentation in addition to their dialogical argumentation, and (b) investigating children's conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children's argumentation through the Toulmin's Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children's argument levels because such research could potentially provide important findings on children's argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children's arguments, and finally articulating argumentation and conceptual understanding of children.

  2. eGY-Africa: addressing the digital divide for science in Africa

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Barton, Charles; Chukwuma, Victor; Cottrell, Les

    2010-05-01

    As the world of science becomes increasingly Internet-dependent, so the African scientists become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this digital divide by a campaign of advocacy for better institutional facilities. The present status of Internet services, problems, and plans are being mapped via a combination of a survey questionnaire-based survey and direct measurement of Internet performance (the PingER Project). Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide. eGY-Africa is establishing National groups of concerned scientists and engaging with those initiatives with related goals. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide - either as a direct policy objective, or indirectly as a means to an end, such as the development of capabilities in science and technology in Africa. The expectation is that informed opinion from the scientific community at the institutional, national, and international levels can be used to influence the decision makers and donors who are in a position to deliver better Internet capabilities.

  3. Citizen Science for public health.

    PubMed

    Den Broeder, Lea; Devilee, Jeroen; Van Oers, Hans; Schuit, A Jantine; Wagemakers, Annemarie

    2018-06-01

    Community engagement in public health policy is easier said than done. One reason is that public health policy is produced in a complex process resulting in policies that may appear not to link up to citizen perspectives. We therefore address the central question as to whether citizen engagement in knowledge production could enable inclusive health policy making. Building on non-health work fields, we describe different types of citizen engagement in scientific research, or 'Citizen Science'. We describe the challenges that Citizen Science poses for public health, and how these could be addressed. Despite these challenges, we expect that Citizen Science or similar approaches such as participatory action research and 'popular epidemiology' may yield better knowledge, empowered communities, and improved community health. We provide a draft framework to enable evaluation of Citizen Science in practice, consisting of a descriptive typology of different kinds of Citizen Science and a causal framework that shows how Citizen Science in public health might benefit both the knowledge produced as well as the 'Citizen Scientists' as active participants.

  4. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  5. Staging scientific controversies: a gallery test on science museums' interactivity.

    PubMed

    Yaneva, Albena; Rabesandratana, Tania Mara; Greiner, Birgit

    2009-01-01

    The "transfer" model in science communication has been addressed critically from different perspectives, while the advantages of the interactive model have been continuously praised. Yet, little is done to account for the specific role of the interactive model in communicating "unfinished science." The traditional interactive methods in museums are not sufficient to keep pace with rapid scientific developments. Interactive exchanges between laypeople and experts are thought mainly through the lens of a dialogue that is facilitated and framed by the traditional "conference room" architecture. Drawing on the results of a small-scale experiment in a gallery space, we argue for the need for a new "architecture of interaction" in museum settings based on art installation and simulation techniques, which will enhance the communication potentials of science museums and will provide conditions for a fruitful even-handed exchange of expert and lay knowledge.

  6. Implementation Science Supports Core Clinical Competencies: An Overview and Clinical Example.

    PubMed

    Kirchner, JoAnn E; Woodward, Eva N; Smith, Jeffrey L; Curran, Geoffrey M; Kilbourne, Amy M; Owen, Richard R; Bauer, Mark S

    2016-12-08

    Instead of asking clinicians to work faster or longer to improve quality of care, implementation science provides another option. Implementation science is an emerging interdisciplinary field dedicated to studying how evidence-based practice can be adopted into routine clinical care. This article summarizes principles and methods of implementation science, illustrates how they can be applied in a routine clinical setting, and highlights their importance to practicing clinicians as well as clinical trainees. A hypothetical clinical case scenario is presented that explains how implementation science improves clinical practice. The case scenario is also embedded within a real-world implementation study to improve metabolic monitoring for individuals prescribed antipsychotics. Context, recipient, and innovation (ie, the evidence-based practice) factors affected improvement of metabolic monitoring. To address these factors, an external facilitator and a local quality improvement team developed an implementation plan involving a multicomponent implementation strategy that included education, performance reports, and clinician follow-up. The clinic remained compliant with recommended metabolic monitoring at 1-year follow up. Implementation science improves clinical practice by addressing context, recipient, and innovation factors and uses this information to develop and utilize specific strategies that improve clinical practice. It also enriches clinical training, aligning with core competencies by the Accreditation Council for Graduate Medical Education and American Boards of Medical Specialties. By learning how to change clinical practice through implementation strategies, clinicians are more able to adapt in complex systems of practice. © Copyright 2016 Physicians Postgraduate Press, Inc.

  7. Science and Science Fiction

    ScienceCinema

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2017-12-09

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  8. Surviving the Implementation of a New Science Curriculum

    NASA Astrophysics Data System (ADS)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  9. Multimodal Representation Contributes to the Complex Development of Science Literacy in a College Biology Class

    ERIC Educational Resources Information Center

    Bennett, William Drew

    2011-01-01

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century…

  10. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    NASA Astrophysics Data System (ADS)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  11. Addressing Underrepresentation: Physics Teaching for All

    NASA Astrophysics Data System (ADS)

    Rifkin, Moses

    2016-02-01

    Every physics teacher wants to give his or her students the opportunity to learn physics well. Despite these intentions, certain groups of students—including women and underrepresented minorities (URMs)—are not taking and not remaining in physics. In many cases, these disturbing trends are more significant in physics than in any other science. This is a missed opportunity for our discipline because demographic diversity strengthens science. The question is what we can do about these trends in our classrooms, as very few physics teachers have been explicitly prepared to address them. In this article, I will share some steps that I've taken in my classroom that have moved my class in the right direction. In the words of Nobel Prize-winning physicist Carl Wieman and psychologists Lauren Aguilar and Gregory Walton: "By investing a small amount of class time in carefully designed and implemented interventions, physics teachers can promote greater success among students from diverse backgrounds. Ultimately, we hope such efforts will indeed improve the diversity and health of the physics profession."

  12. Dementia-specific training for nursing home staff : A systematic literature review.

    PubMed

    Riesch, Julia; Meyer, Lucy; Lehr, Bosco; Severin, Thomas

    2017-08-22

    For people with dementia high-quality care is vital, since at present dementia cannot be cured. In nursing homes this care is provided by the staff, who therefore require dementia-specific training enabling them to improve the quality of life for people with dementia. This article compares existing dementia-specific training for nursing home staff with recommendations, based on the current state of research, by the Alzheimer's Association and the National Institute for Health and Care Excellence, and discusses the outcome of this training. A systematic review of the literature was conducted to identify studies addressing dementia-specific training. The electronic databases Embase, Medline, Cochrane, CINAHL, PsychINFO, PSYNDEX, and ScienceDirect were searched. The training topics most commonly considered were person-centered care, communicating with people affected by dementia, and information about dementia. The roles of different social and healthcare professionals, palliative care of people with dementia, and understanding family dynamics are least featured in the training. There are training concepts which focus not only on the transfer of knowledge but also on practical exercises. In general, the recommended topics were addressed in dementia-specific training concepts, but there is potential for optimization. Further research is needed to identify success criteria in dementia-specific training and identify the successful combination of theoretical knowledge and practical exercise.

  13. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  14. Teachers and Students Investigating Plants in Space. A Teacher's Guide with Activities for Life Sciences. Grades 6-12.

    ERIC Educational Resources Information Center

    Williams, Paul H.

    The Collaborative Ukrainian Experiment (CUE) was a joint mission between the United States and the Ukraine (Russia) whose projects were designed to address specific questions about prior plant science microgravity experiments. The education project that grew out of this, Teachers and Students Investigating Plants in Space (TSIPS), involved…

  15. Complexity Science Framework for Big Data: Data-enabled Science

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.

    2016-07-01

    such new analytics can yield improved risk estimates. The challenges of scientific inference from complex and massive data are addressed by data-enabled science, also referred as the Fourth paradigm, after experiment, theory and simulation. An example of this approach is the modelling of dynamical and statistical features of natural systems, without assumptions of specific processes. An effective use of the techniques of complexity science to yield the inherent features of a system from extensive data from observations and large scale numerical simulations is evident in the case of Earth's magnetosphere. The multiscale nature of the magnetosphere makes the numerical simulations a challenge, requiring very large computing resources. The reconstruction of dynamics from observational data can however yield the inherent characteristics using typical desktop computers. Such studies for other systems are in progress. Data-enabled approach using the framework of complexity science provides new techniques for modelling and prediction using Big Data. The studies of Earth's magnetosphere, provide an example of the potential for a new approach to the development of quantitative analytic tools.

  16. eGY-Africa: Addressing the Digital Divide for Science in Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, C.E.; /Australian Natl. U., Canberra; Amory-Mazaudier, C.

    Adoption of information and communication technologies and access to the Internet is expanding in Africa, but because of the rapid growth elsewhere, a Digital Divide between Africa and the rest of the world exists, and the gap is growing. In many sub-Saharan African countries, education and research sector suffers some of the worst deficiencies in access to the Internet, despite progress in development of NRENs - National Research and Education (cyber) Networks. By contrast, it is widely acknowledged in policy statements from the African Union, the UN, and others that strength in this very sector provides the key to meetingmore » and sustaining Millennium Development Goals. Developed countries with effective cyber-capabilities proclaim the benefits to rich and poor alike arising from the Information Revolution. This is but a dream for many scientists in African institutions. As the world of science becomes increasingly Internet-dependent, so they become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this Digital Divide by a campaign of advocacy for better institutional facilities. Four approaches are being taken. The present status of Internet services, problems, and plans are being mapped via a combination of direct measurement of Internet performance (the PingER Project) and a questionnaire-based survey. Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide, which can be used for arguing the case for better Internet facilities. Groups of concerned scientists are being formed at the national, regional levels in Africa, building on existing networks as much as possible. Opinion in the international science community is being mobilized. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide - either as a direct

  17. eGY-Africa: Addressing the Digital Divide for Science in Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, C. E.

    Adoption of information and communication technologies and access to the Internet is expanding in Africa, but because of the rapid growth elsewhere, a Digital Divide between Africa and the rest of the world exists, and the gap is growing. In many sub-Saharan African countries, education and research sector suffer some of the worst deficiencies in access to the Internet, despite progress in development of NRENs National Research and Education (cyber) Networks. By contrast, it is widely acknowledged in policy statements from the African Union, the UN, and others that strength in this very sector provides the key to meeting andmore » sustaining Millennium Development Goals. Developed countries with effective cyber-capabilities proclaim the benefits to rich and poor alike arising from the Information Revolution. This is but a dream for many scientists in African institutions. As the world of science becomes increasingly Internet-dependent, so they become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this Digital Divide by a campaign of advocacy for better institutional facilities. Four approaches are being taken. The present status of Internet services, problems, and plans are being mapped via a combination of direct measurement of Internet performance (the PingER Project) and a questionnaire-based survey. Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide, which can be used for arguing the case for better Internet facilities. Groups of concerned scientists are being formed at the national, regional levels in Africa, building on existing networks as much as possible. Opinion in the international science community is being mobilized. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide either as a direct policy

  18. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  19. The Association between Science Summer Camps and Career Interest in Science and Engineering

    ERIC Educational Resources Information Center

    Kong, Xiaoqing; Dabney, Katherine P.; Tai, Robert H.

    2014-01-01

    This study addresses the association between middle-school students' reported participation in science summer programmes and their reported expectation of a career in science and engineering. Data were collected on 1,580 students from eight middle schools in five states, applying an accelerated longitudinal design. Two consecutive cohorts were…

  20. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  1. Dewey's "Science as Method" a Century Later: Reviving Science Education for Civic Ends

    ERIC Educational Resources Information Center

    Rudolph, John L.

