Sample records for addressing ground-water contamination

  1. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  2. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  3. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  4. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  5. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  6. A Technical Guide to Ground-Water Model Selection at Sites Contaminated with Radioactive Substances

    EPA Pesticide Factsheets

    This report addresses the selection of ground-water flow and contaminant transport models and is intended to be used by hydrogeologists and geoscientists responsible for selecting transport models for use at sites containing radioactive materials.

  7. Ground-water contamination near a uranium tailings disposal site in Colorado

    USGS Publications Warehouse

    Goode, Daniel J.; Wilder, Russell J.

    1987-01-01

    Contaminants from uranium tailings disposed of at an active mill in Colorado have seeped into the shallow ground water onsite. This ground water discharges into the Arkansas River Valley through a superposed stream channel cut in the resistant sandstone ridge at the edge of a synclinal basin. In the river valley, seasonal surface-water irrigation has a significant impact on hydrodynamics. Water levels in residential wells fluctuate up to 20 ft and concentrations of uranium, molybdenum, and other contaminants also vary seasonally, with highest concentrations in the Spring, prior to irrigation, and lowest concentrations in the Fall. Results of a simple transient mixing cell model support the hypothesis that lateral ground-water inflow, and not irrigation recharge, is the source of ground-water contamination.

  8. Potential health consequences of ground-water contamination by nitrates in Nebraska.

    PubMed

    Weisenburger, D D

    1993-01-01

    Ground water serves as the primary source of drinking water for nearly all of rural Nebraska. However, ground-water contamination by nitrates, largely due to the use of fertilizers, is an increasing problem. In an ecologic study, the author found that counties characterized by high fertilizer usage and significant ground-water contamination by nitrates also had a high incidence of non-Hodgkin's lymphoma. Other potential health effects of nitrates in drinking water are also discussed.

  9. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  10. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  11. Vulnerability of ground water to contamination, northern Bexar County, Texas

    USGS Publications Warehouse

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most

  12. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  13. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    USGS Publications Warehouse

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.

  14. Remediation of a uranium-contamination in ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woerner, Joerg; Margraf, Sonja; Hackel, Walter

    2007-07-01

    The former production site of NUKEM where nuclear fuel-elements were developed and handled from 1958 to 1988 was situated in the centre of an industrial park for various activities of the chemical and metallurgical industry. The size of the industrially used part is about 300.000 m{sup 2}. Regulatory routine controls showed elevated CHC (Chlorinated Hydro-Carbons) values of the ground water at the beginning of the 1990's in an area which represented about 80.000 m{sup 2} down-gradient of locations where CHC compounds were stored and handled. Further investigations until 1998 proved that former activities on the NUKEM site, like the UF{submore » 6} conversion process, were of certain relevance. The fact that several measured values were above the threshold values made the remediation of the ground water mandatory. This was addressed in the permission given by the Ministry for Nuclear Installations and Environment of Hesse according to chap. 7 of the German atomic law in October 2000. Ground water samples taken in an area of about 5.000 m{sup 2} showed elevated values of total Uranium activity up to between 50 and 75 Bq/l in 2002. Furthermore in an area of another 20.000 m{sup 2} the samples were above threshold value. In this paper results of the remediation are presented. The actual alpha-activities of the ground waters of the remediation wells show values of 3 to 9 Bq/l which are dominated by 80 to 90 % U-234 activity. The mass-share of total Uranium for this nuclide amounts to 0,05% on average. The authority responsible for conventional water utilisation defined target values for remediation: 20 {mu}g/l for dissolved Uranium and 10 {mu}g/l for CHC. Both values have not yet been reached for an area of about 10.000 m{sup 2}. The remediation process by extracting water from four remediation wells has proved its efficiency by reduction of the starting concentrations by a factor of 3 to 6. Further pumping will be necessary especially in that area of the site where

  15. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  16. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  17. Ground Water Issue. BASIC CONCEPTS OF CONTAMINANT SORPTION AT HAZARDOUS WASTE SITES

    EPA Science Inventory

    One of the major issues of concern to the Regional Superfund Ground Water Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. Processes which influence the behavior of contaminants in the subsurface must be considered bot...

  18. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  19. Emerging Technologies for Enhanced In Situ Biodenitrification of Nitrate Contaminated Ground Water

    NASA Astrophysics Data System (ADS)

    Faris, B.; Faris, B.

    2001-05-01

    One of the most pervasive ground water contaminants in the U.S. is nitrate. Traditional technologies for the remediation of nitrate-contaminated ground water are generally costly, lengthy, and often only partly effective. Enhanced in situ biodenitrification (EISBD) is a developing technology for remediating nitrate contaminated ground water and protecting public and domestic supply wells through in situ reduction. Natural denitrification processes have been well understood for some time. However, managing these processes to effectively remediated contaminated ground water in a timely fashion is innovative. EISBD is a remediation technology through which a carbon source (electron donor) is introduced to a nitrate-contaminated aquifer. Since many aquifers are aerobic, indigenous aerobic bacteria utilize the introduced carbon as a food source and oxygen serves as an electron acceptor. Oxygen in the aquifer becomes depleted, forming an anaerobic aquifer. When this occurs and an abundant carbon source is present, indigenous denitrifying bacteria proliferate and reduce nitrate to nitrogen gas through anaerobic respiration. EISBD technology deployments are currently underway for either remediation of sizable nitrate plumes in ground water systems or the reduction of nitrate contaminated ground water around public and/or domestic well fields dedicated to the production of drinking water. Regulatory enforcement of nitrate plumes has been limited. Pollution prevention programs are in place to limit further nitrate contamination, however, once a site becomes contaminated with nitrates above standards, the deployment of remediation technologies is lacking. With the development and further deployment of EISBD technologies, a cost-effective short-term tool is available for nitrate remediation. A multi-disciplinary team of the Interstate Technology Regulatory Cooperation published a Technology Overview guidance document on the emerging technology of EISBD. ITRC is a state

  20. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  1. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 – Technical Basis for Assessment

    EPA Science Inventory

    This document represents the first volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. Vo...

  2. ASSESSING THE ROLE OF NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. The application of this technology is being considered for remediation of inorganic contaminants in ground water at hazardous waste sites. ...

  3. Biofouling of contaminated ground-water recovery wells: Characterization of microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S.W.; Lange, C.R.; Lesold, E.A.

    1997-11-01

    The taxonomy and physiology of microorganisms isolated from contaminated ground-water recovery wells prone to biofouling are characterized for an industrial site in Rochester, New York. Principal aquifer contaminants include acetone, cyclohexane, dichloroethane, dichloromethane, 1,4-dioxane, isopropanol, methanol, and toluene. These contaminants represent a significant fraction (up to 95%) of the total organic carbon in the ground water. Ground-water samples from 12 recovery wells were used to isolate, quantify, and identify aerobic and anaerobic bacterial populations. Samples from selected wells were also characterized geochemically to assess redox conditions and availability of essential and trace nutrients. Dominant bacteria, listed in order of descendingmore » numbers, including sulfate-reducers (Desulfovibrio desulfuricans), anaerobic heterotrophs (Actinomyces, Bacteriodes, Bacillus, Agrobacterium), aerobic heterotrophs (Pseudomonas, Flavobacterium, Nocardia, Citrobacter), iron-oxidizers (Gallionella ferruginea, Crenothrix polyspora), iron-reducers (Shewanella), and sulfur-oxidizers (Thiobacillus ferrooxidans). Fungi were also recovered in low numbers. Both aerobic and anaerobic heterotrophs were able to utilize all principal contaminants as sole carbon and energy sources except 1,4-dioxane. The prevalence of heterotrophic bacteria and their ability to use the available anthropogenic carbon suggests that aerobic and anaerobic heterotrophs contribute to the biofouling of wells at this site, in addition to the often cited fouling due to iron-oxidizing bacteria and sulfate-reducing bacteria.« less

  4. 78 FR 55694 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY: Environmental... draft research report titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by the National Risk Management Research Laboratory, within the...

  5. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  6. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUND WATER: MNA MECHANISMS

    EPA Science Inventory

    This presentation discusses the various mechanisms that are recognized to result in the attenuation of inorganic contaminants in ground water. The presentation will provide details on the contaminant sequestration processes that occur at the mineral-water interface.

  7. 77 FR 19012 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ..., ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... ENVIRONMENTAL PROTECTION AGENCY [FRL-9654-3; Docket ID No. EPA-HQ-ORD-2011-0895] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY: Environmental Protection...

  8. 77 FR 62234 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ..., ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... ENVIRONMENTAL PROTECTION AGENCY [FRL-9741-5; Docket ID No. EPA-HQ-ORD-2011-0895] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY: Environmental Protection...

  9. 77 FR 3770 - Draft Research Report: Investigation of Ground Water Contamination near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... of Ground Water Contamination near Pavillion, Wyoming'' (FRL-9506-7; 76 FR 77829). The draft research... ENVIRONMENTAL PROTECTION AGENCY [FRL-9623-3; EPA-HQ-ORD-2011-0895] Draft Research Report: Investigation of Ground Water Contamination near Pavillion, WY AGENCY: Environmental Protection Agency (EPA...

  10. 78 FR 2396 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ..., ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... ENVIRONMENTAL PROTECTION AGENCY [FRL-9769-5; Docket ID No. EPA-HQ-ORD-2011-0895] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY: Environmental Protection...

  11. Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite

    USGS Publications Warehouse

    Sherrill, Marvin G.

    1977-01-01

    Door County, a recreational and fruit-growing area bordering Lake Michigan in northeastern Wisconsin, has had a long history of ground-water contamination from surface and near-surface sources. Contamination is most severe in late summer when fruit-canning operations and the influx of tourists create additional wastes. Silurian dolomite is the upper bedrock unit in the county and yields generally adequate supplies of very hard water with locally objectionable concentrations of iron and nitrate. Thin soil cover and well-fractured dolomitic bedrock give easy entry to ground-water contaminants throughout large parts of Door County. Many contaminants enter the dolomite by surface or near-surface seepage. There is little attenuation of contamination concentrations in the well-jointed dolomite, and contaminants may travel long distances underground in a relatively short time. The major source of ground-water contamination is bacteria, from individual waste-disposal systems, agricultural, industrial, and municipal wastes. Areas of the county underlain by contaminated zones include only a small percentage of the total ground-water system and are separated by large volumes of ground water free of contamination. (Woodard-USGS)

  12. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    Hult, M.F.

    1984-01-01

    The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less.

  13. Ground water contamination by crude oil near Bemidji, Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Essaid, H.I.; Cozzarelli, I.M.; Lahvis, M.H.; Bekins, B.A.

    1998-01-01

    Ground-water contamination by crude oil, and other petroleum-based liquids, is a widespread problem. An average of 83 crude-oil spills occurred per year during 1994-96 in the United States, each spilling about 50,000 barrels of crude oil (U.S. Office of Pipeline Safety, electronic commun., 1997). An understanding of the fate of organic contaminants (such as oil and gasoline) in the subsurface is needed to design innovative and cost-effective remedial solutions at contaminated sites.

  14. Probabilistic Modeling for Risk Assessment of California Ground Water Contamination by Pesticides

    NASA Astrophysics Data System (ADS)

    Clayton, M.; Troiano, J.; Spurlock, F.

    2007-12-01

    The California Department of Pesticide Regulation (DPR) is responsible for the registration of pesticides in California. DPR's Environmental Monitoring Branch evaluates the potential for pesticide active ingredients to move to ground water under legal agricultural use conditions. Previous evaluations were primarily based on threshold values for specific persistence and mobility properties of pesticides as prescribed in the California Pesticide Contamination Prevention Act of 1985. Two limitations identified with that process were the univariate nature where interactions of the properties were not accounted for, and the inability to accommodate multiple values of a physical-chemical property. We addressed these limitations by developing a probabilistic modeling method based on prediction of potential well water concentrations. A mechanistic pesticide transport model, LEACHM, is used to simulate sorption, degradation and transport of a candidate pesticide through the root zone. A second empirical model component then simulates pesticide degradation and transport through the vadose zone to a receiving ground water aquifer. Finally, degradation during transport in the aquifer to the well screen is included in calculating final potential well concentrations. Using Monte Carlo techniques, numerous LEACHM simulations are conducted using random samples of the organic carbon normalized soil adsorption coefficients (Koc) and soil dissipation half-life values derived from terrestrial field dissipation (TFD) studies. Koc and TFD values are obtained from gamma distributions fitted to pooled data from agricultural-use pesticides detected in California ground water: atrazine, simazine, diuron, bromacil, hexazinone, and norflurazon. The distribution of predicted well water concentrations for these pesticides is in good agreement with concentrations measured in domestic wells in coarse, leaching vulnerable soils of Fresno and Tulure Counties. The leaching potential of a new

  15. Metrics for Nitrate Contamination of Ground Water at CAFO Land Application Site - Arkansas Dairy Study

    EPA Science Inventory

    Nitrate is the most common chemical contaminant found in ground water. Recent research by U.S. EPA has shown that land application of manure can cause nitrate contamination of ground water above the maximum contaminant levels (MCLs) of 10 mg NO3-N/ L at significant depths. This...

  16. REMEDIATION AND PROTECTION OF GROUND WATER FROM CONTAMINATION BY ARSENIC

    EPA Science Inventory

    Successful prevention of public exposure to arsenic in ground-water resources impacted by natural sources or contaminated sites is dependent on scientifically-based strategies for site remediation and water resource management. Research within the National Risk Management Resear...

  17. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  18. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site- An introduction: Chapter A in Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    1984-01-01

    The U.S. Geological Survey has begun a research project to improve understanding of the mobilization, transport, and fate of petroleum contaminants in the shallow subsurface and to use this understanding to develop predictive models of contaminant behavior. The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less. 

  19. CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUND SITES

    EPA Science Inventory

    Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as “Superfund” sites. A review of Superfund R...

  20. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology

    USGS Publications Warehouse

    Chapelle, F.H.

    1999-01-01

    Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined

  1. SPATIAL AND TEMPORAL DYNAMICS IN ARSENIC SPECIATION ACROSS THE GROUND WATER-SURFACE WATER TRANSITION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...

  2. Studies examine contaminants: Pharmaceuticals, hormones and other organic wastewater contaminants in ground water resources

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Kolpin, Dana W.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Focazio, Michael J.

    2005-01-01

    Ground water provides approximately 40 percent of the nation’s public water supply, and the total percentage of withdrawals for irrigation has increased from 23 percent in 1950 to 42 percent in 2000. Ground water also is a major contributor to flow in many streams and rivers in the United States and has a substantial influence on river and wetland habitats for plants and animals. Organic wastewater contaminants (OWCs) in the environment recently have been documented to be of global concern with a variety of sources and source pathways.

  3. SAMPLING PROTOCOLS TO SUPPORT CLEANUP DECISIONS FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...

  4. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water

    EPA Pesticide Factsheets

    Reductive dehalogenation is a process which may prove to be of paramount importance in dealing with a particularly persistent class of contaminants often found in soil and ground water at superfund sites.

  5. Exposure Through Runoff and Ground Water Contamination Differentially Impact Behavior and Physiology of Crustaceans in Fluvial Systems.

    PubMed

    Steele, Alexandra N; Belanger, Rachelle M; Moore, Paul A

    2018-06-19

    Chemical pollutants enter aquatic systems through numerous pathways (e.g., surface runoff and ground water contamination), thus associating these contaminant sources with varying hydrodynamic environments. The hydrodynamic environment shapes the temporal and spatial distribution of chemical contaminants through turbulent mixing. The differential dispersal of contaminants is not commonly addressed in ecotoxicological studies and may have varying implications for organism health. The purpose of this study is to understand how differing routes of exposure to atrazine alter social behaviors and physiological responses of aquatic organisms. This study used agonistic encounters in crayfish Orconectes virilis as a behavioral assay to investigate impact of sublethal concentrations of atrazine (0, 40, 80, and 160 µg/L) delivered by methods mimicking ground water and surface runoff influx into flow-through exposure arenas for a total of 23 h. Each experimental animal participated in a dyadic fight trial with an unexposed opponent. Fight duration and intensity were analyzed. Experimental crayfish hepatopancreas and abdominal muscle tissue samples were analyzed for cytochrome P450 and acetylcholinesterase levels to discern mechanism of detoxification and mode of action of atrazine. Atrazine delivered via runoff decreased crayfish overall fight intensity and contrastingly ground water delivery increased overall fight intensity. The behavioral differences were mirrored by increases in cytochrome P450 activity, whereas no differences were found in acetylcholinesterase activity. This study demonstrates that method of delivery into fluvial systems has differential effects on both behavior and physiology of organisms and emphasizes the need for the consideration of delivery pathway in ecotoxicological studies and water-impairment standards.

  6. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Projectmore » at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.« less

  8. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  9. Movement and fate of creosote waste in ground water, Pensacola, Florida; U.S. Geological Survey toxic waste--ground-water contamination program

    USGS Publications Warehouse

    Mattraw, H. C.; Franks, B.J.

    1984-01-01

    In 1983, the U.S. Geological Survey, Office of Hazardous Waste Hydrology, selected the former American Creosote Works site near Pensacola, Florida as a national research demonstration area. Seventy-nine years (1902-81) of seepage from unlined discharge impoundments had released creosote, diesel fuel, and pentachlorophenol (since 1950) wastes into the ground-water system. A cluster of from 2 to 5 wells constructed at different depths at 9 sites yielded water which revealed contamination 600 feet downgradient and to a depth of 100 feet below land surface near the site. The best cross-sectional representation of the contaminant plume was obtained from samples collected and analyzed for oxidation-reduction sensitive inorganic chemical constituents. Energy dispersive x-ray fluorescence detected recently formed iron carbonate in soil samples from highly reducing ground-water zones. Approximately eighty specific organic contaminants were isolated from ground-water samples by gas-chromotography/mass spectrometry. Column studies indicate the dimethyl phenols are not sorbed or degraded by the sand-and-gravel aquifer materials. Five of nineteen individual phenolic and related compounds are biodegradable based on anaerobic digestor experiments with ACW site bacterial populations. The potential impacts in the nearby Pensacola Bay biotic community are being evaluated. (USGS)

  10. Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water ecosystems

    USGS Publications Warehouse

    Godsy, E. Michael; Goerlitz, Donald; Grbic-Galic, Dunja

    1992-01-01

    Wastes from a wood preserving plant in Pensacola, Florida have contaminated the near-surface sand-and-gravel aquifer with creosote-derived compounds and pentachlorophenol. Contamination resulted from the discharge of plant waste waters to and subsequent seepage from unlined surface impoundments that were in direct hydraulic contact with the ground water. Two distinct phases resulted when the creosote and water mixed: a denser than water hydrocarbon phase that moved vertically downward, and an organic-rich aqueous phase that moved laterally with the ground-water flow. The aqueous phase is enriched in organic acids, phenolic compounds, single- and double-ring nitrogen, sulfur, and oxygen containing compounds, and single- and double-ring aromatic hydrocarbons. The ground water is devoid of dissolved O2, is 60-70% saturated with CH4 and contains H2S. Field analyses document a greater decrease in concentration of organic fatty acids, benzoic acid, phenol, 2-, 3-, 4-methylphenol, quinoline, isoquinoline, 1(2H)-quinolinone, and 2(1H)-isoquinolinone during downgradient movement in the aquifer than could be explained by dilution and/or dispersion. Laboratory microcosm studies have shown that within the study region, this effect can be attributed to microbial degradation to CH4 and CO2. A small but active methanogenic population was found on sediment materials taken from highly contaminated parts of the aquifer.

  11. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  12. Investigation of Health Effects According to the Exposure of Low Concentration Arsenic Contaminated Ground Water

    PubMed Central

    Hong, Young-seoub; Ye, Byeong-jin; Kim, Yu-mi; Kim, Byoung-gwon; Kang, Gyeong-hui; Kim, Jeong-jin; Song, Ki-hoon; Kim, Young-hun

    2017-01-01

    Recent epidemiological studies have reported adverse health effects, including skin cancer, due to low concentrations of arsenic via drinking water. We conducted a study to assess whether low arsenic contaminated ground water affected health of the residents who consumed it. For precise biomonitoring results, the inorganic (trivalent arsenite (As III) and pentavalent arsenate (As V)) and organic forms (monomethylarsonate (MMA) and dimethylarsinate (DMA)) of arsenic were separately quantified by combining high-performance liquid chromatography and inductively coupled plasma mass spectroscopy from urine samples. In conclusion, urinary As III, As V, MMA, and hair arsenic concentrations were significantly higher in residents who consumed arsenic contaminated ground water than control participants who consumed tap water. But, most health screening results did not show a statistically significant difference between exposed and control subjects. We presume that the elevated arsenic concentrations may not be sufficient to cause detectable health effects. Consumption of arsenic contaminated ground water could result in elevated urinary organic and inorganic arsenic concentrations. We recommend immediate discontinuation of ground water supply in this area for the safety of the residents. PMID:29186890

  13. 76 FR 77829 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by the National... ENVIRONMENTAL PROTECTION AGENCY [FRL-9506-7; Docket ID No. EPA-HQ-ORD-2011-0895] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY: Environmental...

  14. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determinemore » what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.« less

  16. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFee, J.; Langsted, J.; Young, M.

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc.,more » was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)« less

  17. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped for water by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 3 to 6 feet per day. Hydraulic conductivities in the aquifer range from 85 to 150 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical anlayses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station to East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward East Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 micrograms per liter; toluene, 55,500 micrograms per liter; xylene, 3,900 micrograms per liter; tetrachloroethylene, 3,410 micrograms per liter; and bis (2-ethyl hexyl) phthalate, 2,100 micrograms per liter. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing, as much as 1,100 micrograms per kilogram of tetrachloroethylene and 1,500 micrograms per kilogram of bis (2-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates, were found.

  18. Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  19. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  20. Microbial transformations of azaarenes in creosite-contaminated soil and ground water: Laboratory and field studies

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Updegraff, D.M.; Bennett, J.L.

    1988-01-01

    Azaarenes or aromatic nitrogen heterocycles are a class of compounds found in wood-preservative wastes containing creosote. The fate and movement of these compounds in contaminated aquifers is not well understood. Water-quality studies in an aquifer contaminated with creosote near Pensacola, Florida, indicated that ground water was contaminated with several azaarenes and their oxygenated and alkylated derivatives, suggesting that these oxygenated compounds may be products of microbial transformation reactions. Accordingly, laboratory studies were designed to investigate the fate of these compounds. Under aerobic conditions, soil pseudomonads isolated from creosote-contaminated soil converted quinoline to 2(1H)quinoline that subsequently was degraded to unknown products. A methanogenic consortium isolated from an anaerobic sewage digestor, in presence of ground-water and creosote-contaminated soil, converted quinoline, isoquinoline, and 4-methylquinoline to their respective oxygenated analogs. In addition, N-, C-, and O-methylated analogs of oxygenated azaarenes were identified by gas chromatography-mass spectrometry (GC-MS) in aerobic cultures. Under the experimental conditions, 2-methylquinoline was biorefractory. Presence of similar biotransformation products in anaerobic cultures and contaminated ground water from the Pensacola site provided further evidence that these compounds indeed were mivrobial transformation products. Stable isotope labeling studies indicated that the source of the oxygen atom for this hydroxylation reaction under aerobic and anaerobic conditions was water. A mechanism was proposed for this hydroxylation reaction. Whereas parent azaarenes are biodegradable in both anaerobic and aerobic zones, oxygenated and alkylated analogs are more biorefractory and, hence, persistent in anaerobic zones of contaminated aquifers.

  1. WORKSHOP ON MONITORED NATURAL ATTENUATION OF INORGANIC CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The Office of Research and Development (ORD) has developed a one-day seminar to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. These sem...

  2. Contamination of surface, ground, and drinking water from pharmaceutical production.

    PubMed

    Fick, Jerker; Söderström, Hanna; Lindberg, Richard H; Phan, Chau; Tysklind, Mats; Larsson, D G Joakim

    2009-12-01

    Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these microcontaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. The present study investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from approximately 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of 12 pharmaceuticals with liquid chromatography-mass spectrometry. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine, and citalopram were detected at more than 1 microg/L in several wells. Very high concentrations of ciprofloxacin (14 mg/L) and cetirizine (2.1 mg/L) were found in the effluent of the treatment plant, together with high concentrations of seven additional pharmaceuticals. Very high concentrations of ciprofloxacin (up to 6.5 mg/L), cetirizine (up to 1.2 mg/L), norfloxacin (up to 0.52 mg/L), and enoxacin (up to 0.16 mg/L) were also detected in the two lakes, which clearly shows that the investigated area has additional environmental sources of insufficiently treated industrial waste. Thus, insufficient wastewater management in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory

  3. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    EPA Pesticide Factsheets

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  4. SITE CHARACTERIZATION TO SUPPORT MODEL DEVELOPMENT FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  5. Optimization Review: Ogallala Ground Water Contamination Superfund Site, Operable Unit 2 (Tip Top Cleaners), Ogallala, Nebraska

    EPA Pesticide Factsheets

    The Ogallala Ground Water Contamination Superfund site was identified in 1989 through municipal well sampling. Tetrachloroethene (PCE), a solvent commonly used in dry cleaner operations, was the primary ground water target chemical of concern (COC) that..

  6. Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85

    USGS Publications Warehouse

    Cummings, T.R.; Twenter, F.R.

    1986-01-01

    Continued study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene in ground water in the central part of the most contaminated area from a range of 1,000 to 2,000 micrograms per liter to about 200 micrograms per liter. Trichloroethylene is not escaping off-Base from this area. In the southern part of the Base a plume containing principally trichloroethylene and dichloroethylene has been delineated along Mission Drive. Maximum concentrations observed were 5,290 micrograms per liter of trichloroethylene and 1,480 micrograms per liter of dichloroethylene. Hydrologically suitable sites for purge wells are identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area, delineated in earlier work, lias shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water table. It is thought to originate from a spill that occurred several years ago. A more thorough definition of contaminants in the northern landfill area has permitted a determination of the most hydrologically suitable sites for purge wells. In general, Concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of trichloroethylene have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of trichloroethylene

  7. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  8. COPPER COMPLEXATION BY NATURAL ORGANIC MATTER IN CONTAMINATED AND UNCOMTAINATED GROUND WATER

    EPA Science Inventory

    Ground-water samples were collected from an uncontaminated and a contaminated site. Copper complexation was characterized by ion-selective electrode (ISE), fluorescence quenching (FQ), and cathodic stripping voltammetric (CSV) titrations. All of the samples were titrated at their...

  9. Vulnerability of ground water to contamination, Edwards Aquifer recharge zone, Bexar County, Texas, 1998

    USGS Publications Warehouse

    Clark, Allan K.

    2000-01-01

    The Edwards aquifer, one of the most productive carbonate-rock aquifers in the Nation, is composed of the Kainer and Person Formations of the Edwards Group plus the overlying Georgetown Formation. Most recharge to the Edwards aquifer results from the percolation of streamflow loss and the infiltration of precipitation through porous parts of the recharge zone. Residential and commercial development is increasing, particularly in Bexar County in south-central Texas, atop the densely fractured and steeply faulted recharge zone. The increasing development has increased the vulnerability of ground water to contamination by spillage or leakage of waste materials, particularly fluids associated with urban runoff and (or) septic-tank leachate. This report describes a method of assessing the vulnerability of ground water to contamination in the Edwards aquifer recharge zone. The method is based on ratings of five natural features of the area: (1) hydraulic properties of outcropping hydrogeologic units; (2) presence or absence of faults; (3) presence or absence of caves and (or) sinkholes; (4) slope of land surface; and (5) permeability of soil. The sum of the ratings for the five natural features was used to develop a map showing the recharge zone's vulnerability to ground-water contamination.

  10. Degradation of phenolic contaminants in ground water by anaerobic bacteria: St. Louis Park, Minnesota

    USGS Publications Warehouse

    Ehrlich, G.G.; Goerlitz, D.F.; Godsy, E.M.; Hult, M.F.

    1982-01-01

    Coal-tar derivatives from a coal-tar distillation and wood-treating plant that operated from 1918 to 1972 at St. Louis Park, Minnesota contaminated the near-surface ground water. Solutions of phenolic compounds and a water-immiscible mixture of polynuclear aromatic compounds accumulated in wetlands near the plant site and entered the aquifer. The concentration of phenolic compounds in the aqueous phase under the wetlands is about 30 mg/1 but decreases to less than 0.2 mg/1 at a distance of 430 m immediately downgradient from the source. Concentrations of naphthalene (the predominant polynuclear compound in the ground water) and sodium (selected as a conservative tracer) range from about 20 mg/1 and 430 mg/1 in the aqueous phase at the source to about 2 mg/1 and 120 mg/1 at 430 m downgradient, respectively. Phenolic compounds and naphthalene are disappearing faster than expected if only dilution were occurring. Sorption of phenolic compounds on aquifer sediments is negligible but naphthalene is slightly sorbed. Anaerobic biodegradation of phenolic compounds is primarily responsible for the observed attenuation. Methane was found only in water samples from the contaminated zone (2-20 mg/1). Methane-producing bacteria were found only in water from the contaminated zone. Methane was produced in laboratory cultures of contaminated water inoculated with bacteria from the contaminated zone. Evidence for anaerobic biodegradation of naphthalene under either field or laboratory conditions was not obtained.

  11. ARSENIC CYCLING WITHIN THE WATER COLUMN OF A SMALL LAKE RECEIVING CONTAMINATED GROUND WATER DISCHARGE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...

  12. Effects of land use on ground-water quality in central Florida; preliminary results, US Geological Survey Toxic Waste-Ground Water Contamination Program

    USGS Publications Warehouse

    Rutledge, A.T.

    1987-01-01

    Groundwater is the principal source of drinking water in central Florida. The most important hydrogeologic unit is the Floridan aquifer system, consisting of fractured limestone and dolomite limestone. Activities of man in areas of recharge to the Floridian aquifer system that may be affecting groundwater quality include: (1) the use of drainage wells for stormwater disposal in urban areas, (2) the use of pesticides and fertilizers in citrus groves, and (3) the mining and processing of phosphate ore in mining areas. Preliminary findings about the impacts of these land uses on ground-water quality by comparison with a fourth land use representing the absence of human activity in another area of recharge are presented. Drainage wells convey excess urban stormwater directly to the Upper Floridian aquifer. The volatile organic compounds are the most common contaminants in ground water. Trace elements such as chromium and lead are entering the aquifer but their movement is apparently attenuated by precipitation reactions associated with high pH or by cation-exchange reactions. Among the trace elements and organic chemicals, most ground-water contamination in citrus production areas is caused by pesticides, which include the organic compounds simazine, ametryne, chlordane, DDE , bromacil, aldicarb, EDB, trifluralin, and diazinon, and the trace elements zinc and copper; other contaminants include benzene, toluene, napthalene, and indene compounds. In the phosphate mining area, constituents of concern are arsenic, selenium, and mercury, and secondarily lead, chromium, cadmium, and others. Organic compounds such as fluorene, naphthalene, di-n-butyl phthalate, alkylated benzenes and naphthalenes, and indene compounds also are entering groundwater. (Author 's abstract)

  13. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  14. Designing a monitoring network for contaminated ground water in fractured chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nativ, R.; Adar, E.M.; Becker, A.

    1999-01-01

    One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholesmore » were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.« less

  15. Metrics for Nitrate Contamination of Ground Water at CAFO Land Application Site - Iowa Swine Study

    EPA Science Inventory

    Nitrate (NO3-) is the most common chemical contaminant found in ground water and there are increasing indications that agriculture contributes to this contamination. In the United States, concentrated animal feeding operations (CAFO) are a common agricultural practice. CAFO lea...

  16. Hydrogeologic Characteristics of the St. Croix River Basin, Minnesota and Wisconsin: Implications for the Susceptibility of Ground Water to Potential Contamination

    USGS Publications Warehouse

    Juckem, Paul F.

