Sample records for adductor muscle mantle

  1. Hip adductor muscle function in forward skating.

    PubMed

    Chang, Ryan; Turcotte, Rene; Pearsall, David

    2009-09-01

    Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction-adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.

  2. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    PubMed

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p < .005), with the abductor muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p < .05). For the group of players who had developed chronic ARGP, abductor-adductor torque ratios were significantly higher on the affected side (p = .008). The adductor muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.

  3. A Preliminary Study on the Pattern, the Physiological Bases and the Molecular Mechanism of the Adductor Muscle Scar Pigmentation in Pacific Oyster Crassostrea gigas

    PubMed Central

    Yu, Wenchao; He, Cheng; Cai, Zhongqiang; Xu, Fei; Wei, Lei; Chen, Jun; Jiang, Qiuyun; Wei, Na; Li, Zhuang; Guo, Wen; Wang, Xiaotong

    2017-01-01

    The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs. PMID:28955252

  4. Activation of the hip adductor muscles varies during a simulated weight-bearing task.

    PubMed

    Hides, Julie A; Beall, Paula; Franettovich Smith, Melinda M; Stanton, Warren; Miokovic, Tanja; Richardson, Carolyn

    2016-01-01

    To investigate the pattern of muscle activation of the individual hip adductor muscles using a standardised simulated unilateral weight-bearing task. A repeated measures design. Laboratory. 20 healthy individuals (11 females, 9 males) participated in the study. Age ranged from 20 to 25 years. Surface electromyography recordings from adductor magnus and adductor longus muscles were taken at levels representing 10-50% of body weight during a simulated weight-bearing task. Electromyography (EMG) data were normalised to maximal voluntary isometric contraction. The adductor magnus was recruited at significantly higher levels than the adductor longus muscle during a simulated weight-bearing task performed across 10-50% of body weight (p < 0.01). Adductor magnus and adductor longus muscles are recruited to different extents during a simulated weight-bearing task. This information should be considered when selecting exercises for management and prevention of groin strains. Closed chain exercises with weight-bearing through the lower limb are more likely to recruit the adductor magnus muscle over the adductor longus muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. The adequate rocuronium dose required for complete block of the adductor muscles of the thigh.

    PubMed

    Fujimoto, M; Kawano, K; Yamamoto, T

    2018-03-01

    Rocuronium can prevent the obturator jerk during transurethral resection of bladder tumors. We investigated the adequate rocuronium dose required for complete block of the thigh adductor muscles, and its correlation with individual responses of the adductor pollicis muscle to rocuronium. Eleven patients scheduled for transurethral resection of bladder tumors under general anesthesia were investigated. After general anesthesia induction, neuromuscular monitoring of the adductor pollicis muscle and ultrasonography-guided stimulation of the obturator nerve was commenced. Rocuronium, 0.15 mg/kg, was repeatedly administered intravenously. The adequate rocuronium dose required for complete block of the thigh muscles, defined as the cumulative dose of rocuronium administered until that time, and its correlation with the first twitch response of the adductor pollicis muscle on train-of-four stimulation after initial rocuronium administration was analyzed. The rocuronium dose found adequate for complete block of the thigh muscles was 0.30 mg/kg in seven patients and 0.45 mg/kg in the remaining four patients, which did not correlate with the first twitch response. At the time of complete block of the thigh muscles, the neuromuscular blockade level of the adductor pollicis muscle varied greatly, although the level was never more profound than a post-tetanic count of 1. Although the response of the adductor pollicis muscle to rocuronium cannot be used to determine the adequate rocuronium dose required for complete block of the thigh muscles, intense blockade, with maintenance of post-tetanic count at ≤ 1 in the adductor pollicis muscle is essential to prevent the obturator jerk. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. EMG of the hip adductor muscles in six clinical examination tests.

    PubMed

    Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J

    2012-08-01

    To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p < 0.01). EMG activation was highest in Hips 0 or Hips 45 for adductor magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p < 0.05), pectineus (p < 0.01) and gracilis (p < 0.01) but not adductor magnus. For force data, clinical test type was a significant factor (p < 0.01) with Hips 0 being significantly stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p < 0.01) for producing a higher force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Scaling and Accommodation of Jaw Adductor Muscles in Canidae

    PubMed Central

    Kemp, Graham J.; Jeffery, Nathan

    2016-01-01

    ABSTRACT The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951–966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346

  9. Improved adductor function after canine recurrent laryngeal nerve injury and repair using muscle progenitor cells.

    PubMed

    Paniello, Randal C; Brookes, Sarah; Bhatt, Neel K; Bijangi-Vishehsaraei, Khadijeh; Zhang, Hongji; Halum, Stacey

    2017-12-08

    Muscle progenitor cells (MPCs) can be isolated from muscle samples and grown to a critical mass in culture. They have been shown to survive and integrate when implanted into rat laryngeal muscles. In this study, the ability of MPC implants to enhance adductor function of reinnervated thyroarytenoid muscles was tested in a canine model. Animal study. Sternocleidomastoid muscle samples were harvested from three canines. Muscle progenitor cells were isolated and cultured to 10 7 cells over 4 to 5 weeks, then implanted into right thyroarytenoid muscles after ipsilateral recurrent laryngeal nerve transection and repair. The left sides underwent the same nerve injury, but no cells were implanted. Laryngeal adductor force was measured pretreatment and again 6 months later, and the muscles were harvested for histology. Muscle progenitor cells were successfully cultured from all dogs. Laryngeal adductor force measurements averaged 60% of their baseline pretreatment values in nonimplanted controls, 98% after implantation with MPCs, and 128% after implantation with motor endplate-enhanced MPCs. Histology confirmed that the implanted MPCs survived, became integrated into thyroarytenoid muscle fibers, and were in close contact with nerve endings, suggesting functional innervation. Muscle progenitor cells were shown to significantly enhance adductor function in this pilot canine study. Patient-specific MPC implantation could potentially be used to improve laryngeal function in patients with vocal fold paresis/paralysis, atrophy, and other conditions. Further experiments are planned. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. The Jaw Adductor Muscle Complex in Teleostean Fishes: Evolution, Homologies and Revised Nomenclature (Osteichthyes: Actinopterygii)

    PubMed Central

    Datovo, Aléssio; Vari, Richard P.

    2013-01-01

    The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID

  11. Power of performance of the thumb adductor muscles: effect of laterality and gender.

    PubMed

    Gutnik, Boris; Nash, Derek; Ricacho, Norberto; Hudson, Grant; Skirius, Jonas

    2006-01-01

    The aim of this work was to originally measure mechanical power output of the thumb adductor muscles during fast adduction of the thumb in the horizontal plane. This information will contribute to biomechanical guidelines to help clinicians, sport medicine and rehabilitation specialists in the objective functional evaluation of abnormalities of thumb adductors. Participants performed 20 fast adductions in response to audio signals. Maximum and average angular velocity and angular acceleration were measured. Tangential components of these parameters were then derived. The force of adduction was obtained from the tangential acceleration and the mass of the rotational system. The power was then calculated as the product of the force of adduction and average tangential velocity during the acceleration phase of adduction. All young and untrained males and females were strictly right handed. There was no significant difference in power between dominant and nondominant muscles for either males or females, but males developed significantly more power than females. Because adduction was performed at maximal speed, these data may be explained by the influence of parallel and series elastic elements in the muscle, as well as by influence of fast twitch fibers. Power may be used as a clinical index of the effectiveness of muscle contraction. The similarity of power outputs from dominant and nondominant thumb adductor muscles of right-handers can suggest a classical Bernstein approach. This theoretical approach purports that peripheral factors can distort central commands projected to dominant and nondominant extremities.

  12. Interarytenoid muscle botox injection for treatment of adductor spasmodic dysphonia with vocal tremor.

    PubMed

    Kendall, Katherine A; Leonard, Rebecca J

    2011-01-01

    Up to one-third of patients presenting with adductor spasmodic dysphonia will have an associated vocal tremor. These patients may not respond fully to treatment using thyroarytenoid (TA) muscle botulinum toxin (Botox) injection. Treatment failures are attributed to the involvement of multiple muscle groups in the tremor. This study evaluates the results of combined interarytenoid (IA) and TA muscle Botox injection in a group of 27 patients with adductor spasmodic dysphonia and vocal tremor and in four patients with severe vocal tremor alone. Patient-satisfaction data were reviewed retrospectively. Pre- and postinjection acoustic data were collected prospectively. Acoustic measures of fundamental frequency and cycle-by-cycle variability in frequency (jitter) and intensity (shimmer) were obtained from 15 patients' sustained vowel productions. Measures were collected after TA muscle injection, alone, and after combined TA and IA (TA+IA) muscle injections. In addition, two experienced voice clinicians blindly assessed tremor severity from recordings made for each patient in the two conditions. Patients were also queried regarding their satisfaction with the results of the injections and whether they desired to continue receiving TA+IA treatment. Significant improvement in all acoustic measures except for % jitter was observed after the TA+IA muscle injections. Listeners identified voice samples after TA+IA muscle injections as demonstrating less tremor in 73% of the paired comparisons. Sixty-seven percent of the patients with spasmodic dysphonia and vocal tremor wished to continue to receive IA muscle injections. Only one patient with severe vocal tremor wished to continue with injections. The addition of an IA muscle Botox injection to the treatment of patients with a combination adductor spasmodic dysphonia and vocal tremor may improve voice outcomes. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  13. Monitoring recovery from rocuronium-induced neuromuscular block using acceleromyography at the trapezius versus the adductor pollicis muscle: an observational trial.

    PubMed

    Soltesz, Stefan; Stark, Christian; Noé, Karl G; Anapolski, Michael; Mencke, Thomas

    2016-06-01

    Positioning for surgery can restrict access to the patient's hand, thereby limiting assessment of the response at the adductor pollicis muscle to ulnar nerve stimulation. We evaluated a novel site to assess neuromuscular block by stimulating the accessory nerve and measuring the acceleromyographic response at the trapezius muscle. In this prospective non-blinded observational study, we assessed neuromuscular transmission in anesthetized adult female patients undergoing elective laparoscopic gynecological surgery. We performed the assessment by simultaneous recording acceleromyographic responses with the TOF-Watch(®) SX monitor at both the right adductor pollicis and left trapezius muscles. The neuromuscular block was achieved using rocuronium 0.3 mg·kg(-1), and the repeatability, time course, and limits of agreement (Bland-Altman) of responses were compared at the two recording sites. The primary endpoint was the 90% train-of-four (TOF) recovery time with other endpoints included the onset time of the block, maximum T1 depression, time to 25% T1 recovery, and recovery time course of the T1 response and TOF ratio. Thirty-six patients were enrolled with responses obtained from 27 subjects. The variability of baseline responses recorded at the trapezius muscle was larger than that recorded at the adductor pollicis muscle, as determined by their mean (SD) repeatability coefficients [twitch height T1, 6.1 (1.9)% and 4.2 (1.6)%, respectively; P = 0.001; TOF ratio, 6.2 (2.1)% and 4.3 (1.7)%, respectively; P = 0.001]. The recorded responses showed relatively narrow limits of agreement. The onset time of the block was 0.3 min earlier at the trapezius muscle than at the adductor pollicis muscle [2.3 (0.8) min and 2.6 (0.7) min, respectively; P = 0.007], with limits of agreement ranging from 1.6 min earlier to 1.0 min later. The time to 25% T1 recovery was 1.8 min earlier at the trapezius muscle than at the adductor pollicis muscle [18.2 (5.7) min and 20.0 (5.2) min

  14. From untargeted LC-QTOF analysis to characterisation of opines in abalone adductor muscle: Theory meets practice.

    PubMed

    Venter, Leonie; Jansen van Rensburg, Peet J; Loots, Du Toit; Vosloo, Andre; Lindeque, Jeremie Zander

    2017-12-15

    Abalone have a unique ability to use pyruvate, various amino acids and dehydrogenases, to produce opines as means to prevent the accumulation of NADH during anaerobic conditions. In this study, the theoretical masses, formulae and fragment patterns of butylated opines were used to predict which of these compounds could be found in the abalone adductor muscle using untargeted liquid chromatography quadrupole time-of flight-mass spectrometry. These findings were validated using synthesised opine standards. In essence alanopine, lysopine, strombine and tauropine produced in abalone adductor muscle could be characterised using the highest identification confidence levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Temporal changes in sarcomere lesions of rat adductor longus muscles during hindlimb reloading

    NASA Technical Reports Server (NTRS)

    Krippendorf, B. B.; Riley, D. A.

    1994-01-01

    Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flow rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair.

  16. Cortical Silent Period Reveals Differences Between Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia.

    PubMed

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2016-03-01

    The pathophysiology of adductor spasmodic dysphonia (AdSD), like other focal dystonias, is largely unknown. The purposes of this study were to determine (a) cortical excitability differences between AdSD, muscle tension dysphonia (MTD), and healthy controls; (b) distribution of potential differences in cranial or skeletal muscle; and (c) if cortical excitability measures assist in the differential diagnosis of AdSD and MTD. Ten participants with adductor spasmodic dysphonia, 8 with muscle tension dysphonia, and 10 healthy controls received single and paired pulse transcranial magnetic stimulation (TMS) to the primary motor cortex contralateral to tested muscles, first dorsal interosseus (FDI), and masseter. We tested the hypothesis that cortical excitability measures in AdSD would be significantly different from those in MTD and healthy controls. In addition, we hypothesized that there would be a correlation between cortical excitability measures and clinical voice severity in AdSD. Cortical silent period duration in masseter and FDI was significantly shorter in AdSD than MTD and healthy controls. Other measures failed to demonstrate differences. There are differences in cortical excitability between AdSD, MTD, and healthy controls. These differences in the cortical measure of both the FDI and masseter muscles in AdSD suggest widespread dysfunction of the GABAB mechanism may be a pathophysiologic feature of AdSD, similar to other forms of focal dystonia. Further exploration of the use of TMS to assist in the differential diagnosis of AdSD and MTD is warranted. © The Author(s) 2015.

  17. Cortical silent period reveals differences between adductor spasmodic dysphonia and muscle tension dysphonia

    PubMed Central

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2015-01-01

    Background The pathophysiology of adductor spasmodic dysphonia (AdSD), like other focal dystonias, is largely unknown. Objective The purposes of this study were to determine 1) cortical excitability differences between AdSD, muscle tension dysphonia (MTD) and healthy controls 2) distribution of potential differences in cranial or skeletal muscle, and 3) if cortical excitability measures assist in the differential diagnosis of AdSD and MTD. Methods 10 participants with adductor spasmodic dysphonia, 8 with muscle tension dysphonia and 10 healthy controls received single and paired pulse transcranial magnetic stimulation (TMS) to the primary motor cortex contralateral to tested muscles, first dorsal interosseus (FDI) and masseter. We tested the hypothesis that cortical excitability measures in AdSD would be significantly different than in MTD and healthy. In addition, we hypothesized there would be a correlation between cortical excitability measures and clinical voice severity in AdSD. Results Cortical silent period (CSP) duration in masseter and FDI was significantly shorter in AdSD than MTD and healthy controls. Other measures failed to demonstrate differences. Conclusion There are differences in cortical excitability between AdSD, MTD and healthy controls. These differences in the cortical measure of both the FDI and masseter muscles in AdSD suggest widespread dysfunction of the GABAB mechanism may be a pathophysiologic feature of AdSD, similar to other forms of focal dystonia. Further exploration of the use of TMS to assist in the differential diagnosis of AdSD and MTD is warranted. PMID:26089309

  18. Reversal of neuromuscular block with sugammadex: a comparison of the corrugator supercilii and adductor pollicis muscles in a randomized dose-response study.

    PubMed

    Yamamoto, S; Yamamoto, Y; Kitajima, O; Maeda, T; Suzuki, T

    2015-08-01

    Neuromuscular monitoring using the corrugator supercilii muscle is associated with a number of challenges. The aim of this study was to assess reversal of a rocuronium-induced neuromuscular blockade with sugammadex according to monitoring either using the corrugator supercilii muscle or the adductor pollicis muscle. We hypothesized that a larger dose of sugammadex would be required to obtain a train-of-four (TOF) ratio of 1.0 with the corrugator supercilii muscle than with the adductor pollicis muscle. Forty patients aged 20-60 years and 40 patients aged ≥ 70 years were enrolled. After induction of anesthesia, we recorded the corrugator supercilii muscle response to facial nerve stimulation and the adductor pollicis muscle response to ulnar nerve stimulation using acceleromyography. All patients received 1 mg/kg rocuronium. When the first twitch (T1) of TOF recovered to 10% of control values at the corrugator supercilii, rocuronium infusion was commenced to maintain a T1 of 10% of the control at the corrugator supercilii. Immediately after discontinuation of rocuronium infusion, 2 mg/kg or 4 mg/kg of sugammadex was administered. The time for recovery to a TOF ratio of 1.0 and the number of patients not reaching a TOF ratio of 1.0 by 5 min at each dose and muscle was recorded. When neuromuscular block at the corrugator supercilii was maintained at a T1 of 10% of control, that at the adductor pollicis was deep (post-tetanic count ≤ 5). Sugammadex 4 mg/kg completely antagonized neuromuscular block at both muscles within 5 min. The time to a TOF ratio of 1.0 at the adductor pollicis was significantly longer in the group ≥ 70 years than the group 20-60 years (mean (SD): 178 (42.8) s vs. 120 (9.4) s, P < 0.0001). In contrast, 2 mg/kg sugammadex reversed neuromuscular blockade at the corrugator supercilii but not at the adductor pollicis, with 10 patients in the group 20-60 years and 8 patients in the group ≥ 70 years requiring an additional

  19. Effect on laryngeal adductor function of vincristine block of posterior cricoarytenoid muscle 3 to 5 months after recurrent laryngeal nerve injury.