    2014-01-01

    Over a hundred years ago, John Dewey delivered his now-well-known address "Science as Subject-Matter and as Method" to those assembled at the Boston meeting of the American Association for the Advancement of Science in which he lamented the nearly exclusive focus on content knowledge in early-20th-century school science classrooms. This…

  2. Using sunshine for elementary space science education: A model for IHY scientist teacher partnerships

    NASA Astrophysics Data System (ADS)

    Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.

    2008-12-01

    An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.

  3. Elementary student teachers' science content representations

    NASA Astrophysics Data System (ADS)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  4. Mrs. Chandrasekhar addresses the media in TRW Media Hospitality Tent

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mrs. Lalitha Chandrasekhar (right), wife of the late Indian- American Nobel Laureate Subrahmanyan Chandrasekhar, addresses the media and other invited guests in the TRW Media Hospitality Tent at the NASA Press Site at KSC as Dr. Alan Bunner, Science Program Director, Structure and Evolution of the Universe, Office of Space Science, NASA Headquarters, Washington, D.C., looks on. The name 'Chandra,' a shortened version of her husband's name which he preferred among friends and colleagues, was chosen in a contest to rename the Advanced X-ray Astrophysics Facility. 'Chandra' also means 'Moon' or 'luminous' in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93.

  5. Addressing the Misuse Potential of Life Science Research-Perspectives From a Bottom-Up Initiative in Switzerland.

    PubMed

    Oeschger, Franziska M; Jenal, Ursula

    2018-01-01

    Codes of conduct have received wide attention as a bottom-up approach to foster responsibility for dual use aspects of life science research within the scientific community. In Switzerland, a series of discussion sessions led by the Swiss Academy of Sciences with over 40 representatives of most Swiss academic life science research institutions has revealed that while a formal code of conduct was considered too restrictive, a bottom-up approach toward awareness raising and education and demonstrating scientists' responsibility toward society was highly welcomed. Consequently, an informational brochure on "Misuse potential and biosecurity in life sciences research" was developed to provide material for further discussions and education.

  6. Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums

    ERIC Educational Resources Information Center

    Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris

    2014-01-01

    Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…

  7. Addressing uncertainty in vulnerability assessments [Chapter 5

    Treesearch

    Linda Joyce; Molly Cross; Evan Girvatz

    2011-01-01

    This chapter addresses issues and approaches for dealing with uncertainty specifically within the context of conducting climate change vulnerability assessments (i.e., uncertainties related to identifying and modeling the sensitivities, levels of exposure, and adaptive capacity of the assessment targets).

  8. Strategies for addressing barriers to publishing pediatric quality improvement research.

    PubMed

    Van Cleave, Jeanne; Dougherty, Denise; Perrin, James M

    2011-09-01

    Advancing the science of quality improvement (QI) requires dissemination of the results of QI. However, the results of few QI interventions reach publication. To identify barriers to publishing results of pediatric QI research and provide practical strategies that QI researchers can use to enhance publishability of their work. We reviewed and summarized a workshop conducted at the Pediatric Academic Societies 2007 meeting in Toronto, Ontario, Canada, on conducting and publishing QI research. We also interviewed 7 experts (QI researchers, administrators, journal editors, and health services researchers who have reviewed QI manuscripts) about common reasons that QI research fails to reach publication. We also reviewed recently published pediatric QI articles to find specific examples of tactics to enhance publishability, as identified in interviews and the workshop. We found barriers at all stages of the QI process, from identifying an appropriate quality issue to address to drafting the manuscript. Strategies for overcoming these barriers included collaborating with research methodologists, creating incentives to publish, choosing a study design to include a control group, increasing sample size through research networks, and choosing appropriate process and clinical quality measures. Several well-conducted, successfully published QI studies in pediatrics offer guidance to other researchers in implementing these strategies in their own work. Specific, feasible approaches can be used to improve opportunities for publication in pediatric, QI, and general medical journals.

  9. Science potential from a Europa lander.

    PubMed

    Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M

    2013-08-01

    The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.

  10. Anticipating and addressing event-specific alcohol consumption among adolescents.

    PubMed

    Pettigrew, Simone; Biagioni, Nicole; Jongenelis, Michelle I

    2016-07-29

    Various specific events and celebrations are associated with excessive alcohol consumption and related harms. End-of-school celebrations such as Schoolies in Australia are of particular concern given high levels of documented harm among underage and young drinkers. The present study investigated high school students' expectations of their Schoolies celebrations to inform future interventions to reduce adverse outcomes among members of this vulnerable group and other young people involved in similar rites of passage. A link to an online survey was distributed via high schools and Schoolies-related websites. The survey included qualitative questions that invited respondents to discuss (i) aspects of Schoolies they were looking forward to most and least and (ii) their perceptions of the likely consequences if they refrained from consuming alcohol during the event. In total, 435 students provided responses. Respondents discussed the role of Schoolies in marking their transition to adulthood. Their comments revealed a cross-temporal focus indicating that Schoolies is simultaneously symbolic of the past, present, and future. Through its ability to enhance social interaction, alcohol was perceived to have a vital role in realising the potential of this event to signify and facilitate this temporal progression. Results suggest interventions that treat Schoolies as an isolated event that occurs in specific locations may fail to appreciate the extent to which these events transcend time for those involved. Instead, harm reduction is likely to involve a reconceptualisation of the event among both participants and authority figures to facilitate the provision of alternative pastimes to drinking during Schoolies that yield similar social benefits.

  11. Science in the Learning Gardens (SciLG): A Study of Students' Motivation, Achievement, and Science Identity in Low-Income Middle Schools

    ERIC Educational Resources Information Center

    Williams, Dilafruz R.; Brule, Heather; Kelley, Sybil S.; Skinner, Ellen A.

    2018-01-01

    Background: Science in the Learning Gardens (henceforth, SciLG) program was designed to address two well-documented, inter-related educational problems: under-representation in science of students from racial and ethnic minority groups and inadequacies of curriculum and pedagogy to address their cultural and motivational needs. Funded by the…

  12. The science of team science: A review of the empirical evidence and research gaps on collaboration in science.

    PubMed

    Hall, Kara L; Vogel, Amanda L; Huang, Grace C; Serrano, Katrina J; Rice, Elise L; Tsakraklides, Sophia P; Fiore, Stephen M

    2018-01-01

    Collaborations among researchers and across disciplinary, organizational, and cultural boundaries are vital to address increasingly complex challenges and opportunities in science and society. In addition, unprecedented technological advances create new opportunities to capitalize on a broader range of expertise and information in scientific collaborations. Yet rapid increases in the demand for scientific collaborations have outpaced changes in the factors needed to support teams in science, such as institutional structures and policies, scientific culture, and funding opportunities. The Science of Team Science (SciTS) field arose with the goal of empirically addressing questions from funding agencies, administrators, and scientists regarding the value of team science (TS) and strategies for successfully leading, engaging in, facilitating, and supporting science teams. Closely related fields have rich histories studying teams, groups, organizations, and management and have built a body of evidence for effective teaming in contexts such as industry and the military. Yet few studies had focused on science teams. Unique contextual factors within the scientific enterprise create an imperative to study these teams in context, and provide opportunities to advance understanding of other complex forms of collaboration. This review summarizes the empirical findings from the SciTS literature, which center around five key themes: the value of TS, team composition and its influence on TS performance, formation of science teams, team processes central to effective team functioning, and institutional influences on TS. Cross-cutting issues are discussed in the context of new research opportunities to further advance SciTS evidence and better inform policies and practices for effective TS. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Workshop on Friction: Understanding and Addressing Students' Difficulties in Learning Science through a Hermeneutical Perspective

    ERIC Educational Resources Information Center

    Ha, Sangwoo; Lee, Gyoungho; Kalman, Calvin S.

    2013-01-01

    Hermeneutics is useful in science and science education by emphasizing the process of understanding. The purpose of this study was to construct a workshop based upon hermeneutical principles and to interpret students' learning in the workshop through a hermeneutical perspective. When considering the history of Newtonian mechanics, it could be…

  14. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions

    ERIC Educational Resources Information Center

    Hawkins, Amy J.; Stark, Louisa A.

    2016-01-01

    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  15. Science with society in the anthropocene.

    PubMed

    Seidl, Roman; Brand, Fridolin Simon; Stauffacher, Michael; Krütli, Pius; Le, Quang Bao; Spörri, Andy; Meylan, Grégoire; Moser, Corinne; González, Monica Berger; Scholz, Roland Werner

    2013-02-01

    Interdisciplinary scientific knowledge is necessary but not sufficient when it comes to addressing sustainable transformations, as science increasingly has to deal with normative and value-related issues. A systems perspective on coupled human-environmental systems (HES) helps to address the inherent complexities. Additionally, a thorough interaction between science and society (i.e., transdisciplinarity = TD) is necessary, as sustainable transitions are sometimes contested and can cause conflicts. In order to navigate complexities regarding the delicate interaction of scientific research with societal decisions these processes must proceed in a structured and functional way. We thus propose HES-based TD processes to provide a basis for reorganizing science in coming decades.

  16. Science and Science Fiction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Robert

    2006-03-29

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way inmore » which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.« less

  17. Integrating design science theory and methods to improve the development and evaluation of health communication programs.

    PubMed

    Neuhauser, Linda; Kreps, Gary L

    2014-12-01

    Traditional communication theory and research methods provide valuable guidance about designing and evaluating health communication programs. However, efforts to use health communication programs to educate, motivate, and support people to adopt healthy behaviors often fail to meet the desired goals. One reason for this failure is that health promotion issues are complex, changeable, and highly related to the specific needs and contexts of the intended audiences. It is a daunting challenge to effectively influence health behaviors, particularly culturally learned and reinforced behaviors concerning lifestyle factors related to diet, exercise, and substance (such as alcohol and tobacco) use. Too often, program development and evaluation are not adequately linked to provide rapid feedback to health communication program developers so that important revisions can be made to design the most relevant and personally motivating health communication programs for specific audiences. Design science theory and methods commonly used in engineering, computer science, and other fields can address such program and evaluation weaknesses. Design science researchers study human-created programs using tightly connected build-and-evaluate loops in which they use intensive participatory methods to understand problems and develop solutions concurrently and throughout the duration of the program. Such thinking and strategies are especially relevant to address complex health communication issues. In this article, the authors explore the history, scientific foundation, methods, and applications of design science and its potential to enhance health communication programs and their evaluation.

  18. Start a Science Club

    ERIC Educational Resources Information Center

    Bircher, Lisa; Sansenbaugher, Bonnie

    2015-01-01

    This article describes the benefits of high school science clubs, focusing on forging partnerships with local and regional organizations; the importance of a service-learning component; and how local science club activities bring students and community members together. The authors also address how educators can improve the work of the group to…

  19. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  20. Informal Science Education for Girls: Careers in Science and Effective Program Elements

    ERIC Educational Resources Information Center

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2005-01-01

    Addressing the need for continued support of after-school and summer science enrichment programs for urban girls and at-risk youth, this paper describes the educational and career paths of a sample of young women who participated in the Women in Natural Sciences (WINS) program during high school. This study also attempts to determine how the…

  1. Guest editorial: Aquatic science in the Northwest

    USGS Publications Warehouse

    Sepulveda, Adam; Ray, Andrew M.

    2017-01-01

    In recent years, Northwest Science has seen a significant increase in the number of submissions representing aquatic science. Our region is punctuated by aquatic systems. The current issue in particular, presents a number of new aquatic science contributions. Accordingly, Northwest Science invited the authors of this guest editorial to address the question, why is aquatic science so important in the Northwest?