    2007-01-01

    Population growth in the St. Croix River Basin in Minnesota and Wisconsin has intensified concerns of county resource managers and the National Park Service, which is charged with protecting the St. Croix National Scenic Riverway, about the potential for ground-water contamination in the basin. This report describes a previously developed method that was adapted to illustrate potential ground-water-contamination susceptibility in the St. Croix River Basin. The report also gives an estimate of ground-water-residence time and surface-water/ground-water interaction as related to natural attenuation and movement of contaminants in five tributary basins. A ground-water-contamination-susceptibility map was adapted from a state-wide map of Wisconsin to the St. Croix River Basin by use of well-driller construction records and regional maps of aquifer properties in Minnesota and Wisconsin. Measures of various subsurface properties were combined to generate a spatial index of susceptibility. The subjective index method developed for the State of Wisconsin by Schmidt (1987) was not derived from analyses of water-quality data or physical processes. Nonetheless, it was adapted for this report to furnish a seamless map across state boundaries that would be familiar to many resource managers. Following this method, areas most susceptible to contamination appear to have coarse-grained sediments (sands or gravels) and shallow water tables or are underlain by carbonate-bedrock aquifers. The least susceptible areas appear to have fine-grained sediments and deep water tables. If an aquifer becomes contaminated, the ground-water-residence time can affect potential natural attenuation along the ground-water-flow path. Mean basin ground-water-residence times were computed for the Apple, Kettle, Kinnickinnic, Snake and Sunrise River Basins, which are tributary basins to the St. Croix Basin, by use of average aquifer properties of saturated thickness, porosity, and recharge rates. The

  17. Phosphorus in a ground-water contaminant plume discharging to Ashumet Pond, Cape Cod, Massachusetts, 1999

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.; Walter, Donald A.; Hess, Kathryn M.; Kent, Douglas B.; Smith, Richard L.

    2003-01-01

    The discharge of a plume of sewagecontaminated ground water emanating from the Massachusetts Military Reservation to Ashumet Pond on Cape Cod, Massachusetts, has caused concern about excessive loading of nutrients, particularly phosphorus, to the pond. The U.S. Air Force is considering remedial actions to mitigate potentially adverse effects on the ecological characteristics of the pond from continued phosphorus loading. Concentrations as great as 3 milligrams per liter of dissolved phosphorus (as P) are in ground water near the pond's shoreline; concentrations greater than 5 milligrams per liter of phosphorus are in ground water farther upgradient. Temporary drive-point wells were used to collect water samples from 2 feet below the pond bottom to delineate concentration distributions in the pore waters of the pond-bottom sediments. Measurements in the field of specific conductance and colorimetrically determined orthophosphate concentrations provided real-time data to guide the sampling. The contaminant plume discharges to the Fishermans Cove area of Ashumet Pond as evidenced by elevated levels of specific conductance and boron, which are chemically conservative indicators of the sewage-contaminated ground water. Concentrations of nonconservative species, such as dissolved phosphorus, manganese, nitrate, and ammonium, also were elevated above background levels in ground water discharging to the pond, but in spatially complex distributions that reflect their distributions in ground water upgradient of the pond. Phosphorus concentrations exceeded background levels (greater than 0.10 milligram per liter) in the pond-bottom pore water along 875 feet of shoreline. Greatest concentrations (greater than 2 milligrams per liter) occurred within 30 feet of the shore in an area about 225 feet long. Calculations of phosphorus flux in the aquifer upgradient of Ashumet Pond, as determined from water-flux estimates from a steady-state ground-water-flow model and phosphorus

  18. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent.

    PubMed

    Naga Babu, A; Reddy, D Srinivasa; Kumar, G Suresh; Ravindhranath, K; Krishna Mohan, G V

    2018-07-15

    Water pollution by industrial and anthropogenic actives has become a serious threat to the environment. World Health Organization (WHO) has identified that lead and fluoride amid the environmental pollutants are most poisonous water contaminants with devastating impact on the human race. The present work proposes a study on economical bio-adsorbent based technique using exhausted coffee grounds in the removal of lead and fluoride contaminants from water. The exhausted coffee grounds gathered from industrial wastes have been acid-activated and examined for their adsorption capacity. The surface morphology and elemental characterization of pre-and-post adsorption operations by FESEM, EDX and FTIR spectral analysis confirmed the potential of the exhausted coffee ground as successful bio-sorbent. However, thermodynamic analysis confirmed the adsorption to be spontaneous physisorption with Langmuir mode of homogenous monolayer deposition. The kinetics of adsorption is well defined by pseudo second order model for both lead and fluoride. A significant quantity of lead and fluoride is removed from the synthetic contaminated water by the proposed bio-sorbent with the respective sorption capabilities of 61.6 mg/g and 9.05 mg/g. However, the developed bio-sorbent is also recyclable and is capable of removing the lead and fluoride from the domestic and industrial waste-water sources with an overall removal efficiency of about 90%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    EPA Science Inventory

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  20. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  1. Monitored Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium

    EPA Science Inventory

    This document represents the second volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. V...

  2. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water – Technical Report Series

    EPA Science Inventory

    This presentation will cover the development and content of new EPA Technical Resource Documents on the application of monitored natural attenuation for inorganic contaminants in ground water. This presentation discusses the various mechanisms that are recognized to result in th...

  3. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30more » percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.« less

  4. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  5. Determining sources of water and contaminants to wells in a carbonate aquifer near Martinsburg, Blair County, Pennsylvania, by use of geochemical indicators, analysis of anthropogenic contaminants, and simulation of ground-water flow

    USGS Publications Warehouse

    Lindsey, Bruce D.; Koch, Michele L.

    2004-01-01

    Water supply for the Borough of Martinsburg, Pa., is from two well fields (Wineland and Hershberger) completed in carbonate-bedrock aquifers in the Morrison Cove Valley. Water supply is plentiful; however, waters with high concentrations of nitrate are a concern. This report describes the sources of water and contaminants to the supply wells. A review of previous investigations was used to establish the aquifer framework and estimate aquifer hydraulic properties. Aquifer framework and simulation of ground-water flow in a 25-square-mile area using the MODFLOW model helped to further constrain aquifer hydraulic properties and identify water-source areas in the zone of contribution of ground water to the well fields. Flow simulation identified potential contaminant-source areas. Data on contaminants and geochemical characteristics of ground water at the well fields were compared to the results of flow simulation. The Woodbury Anticline controls the aquifer framework near the well fields and four carbonate-bedrock formations contain the primary aquifers. Three carbonate-bedrock aquifers of Ordovician age overlie the Gatesburg aquifer of Cambrian age on the flanks of the anticline. Fracture, not conduit, permeability was determined to be the dominant water-bearing characteristic of the bedrock. The horizontal hydraulic conductivity of the Gatesburg aquifer is about 36 feet per day. The other carbonate aquifers (Nittany/Stonehenge, Bellefonte/Axemann, and Coburn through Loysburg aquifers) overlying and flanking the Gatesburg aquifer have horizontal hydraulic conductivities of about 1 foot per day. Regional directions of ground-water flow are toward the major streams with Clover Creek as the major discharge point for ground water in the east. Ground-water flow to the well fields is anisotropic with a 5:1 preferential horizontal direction along strike of the axial fold of the anticline. Thus, the zone of contribution of ground water to the well fields is elongate in a

  6. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifermore » caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow.« less

  7. Ground-water resources and contamination at Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Islands, 1990-91

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1996-01-01

    A study was conducted on Roi-Namur Island, Kwajalein Atoll to define the extent of the freshwater lenses and recharge zones and to asses potential contaminant migration from known sources of contamination. Rainfall, which is the sole natural source of freshwater, is strongly seasonal and occasional multi-year droughts are capable of disrupting the island's water supply. The supply of freshwater is produced by a joint system of rain catchments and shallow wells. From 1980-91, rain- catchment yield and ground-water withdrawal average 22,632 and 5,829 gallons per day, respectively. Maps were produced showing the areal extent of freshwater, the thickness of the freshwater lenses, the water-table configuration and directions of ground-water flow, and contamination sites and potential migration pathways of contaminants. Sectional views of freshwater lens thicknesses and seasonal freshwater lens thickness changes were also constructed. The freshwater lens attains a maximum thickness of 23 feet beneath the central area of Roi where recharge is high. The estimated amount of water in the lenses with chloride concentrations less than 250 milligrams per liter underlying Roi and Namur is 226 million and 4.2 million gallons, respectively. The presence of thick vegetation on Namur increases evapotranspiration losses significantly producing a smaller freshwater lens. Freshwater thicknesses shrank and expanded in a seasonal cycle as much as 3 feet near withdrawal wells. The water table forms broad mounds beneath Roi and Namur and freshwater heads reach a maximum of 1.4 feet. Most known sites of contamination lie near the periphery of the island where ground-water flow patterns will carry contaminants away from the withdrawal wells toward the shore.

  8. Aldicarb-pesticide contamination of ground water in eastern Suffolk County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian; Stelz, W.G.

    1984-01-01

    Aldicarb, a toxic oxime-carbamate pesticide that was believed incapable of reaching ground water, was used in potato-farming areas of eastern Suffolk County, New York during 1975-80. In 1979, aldicarb was found in substantial concentrations in ground water throughout the area. The New York State Department of Health set a limit of 7 micrograms per liter for aldicarb in drinking water. Extensive ground-water sampling into 1980 showed widespread contamination ranging from small amounts to as much as 515 micrograms per liter. In 1980, the U.S. Environmental Protection Agency banned the use of aldicarb on Long Island at the manufacturer 's request. A 1982 sampling study found aldicarb to have penetrated to about 40 feet below the water table in concentrations ranging from below detection limit to 239 micrograms per liter. Despite reputed toxicity, no instance of aldicarb poisoning on Long Island has been documented. The excessive aldicarb concentrations in the ground water of eastern Long Island may persist for decades; the duration has not been precisely determined and remains under investigation. (USGS)

  9. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  10. Susceptibility of ground water to surface and shallow sources of contamination in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1996-01-01

    Ground water, because of its extensive use in agriculture, industry, and public-water supply, is one of Mississippi's most important natural resources.  Ground water is the source for about 80 percent of the total freshwater used by the State's population (Solley and others, 1993).  About 2,600 Mgal/d of freshwater is withdrawn from aquifers in Mississippi (D.E. Burt, Jr., U.S. Geological Survey, oral commun., 1995).  Wells capable of yielding 200 gal/min of water with quality suitable for most uses can be developed nearly anywhere in the State (Bednar, 1988).  The U.S. Geological Survey (USGS), in cooperation with the Mississippi Department of Environmental Quality, Office of Pollution Control, and the Mississippi Department of Agriculture and Commerce, Bureau of Plant Industry, conducted an investigation to evaluate the susceptibility of ground water to contamination from surgace and shallow sources in Mississippi.  A geographic information system (GIS) was used to develop and analyze statewide spatial data layers that contain geologic, hydrologic, physiographic, and cultural information.

  11. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  12. Ground Water Rule - Boil Water Advisory - Public Notification Template

    EPA Pesticide Factsheets

    The Ground Water Rule - Boil Water Advisory - Public Notification Template can be use to issue a Tier 1 Public Notification when it has been determined that source ground water is contaminated with E. Coli bacteria.

  13. Hydrogeology, ground-water quality, and potential for water-supply contamination near the Shelby County landfill in Memphis, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Mirecki, J.E.

    1992-01-01

    An investigation was conducted from 1989 to 1991 to collect and interpret hydrogeologic and ground-water-quality data specific to the Shelby County landfill in east Memphis, Tennessee. Eighteen wells were installed in the alluvial and Memphis aquifers at the landfill. Hydrogeologic data collected showed that the confining unit separating the alluvial aquifer from the Memphis aquifer was thin or absent just north of the landfill and elsewhere consists predominantly of fine sand and silt with lenses of clay. A water-table map of the landfill vicinity confirms the existence of a depression in the water table north and northeast of the landfill and indicates that ground water flows northeast from the Wolf River passing beneath the landfill toward the depression in the water table. A map of the potentiometric surface of the Memphis aquifer shows that water levels were anomalously high just north of the landfill, indicating downward leakage of water from the alluvial aquifer to the Memphis aquifer. An analysis of water-quality data for major and trace inorganic constituents and nutrients confirms that leachate from the landfill has migrated northeastward in the alluvial aquifer toward the depression in the water table and that contaminants in the alluvial aquifer have migrated downward into the Memphis aquifer. The leachate plume can be characterized by concentrations of certain major and trace inorganic constituents that are 2 to 20 times higher than samples from upgradient and background alluvial aquifer wells. The major and trace constituents that best characterize the leachate plume are total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, iodide, barium, strontium, boron, and cadmium. Several of these constituents (specifically dissolved solids, calcium, sodium, and possibly ammonia nitrogen, chloride, barium, and strontium) were detected in elevated concentrations in samples from certain Memphis aquifer wells. Elevated

  14. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    NASA Astrophysics Data System (ADS)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without

  15. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  16. In-Situ Bioremediation of Contaminated Ground Water

    EPA Pesticide Factsheets

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing ...

  17. Biogeochemical assessment of natural attenuation of JP-4-contaminated ground water in the presence of fluorinated surfactants.

    PubMed

    Levine, A D; Libelo, E L; Bugna, G; Shelley, T; Mayfield, H; Stauffer, T B

    1997-12-22

    The biogeochemistry of the natural attenuation of petroleum-contaminated ground water was investigated in a field study. The focus of the study was a fire training site located on Tyndall Air Force Base in Florida. The site has been used by the Air Force for approximately 11 years in fire fighting exercises. An on-site above-ground tank of JP-4 provided fuel for setting controlled fires for the exercises. Various amounts of water and aqueous film forming foams (AFFF) were applied to extinguish the fires. The sources of contamination included leaks from pipelines transporting the fuel, leaks from an oil/water separator and runoff and percolation from the fire fighting activities. Previous investigations had identified jet fuel contamination at the site, however, no active remediation efforts have been conducted to date. The goal of this study was to use biogeochemical monitoring data to delineate redox zones within the site and to identify evidence of natural attenuation of JP-4 contamination. In addition to identifying several hydrocarbon metabolites, fluorinated surfactants (AFFF) were detected down-gradient of the hydrocarbon plume.

  18. SAMPLING PROTOCOLS TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND CLEANUP DECISIONS FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...

  19. Preliminary evaluation of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    USGS Publications Warehouse

    Hult, Marc F.; Schoenberg, Michael

    1981-01-01

    Operation of a coal-tar distillation and wood preserving plant for 1918-72 in St. Louis Park, Minnesota, resulted in ground-water contamination. This report presents the results of the first year (1979) of an ongoing study. By 1932, water in the Prairie du Chien-Jordan aquifer, the region 's major source of ground water, was contaminated 3,500 feet from the plant. The hydraulic characteristics of the Prairie du Chien-Jordan aquifer , its long contamination history, and fluctuating pumpage combine to creat a complex distribution of coal-tar derivatives observed in the aquifer. The Prairie du Chien-Jordan aquifer underlies the area at depths of 250 to 500 feet and is overlain by two bedrock aquifers (Platteville and St. Peter), two confining beds (Glenwood and basal part of St. Peter), and 70 to 100 feet of glacial drift. Multiaquifer wells in the area have permitted contaminated water from near-surface aquifers to flow downward into the Prairie du Chien-Jordan aquifer. Flow rates of 20 to 150 gallons per minute from the shallower aquifers into the Prairie du Chien-Jordan aquifer were observed in five wells. In the drift, a hydrocarbon fluid phase is moving vertically downward relative to the aqueous phase. Dissolved constituents in the drift and Platteville aquifer, the uppermost bedrock unit over most of the area, have moved at least 4,000 feet. Low-molecular-weight compounds are moving preferentially through the drift and Platteville aquifer system. (USGS)

  20. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  1. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  2. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  3. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  4. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  5. Water-Quality Data for Pharmaceuticals and Other Organic Wastewater Contaminants in Ground Water and in Untreated Drinking Water Sources in the United States, 2000-01

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael

    2008-01-01

    The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).

  6. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  7. Decontaminating materials used in ground water sampling devices: Organic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants weremore » removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.« less

  8. Nuclear Warfare Water Contamination.

    DTIC Science & Technology

    1982-05-01

    obscured the important relationship between radionuclide ground concentrations and fallout dose rate contours by focusing too much attention on the...19 ) Radiological water contamination by nonpoint sources has received little, if any, attention in the current literature on the environmental... attention . Nevertheless, the environmental contamination of water supplies by fallout has been noted as a source of background radiation (20 ) and a possible

  9. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in

  10. Characterization and identification of Na-Cl sources in ground water

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.

    2006-01-01

    Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.

  11. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  12. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  13. FIELD EVALUATION OF IN-SITU REDOX MANIPULATION FOR REMEDIATING CHROMIUM CONTAMINATED GROUND WATER AND SEDIMENT

    EPA Science Inventory

    Historical data from the electroplating shop at the U.S Coast Guard Air Support Center site, Elizabeth City, North Carolina, suggested that the elevated Cr(VI) in the capillary fringe area had contaminated the ground water. Most of the mobile Cr(VI) is present in the capillary z...

  14. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  15. Hanford Site ground-water monitoring for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less

  16. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  17. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  18. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    USGS Publications Warehouse

    Katz, B.G.; Chelette, A.R.; Pratt, T.R.

    2004-01-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  19. NITRATE CONTAMINATION OF GROUND WATER FROM LAND APPLICATION OF SWINE WASTE: CASE STUDY AND GENERAL CONSIDERATIONS

    EPA Science Inventory

    Guidelines for land application of CAFO waste may not be sufficient to prevent ground water contamination by nitrate. A case study is presented illustrating the problem for one field site disposing of swine waste. Data are discussed in context with documented land application ...

  20. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  1. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  2. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  3. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  4. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    USGS Publications Warehouse

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  5. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  6. Effects of selected sources of contamination on ground-water quality at seven sites in Connecticut

    USGS Publications Warehouse

    Handman, Elinor H.; Bingham, James W.

    1980-01-01

    The introduction of contaminants has altered the quality of ground water at several places in Connecticut. This investigation of the hydrogeologic environment and the quality of water in stratified-drift aquifers underlying seven probable contaminant sources in Connecticut shows some effects at each site. Water from test wells downgradient from septage-disposal facilities in Old Saybrook and Clinton contains elevated concentrations of sodium, chloride, manganese, iron, detergent (as MBAS), dissolved organic carbon, and some trace metals. The effects are most pronounced at shallow depths close to the septage lagoons, where concentrations of some constituents exceed Connecticut Department of Health drinking water standards. Fly-ash disposal at Wallingford has contributed chromium, manganese, and dissolved organic carbon to water in the underlying aquifer, but the low hydraulic conductivity of the fine-grained surficial materials have kept effects to a minimum. Road salt leached from a storage area in the Tylerville section of Haddam has increased the sodium and chloride concentrations in ground water to the extent that it is unsuitable for drinking water. The effect diminishes in wells 1000 feet downgradient from the storage site. Water from some wells adjacent to landfills in Bristol and Southington has elevated sodium, chloride, manganese, and dissolved organic carbon concentrations, and samples from two wells near industrial-sludge disposal pits in the Bristol landfill contain cyanide and phenols. Gasoline odor is present in water samples from a test well 175 feet from a ruptured buried tank in Fairfield. The gasoline odor from this well was also detectable during well construction and sampling.

  7. Movement and fate of creosote waste in ground water, Pensacola, Florida; U.S. Geological Survey toxic waste-ground-water contamination program

    USGS Publications Warehouse

    Mattraw, Harold C.; Franks, Bernard J.

    1986-01-01

    Ground- and surface-water contamination by pesticides used in the wood-preserving industry is widespread in the United States. Pine poles were treated with wood preservatives from 1902 to 1981 at a creosote works near Pensacola, Florida. Diesel fuel, creosote, and pentachlorophenol were discharged to two unlined impoundments that had a direct hydraulic connection to the sand-and-gravel aquifer. Evidence of wood-preserving waste contamination appears to be confined to the upper 30 meters of the aquifer. The waste plume extends downgradient approximately 300 meters south toward Pensacola Bay. In 1983, the creosote works site was selected by the U.S. Geological Survey's Office of Hazardous Waste Hydrology as a national research demonstration area to apply the latest techniques for characterizing hazardous waste problems. The multidisciplinary research effort is aimed at studying processes that affect the occurrence, transport, transformations, and fate of the toxic contaminants associated with wood preservatives in the environment. Clusters of two to five wells were constructed at different depths at nine sites to define the depth of contamination. Research studies are investigating sorption, dispersion, dilution, chemical reactions, bacterially mediated transformations, quality assurance, plume hydrodynamics, and the ultimate fate of these complex organic wastes.

  8. Coastal ground water at risk - Saltwater contamination at Brunswick, Georgia and Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Krause, Richard E.; Clarke, John S.

    2001-01-01

    IntroductionSaltwater contamination is restricting the development of ground-water supply in coastal Georgia and adjacent parts of South Carolina and Florida. The principal source of water in the coastal area is the Upper Floridan aquifer—an extremely permeable and high-yielding aquifer—which was first developed in the late 1800s. Pumping from the aquifer has resulted in substantial ground-water-level decline and subsequent saltwater intrusion of the aquifer from underlying strata containing highly saline water at Brunswick, Georgia, and with encroachment of sea-water into the aquifer at the northern end of Hilton Head Island, South Carolina. The saltwater contamination at these locations has constrained further development of the Upper Floridan aquifer in the coastal area and has created competing demands for the limited supply of freshwater. The Georgia Department of Natural Resources, Georgia Environmental Protection Division (GaEPD) has restricted permitted withdrawal of water from the Upper Floridan aquifer in parts of the coastal area (including the Savannah and Brunswick areas) to 1997 rates, and also has restricted additional permitted pumpage in all 24 coastal area counties to 36 million gallons per day above 1997 rates. These actions have prompted interest in alternative management of the aquifer and in the development of supplemental sources of water supply including those from the shallower surficial and upper and lower Brunswick aquifers and from the deeper Lower Floridan aquifer.

  9. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Appendix A, Part 1, Field Investigation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  10. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  11. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  12. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has

  13. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  14. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  15. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  16. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  17. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  18. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  19. Ground-water contamination from lead shot at Prime Hook National Wildlife Refuge, Sussex County, Delaware

    USGS Publications Warehouse

    Soeder, Daniel J.; Miller, Cherie V.

    2003-01-01

    Prime Hook National Wildlife Refuge is located in southeastern Delaware in coastal lowlands along the margin of Delaware Bay. For 37 years, the Broadkiln Sportsman?s Club adjacent to the refuge operated a trap-shooting range, with the clay-target launchers oriented so that the expended lead shot from the range dropped into forested wetland areas on the refuge property. Investigators have estimated that up to 58,000 shotgun pellets per square foot are present in locations on the refuge where the lead shot fell to the ground. As part of the environmental risk assessment for the site, the U.S. Geological Survey (USGS) investigated the potential for lead contamination in ground water. Results from two sampling rounds in 19 shallow wells indicate that elevated levels of dissolved lead are present in ground water at the site. The lead and associated metals, such as antimony and arsenic (common shotgun pellet alloys), are being transported along shallow ground-water flowpaths toward an open-water slough in the forested wetland adjacent to the downrange target area. Water samples from wells located along the bank of the slough contained dissolved lead concentrations higher than 400 micrograms per liter, and as high as 1 milligram per liter. In contrast, a natural background concentration of lead from ground water in a well upgradient from the site is about 1 microgram per liter. Two water samples collected several months apart from the slough directly downgradient of the shooting range contained 24 and 212 micrograms per liter of lead, respectively. The data indicate that lead from a concentrated deposit of shotgun pellets on the refuge has been mobilized through a combination of acidic water conditions and a very sandy, shallow, unconfined aquifer, and is moving along ground-water flowpaths toward the surface-water drainage. Data from this study will be used to help delineate the lead plume, and determine the fate and transport of lead from the source area.

  20. Ground-water contamination and movement at the Defense General Supply Center, Richmond, Virginia. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.D.; Wright, W.G.; Nelms, D.L.

    1990-01-01

    The report documents the efforts of the USGS in support of the quantification phase of the IRP to determine the degree of contamination of a site that has been identified as requiring study. The report describes the extent, concentration, direction, and rate of movement of contaminants in ground water beyond the boundaries of the DGSC. Hydrologic and geologic data were collected during 1984-90 from wells located upgradient from the DGSC, upgradient from the Area 50 landfill located on the DGSC, in the landfill, in the National Guard Area (NGA) downgradient from the landfill, and downgradient from the NGA beyond themore » eastern boundary of the DGSC. Lithologic data were collected during drilling of wells installed downgradient of the NGA by the USGS during 1984-86. Water from wells located downgradient of the NGA was analyzed for volatile-organic compounds, major cations and anions, priority-pollutant trace metals, and total organic carbon. Aquifer-test wells were installed by the USGS and aquifer testing was performed during 1985.« less

  1. Detection of fresh ground water and a contaminant plume beneath Red Brook Harbor, Cape Cod, Massachusetts, 2000

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.

    2002-01-01

    Trichloroethene and tetrachloroethene were detected in ground water in a vertical interval from about 68 to 176 feet below sea level beneath the shoreline where the contaminant plume emanating from a capped landfill on the Massachusetts Military Reservation intersects Red Brook Harbor. The highest concentrations at the shoreline, about 15 micrograms per liter of trichloroethene and 1 microgram per liter of tetrachloroethene, were measured in samples from one well at about 176 feet below sea level. The concentrations of nutrients, such as nitrate and ammonium, and trace metals, such as iron and manganese, in these same samples are typical of uncontaminated ground water on Cape Cod. Fresh ground water (bulk electrical conductance less than 100 millisiemens per meter) is present beneath the harbor at 40 of 48 locations investigated within about 250 feet of the shoreline. Fresh ground water also was detected at one location approximately 450 feet from shore. The harbor bottom consists of soft sediments that range in thickness from 0 to greater than 20 feet and overlie sandy aquifer materials. Trichloroethene was detected at several locations in fresh ground water from the sandy aquifer materials beneath the harbor. The highest trichloroethene concentration, about 4.5 micrograms per liter, was measured about 450 feet from shore.

  2. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  3. Assessment of natural attenuation of ground-water contamination at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware

    USGS Publications Warehouse

    Barbaro, Jeffrey R.

    2002-01-01

    Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and

  4. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  5. Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian Dolomite

    USGS Publications Warehouse

    Sherrill, Marvin G.

    1978-01-01

    is thin or absent. Transmissivity values range from a low of 4.0 feet squared per day in the Niagaran aquifer near Sturgeon Bay to more than 13 000 feet squared per day for the Alexandrian aquifer near Fish Creek. Water from Silurian dolomite is a very hard calcium magnesium bicarbonate type, with objectionable concentrations of iron and nitrate in water from some wells. Sanitary quality, as indicated by tests for total coliform bacteria, has been a chronic problem in certain areas. Concentrations of indicator organisms are greatest during or immediately after rapid ground-water recharge, with concentrations rapidly decreasing after periods of recharge. Wells close to septic systems and in areas underlain by fractured near-surface bedrock have the greatest incidence of contamination. The type and thickness of unconsolidated material has a direct effect on the entry of bacteria into the ground-water system. Bacterial attenuation increases with increasing soil depth and reduction in soil permeability. After bacterial contaminants reach the water table within fractured bedrock, little attenuation occurs, and the contaminants can travel long distances in a short time. Ground water of good sanitary quality but exceeding recommended limits of the U.S. Public Health Service for sulfate and chloride is probably available from the sandstone aquifer by drilling wells 700 to 1300 feet deep. To minimize the possibility of obtaining contaminated ground water, well construction should include properly locating the wells upgradient and as far as practical from contamination sources, setting and pressure grouting well casings to an adequate depth into firm bedrock, and casing the well into the zone of saturation.

  6. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier

  7. Water-quality and hydrologic conditions at a site of ground-water contamination by volatile organic compounds, South Grafton, Massachusetts, September and October 1994

    USGS Publications Warehouse

    DiSimone, L.A.; Barlow, P.M.

    1995-01-01

    Ground-water quality and hydrologic data were collected at a site contaminated by volatile organic compounds (VOCs) in South Grafton, Massachusetts, during September and October 1994. The VOCs have formed a plume of contaminated ground water at an abandoned textile mill adjacent to the Blackstone River. Concentrations of total VOCs in the plume ranged from less than 1 to more than 40,000 micrograms per liter. Trichloroethylene (TCE) was the primary chlorinated contaminant, comprising as much as 98 percent of the total VOCs. The highest concentration, 43,000 micrograms per liter, was higher than any previously measured concentration at the site; however, the maximum extent and distribution of concentrations in the VOC plume in September 1994 was similar to that found in July 1993 and in earlier rounds of sampling. In addition to TCE, 1,2-dichloroethene (1,2-DCE) and vinyl chloride were detected at most sites. Spatial and temporal changes in concentrations of TCE, 1,2-DCE, and vinyl chloride are consistent with the hypothesis that TCE biodegradation was the source of 1,2-DCE and vinyl chloride. Ground water at the site contained low to moderately high concentrations of dissolved solids (44 to 406 milligrams per liter), had a moderately high specific conductance (155 to 670 microsiemens per centimeter at 25 degrees Celsius), and was slightly acidic (pH=5.9 to 7.0). Concentrations of the major ions-calcium, sodium, chloride, and sulfate-were not related to VOC concentrations. Dissolved-oxygen concentrations were low (0 to 2 milligrams per liter) throughout most of the aquifer. Distribution of nitrogen species, iron, and manganese indicates that zones of varying oxidation-reduction potential were present in the aquifer. Concentrations of trace metals other than iron or manganese, including arsenic, cadmium, chromium, and copper, generally were less than analytical detection limits. Stream stage in the Blackstone River at the site during September and October 1994

  8. Methods Used to Assess the Susceptibility to Contamination of Transient, Non-Community Public Ground-Water Supplies in Indiana

    USGS Publications Warehouse

    Arihood, Leslie D.; Cohen, David A.

    2006-01-01

    The Safe Water Drinking Act of 1974 as amended in 1996 gave each State the responsibility of developing a Source-Water Assessment Plan (SWAP) that is designed to protect public-water supplies from contamination. Each SWAP must include three elements: (1) a delineation of the source-water protection area, (2) an inventory of potential sources of contaminants within the area, and (3) a determination of the susceptibility of the public-water supply to contamination from the inventoried sources. The Indiana Department of Environmental Management (IDEM) was responsible for preparing a SWAP for all public-water supplies in Indiana, including about 2,400 small public ground-water supplies that are designated transient, non-community (TNC) supplies. In cooperation with IDEM, the U.S. Geological Survey compiled information on conditions near the TNC supplies and helped IDEM complete source-water assessments for each TNC supply. The delineation of a source-water protection area (called the assessment area) for each TNC ground-water supply was defined by IDEM as a circular area enclosed by a 300-foot radius centered at the TNC supply well. Contaminants of concern (COCs) were defined by IDEM as any of the 90 contaminants for which the U.S. Environmental Protection Agency has established primary drinking-water standards. Two of these, nitrate as nitrogen and total coliform bacteria, are Indiana State-regulated contaminants for TNC water supplies. IDEM representatives identified potential point and nonpoint sources of COCs within the assessment area, and computer database retrievals were used to identify potential point sources of COCs in the area outside the assessment area. Two types of methods-subjective and subjective hybrid-were used in the SWAP to determine susceptibility to contamination. Subjective methods involve decisions based upon professional judgment, prior experience, and (or) the application of a fundamental understanding of processes without the collection and

  9. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  10. A national look at nitrate contamination of ground water

    USGS Publications Warehouse

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Knowing where and what type of risks to ground water exist can alert water-resource managers and private users of the need to protect water supplies. Although nitrate generally is not an adult public-health threat, ingestion in drinking water by infants can cause low oxygen levels in the blood, a potentially fatal condition (Spalding and Exner, 1993). For this reason, the U.S. Environmental Protection Agency (EPA) has established a drinking-water standard of 10 milligrams per liter (mg/L) nitrate as nitrogen (U.S. Environmental Protection Agency, 1995). Nitrate concentrations in natural ground waters are usually less than 2 mg/L (Mueller and others, 1995).