    PubMed

    Paniello, Randal C; Park, Andrea

    2015-06-01

    It has been shown in a canine model that a single injection of vincristine into the posterior cricoarytenoid (PCA) muscle at the time of recurrent laryngeal nerve (RLN) injury effectively blocks its reinnervation and results in improved adductor strength. But clinically, such injuries are usually diagnosed weeks or months after onset. Vincristine injection does not affect a muscle that is already innervated; thus, there is a limited time frame following RLN injury during which a vincristine injection could effectively improve ultimate laryngeal adductor functional recovery. A series of delayed injections was performed in a canine model and results assessed. Animal (canine) experiment. The RLN was transected and repaired, and vincristine (0.4 mg) was injected into the PCA muscle at the time of injury (n=12) or 3, 4, and 5 months later (n=8 each study group). Six months after RLN injury, laryngeal adductor function was measured. Results of vincristine injection without RLN injury (n=6) and longer-term (12 months) follow-up for time zero injections (n=4) are also reported. The animals injected at time zero had better adductor function than non-injected controls, as reported previously, and this result was further increased at 12 months. The 3-month delay gave results similar to the time zero group. The 5-month delay group showed no vincristine benefit, and the 4-month delay group gave an intermediate result. Vincristine to the PCA had no effect on adductor function when the RLN was left intact. Plasma levels showed 19% of injected vincristine reached systemic circulation, which was cleared within 69 hours. Vincristine injection of the PCA muscle after RLN injury, which blocks this antagonist muscle from synkinetic reinnervation, leads to improved laryngeal adductor functional recovery. The window of opportunity to apply this treatment closes by 4 months after RLN injury in the canine model. Human RLN recovery follows a similar time course and can reasonably be

  20. Effect on Laryngeal Adductor Function of Vincristine Block of Posterior Cricoarytenoid Muscle 3-5 Months After Recurrent Laryngeal Nerve Injury

    PubMed Central

    Paniello, Randal C.; Park, Andrea

    2015-01-01

    Objectives It has been shown, in a canine model, that a single injection of vincristine into the PCA muscle at the time of recurrent laryngeal nerve (RLN) injury effectively blocks its reinnervation and results in improved adductor strength. But clinically, such injuries are usually diagnosed weeks or months after onset. Vincristine injection does not affect a muscle that is already innervated; thus, there is a limited time frame following RLN injury during which a vincristine injection could effectively improve ultimate laryngeal adductor functional recovery. A series of delayed injections were performed in a canine model and results assessed. Study Design Animal (canine) experiment. Methods The RLN was transected and repaired, and vincristine (0.4 mg) was injected into the PCA muscle at the time of injury (n=12), or at 3, 4, and 5 months later (n=8 each study group). Six months after RLN injury, laryngeal adductor function was measured. Results of vincristine injection without RLN injury (n=6), and longer-term (12 months) follow-up for time zero injections (n=4), are also reported. Results The animals injected at time zero had better adductor function than non-injected controls, as reported previously, and this result was further increased at 12 months. The 3-month delay gave results similar to the time zero group. The 5-month delay group showed no vincristine benefit, and the 4-month delay group gave an intermediate result. Vincristine to the PCA had no effect on adductor function when the RLN was left intact. Plasma levels showed 19% of injected vincristine reached systemic circulation, which was cleared within 69 hours. Conclusions Vincristine injection of the PCA muscle after RLN injury, which blocks this functional recovery. The window of opportunity to apply this treatment closes by four months after RLN injury in the canine model. Human RLN recovery follows a similar time course and can reasonably be expected to have a similar therapeutic window. PMID

  1. Sports hernia repair with adductor tenotomy.

    PubMed

    Harr, J N; Brody, F

    2017-02-01

    Sports hernias, or athletic pubalgia, is common in athletes, and primarily involves injury to the fascia, muscles, and tendons of the inguinal region near their insertion onto the pubic bone. However, management varies widely, and rectus and adductor tenotomies have not been adequately described. The purpose of this manuscript is to demonstrate a suture repair and a rectus and adductor longus tenotomy technique for sports hernias. After magnetic-resonance-imaging confirmation of sports hernias with rectus and adductor tendonitis, 22 patients underwent a suture herniorrhaphy with adductor tenotomy. The procedure is performed through a 4-cm incision, and a fascial release of the rectus abdominis and adductor tenotomy is performed to relieve the opposing vector forces on the pubic bone. All 22 patients returned to their respective sports and regained their ability to perform at a high level, including professional status. No further surgery was required. In athletes with MRI confirmation of rectus and adductor longus injuries, tenotomies along with a herniorraphy may improve outcomes. A suture repair to reinforce the inguinal floor prevents mesh-related complications, especially in young athletes.

  2. "Pollical palmar interosseous muscle" (musculus adductor pollicis accessorius): attachments, innervation, variations, phylogeny, and implications for human evolution and medicine.

    PubMed

    Bello-Hellegouarch, Gaelle; Aziz, M Ashraf; Ferrero, Eva M; Kern, Michael; Francis, Nadia; Diogo, Rui

    2013-03-01

    Most atlases and textbooks dealing with human anatomy do not refer to the "pollical palmar interosseous" (PPI) muscle of Henle. In order to undertake a fresh and detailed study of this muscle and to thus better understand human comparative anatomy and evolution, we: 1) analyze the frequency of the PPI in a large sample of human hands; 2) describe the attachments, innervation and varieties of the PPI in these hands; 3) compare the data obtained with the information available in the literature; and 4) discuss the phylogenetic origin of the PPI and the implications of our observations and comparisons for medicine and for the understanding of human evolutionary history. Within the 72 hands dissected by us, the PPI is present in 67 hands (93%), commonly having a single muscular branch, originating from the medial side of the base of metacarpal I only, inserting onto the medial side of the base of the pollical proximal phalanx and/or surrounding structures (e.g., ulnar sesamoid bone, wing tendon of extensor apparatus), and passing at least partially, and usually mainly, medial to the princeps pollicis artery. A careful study of the human PPI, as well as a detailed comparison with other mammals, strongly suggest that the muscle is evolutionarily derived from the adductor pollicis, and namely from its oblique head. Therefore, we propose that PPI should be designated by the name musculus adductor pollicis accessorius, which indicates that the muscle is most likely a de novo structure derived from the adductor pollicis. Copyright © 2012 Wiley Periodicals, Inc.

  3. TVT ABBREVO: cadaveric study of tape position in foramen obturatum and adductor region.

    PubMed

    Hubka, Petr; Nanka, Ondrej; Masata, Jaromir; Martan, Alois; Svabik, Kamil

    2016-07-01

    The aim of the study was to describe fixation of the TVT ABBREVO and establish whether the tape penetrates through obturator muscles and membrane (obturator complex) into the adductor region and, if so, how far it penetrates. Eight formalin-embalmed female cadavers were used to simulate TVT ABBREVO surgery (totalling 16 insertions). Following tape insertion, dissection was performed and ends of the tape were identified. In cases of penetration, the length of tape penetrating into the adductor region was measured. Of the 16 cases, the tape ended in the obturator membrane in eight, in the internal obturator muscle in one, and penetrated through the obturator membrane into the external obturator muscle in five, where it remained. In two cases, it penetrated through the obturator internus muscle, obturator membrane and obturator externus muscle into the group of thigh adductors; one penetration was by 3 mm and the second by 10 mm. No contact with the obturator nerve or its branches was noted in any case. No TVT contact with the obturator nerve was noted; tape penetrated into the adductor region in two of the 16 cases.

  4. Proximate composition and nutritional evaluation of the adductor muscle of pen shell.

    PubMed

    Wu, Shengjun; Wu, Yuping

    2017-07-01

    The proximate composition of pen shell adductor muscle (PSAM) was determined, and its nutrition value was evaluated. Proximate composition analysis indicated that PSAM contained 91.07% (w/w) protein, 5.77% (w/w) ash, and 2.46% (w/w) fat. Calcium was the predominant mineral followed by zinc and then iron. The amino acid profile was in accordance with the recommended pattern of FAO/WHO except for histidine. At the same time, the first limiting amino acid was histidine. Fatty acid composition showed that docosahexaenoic acid was the major fatty acid, followed by palmitic, stearic, and arachidonic acids. Results indicated that PSAM was rich in nutrition and may be developed as a functional food.

  5. Evaluation of the thoraco-laryngeal reflex ('slap test') as an indicator of laryngeal adductor myopathy in the horse.

    PubMed

    Newton-Clarke, M J; Divers, T J; Valentine, B A

    1994-09-01

    A study was conducted over a 12 month period to assess the accuracy of the 'slap test' in the diagnosis of laryngeal adductor myopathy. The thoraco-laryngeal reflexes of 15 horses with no clinical signs of idiopathic laryngeal hemiplegia (ILH) were recorded using a video-endoscope. These 'slap test' responses were examined independently by 3 assessors. The horses were subsequently subjected to euthanasia and samples taken from the cricoarytenoideus lateralis (CAL) muscles for histopathological examination and assessment of denervation atrophy. Despite normal adductory responses, moderate to severe atrophy of the left CAL muscles was seen in 5 horses. The remaining horses had varying degrees of adductor myopathy, invariably worse in the left side of the larynx. The 'slap test' as performed in this study was therefore unable to differentiate between horses with moderate to severe muscle changes and those without, making it useless as a diagnostic test for adductor myopathy. The reason for the preservation in adductor function despite advanced histological atrophy of the muscle may lie in the degree of reinnervation found in the muscles.

  6. Functional reinnervation of vocal folds after selective laryngeal adductor denervation-reinnervation surgery for spasmodic dysphonia.

    PubMed

    DeConde, Adam S; Long, Jennifer L; Armin, Bob B; Berke, Gerald S

    2012-09-01

    Selective laryngeal adductor denervation-reinnervation surgery (SLAD-R) offers a viable surgical alternative for patients with adductor spasmodic dysphonia refractory to botulinum toxin injections. SLAD-R selectively denervates the symptomatic thyroarytenoid muscle by dividing the distal adductor branch of the recurrent laryngeal nerve (RLN), and preventing reinnervation, by the proximal RLN and maintaining vocal fold bulk and tone by reinnervating the distal RLN with the ansa cervicalis. We present a patient who had previously undergone successful SLAD-R but presented 10 years postoperatively with a new regional dystonia involving his strap muscles translocated to his reinnervated larynx by his previous ansa-RLN neurorraphy. The patient's symptomatic vocal fold adduction resolved completely on division of the ansa-RLN neurorraphy confirming successful selective functional reinnervation of vocal fold adductors by the ansa cervicalis. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  7. Clinical recovery of two hip adductor longus ruptures: a case-report of a soccer player

    PubMed Central

    2013-01-01

    Background Non-operative treatment of acute hip adductor longus ruptures in athletes has been described in the literature. However, very limited information concerning the recovery of this type of injury exists. This case represented a unique possibility to study the recovery of two acute adductor longus ruptures, using novel, reliable and validated assessment methods. Case presentation A 22-year old male soccer player (Caucasian) sustained two subsequent acute adductor longus ruptures, one in each leg. The injuries occurred 10 months apart, and were treated non-surgically in both situations. He was evaluated using hip-strength assessments, self-report and ultrasonography until complete muscle-strength recovery of the hip adductors had occurred. The player was able to participate in a full soccer training session without experiencing pain 15 weeks after the first rupture, and 12 weeks after the second rupture. Full hip adductor muscle-strength recovery was obtained 52 weeks after the first rupture and 10 weeks after the second rupture. The adductor longus injuries, as verified by initial ultrasonography (10 days post-injury), showed evidence of a complete tendon rupture in both cases, with an almost identical imaging appearance. It was only at 6 and 10 weeks ultrasonographic follow-up that the first rupture was found to include a larger anatomical area than the second rupture. Conclusion From this case we can conclude that two apparently similar hip adductor longus ruptures, verified by initial ultrasonography (10 days post-injury), can have very different hip adductor strength recovery times. Assessment of adductor strength recovery may therefore in the future be a useful and important additional measure for determining when soccer players with hip adductor longus ruptures can return safely to play. PMID:23693119

  8. Comparative biochemical composition in gonad and adductor muscle of triploid and diploid catarina scallop (Argopecten ventricosus Sowerby II, 1842).

    PubMed

    Ruiz-Verdugo, C A.; Racotta, I S.; Ibarra, A M.

    2001-05-15

    Biochemical components of gonad and adductor muscle for diploid and triploid catarina scallop, Argopecten ventricosus, were evaluated and compared at four periods in 1 year (January, April, June, and October). Two comparisons were done. The first one compared an untreated control (diploid) vs. a triploidy-treated group for which the percentage of triploids was 57%. The second comparison was done on a group derived from within the triploidy-treated group, separating diploids (internal control) from triploids ('putative triploids'). Regardless of which comparison, in the gonad diploid scallops had larger concentrations of proteins, carbohydrates, lipids, and acylglycerols than triploid scallops. This reflects the maturation processes in diploid scallops vs. the sterility seen in most triploid scallops, and it is particularly supported by the consistently larger concentration of acylglycerols in gonads of diploids than in triploids. The gonad index of the internal control (diploid) group was significantly larger than that seen in the putative triploid group at all sampling periods but October, when none of the gonad biochemical components were different between ploidy groups.Triploid scallops had a significantly larger muscle index than diploids from April to October. This can be caused by a larger gain in muscle tissue in triploids than diploids from January to June. However, there were no consistent differences in any of the biochemical components evaluated in adductor muscle of diploids and triploids. The use of freshly ingested food rather than reserve mobilization from muscle in diploids is suggested by these results. Nutrients derived from ingested food are apparently used for muscle growth in triploids, whereas in diploids those nutrients serve primarily for gonad development. The importance of freshly ingested food for maintenance and growth is suggested because the decline in biochemical components seen in October in both muscle and gonad was paired with a

  9. Progressive Muscle Atrophy and Weakness After Treatment by Mantle Field Radiotherapy in Hodgkin Lymphoma Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeuwen-Segarceanu, Elena M. van, E-mail: e.segarceanu@antoniusziekenhuis.nl; Dorresteijn, Lucille D.A.; Pillen, Sigrid

    Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. Onmore » ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.« less

  10. Features of Vocal Fold Adductor Paralysis and the Management of Posterior Muscle in Thyroplasty.

    PubMed

    Konomi, Ujimoto; Tokashiki, Ryoji; Hiramatsu, Hiroyuki; Motohashi, Ray; Sakurai, Eriko; Toyomura, Fumimasa; Nomoto, Masaki; Kawada, Yuri; Suzuki, Mamoru

    2016-03-01

    To present the pathologic characteristics of unilateral recurrent nerve adductor branch paralysis (AdBP), and to investigate the management of posterior cricoarytenoid (PCA) muscle on the basis of our experience of surgical treatment for AdBP. This is a retrospective review of clinical records Four cases of AdBP, in which surgical treatment was performed, are presented. AdBP shows disorders of vocal fold adduction because of paralysis of the thyroarytenoid and lateral cricoarytenoid muscles. The PCA muscle, dominated by the recurrent nerve PCA muscle branch, does not show paralysis. Thus, this type of partial recurrent nerve paresis retains the abductive function and is difficult to distinguish from arytenoid cartilage dislocation because of their similar endoscopic findings. The features include acute onset, and all cases were idiopathic etiology. Thyroarytenoid muscle paralysis was determined by electromyography and stroboscopic findings. The adduction and abduction of paralytic arytenoids were evaluated from 3 dimensional computed tomography (3DCT). In all cases, surgical treatments were arytenoid adduction combined with thyroplasty. When we adducted the arytenoid cartilage during inspiration, strong resistance was observed. In the two cases where we could cut the PCA muscle sufficiently, the maximum phonation time was improved to ≥30 seconds after surgery, from 2 to 3 seconds preoperatively, providing good postoperative voices. In contrast, in the two cases of insufficient resection, the surgical outcomes were poorer. Because the preoperative voice in AdBP patients is typically very coarse, surgical treatment is needed, as well as ordinary recurrent nerve paralysis. In our experience, adequate PCA muscle resection might be helpful in surgical treatment of AdBP. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. A New Option for the Reconstruction of Primary or Recurrent Ischial Pressure Sores: Hamstring-Adductor Magnus Muscle Advancement Flap and Direct Closure.

    PubMed

    Burm, Jin Sik; Hwang, Jungil; Lee, Yung Ki

    2018-04-01

    Owing to the high recurrence rates of ischial pressure sores, surgeons should consider the possibility of future secondary flap surgery during flap selection. The purpose of this article is to present a new surgical option for the reconstruction of primary or recurrent ischial pressure sores using a simple hamstring-adductor magnus advancement flap and direct closure. After horizontal fusiform skin excision, complete bursa excision and ischiectomy were performed. The tenomuscular origin of the adductor magnus and the conjoined tenomuscular origin of the biceps femoris long head and semitendinosus were isolated and completely detached from the inferior border of the ischial tuberosity. They were then advanced in a cephalad direction without detachment of the distal tendon or muscle and securely affixed to the sacrotuberous ligament. The wound was directly closed without further incision or dissection. Twelve ischial pressure sores (6 primary and 6 recurrent; 12 patients) were surgically corrected. The follow-up period was 12 to 65 months. All patients healed successfully without early postoperative complications, such as hematoma, seroma, infection, wound dehiscence, or partial necrosis. Late complications included wound disruption 5 weeks after surgery that spontaneously healed in 1 case and recurrence 3 years later in another case. The new surgical option presented herein, which involves hamstring-adductor magnus advancement flap and direct closure, is a simple and reliable method for providing sufficient muscle bulk to fill the dead space and proper padding to the bone stump while preserving the main vascular perforators and pedicles as well as future surgical options.

  12. Oestrogen status in relation to the early training responses in human thumb adductor muscles.

    PubMed

    Onambele, G N L; Bruce, S A; Woledge, R C

    2006-09-01

    The aims of this study were to identify the mechanisms for the early response to training in women of different oestrogen status and to determine whether any oestrogen and exercise effects on these would be additive. We monitored training (ten 5-s contractions per day for 12 weeks)-induced changes in the size, strength, voluntary activation capacity and index of crossbridge force state (i.e. rapid stretch to isometric torque ratio), in the thumb adductor muscles of postmenopausal [eight who had never used, and 14 who were using, hormone replacement therapy (HRT)] and seven premenopausal eumenorrhoeic women. The contralateral untrained muscle was used as a control. There was a significant effect of oestrogen status on the magnitude of training-induced strength increment, with the non-HRT postmenopausal group exhibiting the greatest benefits (28 +/- 6%, P = 0.024) from training. There were no significant or commensurate changes in either cross-sectional area or voluntary activation capacity. The index of crossbridge force state improved most in the no-HRT group (19 +/- 7%, P < 0.05). Presence, rather than absence of oestrogen, is associated with relatively higher muscle function which limits the potential for any further training-induced increments in muscle performance, as would be expected if the muscle strengthening actions of training and oestrogen share a common, partially saturable physiological pathway. The mechanism that is involved in the early training-induced strength increment in the three differing oestrogen groups cannot be due to increased size or recruitment. It would appear instead that increased motor unit firing frequency is involved.