  2. Ernst Mach and the Epistemological Ideas Specific for Finnish Science Education

    ERIC Educational Resources Information Center

    Siemsen, Hayo

    2011-01-01

    Where does Finnish science education come from? Where will it go? The following outside view reflects on relations, which Finns consider "normal" (and thus unrecognizable in introspection) in science education. But what is "normal" in Finnish culture cannot be considered "normal" for science education in other…

  3. Standards for vision science libraries: 2014 revision.

    PubMed

    Motte, Kristin; Caldwell, C Brooke; Lamson, Karen S; Ferimer, Suzanne; Nims, J Chris

    2014-10-01

    This Association of Vision Science Librarians revision of the "Standards for Vision Science Libraries" aspires to provide benchmarks to address the needs for the services and resources of modern vision science libraries (academic, medical or hospital, pharmaceutical, and so on), which share a core mission, are varied by type, and are located throughout the world. Through multiple meeting discussions, member surveys, and a collaborative revision process, the standards have been updated for the first time in over a decade. While the range of types of libraries supporting vision science services, education, and research is wide, all libraries, regardless of type, share core attributes, which the standards address. The current standards can and should be used to help develop new vision science libraries or to expand the growth of existing libraries, as well as to support vision science librarians in their work to better provide services and resources to their respective users.

  4. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  5. Clinical caring science as a scientific discipline.

    PubMed

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  6. Innovation in Science Education - World-Wide.

    ERIC Educational Resources Information Center

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  7. Historical Approaches in German Science Education

    ERIC Educational Resources Information Center

    Heering, Peter

    2014-01-01

    Particularly in the second half of the 20th century, historical approaches became relevant in science education. This development can at least in part be explained with the growing awareness of the importance to address Nature of Science aspects in science education. In comparison to the international publications, some particularities can be…

  8. Addressing the STEM Challenge by Expanding Specialty Math and Science High Schools

    ERIC Educational Resources Information Center

    Atkinson, Robert D.; Hugo, Janet; Lundgren, Dennis; Shapiro, Martin J.; Thomas, Jerald

    2007-01-01

    If America is to succeed in the innovation-powered global economy, boosting math and science skills will be critical. This is why a wide array of task forces and organizations has recently raised the clarion call for more and better scientists and engineers. While the policy proposals offered are wide ranging, one key policy innovation has…

  9. Search Regimes and the Industrial Dynamics of Science

    ERIC Educational Resources Information Center

    Bonaccorsi, Andrea

    2008-01-01

    The article addresses the issue of dynamics of science, in particular of new sciences born in twentieth century and developed after the Second World War (information science, materials science, life science). The article develops the notion of search regime as an abstract characterization of dynamic patterns, based on three dimensions: the rate of…

  10. History of Science and Science Museums

    ERIC Educational Resources Information Center

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-01-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish…

  11. University of Washington's eScience Institute Promotes New Training and Career Pathways in Data Science

    NASA Astrophysics Data System (ADS)

    Stone, S.; Parker, M. S.; Howe, B.; Lazowska, E.

    2015-12-01

    Rapid advances in technology are transforming nearly every field from "data-poor" to "data-rich." The ability to extract knowledge from this abundance of data is the cornerstone of 21st century discovery. At the University of Washington eScience Institute, our mission is to engage researchers across disciplines in developing and applying advanced computational methods and tools to real world problems in data-intensive discovery. Our research team consists of individuals with diverse backgrounds in domain sciences such as astronomy, oceanography and geology, with complementary expertise in advanced statistical and computational techniques such as data management, visualization, and machine learning. Two key elements are necessary to foster careers in data science: individuals with cross-disciplinary training in both method and domain sciences, and career paths emphasizing alternative metrics for advancement. We see persistent and deep-rooted challenges for the career paths of people whose skills, activities and work patterns don't fit neatly into the traditional roles and success metrics of academia. To address these challenges the eScience Institute has developed training programs and established new career opportunities for data-intensive research in academia. Our graduate students and post-docs have mentors in both a methodology and an application field. They also participate in coursework and tutorials to advance technical skill and foster community. Professional Data Scientist positions were created to support research independence while encouraging the development and adoption of domain-specific tools and techniques. The eScience Institute also supports the appointment of faculty who are innovators in developing and applying data science methodologies to advance their field of discovery. Our ultimate goal is to create a supportive environment for data science in academia and to establish global recognition for data-intensive discovery across all fields.

  12. Informal science education at Science City

    NASA Astrophysics Data System (ADS)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  13. Can citizen science enhance public understanding of science?

    PubMed

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  14. Halide Perovskites: New Science or ``only'' future Energy Converters?

    NASA Astrophysics Data System (ADS)

    Cahen, David

    Over the years many new ideas and systems for photovoltaic, PV, solar to electrical energy conversion have been explored, but only a few have really impacted PV's role as a more sustainable, environmentally less problematic and safer source of electrical power than fossil or nuclear fuel-based generation. Will Halide Perovskites, HaPs, be able to join the very select group of commercial PV options? To try to address this question, we put Halide Perovskite(HaP) cells in perspective with respect to other PV cells. Doing so also allows to identify fundamental scientific issues that can be important for PV and beyond. What remains to be seen is if those issues lead to new science or scientific insights or additional use of existing models. Being more specific is problematic, given the fact that this will be 4 months after writing this abstract. Israel National Nano-initiative, Weizmann Institute of Science's Alternative sustainable Energy Research Initiative; Israel Ministries of -Science and of -Infrastructure, Energy & Water.

  15. eGY-Africa: addressing the digital divide for science in Africa

    NASA Astrophysics Data System (ADS)

    Baki, Paul; Nguno, Anna; Barton, Charles; Amaeshi, Larry; Tenthani, Chifundo; Petitdidier, Monique; Cottrell, Les

    2013-04-01

    Adoption of information and communication technologies and access to the Internet is expanding in Africa, but because of the rapid growth elsewhere, a Digital Divide between Africa and the rest of the world exists. In many sub-Saharan African countries, education and research sector suffers some of the worst deficiencies in access to the Internet, despite progress in the development of NRENs - National Research and Education (cyber) Networks. By contrast, it is widely acknowledged in policy statements from the African Union, the UN, and others that strength in this very sector provides the key to meeting and sustaining Millennium Development Goals. Developed countries with effective cyber-capabilities proclaim the benefits to rich and poor alike arising from the Information Revolution. This is still a dream for many scientists in African institutions. As the world of science becomes increasingly Internet-dependent, so they become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this digital divide by a campaign of advocacy for better institutional facilities. Four approaches are being taken. The present status of Internet services, problems, and plans are being mapped via a combination of direct measurement of Internet performance (the PingER Project) and a questionnaire-based survey. Information is being gathered on policy statements and initiatives aimed at reducing the digital divide, which can be used for arguing the case for better Internet facilities. Groups of concerned scientists are being formed at the national, regional levels in Africa, building on existing networks as much as possible. Opinion in the international science community is being mobilized. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the digital divide - either as a direct policy objective, or indirectly

  16. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    NASA Astrophysics Data System (ADS)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  17. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  18. The Future of Pharmaceutical Manufacturing Sciences

    PubMed Central

    2015-01-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993

  19. The art of co-production of knowledge in environmental sciences and management: lessons from international practice

    NASA Astrophysics Data System (ADS)

    Djenontin, Ida Nadia S.; Meadow, Alison M.

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  20. The art of co-production of knowledge in environmental sciences and management: lessons from international practice.

    PubMed

    Djenontin, Ida Nadia S; Meadow, Alison M

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  1. Cases of Science Professors' Use of Nature of Science

    ERIC Educational Resources Information Center

    Karakas, Mehmet

    2009-01-01

    This study provides qualitative analysis of data that answers the following research question: how do college science faculty teach science and NOS and incorporate aspects of NOS and the history of science into their undergraduate courses? The study concentrates on four cases and more specifically on three introductory science classes and on four…

  2. Changing the Culture of Science Communication Training for Junior Scientists

    PubMed Central

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  3. Changing the Culture of Science Communication Training for Junior Scientists.

    PubMed

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  4. Guidelines for Science Curriculum in Washington Schools.

    ERIC Educational Resources Information Center

    Duxbury, Alyn, Ed.

    This document contains guidelines for science curriculum in Washington State schools. Statements of philosophy and program goals are presented and explained. Four major program goals (which address societal demands) operationally describe science education toward the learning of: (1) factual and theoretical knowledge; (2) applied science skills;…

  5. Is Religious Education Compatible with Science Education?

    ERIC Educational Resources Information Center

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  6. Standards for vision science libraries: 2014 revision

    PubMed Central

    Motte, Kristin; Caldwell, C. Brooke; Lamson, Karen S.; Ferimer, Suzanne; Nims, J. Chris

    2014-01-01

    Objective: This Association of Vision Science Librarians revision of the “Standards for Vision Science Libraries” aspires to provide benchmarks to address the needs for the services and resources of modern vision science libraries (academic, medical or hospital, pharmaceutical, and so on), which share a core mission, are varied by type, and are located throughout the world. Methods: Through multiple meeting discussions, member surveys, and a collaborative revision process, the standards have been updated for the first time in over a decade. Results: While the range of types of libraries supporting vision science services, education, and research is wide, all libraries, regardless of type, share core attributes, which the standards address. Conclusions: The current standards can and should be used to help develop new vision science libraries or to expand the growth of existing libraries, as well as to support vision science librarians in their work to better provide services and resources to their respective users. PMID:25349547

  7. TPACK Development in Science Teacher Preparation: A Case Study in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Sickel, Jamie L.

    This study sought to identify key experiences that impact the development of technological pedagogical content knowledge (TPACK) of preservice secondary sciences teachers at a medium-sized university in Queensland, Australia. TPACK is a conceptual framework of a body of knowledge that teachers draw upon to influence practice; it is a dynamic and emergent form of knowledge that informs the employment of technology for teaching specific subject matter. This study employed an embedded case study approach, including delivery of a TPACK survey instrument and analysis of participant interviews, to identify the context-specific experiences that promote the development of TPACK among twelve preservice secondary science teachers. The research addresses a specific need cited in the literature, identifying TPACK impact factors, and provides a novel way to visualize TPACK development through contextual experiences. A novel approach to visually representing context-specific experiences and their influence on teacher knowledge, self-efficacy, values and beliefs was employed. Three major findings are presented below: 1) the majority of preservice secondary science teachers were unable to define the constructs of learning and science; 2) a focus on motivation and interest paired with a disconnect between expressed and enacted pedagogical orientation lead to teacher-centered instruction augmented with superficial tactics aimed at generating interest; and 3) difficulty in integrating knowledge bases yielded lower TPACK self-efficacy, which has detrimental impacts on the instruction planned by pre-service teachers for their students. Findings are directly aligned with participants' prior experience, compared to the relevant literature, and utilized to identify implications for teacher preparation as well as recommendations for future research.

  8. What's science? Where's science? Science journalism in German print media.

    PubMed

    Summ, Annika; Volpers, Anna-Maria

    2016-10-01

    This article examines the current state of science coverage in German print media. It deals with the following questions: (1) how the main characteristics of science journalism can be described, (2) whether there is a difference between various scientific fields, and (3) how different definitions of science journalism lead to differing findings. Two forms of science coverage were analyzed in a standardized, two-part content analysis of German newspapers (N = 1730 and N = 1640). The results show a significant difference between a narrow and a broad definition of science journalism. In the classic understanding, science journalism is prompted by scientific events and is rather noncritical. Science coverage in a broad sense is defined by a wider range of journalistic styles, driven by non-scientific events, and with a focus on the statements of scientific experts. Furthermore, the study describes the specific role of the humanities and social sciences in German science coverage. © The Author(s) 2015.

  9. Addressing defeatist beliefs in work rehabilitation

    PubMed Central

    Mervis, Joshua E.; Lysaker, Paul H.; Fiszdon, Joanna M.; Bell, Morris D.; Chue, Amanda E.; Pauls, Carol; Bisoglio, Joseph; Choi, Jimmy

    2018-01-01

    Background Adults with serious mental illness (SMI) may struggle with expectations of failure in vocational rehabilitation. These expectations can be global and trait-like or performance-specific and related to ability. Aims To date, it has not been examined whether global or performance-specific defeatist beliefs are related to functional outcomes. Method The Indianapolis Vocational Intervention Program (IVIP) is a CBT intervention used to address expectations of failure and improve work performance. We examined the relationships between defeatist beliefs, self-esteem, social functioning, and work behaviors in 54 adults with SMI who completed IVIP within a work therapy program. Results Baseline work-specific defeatist beliefs were related to baseline self-esteem, employment attitude, and work behaviors. Decline in work-specific defeatist beliefs was associated with better social functioning, self-esteem, and work behaviors. Decline in global defeatist beliefs was only associated with improvements in social functioning. Conclusions Performance-specific expectations about work may be an appropriate therapeutic target to enhance work outcome in SMI. PMID:26828824

  10. Science Goals of the U.S. Department of the Interior Southeast Climate Science Center

    USGS Publications Warehouse

    Dalton, Melinda S.