  11. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  12. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  13. Organochlorine pesticide contamination of ground water in the city of Hyderabad.

    PubMed

    Shukla, Gangesh; Kumar, Anoop; Bhanti, Mayank; Joseph, P E; Taneja, Ajay

    2006-02-01

    Organochlorine pesticides are ubiquitous and persistent organic pollutants used widely throughout the world. Due to the extensive use in agriculture, organic environmental contaminants such as HCH, DDT along with other organochlorine pesticides are distributed globally by transport through air and water. The main aim of present study is to determine contamination levels of organochlorine pesticides in the ground water of Hyderabad City. Water samples were collected from 28 domestic well supplies of the city. For this study, random sampling technique was applied, all the samples were collected in high purity glass bottles and refrigerated at 4 degrees C until analysis. Solid Phase Extraction (SPE) is used for the extraction of organochlorine pesticide residues in water sample. The collected water samples were pre-filtered through a 0.45 microg glass fiber filter (Wattman GF/F) to remove particulate matter and were acidified with hydrochloric acid (6N) to pH 2.5. Methanol modifier (BDH, for pesticide residue analysis, 10 mL) was added to water sample for better extraction. SPE using pre-packed reversed phase octadecyl (C-18 bonded silica) contained in cartridges was used for sample preparation. Prior to the extraction, the C-18 bonded phase, which contains 500 mg of bonded phase, was washed with 20 mL methanol. The sample was mixed well and allowed to percolate through the cartridges with flow rate of 10-15 mL/min under vacuum. After sample extraction, suction continued for 15 min to dry the packing material and pesticides trapped in the C-18 bonded phases were eluted by passing 10 mL hexane and fraction was evaporated in a gentle steam of Nitrogen. In all samples pesticide residues were analyzed by GC (Chemito-8510) with Ni63 ECD detector. Helium was used as carrier gas and nitrogen was used as make up gas. The injection technique was split/split less. All the samples analyzed were found to be contaminated with four pesticides i.e. DDT, beta-Endosulfan, alpha

  14. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  15. Contamination of shallow ground water in the area of building 95, Picatinny Arsenal, New Jersey, 1985-90

    USGS Publications Warehouse

    Sargent, B.P.; Storck, D.A.

    1994-01-01

    A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.

  16. SITE CHARACTERIZATION TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND TRANSPORT MODELS FOR MONITORING CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  17. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  18. Summary appraisals of the Nation's ground-water resources; Caribbean region

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Heisel, James E.

    1980-01-01

    Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.

  19. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  20. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  1. Simulation of ground-water flow in the St Peter aquifer in an area contaminated by coal-tar derivatives, St Louis Park, Minnesota

    USGS Publications Warehouse

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    Model simulations also indicated that drawdown caused by pumping two wells, each pumping at 75 gallons per minute and located about 1 mile southeast of the source of contamination, would be effective in controlling movement and volume of contaminated ground water in the immediate area of the source of contamination. Some contamination may already have moved beyond the influence of these wells, however, because of a complex set of hydraulic conditions.

  2. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  3. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  4. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruhlke, J.M.; Galpin, F.L.

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less

  5. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    USGS Publications Warehouse

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  6. Fundamentals of Ground-Water Modeling

    EPA Pesticide Factsheets

    This paper presents an overview of the essential components of ground-water flow and contaminant transport modeling in saturated porous media. While fractured rocks and fractured porous rocks may behave like porous media with respect to many flow and...

  7. Dichlorobenzene in ground water: Evidence for long-term persistence

    USGS Publications Warehouse

    Barber, L.B.

    1988-01-01

    Hydrologic and geochemical evidence were used to establish the long-term persistence of dichlorobenzene in ground water that has been contaminated from 50 years of rapid-infiltration sewage disposal. An extensive plume of dichlorobenzene extends more than 3,500 meters downgradient from the disposal beds, with concentrations of the combined isomers ranging from less than 0.01 to over 1.0 ??g/l. Based on estimates of maximum ground-water flow velocities, a minimum age of 20 years was established for the farthest downgradient zone of dichlorobenzene contamination. Branched-chained, alkylbenzenesulfonic acid surfactants, that were introduced into the ground water prior to 1966, occur along with dichlorobenzene in the downgradient part of the plume, further establish residence of the compounds in the aquifer for at least 20 years. Although dichlorobenzene can be biologically degraded under aerobic conditions, its persistence at this field site is attributed to the dynamics of the ground-water system. Denitrifying conditions, resulting from the degradation of organic compounds in the aquifer near the disposal beds, appear to have enhanced the persistence of dichlorobenzene, which is not degraded by anaerobic bacteria. Biological degradation of dichlorobenzene in the aerobic part of the plume downgradient from the source is probably limited by the paucity of a suitable organic-carbon substrate and the low concentrations of dissolved oxygen in the contaminated ground water.

  8. U.S. Geological Survey Ground-Water Resources Program, 2001

    USGS Publications Warehouse

    Grannemann, Norman G.

    2001-01-01

    Ground water is among the Nation's most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from over use and contamination. Because ground-water systems typically respond slowly to human actions and climate variability, a long-term perspective is needed to manage this valuable resource. The U.S. Geological Survey Ground-Water Resources Program provides regional evaluations, fundamental data, and predictive tools to help assure the sustainability of our Nation's ground-water resources.

  9. Movement and fate of crude-oil in contaminants in the subsurface environment at Bemidji, Minnesota: Chapter C in U.S. Geological Survey program on toxic waste--ground-water contamination: Proceedings of the Third technical meeting, Pensacola, Florida, March 23-27, 1987

    USGS Publications Warehouse

    Hult, Marc F.

    1987-01-01

    Predictions of the evolution and ultimate geometry of contaminant plumes resulting from spills require quantitative descriptions of the rate of mass transfer from the organic fluid to ground water. Pfannkuch presents laboratory and field work that describe how the the rate of oil dissolution, and therefore the strength of the contaminant source, is controlled by fluctuations in ground-water velocity and water-table fluctuations.

  10. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    EPA Science Inventory

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  11. Ground-water resources and contamination at Kwajalein Island, Republic of the Marshall Islands, 1990-91

    USGS Publications Warehouse

    Hunt, Charles D.

    1996-01-01

    Kwajalein Island is the largest of the many low, sandy islets that form Kwajalein Atoll in the western North Pacific Ocean. Salinity and water-level surveys at exploratory monitoring wells in 1990 and 1991 delineated a freshwater lens nearly 40 feet thick floating on saltwater within the carbonate sand and gravel aquifer. A transition zone of mixture between the freshwater and saltwater is as thick as 90 feet. Maximum water-table height is only 1.5 feet above sea level. The freshwater lens thinned and thickened by 5 feet during the year-long field study in response to seasonal rainfall and pumping. Freshwater is produced by airstrip rain catchments and shallow, horizontal wells up to 1,400 feet long. Catchment and ground-water yields are roughly equal on average, but catchment is the principal source during the wet season, whereas the dry season requires sustained pumping. The salinity of pumped water has remained below drinking-water standards since wells were installed in 1971, except during the drought of 1983-84, the most severe drought in the rainfall record dating back to 1945. Wet-season rains at the end of the drought reduced salinity to low levels in just a few months. The operating history of the combined catchment/well water supply indicates that it is capable of producing at least 300,000 gallons per day in all but the driest years, and more in wet years. Several sites are contaminated by fuels, solvents, or metals, but most are at the periphery of the freshwater flow system where contaminants are carried toward the shore. However, three interior sites have greater potential to contaminate nearby water-supply wells.

  12. Comparison of vapor concentrations of volatile organic compounds with ground-water concentrations of selected contaminants in sediments beneath the Sudbury River, Ashland, Massachusetts, 2000

    USGS Publications Warehouse

    Campbell, J.P.; Lyford, F.P.; Willey, Richard E.

    2002-01-01

    A mixed plume of contaminants in ground water, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals, near the former Nyanza property in Ashland, Massachusetts, discharges to the Sudbury River upstream and downstream of Mill Pond and a former mill raceway. Polyethylene-membrane vapor-diffusion (PVD) samplers were installed in river-bottom sediments to determine if PVD samplers provide an alternative to ground-water sampling from well points for identifying areas of detectable concentrations of contaminants in sediment pore water near the ground-water and surface-water interface. In August and September 2000, the PVD samplers were installed near well points at depths of 8 to 12 inches in both fine and coarse sediments, whereas the well points were installed at depths of 1 to 5 feet in coarse sediments only. Comparison between vapor and water samples at 29 locations upstream from Mill Pond show that VOC vapor concentrations from PVD samplers in coarse river-bottom sediments are more likely to correspond to ground-water concentrations from well points than PVD samplers installed in fine sediments. Significant correlations based on Kendall's Tau were shown between vapor and ground-water concentrations for trichloroethylene and chlorobenzene for PVD samplers installed in coarse sediments where the fine organic layer that separated the two sampling depths was 1 foot or less in thickness. VOC concentrations from vapor samples also were compared to VOC, SVOC, and metals concentrations from ground-water samples at 10 well points installed upstream and downstream from Mill Pond, and in the former mill raceway. Chlorobenzene vapor concentrations correlated significantly with ground-water concentrations for 5 VOCs, 2 SVOCs, and 10 metals. Trichloroethylene vapor concentrations did not correlate with any of the other ground-water constituents analyzed at the 10 well points. Chlorobenzene detected by use of PVD samplers appears to be a

  13. THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES

    EPA Science Inventory

    The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...

  14. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30more » percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.« less

  15. Monitoring the effect of poplar trees on petroleum-hydrocarbon and chlorinated-solvent contaminated ground water

    USGS Publications Warehouse

    Landmeyer, James E.

    2001-01-01

    At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.

  16. GROUND WATER ISSUE - PERFORMANCE EVALUATIONS OF PUMP-AND-TREAT REMEDIATIONS

    EPA Science Inventory

    One of the most commonly used ground-water remediation technologies is to pump contaminated water to the surface for treatment. Evaluating the effectiveness of pump-and-treat remediations at Superfund sites is an issue identified by the Regional Superfund Ground Water Forum as a ...

  17. PERCHLORATE CROP INTERACTIONS VIA CONTAMINATED IRRIGATION WATER

    EPA Science Inventory

    Perchlorate has contaminated water and sods at several locations in the United States. Perchlorate is water soluble, exceedingly mobile in aqueous systems, and can persist for many decades under typical ground- and surface water conditions. Perchlorate is of concern because of un...

  18. Ground-water quality and vulnerability to contamination in selected agricultural areas of southeastern Michigan, northwestern Ohio, and northeastern Indiana

    USGS Publications Warehouse

    Thomas, Mary Ann

    2000-01-01

    Ground-water quality was assessed in the northeastern part of the Corn Belt, where tile-drained row crops are underlain by fractured glacial till. Data were collected from 30 shallow monitor wells and 18 co-located domestic wells as part of the U.S. Geological Survey?s National Water-Quality Assessment in the Lake Erie-Lake St. Clair Basin. Pesticides or pesticide degradates were detected in 41 percent of the monitor wells and 6 percent of the domestic wells. The pesticides detected closely correspond to those most heavily applied?herbicides used on corn and soybeans. Pesticide degradates were detected three times more frequently, and at higher concentrations, than were parent compounds. No pesticide concentration exceeded a USEPA Maximum Contaminant Level (MCL), but MCL?s have not been established for 9 of the 11 compounds detected. Thirty-seven percent of monitor-well samples had nitrate concentrations indicative of human influences such as fertilizer, manure or septic systems. Nitrate was the only chemical constituent detected at a concentration greater than an MCL. The MCL was exceeded in 7 percent of samples from monitor wells which were too shallow to be used as a source of drinking water. Pesticide and nitrate concentrations in the study area are low relative to other agricultural areas of the Nation. Several authors have suggested that ground water in parts of the Upper Mid-west is minimally contaminated because it is protected by the surficial glacial till or tile drains. These ideas are examined in light of the relations between concentration, well depth, and ground-water age in the study area. Most of the shallow ground water is hydraulically connected to the land surface, based on the observations that 83 percent of waters from monitor wells were recharged after 1953, and 57 percent contained a pesticide or an elevated nitrate concentration. Fractures or sand-and-gravel stringers within the till are the probable pathways. In some areas, deeper parts of

  19. Ground water contamination and costs of pesticide restrictions in the southeastern coastal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danielson, L.E.; Carlson, G.A.; Liu, S.

    The project developed new methodology for estimating: (1) groundwater contamination potential (GWCP) in the Southeast Coastal Plain, and (2) the potential economic impacts of selected policies that restrict pesticide use. The potential for ground water contamination was estimated by use of a simple matrix for combining ratings for both soil leaching potential and pesticide leaching potential. Key soil variables included soil texture, soil acidity and organic matter content. Key pesticide characteristics included Koc, pesticide half-life, the rate of application and the fraction of the pesticide hitting the soil. Comparisons of pesticide use from various farmer and expert opinion surveys weremore » made for pesticide groups and for individual pesticide products. Methodology for merging the GWCP changes and lost benefits from selected herbicide cancellations was developed using corn production in the North Carolina Coastal Plain. Economic evaluations of pesticide cancellations for corn included national and Coastal Plain estimates for atrazine; metolachlor; dicamba; dicamba and atrazine; and dicamba, atrazine and metolachlor.« less

  20. Movement and Fate of Solutes in a Plume of Sewage-Contaminated Ground Water, Cape Cod, Massachusetts: U.S. Geological Survey Toxic Waste Ground-Water Contamination Program

    DTIC Science & Technology

    1984-03-01

    contains many inorganic and organic chemicals such as sodium , nitrate, detergents, and volatile organic compounds which can be toxic and render a ground­...1983-- 51 24 . sodium in ground water, 1983---------------------------- 53 25 . chloride in ground water, 1983-------------------------- 54 26...contains elevated concentrations of chloride, sodium , boron, nitrogen, detergents, and other constituents of the treated sewage. The plume was

  1. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  2. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Blanchard, Paul J.

    2002-01-01

    The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential

  3. Estimating nitrogen loading to ground water and assessing vulnerability to nitrate contamination in a large karstic springs Basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Sepulveda, A.A.; Verdi, R.J.

    2009-01-01

    A nitrogen (N) mass-balance budget was developed to assess the sources of N affecting increasing ground-water nitrate concentrations in the 960-km 2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80-90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12-month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N-isotope values for six spring waters (??15N-NO3 = 3.3 to 6.3???) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground-water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground-water movement and denitrification. A geographical-based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin. ?? 2009 American Water Resources Association.

  4. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    ERIC Educational Resources Information Center

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  5. Investigation of Contaminated Ground Water at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2006-2007

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2008-01-01

    The U.S. Geological Survey investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. The permeable reactive barrier (PRB) along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells 12MW-10S and 12MW-03S, upgradient from the PRB, showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest showed a sharp increase, followed by a decrease. In 2007, the VOC concentrations began to increase in well 12MW-12S, downgradient from the PRB and thought to be unaffected by the PRB. The VOC-concentration changes in the forest, such as at well 12MW-12S, may represent lateral shifting of the plume in response to changes in ground-water-flow direction or may represent movement of a contamination pulse through the forest.

  6. The maladies of water and war: addressing poor water quality in Iraq.

    PubMed

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  7. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    PubMed Central

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  8. Assessment of petroleum-hydrocarbon contamination in the surficial sediments and ground water at three former underground storage tank locations, Fort Jackson, South Carolina, 1995

    USGS Publications Warehouse

    Robertson, J.F.

    1996-01-01

    Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for

  9. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  10. Drinking water contamination by chromium and lead in industrial lands of Karachi.

    PubMed

    Nadeem-ul-Haq; Arain, Mubashir Aslam; Haque, Zeba; Badar, Nasira; Mughal, Noman

    2009-05-01

    To identify and quantify chromium and lead as contaminant in water sources of Karachi. This water assessment survey was conducted from June 2007 to February 2008 in all the 18 towns of Karachi. In total 216 water samples were collected from ground (n=108) and surface water sources (n = 108). Water samples were collected in a liter polyethylene acid resistant bottle with extreme care to prevent contamination and concentrations of heavy metals (chromium and lead). Metallic ion contents were estimated by Atomic Absorption Spectrophotometer. Statistical analysis was done by applying T-test and chi-square for continuous and categorical variables respectively at 95% confidence level; Pearson correlation was also determined between chromium and lead concentrations. A total of 187 water samples had lead concentration higher than the maximum acceptable concentration (MAC) in drinking water, established by WHO (10 PPB) and lead contaminated sources were in significantly higher proportion than chromium contaminated water samples (n = 49) [chi2 = 128; P- < 0.001]. Mean chromium concentration in ground water was (micro = 49; SE = 3.8) was significantly higher than mean chromium concentration (micro = 33, SE = 3.5) in surface water (P = 0.003). There was a significant and positive correlation between chromium and lead concentrations in ground water (P = 0.04) however Pearson correlation was not significant for surface water (P = 0.6). Industrial towns (Korangi, Landhi and SITE) had significantly higher concentration of chromium (micro = 82.4; SE = 8.9) in their ground and tap water as compared to the mean chromium concentration (micro = 33; SE = 2.2) in the water samples of rest of the towns of Karachi (P < 0.001). Chromium and Lead levels are high in almost all ground water sources, however extremely high concentrations were found in industrial areas. Presence of any one of the heavy metal contamination necessitate the need for the estimation of other heavy metals as

  11. Movement and fate of solutes in a plume of sewage-contaminated ground water, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D. R.

    1984-01-01

    The U.S. Geological Survey (USGS) has begun a nationwide program to study the fate of toxic wastes in groundwater. Several sites where groundwater is known to be contaminated are being studied by interdisciplinary teams of geohydrologists, chemists, and microbiologists. The objective of these studies is to obtain a thorough quantitative understanding of the physical, chemical, and biological processes of contaminant generation, migration, and attenuation in aquifers. One of the sites being studied by the USGS under this program is a plume of sewage contaminated groundwater on Cape Cod, Massachusetts. The plume was formed by land disposal of treated sewage to a glacial outwash aquifer since 1936. This report summarizes results obtained during the first year of research at the Cape Cod s under the USGS Toxic-Waste Ground-Water Contamination Program. The seven papers included in this volume were presented at the Toxic Waste Technical Meeting, Tucson, Arizona, in March 1984. They provide an integrated view of the subsurface distribution of contaminants based on the first year of research and discuss hypotheses concerning the transport processes that affect the movement of contaminants in the plume. (See W89-09053 thru W89-09059) (Lantz-PTT)

  12. IMPROVING THE CALIBRATION OF MODELS TO EVALUATE VAPOR MOVEMENT AT UST SITES BY VERTICAL PROFILING OF CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    A risk assessment of the movement of vapors of volatile organic contaminants (VOCs) from ground water through the unsaturated zone and into living spaces usually involves a transport and fate model such as the Johnson and Ettinger model. The concentration of volatile organic con...

  13. Field Application of a Permeable Reactive Barrier for Treatment of Arsenic in Ground Water

    EPA Science Inventory

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is an escalating need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 9...

  14. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF ARSENIC IN GROUND WATER

    EPA Science Inventory

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is an escalating need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7 ...

  15. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF ARSENIC IN GROUND WATER

    EPA Science Inventory

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is an escalating need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7...

  16. Simulation of ground-water flow, contributing recharge areas, and ground-water travel time in the Missouri River alluvial aquifer near Ft. Leavenworth, Kansas

    USGS Publications Warehouse

    Kelly, Brian P.

    2004-01-01

    The Missouri River alluvial aquifer near Ft. Leavenworth, Kansas, supplies all or part of the drinking water for Ft. Leavenworth; Leavenworth, Kansas; Weston, Missouri; and cooling water for the Kansas City Power and Light, Iatan Power Plant. Ground water at three sites within the alluvial aquifer near the Ft. Leavenworth well field is contaminated with trace metals and organic compounds and concerns have been raised about the potential contamination of drinking-water supplies. In 2001, the U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Army began a study of ground-water flow in the Missouri River alluvial aquifer near Ft. Leavenworth. Hydrogeologic data from 173 locations in the study area was used to construct a ground-water flow model (MODFLOW-2000) and particle-tracking program (MODPATH) to determine the direction and travel time of ground-water flow and contributing recharge areas for water-supply well fields within the alluvial aquifer. The modeled area is 28.6 kilometers by 32.6 kilometers and contains the entire study area. The model uses a uniform grid size of 100 meters by 100 meters and contains 372,944 cells in 4 layers, 286 columns, and 326 rows. The model represents the alluvial aquifer using four layers of variable thickness with no intervening confining layers. The model was calibrated to both quasi-steady-state and transient hydraulic head data collected during the study and ground-water flow was simulated for five well-pumping/river-stage scenarios. The model accuracy was calculated using the root mean square error between actual measurements of hydraulic head and model generated hydraulic head at the end of each model run. The accepted error for the model calibrations were below the maximum measurement errors. The error for the quasi-steady-state calibration was 0.82 meter; for the transient calibration it was 0.33 meter. The shape, size, and ground-water travel time within the contributing recharge area for each well or well

  17. U.S. Geological Survey ground-water studies in Utah

    USGS Publications Warehouse

    Gates, Joseph S.

    1988-01-01

    Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.

  18. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  19. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  20. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  1. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  2. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    In June 1993, the Department of the Navy, Southern Division Naval Facilities Engineering Command (SOUTHDIV), began a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Naval Weapons Industrial Reserve Plant (NWIRP) in north-central Texas. The RFI has found trichloroethene, dichloroethene, vinyl chloride, as well as chromium, lead, and other metallic residuum in the shallow alluvial aquifer underlying NWIRP. These findings and the possibility of on-site or off-site migration of contaminants prompted the need for a ground-water-flow model of the NWIRP area. The resulting U.S. Geological Survey (USGS) model: (1) defines aquifer properties, (2) computes water budgets, (3) delineates major flowpaths, and (4) simulates hydrologic effects of remediation activity. In addition to assisting with particle-tracking analyses, the calibrated model could support solute-transport modeling as well as help evaluate the effects of potential corrective action. The USGS model simulates steadystate and transient conditions of ground-water flow within a single model layer.The alluvial aquifer is within fluvial terrace deposits of Pleistocene age, which unconformably overlie the relatively impermeable Eagle Ford Shale of Late Cretaceous age. Over small distances and short periods, finer grained parts of the aquifer are separated hydraulically; however, most of the aquifer is connected circuitously through randomly distributed coarser grained sediments. The top of the underlying Eagle Ford Shale, a regional confining unit, is assumed to be the effective lower limit of ground-water circulation and chemical contamination.The calibrated steady-state model reproduces long-term average water levels within +5.1 or –3.5 feet of those observed; the standard error of the estimate is 1.07 feet with a mean residual of 0.02 foot. Hydraulic conductivity values range from 0.75 to 7.5 feet per day, and average about 4 feet per day. Specific yield values range from 0

  3. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate

  4. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  5. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    The extensive contamination of methyl tertiary butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 site...

  6. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    The extensive contamination of methyl tertiary butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sit...

  7. Deep Aquifer Remediation Tools (DARTs): A new technology for ground-water remediation

    USGS Publications Warehouse

    Naftz, David L.; Davis, James A.

    1999-01-01

    Potable ground-water supplies throughout the world are contaminated or threatened by advancing plumes containing radionuclides, metals, and organic compounds. Currently (1999), the most widely used method of ground-water remediation is a combination of extraction, ex-situ treatment, and discharge of the treated water, commonly known as pump and treat. Pump-and-treat methods are costly and often ineffective in meeting long-term protection standards (Travis and Doty, 1990; Gillham and Burris, 1992; National Research Council, 1994). This fact sheet describes a new and potentially cost-effective technology for removal of organic and inorganic contaminants from ground water. The U.S. Geological Survey (USGS) is currently exploring the possibilities of obtaining a U.S. Patent for this technology.

  8. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    USGS Publications Warehouse

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  9. Organic solutes in ground water at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Leenheer, Jerry A.; Bagby, Jefferson C.

    1982-01-01

    In August 1980, the U.S. Geological Survey started a reconnaissance survey of organic solutes in drinking water sources, ground-water monitoring wells, perched water table monitoring wells, and in select waste streams at the Idaho National Engineering Laboratory (INEL). The survey was to be a two-phase program. In the first phase, 77 wells and 4 potential point sources were sampled for dissolved organic carbon (DOC). Four wells and several potential point sources of insecticides and herbicides were sampled for insecticides and herbicides. Fourteen wells and four potential organic sources were sampled for volatile and semivolatile organic compounds. The results of the DOC analyses indicate no high level (>20 mg/L DOC) organic contamination of ground water. The only detectable insecticide or herbicide was a DDT concentration of 10 parts per trillion (0.01 microgram per liter) in one observation well. The volatile and semivolatile analyses do not indicate the presence of hazardous organic contaminants in significant amounts (>10 micrograms per liter) in the samples taken. Due to the lack of any significant organic ground-water contamination in this reconnaissance survey, the second phase of the study, which was to follow up the first phase by additional sampling of any contaminated wells, was canceled.

  10. DEVELOPING A FRAMEWORK FOR PERFORMANCE MONITORING TO ASSESS THE USE OF MONITORED NATURAL ATTENUATION FOR REMEDIATION OF INORGANIC CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The USEPA is leading an effort to develop technical documentation that provides the policy, scientific and technical framework for assessing the viability of MNA for inorganic contaminants in ground water (hereafter referred to as the Framework Document). Initial guidance on the...

  11. Delineation of ground-water contamination using soil-gas analyses near Jackson, Tennessee

    USGS Publications Warehouse

    Lee, R.W.

    1991-01-01

    An investigation of the ground-water resources near Jackson, West Tennessee, was conducted during 1988-89. The study included determination of the occurrence of contaminants in the shallow aquifer using soil-gas analyses in the unsaturated zone. Between 1980 and 1988, an underground fuel-storage tank leaked about 3,000 gallons of unleaded fuel to the water table about 4 feet below land surface. A survey of soil gas using a gas chromatograph equipped with a photoionization detector showed concentrations of volatile organic compounds greater than IO, 000 parts per million near the leak These compounds were detected in an area about 240 feet long and 110 feet wide extending west from the point source. The chromatograms provided two distinct 'fingerprints' of volatile organic compounds. The first revealed the presence of benzene, toluene, andxylenes, which are constituents of unleaded fuel, in addition to other volatile compounds, in soil gas in the area near the leak The second did not reveal any detectable benzene, toluene, or xylenes in the soil-gas samples, but showed the presence of other unidentified volatile organic compounds in soil gas north of the storage tank. The distribution of total concentrations of volatile organic compounds in the unsaturated zone indicated that a second plume about 200 feet long and 90 feet wide was present about 100 feet north of the storage tank The second plume could have been the result of previous activities at this site during the 1950's or earlier. Activities at the site are believed to have included storage of solvents used at the nearby railyard and flushing of tanks containing tar onto a gravel-covered parking area. The delineation of these plumes has shown that soil-gas analyses can be a useful technique for identifying areas of contamination with volatile organic compounds in shallow water-table aquifers and may have broad applications in similar situations where the water table is relatively close to the surface.

  12. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  13. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    USGS Publications Warehouse

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals

  14. Using Stable Isotopes to Understand Degradation of Organic Contaminants in Ground Water

    EPA Science Inventory

    Stable isotopes are a powerful tool to understand biodegradation. However, there are two interactions that can substantially confuse the interpretation of CSIR data: heterogeneity in flow paths in the aquifer and proximity to NAPL or other source of contamination to ground wate...

  15. Ground water chlorinated ethenes in tree trunks: Case studies, influence of recharge, and potential degradation mechanism

    USGS Publications Warehouse

    Vroblesky, D.A.; Clinton, B.D.; Vose, J.M.; Casey, C.C.; Harvey, G.J.; Bradley, P.M.

    2004-01-01

    Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ???3 m of clay. Additional ground water contaminants detected in the tree cores were cis-1,2-dichloroethene at two sites and tetrachloroethene at one site. Thus, tree coring can be a rapid and effective means of locating shallow subsurface chlorinated ethenes and possibly identifying zones of active TCE dechlorination. Tree cores collected over time were useful in identifying the onset of ground water contamination. Several factors affecting chlorinated ethene concentrations in tree cores were identified in this investigation. The factors include ground water chlorinated ethene concentrations and depth to ground water contamination. In addition, differing TCE concentrations around the trunk of some trees appear to be related to the roots deriving water from differing areas. Opportunistic uptake of infiltrating rainfall can dilute prerain TCE concentrations in the trunk. TCE concentrations in core headspace may differ among some tree species. In some trees, infestation of bacteria in decaying heartwood may provide a TCE dechlorination mechanism within the trunk.

  16. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    USGS Publications Warehouse

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  17. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  18. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  19. Analysis of ground-water-quality data of the Upper Colorado River basin, water years 1972-92

    USGS Publications Warehouse

    Apodaca, L.E.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment program, an analysis of the existing ground-water-quality data in the Upper Colorado River Basin study unit is necessary to provide information on the historic water-quality conditions. Analysis of the historical data provides information on the availability or lack of data and water-quality issues. The information gathered from the historical data will be used in the design of ground-water-quality studies in the basin. This report includes an analysis of the ground-water data (well and spring data) available for the Upper Colorado River Basin study unit from water years 1972 to 1992 for major cations and anions, metals and selected trace elements, and nutrients. The data used in the analysis of the ground-water quality in the Upper Colorado River Basin study unit were predominantly from the U.S. Geological Survey National Water Information System and the Colorado Department of Public Health and Environment data bases. A total of 212 sites representing alluvial aquifers and 187 sites representing bedrock aquifers were used in the analysis. The available data were not ideal for conducting a comprehensive basinwide water-quality assessment because of lack of sufficient geographical coverage.Evaluation of the ground-water data in the Upper Colorado River Basin study unit was based on the regional environmental setting, which describes the natural and human factors that can affect the water quality. In this report, the ground-water-quality information is evaluated on the basis of aquifers or potential aquifers (alluvial, Green River Formation, Mesaverde Group, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Leadville Limestone, and Precambrian) and land-use classifications for alluvial aquifers.Most of the ground-water-quality data in the study unit were for major cations and anions and dissolved-solids concentrations. The aquifer with the highest median concentrations of

  20. Hydrogeologic framework, ground-water quality, and simulation of ground-water flow at the Fair Lawn Well Field Superfund site, Bergen County, New Jersey

    USGS Publications Warehouse

    Lewis-Brown, Jean C.; Rice, Donald E.; Rosman, Robert; Smith, Nicholas P.

    2005-01-01

    Production wells in the Westmoreland well field, Fair Lawn, Bergen County, New Jersey (the 'Fair Lawn well field Superfund site'), are contaminated with volatile organic compounds, particularly trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. In 1983, the U.S. Environmental Protection Agency (USEPA) placed the Westmoreland well field on its National Priority List of Superfund sites. In an effort to determine ground-water flow directions, contaminant-plume boundaries, and contributing areas to production wells in Fair Lawn, and to evaluate the effect of present pump-and-treat systems on flowpaths of contaminated ground water, the U.S. Geological Survey (USGS), in cooperation with the USEPA, developed a conceptual hydrogeologic framework and ground-water flow model of the study area. MODFLOW-2000, the USGS three-dimensional finite-difference model, was used to delineate contributing areas to production wells in Fair Lawn and to compute flowpaths of contaminated ground water from three potential contaminant sources to the Westmoreland well field. Straddle-packer tests were used to determine the hydrologic framework of, distribution of contaminants in, and hydrologic properties of water-bearing and confining units that make up the fractured-rock aquifer underlying the study area. The study area consists of about 15 square miles in and near Fair Lawn. The area is underlain by 6 to 100 feet of glacial deposits and alluvium that, in turn, are underlain by the Passaic Formation. In the study area, the Passaic Formation consists of brownish-red pebble conglomerate, medium- to coarse-grained feldspathic sandstone, and micaceous siltstone. The bedrock strata strike N. 9o E. and dip 6.5o to the northwest. The bedrock consists of alternating layers of densely fractured rocks and sparsely fractured rocks, forming a fractured-rock aquifer. Ground-water flow in the fractured-rock aquifer is anisotropic as a result of the interlayering of dipping water-bearing and

  1. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  2. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  3. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  4. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  5. Emerging Contaminants in the Drinking Water Cycle

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-µg/L) in surface, ground and drinking water. The most common...