  13. Vocal fold paralysis: improved adductor recovery by vincristine blockade of posterior cricoarytenoid.

    PubMed

    Paniello, Randal C

    2015-03-01

    A new treatment for acute unilateral vocal-fold paralysis (UVFP) was proposed in which a drug is injected into the posterior cricoarytenoid muscle (PCA) shortly after nerve injury, before the degree of natural recovery is known, to prevent antagonistic synkinetic reinnervation. This concept was tested in a series of canine experiments using vincristine as the blocking agent. Animal experiments. Laryngeal adductor function was measured at baseline and at 6 months following experimental recurrent laryngeal nerve (RLN) injuries, including complete transection, crush injury, and cautery. In the treatment animals, the PCA was injected with vincristine at the time of RLN injury. Adductor function in the vincristine-treated hemilarynges was significantly improved compared with injury-matched noninjected controls (total n = 43). Transection/repair controls recovered 56.1% of original adductor strength; vincristine-treated hemilarynges recovered to 73.1% (P = 0.002). Cautery injuries also improved with vincristine block (60.7% vs. 88.7%; P = 0.031). Crush injuries recovered well even without vincristine (104.8% vs. 111.2%; P = 0.35). These findings support a new paradigm of early, preemptive blockade of the antagonist muscle (PCA) to improve ultimate net adductor strength, which could potentially improve functional recovery in many UVFP patients and avoid the need for medialization procedures. Possible clinical aspects of this new approach are discussed. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Adductor magnus: An EMG investigation into proximal and distal portions and direction specific action.

    PubMed

    Benn, Matthew L; Pizzari, Tania; Rath, Leanne; Tucker, Kylie; Semciw, Adam I

    2018-05-01

    Cadaveric studies indicate that adductor magnus is structurally partitioned into at least two regions. The aim of this study was to investigate the direction-specific actions of proximal and distal portions of adductor magnus, and in doing so determine if these segments have distinct functional roles. Fine-wire EMG electrodes were inserted into two portions of adductor magnus of 12 healthy young adults. Muscle activity was recorded during maximum voluntary isometric contractions (MVICs) across eight tests (hip flexion/extension, internal/external rotation, abduction, and adduction at 0°, 45°, and 90° hip flexion). Median activity within each action (normalized to peak) was compared between segments using repeated measures nonparametric tests (α = 0.05). An effect size (ES = z-score/√sample size) was calculated to determine the magnitude of difference between muscle segments. The relative contribution of each muscle segment differed significantly during internal rotation (P < 0.001; ES = 0.88) and external rotation (P = 0.003, ES = 0.79). The distal portion was most active during extension [median (interquartile range); 100(0)% MVIC)] and internal rotation [58(34)% MVIC]. The proximal portion was most active during extension [100(49)% MVIC] and adduction [59(64)%MVIC], with low level activity during external rotation [15(41)%MVIC]. This study suggests that adductor magnus has at least two functionally unique regions. Differences were most evident during rotation. The different direction-specific actions may imply that each segment performs separate roles in hip stability and movement. These findings may have implications on injury prevention and rehabilitation for adductor-related groin injuries, hamstring strain injury, and hip pathology. Clin. Anat. 31:535-543, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum

    PubMed Central

    2014-01-01

    The morphology and arrangement of the jaw adductor muscles in vertebrates reflects masticatory style and feeding processes, diet and ecology. However, gross muscle anatomy is rarely preserved in fossils and is, therefore, heavily dependent on reconstructions. An undeformed skull of the extinct marsupial, Diprotodon optatum, recovered from Pleistocene sediments at Bacchus Marsh in Victoria, represents the most complete and best preserved specimen of the species offering a unique opportunity to investigate functional anatomy. Computed tomography (CT) scans and digital reconstructions make it possible to visualise internal cranial anatomy and predict location and morphology of soft tissues, including muscles. This study resulted in a 3D digital reconstruction of the jaw adductor musculature of Diprotodon, revealing that the arrangement of muscles is similar to that of kangaroos and that the muscle actions were predominantly vertical. 3D digital muscle reconstructions provide considerable advantages over 2D reconstructions for the visualisation of the spatial arrangement of the individual muscles and the measurement of muscle properties (length, force vectors and volume). Such digital models can further be used to estimate muscle loads and attachment sites for biomechanical analyses. PMID:25165628

  16. [Effect of hypoxia on glycolysis in the adductor muscle and hepatopancreas of the marine mussel Mytilus galloprovincialis Lmk].

    PubMed

    Ibarguren, I; Villamarín, J A; Barcia, R; Ramos-Martínez, J I

    1989-12-01

    Concentrations of glycolytic intermediates and adenine nucleotides have been estimated in adductor muscle and hepatopancreas from the sea mussel Mytilus galloprovincialis Lmk. after various periods of valve closure. Mass action ratios of enzyme steps involved in the metabolism of these components are compared with their equilibrium constants. This reveals hexokinase, phosphofructokinase, pyruvate kinase and fructose-1,6-bisphosphatase catalyze non-equilibrium reactions. The changes in the concentrations of the glycolytic intermediates and in the rate M.A.R./Keq during hypoxia suggest that the carbon flow after valve closure is first controlled by phophofructokinase, but later on the rate of transformation of phosphoenolyruvate regulates this flow.

  17. Comparative anatomy of the cheek muscles within the Centromochlinae subfamily (Ostariophysi, Siluriformes, Auchenipteridae).

    PubMed

    Sarmento-Soares, Luisa Maria; Porto, Marcovan

    2006-02-01

    Glanidium melanopterum Miranda Ribeiro, a typical representative of the subfamily Centromochlinae (Siluriformes: Auchenipteridae), is herein described myologically and compared to other representative species within the group, Glanidium ribeiroi, G. leopardum, Tatia neivai, T. intermedia, T. creutzbergi, Centromochlus heckelii, and C. existimatus. The structure of seven pairs of striated cephalic muscles was compared anatomically: adductor mandibulae, levator arcus palatini, dilatator operculi, adductor arcus palatini, extensor tentaculi, retractor tentaculi, and levator operculi. We observed broad adductor mandibulae muscles in both Glanidium and Tatia, catfishes with depressed heads and smaller eyes. Similarities between muscles were observed: the presence of a large aponeurotic insertion for the levator arcus palatini muscle; an adductor arcus palatini muscle whose origin spread over the orbitosphenoid, pterosphenoid, and parasphenoid; and the extensor tentaculi muscle broadly attached to the autopalatine. There is no retractor tentaculi muscle in either the Glanidium or Tatia species. On the other hand, in Centromochlus, with forms having large eyes and the tallest head, the adductor mandibulae muscles are slim; there is a thin aponeurotic or muscular insertion for the levator arcus palatini muscle; the adductor arcus palatini muscle originates from a single osseous process, forming a keel on the parasphenoid; the extensor tentaculi muscle is loosely attached to the autopalatine, permitting exclusive rotating and sliding movements between this bone and the maxillary. The retractor tentaculi muscle is connected to the maxilla through a single tendon, so that both extensor and retractor tentaculi muscles contribute to a wide array of movements of the maxillary barbels. A discussion on the differences in autopalatine-maxillary movements among the analyzed groups is given. (c) 2005 Wiley-Liss, Inc.

  18. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    PubMed

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch

  19. Comparison of the Effect of Continuous Femoral Nerve Block and Adductor Canal Block after Primary Total Knee Arthroplasty.

    PubMed

    Seo, Seung Suk; Kim, Ok Gul; Seo, Jin Hyeok; Kim, Do Hoon; Kim, Youn Gu; Park, Beyoung Yun

    2017-09-01

    This study aimed to compare the effects of femoral nerve block and adductor canal block on postoperative pain, quadriceps strength, and walking ability after primary total knee arthroplasty. Between November 2014 and February 2015, 60 patients underwent primary total knee arthroplasty. Thirty patients received femoral nerve block and the other 30 received adductor canal block for postoperative pain control. Before spinal anesthesia, the patients received nerve block via a catheter (20 mL 0.75% ropivacaine was administered initially, followed by intermittent bolus injection of 10 mL 0.2% ropivacaine every 6 hours for 3 days). The catheters were maintained in the exact location of nerve block in 24 patients in the femoral nerve block group and in 19 patients in the adductor canal block group. Data collection was carried out from these 43 patients. To evaluate postoperative pain control, the numerical rating scale scores at rest and 45° flexion of the knee were recorded. To evaluate quadriceps strength, manual muscle testing was performed. Walking ability was assessed using the Timed Up and Go test. We also evaluated analgesic consumption and complications of peripheral nerve block. No significant intergroup difference was observed in the numerical rating scale scores at rest and 45° flexion of the knee on postoperative days 1, 2, 3, and 7. The adductor canal block group had significantly greater quadriceps strength than did the femoral nerve block group, as assessed by manual muscle testing on postoperative days 1, 2, and 3. The 2 groups showed no difference in walking ability on postoperative day 1, but on postoperative days 2, 3, walking ability was significantly better in the adductor canal block group than in the femoral nerve block group. No significant intergroup difference was observed in analgesic consumption. The groups showed no difference in postoperative pain control. Adductor canal block was superior to femoral nerve block in preserving quadriceps

  20. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  1. Laparoscopic hernia repair with adductor tenotomy for athletic pubalgia: an established procedure for an obscure entity.

    PubMed

    Rossidis, Georgios; Perry, Andrew; Abbas, Husain; Motamarry, Isaac; Lux, Tamara; Farmer, Kevin; Moser, Michael; Clugston, Jay; Caban, Angel; Ben-David, Kfir

    2015-02-01

    Athletic pubalgia is a syndrome of chronic lower abdomen and groin pain that occurs in athletes. It is the direct result of stress and microtears of the rectus abdominis inserting on the pubis from the antagonizing adductor longus muscles, and weakness of the posterior transversalis fascia and bulging of the inguinal floor. Under IRB approval, we conducted a retrospective review of our prospectively competitive athlete patients with athletic pubalgia from 2007 to 2013. A cohort of 54 patients was examined. Mean age was 22.4 years. Most patients were football players (n = 23), triathlon (n = 11), track and field (n = 6), soccer players (n = 5), baseball players (n = 4), swimmers (n = 3), golfer (n = 1), and tennis player (n = 1). Fifty one were males and three were females. All patients failed medical therapy with physiotherapy prior to surgery. 76 % of patients had an MRI performed with 26 % having a right rectus abdominis stripping injury with concomitant strain at the adductor longus musculotendinous junction. 7 % of patients had mild nonspecific edema in the distal bilateral rectus abdominis muscles without evidence of a tear. Twenty patients had no findings on their preoperative MRI, and only one patient was noted to have an inguinal hernia on MRI. All patients underwent laparoscopic totally extraperitoneal inguinal hernia repair with synthetic mesh and ipsilateral adductor longus tenotomy. All patients were able to return to full sports-related activity in 24 days (range 21-28 days). One patient experienced urinary retention and another sustained an adductor brevis hematoma 3 months after completion of rehabilitation and surgical intervention. Mean follow up was 18 months. Athletic pubalgia is a disease with a multifactorial etiology that can be treated surgically by a laparoscopic totally extraperitoneal hernia repair with synthetic mesh accompanied with an ipsilateral adductor longus tenotomy allowing patients to return to sports-related activity early with

  2. [Nutrition and biological value of food parts of a trade bivalve mollusk Anadara broughtoni].

    PubMed

    Tabakaeva, O V; Tabakaev, A V

    2015-01-01

    Currently, the human diet includes different new products of seafishing, including non-fish--bivalves and gastropods, holothurias, echinoderms, jellyfishes that demands careful studying of their chemical composition. The purpose of the study was to determine the nutritional and biological value of all soft parts of the burrowing bivalve MOLLUSK Anadara broughtoni from the Far East region. It was established thatfood parts of a bivalve were significantly flooded (water content--73.5-84.2%), with the minimum water content in the adductor and maximum in the mantle. Dry solids are presented by organic (89-93%) and mineral (7-11%) components. Organic components consist of protein (14.6-20.7%), lipids (1.8-2.3%), carbohydrates (2.1-2.6%). The analysis of amino-acid composition of proteins of food parts of the mollusk of Anadara broughtonishowed the presence of all essential amino acids with slight differences in their content depending on the localization of the protein. All edible parts have tryptophan as the limiting amino acid. Muscle proteins have maximum level of lysine, methionine, cysteine, phenylalanine and tyrosine; mantle proteins--leucine, isoleucine and threonine; adductor proteins--valine, phenylalanine, tyrosine, methionine and cysteine. Predominant nonessential amino acids forproteins of all food pieces are glycine, aspartic acid, glutamic acid, arginine. The coefficient of amino-acid score differences of adductor protein (31.7%) is less than the same of cloak by 3.7%. The indicator "biological value" is maximal for adductor (68.3%), but the differenceformuscle is only 0.83%. Mantle proteins are characterized by minimum biological value (64.6%). The coefficient of utility of amino acid composition of protein is maximalfor muscle (57.83%), and values for a cloak and an adductor differ slightly (55.81 and 55.96%). Taurine content in food parts of a mollusk Anadara broughtoni is rather high compared to with other bivalve mollusks of the Far East region

  3. Hip adductor activations during run-to-cut maneuvers in compression shorts: Implications for return to sport after groin injury

    PubMed Central

    CHAUDHARI, AJIT M. W.; JAMISON, STEVEN T.; MCNALLY, MICHAEL P.; PAN, XUELIANG; SCHMITT, LAURA C.

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention or recovery from hip adductor strains. Large eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut maneuvers in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all p<0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858

  4. Hip adductor activations during run-to-cut manoeuvres in compression shorts: implications for return to sport after groin injury.

    PubMed

    Chaudhari, Ajit M W; Jamison, Steven T; McNally, Michael P; Pan, Xueliang; Schmitt, Laura C

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention of or recovery from hip adductor strains. Large, eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography (EMG) of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut manoeuvres in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all P < 0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts.

  5. Lateral Cricoarytenoid Release: Development of a Novel Surgical Treatment Option for Adductor Spasmodic Dysphonia in a Canine Laryngeal Model.

    PubMed

    Park, Andrea M; Paniello, Randal C

    2016-09-01

    To investigate the efficacy of a novel adductor muscle-releasing technique designed to decrease the force of vocal fold adduction, as a potential surgical therapy for patients with adductor spasmodic dysphonia (ADSD). Experimental animal study. A canine laryngeal model was used to assess the acute and sustained efficacy of a lateral cricoarytenoid (LCA) muscle release. A total of 34 canine hemilaryngeal preparations were divided among 7 experimental groups. The LCA muscle was separated from its cricoid cartilage origin via an open, anterior, submucosal approach. The laryngeal adductory pressures (LAP) were assessed pre- and post-muscle release via direct recurrent laryngeal nerve stimulation. Measurements were repeated at 1.5, 3, or 6 months postoperatively. Another study evaluated release of the thyroarytenoid (TA) muscle from its thyroid cartilage origin. Releasing the LCA muscle demonstrated a significant decrease in LAP acutely and was maintained at all 3 time points with the aid of a barrier (P < .05). Without the barrier, the LCA muscle reattached to the cricoid. Acute release of the TA muscle did not significantly decrease the LAP. The proposed LCA release procedure may provide patients with a permanent treatment option for ADSD. However, longer-term studies and human trials are needed. © The Author(s) 2016.

  6. Preseason Adductor Squeeze Strength in 303 Spanish Male Soccer Athletes: A Cross-sectional Study

    PubMed Central

    Esteve, Ernest; Rathleff, Michael Skovdal; Vicens-Bordas, Jordi; Clausen, Mikkel Bek; Hölmich, Per; Sala, Lluís; Thorborg, Kristian

    2018-01-01

    Background: Hip adductor muscle weakness and a history of groin injury both have been identified as strong risk factors for sustaining a new groin injury. Current groin pain and age have been associated with hip adductor strength. These factors could be related, but this has never been investigated. Purpose: To investigate whether soccer athletes with past-season groin pain and with different durations of past-season groin pain had lower preseason hip adductor squeeze strength compared with those without past-season groin pain. We also investigated whether differences in preseason hip adductor squeeze strength in relation to past-season groin pain and duration were influenced by current groin pain and age. Study Design: Cross-sectional study; Level of evidence, 3. Methods: In total, 303 male soccer athletes (mean age, 23 ± 4 years; mean weight, 74.0 ± 7.9 kg; mean height, 178.1 ± 6.3 cm) were included in this study. Self-reported data regarding current groin pain, past-season groin pain, and duration were collected. Hip adductor squeeze strength was obtained using 2 different reliable testing procedures: (1) the short-lever (resistance placed between the knees, feet at the examination bed, and 45° of hip flexion) and (2) the long-lever (resistance placed between the ankles and 0° of hip flexion) squeeze tests. Results: There was no difference between those with (n = 123) and without (n = 180) past-season groin pain for hip adductor squeeze strength when adjusting for current groin pain and age. However, athletes with past-season groin pain lasting longer than 6 weeks (n = 27) showed 11.5% and 15.3% lower values on the short-lever (P = .006) and long-lever (P < .001) hip adductor squeeze strength tests, respectively, compared with those without past-season groin pain. Conclusion: Male soccer athletes with past-season groin pain lasting longer than 6 weeks are likely to begin the next season with a high-risk groin injury profile, including a history of groin

  7. Saphenous and Infrapatellar Nerves at the Adductor Canal: Anatomy and Implications in Regional Anesthesia.

    PubMed

    Anagnostopoulou, Sofia; Anagnostis, George; Saranteas, Theodosios; Mavrogenis, Andreas F; Paraskeuopoulos, Tilemachos

    2016-01-01

    Conflicting data exist regarding the anatomical relationship of the saphenous and infrapatellar nerves at the adductor canal and the location of the superior foramen of the canal. Therefore, the authors performed a cadaveric study to detail the relationship and course of the saphenous and infrapatellar nerves and the level of the superior foramen of the canal. The adductor canal and subsartorial compartment were dissected in 17 human cadavers. The distance between the superior foramen of the canal and the mid-distance (MD) between the base of the patella and the anterior superior iliac crest were measured; the course of the saphenous and infrapatellar nerves and the level of origin of the infrapatellar branch were detailed. In 13 of 17 specimens, the superior foramen of the adductor canal was distal to the MD (mean, 6.5 cm); in the remaining specimens, it was proximal to the MD. In 12 of 17 specimens, the infrapatellar branch exited the canal separately from the saphenous nerve; in the remaining specimens, it originated caudally to the canal. In all dissections, the infrapatellar branch had a constant course in close proximity to the saphenous nerve within the canal and between the sartorious muscle and femoral artery caudally to the canal. Most commonly, the superior foramen of the adductor canal is located caudally to the MD; the infrapatellar branch originates from the saphenous nerve within the canal and has a constant course in close proximity to the saphenous nerve. These observations should be considered for regional anesthesia techniques at the adductor canal. Copyright 2016, SLACK Incorporated.