    2011-01-01

    In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.

  11. Next Generation Science Partnerships

    NASA Astrophysics Data System (ADS)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  12. Future Tense: Science Fiction Confronts the New Science.

    ERIC Educational Resources Information Center

    Antczak, Janice

    1990-01-01

    Describes 10 science fiction stories for young readers whose contents address recent developments on the frontiers of scientific research, including genetic engineering, artificial intelligence, and robotics. The use of these materials to inform young readers about the issues and dangers involved in scientific developments is discussed. (CLB)

  13. How Role Play Addresses the Difficulties Students Perceive when Writing Reflectively about the Concepts They are Learning in Science

    NASA Astrophysics Data System (ADS)

    Millar, Susan

    , remember and think about a concept and to plan the sequence of their reflective writing. This study was undertaken in four different classes at junior to senior levels. The difficulties identified by students were successfully addressed by role play and the activities that are integral to it. These include physical or kinaesthetic activity, social construction, the use of drawing, diagrams and text, and the provision of a concrete model of the concept. Through the enactment effect, kinaesthetic activity enables students to automatically remember and visualise concepts, whilst visual stimuli and social construction provide opportunities for students to both visualise and verbalise concepts. In addition, the provision of a concrete model enables most students to visualise and understand abstract concepts to some extent. These activities, embedded in role play, enable students to understand, remember, sequence and think about a concept as they engage in reflective writing. This, in turn, enhances understanding and memory. Role play has hitherto been regarded as a useful teaching technique when dealing with very young students. This study demonstrates that role play can be highly effective when teaching Science at the secondary level. This investigation looks at the activities embedded in role play, and demonstrates how they can be effectively translated from theoretical constructs into classroom practice. Grounded theory (Glaser and Strauss, 1967; Glaser, 1978; 1998; 2002) was selected as the most appropriate methodology for this investigation. The problems of identifying and controlling variables in an educational setting were essentially resolved using this qualitative, interpretative approach. Students from four classes in Years 8, 10 and 11 were investigated. Data were gathered using classroom observations, informal interviews, and formal written interviews, focus group conversations and samples of student writing.

  14. The Health Sciences and Technology Academy: an educational pipeline to address health care disparities in West Virginia.

    PubMed

    McKendall, Sherron Benson; Kasten, Kasandra; Hanks, Sara; Chester, Ann

    2014-01-01

    Health and educational disparities are national issues in the United States. Research has shown that health care professionals from underserved backgrounds are more likely than others to work in underserved areas. The Association of American Medical Colleges' Project 3000 by 2000, to increase the number of underrepresented minorities in medical schools, spurred the West Virginia School of Medicine to start the Health Sciences and Technology Academy (HSTA) in 1994 with the goal of supporting interested underrepresented high school students in pursuing college and health professions careers. The program was based on three beliefs: (1) if underrepresented high school students have potential and the desire to pursue a health professions career and are given the support, they can reach their goals, including obtaining a health professions degree; (2) underserved high school students are able to predict their own success if given the right resources; and (3) community engagement would be key to the program's success.In this Perspective, the authors describe the HSTA and its framework and philosophy, including the underlying theories and pedagogy from research in the fields of education and the behavioral/social sciences. They then offer evidence of the program's success, specifically for African American students, including graduates' high college-going rate and overwhelming intention to choose a health professions major. Finally, the authors describe the benefits of the HSTA's community partnerships, including providing mentors to students, adding legislative language providing tuition waivers and a budgetary line item devoted to the program, and securing program funding from outside sources.

  15. When science becomes too easy: Science popularization inclines laypeople to underrate their dependence on experts.

    PubMed

    Scharrer, Lisa; Rupieper, Yvonne; Stadtler, Marc; Bromme, Rainer

    2017-11-01

    Science popularization fulfills the important task of making scientific knowledge understandable and accessible for the lay public. However, the simplification of information required to achieve this accessibility may lead to the risk of audiences relying overly strongly on their own epistemic capabilities when making judgments about scientific claims. Moreover, they may underestimate how the division of cognitive labor makes them dependent on experts. This article reports an empirical study demonstrating that this "easiness effect of science popularization" occurs when laypeople read authentic popularized science depictions. After reading popularized articles addressed to a lay audience, laypeople agreed more with the knowledge claims they contained and were more confident in their claim judgments than after reading articles addressed to expert audiences. Implications for communicating scientific knowledge to the general public are discussed.

  16. Rap as a roadway: creating creolized forms of science in an era of cultural globalization

    NASA Astrophysics Data System (ADS)

    Elmesky, Rowhea

    2011-03-01

    Even during an era of cultural globalization where diversity, hybridity, and heterogeneity prevail, educational institutions remain unchanged and economically and racially marginalized students continue to experience a sense of exclusion in school. Whereas the science education community often addresses such exclusion in terms of the achievement gap or the lack of materials and qualified teachers in urban schools, there are also more subtle ways in which these students remain as outsiders to the culture of science. The study highlights how the acceptance and affordance of students' cultural capital can encourage a sense of belonging with school science. Specifically, this paper contributes to the literature by sharing longitudinal findings that reveal students' skills of orality, in the form of rap practices, can be rich resources for developing creolized forms of school science, and how rap creates entryways for students to form and reform hybridized identities in which canonical science discourse and lyrics about non-science subjects can begin to emerge in integrated, fluid and seamless manners.

  17. IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6)

    PubMed Central

    Jara, Antonio J.; Moreno-Sanchez, Pedro; Skarmeta, Antonio F.; Varakliotis, Socrates; Kirstein, Peter

    2013-01-01

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145

  18. IPv6 addressing proxy: mapping native addressing from legacy technologies and devices to the Internet of Things (IPv6).

    PubMed

    Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter

    2013-05-17

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.

  19. Language Science and Orientalism in Imperial Germany

    ERIC Educational Resources Information Center

    Kaplan, Judith R. H.

    2012-01-01

    This dissertation addresses a significant gap in the historiography of science: the nature of the language sciences as "science." Focusing on disciplinary and intellectual developments in the context of Imperial Germany (1871-1918), the project anticipates, complicates, and helps to explain a widely recognized theoretical shift, namely,…

  20. Rational Rhymes for Addressing Common Childhood Issues

    ERIC Educational Resources Information Center

    Warren, Jeffrey M.

    2011-01-01

    Music-based interventions are valuable tools counselors can use when working with children. Specific types of music-based interventions, such as songs or rhymes, can be especially pertinent in addressing the thoughts, feelings, and behaviors of children. Rational-emotive behavior therapy (REBT) provides a therapeutic framework that encourages…

  1. Human Mars Surface Science Operations

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2014-01-01

    Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and

  2. Third Generation (3G) Site Characterization: Cryogenic Core Collection and High Throughput Core Analysis - An Addendum to Basic Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review

    DTIC Science & Technology

    2016-07-29

    Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review SERDP Project ER-1740 JULY 2016 Tom Sale Saeed...process, or service by trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or...managing releases of chlorinated solvents and other persistent contaminants in groundwater in unconsolidated sediments. N/A U U U UU 126 Dr. Tom Sale 970

  3. Science Indicators 1982. An Analysis of the State of U.S. Science, Engineering, and Technology.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This document analyzes science and technology activities in the United States and their relationships to the efforts of other major industrialized countries. Major areas addressed in the seven chapters are: (1) international science and technology (considering national investments in research and development--R&D, outputs of R&D,…

  4. Development of Individually Addressable Micro-Mirror-Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent

    2000-01-01

    We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.

  5. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  6. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    ERIC Educational Resources Information Center

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  7. Florida Integrated Science Center (FISC) Coral Reef Research

    USGS Publications Warehouse

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  8. DAEDALUS, SCIENCE AND CULTURE ISSUE, WINTER 1965.

    ERIC Educational Resources Information Center

    GRAUBARD, STEPHEN R.; AND OTHERS

    THE INTERRELATIONS BETWEEN THE HUMANITIES, THE SOCIAL SCIENCES, THE SCIENCES, AND THE ARTS IN CONTEMPORARY CULTURE ARE EXPLORED IN THIS SERIES OF ESSAYS DEVELOPED FOR THE AMERICAN ACADEMY OF ARTS AND SCIENCES. SCHOLARS IN THE HUMANITIES, NATURAL SCIENTISTS, ARTISTS, SOCIAL SCIENTISTS, AND ADMINISTRATORS ADDRESS THEMSELVES TO THE PROBLEMS OF (1)…

  9. Persistence in Science: Gender and Program Differences.

    ERIC Educational Resources Information Center

    Boisset, Annick; And Others

    This study was conducted to investigate persistence rates and gender differences among science students at John Abbott College (JAC). Issues addressed in the study included the differences between students persisting in and those transferring out of science programs, female representation in science programs at JAC, and the differences, if any,…

  10. Fort Collins Science Center Ecosystem Dynamics branch--interdisciplinary research for addressing complex natural resource issues across landscapes and time

    USGS Publications Warehouse

    Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.

    2013-01-01

    The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions

  11. Social Science Perspectives on Vocational Rehabilitation--A Symposium.

    ERIC Educational Resources Information Center

    Stubbins, Joseph, Ed.

    1984-01-01

    Nine author-contributed papers focus on social science perspectives of vocational rehabilitation. Papers address issues related to history, psychological perspectives, ideologies of clinical and ecological models, economics, social policy, political science, phenomenology, cross-cultural studies, and vocational rehabilitation as a social science.…

  12. Conceptual Change, History, and Science Stories.

    ERIC Educational Resources Information Center

    Stinner, Arthur; Williams, Harvey

    1993-01-01

    Science teachers implementing educational research findings must choose between instructional prescriptions from Piaget's theory of cognitive development and from alternative conceptual frameworks theory. Contextual teaching using large context problems or science stories addresses both. The paper outlines a program that designs historically based…

  13. Cultivating Collaborations: Site Specific Design for Embodied Science Learning.

    PubMed

    Gill, Katherine; Glazier, Jocelyn; Towns, Betsy

    2018-05-21

    Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.