  6. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  7. A First Application of Enzyme-Linked Immunosorbent Assay for Screening Cyclodiene Insecticides in Ground Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Thurman, E.M.; Mohrman, G.B.

    1996-01-01

    A commercially available enzyme-linked immunosorbent assay (ELISA) plate kit for screening of cyclodiene insecticides (aldrin, chlordane, dieldrin, endosulfan, endrin, and heptachlor) was evaluated for sensitivity, cross reactivity, and overall performance using groundwater samples from a contaminated site. Ground-water contaminants included several pesticide compounds and their manufacturing byproducts, as well as many other organic and inorganic compounds. Cross-reactivity studies were carried out for the cyclodiene compounds, and results were compared to those listed by the manufacturer. Data obtained were used to evaluate the sensitivity of the ELISA kit to the cyclodiene compounds in ground water samples with a contaminated matrix. The method quantitation limit for the ELISA kit was 15 ??g/L (as chlordane). Of the 56 ground-water samples analyzed using the ELISA plate kits, more than 85% showed cyclodiene insecticide contamination. The ELISA kit showed excellent potential as a screening tool for sites with suspected groundwater contamination by insecticides.

  8. PERCHLORATE-CROP INTERACTIONS FROM CONTAMINATED IRRIGATION WATER AND FERTILIZER APPLICATIONS

    EPA Science Inventory

    Perchlorate has contaminated water and soils at several locations in the United States. Perchlorate is water soluble, exceedingly mobile in aqueous systems, and can persist for many decades under typical ground and surface water conditions. Perchlorate is of concern because of un...

  9. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart

  10. DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION

    EPA Science Inventory

    Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...

  11. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  12. THE ROLE OF NATURAL BIOLOGICAL PROCESSES IN THE NATURAL ATTENUATION OF CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    As a practical matter, the time required for a site to reach cleanup goals is controlled by the rate of natural attenuation of the source of contamination, not the rate of natural attenuation of the contaminants once they are in the ground. As a consequence, in the USA the most ...

  13. Ground-Water Quality in the St. Lawrence River Basin, New York, 2005-06

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2007-01-01

    but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency Maximum Contaminant Level. The trace elements detected with the highest median concentrations were strontium, barium, and iron. Concentration of trace elements in several samples exceeded U.S. Environmental Protection Agency Secondary Drinking Water Standards, including aluminum (50 micrograms per liter, 4 samples), iron (300 micrograms per liter, 5 samples), and manganese (50 micrograms per liter, 4 samples). The concentration of uranium in one sample from a domestic well finished in crystalline bedrock was three times the U.S. Environmental Protection Agency Maximum Contaminant Level of 30 micrograms per liter. The median concentration of radon-222 was 600 picoCuries per liter, but concentrations as high as 18,800 picoCuries per liter were detected; two wells with high radon concentrations also had high uranium concentrations. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a Maximum Contaminant Level of 300 picoCuries per liter along with an Alternative Maximum Contaminant Level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed Maximum Contaminant Level in 60 percent of samples and exceeded the proposed Alternative Maximum Contaminant Level in 8 percent of samples. Six pesticides and pesticide degradates were detected; all were amide or triazine herbicides or degradates. Five volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria, including Escherichia coli, were detected in three wells finished in carbonate bedrock.

  14. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  15. EPA waiver of ground water cleanup standards in NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, A.A.

    1995-11-01

    EPA may invoke a technical impracticability (TI) waiver at a site when the Agency determines that it is technically impracticable from an engineering perspective to attain cleanup standards within a reasonable time period. The October 6, 1994 TI waiver of ground water cleanup standards at the G.E./Moreau Superfund Site in New York is the first post-Record of Decision (ROD) TI waiver granted by EPA since issuance of the September 1993 guidance on technical impracticability of ground water restoration. In the 1987 ROD, EPA selected natural gradient flushing and treatment as the ground water remedy and estimated that TCE-contaminated ground watermore » within the unconsolidated aquifer at the Site would be restored to drinking water quality within decades. EPA`s subsequent reevaluation showed that cleanup of the ground water would take 200 years or more, regardless of the remedial technology employed, due to the presence of site-specific physical and chemical factors that limit the effectiveness of ground water remediation technologies. Following public participation activities, EPA issued the TI waiver as an Explanation of Significant Differences (ESD) to the ROD. The ESD revised the time frame expected for ground water restoration but did not reduce or change any of the required cleanup actions.« less

  16. Estimation of Koc values for deuterated benzene, toluene, and ethylbenzene, and application to ground water contamination studies.

    PubMed

    Poulson, S R; Drever, J I; Colberg, P J

    1997-11-01

    Sorption partition coefficients between water and organic carbon (Koc) for deuterated benzene, toluene, and ethylbenzene have been estimated by measuring values of the octanol-water partition coefficient (Kow) and HPLC retention factors (k1), which correlate closely to values of Koc. Measured values of log Kow for non-deuterated and deuterated toluene are 2.77 (+/- 0.02) and 2.78 (+/- 0.04), respectively, indicating that within experimental error, log Koc for deuterated and non-deuterated toluene are the same. The HPLC method provides greater precision, and yields values of delta log Koc (= log Koc [deuterated]-log Koc [non-deuterated]) of -0.021 (+/- 0.001) for benzene, -0.028 (+/- 0.002) for toluene, and -0.035 (+/- 0.003) for ethylbenzene. The small values of delta log Koc demonstrates that deuterated compounds are excellent tracers for the hydrologic behavior of ground water contaminants.

  17. Simulated ground-water flow and water quality of the Mississippi River alluvium near Burlington, Iowa, 1999

    USGS Publications Warehouse

    Boyd, Robert A.

    2001-01-01

    Water samples collected from the alluvium indicated ground water can be classified as a calcium-magnesium-bicarbonate type. Reducing conditions likely occur in some localized areas of the alluvium, as suggested by relatively large concentrations of dissolved iron (4,390 micrograms per liter) and manganese (2, 430 micrograms per liter) in some ground-water samples. Nitrite plus nitrate was detected at concentrations greater than or equal to 8 milligrams per liter in three samples collected from observation wells completed in close proximity to cropland; the nitrite plus nitrate concentration in one groundwater sample exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for nitrate in drinking water (10 milligrams per liter as N). Triazine herbicides (atrazine, cyanazine, propazine, simazine, and selected degradation products) and chloroacetanilide herbicides (acetochlor, alachlor, and metolachlor) were detected in some water samples. A greater number of herbicide compounds were detected in surface-water samples than in ground-water samples. Herbicide concentrations typically were at least an order of magnitude greater in surfacewater samples than in ground-water samples. The Maximum Contaminant Level for alachlor (2 micrograms per liter) was exceeded in a sample from Dry Branch Creek at Tama Road and for atrazine (3 micrograms per liter) was exceeded in samples collected from Dry Branch Creek at Tama Road and the county drainage ditch at Tama Road.

  18. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    USGS Publications Warehouse

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  19. Ground-water levels and flow near the industrial excess landfill, Uniontown, Ohio

    USGS Publications Warehouse

    Bair, E.S.; Norris, S.E.

    1989-01-01

    Under an interagency contractual agreement with the Agency for Toxic Substances and Disease Registration, the U.S. Geological Survey evaluated geologic and hydrogeologic data available for the Industrial Excess Landfill (IEL) site in Uniontown, Ohio. During previous studies, ground-water contaminations was detected in observation wells installed at the site and in residential wells near the site. Water levels recorded on drillers' logs from 279 wells were used to characterize the regional ground-water flow system in the area of the IEL site. On the basis of the gross lithologic differences between the unconsolidated glacial-drift material and the indurated bedrock, and the inferred differences in their hydraulic properties, the flow system in the area of the IEL site was divided into two regional aquifers: a shallow, unconfined glacial-drift aquifer and a deeper, semiconfined bedrock aquifer. About 33 percent of the drillers' logs were from wells completed in the glacial-drift aquifer, whereas 67 percent were from wells completed in the bedrock aquifer. A composite potentiometric-surface map of the glacial drift aquifer shows that the IEL site appears to straddle a prominent ground-water ridge that trends northeast-southwest. Ground water flows radially away from this ridge, primarily to the northwest and to the southeast; as a result flow in the glacial-drift aquifer as the IEL site moves in a radial pattern away from the site in all directions. A composite, regional potentiometric-surface map of the bedrock aquifer shows a similar shows a similar elongated ground-water ridge trending northeast-southwest across the north-western corner of the IEL site; however, it does not appear that the IEL site straddles the ground-water ridge in the bedrock potentiometric surface. As a consequence of the radial-type of flow pattern in the glacial-drift aquifer at the IEL site, the direction of potential off-site movement of a contaminant at the IEL site, This radial type of

  20. Detecting changes in the spatial distribution of nitrate contamination in ground water

    USGS Publications Warehouse

    Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.

    1997-01-01

    Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.

  1. Ground-water levels, water quality, and potential effects of toxic-substance spills or cessation of quarry dewatering near a municipal ground-water supply, southeastern Franklin County, Ohio

    USGS Publications Warehouse

    Sedam, A.C.; Eberts, S.M.; Bair, E.S.

    1989-01-01

    A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to

  2. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  3. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  4. Hydraulic and solute-transport properties and simulated advective transport of contaminated ground water in a fractured rock aquifer at the Naval Air Warfare Center, West Trenton, New Jersey, 2003

    USGS Publications Warehouse

    Lewis-Brown, Jean C.; Carleton, Glen B.; Imbrigiotta, Thomas E.

    2006-01-01

    Volatile organic compounds, predominantly trichloroethylene and its degradation products, have been detected in ground water at the Naval Air Warfare Center (NAWC), West Trenton, New Jersey. An air-stripping pump-and-treat system has been in operation at the NAWC since 1998. An existing ground-water-flow model was used to evaluate the effect of a change in the configuration of the network of recovery wells in the pump-and-treat system on flow paths of contaminated ground water. The NAWC is underlain by a fractured-rock aquifer composed of dipping layers of sedimentary rocks of the Lockatong and Stockton Formations. Hydraulic and solute-transport properties of the part of the aquifer composed of the Lockatong Formation were measured using aquifer tests and tracer tests. The heterogeneity of the rocks causes a wide range of values of each parameter measured. Transmissivity ranges from 95 to 1,300 feet squared per day; the storage coefficient ranges from 9 x 10-5 to 5 x 10-3; and the effective porosity ranges from 0.0003 to 0.002. The average linear velocity of contaminated ground water was determined for ambient conditions (when no wells at the site are pumped) using an existing ground-water-flow model, particle-tracking techniques, and the porosity values determined in this study. The average linear velocity of flow paths beginning at each contaminated well and ending at the streams where the flow paths terminate ranges from 0.08 to 130 feet per day. As a result of a change in the pump-and-treat system (adding a 165-foot-deep well pumped at 5 gallons per minute and reducing the pumping rate at a nearby 41-foot-deep well by the same amount), water in the vicinity of three 100- to 165-foot-deep wells flows to the deep well rather than the shallower well.

  5. Arsenic in ground water in Tuscola County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  6. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  7. SEPTIC TANK SETBACK DISTANCES: A WAY TO MINIMIZE VIRUS CONTAMINATION OF DRINKING WATER

    EPA Science Inventory

    Septic tanks are the most frequently reported causes of contamination in ground-water disease outbreaks associated with the consumption of untreated ground water in the United States. The placement of septic tanks is generally controlled by county-wide or state-wide regulations, ...

  8. GROUND WATER ISSUE: DESIGN GUIDELINES FOR CONVENTIONAL PUMP-AND-TREAT SySTEMS

    EPA Science Inventory

    Containment and cleanup of contaminated ground water are among the primary objectives of the CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act; also known as Superfund) and RCRA (Resource Conservation and Recovery Act) remediation programs. Ground-...

  9. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate

  10. Ground-water vulnerability to nitrate contamination in the mid-atlantic region

    USGS Publications Warehouse

    Greene, Earl A.; LaMotte, Andrew E.; Cullinan, Kerri-Ann; Smith, Elizabeth R.

    2005-01-01

    The U.S. Environmental Protection Agency?s (USEPA) Regional Vulnerability Assessment (ReVA) Program has developed a set of statistical tools to support regional-scale, integrated ecological risk-assessment studies. One of these tools, developed by the U.S. Geological Survey (USGS), is used with available water-quality data obtained from USGS National Water-Quality Assessment (NAWQA) and other studies in association with land cover, geology, soils, and other geographic data to develop logistic-regression equations that predict the vulnerability of ground water to nitrate concentrations exceeding specified thresholds in the Mid-Atlantic Region. The models were developed and applied to produce spatial probability maps showing the likelihood of elevated concentrations of nitrate in the region. These maps can be used to identify areas that currently are at risk and help identify areas where ground water has been affected by human activities. This information can be used by regional and local water managers to protect water supplies and identify land-use planning solutions and monitoring programs in these vulnerable areas.

  11. FIELD STUDY OF THE FATE OF ARSENIC, LEAD, AND ZINC AT THE GROUND-WATER/SURFACE-WATER INTERFACE

    EPA Science Inventory

    It is recognized that physical and chemical interactions between adjacent ground water and surface water bodies are an important factor impacting water budget and nutrient/contaminant transport within a watershed. This observation is also of importance for hazardous waste site c...

  12. FILTRATION OF GROUND WATER SAMPLES FOR METALS ANALYSIS

    EPA Science Inventory

    The filtration of a ground water samples with 0.45 um filters for determination of 'dissolved' metals is not only inaccurate for distinguishing between dissolved and particulate phases, but if used for estimates of mobile contaminant loading in a given aquifer, may result in sign...

  13. Reconnaissance investigations of potential ground-water and sediment contamination at three former underground storage tank locations, Fort Jackson, South Carolina, 1994

    USGS Publications Warehouse

    Robertson, J.F.; Nagle, Douglas D.; Rhodes, Liesl C.

    1994-01-01

    Investigations to provide initial qualitative delineation of petroleum hydrocarbon contamination at three former underground storage tank locations at Fort Jackson, South Carolina, were made during March 1994. Ground-water and sediment samples were collected using direct-push technology and analyzed on-site with a gas chromatograph, which provided real-time, semi-quantitative data. In addition, ground-water and sediment samples were collected at selected sites for laboratory analyses to provide a confirmation of the on-site data. These analyses provided qualitative data on the lateral distri- bution of petroleum hydrocarbons. Petroleum hydrocarbons were detected by on-site analysis in ground-water samples from nine locations at Site 1062, suggesting the presence of a contaminant plume. Concentrations ranged from less than the minimum detection limit to 4,511 mg/L (micrograms per liter) for benzene, 15,594 mg/L for toluene, 16,501 mg/L for ethylbenzene, and 19,391 mg/L for total xylenes. Concentrations of Total Petroleum Hydrocarbons-Gasoline Range Organics ranged from 323 mg/L to 3,364 mg/L; Total Petroleum Hydrocarbons-Diesel Range Organics were not detected. Three samples from this site were analyzed for benzene, toluene, ethylbenzene, and total xylenes at a laboratory and results showed concentrations ranging from less than the minimum detection limit to 1,070 mg/L for benzene, 7,930 mg/L for toluene, 6,890 mg/L for ethylbenzene, and 1,524 mg/L for total xylenes. Petroleum hydro- carbons were detected by on-site analysis in only one sample at Site 2438. A concentration of 131,000 micrograms per kilogram Total Petroleum Hydrocarbons-Diesel Range Organics was detected in sample number GP-2-4-13.5. Petroleum hydrocarbons were detected by on-site analysis in only one ground-water sample from Site 2444. A concentration of 3,145 mg/L Total Petroleum Hydrocarbons-Gasoline Range Organics was detected at sampling location GP-3-2.

  14. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  15. Organochlorine pesticide residues in ground water of Thiruvallur district, India.

    PubMed

    Jayashree, R; Vasudevan, N

    2007-05-01

    Modern agriculture practices reveal an increase in use of pesticides and fertilizers to meet the food demand of increasing population which results in contamination of the environment. In India crop production increased to 100% but the cropping area has increased marginally by 20%. Pesticides have played a major role in achieving the maximum crop production, but maximum usage and accumulation of pesticide residues was highly detrimental to aquatic and other ecosystem. The present study was chosen to know the level of organochlorines contamination in ground water of Thiruvallur district, Tamil Nadu, India. The samples were highly contaminated with DDT, HCH, endosulfan and their derivatives. Among the HCH derivatives, Gamma HCH residues was found maximum of 9.8 microg/l in Arumbakkam open wells. Concentrations of pp-DDT and op-DDT were 14.3 microg/l and 0.8 microg/l. The maximum residue (15.9 microg/l) of endosulfan sulfate was recorded in Kandigai village bore well. The study showed that the ground water samples were highly contaminated with organochlorine residues.

  16. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  17. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  18. Impact of urban development on the chemical composition of ground water in a fen-wetland complex

    USGS Publications Warehouse

    Panno, S.V.; Nuzzo, V.A.; Cartwright, K.; Hensel, B.R.; Krapac, I.G.

    1999-01-01

    A 15-month-long hydrogeologic investigation of a fen-wetland complex in northeastern Illinois, USA indicated the encroachment of ground-water-borne anthropogenic contaminants into two of three high quality fens. Ground-water flow directions and chemical evidence indicated that plumes of ground water with anomalously large concentrations of Na+ and Cl- originated from a private septic system and from rock salt spread on an adjacent road. The contamination, in turn, had an adverse effect on fen vegetation; within the plumes, diverse vegetation was replaced by the more salt-tolerant narrow-leaf cattail (Typha angustifolia). Ground water of the third fen contained large concentrations of SO42- as high as 516 mg/L. The SO42- anomaly was observed on a transient and/or seasonal basis in the fen ground water and in an adjacent marsh and pond. Isotopically light ??34S values in these waters indicated that the addition of SO42- resulted from the oxidation of pyrite within underlying peat and/or pyritic gravel. However, the large SO42- concentrations had no discernible effect on fen vegetation. The results of this investigation indicate how easily construction of houses with private septic systems and deicing agents from roadway maintenance can contaminate fen ground water with relatively large concentrations of Na+ and Cl-, resulting in a significant loss of biodiversity in fens.

  19. Land management impacts on dairy-derived dissolved organic carbon in ground water

    USGS Publications Warehouse

    Chomycia, J.C.; Hernes, P.J.; Harter, T.; Bergamaschi, B.A.

    2008-01-01

    Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L-1 in wells downgradient from wastewater ponds, 8 to 30 mg L-1 in corral wells, 5 to 12 mg L-1 in tile drains, and 4 to 15 mg L-1 in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 ??g L-1, well in excess of the maximum contaminant level of 80 ??g L-1 established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation (???4 to ???8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered

  20. Patterns and rates of ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Modica, Edward

    1992-01-01

    Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.

  1. Emerging Contaminants in the Drinking Water Cycle - MCEARD

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  2. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  3. Simulation of ground-water flow and transport of chlorinated hydrocarbons at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, Frederick J.; Fleck, William B.

    2001-01-01

    Military activity at Graces Quarters, a former open-air chemical-agent facility at Aberdeen Proving Ground, Maryland, has resulted in ground-water contamination by chlorinated hydrocarbons. As part of a ground-water remediation feasibility study, a three-dimensional model was constructed to simulate transport of four chlorinated hydrocarbons (1,1,2,2-tetrachloroethane, trichloroethene, carbon tetrachloride, and chloroform) that are components of a contaminant plume in the surficial and middle aquifers underlying the east-central part of Graces Quarters. The model was calibrated to steady-state hydraulic head at 58 observation wells and to the concentration of 1,1,2,2-tetrachloroethane in 58 observation wells and 101direct-push probe samples from the mid-1990s. Simulations using the same basic model with minor adjustments were then run for each of the other plume constituents. The error statistics between the simulated and measured concentrations of each of the constituents compared favorably to the error statisticst,1,2,2-tetrachloroethane calibration. Model simulations were used in conjunction with contaminant concentration data to examine the sources and degradation of the plume constituents. It was determined from this that mixed contaminant sources with no ambient degradation was the best approach for simulating multi-species solute transport at the site. Forward simulations were run to show potential solute transport 30 years and 100 years into the future with and without source removal. Although forward simulations are subject to uncertainty, they can be useful for illustrating various aspects of the conceptual model and its implementation. The forward simulation with no source removal indicates that contaminants would spread throughout various parts of the surficial and middle aquifers, with the100-year simulation showing potential discharge areas in either the marshes at the end of the Graces Quarters peninsula or just offshore in the estuaries. The

  4. Summary appraisals of the Nation's ground-water resources; South Atlantic Gulf region

    USGS Publications Warehouse

    Cederstrom, D.J.; Boswell, E.H.; Tarver, G.R.

    1979-01-01

    Ground-water problems generally are not severe. Critical situations are restricted to areas where large quantities of ground water are being withdrawn or where aquifers are contaminated by oil-field or industrial waste. Large withdrawals in coastal areas have caused some saltwater intrusion. In other localities, highly mineralized water may have migrated along fault zones to freshwater aquifers. Many of the present problems can be resolved or ameliorated by redistributing withdrawals or developing alternative water sources.

  5. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling

  6. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  7. Quality of ground water in the Biscayne Aquifer in Miami-Dade, Broward, and Palm Beach counties, Florida, 1996-1998, with emphasis on contaminants

    USGS Publications Warehouse

    Bradner, Anne; McPherson, Benjamin F.; Miller, Ronald L.; Kish, George; Bernard, Bruce

    2005-01-01

    The high permeability of the sand and limestone sediments and shallow water table of the Biscayne aquifer make ground water vulnerable to contamination by human activities. To assess potential contamination in the aquifer, untreated ground water was sampled from 30 public-supply wells (40-165 feet deep) in Broward, Miami-Dade, and Palm Beach Counties, 32 shallow wells (10-50 feet deep) in a recently urbanized (residential and light commercial) part of Broward County, and 3 shallow reference wells in Broward County. Results from sample analyses indicate that major ions, pH, dissolved oxygen, nutrients, and trace element concentrations were generally within the range indicative of background concentrations, except for: (1) substantially higher bromide concentrations in water from public-supply wells in southern Miami-Dade County; (2) a few relatively high (greater than 2 milligrams per liter) concentrations of nitrate in water from public-supply wells near agricultural lands in Miami-Dade and southern Broward Counties; and (3) a few relatively high concentrations of arsenic (greater than 10 micrograms per liter) in water from some shallow urban wells near golf courses. Pesticides were detected in every public-supply well, in most of the shallow, urban monitoring wells (78 percent), and in one reference well; however, no pesticide concentration exceeded any drinking-water standard. Fifteen different pesticides or their degradation products were detected. The most frequently detected pesticides were atrazine and tebuthiuron; less frequently detected were the herbicides diuron, fenuron, prometon, metolachlor, simazine, and 2,6-diethylaniline. Volatile organic compounds (VOCs) were detected in most of the public-supply wells (77 percent) and shallow, urban wells (91 percent) and in two of the three reference wells. Thirty-two different VOCs were detected in ground water in the Biscayne aquifer, with cis-1,2-dichloroethene the most frequently detected VOC in the public

  8. WATER CONTAMINATION IN FALLOUT AREAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, G.G.; Woodward, R.L.; Muschler, W.K.

    1958-05-01

    An evaluation of the potential radiological hazard to Air Force personnel from drinking water contaminated with fission products is presented. Ground water supplies should be safe from fall-out contamination and only surface supplies may need special treatment. Even in untreated water, the radioactivity in surface supplies is not likely to reduce significantly the military effectiveness of personnel using it except where the general level of contamination is greater than 1000 r/hr at H + 1. Dust samples were collected at the Priscilla shot of Operation Plumbbob 24 June 1957. In each of the samples, material containing approximately 10% of themore » activity was soluble; however, strontium was preferentially dissolved by a factor of 5. For the first 10 days after fall-out, a supply of one gallon of water per person per day will suffice for drinking and culinary purposes, Ion-exchange, which is over 99% efficient, is the most practical and economical method of supplying decontaminated water, For immediate demand, small mixed-bed demineralizers, which are easily installed and maintained, are recommended; for long term demand, pressure cation-exchange beds operated on the sodium cycle are recommended. A shelter accommodating 100 people would require a small mixed-bed demineralizer with an initial cost of and an operating cost of per day. A pressure cation-exchange bed could be installed for 500 which would have an operating cost of 15 cents per 1,000 gallons. This could supply an average daily water requirement of 50,000 gallons. (auth)« less

  9. Contamination of water due to major industries and open refuse dumping in the steel city of Orissa--a case study.

    PubMed

    Mishra, P C; Behera, P C; Patel, R K

    2005-04-01

    Contamination of ground water is common in the areas surrounded by industrial refuse dumping sites and the probability of contamination is more where dumping is done in low lying areas and the rate of percolation through the soil is high. In order to assess the ground water pollution by leachate around the refuse dumping site, eighteen wells were selected for study. Few wells are nearer to the dumps, few are far away and others are in between. Also an attempt has been made to evaluate the effect of industrial effluents on the ground and surface water due to Integrated Rourkela Steel Plant and other major industries. From the analytical data of physico-chemical parameters, it is indicated that the river water is contaminated mainly due to the industrial and municipal effluents and the ground water of some of the analyzed areas is contaminated due to municipal and industrial solid waste dumping.

  10. Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; McManus, B. Craig

    1996-01-01

    Valley Forge National Historical Park is just southwest of the Commodore Semiconductor Group (CSG) National Priorities List (Superfund) Site, a source of volatile organic compounds (VOC's) in ground water. The 7.5-square-mile study area includes the part of the park in Lower Providence and West Norriton Townships in Montgomery County, Pa., and surrounding vicinity. The park is underlain by sedimentary rocks of the Upper Triassic age stockton Formation. A potentiometric-surface map constructed from water levels measured in 59 wells shows a cone of depression, approximately 0.5 mile in diameter, centered near the CSG Site. The cone of depression is caused by the pumping of six public supply wells. A ground-water divide between the cone of depression and Valley Forge National Historical Park provides a hydraulic barrier to the flow of ground water and contaminants from the CSG Site to the park. If pumping in the cone of depression was to cease, water levels would recover, and the ground-water divide would shift to the north. A hydraulic gradient between the CSG Site and the Schuylkill River would be established, causing contaminated ground water to flow to the park.Water samples were collected from 12 wells within the park boundary and 9 wells between the park boundary and the ground-water divide to the north of the park. All water samples were analyzed for physical properties (field determinations), nutrients, common ions, metals and other trace constituents, and VOC's. Water samples from the 12 wells inside the park boundary also were analyzed for pesticides. Concentrations of inorganic constituents in the water samples did not exceed U.S. Environmental Protection Agency maximum contaminant levels. Very low concentrations of organic compounds were detected in some of the water samples. VOC's were detected in water from 76 percent of the wells sampled; the maximum concentration detected was 5.8 micrograms per liter of chloroform. The most commonly detected VOC was

  11. 40 CFR 280.65 - Investigations for soil and ground-water cleanup.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Investigations for soil and ground... Containing Petroleum or Hazardous Substances § 280.65 Investigations for soil and ground-water cleanup. (a) In order to determine the full extent and location of soils contaminated by the release and the...

  12. 40 CFR 280.65 - Investigations for soil and ground-water cleanup.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Investigations for soil and ground... Containing Petroleum or Hazardous Substances § 280.65 Investigations for soil and ground-water cleanup. (a) In order to determine the full extent and location of soils contaminated by the release and the...

  13. 40 CFR 280.65 - Investigations for soil and ground-water cleanup.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Investigations for soil and ground... Containing Petroleum or Hazardous Substances § 280.65 Investigations for soil and ground-water cleanup. (a) In order to determine the full extent and location of soils contaminated by the release and the...

  14. 40 CFR 280.65 - Investigations for soil and ground-water cleanup.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Investigations for soil and ground... Containing Petroleum or Hazardous Substances § 280.65 Investigations for soil and ground-water cleanup. (a) In order to determine the full extent and location of soils contaminated by the release and the...

  15. 40 CFR 280.65 - Investigations for soil and ground-water cleanup.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Investigations for soil and ground... Containing Petroleum or Hazardous Substances § 280.65 Investigations for soil and ground-water cleanup. (a) In order to determine the full extent and location of soils contaminated by the release and the...

  16. Zonal management of arsenic contaminated ground water in Northwestern Bangladesh.

    PubMed

    Hill, Jason; Hossain, Faisal; Bagtzoglou, Amvrossios C

    2009-09-01

    This paper used ordinary kriging to spatially map arsenic contamination in shallow aquifers of Northwestern Bangladesh (total area approximately 35,000 km(2)). The Northwestern region was selected because it represents a relatively safer source of large-scale and affordable water supply for the rest of Bangladesh currently faced with extensive arsenic contamination in drinking water (such as the Southern regions). Hence, the work appropriately explored sustainability issues by building upon a previously published study (Hossain et al., 2007; Water Resources Management, vol. 21: 1245-1261) where a more general nation-wide assessment afforded by kriging was identified. The arsenic database for reference comprised the nation-wide survey (of 3534 drinking wells) completed in 1999 by the British Geological Survey (BGS) in collaboration with the Department of Public Health Engineering (DPHE) of Bangladesh. Randomly sampled networks of zones from this reference database were used to develop an empirical variogram and develop maps of zonal arsenic concentration for the Northwestern region. The remaining non-sampled zones from the reference database were used to assess the accuracy of the kriged maps. Two additional criteria were explored: (1) the ability of geostatistical interpolators such as kriging to extrapolate information on spatial structure of arsenic contamination beyond small-scale exploratory domains; (2) the impact of a priori knowledge of anisotropic variability on the effectiveness of geostatistically based management. On the average, the kriging method was found to have a 90% probability of successful prediction of safe zones according to the WHO safe limit of 10ppb while for the Bangladesh safe limit of 50ppb, the safe zone prediction probability was 97%. Compared to the previous study by Hossain et al. (2007) over the rest of the contaminated country side, the probability of successful detection of safe zones in the Northwest is observed to be about 25

  17. Chemical quality of ground water on Cape Cod, Massachusetts

    USGS Publications Warehouse

    Frimpter, M.H.; Gay, F.B.

    1979-01-01

    Cape Cod is a 440 square mile hook-shaped peninsula which extends 40 miles into the Atlantic. Freshwater in Pleistocene sand and gravel deposits is the source of supply for nearly 100 municipal and thousands of private domestic wells. Most ground water on Cape Cod is of good chemical quality for drinking and other uses. It is characteristically low in dissolved solids and is soft. In 90 percent of the samples analyzed, dissolved solids were less than 100 mg/l (milligrams per liter) and pH was less than 7.0. Highway deicing salt, sea-water flooding due to storms , and saltwater intrusion due to ground-water withdrawal are sources of sodium chloride contamination. Chloride concentrations have increased from 20 to 140 mg/l, owing to saltwater intrusion at Provincetown 's wells in Truro. In Yarmouth, contaminated ground water near a salt-storage area contained as much as 1,800 mg/l chloride. Heavy metals, insecticides, and herbicides were not found at concentrations above the U.S. Environmental Protection Agency 's recommended limits for public drinking-water supplies, but iron and manganese in some samples exceeded those limits. Ninety percent of 84 samples analyzed for nitrate reported as nitrogen contained less than 1.3 mg/l and 80 percent contained 0.5 mg/l or less of nitrate as nitrogen. Water containing nitrogen in excess of 0.5 mg/l has probably been affected by municipal or domestic sewage or fertilizer, and water with less than this amount may have been affected by them. (Woodard-USGS)

  18. Ground water arsenic contamination in West Bengal, India: a risk of sub-clinical toxicity in cattle as evident by correlation between arsenic exposure, excretion and deposition.