  8. Zilpaterol hydrochloride affects cellular muscle metabolism and lipid components of ten different muscles in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    This study determined if zilpaterol hydrochloride (ZH) altered muscle metabolism and lipid components of ten muscles. Crossbred heifers were either supplemented with ZH (n = 9) or not (Control; n = 10). Muscle tissue was collected (adductor femoris, biceps femoris, gluteus medius, infraspinatus, lat...

  9. New insights into dinosaur jaw muscle anatomy.

    PubMed

    Holliday, Casey M

    2009-09-01

    Jaw muscles are key components of the head and critical to testing hypotheses of soft-tissue homology, skull function, and evolution. Dinosaurs evolved an extraordinary diversity of cranial forms adapted to a variety of feeding behaviors. However, disparate evolutionary transformations in head shape and function among dinosaurs and their living relatives, birds and crocodylians, impair straightforward reconstructions of muscles, and other important cephalic soft tissues. This study presents the osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head. Hypotheses of jaw muscle homology were tested across a broad range archosaur and sauropsid taxa to more accurately infer muscle attachments in the adductor chambers of non-avian dinosaurs. Many dinosaurs likely possessed m. levator pterygoideus, a trait shared with lepidosaurs but not extant archosaurs. Several major clades of dinosaurs (e.g., Ornithopoda, Ceratopsidae, Sauropoda) eliminated the epipterygoid, thus impacting interpretations of m. pseudotemporalis profundus. M. pseudotemporalis superficialis most likely attached to the caudoventral surface of the laterosphenoid, a trait shared with extant archosaurs. Although mm. adductor mandibulae externus profundus and medialis likely attached to the caudal half of the dorsotemporal fossa and coronoid process, clear osteological correlates separating the individual bellies are rare. Most dinosaur clades possess osteological correlates indicative of a pterygoideus ventralis muscle that attaches to the lateral surface of the mandible, although the muscle may have extended as far as the jugal in some taxa (e.g., hadrosaurs, tyrannosaurs). The cranial and mandibular attachments of mm adductor mandibulae externus superficialis and adductor mandibulae posterior were consistent across all taxa studied. These new data greatly increase the interpretive resolution of head anatomy in

  10. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods

    PubMed Central

    Fujiwara, Shin-ichi; Hutchinson, John R.

    2012-01-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa. PMID:22357261

  11. Clinical application of the right sidelying respiratory left adductor pull back exercise.

    PubMed

    Boyle, Kyndall L

    2013-06-01

    Lumbopelvic-femoral conditions are common and may be associated with asymmetrical musculoskeletal and respiratory impairments and postural mal-alignment called a Left Anterior Interior Chain (AIC) pattern. An inherent pattern of asymmetry involves the trunk/ribs/spine/pelvis/hip joints and includes the tendency to stand on the right leg and shift the center of gravity to the right which may result for example, in a tight left posterior hip capsule, poorly approximated left hip, long/weak left adductors, internal obliques (IO) and transverse abdominus (TA), short/strong/over active paraspinals and muscles on the right anterior outlet (adductors, levator ani and obturator internus), a left rib flare and a decreased respiratory diaphragm zone of apposition (ZOA). A therapeutic exercise technique that can address impairments associated with postural asymmetry may be beneficial in improving function, reducing and/or eliminating pain causation, and improving breathing. The Right Sidelying Left Respiratory Adductor Pull Back is an exercise designed to affect alignment of the lumbopelvic-femoral region by influencing the left posterior ischiofemoral ligament, ZOA and right anterior outlet and left anterior inlet (rectus femoris, sartorius), activating/shortening the left adductors, left IO/TA's and inhibiting/lengthening the paraspinals, bilaterally. The exercise technique is often used by Physical Therapists, Physical Therapist assistants and Athletic Trainers as an initial exercise to positively affect position/alignment of the lumbopelvic-femoral region, referred to as "repositioning," by clinicians who use it. Four published case studies have used similar exercises to address the above impairments associated with a Left AIC pattern and in each 100% improvement in function and pain intensity was described. This particular exercise technique is relatively new and warrants future research.

  12. Osteitis pubis and adductor tendinopathy in athletes: a novel arthroscopic pubic symphysis curettage and adductor reattachment.

    PubMed

    Hopp, Sascha Jörg; Culemann, Ulf; Kelm, Jens; Pohlemann, Tim; Pizanis, Antonius

    2013-07-01

    Various surgical treatment options have been described in athletes with degenerative osteitis pubis who fail to respond to conservative treatment modalities. Although adductor longus tendinopathy often represents an additional pain generator in chronic groin pain associated with osteitis pubis, this has not been acknowledged in the surgical literature, to our knowledge. We present the results of a novel surgical technique for combined degenerative lesions of the pubic symphysis joint and the adjacent adductor longus tendon in a series of athletes with osteitis pubis. During 2009 and 2010, five competitive non-professional soccer players with considerable groin and pubic pain were referred to our clinic, after conservative therapy over a period of at least 12 months had failed. According to our clinical protocol for patients with groin pain, physical examination, pelvic radiographs and arthrography of the pubic symphysis to detect microlesions of the adjacent adductor longus tendons were performed. The patients diagnosed with degenerative osteitis pubis and concomitant lesion of the adductor longus origin were indicated for surgery. Surgery consisted of resection of the degenerative soft and bone tissue and subsequent reattachment with suture anchors. With regard to stability of the symphysis pubis, a two-portal arthroscopic curettage of the degenerative fibrocartilaginous disc tissue was performed. The patients were followed prospectively at medium term with assessment of general pain level (VAS score) and sport activity with pain (NIPPS score) pre- and postoperatively. All patients recovered to full activity sports after an average period of 14.4 weeks. VAS and NIPPS scores markedly improved and overall satisfaction with the postoperative result was high. One intraoperative bleeding occurred, needing revision surgery. None of the patients developed pubic instability due to pubic symphysis curettage in the sequel. This novel surgical technique combines successfully

  13. Recovery of muscle function after deep neuromuscular block by means of diaphragm ultrasonography and adductor of pollicis acceleromyography with comparison of neostigmine vs. sugammadex as reversal drugs: study protocol for a randomized controlled trial.

    PubMed

    Cappellini, Iacopo; Picciafuochi, Fabio; Ostento, Daniele; Danti, Ginevra; De Gaudio, Angelo Raffaele; Adembri, Chiara

    2018-02-21

    The extensive use of neuromuscular blocking agents (NMBAs) during surgical procedures still leads to potential residual paralyzing effects in the postoperative period. Indeed, neuromuscular monitoring in an intra-operative setting is strongly advocated. Acetylcholinesterase inhibitors can reverse muscle block, but their short half-life may lead to residual curarization in the ward, especially when intermediate or long-acting NMBAs have been administered. Sugammadex is the first selective reversal drug for steroidal NMBAs; it has been shown to give full and rapid recovery of muscle strength, thus minimizing the occurrence of residual curarization. Acceleromyography of the adductor pollicis is the gold standard for detecting residual curarization, but it cannot be carried out on conscious patients. Ultrasonography of diaphragm thickness may reveal residual effects of NMBAs in conscious patients. This prospective, double-blind, single-center randomized controlled study will enroll patients (of American Society of Anesthesiologists physical status I-II, aged 18-80 years) who will be scheduled to undergo deep neuromuscular block with rocuronium for ear, nose, or throat surgery. The study's primary objective will be to compare the effects of neostigmine and sugammadex on postoperative residual curarization using two different tools: diaphragm ultrasonography and acceleromyography of the adductor pollicis. Patients will be extubated when the train-of-four ratio is > 0.9. Diaphragm ultrasonography will be used to evaluate the thickening fraction, which is the difference between the end expiratory thickness and the end inspiratory thickness, normalized to the end expiratory thickness. Ultrasonography will be performed before the initiation of general anesthesia, before extubation, and 10 and 30 min after discharging patients from the operating room. The secondary objective will be to compare the incidence of postoperative complications due to residual neuromuscular

  14. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes

    PubMed Central

    Swanik, Kathleen A.; Swanik, C. Buz; Straub, Stephen J.

    2004-01-01

    Objective: To evaluate the effects of plyometric training on muscle-activation strategies and performance of the lower extremity during jumping exercises. Subjects: Twenty healthy National Collegiate Athletic Association Division I female athletes. Design and Setting: A pretest and posttest control group design was used. Experimental subjects performed plyometric exercises 2 times per week for 6 weeks. Measurements: We used surface electromyography to assess preparatory and reactive activity of the vastus medialis and vastus lateralis, medial and lateral hamstrings, and hip abductors and adductors. Vertical jump height and sprint speed were assessed with the VERTEC and infrared timing devices, respectively. Results: Multivariate analyses of variance revealed significant (P < .05) increases in firing of adductor muscles during the preparatory phase, with significant interactions for area, mean, and peak. A Tukey honestly significant difference post hoc analysis revealed significant increases in preparatory adductor area, mean, and peak for experimental group. A significant (P = .037) increase in preparatory adductor-to-abductor muscle coactivation in the experimental group was identified, as well as a trend (P = .053) toward reactive quadriceps-to- hamstring muscle coactivation in the experimental group. Pearson correlation coefficients revealed significant between-groups adaptations in muscle activity patterns pretest to posttest. Although not significant, experimental and control subjects had average increases of 5.8% and 2.0% in vertical jump height, respectively. Conclusions: The increased preparatory adductor activity and abductor-to-adductor coactivation represent preprogrammed motor strategies learned during the plyometric training. These data strongly support the role of hip-musculature activation strategies for dynamic restraint and control of lower extremity alignment at ground contact. Plyometric exercises should be incorporated into the training regimens

  15. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site

    PubMed Central

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  16. CLINICAL APPLICATION OF THE RIGHT SIDELYING RESPIRATORY LEFT ADDUCTOR PULL BACK EXERCISE

    PubMed Central

    2013-01-01

    Problem: Lumbopelvic‐femoral conditions are common and may be associated with asymmetrical musculoskeletal and respiratory impairments and postural mal‐alignment called a Left Anterior Interior Chain (AIC) pattern. An inherent pattern of asymmetry involves the trunk/ribs/spine/pelvis/hip joints and includes the tendency to stand on the right leg and shift the center of gravity to the right which may result for example, in a tight left posterior hip capsule, poorly approximated left hip, long/weak left adductors, internal obliques (IO) and transverse abdominus (TA), short/strong/over active paraspinals and muscles on the right anterior outlet (adductors, levator ani and obturator internus), a left rib flare and a decreased respiratory diaphragm zone of apposition (ZOA). The Solution: A therapeutic exercise technique that can address impairments associated with postural asymmetry may be beneficial in improving function, reducing and/or eliminating pain causation, and improving breathing. The Right Sidelying Left Respiratory Adductor Pull Back is an exercise designed to affect alignment of the lumbopelvic‐femoral region by influencing the left posterior ischiofemoral ligament, ZOA and right anterior outlet and left anterior inlet (rectus femoris, sartorius), activating/shortening the left adductors, left IO/TA's and inhibiting/lengthening the paraspinals, bilaterally. Discussion: The exercise technique is often used by Physical Therapists, Physical Therapist assistants and Athletic Trainers as an initial exercise to positively affect position/alignment of the lumbopelvic‐femoral region, referred to as “repositioning,” by clinicians who use it. Four published case studies have used similar exercises to address the above impairments associated with a Left AIC pattern and in each 100% improvement in function and pain intensity was described. This particular exercise technique is relatively new and warrants future research. PMID:23772350

  17. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. © 2016 Wiley Periodicals, Inc.

  18. Myofiber turnover is used to retrofit frog jaw muscles during metamorphosis.

    PubMed

    Alley, K E

    1989-01-01

    Metamorphic reorganization of the head in anuran amphibians entails abrupt restructuring of the jaw complex as larval feeding structures are transformed into their adult configurations. In this morphometric study, light microscopy wa used to analyze the larval maturation and metamorphic transfiguration of the adductor jaw muscles in the leopard frog (Rana pipiens). Larval jaw muscles, first established during embryogenesis, continue to grow by fiber addition until prometamorphosis, stage XII. Thereafter, fiber number remains stable but additional muscle growth continues by hypertrophy of the individual fibers until metamorphic climax. During metamorphic stages XIX-XXIII, a complete involution of all larval myofibers occurs. Simultaneously, within the same muscle beds, a second wave of myogenesis produces myoblasts which are the precursors of adult jaw myofibers. New muscle fibers continue to be added to these muscles well after the completion of metamorphosis; however, the total duration of the postmetamorphic myogenic period has not been defined. These observations provide clear evidence that the entir population of primary myofibers used in larval oral activity disappears from the adductor muscle beds and is replaced by a second wave of myogenesis commencing during climax. These findings indicate that the adductor jaw muscles are prepared for adult feeding by a complicated cellular process that retrofits existing muscle beds with a completely new complement of myofibers.

  19. Anatomy and adaptations of the chewing muscles in Daubentonia (Lemuriformes).

    PubMed

    Perry, Jonathan M G; Macneill, Kristen E; Heckler, Amanda L; Rakotoarisoa, Gilbert; Hartstone-Rose, Adam

    2014-02-01

    The extractive foraging behavior in aye-ayes (Daubentonia madagascariensis) is unique among primates and likely has led to selection for a specialized jaw adductor musculature. Although this musculature has previously been examined in a subadult, until now, no one has reported the fascicle length, weight, and physiological cross-sectional area (PCSA) for these muscles in an adult aye-aye specimen. For the present study, we dissected an adult wild-born aye-aye from the Tsimbazaza Botanical and Zoological Park, Antananarivo, Madagascar. The aye-aye follows the general strepsirrhine pattern in its overall jaw adductor muscle anatomy, but has very large muscles and PCSA relative to body size. Fascicle length is also relatively great, but not nearly as much as in the juvenile aye-aye previously dissected. Perhaps chewing muscle fascicles begin relatively long, but shorten through use and growth as connective tissue sheets expand and allow for pinnation and increased PCSA. Alternately, it may be that aye-ayes develop fascicular adaptation to wide gapes early in ontogeny, only to increase PCSA through later development into adulthood. The functional demands related to their distinctive manner of extractive foraging are likely responsible for the great PCSA in the jaw adductor muscles of the adult aye-aye. It may be that great jaw adductor PCSA in the adult, as compared to the juvenile, is a means of increasing foraging efficiency in the absence of parental assistance. Anat Rec, 297:308-316, 2014. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  20. Vocal Parameters and Self-Perception in Individuals With Adductor Spasmodic Dysphonia.

    PubMed

    Rojas, Gleidy Vannesa E; Ricz, Hilton; Tumas, Vitor; Rodrigues, Guilherme R; Toscano, Patrícia; Aguiar-Ricz, Lílian

    2017-05-01

    The study aimed to compare and correlate perceptual-auditory analysis of vocal parameters and self-perception in individuals with adductor spasmodic dysphonia before and after the application of botulinum toxin. This is a prospective cohort study. Sixteen individuals with a diagnosis of adductor spasmodic dysphonia were submitted to the application of botulinum toxin in the thyroarytenoid muscle, to the recording of a voice signal, and to the Voice Handicap Index (VHI) questionnaire before the application and at two time points after application. Two judges performed a perceptual-auditory analysis of eight vocal parameters with the aid of the Praat software for the visualization of narrow band spectrography, pitch, and intensity contour. Comparison of the vocal parameters before toxin application and on the first return revealed a reduction of oscillation intensity (P = 0.002), voice breaks (P = 0.002), and vocal tremor (P = 0.002). The same parameters increased on the second return. The degree of severity, strained-strangled voice, roughness, breathiness, and asthenia was unchanged. The total score and the emotional domain score of the VHI were reduced on the first return. There was a moderate correlation between the degree of voice severity and the total VHI score before application and on the second return, and a weak correlation on the first return. Perceptual-auditory analysis and self-perception proved to be efficient in the recognition of vocal changes and of the vocal impact on individuals with adductor spasmodic dysphonia under treatment with botulinum toxin, permitting the quantitation of changes along time. Copyright © 2017. Published by Elsevier Inc.

  1. Effectiveness of spinal anesthesia combined with obturator nerve blockade in preventing adductor muscle contraction during transurethral resection of bladder tumor

    PubMed Central

    Alavi, Cyrus Emir; Asgari, Seyed Alaeddin; Falahatkar, Siavash; Rimaz, Siamak; Naghipour, Mohammadreza; Khoshrang, Hossein; Jafari, Mehdi; Herfeh, Nadia

    2017-01-01

    Objective To determine whether spinal anesthesia combined with obturator nerve blockade (SOB) is effective in preventing obturator nerve stimulation, jerking and bladder perforation during transurethral resection of bladder tumor (TURBT). Material and methods In this clinical trial, 30 patients were randomly divided into two groups: spinal anesthesia (SA) and SOB. In SA group, 2.5 cc of 0.5% bupivacaine was injected intrathecally using a 25-gauge spinal needle and in SOB after spinal anesthesia, a classic obturator nerve blockade was performed by using nerve stimulation technique. Results There was a statistically significant difference between jerking in both groups (p=0.006). During the TURBT, surgeon satisfaction was significantly higher in SOB group compared to SA group (p=0.006). There was no significant correlation between sex, patient age and location of bladder tumor between the groups (p>0.05). Conclusion Obturator nerve blockade by using 15 cc lidocaine 1% is effective in preventing adductor muscle spasms during TURBT. PMID:29201516

  2. [Acoustic characteristics of adductor spasmodic dysphonia].