  14. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    USGS Publications Warehouse

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  15. Democratizing data science through data science training

    PubMed Central

    Van Horn, John Darrell; Fierro, Lily; Kamdar, Jeana; Gordon, Jonathan; Stewart, Crystal; Bhattrai, Avnish; Abe, Sumiko; Lei, Xiaoxiao; O’Driscoll, Caroline; Sinha, Aakanchha; Jain, Priyambada; Burns, Gully; Lerman, Kristina; Ambite, José Luis

    2017-01-01

    The biomedical sciences have experienced an explosion of data which promises to overwhelm many current practitioners. Without easy access to data science training resources, biomedical researchers may find themselves unable to wrangle their own datasets. In 2014, to address the challenges posed such a data onslaught, the National Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) initiative. To this end, the BD2K Training Coordinating Center (TCC; bigdatau.org) was funded to facilitate both in-person and online learning, and open up the concepts of data science to the widest possible audience. Here, we describe the activities of the BD2K TCC and its focus on the construction of the Educational Resource Discovery Index (ERuDIte), which identifies, collects, describes, and organizes online data science materials from BD2K awardees, open online courses, and videos from scientific lectures and tutorials. ERuDIte now indexes over 9,500 resources. Given the richness of online training materials and the constant evolution of biomedical data science, computational methods applying information retrieval, natural language processing, and machine learning techniques are required - in effect, using data science to inform training in data science. In so doing, the TCC seeks to democratize novel insights and discoveries brought forth via large-scale data science training. PMID:29218890

  16. Democratizing data science through data science training.

    PubMed

    Van Horn, John Darrell; Fierro, Lily; Kamdar, Jeana; Gordon, Jonathan; Stewart, Crystal; Bhattrai, Avnish; Abe, Sumiko; Lei, Xiaoxiao; O'Driscoll, Caroline; Sinha, Aakanchha; Jain, Priyambada; Burns, Gully; Lerman, Kristina; Ambite, José Luis

    2018-01-01

    The biomedical sciences have experienced an explosion of data which promises to overwhelm many current practitioners. Without easy access to data science training resources, biomedical researchers may find themselves unable to wrangle their own datasets. In 2014, to address the challenges posed such a data onslaught, the National Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) initiative. To this end, the BD2K Training Coordinating Center (TCC; bigdatau.org) was funded to facilitate both in-person and online learning, and open up the concepts of data science to the widest possible audience. Here, we describe the activities of the BD2K TCC and its focus on the construction of the Educational Resource Discovery Index (ERuDIte), which identifies, collects, describes, and organizes online data science materials from BD2K awardees, open online courses, and videos from scientific lectures and tutorials. ERuDIte now indexes over 9,500 resources. Given the richness of online training materials and the constant evolution of biomedical data science, computational methods applying information retrieval, natural language processing, and machine learning techniques are required - in effect, using data science to inform training in data science. In so doing, the TCC seeks to democratize novel insights and discoveries brought forth via large-scale data science training.

  17. Science Under Attack! Public Policy, Science Education and the Emperor's New Clothes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krass, Lawrence

    2005-12-05

    The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.

  18. Science Under Attack! Public Policy, Science Education, and the Emperor's New Clothes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence

    2005-12-05

    The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.

  19. Space-based Science Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.; Redman, Sandra

    2004-01-01

    science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid

  20. Presidential address: adjusting the art and the science of surgery.

    PubMed

    Traverso, L William

    2007-10-01

    Why are there so many opinions for surgical treatments? Why do surgeons not agree on the same definitions? To adjust the art and science of surgery, we should understand the reason behind this Tower of Babel and ourselves by grasping the three biological lessons of history. These lessons are instincts of man--our instincts have not changed for as long as there has been recorded history. The lessons were elucidated by Will and Ariel Durant and these are competition, selection, and reproduction. How might they be applied to improving our surgical science? First, competition has always forced individuals or small groups to strengthen themselves with cooperation. Cooperate or not survive. Cooperation increases with social development and technology. Next, we must realize that nature relishes diversity. We are all born unequal and diverse. The second biological lesson is selection; which individual among a diverse group of individuals will succeed (by improving)? Therefore, by nature, man's instincts provide diverse opinions and bias. This creates a myopic view when surgeons try to discern the truth. The results are the trendy bandwagons that divert us, like tonsillectomy. Too much diversity is bad, and a balance is required. Man's third lesson of history is reproduction. Better stated is that nature loves quantity. We naturally give priority to quantity over quality. To obtain quality rather than just quantity, we need the antidotes for competition and diversity--that would be cooperation using the Deming guidelines of leadership, profound knowledge, and technology. One example of this urge for quantity and diversity is our lack of standardized definitions. These three biological lessons can be summarized by viewing competition as an impediment for quality improvement in the complex challenges of modern healthcare. Cooperation (trust) is the antidote to the bandwagon effect of unproven treatments. Cooperation and technology can be joined to establish a successful team

  1. Delivering an action agenda for nutrition interventions addressing adolescent girls and young women: priorities for implementation and research.

    PubMed

    Bhutta, Zulfiqar A; Lassi, Zohra S; Bergeron, Gilles; Koletzko, Berthold; Salam, Rehana; Diaz, Angela; McLean, Mireille; Black, Robert E; De-Regil, Luz Maria; Christian, Parul; Prentice, Andrew M; Klein, Jonathan D; Keenan, William; Hanson, Mark

    2017-04-01

    Adolescent nutritional behaviors are assuming considerable importance in nutrition interventions given their important relationships with medium- and long-term outcomes. This is the period when young people undergo major anatomical and physiological maturational changes in preparation for adulthood. Nutritional requirements during puberty are higher during adolescence than during the prepubertal stage and during adulthood. A significant proportion of adolescents also become parents, and hence the importance of their health and nutritional status before as well as during pregnancy has its impact on their own health, fetal well-being, and newborn health. In this paper, we describe the evidence-based nutrition recommendations and the current global guidance for nutrition actions for adolescents. Despite the limitations of available information, we believe that a range of interventions are feasible to address outcomes in this age group, although some would need to start earlier in childhood. We propose packages of preventive care and management comprising nutrition-specific and nutrition-sensitive interventions to address adolescent undernutrition, overnutrition, and micronutrient deficiencies. We discuss potential delivery platforms and strategies relevant to low- and middle-income countries. Beyond the evidence synthesis, there is a clear need to translate evidence into policy and for implementation of key recommendations and addressing knowledge gaps through prioritized research. © 2017 New York Academy of Sciences.

  2. Science Anxiety and Gender in Students Taking General Education Science Courses

    NASA Astrophysics Data System (ADS)

    Udo, M. K.; Ramsey, G. P.; Mallow, J. V.

    2004-12-01

    Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. Journal of Science Education and Technology 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? Journal of Science Education and Technology 10: 237-247] of science anxiety in various student cohorts suggested that nonscience majors were highly science anxious (SA), regardless of what science courses they were taking. In this study, we investigated science anxiety in a cohort consisting mostly of nonscience majors taking general education science courses. Regression analysis shows that the leading predictors of science anxiety are (i) nonscience anxiety and (ii) gender, as they were for different cohorts in the earlier studies. We confirm earlier findings that females are more SA than males. Chi-square analysis of acute science anxiety shows an amplification of these differences. We found statistically significant levels of science anxiety in humanities and social science students of both genders, and gender differences in science anxiety, despite the fact that the students were all enrolled in general education science courses specifically designed for nonscience majors. We found acute levels of anxiety in several groups, especially education, nursing, and business majors. We describe specific interventions to alleviate science anxiety.

  3. ORD-State Cooperation is Essential to Help States Address Contemporary Environmental Public Health Challenges

    EPA Science Inventory

    Dr. Cascio’s presentation “ORD-State Cooperation is Essential to Help States Address Contemporary Environmental Public Health Challenges” at ORD’s State Coordination Team Meeting will highlight the role that ORD science and technical expertise in helping t...

  4. Using The GLOBE Program to address the Global Development Goals

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Murphy, T.; Wigbels, L.; Mauriello, H.; Kucera, P. A.

    2016-12-01

    The GLOBE Program (globe.gov) is an international science and education program in more than 110 countries that provides students and the public worldwide the opportunity to participate in the scientific process through Earth observations and geospatial information. To address the Global Goals for Sustainable Development, The GLOBE Program has collaborated with with international organizations such as the UNEP, Peace Corps, USAID, UNESCO, Eco-Schools, and SciStarter to address the Goals for Sustainable Development. In this presentation, GLOBE will share the alignment materials that they have created to provide pathways to achieving the goals, as well as present case studies that demonstrate how the GLOBE community uses GLOBE protocols as Earth observations to monitor and communicate environmental indicators aligned to the Global Development Goals.

  5. Science Indicators: The 1985 Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This report provides basic information on patterns and trends of research and development (R&D) performance in the United States itself and in relation to other countries, as well as data on public attitudes toward science and technology. Major areas addressed in the report's eight chapters include (1) the international science and technology…

  6. Attribution Theory in Science Achievement

    ERIC Educational Resources Information Center

    Craig, Martin

    2013-01-01

    Recent research reveals consistent lags in American students' science achievement scores. Not only are the scores lower in the United States compared to other developed nations, but even within the United States, too many students are well below science proficiency scores for their grade levels. The current research addresses this problem by…

  7. Building technology services that address student needs.

    PubMed

    Le Ber, Jeanne M; Lombardo, Nancy T; Wimmer, Erin

    2015-01-01

    A 16-question technology use survey was conducted to assess incoming health sciences students' knowledge of and interest in current technologies, and to identify student device and tool preferences. Survey questions were developed by colleagues at a peer institution and then edited to match this library's student population. Two years of student responses have been compiled, compared, and reviewed as a means for informing library decisions related to technology and resource purchases. Instruction and event programming have been revised to meet student preferences. Based on the number of students using Apple products, librarians are addressing the need to become more proficient with this platform.

  8. Discovering indigenous science: Implications for science education

    NASA Astrophysics Data System (ADS)

    Snively, Gloria; Corsiglia, John

    2001-01-01

    addressed in the science classroom. We conclude by presenting instructional strategies that can help all science learners negotiate border crossings between Western modern science and indigenous science.

  9. Creationism as Science: What Every Teacher-Scientist Should Know.

    ERIC Educational Resources Information Center

    Gatzke, Ken W.

    1985-01-01

    Addresses philosophical problems of the evolution/creationism debate (including underlying assumptions of creationism and nature of science), suggesting that creationism cannot be presented as science in science courses because it fails to qualify as a science. Prediction and explanation, absolute creationism, and a fundamental difficulty in…

  10. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  11. Project Water Science. General Science High School Level.

    ERIC Educational Resources Information Center

    Water Education Foundation, Sacramento, CA.

    This teacher's guide presents 12 hands-on laboratory activities for high school science classes that cover the environmental issue of water resources in California. The activities are separated into three sections. Five activities in the section on water quality address the topics of groundwater, water hardness, bottled water, water purity, and…

  12. Public Dialogue on Science in Sweden.

    ERIC Educational Resources Information Center

    Dyring, Annagreta

    1988-01-01

    Explains how Sweden has proceeded to popularize science. Addresses topics dealing with policy, the energy debate, booklets with large circulation, computers and society, contacts between schools and research, building up small science centers, mass media, literary quality, children's responsibility, and some of the challenges. (RT)

  13. Conceptions of the nature of science and worldviews of preservice elementary science teachers in Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Shiang-Yao

    This exploratory investigation aimed to identify preservice science teachers' conceptions of the nature of science (NOS), and worldviews that represent their culturally dependent beliefs about the world, in the context of Taiwan. The interrelationships between the responses elicited from both the assessments of NOS understandings and worldviews were examined. Participants included 54 third-year students enrolled in the departments of science education and mathematics education at a teachers college. Their worldviews and NOS conceptions were tabulated by two questionnaires and 14 of them were purposefully selected to participate follow-up interviews. The worldview questionnaire contained five open-ended items, of which each examines one of the worldview domains in Kearney's model (1984). The NOS questionnaire consisting of nine open-ended questions was developed, specifically addressing cultural characteristics, to assess participants' views on the development of scientific knowledge. An anthropocentric-moderate continuum emerged to describe participants' views of the humanity's relationship with Nature. It was found that participants with informed NOS conceptions were more likely to emphasize harmony with Nature, recognize the limitations of scientific knowledge, and accept the idea that science involves subjective and cultural components. On the other hand, participants who provided a pragmatic perspective of Nature seemed to possess narrow views about the scientific enterprises by describing science as close to technology and as a materialistic benefit. Authoritarianism was also a noticeable cultural trait hindering some participants from reflecting on the values inherent to the development of scientific knowledge, and also prohibiting them from searching empirical evidence to solve problems. It was found that there were differences between science education and mathematics education majors in their worldviews and NOS understandings. The results in this study not

  14. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    NASA Astrophysics Data System (ADS)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  15. Teacher- or Learner-Centred? Science Teacher Beliefs Related to Topic Specific Pedagogical Content Knowledge: A South African Case Study

    ERIC Educational Resources Information Center

    Mavhunga, Elizabeth; Rollnick, Marissa

    2016-01-01

    In science education, learner-centred classroom practices are widely accepted as desirable and are associated with responsive and reformed kinds of teacher beliefs. They are further associated with high-quality Pedagogical Content Knowledge (PCK). Topic-Specific Pedagogical Content Knowledge (TSPCK), a version of PCK defined at topic level, is…

  16. 76 FR 14061 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science has completed an inventory of human remains and associated... contact the Denver Museum of Nature & Science at the address below by April 14, 2011. ADDRESSES: Dr. Chip...