    PubMed

    Bera, Asit Kumar; Rana, Tanmoy; Das, Subhshree; Bhattacharya, Debasis; Bandyopadhyay, Subhasish; Pan, Diganta; De, Sumanta; Samanta, Srikanta; Chowdhury, Atalanta Narayan; Mondal, Tapan Kumar; Das, Subrata Kumar

    2010-11-01

    Arsenic contamination of ground water in West Bengal, India, is a great concern for both human and livestock populations. Our study investigated and correlated the arsenic concentration in the drinking water, urinary excretion and deposition of total arsenic in hair of cattle at an arsenic contaminated zone in West Bengal. The results of our study indicated that the average concentration of arsenic in tube well water in contaminated villages ranged from 0.042 to 0.251 ppm and a statistical significant (p < 0.01) difference was seen when compared to samples from a non-contaminated zone. The arsenic concentration in urine and hair of cattle ranged between 0.245-0.691 ppm and 0.461-0.984 ppm, respectively. A close relationship was found between the total arsenic in drinking water urinary excretion (r² = 0.03664, p < 0.05) and the arsenic concentration in hair (r² = 0.03668, p < 0.05). Our findings indicate that quantification of arsenic concentration in cattle urine and hair can serve as biomarkers for both present and past exposure in cattle population.

  19. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The

  20. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  1. Occurrence of selected contaminants in water, fish tissue, and streambed sediments in central Nebraska, 1992-95

    USGS Publications Warehouse

    Frenzel, Steven A.

    1996-01-01

    Surface and ground water in Nebraska may contain contaminants resulting from human activities. For purposes of this publication, a contaminant is any element or compound whose presence may affect the water's suitability for certain uses. For example, herbicide concentrations may exceeed the U.S. Environmental Protection Agency's (USEPA) Health Advisory Levels (HAL) for drinking water or trace-element concentrations may exceed guidelines for the protection of aquatic life. In general, the contaminats discussed in this report enter the aquatic system through nonpoint-source runoff from agricultural lands that dominate the Nebraska landscape. However,because this assessment was conducted as part of a larger, national program, a screening for contaminants with non-agricultural origins was included.The measurement of water quality involves a variety of steps, each contributing unique information while also aggregating to an overall assessment. One aspect of water-quality assesment is to describe the occurrence and distribution of contaminants. Some contaminants may be hundreds or thousands of times more concentrated in the tissues of aquatic organisms or in fine sediments than they are in the water. As a result, fish tissue and streambed sediments are well suited for the detection of certain contaminants. For example, pesticides used in the United States prior to the early 1970's, such as DDT, may have degraded into more stable but still toxic compounds that are highly concentrated in fish tissues. Conversely, other contaminants are not concentrated in sediments or tissues but are readily detected in water samples. Organonitrogen herbicides (such as atrazine), the most commonly used herbicides in Nebraska, are examples of water-soluble contaminants.Several sampling strategies were used to address specific questions. Some sites were sampled repeatedly through time and during all hydrologic conditions, whereas others were sampled only once to determine presence of

  2. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    . Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-

  3. EMERGING CONTAMINANTS IN THE WATER CYCLE: FATE AND TRANSPORT

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations in surface, ground and drinking water. The most common pathway for...

  4. Age of irrigation water in ground water from the Eastern Snake River Plain Aquifer, south-central Idaho

    USGS Publications Warehouse

    Plummer, Niel; Rupert, M.G.; Busenberg, E.; Schlosser, P.

    2000-01-01

    Stable isotope data (2H and 18O) were used in conjunction with chlorofluorocarbon (CFC) and tritium/helium-3 (3H/3He) data to determine the fraction and age of irrigation water in ground water mixtures from farmed parts of the Eastern Snake River Plain (ESRP) Aquifer in south-central Idaho. Two groups of waters were recognized: (1) regional background water, unaffected by irrigation and fertilizer application, and (2) mixtures of irrigation water from the Snake River with regional background water. New data are presented comparing CFC and 3H/3He dating of water recharged through deep fractured basalt, and dating of young fractions in ground water mixtures. The 3H/3He ages of irrigation water in most mixtures ranged from about zero to eight years. The CFC ages of irrigation water in mixtures ranged from values near those based on 3H/3He dating to values biased older than the 3H/3He ages by as much as eight to 10 years. Unsaturated zone air had CFC-12 and CFC-113 concentrations that were 60% to 95%, and 50% to 90%, respectively, of modern air concentrations and were consistently contaminated with CFC-11. Irrigation water diverted from the Snake River was contaminated with CFC-11 but near solubility equilibrium with CFC-12 and CFC-113. The dating indicates ground water velocities of 5 to 8 m/d for water along the top of the ESRP Aquifer near the southwestern boundary of the Idaho National Engineering and Environmental Laboratory (INEEL). Many of the regional background waters contain excess terrigenic helium with a 3He/4He isotope ratio of 7 x 10-6 to 11 x 10-6 (R/Ra = 5 to 8) and could not be dated. Ratios of CFC data indicate that some rangeland water may contain as much as 5% to 30% young water (ages of less than or equal to two to 11.5 years) mixed with old regional background water. The relatively low residence times of ground water in irrigated parts of the ESRP Aquifer and the dilution with low-NO3 irrigation water from the Snake River lower the potential for

  5. Possible Extent and Depth of Salt Contamination in Ground Water Using Geophysical Techniques, Red River Aluminum Site, Stamps, Arkansas, April 2003

    USGS Publications Warehouse

    Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.

    2003-01-01

    A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east

  6. Development of a U.S. EPA Method for the Analysis of Selected Drinking Water Contaminants by LC/MS/MS

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (U.S. EPA) Office of Ground Water and Drinking Water (OGWDW) collects national occurrence data on drinking water contaminants using Unregulated Contaminant Monitoring Regulations (UCMRs). These contaminants may be selected from the Drin...

  7. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  8. WORKSHOP ON MONITORING OXIDATION-REDUCTION PROCESSES FOR GROUND-WATER RESTORATION

    EPA Science Inventory

    Redox conditions are among the most important parameters for controlling contaminant transport and fate in ground-water systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting solubility, rea...

  9. Simulation of ground-water flow in the Vevay Township area, Ingham County, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Simard, Andreanne

    2004-01-01

    Ground water is the primary source of water for domestic, public-supply, and industrial use within the Tri-County region that includes Clinton, Eaton, and Ingham Counties in Michigan. Because of the importance of this ground-water resource, numerous communities, including the city of Mason in Ingham County, have begun local Wellhead Protection Programs. In these programs, communities protect their groundwater resource by identifying the areas that contribute water to production wells and potential sources of contamination, and by developing methods to manage and minimize threats to the water supply. In addition, some communities in Michigan are concerned about water availability, particularly in areas experiencing water-level declines in the vicinity of quarry dewatering operations. In areas where Wellhead Protection Programs are implemented and there are potential threats to the water supply, residents and communities need adequate information to protect the water supply.In 1996, a regional ground-water-flow model was developed by the U.S. Geological Survey to simulate ground-water flow in Clinton, Eaton, and Ingham Counties. This model was developed primarily to simulate the bedrock ground-waterflow system; ground-water flow in the unconsolidated glacial sediments was simulated to support analysis of flow in the underlying bedrock Saginaw aquifer. Since its development in 1996, regional model simulations have been conducted to address protection concerns and water availability questions of local water-resources managers. As a result of these continuing model simulations, additional hydrogeologic data have been acquired in the Tri-County region that has improved the characterization of the simulated ground-water-flow system and improved the model calibration. A major benefit of these updates and refinements is that the regional Tri-County model continues to be a useful tool that improves the understanding of the ground-water-flow system in the Tri-County region

  10. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  11. Quality of shallow ground water in areas of recent residential and commercial development, Wichita, Kansas, 2000

    USGS Publications Warehouse

    Pope, Larry M.; Bruce, Breton W.; Rasmussen, Patrick P.; Milligan, Chad R.

    2002-01-01

    Water samples from 30 randomly distributed monitoring wells in areas of recent residential and commercial development (1960-96), Wichita, Kansas, were collected in 2000 as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The samples were analyzed for about 170 water-quality constituents that included chlorofluorocarbons, physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticide compounds, and volatile organic compounds. The purpose of this report is to provide an assessment of water quality in recharge to shallow ground water underlying areas of recent residential and commercial development and to determine the relation of ground-water quality to overlying urban land use. Analyses of water from the 30 monitoring wells for chlorofluorocarbons were used to estimate apparent dates of recharge. Water from 18 wells with nondegraded and uncontaminated chlorofluorocarbon concentrations had calculated apparent recharge dates that ranged from 1979 to 1990 with an average date of 1986. Water from 14 monitoring wells (47 percent) exceeded the 500-milligrams-per-liter Secondary Maximum Contaminant Level established by the U.S. Environmental Protection Agency for dissolved solids in drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well. The source of the largest concentrations of dissolved solids and associated ions, such as chloride and sulfate, in shallow ground water in the study area probably is highly mineralized water moving out of the Arkansas River into the adjacent, unconsolidated deposits and mixing with the dominant calcium bicarbonate water in the deposits. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Although water from the sampled wells did not have

  12. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPAmore » ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.« less

  13. Automated ground-water monitoring with Robowell: case studies and potential applications

    NASA Astrophysics Data System (ADS)

    Granato, Gregory E.; Smith, Kirk P.

    2002-02-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/

  14. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  15. Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water

    USGS Publications Warehouse

    Harte, Philip T.; Brayton, Michael J.; Ives, Wayne

    2000-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  16. Impact of Oxidant Residuals on Ground Water Samples at ISCO Sites: Recommended Guidelines for Sample Preservation

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  17. Ground Water Sampling at ISCO Sites - Residual Oxidant Impact on Sample Quality and Sample Preservation Guideline

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the delivery of a chemical oxidant into the subsurface where oxidative reactions transform ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  18. Heat as a tool for studying the movement of ground water near streams

    USGS Publications Warehouse

    Stonestrom, David A.; Constantz, Jim

    2003-01-01

    Stream temperature has long been recognized as an important water quality parameter. Temperature plays a key role in the health of a stream?s aquatic life, both in the water column and in the benthic habitat of streambed sediments. Many fish are sensitive to temperature. For example, anadromous salmon require specific temperature ranges to successfully develop, migrate, and spawn [see Halupka and others, 2000]. Metabolic rates, oxygen requirements and availability, predation patterns, and susceptibility of organisms to contaminants are but a few of the many environmental responses regulated by temperature. Hydrologists traditionally treated streams and ground water as distinct, independent resources to be utilized and managed separately. With increasing demands on water supplies, however, hydrologists realized that streams and ground water are parts of a single, interconnected resource [see Winter and others, 1998]. Attempts to distinguish these resources for analytical or regulatory purposes are fraught with difficulty because each domain can supply (or drain) the other, with attendant possibilities for contamination exchange. Sustained depletion of one resource usually results in depletion of the other, propagating adverse effects within the watershed. An understanding of the interconnections between surface water and ground water is therefore essential. This understanding is still incomplete, but receiving growing attention from the research community. Exchanges between streams and shallow ground-water systems play a key role in controlling temperatures not only in streams, but also in their underlying sediments. As a result, analyses of subsurface temperature patterns provide information about surface-water/ground-water interactions. Chemical tracers are commonly used for tracing flow between streams and ground water. Introduction of chemical tracers in near-stream environments is, however, limited by real and perceived issues regarding introduced contamination

  19. REMEDIATING DICAMBA-CONTAMINATED WATER WITH ZEROVALENT IRON. (R829422E03)

    EPA Science Inventory

    Dicamba (3,6-dichloro-2-methoxybenzoicacid) is a highly mobile pre- and post-emergence herbicide that has been detected in ground water. We determined the potential of zerovalent iron (Fe0) to remediate water contaminated with dicamba and its common biological degra...

  20. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these costs, cost information for 311 sites was furnished by U.S. EPA Office of Underg...

  1. Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea

    USGS Publications Warehouse

    Koh, D.-C.; Plummer, Niel; Kip, Solomon D.; Busenberg, E.; Kim, Y.-J.; Chang, H.-W.

    2006-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated as environmental tracers in ground water from Jeju Island (Republic of Korea), a basaltic volcanic island. Ground-water mixing was evaluated by comparing 3H and CFC-12 concentrations with lumped-parameter dispersion models, which distinguished old water recharged before the 1950s with negligible 3H and CFC-12 from younger water. Low 3H levels in a considerable number of samples cannot be explained by the mixing models, and were interpreted as binary mixing of old and younger water; a process also identified in alkalinity and pH of ground water. The ground-water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seogwipo Formation in coastal areas than in water from the basaltic aquifer. Major cation concentrations are much higher in young water with high nitrate than those in uncontaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increases with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water is consistent with the known history of chemical fertilizer use on the island, but increase of nitrate concentration in ground water is more abrupt after the late 1970s compared with the exponential growth of nitrogen inputs. ?? 2005 Elsevier B.V. All rights reserved.

  2. Lateral movement of contaminated ground water from Merrill Field Landfill, Anchorage, Alaska

    USGS Publications Warehouse

    Brunett, J.O.

    1990-01-01

    A sanitary landfill used in Anchorage, Alaska, since the 1940 's was closed in 1987. Leachate from the landfill does not appear to be contaminating a small creek flowing through a conduit in the landfill, but leachate is being transported by groundwater into a wetlands to the south. An electromagnetic survey of the unconfined aquifer and subsequent sampling from wells indicate that minor amounts of contaminants have reached much of the wetlands as far as Chester Creek, about 2,200 ft to the south. However, concentrations of these contaminants in the groundwater are generally less than U.S. Environmental Protection Agency standards for drinking water except within the landfill itself. (USGS)

  3. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  4. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  5. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  6. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  7. Ground-water conditions in Georgia, 1997

    USGS Publications Warehouse

    Cressler, A.M.

    1998-01-01

    Ground-water conditions in Georgia during 1997 and for the period of record were evaluated using data from ground-water-level and ground-water-quality monitoring networks. Data for 1997 included in this report are from continuous water-level records from 71 wells and chloride analyses from 14 wells. In 1997, annual mean ground-water levels in Georgia ranged from 6.2 feet (ft) lower to 5.6 ft higher than in 1996. Of the 71 wells summarized in this report, 23 wells had annual mean water levels that were higher, 35 wells had annual mean water levels that were lower, and 11 wells had annual mean water levels that were about the same in 1997 as during 1996. Data for two wells are incomplete because data collection was discontinued at one well, and the equipment was vandalized at one well. Record-low daily mean water levels were recorded in six wells tapping the Upper Floridan aquifer, one well tapping the Caliborne aquifer, two wells tapping the Clayton aquifer, and three wells tapping Cretaceous aquifers. These record lows were from 0.2 to 5.6 ft lower than previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standard. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water

  8. Hydrogeology and Simulated Ground-Water Flow in the Salt Pond Region of Southern Rhode Island

    USGS Publications Warehouse

    Masterson, John P.; Sorenson, Jason R.; Stone, Janet R.; Moran, S. Bradley; Hougham, Andrea

    2007-01-01

    The Salt Pond region of southern Rhode Island extends from Westerly to Narragansett Bay and forms the natural boundary between the Atlantic Ocean and the shallow, highly permeable freshwater aquifer of the South Coastal Basin. Large inputs of fresh ground water coupled with the low flushing rates to the open ocean make the salt ponds particularly susceptible to eutrophication and bacterial contamination. Ground-water discharge to the salt ponds is an important though poorly quantified source of contaminants, such as dissolved nutrients. A ground-water-flow model was developed and used to delineate the watersheds to the salt ponds, including the areas that contribute ground water directly to the ponds and the areas that contribute ground water to streams that flow into ponds. The model also was used to calculate ground-water fluxes to these coastal areas for long-term average conditions. As part of the modeling analysis, adjustments were made to model input parameters to assess potential uncertainties in model-calculated watershed delineations and in ground-water discharge to the salt ponds. The results of the simulations indicate that flow to the salt ponds is affected primarily by the ease with which water is transmitted through a glacial moraine deposit near the regional ground-water divide, and by the specified recharge rate used in the model simulations. The distribution of the total freshwater flow between direct ground-water discharge and ground-water-derived surface-water (streamflow) discharge to the salt ponds is affected primarily by simulated stream characteristics, including the streambed-aquifer connection and the stream stage. The simulated position of the ground-water divide and, therefore, the model-calculated watershed delineations for the salt ponds, were affected only by changes in the transmissivity of the glacial moraine. Selected changes in other simulated hydraulic parameters had substantial effects on total freshwater discharge and the

  9. Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky

    USGS Publications Warehouse

    Lyverse, M.A.; Unthank, M.D.

    1988-01-01

    Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)

  10. UTILIZATION OF GEOGRAPHIC INFORMATION SYSTEMS TECHNOLOGY IN THE ASSESSMENT OF REGIONAL GROUND-WATER QUALITY.

    USGS Publications Warehouse

    Nebert, Douglas; Anderson, Dean

    1987-01-01

    The U. S. Geological Survey (USGS) in cooperation with the U. S. Environmental Protection Agency Office of Pesticide Programs and several State agencies in Oregon has prepared a digital spatial database at 1:500,000 scale to be used as a basis for evaluating the potential for ground-water contamination by pesticides and other agricultural chemicals. Geographic information system (GIS) software was used to assemble, analyze, and manage spatial and tabular environmental data in support of this project. Physical processes were interpreted relative to published spatial data and an integrated database to support the appraisal of regional ground-water contamination was constructed. Ground-water sampling results were reviewed relative to the environmental factors present in several agricultural areas to develop an empirical knowledge base which could be used to assist in the selection of future sampling or study areas.

  11. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  12. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  13. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  14. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    PubMed Central

    Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Li, Hairong

    2013-01-01

    Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators. PMID:23462436

  15. The role of ground water in water-supply emergency planning

    NASA Astrophysics Data System (ADS)

    Reichard, E. G.; Li, Z.; Hermans, C.

    2008-12-01

    Catastrophic events, such as earthquakes or floods, can result in water-supply disruptions. Such disruptions can cause large economic losses and pose threats to public health. Water managers seek to develop cost- effective strategies for reducing these risks and ensuring water security. In many areas, ground water can play an important role in such water-supply emergency planning. We present a probabilistic framework for estimating the hydraulic impacts and associated costs of using ground water as a backup supply in the event of a disruption in imported-water deliveries. We also estimate the benefits of ground-water management strategies, such as artificial recharge, in terms of reduced costs of responding to water-supply emergencies. The magnitude of these benefits will depend on the expected severity and duration of the imported-water disruption, the functioning of the hydrogeologic system, and economic parameters. We apply the framework to address water-supply emergency planning in the Los Angeles area. A simulation model is used to generate response functions, which relate emergency ground-water pumpage to potential adverse effects, such as increased pumping lifts, subsidence, and seawater intrusion. These response functions are incorporated into a Monte Carlo analysis, along with cost coefficients and information on the probable severity of the disruption. Disruption severity is represented by a probability distribution, which can be elicited from water managers. In the example, the primary emergency-related benefits of artificial recharge are reductions in potential subsidence costs. The framework could be extended to consider additional engineering factors (e.g., well capacities and integrity of local distribution systems), institutional arrangements, and regulatory requirements.

  16. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    EPA Science Inventory

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  17. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  18. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    PubMed

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  19. Occurrence of Diatoms in Lakeside Wells in Northern New Jersey as an Indicator of the Effect of Surface Water on Ground-Water Quality

    USGS Publications Warehouse

    Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.

    2006-01-01

    In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.

  20. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  1. SUCCESSFUL APPLICATION OF AIR SPARGING TO REMEDIATE ETHYLENE DEBROMIDE (EDB) IN GROUND WATER INKANSAS

    EPA Science Inventory

    Although Ethylene Dibromide (EDB) was banned in conventional motor fuel in the USA by 1990, EDB continues to contaminate ground water at many old gasoline service station sites. Although EDB contamination is widespread, there is little performance data on technology to remediat...

  2. Nitrate, volatile organic compounds, and pesticides in ground water--a summary of selected studies from New Jersey and Long Island, New York

    USGS Publications Warehouse

    Clawges, Rick M.; Stackelberg, Paul E.; Ayers, Mark A.; Vowinkel, Eric F.

    1999-01-01

    This report describes the ground-water systems in the unconsolidated sand and gravel aquifers of the Coastal Plain of New Jersey and Long Island and in the fractured bedrock and valley-fill aquifers of northern New Jersey; summarizes current knowledge about the occurrence and distribution of nitrate, volatile organic compounds (VOCs), and pesticides in these systems; and explains why some ground-water systems are more vulnerable to comtamination than others. Although the vulnerability of ground water to contamination from the land surface is influenced by many factors, the degree of aquifer confinement, the depth of the well, and the surrounding land use are key factors. Unconfined aquifers generally are much more vulnerable to contamination than confined aquifers. For a well in a confined aquifer, the farther the well is from the unconfined area, the less vulnerable it is to contamination. Generally, the deeper the well, the less vulnerable it is to contamination. Finally, because human activities greatly affect the quality of water that recharges an aquifer, the amount and type of land use in the area that contributes water to the well is a key factor in determining vulnerability. Nitrate contamination of ground water typically occurs in agricultural and residential areas, especially where the aquifer is very permeable and unconfined and nitrogen-fertilizer use is high. In New Jersey and on Long Island, concentrations of nitrate exceed the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) more often than those of VOCs or pesticides. Nitrate contamination generally is associated with nonpoint sources. VOC contamination of ground water occurs primarily in urban areas, especially in mixed urban and industrial areas where chemicals are used. In general, VOC concentrations are low and do not exceed MCLs. High concentrations of VOCs generally are associated with point sources. Pesticide contamination of ground water occurs in some agricultural and

  3. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  4. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  5. Effect of arsenic contaminated drinking water on human chromosome: a case study.

    PubMed

    Singh, Asha Lata; Singh, Vipin Kumar; Srivastava, Anushree

    2013-10-01

    Arsenic contamination of ground water has become a serious problem all over the world. Large number of people from Uttar Pradesh, Bihar and West Bengal of India are suffering due to consumption of arsenic contaminated drinking water. Study was carried out on 30 individuals residing in Ballia District, UP where the maximum concentration of arsenic was observed around 0.37 ppm in drinking water. Blood samples were collected from them to find out the problem related with arsenic. Cytogenetic study of the blood samples indicates that out of 30, two persons developed Klinefelter syndrome.

  6. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  7. Naturally occurring radionuclides in the ground water of southeastern Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2000-01-01

    Naturally occurring radionuclides in the ground water of southeastern Pennsylvania may pose a health hazard to some residents, especially those drinking water from wells drilled in the Chickies Quartzite. Water from 46 percent of wells sampled in the Chickies Quartzite and 7 percent of wells sampled in other geologic formations exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for total radium. Radon-222 may pose a health problem for homeowners by contributing to indoor air radon-222 levels. The radon-222 activity of water from 89 percent of sampled wells exceeded 300 pCi/L (picocuries per liter), the proposed USEPA MCL, and water from 16 percent of sampled wells exceeded 4,000 pCi/L. Uranium does not appear to be present in elevated concentrations in ground water in southeastern Pennsylvania.

  8. Geology, hydrology, and ground-water quality at the Byron Superfund site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Bolen, William J.; Rauman, James R.; Prinos, Scott T.

    1997-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency to define the geohydrology and contaminant distribution at a Superfund site near Byron, Illinois. Geologic units of interest beneath the site are the St. Peter Sandstone; the shale, dolomite and sandstone of the Glenwood Formation; the dolomite of the Platteville and Galena Groups; and sands, gravels, tills and loess of Quaternary age. The hydrologic units of interest are the unconsolidated aquifer, Galena-Platteville aquifer, Harmony Hill Shale semiconfining unit, and the St. Peter aquifer. Ground-water flow generally is from the upland areas northwest and southwest toward the Rock River. Water levels indicate the potential for downward ground-water flow in most of the area except near the Rock River. The Galena-Platteville aquifer can be subdivided into four zones characterized by differing water-table altitudes, hydraulic gradients, and vertical and horizontal permeabilities. Geophysical, hydraulic, and aquifer-test data indicate that lithology, stratigraphy, and tectonic structures affect the distribution of primary and secondary porosity of dolomite in the Galena and Platteville Groups, which affects the permeability distribution in the Galena-Platteville aquifer. The distribution of cyanide, chlorinated aliphatic hydrocarbons, and aromatic hydrocarbons in ground water indicates that these contaminants are derived from multiple sources in the study area. Contaminants in the northern part of this area migrate northwest to the Rock River. Contaminants in the central and southern parts of this area appear to migrate to the southwest in the general direction of the Rock River.

  9. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of

  10. Ground water chlorinated ethenes in tree trunks: case studies, influence of recharge, and potential degradation mechanism

    Treesearch

    Don A. Vroblesky; Barton D. Clinton; James M. Vose; Clifton C. Casey; Gregory J. Harvey; Paul M. Bradley

    2004-01-01

    Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ~3 m of clay. Additional ground...

  11. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  12. Ground-water quality in the West Salt River Valley, Arizona, 1996-98: relations to hydrogeology, water use, and land use

    USGS Publications Warehouse

    Edmonds, Robert J.; Gellenbeck, Dorinda J.

    2002-01-01

    The U.S. Geological Survey collected and analyzed ground-water samples in the West Salt River Valley from 64 existing wells selected by a stratified-random procedure. Samples from an areally distributed group of 35 of these wells were used to characterize overall ground-water quality in the basin-fill aquifer. Analytes included the principal inorganic constituents, trace constituents, pesticides, and volatile organic compounds. Additional analytes were tritium, radon, and stable isotopes of hydrogen and oxygen. Analyses of replicate samples and blank samples provided evidence that the analyses of the ground-water samples were adequate for interpretation. The median concentration of dissolved solids in samples from the 35 wells was 560 milligrams per liter, which exceeded the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level for drinking water. Eleven of the 35 samples had a nitrate concentration (as nitrogen) that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Pesticides were detected in eight samples; concentrations were below the Maximum Contaminant Levels. Deethylatrazine was most commonly detected. The pesticides were detected in samples from wells in agricultural or urban areas that have been irrigated. Concentrations of all trace constituents, except arsenic, were less than the Maximum Contaminant Levels. The concentration of arsenic exceeded the Maximum Contaminant Level of 50 micrograms per liter in two samples. Nine monitoring wells were constructed in an area near Buckeye to assess the effects of agricultural land use on shallow ground water. The median concentration of dissolved solids was 3,340 milligrams per liter in samples collected from these wells in August 1997. The nitrate concentration (as nitrogen) exceeded the Maximum Contaminant Level (10 milligrams per liter) in samples from eight of the nine monitoring wells in August 1997 and again in

  13. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  14. PLANT MULCH TO TREAT TCE IN GROUND WATER IN A PRB

    EPA Science Inventory

    In the past ten years, passive reactive barriers (PRBs) have found widespread application to treat chlorinated solvent contamination in ground water. The traditional PRB commonly uses granular zero-valent iron and/or iron alloys as filling materials for treatment of chlorinated ...

  15. Field Applications of In Situ Remediation Technologies: Ground-Water Circulation Wells

    EPA Pesticide Factsheets

    This report is one in a series that show recent pilot demonstrations and full-scale applications that treat soil and ground water in situ or increase the solubility and mobility of contaminants to improve their removal by other remediation technologies.

  16. COST ANALYSIS OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF GROUND WATER

    EPA Science Inventory

    The U. S. Environmental Protection Agency's Office of Research and Development and its contractor have evaluated cost data from 22 sites where permeable reactive barriers (PRBs) have been utilized to remediate contaminated ground water resources. Most of the sites evaluated wer...

  17. Hydrogeology, water quality, and potential for transport of organochlorine pesticides in ground water at the North Hollywood Dump, Memphis, Tennessee

    USGS Publications Warehouse

    Broshears, R.E.; Bradley, M.W.

    1992-01-01

    Geologic, hydrologic, and water-quality data indicate that ground-water contamination is confined to shallow horizons within the unconfined aquifer underlying the North Hollywood Dump in Memphis, Tennessee. The dump is a closed municipal-industrial landfill that has been ranked as Tennessee's potentially most dangerous hazardous-waste site. Toxic constituents of concern at the dump include residues from the manufacture of organochlorine pesticides. The dump overlies an unconfined aquifer of unconsolidated sands, silts, and clays. During average hydrologic conditions, ground waterflows beneath the dump at a mean velocity of approximately 3 feet per day and discharges to the Wolf River. Leachate from the dump mixes with underlying ground water, resulting in increased concentrations of dissolved solids and organic carbon downgradient from the dump. The mobility of chlordane, a representative organochlorine pesticide, is limited by its low solubility and its strong affinity for sand, silt, and clays of the aquifer. Degradation of chlordane may occur slowly, if at all, in the aquifer. Based on estimates of mean ground-water velocity and retardation of the pesticide due to sorption, mean travel times for chlordane migrating from the dump to the ground-water discharge zone are of the order of 50 to 500 years. Simulations of chlordane concentration resulting from the discharge of contaminated ground water and complete mixing in the Wolf River are sensitive to assumptions about chlordane persistence in the unconfined aquifer. If the half life of chlordane in the aquifer is assumed to be 30 years or less, the simulated concentration of chlordane in the Wolf River under average flow conditions is less than the most stringent water-quality criterion.

  18. A literature survey of information on well installation and sample collection procedures used in investigations of ground-water contamination by organic compounds

    USGS Publications Warehouse

    Dumouchelle, D.H.; Lynch, E.A.; Cummings, T.R.

    1990-01-01

    A survey of literature on well installation and water-quality sampling, particularly as they relate to investigations of ground-water contamination by organic compounds, has been conducted. Library card files and computerized data bases were searched to identify journal articles, conference proceedings, technical reports, books, and other publications. Pertinent information has been extracted from 105 references; each reference is listed in a bibliography. Material contained in the report is organized by topical categories that include drilling methods and equipment, well construction, well development, sampling materials and equipment, decontamination of equipment, and sampling techniques and procedures. Unpublished data of the U.S. Geological Survey on sample collection are briefly cited also.

  19. Simulating Mobility of Chemical Contaminants from Unconventional Gas Development for Protection of Water Resources

    NASA Astrophysics Data System (ADS)

    Kanno, C.; Edlin, D.; Borrillo-Hutter, T.; McCray, J. E.

    2014-12-01

    Potential contamination of ground water and surface water supplies from chemical contaminants in hydraulic fracturing fluids or in natural gas is of high public concern. However, quantitative assessments have rarely been conducted at specific energy-producing locations so that the true risk of contamination can be evaluated. The most likely pathways for contamination are surface spills and faulty well bores that leak production fluids directly into an aquifer. This study conducts fate and transport simulations of the most mobile chemical contaminants, based on reactivity to subsurface soils, degradation potential, and source concentration, to better understand which chemicals are most likely to contaminate water resources, and to provide information to planners who wish to be prepared for accidental releases. The simulations are intended to be most relevant to the Niobrara shale formation.

  20. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    liter; nitrite plus nitrate as nitrogen concentrations ranged from 2.4 to 3.2 milligrams per liter. Water samples from wells MW1 and MW2 were analyzed for volatile organic compounds for the first quarter; no confirmed volatile organic compounds were detected above laboratory reporting limits. Detected chemical concentrations in water from the chromic acid pit monitoring wells during the four sampling periods were below U.S. Environmental Protection Agency-established maximum contaminant levels for public drinking-water supplies. Overall, water-quality characteristics of water from the chromic acid pit ground-water monitoring wells are similar to those of other wells in the surrounding area. Statistical analyses were performed on 56 of the chemical constituents analyzed for in ground water from the chromic acid pit monitoring wells. Concentrations of chloride, fluoride, sulfate, and potassium were significantly less in water from one or both downgradient wells than in water from the upgradient well. Concentrations of nitrate as nitrogen, nitrite plus nitrate as nitrogen, and dissolved solids were significantly greater in water from the downgradient wells than in water from the upgradient well. Concentrations of nitrate as nitrogen, chloride, and potassium were significantly different in water from the two downgradient wells. Statistical analysis of chemical constituents in water from the chromic acid pit monitoring wells did not appear to indicate a release of hazardous chemicals from the chromic acid pit. There was no indication of ground-water contamination in either downgradient well.