    PubMed

    Yang, Yang; Wang, Li-Ping

    2008-06-01

    To explore the acoustic characteristics of adductor spasmodic dysphonia. The acoustic characteristics, including acoustic signal of recorded voice, three-dimensional sonogram patterns and subjective assessment of voice, between 10 patients (7 women, 3 men) with adductor spasmodic dysphonia and 10 healthy volunteers (5 women, 5 men), were compared. The main clinical manifestation of adductor spasmodic dysphonia included the disorders of sound quality, rhyme and fluency. It demonstrated the tension dysphonia when reading, acoustic jitter, momentary fluctuation of frequency and volume, voice squeezing, interruption, voice prolongation, and losing normal chime. Among 10 patients, there were 1 mild dysphonia (abnormal syllable number < 25%), 6 moderate dysphonia (abnormal syllable number 25%-49%), 1 severe dysphonia (abnormal syllable number 50%-74%) and 2 extremely severe dysphonia (abnormal syllable number > or = 75%). The average reading time in 10 patients was 49 s, with reading time extension and aphasia area interruption in acoustic signals, whereas the average reading time in health control group was 30 s, without voice interruption. The aphasia ratio averaged 42%. The respective symptom syllable in different patients demonstrated in the three-dimensional sonogram. There were voice onset time prolongation, irregular, interrupted and even absent vowel formants. The consonant of symptom syllables displayed absence or prolongation of friction murmur in the block-friction murmur occasionally. The acoustic characteristics of adductor spasmodic dysphonia is the disorders of sound quality, rhyme and fluency. The three-dimensional sonogram of the symptom syllables show distinctive changes of proportional vowels or consonant phonemes.

  3. Changes in Adductor Strength After Competition in Academy Rugby Union Players.

    PubMed

    Roe, Gregory A B; Phibbs, Padraic J; Till, Kevin; Jones, Ben L; Read, Dale B; Weakley, Jonathon J; Darrall-Jones, Joshua D

    2016-02-01

    This study determined the magnitude of change in adductor strength after a competitive match in academy rugby union players and examined the relationship between locomotive demands of match-play and changes in postmatch adductor strength. A within-subject repeated measures design was used. Fourteen academy rugby union players (age, 17.4 ± 0.8 years; height, 182.7 ± 7.6 cm; body mass, 86.2 ± 11.6 kg) participated in the study. Each player performed 3 maximal adductor squeezes at 45° of hip flexion before and immediately, 24, 48, and 72 hours postmatch. Global positioning system was used to assess locomotive demands of match-play. Trivial decreases in adductor squeeze scores occurred immediately (-1.3 ± 2.5%; effect size [ES] = -0.11 ± 0.21; likely, 74%) and 24 hours after match (-0.7 ± 3%; ES = -0.06 ± 0.25; likely, 78%), whereas a small but substantial increase occurred at 48 hours (3.8 ± 1.9%; ES = 0.32 ± 0.16; likely, 89%) before reducing to trivial at 72 hours after match (3.1 ± 2.2%; ES = 0.26 ± 0.18; possibly, 72%). Large individual variation in adductor strength was observed at all time points. The relationship between changes in adductor strength and distance covered at sprinting speed (VO2max ≥ 81%) was large immediately postmatch (p = 0.056, r = -0.521), moderate at 24 hours (p = 0.094, r = -0.465), and very large at 48 hours postmatch (p = 0.005, r = -0.707). Players who cover greater distances sprinting may suffer greater adductor fatigue in the first 48 hours after competition. The assessment of adductor strength using the adductor squeeze test should be considered postmatch to identify players who may require additional rest before returning to field-based training.

  4. Postmortem biochemical behavior of giant squid (Dosidicus gigas) mantle muscle stored in ice and its relation with quality parameters.

    PubMed

    Márquez-Ríos, E; Morán-Palacio, E F; Lugo-Sánchez, M E; Ocano-Higuera, V M; Pacheco-Aguilar, R

    2007-09-01

    Several freshness and spoilage indicators were monitored to characterize the postmortem biochemistry of giant squid (Dosidicus gigas) mantle muscle. Squid samples were obtained directly from the sea and kept at 0 degrees C during a 15-d storage period. Data at zero time were obtained from cryogenically frozen samples at time of capture. The adenosine 5'-triphosphate (ATP) degradation followed a different pattern as compared with that from fish species. ATP was almost completely depleted at 24-h postcatch from 6.54 to <1 micromol/g, while at the same time Hx was the predominant catabolite with a concentration of 4 mumol/g, reaching 6.85 micromol/g at day 15. K-value data followed a logarithmic pattern with time instead of a linear one, with no change after day 3, thus reducing its suitability as a freshness index. The coefficient Hx/AMP seems to be an adequate alternative for this purpose due to its constant increment with time. The high NH4Cl content in mantle muscle (461.3 +/- 24.5 mg of NH4(+)/100 g) derived from its physiological importance for the species compromises the use of the distillation step of the TVB-N analysis commonly used as a spoilage index. This fact explains why the initially high value of TVB-N detected in mantle muscle (243.7 mg N/100 g) did not correlate with the initial low TMA-N content (1.5 +/- 0.1 mg/100 g of muscle). The results suggested that under the experimental conditions the shelf life of squid exceeds 15 d.

  5. Distribution of Injectate and Sensory-Motor Blockade After Adductor Canal Block.

    PubMed

    Gautier, Philippe E; Hadzic, Admir; Lecoq, Jean-Pierre; Brichant, Jean Francois; Kuroda, Maxine M; Vandepitte, Catherine

    2016-01-01

    The analgesic efficacy reported for the adductor canal block may be related to the spread of local anesthetic outside the adductor canal. Fifteen patients undergoing knee surgery received ultrasound-guided injections of local anesthetic at the level of the adductor hiatus. Sensory-motor block and spread of contrast solution were assessed. Sensation was rated as "markedly diminished" or "absent" in the saphenous nerve distribution and "slightly diminished" in the sciatic nerve territory without motor deficits. Contrast solution was found in the popliteal fossa. The spread of injectate to the popliteal fossa may contribute to the analgesic efficacy of adductor canal block.

  6. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  7. Receptor units responding to movement in the octopus mantle.

    PubMed

    Boyle, P R

    1976-08-01

    1. A preparation of the mantle of Octopus which is inverted over a solid support and which exposes the stellate ganglion and associated nerves is described. 2. Afferent activity can be recorded from stellar nerves following electrical stimulation of the pallial nerve. The latency and frequency of the phasic sensory response is correlated with the contraction of the mantle musculature. 3. It is proposed that receptors cells located in the muscle, and their activity following mantle contraction, form part of a sensory feedback system in the mantle. Large, multipolar nerve cells that were found between the two main layers of circular muscle in the mantle could be such receptors.

  8. Vocal aging and adductor spasmodic dysphonia: Response to botulinum toxin injection

    PubMed Central

    Cannito, Michael P; Kahane, Joel C; Chorna, Lesya

    2008-01-01

    Aging of the larynx is characterized by involutional changes which alter its biomechanical and neural properties and create a biological environment that is different from younger counterparts. Illustrative anatomical examples are presented. This natural, non-disease process appears to set conditions which may influence the effectiveness of botulinum toxin injection and our expectations for its success. Adductor spasmodic dysphonia, a type of laryngeal dystonia, is typically treated using botulinum toxin injections of the vocal folds in order to suppress adductory muscle spasms which are disruptive to production of speech and voice. A few studies have suggested diminished response to treatment in older patients with adductor spasmodic dysphonia. This retrospective study provides a reanalysis of existing pre-to-post treatment data as function of age. Perceptual judgments of speech produced by 42 patients with ADSD were made by two panels of professional listeners with expertise in voice or fluency of speech. Results demonstrate a markedly reduced positive response to botulinum toxin treatment in the older patients. Perceptual findings are further elucidated by means of acoustic spectrography. Literature on vocal aging is reviewed to provide a specific set of biological mechanisms that best account for the observed interaction of botulinum toxin treatment with advancing age. PMID:18488884

  9. Vocal aging and adductor spasmodic dysphonia: response to botulinum toxin injection.

    PubMed

    Cannito, Michael P; Kahane, Joel C; Chorna, Lesya

    2008-01-01

    Aging of the larynx is characterized by involutional changes which alter its biomechanical and neural properties and create a biological environment that is different from younger counterparts. Illustrative anatomical examples are presented. This natural, non-disease process appears to set conditions which may influence the effectiveness of botulinum toxin injection and our expectations for its success. Adductor spasmodic dysphonia, a type of laryngeal dystonia, is typically treated using botulinum toxin injections of the vocal folds in order to suppress adductory muscle spasms which are disruptive to production of speech and voice. A few studies have suggested diminished response to treatment in older patients with adductor spasmodic dysphonia. This retrospective study provides a reanalysis of existing pre-to-post treatment data as function of age. Perceptual judgments of speech produced by 42 patients with ADSD were made by two panels of professional listeners with expertise in voice or fluency of speech. Results demonstrate a markedly reduced positive response to botulinum toxin treatment in the older patients. Perceptual findings are further elucidated by means of acoustic spectrography. Literature on vocal aging is reviewed to provide a specific set of biological mechanisms that best account for the observed interaction of botulinum toxin treatment with advancing age.

  10. Gender differences in onabotulinum toxin A dosing for adductor spasmodic dysphonia.

    PubMed

    Lerner, Michael Z; Lerner, Benjamin A; Patel, Amit A; Blitzer, Andrew

    2017-05-01

    The objective of this study was to determine the influence of gender on onabotulinum toxin A dosing for the treatment of adductor spasmodic dysphonia symptoms. Retrospective review. A chart review of the senior author's database of botulinum toxin injections was performed. Patients diagnosed with adductor spasmodic dysphonia who received onabotulinum toxin A (BoNTA) injections to the thyroarytenoid muscle for at least 5 years were included for study. Patients who received alternate formulations of botulinum toxin (Myobloc, Dysport, or Xeomin) and patients with alternate diagnoses, such as abductor spasmodic dysphonia, tremor, and oromandibular dystonia, were excluded. The average BoNTA dose was calculated for each patient and statistical analysis was performed comparing the male and female groups. A total of 201 patients (52 males and 149 females) met inclusion criteria. The average follow-up times for the male and female groups were 10.2 ± 3.6 and 11.1 ± 4 years, respectively. The average BoNTA doses for the male and female groups were 0.6 ± 0.42 U and 1.3 ± 1.1 U, respectively. Statistical analysis was performed using an independent samples two-tailed t test yielding a P value of .0000000002. A large effect size was noted with Cohen's d = 0.85. The data from this retrospective chart review reveal a statistically and clinically significant correlation between female gender and higher average BoNTA dose for symptom control in adductor spasmodic dysphonia. Explanations for this observation are speculative and include a possible inverse relationship between optimal BoNTA dose and vocal fold mass and possibly greater neutralizing antibody formation among female patients. 4. Laryngoscope, 127:1131-1134, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Effect of Amidated Low-Methoxyl Pectin on Physicochemical Characteristics of Jumbo Squid (Dosidicus gigas) Mantle Muscle Gels.

    PubMed

    Ramirez-Suarez, Juan C; Álvarez-Armenta, Andrés; García-Sánchez, Guillermina; Pacheco-Aguilar, Ramón; Scheuren-Acevedo, Susana M; Mazorra-Manzano, Miguel A; Rascón-Chu, Agustín

    2017-09-01

    Jumbo squid ( Dosidicus gigas ) muscle proteins show low functionality with limited use in gel products. This work aims to assess the influence of adding the natural and commercially available fibre, amidated low-methoxyl pectin (at 0.5, 1.0, 1.5, 2.0 and 3.0%), on the physicochemical and functional characteristics of jumbo squid ( Dosidicus gigas ) mantle muscle gels. The addition of 0.5% fibre showed an immediate effect on the gel texture profile analysis, improving hardness (p<0.05) from (3.4±0.7) N of the control (no added fibre) to (5.2±0.9) N, and increasing elasticity (p≥0.05). Shear force was significant only at 3.0% fibre addition. Water holding capacity also improved (p<0.05) with fibre addition (from 75% in the control to 90-95% after the treatments). Whiteness was affected (p<0.05) when 3.0% fibre was added. Differential scanning calorimetry showed two endothermic transition peaks in the gels. The second peak (actin) increased (p<0.05) by 1-2 °C with fibre addition. Therefore, the present study demonstrates that amidated low-methoxyl pectin (0.5-3.0%) is an excellent ingredient to improve jumbo squid mantle muscle protein functionality, increasing the gel texture and water retention characteristics.

  12. Automated acoustic analysis of task dependency in adductor spasmodic dysphonia versus muscle tension dysphonia.

    PubMed

    Roy, Nelson; Mazin, Alqhazo; Awan, Shaheen N

    2014-03-01

    Distinguishing muscle tension dysphonia (MTD) from adductor spasmodic dysphonia (ADSD) can be difficult. Unlike MTD, ADSD is described as "task-dependent," implying that dysphonia severity varies depending upon the demands of the vocal task, with connected speech thought to be more symptomatic than sustained vowels. This study used an acoustic index of dysphonia severity (i.e., the Cepstral Spectral Index of Dysphonia [CSID]) to: 1) assess the value of "task dependency" to distinguish ADSD from MTD, and to 2) examine associations between the CSID and listener ratings. Case-Control Study. CSID estimates of dysphonia severity for connected speech and sustained vowels of patients with ADSD (n = 36) and MTD (n = 45) were compared. The diagnostic precision of task dependency (as evidenced by differences in CSID-estimated dysphonia severity between connected speech and sustained vowels) was examined. In ADSD, CSID-estimated severity for connected speech (M = 39. 2, SD = 22.0) was significantly worse than for sustained vowels (M = 29.3, SD = 21.9), [P = .020]. Whereas in MTD, no significant difference in CSID-estimated severity was observed between connected speech (M = 55.1, SD = 23.8) and sustained vowels (M = 50.0, SD = 27.4), [P = .177]. CSID evidence of task dependency correctly identified 66.7% of ADSD cases (sensitivity) and 64.4% of MTD cases (specificity). CSID and listener ratings were significantly correlated. Task dependency in ADSD, as revealed by differences in acoustically-derived estimates of dysphonia severity between connected speech and sustained vowel production, is a potentially valuable diagnostic marker. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  14. Homology of the jaw muscles in lizards and snakes-a solution from a comparative gnathostome approach.

    PubMed

    Johnston, Peter

    2014-03-01

    Homology or shared evolutionary origin of jaw adductor muscles in lizards and snakes has been difficult to establish, although snakes clearly arose within the lizard radiation. Lizards typically have temporal adductors layered lateral to medial, and in snakes the muscles are arranged in a rostral to caudal pattern. Recent work has suggested that the jaw adductor group in gnathostomes is arranged as a folded sheet; when this theory is applied to snakes, homology with lizard morphology can be seen. This conclusion revisits the work of S.B. McDowell, J Herpetol 1986; 20:353-407, who proposed that homology involves identity of m. levator anguli oris and the loss of m. adductor mandibulae externus profundus, at least in "advanced" (colubroid) snakes. Here I advance the folded sheet hypothesis across the whole snake tree using new and literature data, and provide a solution to this homology problem. Copyright © 2014 Wiley Periodicals, Inc.

  15. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  16. Influence of muscle groups' activation on proximal femoral growth tendency.

    PubMed

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  17. Quantifying the aging response and nutrient composition for muscles of the beef round.

    PubMed

    Dixon, C L; Woerner, D R; Tokach, R J; Chapman, P L; Engle, T E; Tatum, J D; Belk, K E

    2012-03-01

    The objective of this study was to determine the optimal postmortem aging period and nutrient composition for Beef Value Cuts of the round. Forty USDA Select and 40 Premium USDA Choice beef carcasses were selected from a commercial beef packing plant in Colorado over a 12-wk period. The bottom and inside rounds were collected from both sides of each carcass for further fabrication into the following muscles: adductor, gastrocnemius, gracilis, pectineus, and superficial digital flexor. Each pair of muscles was cut into 7 steaks and randomly assigned to 1 of the following aging periods: 2, 4, 6, 10, 14, 21, and 28 d, and placed in refrigerated storage (2°C, never frozen). Upon completion of the designated aging period, steaks were removed from storage, cooked to a peak internal temperature of 72°C, and evaluated using Warner-Bratzler shear force (WBSF). A 2-way interaction was detected (P < 0.05) between individual muscle and postmortem aging period. The WBSF of all muscles except the superficial digital flexor decreased with increased time of postmortem aging. Quality grade did not affect (P > 0.05) WBSF values for the adductor, gastrocnemius, pectineus, and superficial digital flexor muscles. Exponential decay models were used to predict the change in WBSF from 2 to 28 d postmortem (aging response). The adductor, gastrocnemius, Select gracilis, Premium Choice gracilis, and pectineus required 21, 14, 23, 23, and 25 d, respectively, to complete the majority of the aging response. To determine the nutrient composition of the adductor, gastrocnemius, gracilis, pectineus, semimembranosus, and superficial digital flexor, bottom and inside rounds were collected from 10 USDA Select and 10 Premium USDA Choice carcasses and fabricated into the respective muscles, cut into 2.54-cm cubes, frozen (-20°C), and then homogenized. The adductor, gracilis, pectineus, semimembranosus, and superficial digital flexor were analyzed for DM, moisture, CP, and ash percentages. All