  17. Charles Darwin and Evolution: Illustrating Human Aspects of Science

    NASA Astrophysics Data System (ADS)

    Kampourakis, Kostas; McComas, William F.

    2010-06-01

    Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this article, we suggest a contextualized, explicit approach addressing one core NOS aspect: the human aspects of science that include the domains of creativity, social influences and subjectivity. To illustrate these ideas, we have focused on Charles Darwin, a scientist whose life, work and thought processes were particularly well recorded at the time and analyzed by scholars in the succeeding years. Historical facts are discussed and linked to core NOS ideas. Creativity is illustrated through the analogies between the struggle for existence in human societies and in nature, between artificial and natural selection, and between the division of labor in human societies and in nature. Social influences are represented by Darwin’s aversion of criticism of various kinds and by his response to the methodological requirements of the science of that time. Finally, subjectivity is discussed through Darwin’s development of a unique but incorrect source for the origin of variations within species.

  18. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    PubMed Central

    Horowitz, Carol R.; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N.; Smith, Geoffrey W.; Dudley, Joel; Manning, Rachel; Bickell, Nina A.; Galvez, Maida P.

    2017-01-01

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities. PMID:28241508

  19. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research.

    PubMed

    Horowitz, Carol R; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N; Smith, Geoffrey W; Dudley, Joel; Manning, Rachel; Bickell, Nina A; Galvez, Maida P

    2017-02-23

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific "accelerators", tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators-digital health, big data, genomics and environmental health-and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.

  20. COOP+ project: Promoting the cooperation among international Research Infrastructures to address global environmental challenges.

    NASA Astrophysics Data System (ADS)

    Bonet-García, Francisco; Materia, Paola; Kutsch, Werner; de Lucas, Jesús Marco; Tjulin, Anders

    2016-04-01

    During the Anthropocene, mankind will face several global environmental challenges. One of the first and more successful responses provided by Science to these challenges is the collecting of long-term series of biophysical variables in order to improve our knowledge of natural systems. The huge amount of information gathered during the last decades by Research Infrastructures (RIs) has helped to understand the structure and functioning of natural systems at local and regional scales. But how can we address the global cross-scale and cross-disciplinary challenges posed by the global environment change? We believe that it will be necessary to observe, model better and understand the whole biosphere using long term data generated by international RIs. RIs play a key role on many of the last advances and discoveries in science, from the observation of the Higgs Boson at CERN to the exploration of the Universe by the telescopes of the European Southern Observatory in Chile. The scale of complexity, instrumentation, computing resources, technological advances, and also of the investments, and the size of research collaborations, do not have precedents in Science. RIs in environmental field are developing fast, but the corresponding communities need yet to further reflect the need for a wider global collaboration because the challenges to tackle are in essence of global nature. This contribution describes how COOP+ project (EU Horizon 2020 Coordination and Support Action) will promote the cooperation among RIs at a global scale to address global environmental challenges. Our project evolves from the experience of the sucessful FP7 COOPEUS project (see http://www.coopeus.eu), which explored the use and access to data from RIs in environmental research in Europe and USA. The general goal of COOP+ is to strengthen the links and coordination of the ESFRI RIs related to Marine Science (EMSO), Arctic and Atmospheric Research (EISCAT), Carbon Observation (ICOS) and Biodiversity

  1. Studying Science and Engineering Learning in Practice

    ERIC Educational Resources Information Center

    Penuel, William R.

    2016-01-01

    A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those…

  2. Ideas and Evidence in Science.

    ERIC Educational Resources Information Center

    Talbot, Chris

    2000-01-01

    Describes how some of the Theory of Knowledge (ToK) requirements, which is a central part of the International Baccalaurate (IB) Diploma program, for the natural sciences component can be addressed through case studies from the history of chemistry and related subjects. Provides examples for the 'Ideas and evidence in science' which can be useful…

  3. A science framework (SF) for agricultural sustainability.

    PubMed

    Ahmed, Ferdous; Al-Amin, Abul Q; Masud, Muhammad M; Kari, Fatimah; Mohamad, Zeeda

    2015-09-01

    The significance of Science Framework (SF) to date is receiving more acceptances all over the world to address agricultural sustainability. The professional views, however, advocate that the SF known as Mega Science Framework (MSF) in the transitional economies is not converging effectively in many ways for the agricultural sustainability. Specially, MSF in transitional economies is mostly incapable to identify barriers in agricultural research, inadequate to frame policy gaps with the goal of strategizing the desired sustainability in agricultural technology and innovation, inconsistent in finding to identify the inequities, and incompleteness to rebuild decisions. Therefore, this study critically evaluates the components of MSF in transitional economies and appraises the significance, dispute and illegitimate issue to achieve successful sustainable development. A sound and an effective MSF can be developed when there is an inter-linkage within principal components such as of (a) national priorities, (b) specific research on agricultural sustainability, (c) adequate agricultural research and innovation, and (d) alternative policy alteration. This maiden piece of research which is first its kind has been conducted in order to outline the policy direction to have an effective science framework for agricultural sustainability.

  4. Think Scientifically: Science Hidden in a Storybook

    NASA Astrophysics Data System (ADS)

    Van Norden, W. M.

    2012-12-01

    The Solar Dynamics Observatory's Think Scientifically (TS) program links literacy and science in the elementary classroom through an engaging storybook format and hands-on, inquiry based activities. TS consists of three illustrated storybooks, each addressing a different solar science concept. Accompanying each book is a hands-on science lesson plan that emphasizes the concepts addressed in the book, as well as math, reading, and language arts activities. Written by teachers, the books are designed to be extremely user-friendly and easy to implement in classroom instruction. The objectives of the program are: (1) to increase time spent on science in elementary school classrooms, (2) to assist educators in implementing hands-on science activities that reinforce concepts from the book, (3) to increase teacher capacity and comfort in teaching solar concepts, (4) to increase student awareness and interest in solar topics, especially students in under-served and under-represented communities. Our program meets these objectives through the National Science Standards-based content delivered in each story, the activities provided in the books, and the accompanying training that teachers are offered through the program.; ;

  5. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  6. Strategic research in the social sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainbridge, W.S.

    1995-12-31

    The federal government has identified a number of multi-agency funding initiatives for science in strategic areas, such as the initiatives on global environmental change and high performance computing, that give some role to the social sciences. Seven strategic areas for social science research are given with potential for federal funding: (1) Democratization. (2) Human Capital. (3) Administrative Science. (4) Cognitive Science. (5) High Performance Computing and Digital Libraries. (6) Human Dimensions of Environmental Change. and (7) Human Genetic Diversity. The first two are addressed in detail and the remainder as a group. 10 refs.

  7. How desertification research is addressed in Spain? Land versus Soil approaches

    NASA Astrophysics Data System (ADS)

    Barbero Sierra, Celia; Marques, María Jose; Ruiz, Manuel; Escadafal, Richard; Exbrayat, Williams; Akthar-Schuster, Mariam; El Haddadi, Anass

    2013-04-01

    This study intend to understand how desertification research is organised in a south Mediterranean country, as is Spain. It is part of a larger work addressing soil and land research and its relationships with stakeholders. This wider work aims to explain the weakness of the United Nation Convention to Combat Desertification (UNCCD), which devoid of a scientific advisory panel. Within this framework, we assume that a fitting coordination between scientific knowledge and a better flow of information between researchers and policy makers is needed in order to slow down and reverse the impacts of land degradation on drylands. With this purpose we conducted an in-depth study at national level in Spain. The initial work focused on a small sample of published references in scientific journals indexed in the Web of Science. It allowed us to identify the most common thematic approaches and working issues, as well as the corresponding institutions and research teams and the relationships between them. The preliminary results of this study pointed out that two prevalent approaches at this national level could be identified. The first one is related to applied science being sensitive to socio-economic issues, and the second one is related to basic science studying the soil in depth, but it is often disconnected from socio-economic factors. We also noticed that the Spanish research teams acknowledge the other Spanish teams in this subject, as frequent co-citations are found in their papers, nevertheless, they do not collaborate. We also realised that the Web of Science database does not collect the wide spectrum of sociology, economics and the human implications of land degradation which use to be included in books or reports related to desertification. A new wider database was built compiling references of Web of Science related to "desertification", "land", "soil", "development" and "Spain" adding references from other socioeconomic databases. In a second stage we used

  8. FTP Extensions for Variable Protocol Specification

    NASA Technical Reports Server (NTRS)

    Allman, Mark; Ostermann, Shawn

    2000-01-01

    The specification for the File Transfer Protocol (FTP) assumes that the underlying network protocols use a 32-bit network address and a 16-bit transport address (specifically IP version 4 and TCP). With the deployment of version 6 of the Internet Protocol, network addresses will no longer be 32-bits. This paper species extensions to FTP that will allow the protocol to work over a variety of network and transport protocols.

  9. The perspectives of Caribbean high school students' experiences in American science classrooms

    NASA Astrophysics Data System (ADS)

    Ferguson, Renae Luenell

    to the sociocultural nuances of Caribbeans, as well as to all other students. Educators should also understand and value students' individual backgrounds, cultural patterns, and specific influences which impinge students in science and may result in underachievement. In addition, educators should not only discuss issues of under-representation in science but also they should begin to initiate the implementation of strategies addressed in this study in order to bring awareness and resolution to these pressing issues.

  10. Addressing the Health Concerns of VA Women with Sexual Trauma

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0368 TITLE: Addressing the Health Concerns of VA Women with Sexual Trauma PRINCIPAL INVESTIGATOR: Caron Zlotnick, PhD...develop and assess a computer-delivered intervention (Safety and Health Experiences Program; SHE) that will provide a screening and brief behavior...intervention for women veterans with any lifetime ST. More specifically, the intervention, SHE, will address interrelated health concerns for women

  11. Differentiating Science Instruction: Success Stories of High School Science Teachers

    ERIC Educational Resources Information Center

    Maeng, Jennifer Lynn Cunningham

    2011-01-01

    This study investigated the characteristics and practices of high school science teachers who differentiate instruction. Specifically teachers' beliefs about science teaching and student learning and how they planned for and implemented differentiated instruction in their classrooms were explored. Understanding how high school science teachers…

  12. Learning Gains in Lab Practices: Teach Science Doing Science

    ERIC Educational Resources Information Center

    Dopico, Eduardo; Linde, Ana R.; Garcia-Vazquez, Eva

    2014-01-01

    Introducing research in undergraduate biology studies may contribute to creating research vocations and generate the idea that science may influence all aspects of common life. However, laboratory practices are too often disconnected from current investigations and rarely address real-life questions that are really interesting for students.…

  13. Lessons Learned from Citizen Science in the Classroom

    ERIC Educational Resources Information Center

    Gray, Steven A.; Nicosia, Kristina; Jordan, Rebecca C.