  1. Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at

  2. Microbial control of silicate weathering in organic-rich ground water

    USGS Publications Warehouse

    Hiebert, Franz K.; Bennett, Philip C.

    1992-01-01

    An in situ microcosm study of the influence of surface-adhering bacteria on silicate diagenesis in a shallow petroleum-contaminated aquifer showed that minerals were colonized by indigenous bacteria and chemically weathered at a rate faster than theoretically predicted. Feldspar and quartz fragments were placed in anoxic, organic-rich ground water, left for 14 months, recovered, and compared to unreacted controls with scanning electron microscopy. Ground-water geochemistry was characterized before and after the experiment. Localized mineral etching probably occurred in a reaction zone at the bacteria-mineral interface where high concentrations of organic acids, formed by bacteria during metabolism of hydrocarbon, selectively mobilized silica and aluminum from the mineral surface.

  3. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  4. Well characteristics influencing arsenic concentrations in ground water.

    PubMed

    Erickson, Melinda L; Barnes, Randal J

    2005-10-01

    Naturally occurring arsenic contamination is common in ground water in the upper Midwest. Arsenic is most likely to be present in glacial drift and shallow bedrock wells that lie within the footprint of northwest provenance Late Wisconsinan glacial drift. Elevated arsenic is more common in domestic wells and in monitoring wells than it is in public water system wells. Arsenic contamination is also more prevalent in domestic wells with short screens set in proximity to an upper confining unit, such as glacial till. Public water system wells have distinctly different well-construction practices and well characteristics when compared to domestic and monitoring wells. Construction practices such as exploiting a thick, coarse aquifer and installing a long well screen yield good water quantity for public water system wells. Coincidentally, these construction practices also often yield low arsenic water. Coarse aquifer materials have less surface area for adsorbing arsenic, and thus less arsenic available for potential mobilization. Wells with long screens set at a distance from an upper confining unit are at lower risk of exposure to geochemical conditions conducive to arsenic mobilization via reductive mechanisms such as reductive dissolution of metal hydroxides and reductive desorption of arsenic.

  5. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.

    1990-01-01

    Storm-related water-quality data were collected at a drainage-well site and at a spring site in Clarksville, Tennessee, to define the effects of storm-water runoff on the quality of ground water in the area. A dye-trace test verified the direct hydraulic connection between the drainage well and Mobley Spring. Samples of storm run off and spring flow were collected at these sites for nine storms during the period February to October 1988. Water samples were collected also from Mobley Spring and two other springs and two observation wells in the area during dry-weather conditions to assess the general quality of ground water in an urban karst terrain. Evaluation of the effect of storm-water runoff on the quality of local ground water is complicated by the presence of other sources of contaminants in the area Concentrations and load for most major constituents were much smaller in storm-water runoff at the drainage well than in the discharge of Mobley Spring, indicating that much of the chemical constituent load discharged from the spring comes from sources other than the drainage well. However, for some of the minor constituents associated with roadway runoff (arsenic, copper, lead, organic carbon, and oil and grease), the drainage well contributed relatively large amounts of these constituents to local ground water during storms. The close correlation between concentrations of total organic carbon and concentrations of most trace metals at the drainage-well and Mobley Spring sites indicates that these constituents are transported together. Many trace metals were flushed early during each runoff event. Mean storm loads for copper, lead, zinc, and four nutrient species (total nitrogen, ammonia nitrogen, total phosphorus, and orthophosphorus) in storm-water runoff at the drainage-well site were lower than mean storm load predicted from an existing regression model. The overprediction by the model may be a result of the small size of the drainage area relative to the

  7. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    PubMed

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  8. CONSTRUCTION AND INSTALLATION OF A NEW PASSIVE DIFFUSION SAMPLER CAPABLE OF MONITORING BENZENE IN EITHER SOIL GAS OR GROUND WATER

    EPA Science Inventory

    Conventional practice to estimate intrusion of fuel vapors from ground water to buildings measures the concentration of BTEX in ground water beneath the building using a conventional well screened across the water table. This practice assumes that the concentration of contaminant...

  9. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  10. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  11. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    USGS Publications Warehouse

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  12. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  13. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    PubMed

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

  14. Contamination of ground water as a consequence of land disposal of dye waste mixed sewage effluents: a case study of Panipat district of Haryana, India.

    PubMed

    Dubey, S K; Yadav, Rashmi; Chaturvedi, R K; Yadav, R K; Sharma, V K; Minhas, P S

    2010-09-01

    Spatial samples of surface and ground water collected from land disposal site of dye waste mixed sewage effluents at Binjhole, in Haryana, India were analyzed to evaluate its effect on quality of pond, hand pumps and ground waters for human health and irrigation purposes. It was found that average COD and TDS of dye houses discharge (310 and 3,920 mg/L) and treated sewage (428 and 1,470 mg/L) on mixing acquired the values of 245 and 1,780 mg/L and only Pb (0.24 microg/L) was above the permissible limit for irrigation purpose. Disposal of this mixed water to village pond changes the COD and TDS to 428 and 1,470 mg/L, respectively. COD and TDS of hand pump water samples were 264 and 1,190 mg/L, where as in tube well water these values were 151 and 900 mg/L. Though the ground water contamination seemed to decrease with the increasing distance from the pond but COD, TDS and BOD values continued to be quite high in water samples drawn from the hand pumps up to a distance of 500 m from pond. However, the major cause of the concern in these waters was Pb (0.11-0.45 ppm). Crops grown with this water shows accumulation of heavy metals like Pb,Cd, Fe, Mn, Ni, Cu, and Zn but in few crops they (Zn, Pb and Cd) exceed the safe limits. Regular consumption of these crop products may lead heavy metal toxicity. It was concluded from this study that the deep seepage of effluents led to deterioration of ground water quality for drinking purposes and the well waters rendered unfit for irrigation purposes within a span of 2 years. This warrants appropriate disposal measures for sewage and dye industry effluents in order to prevent deterioration of ground water and health of human and animals.

  15. Wautersia: The Contingency Water Container Bacterial Contamination Investigation

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne; Labuda, Laura; Bruce, Rebekah

    2009-01-01

    The Orbiter delivers water to the International Space Station (ISS) in Contingency Water Containers (CWCs) on each flight to the ISS. These CWCs are routinely sampled during each mission to verify the quality of the delivered water. Of the 5 samples returned on STS118/ 13A.1 in August 2007, two exhibited microbial growth exceeding potable water acceptability limits and historical data by orders of magnitude . The microbe was identified as Wautersia species and an investigation was launched to find the source of the contamination. Since then, samples collected on subsequent flights indicated additional CWCs had the same bacteria, as well as several on-orbit systems. An investigation was launched to try to find and address the source of the bacterial contamination. This paper will discuss how Wautersia was found, what Wautersia is, the investigation, and resolution.

  16. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Agricultural chemicals in Iowa's ground water, 1982-95: What are the trends?

    USGS Publications Warehouse

    Koplin, Dana W.; Hallberg, George; Sneck-Fahrer, D. A.; Libra, Robert

    1997-01-01

    The Iowa Department of Natural Resources. Geological Survey Bureau: the University of Iowa Hygienic Laboratory; and the U.S. Geological Survey (USGS) have been working together to address this question. As part of the Iowa Ground-Water Monitoring Program (IGWM). water samples have been collected from selected Iowa municipal wells since 1982. An examination of this data identified two trends: (1) concentrations of atrazine in Iowa's ground water generally were decreasing over time, and (2) concentrations of metolachlor generally were increasing. Continuing ground-water sampling can determine if these trends represent long-term changes in chemical concentrations.

  18. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  19. Characterization and simulation of ground-water flow in the Kansas River Valley at Fort Riley, Kansas, 1990-98

    USGS Publications Warehouse

    Myers, Nathan C.

    2000-01-01

    Hydrologic data and a ground-water flow model were used to characterize ground-water flow in the Kansas River alluvial aquifer at Fort Riley in northeast Kansas. The ground-water flow model was developed as a tool to project ground-water flow and potential contaminant-transport paths in the alluvial aquifer on the basis of past hydrologic conditions. The model also was used to estimate historical and hypothetical ground-water flow paths with respect to a private- and several public-supply wells. The ground-water flow model area extends from the Smoky Hill and Republican Rivers downstream to about 2.5 miles downstream from the city of Ogden. The Kansas River Valley has low relief and, except for the area within the Fort Riley Military Reservation, is used primarily for crop production. Sedimentary deposits in the Kansas River Valley, formed after the ancestral Kansas River eroded into bedrock, primarily are alluvial sediment deposited by the river during Quaternary time. The alluvial sediment consists of as much as about 75 feet of poorly sorted, coarse-to-fine sand, silt, and clay, 55 feet of which can be saturated with ground water. The alluvial aquifer is unconfined and is bounded on the sides and bottom by Permian-age shale and limestone bedrock. Hydrologic data indicate that ground water in the Kansas River Valley generally flows in a downstream direction, but flow direction can be quite variable near the Kansas River due to changes in river stage. Ground-water-level changes caused by infiltration of precipitation are difficult to detect because they are masked by larger changes caused by fluctuation in Kansas River stage. Ratios of strontium isotopes Sr87 and Sr86 in water collected from wells in the Camp Funston Area indicate that the ground water along the northern valley wall originates, in part, from upland areas north of the river valley. Water from Threemile Creek, which flows out of the uplands north of the river valley, had Sr87:Sr86 ratios similar to

  20. Distribution of Elevated Nitrate Concentrations in Ground Water in Washington State

    USGS Publications Warehouse

    Frans, Lonna

    2008-01-01

    More than 60 percent of the population of Washington State uses ground water for their drinking and cooking needs. Nitrate concentrations in ground water are elevated in parts of the State as a result of various land-use practices, including fertilizer application, dairy operations and ranching, and septic-system use. Shallow wells generally are more vulnerable to nitrate contamination than deeper wells (Williamson and others, 1998; Ebbert and others, 2000). In order to protect public health, the Washington State Department of Health requires that public water systems regularly measure nitrate in their wells. Public water systems serving more than 25 people collect water samples at least annually; systems serving from 2 to 14 people collect water samples at least every 3 years. Private well owners serving one residence may be required to sample when the well is first drilled, but are unregulated after that. As a result, limited information is available to citizens and public health officials about potential exposure to elevated nitrate concentrations for people whose primary drinking-water sources are private wells. The U.S. Geological Survey and Washington State Department of Health collaborated to examine water-quality data from public water systems and develop models that calculate the probability of detecting elevated nitrate concentrations in ground water. Maps were then developed to estimate ground water vulnerability to nitrate in areas where limited data are available.

  1. Identifying the Source of High-Nitrate Ground Water Related to Artificial Recharge in a Desert Basin

    NASA Astrophysics Data System (ADS)

    Densmore, J. N.; Nishikawa, T.; Bohlke, J. K.; Martin, P.

    2002-12-01

    Ground water has been the sole source of water supply for the community of Yucca Valley in the Mojave Desert, California. Domestic wastewater from the community is treated using septic tanks. An imbalance between ground-water recharge and pumpage caused ground-water levels in the ground-water basin to decline by as much as 300 feet from the late 1940s through 1994. In response to this decline, the local water district, Hi-Desert Water District, began an artificial recharge program in February 1995 to replenish the ground water in the basin using imported surface water. The artificial recharge program resulted in water-level recovery of about 250 feet between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 mg/L as NO3 to more than the U.S. Environmental Protection Agency maximum contaminant level of 45 mg/L as NO3, limiting water use for some wells. The largest increase in nitrate concentrations occurred adjacent to the artificial recharge sites where the largest increase in water levels occurred even though the recharge water had low nitrate concentrations. The source of high nitrate concentrations observed in ground water during aquifer recovery was identified by compiling historical water-quality data; monitoring changes in water quality since artificial recharge began; and analyzing selected samples for major-ion chemistry, stable isotopes of H,O, and N, caffeine, and pharmaceuticals. The major-ions and H and O stable-isotope data indicate that ground-water samples that had the highest nitrate concentrations were mixtures of imported water and native ground water. Nitrate-to-chloride ratios, N isotopes and caffeine and pharmaceutical data indicate septic-tank seepage (septage) is the primary source of increases in nitrate concentration. The rapid rise in water levels entrained the large volume of high-nitrate septage stored in the unsaturated zone, resulting in the rapid increase

  2. Branch v. Western Petroleum: Utah adopts principles of strict liability and nuisance per se for the pollution of ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, H.J. II

    1983-01-01

    The Utah Supreme Court held in Branch v. Western Petroleum, Inc. that the oil company was strictly liable for contamination an adjoining land owner's culinary well water, and found the company liable for compensatory damages. The water contaminating was caused by the percolation of toxic chemicals into the ground water from a pond used for waste water from the oil wells. The author discusses the various theories used to determine liability for polluting ground water, examines the Utah Supreme Court's analysis and application of those theories in the case, and evaluates the propriety of damages awarded. 77 references.

  3. GIS Analysis of Available Data to Identify regions in the U.S. Where Shallow Ground Water Supplies are Particularly Vulnerable to Contamination by Releases to Biofuels from Underground Storage Tanks

    EPA Science Inventory

    GIS analysis of available data to identify regions in the U.S. where shallow ground water supplies are particularly vulnerable to contamination by releases of biofuels from underground storage tanks. In this slide presentation, GIS was used to perform a simple numerical and ...

  4. Occurrence and quality of surface water and ground water within the Yavapai-Prescott Indian Reservation, central Arizona, 1994-98

    USGS Publications Warehouse

    Littin, Gregory R.; Truini, Margot; Pierce, Herbert A.; Baum, Brad M.

    2000-01-01

    The Yavapai-Prescott Indian Reservation encompasses about 1,395 acres in central Arizona adjacent to the city of Prescott. From October 1994 to September 1997, the annual average rainfall was 14.9 inches and the total annual streamflow leaving the reservation along Granite Creek was about 430 acre-feet more than the amount of streamflow entering the reservation. The channel-fill and valley-fill sediments within the flood plain of Granite Creek make up the principal aquifer. The only ground-water development is from spring discharge that is being contained for livestock and wildlife use. About 29 acre-feet of ground water leaves the reservation each year after discharging into Granite Creek. Water levels in wells throughout the reservation reflect seasonal variations in rainfall and snowmelt. Surface water and ground water on the reservation are calcium bicarbonate types. Specific-conductance field measurements ranged from 187 to 724 microsiemens per centimeter for surface water and 381 to 990 microsiemens per centimeter for ground water. Fecal streptococcal bacteria and fecal coliform bacteria in the surface water make the water unsuitable for domestic use. Some volatile and semivolatile organic compounds were detected in samples of surface water, ground water, and streambed sediment. The potential for contamination exists from point and nonpoint sources on and off the reservation.

  5. A conceptual model of ground-water flow in the eastern Snake River Plain aquifer at the Idaho National Laboratory and vicinity with implications for contaminant transport

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rattray, Gordon W.; Rousseau, Joseph P.; Davis, Linda C.; Orr, Brennon R.

    2006-01-01

    Ground-water flow in the west-central part of the eastern Snake River Plain aquifer is described in a conceptual model that will be used in numerical simulations to evaluate contaminant transport at the Idaho National Laboratory (INL) and vicinity. The model encompasses an area of 1,940 square miles (mi2) and includes most of the 890 mi2 of the INL. A 50-year history of waste disposal associated with research activities at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. A thorough understanding of the fate and movement of these contaminants in the subsurface is needed by the U.S. Department of Energy to minimize the effect that contaminated ground water may have on the region and to plan effectively for remediation. Three hydrogeologic units were used to represent the complex stratigraphy of the aquifer in the model area. Collectively, these hydrogeologic units include at least 65 basalt-flow groups, 5 andesite-flow groups, and 61 sedimentary interbeds. Three rhyolite domes in the model area extend deep enough to penetrate the aquifer. The rhyolite domes are represented in the conceptual model as low permeability, vertical pluglike masses, and are not included as part of the three primary hydrogeologic units. Broad differences in lithology and large variations in hydraulic properties allowed the heterogeneous, anisotropic basalt-flow groups, andesite-flow groups, and sedimentary interbeds to be grouped into three hydrogeologic units that are conceptually homogeneous and anisotropic. Younger rocks, primarily thin, densely fractured basalt, compose hydrogeologic unit 1; younger rocks, primarily of massive, less densely fractured basalt, compose hydrogeologic unit 2; and intermediate-age rocks, primarily of slightly-to-moderately altered, fractured basalt, compose hydrogeologic unit 3. Differences in hydraulic properties among adjacent hydrogeologic units result in much of the large-scale heterogeneity and anisotropy of the

  6. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    USGS Publications Warehouse

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  7. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    . These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Maryland and Delaware. Prior to introduction of this series and for several water years concurrent with it, water resources data for Maryland and Delaware were published in U.S. Geological Survey Water-Supply Papers. Data on water levels for the 1935 through 1974 water years were published under the title 'Ground-Water Levels in the United States.' The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the Branch of Information Services, Federal Center, Bldg. 41, Box 25286, Denver, CO 80225-0286. Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as 'U.S. Geological Survey Water-Data Report MD-DE-98-2.' For archiving and general distribution, the reports for l971- 74 water years also are identified as water data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (410)238-4200.

  8. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  9. Ground-water quality in Quaternary deposits of the central High Plains aquifer, south-central Kansas, 1999

    USGS Publications Warehouse

    Pope, Larry M.; Bruce, Breton W.; Hansen, Cristi V.

    2001-01-01

    Water samples from 20 randomly selected domestic water-supply wells completed in the Quaternary deposits of south-central Kansas were collected as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment Program. The samples were analyzed for about 170 water-quality constituents that included physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticides, volatile organic compounds, and radon. The purpose of this study was to provide a broad overview of ground-water quality in a major geologic subunit of the High Plains aquifer. Water from five wells (25 percent) exceeded the 500-milligrams-per-liter of dissolved solids Secondary Maximum Contaminant Level for drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well each. The source of these dissolved solids was probably natural processes. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Water from 15 percent of the sampled wells had concentrations of nitrate greater than the 10-milligram-per-liter Maximum Contaminant Level for drinking water. Water from 80 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter), which is more than what might be expected for natural background concentrations. This enrichment may be the result of synthetic fertilizer applications, the addition of soil amendment (manure) on cropland, or livestock production. Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Only arsenic was detected in one well sample at a concentration (240 micrograms per liter) that exceeded its proposed Maximum Contaminant Level (5.0 micrograms per liter). Additionally, one concentration of

  10. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    USGS Publications Warehouse

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  11. Perinatal Toxicity and Carcinogenicity Studies of Styrene –Acrylonitrile Trimer, A Ground Water Contaminant

    PubMed Central

    Behl, Mamta; Elmore, Susan A.; Malarkey, David E.; Hejtmancik, Milton R.; Gerken, Diane K.; Chhabra, Rajendra S.

    2015-01-01

    Styrene Acrylonitrile (SAN) Trimer is a by-product in the production of acrylonitrile styrene plastics. Following a report of a childhood cancer cluster in the Toms River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site’s ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in F344/N rats were preceded by 7- and 18-week perinatal toxicity studies to determine the exposure concentrations for the 2-year studies. Subsequently, Fisher 344 pregnant dams were exposed to SAN Trimer containing diet at 400, 800, or 1600 ppm concentrations during gestation, nursing and weaning periods of offspring followed by two year of adult exposures to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were observed in males and to lesser extent in female rats. These incidences were considered within the range of historical background in the animal model used in the current studies. Therefore, the presence of a few rarely occurring CNS tumors in the treated groups were not judged to be associated with the SAN Trimer exposure. The major finding was a dose-related peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females thereby suggesting that SAN trimer is potentially a nervous system toxicant. PMID:24060431

  12. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  13. Hydrogeologic, soil, and water-quality data for j-field, Aberdeen Proving Ground, Maryland, 1989-94

    USGS Publications Warehouse

    Phelan, D.J.

    1996-01-01

    Disposal of chemical-warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has resulted in ground-water, surface-water, and soil contamination. This report presents data collected by the U.S. Geological Survey from Novembr 1989 through September 1994 as part of a remedial investigation of J-Field in response to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Hydrogeologic data, soil-gas and soil-quality data, and water-qualtiy data are included.

  14. Occurrence and distribution of enteric viruses in shallow ground water and factors affecting well vulnerability to microbiological contamination in Worcester and Wicomico counties, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Klohe, Cheryl A.; Battigelli, David A.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the water-table aquifer in the Coastal Plain in Worcester and Wicomico Counties, Maryland.Two hundred seventy-eight well sites were evaluated with regard to simulated ground-water flow paths, land use, natural soils groups, and well characteristics, such as well depth and well age. Flow and transport simulations of the water-table aquifer indicated that wells screened less than about 50 feet below land surface (shallow wells) were most vulnerable to surface contamination, which in some cases could originate from as far as 2,000 feet upgradient of the well. Animal-feeding and agricultural-storage operations were considered among the most likely sources for viral contamination; therefore, sites close to these activities were considered most vulnerable. Soil groups were evaluated with regard to depth to water and moisture-holding capacity. Wells with shallow depths to water or in very sandy soils were considered more vulnerable to contamination than deep wells (greater than 50 feet) and those completed in finer-grained soils. Older wells and wells where coliform bacteria had been detected in the past were classified as highly vulnerable. On the basis of this evaluation, 27 sites considered to be susceptible were sampled.Samples were collected by pumping up to 400 gallons of untreated well water through an electropositive filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect nonculturable viruses; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci

  15. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10

  16. Hydrogeology and ground-water quality at a land reclamation site, Neshaminy State Park, Pennsylvania

    USGS Publications Warehouse

    Blickwedel, Ray S.; Linn, Jeff H.

    1987-01-01

    Analyses of ground-water samples collected after the first two sludge applications (120 tons per acre and 450 tons per acre), indicate that no significant change occurred in the chemistry of the samples from the Trenton gravel, whereas organic nitrogen increased temporarily in ground water from the dredge spoil 6 months after the larger of the two sludge applications, but quickly returned to background levels. The lack of chemical change with time in the ground water implies either that little of the more than 100 inches of precipitation that fell from April 1983 through March 1985 reached the water table or, more likely, that a mechanism exists beneath the soil- factory site that retards or prevents the downard migration of contaminants.

  17. Ground-water/surface-water interaction in nearshore areas of Three Lakes on the Grand Portage Reservation, northeastern Minnesota, 2003-04

    USGS Publications Warehouse

    Jones, Perry M.

    2006-01-01

    Knowledge of general water-flow directions in lake watersheds and how they may change seasonally can help water-quality specialists and lake managers address a variety of water-quality and aquatic habitat protection issues for lakes. Results from this study indicate that ground-water and surface-water interactions at the study lakes are complex, and the ability of the applied techniques to identify ground-water inflow and surface-water outseepage locations varied among the lakes. Measurement of lake-sediment temperatures proved to be a reliable and relatively inexpensive reconnaissance technique that lake managers may apply in complex settings to identify general areas of ground-water inflow and surface-water outseepage.

  18. Occurrence and implications of methyl tert-butyl ether and gasoline hydrocarbons in ground water and source water in the United States and in drinking water in 12 Northeast and Mid-Atlantic States, 1993-2002

    USGS Publications Warehouse

    Moran, Michael J.; Zogorski, John S.; Squillace, Paul J.

    2004-01-01

    probability of MTBE contamination. Ground water from public-supply wells and shallow ground water underlying urban land-use areas has a greater probability of MTBE contamination compared to ground water from domestic wells and ground water underlying rural land-use areas.

  19. Future challenges to protecting public health from drinking-water contaminants.

    PubMed

    Murphy, Eileen A; Post, Gloria B; Buckley, Brian T; Lippincott, Robert L; Robson, Mark G

    2012-04-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation.

  20. Future Challenges to Protecting Public Health from Drinking-Water Contaminants

    PubMed Central

    Murphy, Eileen A.; Post, Gloria B.; Buckley, Brian T.; Lippincott, Robert L.; Robson, Mark G.

    2014-01-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation. PMID:22224887

  1. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  2. Ground-water quality and susceptibility of ground water to effects from domestic wastewater disposal in eastern Bernalillo County, central New Mexico, 1990-91

    USGS Publications Warehouse

    Blanchard, Paul J.; Kues, Georgianna E.

    1999-01-01

    Eastern Bernalillo County is a historically rural, mountainous area east of Albuquerque, New Mexico. Historically, the primary economic activity consisted of subsistence farming and ranching and support of these activities from small communities. During the last 40 to 50 years, however, the area increasingly has become the site of residential developments. Homes in these developments typically are on 1- to 2-acre lots and are serviced by individual wells and septic systems. Between 1970 and 1990, the population of the area increased from about 4,000 to more than 12,000, and housing units increased from about 1,500 to more than 5,000. Results of analysis of water samples collected from 121 wells throughout eastern Bernalillo County in 1990 indicated that (1) total-nitrate concentrations in 10 samples exceeded the U.S. Environmental Protection Agency national primary drinking-water regulation maximum contaminant level of 10 milligrams per liter as nitrogen; (2) total-nitrate concentrations may be related to the length of time an area has been undergoing development; and (3) large dissolved-chloride concentrations may result from geologic origins, such as interbedded salt deposits or upward movement of saline ground water along faults and fractures, as well as from domestic wastewater disposal. Ground water throughout eastern Bernalillo County was assessed to be highly susceptible to contamination by overlying domestic wastewater disposal because (1) soils in more than 95 percent of eastern Bernalillo County were determined by the U.S. Department of Agriculture Natural Resources Conservation Service to have severe limitations for use as septic-system absorption fields and (2) a fractured carbonate geologic terrane, which typically has large secondary permeability and limited sorption capacity, is at the surface or underlying unconsolidated material in 73 percent of the area. Ground-water-level rises following an episodal precipitation event during July 22-27, 1991

  3. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  4. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP–21 and NP–87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP–21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP–87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP–21 and NP–87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model.Aquifer tests were conducted by pumping NP–21 for about 7 days at 257 gallons per minute in June 2000 and NP–87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP–21 test and 35 observation wells during the NP–87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP–21 test and 0.5 to 12 feet at the end of the NP–87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic

  5. Simulation of ground-water flow in the Potomac-Raritan-Magothy aquifer system, Pennsauken Township and vicinity, New Jersey

    USGS Publications Warehouse

    Pope, Daryll A.; Watt, Martha K.

    2004-01-01

    The Potomac-Raritan-Magothy aquifer system is one of the primary sources of potable water in the Coastal Plain of New Jersey, particularly in heavily developed areas along the Delaware River. In Pennsauken Township, Camden County, local drinking-water supplies from this aquifer system have been contaminated by hexavalent chromium at concentrations that exceed the New Jersey maximum contaminant level. In particular, ground water at the Puchack well field has been adversely affected to the point where, since 1984, water is no longer withdrawn from this well field for public supply. The area that contains the Puchack well field was added to the National Priorities List in 1998 as a Superfund site. The U.S. Geological Survey (USGS) conducted a reconnaissance study from 1996 to 1998 during which hydrogeologic and water-quality data were collected and a ground-water-flow model was developed to describe the conditions in the aquifer system in the Pennsauken Township area. The current investigation by the USGS, in cooperation with the U.S. Environmental Protection Agency (USEPA), is an extension of the previous study. Results of the current study can be applied to a Remedial Investigation and Feasibility Study conducted at the Puchack well field Superfund site. The USGS study collected additional data on the hydrogeology and water-quality in the area. These data were incorporated into a refined model of the ground-water-flow system in the Potomac-Raritan-Magothy aquifer system. A finite-difference model was developed to simulate ground-water flow and the advective transport of chromium-contaminated ground water in the aquifers of the Potomac-Raritan-Magothy aquifer system in the Pennsauken Township area. An 11-layer model was used to represent the complex hydrogeologic framework. The model was calibrated using steady-state water-level data from March 1998, April 1998, and April 2001. Water-level recovery during the shutdown of Puchack 1 during March to April 1998 was

  6. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  7. Metagenomes of Microbial Communities in Arsenic- and Pathogen-Contaminated Well and Surface Water from Bangladesh

    PubMed Central

    Layton, Alice C.; Chauhan, Archana; Williams, Daniel E.; Mailloux, Brian; Knappett, Peter S. K.; Ferguson, Andrew S.; McKay, Larry D.; Alam, M. Jahangir; Matin Ahmed, Kazi; van Geen, Alexander

    2014-01-01

    The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport. PMID:25414497

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. Summary of the NATO/CCMS Conference The Demonstration of Remedial Action Technologies for Contaminated Land and GroundWater

    EPA Science Inventory

    The problem of contamination to land and groundwa- ter from improper handling of hazardous materials/ waste is faced by all countries. Also, the need for reliable, cost-effective technologies to address this problem at contaminated sites exists throughout the world. Many countrie...

  10. REMEDIATION OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The Norman Landfill is the field site for this project. It was reported that ground water toxicity at this site was due to ammonia, and napthalene was the only ASOC present at high concentrations. Thus, batch and column studies will be used to evaluate reactive materials with the...

  11. Hydrogeologic framework and sampling design for an assessment of agricultural pesticides in ground water in Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.; Bickford, Tammy M.

    1999-01-01

    State agencies responsible for regulating pesticides are required by the U.S. Environmental Protection Agency to develop state management plans for specific pesticides. A key part of these management plans includes assessing the potential for contamination of ground water by pesticides throughout the state. As an example of how a statewide assessment could be implemented, a plan is presented for the Commonwealth of Pennsylvania to illustrate how a hydrogeologic framework can be used as a basis for sampling areas within a state with the highest likelihood of having elevated pesticide concentrations in ground water. The framework was created by subdividing the state into 20 areas on the basis of physiography and aquifer type. Each of these 20 hydrogeologic settings is relatively homogeneous with respect to aquifer susceptibility and pesticide use—factors that would be likely to affect pesticide concentrations in ground water. Existing data on atrazine occurrence in ground water was analyzed to determine (1) which areas of the state already have sufficient samples collected to make statistical comparisons among hydrogeologic settings, and (2) the effect of factors such as land use and aquifer characteristics on pesticide occurrence. The theoretical vulnerability and the results of the data analysis were used to rank each of the 20 hydrogeologic settings on the basis of vulnerability of ground water to contamination by pesticides. Example sampling plans are presented for nine of the hydrogeologic settings that lack sufficient data to assess vulnerability to contamination. Of the highest priority areas of the state, two out of four have been adequately sampled, one of the three areas of moderate to high priority has been adequately sampled, four of the nine areas of moderate to low priority have been adequately sampled, and none of the three low priority areas have been sampled.Sampling to date has shown that, even in the most vulnerable hydrogeologic settings

  12. Tritium distribution in ground water around large underground fusion explosions

    USGS Publications Warehouse

    Stead, F.W.

    1963-01-01

    Tritium will be released in significant amounts from large underground nuclear fusion explosions in the Plowshare Program. The tritium could become highly concentrated in nearby ground waters, and could be of equal or more importance as a possible contaminant than other long-lived fission-product and induced radionuclides. Behavior of tritiated water in particular hydrologic and geologic environments, as illustrated by hypothetical explosions in dolomite and tuff, must be carefully evaluated to predict under what conditions high groundwater concentrations of tritium might occur.

  13. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  14. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  15. Revelations of an overt water contamination.

    PubMed

    Singh, Gurpreet; Kaushik, S K; Mukherji, S

    2017-07-01

    Contaminated water sources are major cause of water borne diseases of public health importance. Usually, contamination is suspected after an increase in patient load. Two health teams investigated the episode. First team conducted sanitary survey, and second team undertook water safety and morbidity survey. On-site testing was carried out from source till consumer end. Investigation was also undertaken to identify factors which masked the situation. Prevention and control measures included super chlorination, provision of alternate drinking water sources, awareness campaign, layout of new water pipeline bypassing place of contamination, repair of sewers, flushing and cleaning of water pipelines, and repeated water sampling and testing. Multiple sources of drinking water supply were detected. Water samples from consumer end showed 18 coliforms per 100 ml. Sewer cross connection with active leakage in water pipeline was found and this was confirmed by earth excavation. Water safety and morbidity survey found majority of households receiving contaminated water supply. This survey found no significant difference among households receiving contaminated water supply and those receiving clean water. Average proportion of household members with episode of loose motions, pain abdomen, vomiting, fever, and eye conditions was significantly more among households receiving contaminated water. The present study documents detailed methodology of investigation and control measures to be instituted on receipt of contaminated water samples. Effective surveillance mechanisms for drinking water supplies such as routine testing of water samples can identify water contamination at an early stage and prevent an impending outbreak.