  18. Minithyrotomy with radiofrequency-induced thermotherapy for the treatment of adductor spasmodic dysphonia.

    PubMed

    Desai, Shaun C; Park, Andrea M; Chernock, Rebecca D; Paniello, Randal C

    2016-10-01

    A simple, safe and effective surgical alternative for treating adductor spasmodic dysphonia (ADSD) would appeal to many patients. This study evaluates a new option, using radiofrequency-induced thermotherapy (RFITT) of the thyroarytenoid muscle (TA) via the minithyrotomy approach to reduce the force of adduction. Fifteen dogs were used. In part 1, the optimal RFITT power settings, exposure time, probe location, and number of passes were determined. Part 2 compared laryngeal adductor pressures (LAPs) at baseline; immediately postintervention; and at 1, 3, or 6 months postintervention. Interventions included RFITT via the transcervical minithyrotomy approach (n = 15), transoral RFITT (n = 3), botulinum toxin (Botox) injection (n = 3), or no-intervention controls (n = 3). Postintervention induced phonation and histologic analyses were performed as well. In the minithyrotomy RFITT group, the mean LAP was 30.3% of baseline immediately posttreatment. At 1, 3, and 6 months postoperatively, the mean LAPs were 24.9%, 44.8%, and 43.5%, respectively. Transoral RFITT reduced LAP to 56.6% of baseline immediately posttreatment, but returned to normal in the 1 and 3 month animals. The Botox injections dropped the LAP to 57% of baseline at 1 month, but returned to normal at 3 months. Mucosal waves, based on induced phonation stroboscopy, were present at the terminal date in all animals. Thirteen of 15 transcervical RFITT preparations (87%) showed no injury to the lamina propria, whereas 80% showed evidence of TA muscle atrophy and fibrosis. Minithyrotomy RFITT is a feasible technique that shows encouraging long-term results for the potential treatment of patients with ADSD. N/A. Laryngoscope, 126:2325-2329, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Effect of Amidated Low-Methoxyl Pectin on Physicochemical Characteristics of Jumbo Squid (Dosidicus gigas) Mantle Muscle Gels

    PubMed Central

    2017-01-01

    Summary Jumbo squid (Dosidicus gigas) muscle proteins show low functionality with limited use in gel products. This work aims to assess the influence of adding the natural and commercially available fibre, amidated low-methoxyl pectin (at 0.5, 1.0, 1.5, 2.0 and 3.0%), on the physicochemical and functional characteristics of jumbo squid (Dosidicus gigas) mantle muscle gels. The addition of 0.5% fibre showed an immediate effect on the gel texture profile analysis, improving hardness (p<0.05) from (3.4±0.7) N of the control (no added fibre) to (5.2±0.9) N, and increasing elasticity (p≥0.05). Shear force was significant only at 3.0% fibre addition. Water holding capacity also improved (p<0.05) with fibre addition (from 75% in the control to 90–95% after the treatments). Whiteness was affected (p<0.05) when 3.0% fibre was added. Differential scanning calorimetry showed two endothermic transition peaks in the gels. The second peak (actin) increased (p<0.05) by 1–2 °C with fibre addition. Therefore, the present study demonstrates that amidated low-methoxyl pectin (0.5–3.0%) is an excellent ingredient to improve jumbo squid mantle muscle protein functionality, increasing the gel texture and water retention characteristics. PMID:29089853

  20. Effects of type II thyroplasty on adductor spasmodic dysphonia.

    PubMed

    Sanuki, Tetsuji; Yumoto, Eiji; Minoda, Ryosei; Kodama, Narihiro

    2010-04-01

    Type II thyroplasty, or laryngeal framework surgery, is based on the hypothesis that the effect of adductor spasmodic dysphonia (AdSD) on the voice is due to excessively tight closure of the glottis, hampering phonation. Most of the previous, partially effective treatments have aimed to relieve this tight closure, including recurrent laryngeal nerve section or avulsion, extirpation of the adductor muscle, and botulinum toxin injection, which is currently the most popular. The aim of this study was to assess the effects of type II thyroplasty on aerodynamic and acoustic findings in patients with AdSD. Case series. University hospital. Ten patients with AdSD underwent type II thyroplasty between August 2006 and December 2008. Aerodynamic and acoustic analyses were performed prior to and six months after surgery. Mean flow rates (MFRs) and voice efficiency were evaluated with a phonation analyzer. Jitter, shimmer, the harmonics-to-noise ratio (HNR), standard deviation of the fundamental frequency (SDF0), and degree of voice breaks (DVB) were measured from each subject's longest sustained phonation sample of the vowel /a/. Voice efficiency improved significantly after surgery. No significant difference was found in the MFRs between before and after surgery. Jitter, shimmer, HNR, SDF0, and DVB improved significantly after surgery. Treatment of AdSD with type II thyroplasty significantly improved aerodynamic and acoustic findings. The results of this study suggest that type II thyroplasty provides relief from voice strangulation in patients with AdSD. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  1. Pm-miR-133 hosting in one potential lncRNA regulates RhoA expression in pearl oyster Pinctada martensii.

    PubMed

    Zheng, Zhe; Huang, RongLian; Tian, RongRong; Jiao, Yu; Du, Xiaodong

    2016-10-15

    Long non-coding RNAs (LncRNAs) are abundant in the genome of higher forms of eukaryotes and implicated in regulating the diversity of biological processes partly because they host microRNAs (miRNAs), which are repressors of target gene expression. In vertebrates, miR-133 regulates the differentiation and proliferation of cardiac and skeletal muscles. Pinctada martensii miR-133 (pm-miR-133) was identified in our previous research through Solexa deep sequencing. In the present study, the precise sequence of mature pm-miR-133 was validated through miR-RACE. Stem loop qRT-PCR analysis demonstrated that mature pm-miR-133 was constitutively expressed in the adductor muscle, gonad, hepatopancreas, mantle, foot, and gill of P. martensii. Among these tissues, the adductor muscle exhibited the highest pm-miR-133 expression. Target analysis indicated that pm-RhoA was the potential regulatory target of pm-miR-133. Bioinformatics analyses revealed that a potential LncRNA (designated as Lnc133) with a mature pm-miR-133 could generate a hairpin structure that was highly homologous to that of Lottia gigantea. Lnc133 was also highly expressed in the adductor muscle, gill, hepatopancreas, and gonad. Phylogenetic analysis further showed that the miR-133s derived from chordate and achordate were separated into two classes. Therefore, Lnc133 hosting pm-miR-133 could be involved in regulating the cell proliferation of adductor muscles by targeting pm-RhoA. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Region-Specific Responses of Adductor Longus Muscle to Gravitational Load-Dependent Activity in Wistar Hannover Rats

    PubMed Central

    Ohira, Takashi; Terada, Masahiro; Kawano, Fuminori; Nakai, Naoya; Ogura, Akihiko; Ohira, Yoshinobu

    2011-01-01

    Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive. PMID:21731645

  3. Contractility and supersensitivity to adrenaline in dystrophic muscle.

    PubMed Central

    Takamori, M

    1975-01-01

    In the adductor pollicis muscle of patients with limb-girdle and facioscapulohumeral muscular dystrophies and possible carriers of Duchenne type muscular dystrophy, abnormal active state properties were found at the time when there was no alteration of needle electromyography and evoked muscle action potentials. Adrenaline induced a marked reduction of incomplete tetanus via beta receptors without change in neuromuscular transmission. PMID:1151415

  4. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus. (c) 2009 Wiley-Liss, Inc.

  5. Unilateral versus bilateral thyroarytenoid Botulinum toxin injections in adductor spasmodic dysphonia: a prospective study

    PubMed Central

    Upile, Tahwinder; Elmiyeh, Behrad; Jerjes, Waseem; Prasad, Vyas; Kafas, Panagiotis; Abiola, Jesuloba; Youl, Bryan; Epstein, Ruth; Hopper, Colin; Sudhoff, Holger; Rubin, John

    2009-01-01

    Objectives In this preliminary prospective study, we compared unilateral and bilateral thyroarytenoid muscle injections of Botulinum toxin (Dysport) in 31 patients with adductor spasmodic dysphonia, who had undergone more than 5 consecutive Dysport injections (either unilateral or bilateral) and had completed 5 concomitant self-rated efficacy and complication scores questionnaires related to the previous injections. We also developed a Neurophysiological Scoring (NPS) system which has utility in the treatment administration. Method and materials Data were gathered prospectively on voice improvement (self-rated 6 point scale), length of response and duration of complications (breathiness, cough, dysphagia and total voice loss). Injections were performed under electromyography (EMG) guidance. NPS scale was used to describe the EMG response. Dose and unilateral/bilateral injections were determined by clinical judgment based on previous response. Time intervals between injections were patient driven. Results Low dose unilateral Dysport injection was associated with no significant difference in the patient's outcome in terms of duration of action, voice score (VS) and complication rate when compared to bilateral injections. Unilateral injections were not associated with any post treatment total voice loss unlike the bilateral injections. Conclusion Unilateral low dose Dysport injections are recommended in the treatment of adductor spasmodic dysphonia. PMID:19852852

  6. Do Australian Football players have sensitive groins? Players with current groin pain exhibit mechanical hyperalgesia of the adductor tendon.

    PubMed

    Drew, Michael K; Lovell, Gregory; Palsson, Thorvaldur S; Chiarelli, Pauline E; Osmotherly, Peter G

    2016-10-01

    This is the first study to evaluate the mechanical sensitivity, clinical classifications and prevalence of groin pain in Australian football players. Case-control. Professional (n=66) and semi-professional (n=9) Australian football players with and without current or previous groin injuries were recruited. Diagnoses were mapped to the Doha Agreement taxonomy. Point and career prevalence of groin pain was calculated. Pressure pain thresholds (PPTs) were assessed at regional and distant sites using handheld pressure algometry across four sites bilaterally (adductor longus tendon, pubic bone, rectus femoris, tibialis anterior muscle). To assess the relationship between current groin pain and fixed effects of hyperalgesia of each site and a history of groin pain, a mixed-effect logistic regression model was utilised. Receiver Operator Characteristic (ROC) curve were determined for the model. Point prevalence of groin pain in the preseason was 21.9% with a career prevalence of 44.8%. Adductor-related groin pain was the most prevalent classification in the pre-season period. Hyperalgesia was observed in the adductor longus tendon site in athletes with current groin pain (OR=16.27, 95% CI 1.86 to 142.02). The ROC area under the curve of the regression model was fair (AUC=0.76, 95% CI 0.54 to 0.83). Prevalence data indicates that groin pain is a larger issue than published incidence rates imply. Adductor-related groin pain is the most common diagnosis in pre-season in this population. This study has shown that hyperalgesia exists in Australian football players experiencing groin pain indicating the value of assessing mechanical pain sensitivity as a component of the clinical assessment. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Differences in botulinum toxin dosing between patients with adductor spasmodic dysphonia and essential voice tremor.

    PubMed

    Orbelo, Diana M; Duffy, Joseph R; Hughes Borst, Becky J; Ekbom, Dale; Maragos, Nicolas E

    2014-01-01

    To explore possible dose differences in average botulinum toxin (BTX) given to patients with adductor spasmodic dysphonia (ADSD) compared with patients with essential voice tremor (EVT). A retrospective study compared the average BTX dose injected in equal doses to the thyroarytenoid (TA) muscles of 51 patients with ADSD with 52 patients with EVT. Those with ADSD received significantly higher total doses (6.80 ± 2.79 units) compared with those with EVT (5.02 ± 1.65 units). Dose at time of first injection, age at time of first injection, gender, year of first injection, and average time between injections were included in multivariate analysis but did not interact with total average dose findings. Patients with ADSD may need relatively higher doses of BTX injections to bilateral TA muscles compared with patients with EVT. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  8. Muscle MRI of classic infantile pompe patients: Fatty substitution and edema-like changes.

    PubMed

    Pichiecchio, Anna; Rossi, Marta; Cinnante, Claudia; Colafati, Giovanna Stefania; De Icco, Roberto; Parini, Rossella; Menni, Francesca; Furlan, Francesca; Burlina, Alberto; Sacchini, Michele; Donati, Maria Alice; Fecarotta, Simona; Casa, Roberto Della; Deodato, Federica; Taurisano, Roberta; Di Rocco, Maja

    2017-06-01

    The aim of this study was to evaluate the muscle MRI pattern of 9 patients (median age: 6.5 ± 2.74 years) affected by classic infantile-onset Pompe disease who were treated with enzyme replacement therapy. We performed and qualitatively scored T1-weighted (T1-w) sequences of the facial, shoulder girdle, paravertebral, and lower limb muscles and short-tau inversion recovery (STIR) sequences of the lower limbs using the Mercuri and Morrow scales, respectively. On T1-w images, mild (grade 1) or moderate (grade 2) involvement was found in the tongue in 6 of 6 patients and in the adductor magnus muscle in 6 of 9. STIR hyperintensity was detected in all areas examined and was categorized as limited to mild in 5 of 8 patients. On T1-w sequences, mild/moderate adipose substitution in the adductor magnus and tongue muscles was documented. STIR edema-like alterations of thigh and calf muscles are novel findings. Correlations with biopsy findings and clinical parameters are needed to fully understand these findings. Muscle Nerve 55: 841-848, 2017. © 2016 Wiley Periodicals, Inc.

  9. Selective lateral laser thyroarytenoid myotomy for adductor spasmodic dysphonia.

    PubMed

    Hussain, A; Shakeel, M

    2010-08-01

    Selective lateral laser thyroarytenoid myotomy is a conceptually sound, simple, minimally invasive, repeatable and predictable new surgical procedure for treating adductor spasmodic dysphonia. This paper aims to introduce and describe the surgical technique, and to present a clinical case series and its outcomes. A prospective, clinical case series treated with selective lateral laser thyroarytenoid myotomy, with follow up of 2.5 years. Pre- and post-operative data were collected prospectively for patients undergoing selective lateral laser thyroarytenoid myotomy. These data included patient demographics, previous interventions for adductor spasmodic dysphonia, technical aspects of surgery and clinical outcome. Outcome data included clinical assessment, voice handicap index, need for further intervention, and patient satisfaction assessed by subjective improvement (detailed subjectively by the patients themselves and objectively using the Glasgow benefit inventory). Four patients (two men and two women; mean age 65 years; age range 41-80 years) were included. The mean duration of adductor spasmodic dysphonia was 11 years. All patients had previously been treated with botulinum toxin A. All patients reported improvement in voice quality, fluency, sustainability and elimination of voice breaks over 2.5 years' follow up. Clinical assessment revealed no alteration in mucosal wave, and complete relief of hyperadduction was observed on phonation. No patients required supplementary botulinum toxin treatment during follow up. Selective lateral laser thyroarytenoid myotomy seems to represent a curative procedure for adductor spasmodic dysphonia, a chronic, debilitating condition. This procedure is conceptually simple, minimally invasive and repeatable. It also seems to offer a safe and lasting alternative to botulinum toxin therapy.

  10. Extending the use of the gracilis muscle flap in perineal reconstruction surgery.

    PubMed

    Goldie, Stephen J; Almasharqah, Riyadh; Fogg, Quentin A; Anderson, William

    2016-08-01

    Reconstruction of the perineum is required following oncological resections. Plastic surgical techniques can be used to restore the aesthetics and function of the perineum. The gracilis myocutaneous flap provides a substantial skin paddle, with minimal donor site morbidity. The flap is pedicled on a perforator from the medial circumflex femoral artery, giving it limited reach across the perineum. Tunnelling the flap under the adductor longus muscle may free up more of the arterial pedicle, increasing its reach. On three female cadavers, bilateral gracilis flaps were raised in the standard surgical manner, giving six flaps in total. With the flaps pedicled across the perineum, the distance from the tip of each flap was measured to the anterior superior iliac spine (ASIS). The flaps were then tunnelled under the adductor longus muscle. The distances to the ASIS were measured again. The average pedicle length was greater than 7 cm. Tunnelling the flap under the adductor longus muscle increased the reach by more than 4 cm on average. Cadaveric dissection has shown that tunnelling of the flap in a novel way increase its reach across the perineum. This additional flexibility improves its use clinically and is of benefit to plastic surgeons operating in perineal reconstruction. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef

    PubMed Central

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  12. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef.

    PubMed

    Nanami, Atsushi

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  13. Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata.

    PubMed

    Wu, Xiangwei; Tan, Jing; Cai, Mingyi; Liu, Xiande

    2014-06-15

    In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (P<0.05) and then decreased at 8h and 14 h, respectively, however they increased again afterwards, reaching the highest levels at 50h. Under high salinity (32 ‰) stress, the mRNA levels of PuHSC70 in the mantle and gonad were increased significantly only at 24h and 48 h (P<0.05), and at the rest of the study period they were slightly elevated. Compared with the pretreatment level, the levels of expression in the digestive gland and gill were unchanged or reduced throughout the study period. The levels of PuHSC70 mRNA in the adductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the

  14. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain

    PubMed Central

    Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per

    2014-01-01

    Background: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. Purpose: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Results: Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Conclusion: Large eccentric hip adduction strength deficits were found in soccer players with adductor

  15. Psychological aspects of adductor spasmodic dysphonia: a prospective population controlled questionnaire study.

    PubMed

    Kaptein, A A; Hughes, B M; Scharloo, M; Hondebrink, N; Langeveld, T P M

    2010-02-01

    To examine psychosocial concomitants, illness perceptions, and treatment perceptions in patients with adductor spasmodic dysphonia. Prospective controlled cohort study. A tertiary care facility. Forty-nine out-patients (38 women, 11 men; average age of 52 years) with adductor spasmodic dysphonia completed a battery of reliable and validated psychometric assessment instruments. Control patients' data were derived from scores in questionnaires by samples in the formal Manuals of the questionnaires used. Psychosocial functioning, illness perceptions, and treatment perceptions. Scores on psychosocial measures were elevated in male patients especially, indicating levels of psychological morbidity significantly above those seen in the general population. Assessments of illness perceptions and treatment perceptions indicated that patients perceive that they have a very low degree of control over the disorder, and experience a high emotional impact from it. Voice Handicap Index scores illustrated substantial degrees of perceived handicap. Adductor spasmodic dysphonia is associated with significant negative psychosocial concomitants, coupled with low perceived control over the condition. Future research should elucidate the implications of illness perceptions and treatment perceptions for the biopsychosocial care of persons with adductor spasmodic dysphonia in order to improve self-management and enhance quality of life.

  16. Progression and variation of fatty infiltration of the thigh muscles in Duchenne muscular dystrophy, a muscle magnetic resonance imaging study.