    2012-01-01

    Mueller, Tippins, and Bryan's contrast of the current limitations of science education with the potential virtues of citizen science provides an important theoretical perspective about the future of democratized science and K-12 education. However, the authors fail to adequately address the existing barriers and constraints to moving…

  14. The utility of human sciences in nursing inquiry.

    PubMed

    Pratt, Maria

    2012-01-01

    This paper targets novice nurse researchers to highlight how the perspectives of human sciences are useful in understanding people's experiences. There is a need to address the utility of human sciences or the humanistic philosophy that values the understanding of subjective experiences in nursing, given that the mainstream development of nursing knowledge is still influenced by the positivist and post-positivist research paradigms. Discussion papers on Heideggerian hermeneutic phenomenology, human sciences, and qualitative research were accessed through the databases Cinahl and Medline over the past 30 years. Seminal works on phenomenology were addressed in this paper. Using Heideggerian hermeneutic phenomenology as a commonly referenced human philosophy and methodology, this paper discusses how Heidegger's (1962) perspective may be used in nursing practice and research. Van Manen's (1990) descriptions of phenomenological science are discussed to address the perspective's value in nursing inquiry and to reveal the biases associated with this humanistic approach. The limitations of human sciences should not deter nurse researchers from using this type of nursing inquiry as it can provide an important framework in nursing research, practice and knowledge development. The author's perspective as a graduate student highlights the importance of human sciences in exploring the experiences of people vital in the delivery of nursing practice. However, researchers wishing to undertake humanistic inquiry should learn the philosophical and methodological underpinnings of their chosen humanistic approach.

  15. Overview of chemical imaging methods to address biological questions.

    PubMed

    da Cunha, Marcel Menezes Lyra; Trepout, Sylvain; Messaoudi, Cédric; Wu, Ting-Di; Ortega, Richard; Guerquin-Kern, Jean-Luc; Marco, Sergio

    2016-05-01

    Chemical imaging offers extensive possibilities for better understanding of biological systems by allowing the identification of chemical components at the tissue, cellular, and subcellular levels. In this review, we introduce modern methods for chemical imaging that can be applied to biological samples. This work is mainly addressed to the biological sciences community and includes the bases of different technologies, some examples of its application, as well as an introduction to approaches on combining multimodal data. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Developing Interpretive Power in Science Teaching

    ERIC Educational Resources Information Center

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  17. Standards for Indiana Teachers of Science.

    ERIC Educational Resources Information Center

    Andersen, Hans O.; Kobe, Michael

    1996-01-01

    The Standards for Teachers of Science address the preparation, provisional practice, continued practice, and support that teachers will need to ensure that students are prepared for life and to be lifelong learners. The background of educational reform, vision behind the Standards, goals for science teachers, and suggestions for sustaining…

  18. NASA Center for Computational Sciences: History and Resources

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  19. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  20. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  1. Development of an Applied Fisheries Science Program for Native Alaskans at Sheldon Jackson College (Sitka, Alaska). Third Progress Report, 1 January 1976.

    ERIC Educational Resources Information Center

    Seifert, Mel

    Covering the period between July 1 to December 31, 1976, this third semi-annual report on the Applied Fishery Science Program operative at Sheldon Jackson College in Sitka, Alaska deals primarily with the first quarter of hatchery and educational program operation. Specifically, this report addresses the following: Program Objectives; Advisory…

  2. Addressing the impact that workshop site coordinators and administrators have on the teaching of science in the classroom

    NASA Astrophysics Data System (ADS)

    McKenna, Valerie E.

    This dissertation studied the beliefs and practices of principals, workshop site coordinators, and science support personnel in two Central Florida school districts and compared those beliefs and practices to the literature on effective science in-service education. It is important to understand these beliefs and practices because they directly affect the content and pedagogical knowledge of classroom teachers, yet this aspect of instructional practices has been ignored in the science education literature. This study used a grounded theory methodology using open-ended individual interviews, participants observation, and documented analysis. Constant comparisons were built through analyzing the data. The research shows that in-service providers' and administrators' beliefs are aligned with the effective science education in-service literature. The conditions and context are ripe for changes because principals and workshop site coordinators' beliefs are aligned with the literature and changes are already beginning to take place. The intervening conditions may lead to improved teacher knowledge, teaching, and learning because standardized testing is expanding to incorporate the content area of science. Also workshop site coordinators are trying to set up a variety of opportunities to attend workshops on the same topic throughout the school year. Budgets are being restructured at the school level and district level to incorporate more science content professional development. However, it is too early to show how much improvement there will be in standardized test scores or whether teachers' have a deeper understanding of science content knowledge or effective science instruction.

  3. An introduction to "nudge science".

    PubMed

    White, Ronald F

    2018-01-01

    Let's begin by addressing the most obvious question: given the vast number of books published on political science every year, why would the Association for Politics and the Life Sciences (APLS) and its journal Politics and the Life Sciences expend time, energy, and resources publishing a multiple-author analysis of a series of books that contain little (if anything) about the life sciences, Darwin, or evolution? The answer is that Cass R. Sunstein's recent research on "nudge science" provides an excellent opportunity for APLS to expand its commitment to interdisciplinarity, especially its long-standing interest in behavioral economics. Sunstein, a prolific author, has written many books and scholarly articles defending "libertarian paternalism." Libertarian critics have long argued that the conjunction of "libertarian" and "paternalism" is oxymoronic and that the "liberty principle" or the "principle of autonomy" excludes paternalistic intervention on behalf of rational, competent adults. Over the years, with varying degrees of success, Sunstein has addressed many, if not most, lines of criticism emanating from the political left and right. Like many scholars, his views have evolved over time based on that criticism. This introductory essay will focus on some of the more enduring elements of the conceptual framework and issues that underlie nudge science in the larger context of behavioral economics, including choice architecture, political bans and mandates, political nudges, ethics, and paternalistic intervention.

  4. Rosetta science operations in support of the Philae mission

    NASA Astrophysics Data System (ADS)

    Ashman, Mike; Barthélémy, Maud; O`Rourke, Laurence; Almeida, Miguel; Altobelli, Nicolas; Costa Sitjà, Marc; García Beteta, Juan José; Geiger, Bernhard; Grieger, Björn; Heather, David; Hoofs, Raymond; Küppers, Michael; Martin, Patrick; Moissl, Richard; Múñoz Crego, Claudio; Pérez-Ayúcar, Miguel; Sanchez Suarez, Eduardo; Taylor, Matt; Vallat, Claire

    2016-08-01

    The international Rosetta mission was launched on 2nd March 2004 and after its ten year journey, arrived at its target destination of comet 67P/Churyumov-Gerasimenko, during 2014. Following the January 2014 exit from a two and half year hibernation period, Rosetta approached and arrived at the comet in August 2014. In November 2014, the Philae lander was deployed from Rosetta onto the comet's surface after which the orbiter continued its approximately one and a half year comet escort phase. The Rosetta Science Ground Segment's primary roles within the project are to support the Project Scientist and the Science Working Team, in order to ensure the coordination, development, validation and delivery of the desired science operations plans and their associated operational products throughout the mission., whilst also providing support to the Principle Investigator teams (including the Philae lander team) in order to ensure the provision of adequate data to the Planetary Science Archive. The lead up to, and execution of, the November 2014 Philae landing, and the subsequent Philae activities through 2015, have presented numerous unique challenges to the project teams. This paper discusses these challenges, and more specifically, their impact on the overall mission science planning activities. It details how the Rosetta Science Ground Segment has addressed these issues in collaboration with the other project teams in order to accommodate Philae operations within the continually evolving Rosetta science planning process.

  5. A survey of specific individualized instruction strategies in elementary science methods courses in Tennessee teacher education institutions

    NASA Astrophysics Data System (ADS)

    Hazari, Alan A.

    The purpose of the study was to determine the status of individualized science instruction in Tennessee teacher education institutions. Specifically, the study sought to investigate the extent of teaching about and/or use of 31 strategies for individualizing instruction in elementary science teaching methods courses. The individualized instruction frameworks, with strategies for individualizing instruction, were developed by Rowell, et al. in the College of Education at the University of Tennessee, Knoxville. A review of the literature on the preparation of preservice elementary science teachers for individualized instruction in K-8 classrooms revealed very limited research. This investigation sought to identify how the elementary science teacher educators prepared their preservice elementary science teachers to (1) learn about the children they will teach, (2) determine differences among learners, (3) plan for individualized science instruction in the elementary school classroom, and (4) help attend to individual student differences. The researcher prepared and used a 31-item survey to poll elementary science teacher educators in Tennessee. The participants included K-8 educators from 40 state-approved teacher education institutions. The high teacher education institution response rate (72.5%) brought input from institutions of varying sizes, operated privately or publicly across the state of Tennessee. In general, Tennessee elementary science teacher educators reported that they tended to teach about and/or use a fair number of the 31 individualized instruction strategies that involve both learning about K-8 students and their differences. On the other hand, many of these educators provided preservice teachers with quite a bit of the strategies that lead to planning for individualized science instruction and to attending to individual student differences. The two strategies that were the most taught about and/or used in elementary science methods by Tennessee

  6. Instructional leadership in elementary science: How are school leaders positioned to lead in a next generation science standards era?

    NASA Astrophysics Data System (ADS)

    Winn, Kathleen Mary

    The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.

  7. Elementary Teachers' Perception of Language Issues in Science Classrooms

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    Although the importance of language in science learning has been widely recognized by researchers, there is limited research on how science teachers perceive the roles that language plays in science classrooms. As part of an intervention design project that aimed to enhance teachers' capacity to address the language demands of science, interview…

  8. The Teaching Challenge: Science, Engineering and the Knowledge Economy.

    ERIC Educational Resources Information Center

    Dowling, Patrick

    2001-01-01

    Presents the presidential address delivered to the Association for Science Education (ASE) at its annual meeting held at the University of Surrey, January 2001. Consists of three sections: (1) science and engineering and the knowledge economy; (2) teaching challenge and the role of science teachers; and (3) partnerships to support science,…

  9. Saturday Morning Science programs: a model to increase diversity in the biosciences.

    PubMed

    Phillips, James L; Harris, Toi Blakley; Ihedigbo, Kara M Green; Hawkins, Jacqueline

    2012-01-01

    To examine a pathway program for middle and high school students from underrepresented backgrounds designed to foster career interest in the biomedical sciences. In 2002, the Institute of Medicine released a report entitled Unequal Treatment, which examined the racial and ethnic disparities in health and health care within the United States and encouraged the development of a diverse health care workforce as a means to reduce health care disparities. Saturday Morning Science (SMS) is a program model presented as a pipeline strategy that addresses this specific recommendation. SMS is a 10-week program that emphasized the importance of science and math. Post-SMS evaluations were conducted to assess biomedical career knowledge, attitudes regarding future career plans, and the effectiveness of the program. A total of 87.5% of middle and high school students who were enrolled in SMS completed the program (113 of 130). Seventy percent of SMS participants were underrepresented minorities. Snapshot program evaluation data exposed new ideas about science (strongly agree/agree, 98%; 64 of 65), exposed new ideas about medicine (strongly agree/agree, 97%; 63 of 65, and increased desire to enter science related field (strongly agree/agree 82% (53 of 65). SMS was designed to motivate students of underrepresented ethnic backgrounds from middle through high school to attend college and prepare for careers in the health sciences. SMS students had the opportunity to interact with scientists, physicians, medical and graduate students, and other academicians. They provided direction and guidance to ensure that students had meaningful experiences specifically designed to expose them to opportunities in the biosciences.

  10. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  11. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  12. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.

    2017-12-01

    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe

  13. Next Generation Science Standards: All Standards, All Students

    ERIC Educational Resources Information Center

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  14. The Physics of Life: A Biophysics Course for Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2014-03-01

    Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.