  16. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  17. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  18. PLANT MULCH TO TREAT TCE IN GROUND WATER IN A PRB (ABSTRACT ONLY)

    EPA Science Inventory

    In the past ten years, passive reactive barriers (PRBs) have found widespread application to treat chlorinated solvent contamination in ground water. The traditional PRB commonly uses granular zero-valent iron and/or iron alloys as filling materials for treatment of chlorinated ...

  19. Ground-water contamination by crude oil: Section B in U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the technical meeting, Charleston, South Carolina, March 8-12, 1999: Volume 3 (Part C)

    USGS Publications Warehouse

    Delin, G.N.; Herkelrath, W.N.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    Ground water contamination by crude oil, and other petroleum-based liquids, is a widespread problem. An average of 83 crude-oil spills occurred per year during 1994-96 in the United States, each spilling an average of about 50,000 barrels of crude oil (U.S. Office of Pipeline Safety, electronic commun., 1997). An understanding of the fate of organic contaminants (such as oil and gasoline) in the subsurface is needed to design innovative and cost-effective remedial solutions at contaminated sites.

  20. Water contamination in fallout areas. Project No. 7806

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, G.G.; Woodward, R.L.; Muschler, W.K.

    1958-05-01

    An evaluation of the potential radiological hazard to Air Force personnel from drinking water contaminated with fission products is presented. Ground water supplies should be safe from fallout contamination and only surface supplies may need special treatment. Even in untreated water, the radioactivity in surface supplies is not likely to reduce significantly the military effectiveness of personnel using it except where the general level of contamination is greater than 1000 r/hr at H + 1. Dust samples were collected at the Priscilla shot of Operation Plumbbob 24 June 1957. In each of the samples, material containing approximately 10% of themore » activity was soluble; however, strontium was preferentially dissolved by a factor of 5. For the first 10 days after fallout, a supply of one gallon of water per person per day will suffice for drinking and culinary purposes. Ion-exchange, which is over 99% efficient, is the most practical and economical method of supplying decontaminated water. For immediate demand, small mixed-bed demineralizers, which are easily installed and maintained, are recommended; for long term demand, pressure cation-exchange beds operated on the sodium cycle are recommended. A shelter accommodating 100 people would require a small mixed-bed demineralizer with an initial cost of $81 and an operating cost of $9 per day. A pressure cation-exchange bed could be installed for $7,500 which would have an operating cost of 15 cents per 1,000 gallons. This could supply an average daily water requirement of 50,000 gallons.« less

  1. Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, Frederick J.; Blomquist, Joel D.

    1995-01-01

    Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.

  2. Nitrate and selected pesticides in ground water of the Mid-Atlantic region

    USGS Publications Warehouse

    Ator, Scott W.; Ferrari, Matthew J.

    1997-01-01

    Data from more than 850 sites were compiled and analyzed to document the occurrence of nitrate and pesticides in ground water of the Mid-Atlantic region as part of the Mid-Atlantic Integrated Assessment program of the U.S. Environmental Protection Agency. Only those data collected by the U.S. Geological Survey as part of regional networks between October 1985 and September 1996 (inclusive) were used in the analyses, and the data were examined to ensure analytical results are not biased toward sites at the same location or sites sampled multiple times during this period. Regional data are available for most of the Mid-Atlantic region but large spatial gaps in available data do exist. Nitrate was detected in nearly three-quarters of the samples for which it was analyzed, commonly at levels that suggest anthropogenic sources. Ten percent of samples contained nitrate at concentrations exceeding the Federal Maximum Contaminant Level (MCL) of 10 milligrams per liter as nitrogen. Pesticide compounds (including atrazine, metolachlor, prometon, simazine, and desethylatrazine, an atrazine degradate) were detected in about half of the samples for which they were analyzed, but rarely at concentrations exceeding established MCL?s. The most commonly detected pesticide compounds were desethylatrazine and atrazine. The occurrence of nitrate and pesticides in ground water of the Mid-Atlantic region is related to land cover and rock type. Likely sources of nitrate and pesticides to ground water include agricultural and urban land-use practices; rock type affects the movement of these compounds into and through the ground-water system. Nitrate concentrations in the compiled data set are significantly higher in ground water in agricultural areas than in urban or forested areas, but concentrations in areas of row crops are statistically indistinguishable from those in areas of pastures. Detection frequencies of atrazine, desethylatrazine, and simazine are indistinguishable among urban

  3. Preliminary investigation of soil and ground-water contamination at a U.S. Army Petroleum Training Facility, Fort Lee, Virginia, September-October 1989

    USGS Publications Warehouse

    Wright, W.G.; Powell, J.D.

    1990-01-01

    Fuel-oil constituents in the soil and groundwater at the Fort Lee Petroleum Training Facility near Petersburg, Virginia, were studied by the U.S. Geological Survey (USGS) in cooperation with the Department of Defense, U.S. Army. The study included installation of 25 groundwater monitoring wells and description of groundwater flow patterns of the shallow-aquifer system underlying the facility. Soil and groundwater samples were collected to determine the concentrations of fuel-oil constituents and to determine the potential for off-site migration of the constituents. Total petroleum hydrocarbon concentrations up to 18,400 mg/km were reported in soil samples. Concentrations of benzene in water from wells at the facility were up to 130 micrograms per liter (ug/L), and concentrations of ethylbenzene and xylene were up to 54 and 120 ug/L, respectively. Potential exists for off-site migration of the contaminants and migration of contaminants downward to deeper aquifers. Further investigations of these potential contamination-migration pathways are warranted. Risk identification at the Petroleum Training Facility cannot be properly addressed because the distribution of the fuel-oil constituents has not been fully characterized. Preliminary identification of risk, however is presented by an examination of toxicity data for the chemical constituents reported in the groundwater at the facility. Concentrations of constituents were compared to the maximum contaminant levels (MCLs) for drinking water established by the U.S. Environmental Protection Agency (USEPA). Concentrations of benzene in water from wells at the facility exceed the USEPA 's 5 ug/L MCL by as much as 26 times. Sufficient data are not available to fully design the remedial-action plan for the facility; however, general responses to contamination of the type associated with the facility include no-action, monitoring, institutional controls, removal, and treatment. (USGS)

  4. Natural attenuation of chlorinated volatile organic compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington

    USGS Publications Warehouse

    Dinicola, Richard S.; Cox, S.E.; Landmeyer, J.E.; Bradley, P.M.

    2002-01-01

    The U.S. Geological Survey (USGS) evaluated the natural attenuation of chlorinated volatile organic compounds (CVOCs) in ground water beneath the former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The predominant contaminants in ground water are trichloroethene (TCE) and its degradation byproducts cis-1,2-dichloroethene (cisDCE) and vinyl chloride (VC). The Navy planted two hybrid poplar plantations on the landfill in spring of 1999 to remove and control the migration of CVOCs in shallow ground water. Previous studies provided evidence that microbial degradation processes also reduce CVOC concentrations in ground water at OU 1, so monitored natural attenuation is a potential alternative remedy if phytoremediation is ineffective. This report describes the current (2000) understanding of natural attenuation of CVOCs in ground water at OU 1 and the impacts that phytoremediation activities to date have had on attenuation processes. The evaluation is based on ground-water and surface-water chemistry data and hydrogeologic data collected at the site by the USGS and Navy contractors between 1991 and 2000. Previously unpublished data collected by the USGS during 1996-2000 are presented. Natural attenuation of CVOCs in shallow ground water at OU 1 is substantial. For 1999-2000 conditions, approximately 70 percent of the mass of dissolved chlorinated ethenes that was available to migrate from the landfill was completely degraded in shallow ground water before it could migrate to the intermediate aquifer or discharge to surface water. Attenuation of CVOC concentrations appears also to be substantial in the intermediate aquifer, but biodegradation appears to be less significant; those conclusions are less certain because of the paucity of data downgradient of the landfill beneath the tide flats. Attenuation of CVOC concentrations is also substantial in surface water as it flows through the adjacent marsh and out to the tide

  5. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  6. Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991

    USGS Publications Warehouse

    Tribble, Gordon W.

    1997-01-01

    , which causes carbonate minerals to dissolve. Ground water contaminated by petroleum hydrocarbons had the highest levels of mineral dissolution and organic respiration (including sulfate reduction), indicating that bacteria are oxidizing the contaminants.

  7. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  8. Ground water investigations in Oklahoma

    USGS Publications Warehouse

    Davis, Leon V.

    1955-01-01

    Prior to 1937, ground-water work in Oklahoma consisted of broad scale early-day reconnaissance and a few brief investigations of local areas. The reconnaissance is distinguished by C. N. Gould's "Geology and Water Resources of Oklahoma" (Water-Supply Paper 148, 1905), which covers about half of the present State of Oklahoma. Among the shorter reports are two by Schwennesen for areas near Enid and Oklahoma City, one by Renick for Enid, and one by Thompson on irrigation possibilities near Gage. These reports are now inadequate by modern standards.Cooperative ground-water work in Oklahoma by the United States Geological Survey began in 1937, with the Oklahoma Geological Survey as cooperating agency. With the passage of the new ground-water law by the State Legislature in 1949, the need for more information on available ground waters and the safe yield of the various aquifers became very pressing. Accordingly, the Division of Water Resources of the Oklahoma Planning and Resources Board, to which was delegated the responsibility of administering the Ground-Water Law, entered into a cooperative agreement with the U.S. Geological Survey, providing for an expansion of ground-water investigations. Both cooperators have consistently given full and enthusiastic cooperation, often beyond the requirements of the cooperative program.The first cooperative investigation was an evaluation of ground-water supplies available for irrigation in the Panhandle. In 1937 the Panhandle was still very much in the dust bowl, and it was hoped that irrigation would alleviate the drought. A bulletin on Texas County was published in 1939, and one on Cimarron County in 1943. Ground-water investigations during the World War II were restricted to the demands of Army and Navy installations, and to defense industries. Ground-water investigations since 1945 have included both country-wide and aquifer-type investigations. In Oklahoma it has been the policy for the State cooperator to publish the results

  9. Helping Students make the transition from novice learner of ground-water concepts to expert using the Plume Busters software

    USGS Publications Warehouse

    Macfarlane, P.A.; Bohling, G.; Thompson, K.W.; Townsend, M.

    2006-01-01

    Environmental and earth science students are novice learners and lack the experience needed to rise to the level of expert. To address this problem we have developed the prototype Plume Busters?? software as a capstone educational experience, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break throug h a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.

  10. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    ,; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may

  11. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  12. Contamination of Canadian private drinking water sources with antimicrobial resistant Escherichia coli.

    PubMed

    Coleman, Brenda L; Louie, Marie; Salvadori, Marina I; McEwen, Scott A; Neumann, Norman; Sibley, Kristen; Irwin, Rebecca J; Jamieson, Frances B; Daignault, Danielle; Majury, Anna; Braithwaite, Shannon; Crago, Bryanne; McGeer, Allison J

    2013-06-01

    Surface and ground water across the world, including North America, is contaminated with bacteria resistant to antibiotics. The consumption of water contaminated with antimicrobial resistant Escherichia coli (E. coli) has been associated with the carriage of resistant E. coli in people who drink it. To describe the proportion of drinking water samples submitted from private sources for bacteriological testing that were contaminated with E. coli resistant to antibiotics and to determine risk factors for the contamination of these water sources with resistant and multi-class resistant E. coli. Water samples submitted for bacteriological testing in Ontario and Alberta Canada were tested for E. coli contamination, with a portion of the positive isolates tested for antimicrobial resistance. Households were invited to complete questionnaires to determine putative risk factors for well contamination. Using multinomial logistic regression, the risk of contamination with E. coli resistant to one or two classes of antibiotics compared to susceptible E. coli was higher for shore wells than drilled wells (odds ratio [OR] 2.8) and higher for farms housing chickens or turkeys (OR 3.0) than properties without poultry. The risk of contamination with multi-class resistant E. coli (3 or more classes) was higher if the properties housed swine (OR 5.5) or cattle (OR 2.2) than properties without these livestock and higher if the wells were located in gravel (OR 2.4) or clay (OR 2.1) than in loam. Housing livestock on the property, using a shore well, and having a well located in gravel or clay soil increases the risk of having antimicrobial resistant E. coli in E. coli contaminated wells. To reduce the incidence of water borne disease and the transmission of antimicrobial resistant bacteria, owners of private wells need to take measures to prevent contamination of their drinking water, routinely test their wells for contamination, and use treatments that eliminate bacteria. Copyright

  13. Ground-water resources of the Alma area, Michigan

    USGS Publications Warehouse

    Vanlier, Kenneth E.

    1963-01-01

    supplies. The declines are not excessive, and during the late 1950's water levels in parts of Alma have risen slightly, because of dispersion of the pumping stations.The ground water in the Alma area generally is very hard and high in iron. Locally, the buried outwash that underlies the city of Alma is contaminated by phenolic substances. This limits the amount of ground water available for municipal supply within the city, although reclamation of the contaminated part of the aquifer is considered feasible.

  14. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J. LaRue; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  15. Ground-water resources of Kings and Queens Counties, Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Shernoff, Peter K.

    1995-01-01

    The aquifers beneath Kings and Queens Counties supplied an average of more than 120 Mgal/d (million gallons per day) for industrial and public water supply during 1904-47, but this pumping caused saltwater intrusion and a deterioration of water quality that led to the cessation of pumping for public supply in Kings County in 1947 and in western Queens County in 1974. Since the cessation of pumping in Kings and western Queens Counties, ground-water levels have recovered steadily, and the saltwater has partly dispersed and become diluted. In eastern Queens County, where pumpage for public supply averages 60 Mgal/d, all three major aquifers contain a large cone of depression. The saltwater-freshwater interface in the Jameco-Magothy aquifer already extends inland in southeastern Queens County and is moving toward this cone of depression. The pumping centers' proximity to the north shore also warrants monitoring for saltwater intrusion in the Flushing Bay area. Urbanization and development on western Long Island since before the tum of this century have caused significant changes in the ground-water budget (total inflow and outflow) and patterns of movement. Some of the major causes are: ( 1) intensive pumping for industrial and public supply; (2) paving of large land-surface areas; (3) installation of a vast network of combined (stonn and sanitary) sewers; (4) leakage from a water-supply-line network that carries more than 750 Mgal/d; and (5) burial of stream channels and extensive wetland areas near the shore.Elevated nitrate and chloride concentrations throughout the upper glacial (water-table) aquifer indicate widespread contamination from land surface. Localized contamination in the underlying Jameco-Magothy aquifer is attributed to downward migration in areas of hydraulic connection between aquifers where the Gardiners Clay is absent A channel eroded through the Raritan confining unit provides a pathway for migration of surface contaminants to the Lloyd aquifer

  16. Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Sheets, Charlynn J.; Kozar, Mark D.

    2000-01-01

    Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the

  17. Field tests of diffusion samplers for inorganic constituents in wells and at a ground-water discharge zone

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.

    2002-01-01

    Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect

  18. Public Policy on Ground-Water Quality Protection. Proceedings of a National Conference (Virginia Polytechnic Inst. and State University, Blacksburg, Virginia, April 13-16, 1977).

    ERIC Educational Resources Information Center

    Kerns, Waldon R., Ed.

    This publication contains the papers presented at a National Conference on Ground Water Quality Protection Policy held in April of 1977. Paper titles include: (1) Magnitude of the Ground-Water Contamination Problem; (2) Limited Degredation as a Ground-Water Quality Policy; (3) Surface and Subsurface Mining: Policy Implications; (4) Oil Well…

  19. Valiant 'Zero-Valent' Effort Restores Contaminated Grounds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Dense non-aqueous phase liquids (DNAPLs) are chemical compounds that can contaminate soil and groundwater to the point of irreparability. These substances are only slightly soluble in water, and are much denser than water. Because of their solubility, DNAPLs form separate liquid phases in groundwater, and because of their density, DNAPLs sink in aquifers instead of floating at the water table, making it extremely difficult to detect their presence. If left untreated in the ground, they can taint fresh water sources. Common DNAPLs include chlorinated hydrocarbon compounds such as carbon tetrachloride, chloroform, tetrachloroethylene, and trichloroethylene. Trichloroethylene was used during the early days of the Space Program, as a solvent for flushing rocket engines, and for metal cleaning and degreasing of equipment, electronics, and heavy machinery. As a result, areas of Cape Canaveral s Launch Complex 34, the site of several historic Saturn rocket launches occurring from 1959 to 1968, were polluted with chlorinated DNAPLs. Through the direction and guidance of Dr. Jacqueline Quinn, an environmental engineer in the Spaceport Engineering and Technology Directorate at NASA s Kennedy Space Center, a biodegradable environmental cleanup technology was developed to reductively dechlorinate DNAPL sources in polluted water at Launch Complex 34. It was important for Kennedy to nip this problem in the bud, in light of the fact that the Space Center is also a National Wildlife Refuge, home to thousands of shorebirds, endangered sea turtles and eagles, manatees, alligators, and diverse habitats that include brackish marshes and salt water estuaries. The success in remediating this historic launch site has led to numerous commercial applications that are restoring the health of our environmental surroundings.

  20. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    ground water. A quality-control sample (blank, replicate, or matrix spike) was collected at approximately one quarter of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information resulted in V-coding less than 0.1 percent of the data collected. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is supplied to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic purposes (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents detected in ground-water samples were at concentrations below drinking-water thresholds. Volatile organic compounds, pesticides, and pesticide degradates were detected in less than one-third of the grid well samples collected. All VOC and pesticide concentrations measured were below health-based thresholds. Potential waste-water indicators were detected in less than half of the wells sampled, and no detections were above health-based thresholds. Perchlorate was detected in seven grid wells; concentrations from two wells were above the CDPH maximum contaminant level (MCL-CA). Most detections of trace elements in samples collected from COA Study Unit wells were below water-quality thresholds. Exceptions include five samples of arsenic that were above the USEPA maximum contaminant level (MCL-US), two detections of boron above the CDPH notification level (NL-CA), and two detections of mol

  1. Geocoding rural addresses in a community contaminated by PFOA: a comparison of methods.

    PubMed

    Vieira, Verónica M; Howard, Gregory J; Gallagher, Lisa G; Fletcher, Tony

    2010-04-21

    areas increases the rate of successful geocoding. Furthermore, positional accuracy of rural addresses in the study area appears to vary by geocoding method. In a large epidemiological study investigating the health effects of PFOA-contaminated public drinking water, this could potentially result in exposure misclassification if addresses are incorrectly geocoded to a street segment not serviced by public water.

  2. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  3. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  4. RESPONSE PROTOCOL TOOLBOX: PLANNING FOR AND RESPONDING TO CONTAMINATION THREATS TO DRINKING WATER SYSTEMS

    EPA Science Inventory

    EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...

  5. Lithologic and ground-water-quality data collected using Hoverprobe drilling techniques at the West Branch Canal Creek wetland, Aberdeen Proving Ground, Maryland, April-May 2000

    USGS Publications Warehouse

    Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.

    2001-01-01

    This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  6. Toward implementation of a national ground water monitoring network

    USGS Publications Warehouse

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  7. Contamination of ground water by PCE - A national perspective

    USGS Publications Warehouse

    Moran, M.J.; Delzer, G.C.

    2006-01-01

    Perchloroethylene (PCE) has physical and chemical properties that make it likely to persist in groundwater if released to the environment. The US Geological Survey has collected or compiled data on the occurrence of PCE in groundwater from major aquifers around the US. These data represent the occurrence of PCE in the groundwater resource as a whole and not occurrence at specific release sites. PCE was detected at measurable concentrations in nearly one in 10 wells in major aquifers throughout the country. Trichloroethylene was found most commonly with PCE and its presence may be due, in part, to reductive dechlorination of PCE. This is an abstract of a paper presented at the Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation Conference (Houston, TX 11/6-7/2006).

  8. Ground-water quality in the Chemung River Basin, New York, 2003

    USGS Publications Warehouse

    Hetcher-Aguila, Kari K.

    2005-01-01

    Water samples were collected from 24 public-supply wells and 13 private residential wells during the summer of 2003 and analyzed to describe the chemical quality of ground water throughout the Chemung River basin, upgradient from Waverly, N.Y, on the Pennsylvania border. Wells were selected to represent areas of heaviest ground-water use and greatest vulnerability to contamination, and to obtain a geographical distribution across the 1,130 square-mile basin. Samples were analyzed for physical properties, inorganic constituents, nutrients, metals and radionuclides, pesticides, volatile organic compounds, and bacteria.The cations that were detected in the highest concentrations were calcium and sodium; the anions that were detected in the greatest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrient was nitrate. Nitrate concentrations in samples from wells finished in sand and gravel were greater than in those from wells finished in bedrock, except for one bedrock well, which had the highest nitrate concentration of any sample in this study. The most commonly detected metals were aluminum, barium, iron, manganese, and strontium. The range of tritium concentrations (0.6 to 12.5 tritium units) indicates that the water ages ranged from less than 10 years old to more than 50 years old. All but one of the 15 pesticides detected were herbicides; those detected most frequently were atrazine, deethylatrazine, and two degradation products of metolachlor (metachlor ESA and metachlor OA), which were the pesticides detected at the highest concentrations. Not every sample collected was analyzed for pesticides, and pesticides were detected only in wells finished in sand and gravel. Volatile organic compounds were detected in 15 samples, and the concentrations were at or near the analytical detection limits. Total coliform were detected in 12 samples; fecal coliform were detected in 7 samples; and Escherichia coli was detected in 6 samples. These

  9. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  10. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight

  11. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  12. Nitrate and pesticides in ground water in the eastern San Joaquin Valley, California : occurrence and trends

    USGS Publications Warehouse

    Burow, Karen R.; Stork, Sylvia V.; Dubrovsky, N.M.

    1998-01-01

    The occurrence of nitrate and pesticides in ground water in California's eastern San Joaquin Valley may be greatly influenced by the long history of intensive farming and irrigation and the generally permeable sediments. This study, which is part of the U.S. Geological Survey National Water-Quality Assessment Program, was done to assess the quality of the ground water and to do a preliminary evaluation of the temporal trends in nitrate and pesticides in the alluvial fans of the eastern San Joaquin Valley. Ground-water samples were collected from 30 domestic wells in 1995 (each well was sampled once during 1995). The results of the analyses of these samples were related to various physical and chemical factors in an attempt to understand the processes that control the occurrence and the concentrations of nitrate and pesticides. A preliminary evaluation of the temporal trends in the occurrence and the concentration of nitrate and pesticides was done by comparing the results of the analyses of the 1995 ground-water samples with the results of the analyses of the samples collected in 1986-87 as part of the U.S. Geological Survey Regional Aquifer-System Analysis Program. Nitrate concentrations (dissolved nitrate plus nitrite, as nitrogen) in ground water sampled in 1995 ranged from less than 0.05 to 34 milligrams per liter, with a median concentration of 4.6 milligrams per liter. Nitrate concentrations exceeded the maximum contaminant level of 10 milligrams per liter (as nitrogen) in 5 of the 30 ground-water samples (17 percent), whereas 12 of the 30 samples (40 percent) had nitrate concentrations less than 3.0 milligrams per liter. The high nitrate concentrations were associated with recently recharged, well-oxygenated ground water that has been affected by agriculture (indicated by the positive correlations between nitrate, dissolved-oxygen, tritium, and specific conductance). Twelve pesticides were detected in 21 of the 30 ground-water samples (70 percent) in 1995

  13. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides IncludingTritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium

    EPA Science Inventory

    The current document represents the third volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with nonradionuclide and/or radionuclide inorganic contamina...

  14. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  15. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.

  16. INNOVATIVE PROCESSES FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ...

  17. Ground-Water Recharge in Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Falteisek, J.D.

    2007-01-01

    'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.

  18. Simulation of ground-water flow, surface-water flow, and a deep sewer tunnel system in the Menomonee Valley, Milwaukee, Wisconsin

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.; Hunt, R.J.; Krohelski, J.T.

    2004-01-01

    Numerical models were constructed for simulation of ground-water flow in the Menomonee Valley Brownfield, in Milwaukee, Wisconsin. An understanding of ground-water flow is necessary to develop an efficient program to sample ground water for contaminants. Models were constructed in a stepwise fashion, beginning with a regional, single-layer, analytic-element model (GFLOW code) that provided boundary conditions for a local, eight layer, finite-difference model (MODFLOW code) centered on the Menomonee Valley Brownfield. The primary source of ground water to the models is recharge over the model domains; primary sinks for ground water within the models are surface-water features and the Milwaukee Metropolitan Sewerage District Inline Storage System (ISS). Calibration targets were hydraulic heads, surface-water fluxes, vertical gradients, and ground-water infiltration to the ISS. Simulation of ground-water flow by use of the MODFLOW model indicates that about 73 percent of recharge within the MODFLOW domain circulates to the ISS and 27 percent discharges to gaining surface-water bodies. In addition, infiltration to the ISS comes from the following sources: 36 percent from recharge within the model domain, 45 percent from lateral flow into the domain, 15 percent from Lake Michigan, and 4 percent from other surface-water bodies. Particle tracking reveals that the median traveltime from the recharge point to surface-water features is 8 years; the median time to the ISS is 255 years. The traveltimes to the ISS are least over the northern part of the valley, where dolomite is near the land surface. The distribution of traveltimes in the MODFLOW simulation is greatly influenced by the effective porosity values assigned to the various lithologies.

  19. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  20. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  1. Ground-water as a nuisance

    NASA Astrophysics Data System (ADS)

    Straskraba, V.

    1984-03-01

    In certain circumstances, ground-water causes geotechnical problems and can be considered a nuisance rather than a blessing. The cases where ground-water creates considerable complications include construction, tunnelling, mining, landslides, and land subsidence. The development of hydrogeology as a science has proved over the years to substantially reduce the severe problems and disasterous problems caused by ground-water.

  2. Phytoremediation of soils and water contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Huddleston, G.J.; Levine, R.S.

    1995-12-31

    At many U.S. Department of Energy (DOE) facilities and other sites, large volumes of soils, sediments and waters are contaminated with heavy metals and/or radionuclides, often at only a relatively small factor above regulatory action levels. In response, the DOE`s Office of Technology Development is evaluating the emerging biotechnology known as phytoremediation; this approach utilizes the accelerated transfer of contaminant mass from solution to either root or above ground biomass. After growth, the plant biomass - containing 100 to 1,000 times the contaminant levels observed with conventional plants - is processed to achieve further volume reduction and contaminant concentration. Thus,more » phytoremediation offers the potential for low cost remediation of highly to moderately contaminated media. Progress made to date by DOE in developing this technology will be summarized and evaluated.« less

  3. Simulation of interaction between ground water in an alluvial aquifer and surface water in a large braided river

    USGS Publications Warehouse

    Leake, S.A.; Lilly, M.R.

    1995-01-01

    The Fairbanks, Alaska, area has many contaminated sites in a shallow alluvial aquifer. A ground-water flow model is being developed using the MODFLOW finite-difference ground-water flow model program with the River Package. The modeled area is discretized in the horizontal dimensions into 118 rows and 158 columns of approximately 150-meter square cells. The fine grid spacing has the advantage of providing needed detail at the contaminated sites and surface-water features that bound the aquifer. However, the fine spacing of cells adds difficulty to simulating interaction between the aquifer and the large, braided Tanana River. In particular, the assignment of a river head is difficult if cells are much smaller than the river width. This was solved by developing a procedure for interpolating and extrapolating river head using a river distance function. Another problem is that future transient simulations would require excessive numbers of input records using the current version of the River Package. The proposed solution to this problem is to modify the River Package to linearly interpolate river head for time steps within each stress period, thereby reducing the number of stress periods required.

  4. Chemical Analyses of Ground Water in the Carson Desert near Stillwater, Churchill County, Nevada, 2005

    USGS Publications Warehouse

    Fosbury, DeEtta; Walker, Mark; Stillings, Lisa L.

    2008-01-01

    This report presents the chemical analyses of ground-water samples collected in 2005 from domestic wells located in the Stillwater area of the Carson Desert (fig. 1). These data were evaluated for evidence of mixing with nearby geothermal waters (Fosbury, 2007). That study used several methods to identify mixing zones of ground and geothermal waters using trace elements, chemical equilibria, water temperature, geothermometer estimates, and statistical techniques. In some regions, geothermal sources influence the chemical quality of ground water used for drinking water supplies. Typical geothermal contaminants include arsenic, mercury, antimony, selenium, thallium, boron, lithium, and fluoride (Webster and Nordstrom, 2003). The Environmental Protection Agency has established primary drinking water standards for these, with the exception of boron and lithium. Concentrations of some trace metals in geothermal water may exceed drinking water standards by several orders of magnitude. Geothermal influences on water quality are likely to be localized, depending on directions of ground water flow, the relative volumes of geothermal sources and ground water originating from other sources, and depth below the surface from which water is withdrawn. It is important to understand the areal extent of shallow mixing of geothermal water because it may have adverse chemical and aesthetic effects on domestic drinking water. It would be useful to understand the areal extent of these effects.

  5. Simulation of the ground-water flow system at Naval Submarine Base Bangor and vicinity, Kitsap County, Washington

    USGS Publications Warehouse

    Heeswijk, Marijke van; Smith, Daniel T.

    2002-01-01

    An evaluation of the interaction between ground-water flow on Naval Submarine Base Bangor and the regional-flow system shows that for selected alternatives of future ground-water pumping on and near the base, the risk is low that significant concentrations of on-base ground-water contamination will reach off-base public-supply wells and hypothetical wells southwest of the base. The risk is low even if worst-case conditions are considered ? no containment and remediation of on-base contamination. The evaluation also shows that future saltwater encroachment of aquifers below sea level may be possible, but this determination has considerable uncertainty associated with it. The potential effects on the ground-water flow system resulting from four hypothetical ground-water pumping alternatives were considered, including no change in 1995 pumping rates, doubling the rates, and 2020 rates estimated from population projections with two different pumping distributions. All but a continuation of 1995 pumping rates demonstrate the possibility of future saltwater encroachment in the Sea-level aquifer on Naval Submarine Base Bangor. The amount of time it would take for encroachment to occur is unknown. For all pumping alternatives, future saltwater encroachment in the Sea-level aquifer also may be possible along Puget Sound east and southeast of the base. Future saltwater encroachment in the Deep aquifer also may be possible throughout large parts of the study area. Projections of saltwater encroachment are least certain outside the boundaries of Naval Submarine Base Bangor. The potential effects of the ground-water pumping alternatives were evaluated by simulating the ground-water flow system with a three-dimensional uniform-density ground-water flow model. The model was calibrated by trial-and-error by minimizing differences between simulated and measured or estimated variables. These included water levels from prior to January 17, 1977 (termed 'predevelopment'), water

  6. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  7. A Field Test of Electromigration as a Method for Remediating Sulfate from Shallow Ground Water

    USGS Publications Warehouse

    Patterson, C.G.; Runnells, D.D.

    1996-01-01

    Electromigration offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl-, NO3-, and SO4-. A field experiment was designed to test the efficacy of electromigration for preconcentrating dissolved SO42- in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feet apart (one 25 feet deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner tube of 2-inch PVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner tubing with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42- was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to be a steady-state value of 2200 mg/L, compared to the initial value in ground water of approximately 1150 mg/L. The results of this field test should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.

  8. Biological approaches for addressing the grand challenge of providing access to clean drinking water.

    PubMed

    Riley, Mark R; Gerba, Charles P; Elimelech, Menachem

    2011-03-31

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms.

  9. Biological approaches for addressing the grand challenge of providing access to clean drinking water

    PubMed Central

    2011-01-01

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms. PMID:21453515

  10. Hydrogeology and quality of ground water on Guemes Island, Skagit County, Washington

    USGS Publications Warehouse

    Kahle, S.C.; Olsen, T.D.