    PubMed

    Li, Wenzhu; Zheng, Yiming; Zhang, Wei; Wang, Zhaoxia; Xiao, Jiangxi; Yuan, Yun

    2015-05-01

    The purpose of this study was to assess the progression and variation of fatty infiltration of the thigh muscles of Duchenne muscular dystrophy patients. Muscle magnetic resonance imaging was used to measure the degree of fatty infiltration of the thigh muscles of 171 boys with Duchenne muscular dystrophy (mean age, 6.09 ± 2.30 years). Fatty infiltration was assigned using a modified Mercuri's scale 0-5 (normal-severe). The gluteus maximus and adductor magnus were affected in patients less than two years old, followed by the biceps femoris. Quadriceps and semimembranosus were first affected at the age of five to six years; the sartorius, gracilis and adductor longus remained apparently unaffected until seven years of age. Fatty infiltration of all the thigh muscles developed rapidly after seven years of age. The standard deviation of the fatty infiltration scores ranged from 2.41 to 4.87 before five years old, and from 6.84 to 11.66 between six and ten years old. This study provides evidence of highly variable degrees of fatty infiltration in children of different ages with Duchenne muscular dystrophy, and indicates that fatty infiltration progresses more quickly after seven years of age. These findings may be beneficial for the selection of therapeutic regimens and the analysis of future clinical trials. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Parasites and pathological condition in Green mussel Perna viridis Linnaeus, 1758 from western Johor Straits, Malaysia

    NASA Astrophysics Data System (ADS)

    Azmi, Nur-Fauzana; Ghaffar, Mazlan Abd.; Cob, Zaidi Che

    2018-04-01

    This study describes the parasites and pathological condition of infected organ of the green mussel Perna viridis from Merambong Shoal, Western Johor Straits, Malaysia. Samples were collected randomly in November and December 2013. Histopathology techniques using Masson's Trichrome staining protocol were performed and the thin sections were observed under light microscope. Result showed that gonad was the most infected organ followed by the digestive tubule, adductor muscle, intestine and mantle tissue. The parasites (apicomplexa) such as spore-like Nematopsis, macrogamont-like coccidian, mature oocyst-like coccidian, unidentified coccidian and protozoan were found in the adductor muscle, gonad and mantle. Meanwhile, the pathological conditions were found in all infected organs except the gill, such as particular melanin deposits in cytoplasm, Rickettsia-like or Chlamydiae organism and bacteria-like inclusions. Haemocytic infiltrations were found in the surrounding connective tissues of all infected organs. However, these light infections are not causing morbidity and mortalityof the green mussel P.viridis. This study provides baseline information on health profile of the green mussel P.viridis. Further investigations are needed particularly on parasite species identification and their ecology. Understanding of the morphology and pathology of parasites infecting mollusks are very important for management of the resources.

  18. The precision and torque production of common hip adductor squeeze tests used in elite football.

    PubMed

    Light, N; Thorborg, K

    2016-11-01

    Decreased hip adductor strength is a known risk factor for groin injury in footballers, with clinicians testing adductor strength in various positions and using different protocols. Understanding how reliable and how much torque different adductor squeeze tests produce will facilitate choosing the most appropriate method for future testing. In this study, the reliability and torque production of three common adductor squeeze tests were investigated. Test-retest reliability and cross-sectional comparison. Twenty elite level footballers (16-33 years) without previous or current groin pain were recruited. Relative and absolute test-retest reliability, and torque production of three adductor squeeze tests (long-lever in abduction, short-lever in adduction and short-lever in abduction/external rotation) were investigated. Each participant performed a series of isometric strength tests measured by hand-held dynamometry in each position, on two test days separated by two weeks. No systematic variation was seen for any of the tests when using the mean of three measures (ICC=0.84-0.97, MDC%=6.6-19.5). The smallest variation was observed when taking the mean of three repetitions in the long-lever position (ICC=0.97, MDC%=6.6). The long-lever test also yielded the highest mean torque values, which were 69% and 11% higher than the short-lever in adduction test and short-lever in abduction/external rotation test respectively (p<0.001). All three tests described in this study are reliable methods of measuring adductor squeeze strength. However, the test performed in the long-lever position seems the most promising as it displays high test-retest precision and the highest adductor torque production. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. [Effects of surgery on muscles on clinical and radiographic findings in the hip joint region in cerebral palsy patients].

    PubMed

    Schejbalová, A; Havlas, V

    2008-10-01

    PURPOSE OF THE STUDY Isolated or combined surgical procedures on muscles around the hip joint are currently indicated by many authors. In cerebral palsy patients they are regarded as essential intervention. MATERIAL In the years 2005-2007, surgery in the hip joint region was essential for 150 children between 3 and 18 years of age. At the time of surgery, the patients' locomotion ranged from stage 1 to stage 7 of the Vojta system. METHODS The outcome was evaluated by clinical and radiographic examination at 2 and 6 months post-operatively and hip migration percentage and Wiberg's CE angle were measured. RESULTS The best clinical and radiographic outcomes were achieved in children younger than 6 years of age. On the other hand, isolated transfer of the distal rectus femoris muscle significantly affected pelvis anteflexion in adolescent patients. The most marked decrease in migration percentage was found after adductor tenotomy combined with surgery on the iliopsoas muscle (55.6 %) or when the two procedures were combined with distal rectus femoris transfer. DISCUSSION Combined surigical procedures, i.e., adductor tenotomy, surgery on the iliopsoas muscle or rectus femoris muscle and medial hamstrings, with fixation using an abduction modified Atlanta brace, are effective in patients with marked lateral hip migration who are younger that 6 years. Isolated adductor tenotomy and distal transfer of the rectus femoris muscle markedly improve standing position in walking patients. CONCLUSION An appropriate combination of surgical procedures on muscles in the hip region and on medial hamstrings can significantly improve the patient's locomotion and, if lateral migration is present, help to avoid surgery on bones.

  20. Speech Intelligibility in Severe Adductor Spasmodic Dysphonia

    ERIC Educational Resources Information Center

    Bender, Brenda K.; Cannito, Michael P.; Murry, Thomas; Woodson, Gayle E.

    2004-01-01

    This study compared speech intelligibility in nondisabled speakers and speakers with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (Botox) injection. Standard speech samples were obtained from 10 speakers diagnosed with severe ADSD prior to and 1 month following Botox injection, as well as from 10 age- and gender-matched…

  1. Adductor tenotomy: its role in the management of sports-related chronic groin pain.

    PubMed

    Atkinson, Henry Dushan E; Johal, Parminder; Falworth, Mark S; Ranawat, Vijai S; Dala-Ali, Benan; Martin, David K

    2010-08-01

    Chronic adductor-related groin pain in athletes is debilitating and is often challenging to treat. Little is published on the surgical treatment when conservative measures fail. This single center study reviews the outcomes of 48 patients (68 groins) who underwent percutaneous adductor tenotomy for sports-related chronic groin pain. Questionnaire assessments were made preoperatively and at a minimum follow-up of 25 months. Mean pre-injury Tegner activity scores of 8.8 reduced to 6.1 post-injury and these improved to 7.7 following surgery (p < 0.001). Sixty percent of patients regained or bettered their pre-injury Tegner activity scores after the adductor surgery; however, mean post-surgical Tegner scores still remained lower than pre-injury scores (p < 0.001). No patient had been able to engage in their chosen sport at their full ability pre-operatively, and 40% had been unable to participate in any sporting activity. The mean return to sports was at 18.5 weeks postoperatively, with 54% returning to their pre-injury activity levels, and only 8% still unable to perform athletic activities at latest follow-up. Seventy-three percent patients rated the outcome of their surgery as excellent or very satisfactory, and only three patients would not have wished to undergo the procedure again if symptoms recurred or developed on the opposite side. No patients reported their outcome as worse. A 78.1% mean improvement in function and an 86.5% mean improvement in pain were reported, and these two measures showed statistically significant correlation (p = 0.01). Groin disability scores improved from a mean of 11.8 to 3.9, post-operatively (p < 0.001). Bruising was seen in 37% of procedures, 3 patients developed a scrotal hematoma and 1 patient had a superficial wound infection. One patient developed recurrent symptoms following re-injury 26 months post-surgery, and fully recovered following a further adductor tenotomy. Adductor tenotomy provides good symptomatic and functional

  2. Differential Roles for the Thyroarytenoid and Lateral Cricoarytenoid Muscles in Phonation

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen

    2015-01-01

    Objective Laryngeal adductor muscle dysfunction is common cause of voice disorders. Reconstitution of adductor muscle function is often the target of therapy, but the effects of these muscles on voice production remain to be fully understood. This study investigated the differential roles of thyroarytenoid (TA) and lateral cricoarytenoid (LCA) muscles on voice production. Study Design Basic science study using an in vivo canine model of phonation. Methods The TA and LCA muscle nerve branches were stimulated to obtain 7 graded levels of muscle activation, from threshold to maximal contraction. The effects of LCA activation alone, TA activation alone, and combined TA and LCA activation on phonation onset parameters were investigated. Phonatory posture, phonation onset type, fundamental frequency (F0), phonation onset pressure, and airflow were evaluated. Results LCA activation closed the posterior glottis but mid-membranous gap remained. TA activation closed the membranous glottis but posterior gap remained. Complete glottal closure was obtained only with combined TA and LCA activation. Phonation onset with LCAs alone was characterized by multiple modes (soft, aperiodic, periodic), while with TAs alone was abrupt and periodic but had significant baseline noise. Combined muscle activation led to elimination of baseline noise with stable abrupt periodic onset of phonation. Combined muscle activation was also necessary for F0 variation. LCA assisted the TA in increasing subglottal pressure while concurrently reducing phonation onset airflow. Conclusion TA is necessary for F0 variation, stable onset phonation, and increased subglottal pressure but needs LCA for optimal effectiveness and to reduce airflow requirements with increased activation. PMID:26198167

  3. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    PubMed

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  4. Anatomy of the Adductor Magnus Origin

    PubMed Central

    Obey, Mitchel R.; Broski, Stephen M.; Spinner, Robert J.; Collins, Mark S.; Krych, Aaron J.

    2016-01-01

    Background: The adductor magnus (AM) has historically been a potential source of confusion in patients with suspected proximal hamstring avulsion injuries. Purpose: To investigate the anatomic characteristics of the AM, including its osseous origin, anatomic dimensions, and relationship to the proximal hamstring tendons. Study Design: Descriptive laboratory study. Methods: Dissection of the AM origin was performed in 11 (8 cadavers) fresh-frozen hip-to-foot cadaveric hemipelvis specimens. The gross anatomy and architecture of the proximal hamstring and AM tendons were studied. After dissecting the hamstring tendons away from their origin, the dimension, shape, and orientation of the tendon footprints on the ischial tuberosity were determined. Results: The AM was identified in all cadaveric specimens. The mean tendon thickness (anterior to posterior [AP]) was 5.7 ± 2.9 mm. The mean tendon width (medial to lateral [ML]) was 7.1 ± 2.2 mm. The mean tendon length was 13.1 ± 8.7 cm. The mean footprint height (AP dimension) was 12.1 ± 2.9 mm, and mean footprint width (ML dimension) was 17.3 ± 7.1 mm. The mean distance between the AM footprint and the most medial aspect of the conjoint tendon footprint was 8.5 ± 4.2 mm. Tendon measurements demonstrated a considerable degree of both intra- and interspecimen variability. Conclusion: The AM tendon is consistently present just medial to the conjoint tendon at the ischial tuberosity, representing the lateral-most portion of the AM muscle. This study found wide variation in the dimensional characteristics of the AM tendon between specimens. Its shape and location can mimic the appearance of an intact hamstring (conjoint or semimembranosus) tendon intraoperatively or on diagnostic imaging, potentially misleading surgeons and radiologists. Therefore, detailed knowledge of the AM tendon anatomy, footprint anatomy, and its relationship to the hamstring muscle complex is paramount when planning surgical approach and technique

  5. Arthroscopic pubic symphysis debridement and adductor enthesis repair in athletes with athletic pubalgia: technical note and video illustration.

    PubMed

    Hopp, Sascha; Tumin, Masjudin; Wilhelm, Peter; Pohlemann, Tim; Kelm, Jens

    2014-11-01

    We elaborately describe our novel arthroscopic technique of the symphysis pubis in athletes with osteitis pubis and concomitant adductor enthesopathy who fail to conservative treatment modalities. The symphysis pubis is debrided arthroscopically and the degenerated origin of adductor tendon (enthesis) is excised and reattached. With our surgical procedure the stability of the symphysis pubis is successfully preserved and the adductor longus enthesopathy simultaneously addressed in the same setting.

  6. Muscle contributions to knee extension in the early stance phase in patients with knee osteoarthritis.

    PubMed

    Ogaya, Shinya; Kubota, Ryo; Chujo, Yuta; Hirooka, Eiko; Kwang-Ho, Kim; Hase, Kimitaka

    2017-10-01

    The aim of this study was to analyze individual muscle contributions to knee angular acceleration using a musculoskeletal simulation analysis and evaluate knee extension mechanics in the early stance phase in patients with knee osteoarthritis (OA). The subjects comprised 15 patients with medial knee OA and 14 healthy elderly individuals. All participants underwent gait performance test using 8 infrared cameras and two force plates to measure the kinetic and kinematic data. The simulation was driven by 92 Hill-type muscle-tendon units of the lower extremities and a trunk with 23° of freedom. We analyzed each muscle contribution to knee angular acceleration in the 5%-15% and 15%-25% periods of the stance phase (% SP) using an induced acceleration analysis. We compared accelerations by individual muscles between the two groups using an analysis of covariance for controlling gait speed. Patients with knee OA had a significantly lesser knee extension acceleration by the vasti muscles and higher knee acceleration by hip adductors than those in controls in 5-15% SP. In addition, knee OA resulted in significantly lesser knee extension acceleration by the vasti muscles in 15-25% SP. These results indicate that patients with knee OA have decreased dependency on the vasti muscles to control knee movements during early stance phase. Hip adductor muscles, which mainly control mediolateral motion, partly compensate for the weak knee extension by the vasti muscles in patients with knee OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis.

    PubMed

    Cappello, Tiziana; Maisano, Maria; Mauceri, Angela; Fasulo, Salvatore

    2017-08-01

    Environmental metabolomics is a high-throughout approach that provides a snapshot of the metabolic status of an organism. In order to elucidate the biological effects of petrochemical contamination on aquatic invertebrates, mussels Mytilus galloprovincialis were caged at the "Augusta-Melilli-Priolo" petrochemical area and Brucoli (Sicily, south Italy), chosen as the reference site. After confirming the elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and mercury (Hg) in Augusta sediments in our previous work (Maisano et al., 2016a), herein an environmental metabolomics approach based on protonic nuclear magnetic resonance ( 1 H NMR), coupled with chemometrics, was applied on the mussel posterior adductor muscle (PAM), the main muscular system in bivalve molluscs. Amino acids, osmolytes, energy storage compounds, tricarboxylic acid cycle intermediates, and nucleotides, were found in PAM NMR spectra. Principal Component Analysis (PCA) indicated that mussels caged at the polluted site clustered separately from mussels from the control area, suggesting a clear differentiation between their metabolic profiles. Specifically, disorders in energy metabolism, alterations in amino acids metabolism, and disturbance in the osmoregulatory processes were observed in mussel PAM. Overall, findings from this work demonstrated the usefulness of applying an active biomonitoring strategy for environmental risk assessment, and the effectiveness of metabolomics in elucidating changes in metabolic pathways of aquatic organisms caged at sites differentially contaminated, and thus its suitability to be applied in ecotoxicological studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. New insights into muscle function during pivot feeding in seahorses.

    PubMed

    Van Wassenbergh, Sam; Dries, Billy; Herrel, Anthony

    2014-01-01

    Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae.

  9. New Insights into Muscle Function during Pivot Feeding in Seahorses

    PubMed Central

    Van Wassenbergh, Sam; Dries, Billy; Herrel, Anthony

    2014-01-01

    Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae. PMID:25271759

  10. Partial characterization of an effluent produced by cooking of Jumbo squid (Dosidicus gigas) mantle muscle.

    PubMed

    Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina

    2010-01-01

    Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.

  11. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.

    PubMed

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2016-10-01

    Contracture is a permanent shortening of the muscle-tendon-ligament complex that limits joint mobility. Contracture is involved in many diseases (cerebral palsy, stroke, etc.) and can impair walking and other activities of daily living. The purpose of this study was to quantify the reliability of an exoskeleton designed to emulate lower limb muscle contractures unilaterally and bilaterally during walking. An exoskeleton was built according to the following design criteria: adjustable to different morphologies; respect of the principal lines of muscular actions; placement of reflective markers on anatomical landmarks; and the ability to replicate the contractures of eight muscles of the lower limb unilaterally and bilaterally (psoas, rectus femoris, hamstring, hip adductors, gastrocnemius, soleus, tibialis posterior, and peroneus). Sixteen combinations of contractures were emulated on the unilateral and bilateral muscles of nine healthy participants. Two sessions of gait analysis were performed at weekly intervals to assess the reliability of the emulated contractures. Discrete variables were extracted from the kinematics to analyse the reliability. The exoskeleton did not affect normal walking when contractures were not emulated. Kinematic reliability varied from poor to excellent depending on the targeted muscle. Reliability was good for the bilateral and unilateral gastrocnemius, soleus, and tibialis posterior as well as the bilateral hamstring and unilateral hip adductors. The exoskeleton can be used to replicate contracture on healthy participants. The exoskeleton will allow us to differentiate primary and compensatory effects of muscle contractures on gait kinematics. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A pilot study to assess adductor canal catheter tip migration in a cadaver model.

    PubMed

    Leng, Jody C; Harrison, T Kyle; Miller, Brett; Howard, Steven K; Conroy, Myles; Udani, Ankeet; Shum, Cynthia; Mariano, Edward R

    2015-04-01

    An adductor canal catheter may facilitate early ambulation after total knee arthroplasty, but there is concern over preoperative placement since intraoperative migration of catheters may occur from surgical manipulation and result in ineffective analgesia. We hypothesized that catheter type and subcutaneous tunneling may influence tip migration for preoperatively inserted adductor canal catheters. In a male unembalmed human cadaver, 20 catheter insertion trials were divided randomly into one of four groups: flexible epidural catheter either tunneled or not tunneled; or rigid stimulating catheter either tunneled or not tunneled. Intraoperative patient manipulation was simulated by five range-of-motion exercises of the knee. Distance and length measurements were performed by a blinded regional anesthesiologist. Changes in catheter tip to nerve distance (p = 0.225) and length of catheter within the adductor canal (p = 0.467) were not different between the four groups. Two of five non-tunneled stimulating catheters (40 %) were dislodged compared to 0/5 in all other groups (p = 0.187). A cadaver model may be useful for assessing migration of regional anesthesia catheters; catheter type and subcutaneous tunneling may not affect migration of adductor canal catheters based on this preliminary study. However, future studies involving a larger sample size, actual patients, and other catheter types are warranted.