  15. The Cultural Argument for Understanding Nature of Science. A Chance to Reflect on Similarities and Differences Between Science and Humanities

    NASA Astrophysics Data System (ADS)

    Reiners, Christiane S.; Bliersbach, Markus; Marniok, Karl

    2017-07-01

    Understanding Nature of Science (NOS) is a central component of scientific literacy, which is agreed upon internationally, and consequently has been a major educational goal for many years all over the globe. In order to justify the promotion of an adequate understanding of NOS, educators have developed several arguments, among them the cultural argument. But what is behind this argument? In order to answer this question, C. P. Snow's vision of two cultures was used as a starting point. In his famous Rede Lecture from 1959, he complained about a wide gap between the arts and humanities on the one hand and sciences on the other hand. While the representatives of the humanities refer to themselves as real intellectuals, the scientists felt rather ignored as a culture, despite the fact that their achievements had been so important for Western society. Thus, Snow argued that as these intellectual cultures were completely different from each other, a mutual understanding was impossible. The first European Regional IHPST Conference took up the cultural view on science again. Thus, the topic of the conference "Science as Culture in the European Context" encouraged us to look at the two cultures and to figure out possibilities to bridge the gap between them in chemistry teacher education. For this reason, we put together three studies—one theoretical and two independent research projects (one dealing with creativity in science, the other with scientific laws and theories) which contribute to our main research field (promoting an understanding of NOS)—in order to address the cultural argument for understanding science from an educational point of view. Among the consented tenets of what understanding NOS implies in an educational context, there are aspects which are associated mainly with the humanities, like the tentativeness of knowledge, creativity, and social tradition, whereas others seem to have a domain-specific meaning, like empirical evidence, theories and laws

  16. Interdisciplinary team science and the public: Steps toward a participatory team science.

    PubMed

    Tebes, Jacob Kraemer; Thai, Nghi D

    2018-01-01

    Interdisciplinary team science involves research collaboration among investigators from different disciplines who work interdependently to share leadership and responsibility. Although over the past several decades there has been an increase in knowledge produced by science teams, the public has not been meaningfully engaged in this process. We argue that contemporary changes in how science is understood and practiced offer an opportunity to reconsider engaging the public as active participants on teams and coin the term participatory team science to describe public engagement in team science. We discuss how public engagement can enhance knowledge within the team to address complex problems and suggest a different organizing framework for team science that aligns better with how teams operate and with participatory approaches to research. We also summarize work on public engagement in science, describe opportunities for various types of engagement, and provide an example of participatory team science carried out across research phases. We conclude by discussing implications of participatory team science for psychology, including changing the default when assembling an interdisciplinary science team by identifying meaningful roles for public engagement through participatory team science. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. A small field for fertile science: the low visibility of reproductive science in high impact journals.

    PubMed

    Duncan, Francesca E; Derman, Benjamin; Woodruff, Teresa K

    2014-05-01

    Our success as a field and as individuals in reproductive science and medicine relies on our ability to produce high quality work that has broad visibility and impact. A common metric for assessing such success is the quantity of publications that are published in journals with high impact factors. It is unclear, however, how frequently work related to reproductive science and medicine actually appears in what are considered the highest impact journals. To address this gap in knowledge, we first determined how the field of reproductive biology in general compared to other research areas in terms of composite journal impact factor. Second, using a targeted search approach in the PubMed database, we examined the relationship between a journal's impact factor and the number of reproductive research articles published per journal issue. We found that compared to other major scientific disciplines, our field lacks journals with impact factors above 4. In addition, primary original research articles on reproduction-irrespective of male or female search terms-do not appear often in high impact journals. Instead, there is an increased percentage of secondary reproductive literature in high impact journals compared to topic-specific journals of lower impact. There are likely several explanations for why reproductive science and medicine has low visibility, including the field's small relative size, its lack of a specific disease and associated strong advocacy, and its surrounding social, ethical, and political unease. Nevertheless, there are concrete actions we can take to minimize the role of impact factor in our evaluation while simultaneously increasing influence through global awareness of the importance and need for reproductive research.

  18. Technology Needs for the Next Generation of NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2013-01-01

    In-Space propulsion technologies relevant to Mars presentation is for the 14.03 Emerging Technologies for Mars Exploration panel. The talk will address propulsion technology needs for future Mars science missions, and will address electric propulsion, Earth entry vehicles, light weight propellant tanks, and the Mars ascent vehicle. The second panel presentation is Technology Needs for the Next Generation of NASA Science Missions. This talk is for 14.02 Technology Needs for the Next Generation of NASA Science Missions panel. The talk will summarize the technology needs identified in the NAC's Planetary Science Decadal Survey, and will set the stage for the talks for the 4 other panelist.

  19. Addressing spiritual leadership: an organizational model.

    PubMed

    Burkhart, Lisa; Solari-Twadell, P Ann; Haas, Sheila

    2008-01-01

    The Joint Commission requires health systems to address spiritual care. Research indicates that spirituality is associated with better physical, psychological, and social health and that culturally diverse populations and individuals at end-of-life often request spiritual care. The authors report the results of a consensus conference of 21 executives representing 10 large faith-based health systems who discussed the input, process, and outcomes of a corporate model for spiritual leadership. Specific initiatives are highlighted.

  20. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  1. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    ERIC Educational Resources Information Center

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  2. A Comparison of the Attitudes of Spanish and American Secondary Science Teachers toward Global Science and Technology Based Problems/Threats

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Robinson, Mike; Zuza, Kristina

    2007-01-01

    In this study, Spanish and US secondary science teacher data is used to address the relationship between what science teachers teach and the science and technology based environmental problems/threats faced by the world. The results of a two part questionnaire indicated that teachers of both countries are worried about the problem of pollution of…

  3. Mathematics and Science across the Curriculum.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    2002-01-01

    This issue, intended for classroom teachers, provides a collection of essays organized around the theme of mathematics and science across the curriculum as well as a guide to instructional materials related to the theme. Topics addressed in the essays include experiencing mathematics through nature; connecting science, fiction, and real life;…

  4. The Effects of Student Multiple Intelligence Preference on Integration of Earth Science Concepts and Knowledge within a Middle Grades Science Classroom.

    ERIC Educational Resources Information Center

    Cutshall, Lisa Christine

    This research was conducted in an eastern Tennessee 8th grade science classroom with 99 students participating. The action research project attempted to examine an adolescent science student's integration of science concepts within a project-based setting using the multiple intelligence theory. In an effort to address the national science…

  5. The Effects of Using Interactive Student Notebooks and Specific Written Feedback on Seventh Grade Students' Science Process Skills

    ERIC Educational Resources Information Center

    Mallozzi, Floria N.

    2013-01-01

    The purpose of this study was to determine whether the consistent use of metacognitive strategies embedded in an Interactive Student Notebook (ISN) would impact the science process skills of 7th-grade students. In addition, this study explored whether specific teacher written feedback, provided to students in the ISN, further enhanced the use of…

  6. Physical Science Rocks! Outreach for Elementary Students

    ERIC Educational Resources Information Center

    McKone, Kevin

    2010-01-01

    Students at Copiah-Lincoln Community College (Co-Lin) have been hesitant to take courses in the physical sciences, mostly because of a lack of exposure to them in K-12 or a bad experience in this area. The college is addressing this need by exposing students to the physical sciences early on in their education. The science division at Co-Lin has…

  7. Inquiry identity and science teacher professional development

    NASA Astrophysics Data System (ADS)

    Bryce, Nadine; Wilmes, Sara E. D.; Bellino, Marissa

    2016-06-01

    An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often they address teaching practices from limited cognitive perspectives, leaving unexplored the shifts in identity that may accompany teachers along their journey in becoming skilled in inquiry-oriented instruction. In this forum article, we envision Victoria Deneroff's argument that "professional development could be designed to facilitate reflexive transformation of identity within professional learning environments" (2013, p. 33). Instructional coaching, cogenerative dialogues, and online professional communities are discussed as ways to promote inquiry identity formation and collaboration in ways that empower and deepen science teachers' conversations related to personal and professional efficacy in the service of improved science teaching and learning.

  8. Develop, Discuss, and Decide: How New Science Teachers Use Technologies to Advance Their Practice

    NASA Astrophysics Data System (ADS)

    Ellis, Joshua Alexander

    For decades, there has been a nationwide demand to increase the number of science teachers in K-12 education (National Commission on Excellence in Education, 1983; National Research Council [NRC], 2007). This demand is in large part due to increases in state science graduation requirements. Teacher preparation programs have been preparing new science teachers on pace with the resulting increase in demand (Ingersoll & Merrill, 2010), however, shortages have continued as up to 50% of these new teachers leave the profession within their first five years of teaching (Smith & Ingersoll, 2004), creating a "revolving door" phenomenon as districts scramble to address this early attrition with yet more beginning teachers. We need to address what Ingersoll (2012) describes as the "greening" of the teaching force: the fact that an increasingly large segment of the teaching force is comprised of beginning teachers who are at a high risk of leaving the profession. The three related studies that comprise this dissertation focus on the role of technological interventions for in-service and pre-service science teachers. The context for the first two studies is TIN, an online induction program for beginning secondary science teachers. These two studies consider the impact of technological supports on the reflective practice of participating teachers. The design interventions included VideoANT (an online video annotation tool) and Teachers as Leaders roles (a structured response protocol) for the Venture/Vexation online forum activity. The context for the third study is T3-S, a university licensure course for pre-service science teachers designed to explore technology integration in secondary science classrooms. This study investigated the impact of pre-service teacher participation in the creation of an Adventure Learning (AL) environment (Doering, 2006) on their understanding of technological, pedagogical, and content knowledge (TPACK) and its role in their future science

  9. To naturalize or not to naturalize? An issue for cognitive science as well as anthropology.

    PubMed

    Stenning, Keith

    2012-07-01

    Several of Beller, Bender, and Medin's (2012) issues are as relevant within cognitive science as between it and anthropology. Knowledge-rich human mental processes impose hermeneutic tasks, both on subjects and researchers. Psychology's current philosophy of science is ill suited to analyzing these: Its demand for ''stimulus control'' needs to give way to ''negotiation of mutual interpretation.'' Cognitive science has ways to address these issues, as does anthropology. An example from my own work is about how defeasible logics are mathematical models of some aspects of simple hermeneutic processes. They explain processing relative to databases of knowledge and belief-that is, content. A specific example is syllogistic reasoning, which raises issues of experimenters' interpretations of subjects' reasoning. Science, especially since the advent of understandings of computation, does not have to be reductive. How does this approach transfer onto anthropological topics? Recent cognitive science approaches to anthropological topics have taken a reductive stance in terms of modules. We end with some speculations about a different cognitive approach to, for example, religion. Copyright © 2012 Cognitive Science Society, Inc.

  10. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  11. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information Center...

  12. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information Center...

  13. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information Center...

  14. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information Center...

  15. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information Center...

  16. The impact of Life Science Identifier on informatics data.

    PubMed

    Martin, Sean; Hohman, Moses M; Liefeld, Ted

    2005-11-15

    Since the Life Science Identifier (LSID) data identification and access standard made its official debut in late 2004, several organizations have begun to use LSIDs to simplify the methods used to uniquely name, reference and retrieve distributed data objects and concepts. In this review, the authors build on introductory work that describes the LSID standard by documenting how five early adopters have incorporated the standard into their technology infrastructure and by outlining several common misconceptions and difficulties related to LSID use, including the impact of the byte identity requirement for LSID-identified objects and the opacity recommendation for use of the LSID syntax. The review describes several shortcomings of the LSID standard, such as the lack of a specific metadata standard, along with solutions that could be addressed in future revisions of the specification.

  17. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  18. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    NASA Astrophysics Data System (ADS)

    Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans

    2017-05-01

    Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  19. Death Discussion in Science Read-Alouds: Cognitive, Sociolinguistic, and Moral Processes

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.; Reis, Giuliano; Chaize, Daniel O.; Snyder, Michele A.

    2014-01-01

    Little research has been conducted on how to address the complex topic of death when teaching science to children. The present paper addresses this issue by examining how three elementary teachers discuss the death of wild animals during science read-aloud sessions. Our findings reveal the variety of ways in which nonhuman death can be…

  20. Do High-School Students' Perceptions of Science Change When Addressed Directly by Researchers?

    ERIC Educational Resources Information Center

    Simonneaux, Laurence; Albe, Virginie; Ducamp, Christine; Simonneaux, Jean

    2005-01-01

    The Université des Lycéens (University of High-School Students) was set up in France in order to make scientific knowledge more relevant to students and to combat a growing lack of interest in science among students. The scheme involves a series of lectures to students by scientists, each followed by a debate. The organisers hope that putting…