    1995-01-01

    Guemes Island, located in Puget Sound of Washington State, is experiencing population growth and seawater intrusion. The island consists of Pleistocene glacial deposits overlying bedrock. Geologic sections and a map of surficial geology were constructed and used to delineate six hydrogeologic units, three of which are aquifers. The most productive aquifer is the Double Bluff aquifer, situated at or below sea level. Water budget estimates indicate that of the 21-29 inches of precipitation received in a typical year, 0-4 inches runs off, 12-22 inches evapotranspires, and 2-10 inches recharges the ground-water system. Of the water recharged, 0.1-0.3 inches is withdrawn by wells; the remainder recharges deeper aquifer(s) or discharges from the ground-water system to drainage ditches or the sea. The median dissolved-solids concentration was 236 mg/L (milligrams per liter). Half of the samples were classified as moderately hard, the remainder as hard or very hard. Although magnesium-calcium/bicarbonate water types dominate, some samples contained large amounts of sodium and chloride. The median concentration of 0.08 mg/L for nitrate indicates that no widespread contamination from septic systems or livestock exists. Small concentrations of arsenic were present in 5 of 24 samples. Trace concentrations of volatile organic compounds were detected in three of five samples. None of the U.S. Environmental Protection Agency's maximum contaminant levels was exceeded. However, secondary maximum contaminant levels were exceeded for dissolved solids, chloride, manganese, and iron. Seasonal variability of chloride concentration was apparent in water from coastal wells that had chloride concentrations greater than 100 mg/L. Higher values occurred from April through September because of increased pumping and lower recharge.

  11. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  12. Ground-Water Data for Indian Wells Valley, Kern, Inyo, and San Bernardino Counties, California, 1977-84

    USGS Publications Warehouse

    Berenbrock, Charles

    1987-01-01

    Ground water is the sole source of water in Indian Wells Valley. Since 1966, annual ground-water pumpage has exceeded estimates of mean annual recharge, and continued and increased stresses on the aquifer system of the valley are expected. In 1981 the U.S. Geological Survey began a 10-year program to develop a data base that could be used in evaluating future water-management alternatives for the valley. This report tabulates existing water-level and water-quality data in order to provide a basis for the design of a ground-water monitoring network for Indian Wells Valley. Water-levels were measured in 131 wells during 1977-84. About 62 percent of the wells that have water-level measurements spanning at least 3 years during the period 1977-84 show a net water-level decline; the decline in 23 percent of the wells is greater than 5 feet. Water-quality samples from 85 wells were analyzed for major dissolved constituents. At selected wells water samples were also analyzed for nutrients and trace metals. Seventy-nine of the wells sampled contained water with concentrations of one or more dissolved constituents that equaled or exceeded U.S. Environmental Protection Agency primary or secondary maximum contaminant levels for drinking water. Dissolved-solids concentrations, which ranged from 190 to 67,000 milligrams per liter, equaled or exceeded 500 milligrams per liter (the Environmental Protection Agency secondary maximum contaminant level) in 85 percent of the sampled wells and 1,000 milligrams per liter in 59 percent. Water samples collected in 1984 from eight wells near the industrial-waste ponds of the China Lake Naval Weapons Center were analyzed for the presence of organic compounds designated 'priority pollutants' by the U.S. Environmental Protection Agency. Priority pollutants were detected in three wells. Trichloroethylene, methylene chloride, vinyl chloride, and chloroform were identified; concentrations were less than 10 micrograms per liter except for

  13. Occurrence of trihalomethanes in the nation's ground water and drinking-water supply wells, 1985-2002

    USGS Publications Warehouse

    Schaap, Bryan D.; Zogorski, John S.

    2006-01-01

    This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples

  14. Summary of the Ground-Water-Level Hydrologic Conditions in New Jersey 2006

    USGS Publications Warehouse

    Jones, Walter; Pope, Daryll

    2007-01-01

    Ground water is one of the Nation's most important natural resources. It provides about 40 percent of our Nation's public water supply. Currently, nearly one-half of New Jersey's drinking-water is supplied by over 300,000 wells that serve more than 4.3 million people (John P. Nawyn, U.S. Geological Survey, written commun., 2007). New Jersey's population is projected to grow by more than a million people by 2030 (U.S. Census Bureau, accessed March 2, 2006, at http://www.census.gov). As demand for water increases, managing the development and use of the ground-water resource so that the supply can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences is of paramount importance. This report describes the U.S. Geological Survey (USGS) New Jersey Water Science Center Observation Well Networks. Record low ground-water levels during water year 2006 (October 1, 2005 to September 30, 2006) are listed, and water levels in six selected water-table observation wells and three selected confined wells are shown in hydrographs. The report describes the trends in water levels in various confined aquifers in southern New Jersey and in water-table and fracture rock aquifers throughout the State. Web site addresses to access the data also are included. The USGS has operated a network of observation wells in New Jersey since 1923 for the purpose of monitoring ground-water-level changes throughout the State. Long-term systematic measurement of water levels in observation wells provides the data needed to evaluate changes in the ground-water resource over time. Records of ground-water levels are used to evaluate the effects of climate changes and water-supply development, to develop ground-water models, and to forecast trends.

  15. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  16. Hydrogeology and ground-water quality of northern Bucks County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Schreffler, Curtis L.

    1994-01-01

    Water from wells in the crystalline rocks has the lowest median pH (5.8), the lowest median specific conductance (139 microsiemens per centimeter), the lowest median alkalinity [16 mg/L (milligrams per liter) as CaCOg], and the highest dissolved oxygen concentration (9.0 mg/L) of the hydrogeologic units. Water from wells in carbonate rocks has the highest median pH (7.8) and the highest median alkalinity (195 mg/L as CaCO3) of the hydrogeologic units. Water from wells in the Lockatong Formation has the highest median specific conductance (428 microsiemens per centimeter) and the lowest dissolved oxygen concentration (0.8 mg/L) of the hydrogeologic units. Water from wells in crystalline rocks contains the lowest concentrations of total dissolved solids (TDS) of the hydrogeologic units. Water from the Lockatong Formation contains the highest concentration of TDS of the hydrogeologic units. Water from only 1 of 83 wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant level (SMCL) for TDS; the well is in the Lockatong Formation. Five of 86 samples (6 percent) and 6 of 75 samples (8 percent) exceed the USEPA SMCL for iron and manganese, respectively. Nitrate is the most prevalent nitrogen species in ground water. The median nitrate concentration for all hydrogeologic units is 2.3 mg/L. Of 71 water samples from wells, no concentrations of nitrate exceed the USEPA maximum contaminant level. The median dissolved radon-222 activity was highest for water samples from wells in crystalline rock [3,600 pCi/L (picocuries per liter)] and lowest for water samples from wells in the Lockatong Formation (340 pCi/L) and diabase (350 pCi/L). Water samples for analysis for volatile organic compounds (VOC's) were collected from 34 wells in areas where the potential existed for the presence of VOC's in ground water. VOC's were detected in 23 percent of the 34 wells sampled. The most commonly detected compound was trichloroethylene (13

  17. Effects of Pumping on Ground-Water Flow Near Water-Supply Wells in the Lower Potomac-Raritan-Magothy Aquifer, Pennsauken Township, Camden County, New Jersey

    USGS Publications Warehouse

    Walker, Richard L.

    2001-01-01

    Since the 1970's, hexavalent chromium has been detected in concentrations as great as 1.0 milligram per liter in wells at the Puchack well field operated by the Camden City Department of Utilities, Water Division (Water Department), forcing the Water Department to progressively remove five of its six wells from service between 1975 and 1988. The wells in the Puchack well field range in depth from 140 to 220 feet and are screened in the Lower Potomac-Raritan-Magothy aquifer. The Water Department has continued to pump Puchack Well 1 to maintain a hydraulic gradient toward the well field in an attempt to limit contaminant migration. In late 1997, concerns about treating the water withdrawn from Puchack Well 1 led water managers to consider temporarily discontinuing the pumping. In the spring of 1998, the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection, began a preliminary assessment of the potential effects of temporarily removing Puchack Well 1 from service. Water levels in the Lower Potomac-Raritan-Magothy aquifer were measured during both pumping and nonpumping conditions to determine the direction and velocity of ground-water flow and the results were compared. Data collected in late March and early April 1998 indicate the presence of a ground-water divide between the Puchack well field and the Morris and Delair well fields when Puchack Well 1 was being pumped. A similar divide also was present when the well was not being pumped. The position and persistence of this divide limits the probability that contaminants in the vicinity of the Puchack well field will reach the Delair and Morris well fields during either pumping condition. Another divide southeast of Puchack Well 1 while the well was being pumped was no longer evident when the pumping was stopped and water levels had recovered. Under non-pumping conditions, ground water between Puchack Well 1 and this divide could begin to migrate toward other large

  18. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    PubMed

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    USGS Publications Warehouse

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were

  20. GASOLINE-CONTAMINATED GROUND WATER AS A SOURCE OF RESIDENTIAL BENZENE EXPOSURE: A CASE STUDY

    EPA Science Inventory

    In a private residence using gasoline-contaminated water (approximately 300 ug/l benzene), a series of experiments were performed to assess the potential benzene exposures that may occur in the shower stall, bathroom, master bedroom, and living room as a result of a single 20-min...

  1. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  2. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  3. Browns Ferry Nuclear Plant low-level radwaste storage facility ground-water pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, J.M.

    1982-10-01

    The proposed low-level radwaste storage facility (LLRWSF) at Browns Ferry Nuclear Plant is underlain by soils having low hydraulic conductivity and high sorptive capacity which greatly reduce the risks associated with a potential contaminant excursion. A conservative ground-water pathway accident analysis using flow and solute transport modeling techniques indicates that without interdiction the concentrations of the five radionuclides of concern (Sr-90, Cs-137, Cs-134, Co-60, and Mn-54) would be well below 10 CFR Part 20 criteria at downgradient receptors. These receptors include a possible future private water well located near the eastern site boundary and Wheeler Reservoir. Routine ground-water monitoring ismore » not recommended at the LLRWSF except in the unlikely event of an accident.« less

  4. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in

  5. Ground-water levels and flow directions in the glacial sediments and the Lockport Dolomite in southeastern Darke and northeastern Preble counties, Ohio, July 1998

    USGS Publications Warehouse

    Dumouchelle, Denise H.

    1999-01-01

    During the summer of 1997, the U.S. Environmental Protection Agency (USEPA) began an emergency removal action at the Lewisburg Drum Site in northern Preble County, Ohio.  The site is about 3 miles west-northwest of the village of Lewisburg.  The USEPA removed about 1,200 drums of waste ink from the site, as well as 2,500 cubic yards of contaminated soil and 100,000 gallons of ground water.  Because of the potential for off-site migration of ground-water contamination, USEPA sampled residential wells in the area; results from the samples collected by USEPA indicated that the quality of water in some privately owned wells may have been affected by contaminants from the site.  However, the directions of ground-water flow in the area were not known.  In 1998, the U.S. Geological Survey (USGS), in cooperation with the USEPA, measure water levels in the vicinity of the site.  This map will aid in the interpretation of the water-quality data collected by USEPA.

  6. Isotope Geochemistry and Chronology of Offshore Ground Water Beneath Indian River Bay, Delaware

    USGS Publications Warehouse

    Böhlke, John Karl; Krantz, David E.

    2003-01-01

    detected by geophysical surveys beneath Indian River Bay represent lateral continuations of the active surficial nitrate-contaminated freshwater flow systems originating on land, but they do not indicate directly the magnitude of fresh ground-water discharge or nutrient exchange with the estuary. There is evidence that some of the terrestrial ground-water nitrate is reduced before discharging directly beneath the estuary. Local estuarine sediment-derived ammonium in saline pore water may be a substantial benthic source of nitrogen in offshore areas of the estuary.

  7. Hydrogeology of, and Simulation of Ground-Water Flow In, the Pohatcong Valley, Warren County, New Jersey

    USGS Publications Warehouse

    Carleton, Glen B.; Gordon, Alison D.

    2007-01-01

    A numerical ground-water-flow model was constructed to simulate ground-water flow in the Pohatcong Valley, including the area within the U.S. Environmental Protection Agency Pohatcong Valley Ground Water Contamination Site. The area is underlain by glacial till, alluvial sediments, and weathered and competent carbonate bedrock. The northwestern and southeastern valley boundaries are regional-scale thrust faults and ridges underlain by crystalline rocks. The unconsolidated sediments and weathered bedrock form a minor surficial aquifer and the carbonate rocks form a highly transmissive fractured-rock aquifer. Ground-water flow in the carbonate rocks is primarily downvalley towards the Delaware River, but the water discharges through the surficial aquifer to Pohatcong Creek under typical conditions. The hydraulic characteristics of the carbonate-rock aquifer are highly heterogeneous. Horizontal hydraulic conductivities span nearly five orders of magnitude, from 0.5 feet per day (ft/d) to 1,800 ft/d. The maximum transmissivity calculated is 37,000 feet squared per day. The horizontal hydraulic conductivities calculated from aquifer tests using public supply wells open to the Leithsville Formation and Allentown Dolomite are 34 ft/d (effective hydraulic conductivity) and 85 to 190 ft/d (minimum and maximum hydraulic conductivity, respectively, yielding a horizontal anisotropy ratio of 0.46). Stream base-flow data were used to estimate the net gain (or loss) for selected reaches on Brass Castle Creek, Shabbecong Creek, three smaller tributaries to Pohatcong Creek, and for five reaches on Pohatcong Creek. Estimated mean annual base flows for Brass Castle Creek, Pohatcong Creek at New Village, and Pohatcong Creek at Carpentersville (from correlations of partial- and continuous-record stations) are 2.4, 25, and 45 cubic feet per second (ft3/s) (10, 10, and 11 inches per year (in/yr)), respectively. Ground-water ages estimated using sulfur hexafluoride (SF6

  8. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  9. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  10. Hydrogeology and simulation of ground-water flow at the Gettysburg Elevator Plant Superfund Site, Adams County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.

    2000-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Gettysburg, Pa., is used as drinking water and for industrial and commercial supply. In 1983, ground water at the Gettysburg Elevator Plant was found by the Pennsylvania Department of Environmental Resources to be contaminated with trichloroethene, 1,1,1-trichloroethane, and other synthetic organic compounds. As part of the U.S. Environmental Protection Agency?s Comprehensive Environmental Response, Compensation, and Liability Act, 1980 process, a Remedial Investigation was completed in July 1991, a method of site remediation was issued in the Record of Decision dated June 1992, and a Final Design Report was completed in May 1997. In cooperation with the U.S. Environmental Protection Agency in the hydrogeologic assessment of the site remediation, the U.S. Geological Survey began a study in 1997 to determine the effects of the onsite and offsite extraction wells on ground-water flow and contaminant migration from the Gettysburg Elevator Plant. This determination is based on hydrologic and geophysical data collected from 1991 to 1998 and on results of numerical model simulations of the local ground-water flow-system. The Gettysburg Elevator Site is underlain by red, green, gray, and black shales of the Heidlersburg Member of the Gettysburg Formation. Correlation of natural-gamma logs indicates the sedimentary rock strike about N. 23 degrees E. and dip about 23 degrees NW. Depth to bedrock onsite commonly is about 6 feet but offsite may be as deep as 40 feet. The ground-water system consists of two zones?a thin, shallow zone composed of soil, clay, and highly weathered bedrock and a thicker, nonweathered or fractured bedrock zone. The shallow zone overlies the bedrock zone and truncates the dipping beds parallel to land surface. Diabase dikes are barriers to ground-water flow in the bedrock zone. The ground-water system is generally confined or semi-confined, even at shallow depths. Depth

  11. Decision support for water quality management of contaminants of emerging concern.

    PubMed

    Fischer, Astrid; Ter Laak, Thomas; Bronders, Jan; Desmet, Nele; Christoffels, Ekkehard; van Wezel, Annemarie; van der Hoek, Jan Peter

    2017-05-15

    Water authorities and drinking water companies are challenged with the question if, where and how to abate contaminants of emerging concern in the urban water cycle. The most effective strategy under given conditions is often unclear to these stakeholders as it requires insight into several aspects of the contaminants such as sources, properties, and mitigation options. Furthermore the various parties in the urban water cycle are not always aware of each other's requirements and priorities. Processes to set priorities and come to agreements are lacking, hampering the articulation and implementation of possible solutions. To support decision makers with this task, a decision support system was developed to serve as a point of departure for getting the relevant stakeholders together and finding common ground. The decision support system was iteratively developed in stages. Stakeholders were interviewed and a decision support system prototype developed. Subsequently, this prototype was evaluated by the stakeholders and adjusted accordingly. The iterative process lead to a final system focused on the management of contaminants of emerging concern within the urban water cycle, from wastewater, surface water and groundwater to drinking water, that suggests mitigation methods beyond technical solutions. Possible wastewater and drinking water treatment techniques in combination with decentralised and non-technical methods were taken into account in an integrated way. The system contains background information on contaminants of emerging concern such as physical/chemical characteristics, toxicity and legislative frameworks, water cycle entrance pathways and a database with associated possible mitigation methods. Monitoring data can be uploaded to assess environmental and human health risks in a specific water system. The developed system was received with great interest by potential users, and implemented in an international water cycle network. Copyright © 2017 Elsevier

  12. Investigation of ethylene dibromide (EDB) in ground water in Seminole County, Georgia

    USGS Publications Warehouse

    McConnell, James B.; Hicks, D.W.; Lowe, L. E.; Cohen, S.Z.; Jovanovich, A.P.

    1984-01-01

    An investigation of ground water in Seminole County, Georgia, for ethylene dibromide (EDB) was conducted in August 1983 by the U.S. Geological Survey in cooperation with the Exposure Assessment Branch of the U.S. Environmental Protection Agency. The purpose of the investigation was to determine whether EDB, which was previously detected in ground-water samples from four neighboring wells, was localized in the vicinity of the wells or was more widespread in the ground-water system. EDB was detected in 6 of 19 wells sampled. Concentrations ranged from 0.03 to 11.8 micrograms per liter. Five of the six samples that contained EDB were collected from irrigation wells, and one was collected from a domestic well. Concentrations of 4.5 and 11.8 micrograms per liter were found in two irrigation wells located near Buck Hole, a sinkhole in a swampy depression in central Seminole County. EDB was not detected in samples from the remaining 10 irrigation and 3 domestic wells and the surface-water site (detection level less than 0.01 microgram per liter). Nine core samples were collected from a borehole near one of the irrigation wells that had high EDB concentrations. EDB was found in a core sample near the surface and in samples from depths of 24 to 25, 34 to 35, and 39 to 40 feet in the residuum. EDB concentrations in the core samples ranged from 0.06 to 2.4 micrograms per kilogram. EDB in the aquifer was found in a 4-square-mile area of the county in the vicinity of Buck Hole. EDB application information and the local hydrogeology indicate that EDB contamination in ground water in Seminole County probably is due to soil fumigation with EDB. Apparently, EDB moves downward through the residuum and, through undetermined pathways, enters the aquifer. However, because the high concentration of EDB in the aquifer seems to be localized in the Buck Hole area, the possibility of contamination from an EDB fumigant spill cannot be disregarded at this time.

  13. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    USGS Publications Warehouse

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  14. Desalinated drinking water in the GCC countries - The need to address consumer perceptions.

    PubMed

    Shomar, Basem; Hawari, Jalal

    2017-10-01

    The Gulf Cooperation Council (GCC) countries consist of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. These countries depend mainly on seawater desalination to meet their water needs. Although great emphasis is given to characterize desalinated water for its physicochemical and microbial properties, e.g. presence of metals, other organic contaminants and for bacteria, sensorial characteristics including smell, taste and color have not received the same attention. This is possibly attributed to the fact that inhabitants of GCC States do not use desalinated tap water for drinking consumption, rather they depend on locally produced or imported bottled water where color, taste and odor are not problematic. To address the consumer needs and perceptions of drinking desalinated water in GCC countries, water quality standards and guidelines, should respond to the public concern about other sensorial characteristics (organoleptic properties) including taste, odor, and trigeminal sensations. Often the root causes of color and smell in water are attributed to the presence of organic and inorganic contaminants and to bacterial growth which is frequently accompanied by the production of metabolites and byproducts that are obnoxious. The unpleasant sensorial problems associated with desalinated drinking tap water may constitute the driving force for most people in GCC countries to depend on bottled water. To encourage people in the GCC countries to consume desalinated tap water, it is essential that water testing include measurements of physicochemical properties, biofilm presence and organoleptic parameters to improve overall water quality. This review highlights the contribution of organoleptics for consumers of desalinated tap water. It extends water quality research to be addressed by standards for organoleptic parameters in desalinated drinking water. Accordingly, consumer awareness and outreach campaigns should be implemented to encourage people

  15. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  16. Stable isotopes and volatile organic compounds along seven ground-water flow paths in divergent and convergent flow systems, southern California, 2000

    USGS Publications Warehouse

    Milby Dawson, Barbara J.; Belitz, Kenneth; Land, Michael; Danskin, Wesley R.

    2003-01-01

    Ground water is a major source of drinking water in southern California. In an effort to understand factors influencing the susceptibility of ground water tapped by public supply wells, the U.S. Geological Survey has undertaken studies in cooperation with the California State Water Resources Control Board. The vertical and lateral distribution of stable isotopes (deuterium and oxygen-18) and volatile organic compounds (VOC) were examined along seven ground-water flow paths in three urban ground-water basins in southern California: Central Basin in Los Angeles County, Main Basin in Orange County, and Bunker Hill Basin in San Bernardino County. Forty-seven monitoring wells and 100 public supply wells were sampled. The results of this study suggest that the direction of flow and perhaps the degree of confinement in an aquifer system are important controls on the distribution of VOCs. Ground-water flow in the Central and Main Basins in the southern California coastal plain is characterized as radially divergent, with ground-water flow directions moving outward from focused areas of recharge in the unconfined part of the aquifer system toward dispersed areas of discharge in the more confined part. In these basins, there is a volume of water containing VOCs that extends out into a volume of water containing no VOCs. This pattern suggests that radially divergent flow systems disperse VOCs in distal areas. The overall pattern also suggests that ground water in the pressure area is generally insulated from compounds introduced at land surface. These two factors?dispersion of VOCs due to divergence of flow and insulation from land-surface inputs?suggest that the susceptibility of public supply wells to surface contamination decreases with distance in radially divergent, well confined ground-water flow system. In the inland Bunker Hill Basin, ground-water flow is characterized as radially convergent; ground-water flow directions move inward from dispersed recharge areas in

  17. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  18. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, Wilbur C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included in this report.The program of ground-water observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne.

  19. Sources of High-Chloride Water to Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Metzger, Loren F.; McPherson, Kelly R.; Everett, Rhett; Bennett, George L.

    2006-01-01

    As a result of pumping and subsequent declines in water levels, chloride concentrations have increased in water from wells in the Eastern San Joaquin Ground-Water Subbasin, about 80 miles east of San Francisco (Montgomery Watson, Inc., 2000). Water from a number of public-supply, agricultural, and domestic wells in the western part of the subbasin adjacent to the San Joaquin Delta exceeds the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for chloride of 250 milligrams per liter (mg/L) (fig. 1) (link to animation showing chloride concentrations in water from wells, 1984 to 2004). Some of these wells have been removed from service. High-chloride water from delta surface water, delta sediments, saline aquifers that underlie freshwater aquifers, and irrigation return are possible sources of high-chloride water to wells (fig. 2). It is possible that different sources contribute high-chloride water to wells in different parts of the subbasin or even to different depths within the same well.

  20. Potential biofouling of spacecraft propellant systems due to contaminated deionized water

    NASA Astrophysics Data System (ADS)

    Hogue, Patrick

    2006-08-01

    Deionized (DI) water, with a density close to hydrazine, is used to fill spacecraft propellant tanks for mechanical testing during ground operations, after which is it removed and the tanks dried for use with anhydrous hydrazine. Pure nitrogen is used as a pressurant during storage and during water fill and drain operations. Since DI water systems are notorious for contamination by slime-forming bacteria, DI water intended for use in New Horizons and STEREO hydrazine tanks at APL was assessed for microorganism content using the heterotrophic plate count (HPC) method. Results show that some growth occurred during storage of DI water in propellant tanks, however not at the logarithmic rate associated with well-nourished bacteria. Ralstonia and Burkholderia were present in DI water on-loaded however only Ralstonia was present in off-loaded water. One possible source of nutrients during water storage in propellant tanks is organic material originating from the EPDM (EPR per AF-E-332) expulsion diaphragm. This paper will demonstrate potential for bio-fouling of spacecraft propulsion systems due to growth of slime-forming bacteria and will suggest that specifications controlling microorganism content should be imposed on water used for spacecraft ground testing.

  1. Ground-water monitoring at Santa Barbara, California; Phase 2, Effects of pumping on water levels and on water quality in the Santa Barbara ground-water basin

    USGS Publications Warehouse

    Martin, Peter

    1984-01-01

    From July 1978 to January 1980, water levels in the southern part of the Santa Barbara ground-water basin declined more than 100 feet. These water-level declines resulted from increases in municipal pumping since July 1978. The increase in municipal pumping was part of a basin-testing program designed to determine the usable quantity of ground water in storage. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines to altitudes below sea level in the main water-bearing zones. As a result, the ground-water basin would be subject to saltwater intrusion if the study-period pumpage were maintained or increased. Data indicate that saltwater intrusion has degraded the quality of the water yielded from six coastal wells. During the study period, the six coastal wells all yielded water with chloride concentrations in excess of 250 milligrams per liter, and four of the wells yielded water with chloride concentrations in excess of 1,000 milligrams per liter. Previous investigators believed that saltwater intrusion was limited to the shallow part of the aquifer, directly adjacent to the coast. The possibility of saltwater intrusion into the deeper water-bearing deposits in the aquifer was thought to be remote because an offshore fault truncates these deeper deposits so that they lie against consolidated rocks on the seaward side of the fault. Results of this study indicate, however, that ocean water has intruded the deeper water-bearing deposits, and to a much greater extent than in the shallow part of the aquifer. Apparently the offshore fault is not an effective barrier to saltwater intrusion. No physical barriers are known to exist between the coast and the municipal well field. Therefore, if the pumping rate maintained during the basin-testing program were continued, the degraded water along the coast could move inland and contaminate the municipal supply wells. The time required for the degraded water to move from the coast to

  2. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  3. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  4. U.S. Geological Survey program on toxic waste--ground-water contamination; proceedings of the Third technical meeting, Pensacola, Florida, March 23-27, 1987

    USGS Publications Warehouse

    Franks, Bernard J.

    1987-01-01

    Because of the widespread distribution of creosote in the environment, an abandoned wood-treatment plant in Pensacola, Fla., was selected by the U.S. Geological Survey Office of Hazardous Waste Hydrology as one of three national research demonstration areas in order to increase our understanding of hydrologic processes affecting the distributions of contaminants in ground water. The site was selected because of its long, uninterrupted history (1902 81) of discharging wastewaters to unlined surface impoundments, availability of a preliminary data base (Troutman and others, 1984), and the high probability of useful technology transfer from an investigation of the fate of organic compounds associated with wood-preserving wastewaters in the subsurface environment.

  5. Effect of on-site wastewater disposal on quality of ground water and base flow: A pilot study in Chester County, Southeastern Pennsylvania, 2005

    USGS Publications Warehouse

    Senior, Lisa A.; Cinotto, Peter J.

    2007-01-01

    On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water

  6. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  7. A STUDY TO DETERMINE THE FEASIBILITY OF USING A GROUND-PENETRATING RADAR FOR MORE EFFECTIVE REMEDIATION OF SUBSURFACE CONTAMINATION

    EPA Science Inventory

    A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...

  8. Quality of nutrient data from streams and ground water sampled during water years 1992-2001

    USGS Publications Warehouse

    Mueller, David K.; Titus, Cindy J.

    2005-01-01

    Proper interpretation of water-quality data requires consideration of the effects that bias and variability might have on measured constituent concentrations. In this report, methods are described to estimate the bias due to contamination of samples in the field or laboratory and the variability due to sample collection, processing, shipment, and analysis. Contamination can adversely affect interpretation of measured concentrations in comparison to standards or criteria. Variability can affect interpretation of small differences between individual measurements or mean concentrations. Contamination and variability are determined for nutrient data from quality-control samples (field blanks and replicates) collected as part of the National Water-Quality Assessment (NAWQA) Program during water years 1992-2001. Statistical methods are used to estimate the likelihood of contamination and variability in all samples. Results are presented for five nutrient analytes from stream samples and four nutrient analytes from ground-water samples. Ammonia contamination can add at least 0.04 milligram per liter in up to 5 percent of all samples. This could account for more than 22 percent of measured concentrations at the low range of aquatic-life criteria (0.18 milligram per liter). Orthophosphate contamination, at least 0.019 milligram per liter in up to 5 percent of all samples, could account for more than 38 percent of measured concentrations at the limit to avoid eutrophication (0.05 milligram per liter). Nitrite-plus-nitrate and Kjeldahl nitrogen contamination is less than 0.4 milligram per liter in 99 percent of all samples; thus there is no significant effect on measured concentrations of environmental significance. Sampling variability has little or no effect on reported concentrations of ammonia, nitrite-plus-nitrate, orthophosphate, or total phosphorus sampled after 1998. The potential errors due to sampling variability are greater for the Kjeldahl nitrogen analytes and

  9. A controlled experiment in ground water flow model calibration

    USGS Publications Warehouse

    Hill, M.C.; Cooley, R.L.; Pollock, D.W.

    1998-01-01

    Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic

  10. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    USGS Publications Warehouse

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  11. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  12. ROLE OF SOURCE WATER PROTECTION IN PLANNING FOR AND RESPONDING TO CONTAMINATION THREATS TO DRINKING WATER SYSTEMS

    EPA Science Inventory

    EPA has developed a "Response Protocol Toolbox" to address the complex, multi-faceted challenges of planning and response to intentional contamination of drinking water (http://www.epa.gov/safewater/security/ertools.html#toolbox). The toolbox is designed to be applied by a numbe...

  13. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  14. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  15. Ground water in Pavant Valley

    USGS Publications Warehouse

    Dennis, P. E.; Maxey, G.B.; Thomas, H.E.

    1946-01-01

    The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.

  16. Preliminary evaluation of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    USGS Publications Warehouse

    Hult, Marc F.; Schoenberg, Michael E.

    1984-01-01

    Drift materials on and south of the site have been contaminated by surface spills and by infiltration of contaminated process water. Near the contamination source, a hydrocarbon fluid phase is moving vertically downward relative to movement of the aqueous phase. Fluid pumped from an observation well in this area contained 6,000 milligrams per liter total organic carbon. Dissolved coal-tar constituents in the drift and the uppermost bedrock unit over most of the area, the Platteville aquifer, have moved at least 4,000 feet downgradient to a drift-filled bedrock valley. At the valley, it seems that the Platteville aquifer and the Glenwood confining bed have been removed by erosion and that contaminants with a concentration of approximately 2 milligrams per liter dissolved organic carbon are entering the underlying St. Peter aquifer. Chemical analyses of fluid pumped from observation wells suggest that soluble, low-molecular-weight compounds are moving preferentially through the drift and the Platteville aquifer.

  17. OUR EVOLVING UNDERSTANDING OF THE ANAEROBIC BIODEGRADATION OF BTEX COMPOUNDS IN GROUND WATER (ABSTRACT ONLY)

    EPA Science Inventory

    In the early 1980s the ground water community became aware of widespread contamination of groundwater by benzene, toluene, ethylbenzene and xylenes (BTEX compounds) from gasoline spills from underground storage tanks. This new awareness was made possible by the introduction of t...

  18. Case Studies on the Impact of Concentrated Animal Feeding Operations (CAFOs) on Ground Water Quality

    EPA Science Inventory

    This report describes a series of case studies involving commercial swine, poultry, dairy, and beef CAFO operations where ground water contamination by nitrate and ammonia has occurred to ascertain whether other stressors in CAFO wastes are also being transported through the vado...

  19. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  20. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).