  13. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain: An Assessor-Blinded Comparison.

    PubMed

    Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per

    2014-02-01

    Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Cross-sectional study; Level of evidence, 3. Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain compared with asymptomatic soccer players

  14. The Effect of Therapeutic Exercise on Long-Standing Adductor-Related Groin Pain in Athletes: Modified Hölmich Protocol

    PubMed Central

    Yousefzadeh, Abbas; Olyaei, Gholam Reza; Naseri, Nasrin; Khazaeipour, Zahra

    2018-01-01

    Objective The Hölmich protocol in therapeutic exercise is the most appropriate method for the treatment of long-standing adductor-related groin pain (LSAGP). Herein, we evaluated a modified Hölmich protocol to resolve the possible limitations intrinsic to the Hölmich protocol in terms of the rate of return to sport and the recovery period for athletes with LSAGP. Design The study followed a single-blind, before/after study design, where 15 athletes with LSAGP (mean age = 26.13 years; SD = 4.48) performed a 10-week modified Hölmich therapeutic exercise protocol. Results Outcome scores related to pain, hip adductor and abductor muscle strengths, and the ratio of maximum isometric and eccentric hip adduction to abduction strength increased significantly. Likewise, hip abduction and internal rotation ROM improved significantly compared to that at baseline. Furthermore, functional records (t-test, Edgren Side Step Test, and Triple Hop Test) showed significant improvement after treatment. Finally, 13 athletes (86.6% of the participants) successfully returned to sports activity in a mean time of 12.06 weeks (SD = 3.41). Conclusion The findings of this study objectively show that the modified Hölmich protocol may be safer and more effective than the Hölmich protocol in athletes with LSAGP in promoting their return to sports activity. This trial is registered with  IRCT2016080829269N1. PMID:29721339

  15. Effect of ractopamine-HCl supplementation for 28 days on carcass characteristics, muscle fiber morphometrics, and whole muscle yields of six distinct muscles of the loin and round.

    PubMed

    Gonzalez, J M; Johnson, S E; Stelzleni, A M; Thrift, T A; Savell, J D; Warnock, T M; Johnson, D D

    2010-07-01

    This study evaluated the effects of ractopamine-HCl (RAC) supplementation on carcass characteristics, muscle fiber morphometrics, and tenderness. Thirty-four steers (2 groups, 4 replicates) were fed RAC or carrier for 28 days prior to harvest. Seventy-two hours postmortem, the Longissimus lumborum (LL), Gracilis (GRA), Vastus lateralis (VL), Rectus femoris (RF), Semimembranosus (SM), and Adductor (ADD) were dissected from each carcass. Commodity weight, denuded weight, and muscle dimensions were collected. RAC supplementation tended to affect dressing percentage (P=0.15) and muscle firmness (P<0.15), and significantly affected lean maturity (P<0.05) and marbling score (P<0.05). With the exception of the LL and GRA (P<0.05), RAC had no effect on muscle dimensions. RAC did not influence the tenderness of vacuum-packaged, aged steaks as measured by Warner-Bratzler shear force. Muscle fiber size within the six muscles was unchanged (P>0.05) by RAC. Thus, RAC improves carcass parameters without a negative impact on tenderness. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Sonographic prevalence of groin hernias and adductor tendinopathy in patients with femoroacetabular impingement.

    PubMed

    Naal, Florian D; Dalla Riva, Francesco; Wuerz, Thomas H; Dubs, Beat; Leunig, Michael

    2015-09-01

    Femoroacetabular impingement (FAI) is a common debilitating condition that is associated with groin pain and limitation in young and active patients. Besides FAI, various disorders such as hernias, adductor tendinopathy, athletic pubalgia, lumbar spine affections, and others can cause similar symptoms. To determine the prevalence of inguinal and/or femoral herniation and adductor insertion tendinopathy using dynamic ultrasound in a cohort of patients with radiographic evidence of FAI. Case series; Level of evidence, 4. This retrospective study consisted of 74 patients (36 female and 38 male; mean age, 29 years; 83 symptomatic hips) with groin pain and radiographic evidence of FAI. In addition to the usual diagnostic algorithm, all patients underwent a dynamic ultrasound examination for signs of groin herniation and tendinopathy of the proximal insertion of the adductors. Evidence of groin herniation was found in 34 hips (41%). There were 27 inguinal (6 female, 21 male) and 10 femoral (9 female, 1 male) hernias. In 3 cases, inguinal and femoral herniation was coexistent. Overall, 5 patients underwent subsequent hernia repair. Patients with groin herniation were significantly older than those without (33 vs 27 years, respectively; P = .01). There were no significant differences for any of the radiographic or clinical parameters. Tendinopathy of the proximal adductor insertion was detected in 19 cases (23%; 11 female, 8 male). Tendinopathy was coexistent with groin herniation in 8 of the 19 cases. There were no significant differences for any of the radiographic or clinical parameters between patients with or without tendinopathy. Patients with a negative diagnostic hip injection result were more likely to have a concomitant groin hernia than those with a positive injection result (80% vs 27%, respectively). Overall, 38 hips underwent FAI surgery with satisfactory outcomes in terms of score values and subjective improvement. The results demonstrate that groin

  17. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  18. Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty.

    PubMed

    Koh, In Jun; Choi, Young Jun; Kim, Man Soo; Koh, Hyun Jung; Kang, Min Sung; In, Yong

    2017-06-01

    Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA.

  19. Hip adductor pyomyositis from Streptococcus mitis in a four-year-old child.

    PubMed

    Buldu, Metin Tolga; Raman, Raghu

    2016-01-01

    The unique aspect of this case study is the unusual history, presentation, ultrasonography, MRI and blood culture results, which lead to the diagnosis and treatment of adductor pyomyositis with a rare organism in a temperate country. The patient presented with a one-day history of malaise, fever, left groin pain and inability to weight bear on the left leg. There was no history of any trauma, predisposing infections or recent travel. Plain radiograph and ultrasound of the hip was normal with no effusion. Two consecutive blood cultures suggested Streptococcus mitis bacteraemia and MRI scan confirmed pyomyositis of the left hip adductors that was too small to drain. S. mitis is a normal commensal organism however it can lead to opportunistic infections particularly endocarditis. Echocardiogram revealed no cardiac complications, in particular no endocarditic vegetation. Patient was treated with intravenous benzylpenicillin for a week followed by oral phenoxymethylpenicillin for a week. Adductor pyomyositis must be considered as a differential diagnosis in a child with unusual presentation of hip pain. When an ultrasound is normal, MRI scan is warranted to confirm diagnosis. Septic screen should include blood cultures. The commonest causative organisms are the Staphylococcus family. However if S. mitis is isolated, cardiac sources of infection resulting in septic emboli must be investigated. Repeated MRI scans are required particularly if the patient does not respond to medical management. IV.

  20. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, D.A.; Ellis, S.; Giometti, C.S.

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to accountmore » for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.« less

  1. The point-touch technique for botulinum toxin injection in adductor spasmodic dysphonia: quality of life assessment.

    PubMed

    Morzaria, S; Damrose, E J

    2011-07-01

    Botulinum toxin injection under electromyographic guidance is the 'gold standard' for adductor spasmodic dysphonia treatment. The point-touch technique, an alternative injection method which relies on anatomical landmarks, is cheaper, quicker and more accessible, but has not yet gained widespread acceptance due to concerns about patient satisfaction. To assess swallowing and voice-related quality of life following point-touch botulinum toxin injection in adductor spasmodic dysphonia patients. Stanford University Voice and Swallowing Center. Prospective case series (evidence level four). Consecutive adductor spasmodic dysphonia patients with a stable botulinum toxin dose-response relationship were recruited prospectively. The Eating Assessment Tool and Voice-Related Quality of Life questionnaires were completed pre-treatment and at 10 and 30 per cent completion of the injection cycle, respectively. Thirty-seven patients completed follow up. The mean total botulinum toxin dose was 0.88 units. Pre-treatment Voice-Related Quality of Life questionnaire results reflected the burden of disease. Post-treatment Eating Assessment Tool and Voice-Related Quality of Life questionnaire results were collected at 2.53 and 7.84 weeks, respectively; the former showed an increase in dysphagia, albeit statistically insignificant, while the latter showed significantly improved scores (both domain and total). The point-touch technique is a viable alternative for botulinum toxin injection in the treatment of adductor spasmodic dysphonia.

  2. Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallop Pecten maximus.

    PubMed

    Blanco, J; Acosta, C P; Bermúdez de la Puente, M; Salgado, C

    2002-10-02

    The depuration kinetics of the domoic acid of four body fractions (digestive gland, adductor muscle, gonad+kidney and gills+mantle) of the scallop Pecten maximus was studied over 295 days. The scallops, which had acquired the toxins during a Pseudo-nitzschia australis episode that took place the week before the beginning of the experiment, were maintained in tanks with running seawater. All the body fractions, except the adductor muscle, decreased their domoic acid burden throughout the experiment. The amount of toxin in the muscle dropped sharply at the start of the experiment but increased again at the end, to levels that were higher than the initial ones. Several dynamic models of depuration kinetics, which included the depuration of each fraction (excluding the adductor muscle) and the transfers between them, were constructed, implemented and fitted to the data to obtain their parameters. The estimated depuration rates were very low, both considering and not considering the transfer of toxin between organs or the effect of weight loss. There were strong differences in the domoic acid burden of the body fractions studied but not between their depuration rates. No net transfer from the digestive gland, the tissue with highest domoic acid concentration, to the other fractions was found, as the inclusion of these processes in the models produced only a marginally better fit to the data. The depuration of domoic acid was slightly, but significantly, affected by biomass. Weight loss induced domoic acid loss, suggesting that part of the depuration may be produced by the direct loss of bivalve cells. The concentration or dilution effect, due to decreases or increases in biomass, documented for other species and toxins, has little importance in Pecten maximus.

  3. Intrinsic Constraints on the Diversification of Neotropical Cichlid Adductor Mandibulae Size.

    PubMed

    Arbour, Jessica; López-Fernández, Hernán

    2018-02-01

    The diversification of functional traits may be constrained by intrinsic factors, such as structural, mechanical, developmental, or physiological limitations. We explored the biomechanical and constructional constraints on the size of the major jaw closing muscles, the adductor mandibulae complex (AM), in a diverse clade of freshwater fish - the Neotropical cichlids. Using phylogenetic comparative methods, we contrasted patterns of size variation and diversification rates of three AM divisions with variables describing head size and biomechanical coefficients describing force and velocity transmission. We found that all three AM muscles examined were impacted by constructional constraints, namely, (1) the space available in the head (head length and width-all AMs), (2) competition with the eye (AM1 and AM2), (3) competition for space among the three major AM divisions (e.g., AM1 vs. AM3), and (4) potentially the shape of the lower jaw (AM2). Only AM2 size was significantly associated with lower jaw biomechanical coefficients, but opposite predictions based on force transmission (i.e., no compensation for low mechanical advantage). Diversification rates of the mass of the divisions of the AM were also not connected to the diversification rates of their biomechanical coefficients. Previously suggested compensation in AM mass for reduced force transmission among ram-feeding predators appears to be driven by overall body plan changes (lengthening of the head in elongate bodies) and only indirectly to biomechanical trade-offs. Strong constructional constraints on AM size likely limit potentially functional morphospace occupation, and highlight the highly integrated nature of ram-suction feeding functional adaptations in Neotropical cichlids. Anat Rec, 301:216-226, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Functional properties of protein from frozen mantle and fin of jumbo squid Dosidicus gigas in function of pH and ionic strength.

    PubMed

    Rocha-Estrada, J G; Córdova-Murueta, J H; García-Carreño, F L

    2010-10-01

    Functional properties of protein from mantle and fin of the jumbo squid Dosidicus gigas were explained based on microscopic muscle fiber and protein fractions profiles as observed in SDS-PAGE. Fin has higher content of connective tissue and complex fiber arrangement, and we observed higher hardness of fin gels as expected. Myosin heavy chain (MHC) was found in sarcoplasmic, myofibril and soluble-in-alkali fractions of mantle and only in sarcoplasmic and soluble-in-alkali fractions of fin. An additive effect of salt concentration and pH affected the solubility and foaming properties. Fin and mantle proteins yielded similar results in solubility tests, but significant differences occurred for specific pH and concentrations of salt. Foaming capacity was proportional to solubility; foam stability was also affected by pH and salt concentration. Hardness and fracture strength of fin gels were significantly higher than mantle gels; gels from proteins of both tissues reached the highest level in the folding test. Structural and molecular properties, such as MHC and paramyosin solubility, arrangement of muscle fibers and the content of connective tissue were useful to explain the differences observed in these protein properties. High-strength gels can be formed from squid mantle or fin muscle. Fin displayed similar or better properties than mantle in all tests.

  5. Persistence of Vibrio vulnificus in tissues of Gulf Coast oysters, Crassostrea virginica, exposed to seawater disinfected with UV light.

    PubMed

    Tamplin, M L; Capers, G M

    1992-05-01

    Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.

  6. Success of nonoperative management of adductor longus tendon ruptures in National Football League athletes.

    PubMed

    Schlegel, Theodore F; Bushnell, Brandon D; Godfrey, Jenna; Boublik, Martin

    2009-07-01

    Acute complete ruptures of the proximal adductor longus tendon are rare but challenging injuries to treat. The limited literature supports operative treatment, but data from management of chronic groin pain in athletes indicate that anatomical attachment of the tendon to the pubis may not be required for high-level function. Nonoperative management of complete adductor rupture can provide equal results to surgical repair in terms of return to play in the National Football League. Case series; Level of evidence, 4. Using the National Football League Injury Surveillance System, adductor tendon ruptures documented by magnetic resonance imaging were identified in 19 National Football League players from 1992 to 2004. The team physician for each respective player completed a survey with information about history, physical examination, magnetic resonance imaging findings, treatment, and outcomes. Statistics were analyzed with a Student unpaired t test. Fourteen players were treated nonoperatively, and 5 players were treated with surgical repair using suture anchors. In both groups, all players eventually returned to play in the National Football League. Mean time for return to play was 6.1 +/- 3.1 weeks (range, 3-12 weeks) for the nonoperative group and 12.0 +/- 2.5 weeks (range, 10-16 weeks) for the operative group (P = .001). One player in the operative group suffered the complication of a draining wound and heterotopic ossification. Players represented a variety of positions, and 12 of 19 (63%) had experienced prior symptoms or events. Nonoperative treatment of proximal adductor tendon rupture results in a statistically significantly faster return to play than does operative treatment in athletes competing in the National Football League and avoids the risks associated with surgery while providing an equal likelihood of return to play at the professional level.

  7. Chevron osteotomy with lateral release and adductor tenotomy for hallux valgus.

    PubMed

    Potenza, Vito; Caterini, Roberto; Farsetti, Pasquale; Forconi, Fabrizio; Savarese, Eugenio; Nicoletti, Simone; Ippolito, Ernesto

    2009-06-01

    Distal chevron osteotomy is a procedure widely performed for the surgical treatment of painful hallux valgus. The risks and benefits of a lateral capsular release and adductor tenotomy combined with chevron osteotomy are still debated. The aim of our study was to report the clinical and radiographic outcomes of this combined procedure in mild and moderate incongruent bunion deformities, with a hallux valgus angle (HVA) up to 40 degrees and an intermetatarsal angle (IMA) up to 20 degrees. Forty-two patients (52 feet) who consecutively underwent chevron osteotomy combined with lateral release and adductor tenotomy were reviewed 24-36 months after surgery. The mean age of the patients was 53.5 (range, 43 to 64) years. All the deformities were mild to moderate, with a mean preoperative value of 28 degrees in the HVA (range, 16 degrees to 40 degrees) and of 13 degrees in the IMA (range, 9 degrees to 20 degrees). At followup, the AOFAS hallux score improved from an average of 46 to an average of 88. The HVA and IMA had an average postoperative decrease respectively of 12 degrees and 6 degrees; lateral sesamoid displacement decreased by a mean of 15%. In no case did we observe infection or nonunion of the osteotomy. In one case, painless avascular necrosis of the first metatarsal head developed. Our short-term results show that distal chevron osteotomy combined with lateral release and adductor tenotomy is a feasible surgical option to address mild to moderate hallux valgus deformity, even with an IM angle between 15 and 20 degrees. Clinical and radiographic outcomes are generally good and patient satisfaction is generally high.

  8. Proteomics and immunohistochemistry identify the expression of α-cardiac myosin heavy chain in the jaw-closing muscles of sooty mangabeys (order Primates).

    PubMed

    Wall, Christine E; Holmes, Megan; Soderblom, Erik J; Taylor, Andrea B

    2018-07-01

    The jaw-closing muscles of humans and nonprimate mammals express alpha-cardiac fibers but MyHC α-cardiac has not been identified in the jaw adductors of nonhuman primates. We determined whether MyHC α-cardiac is expressed in the superficial masseter and temporalis muscles of the sooty mangabey (Cercocebus atys), an African Old World monkey that specializes on hard seeds. LC-MS/MS based proteomics was used to identify the presence of MyHC Iα. Immunohistochemistry was used to analyze the composition and distribution of fiber types in the superficial masseter and temporalis muscles of eight C. atys. Serial sections were stained against MyHC α-cardiac (MYH6), as well as MyHC-1 (NOQ7.5.4D), MyHC-2 (MY-32), and MyHC-M (2F4). Proteomics analysis identified the presence of Myosin-6 (MyHC α-cardiac) in both heart atrium and superficial masseter. MyHC α-cardiac was expressed in abundance in the superficial masseter and temporalis muscles of all eight individuals and hybrid fibers were common. The identification of MyHC α-cardiac in the jaw adductors of sooty mangabeys is a novel finding for nonhuman primates. The abundance of MyHC α-cardiac indicates a fatigue-resistant fiber population characterized by intermediate speed of contraction between pure MyHC-1 and MyHC-2 isoforms. We suggest that α-cardiac fibers may be advantageous to sooty mangabeys, whose feeding behavior includes frequent crushing of relatively large, hard seeds during the power stroke of ingestion. Additional studies comparing jaw-adductor fiber phenotype of hard-object feeding primates and other mammals are needed to explore this relationship further. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Isolation and properties of AMP deaminase from jumbo squid (Dosidicus gigas) mantle muscle from the Gulf of California, Mexico.

    PubMed

    Marquez-Rios, E; Pacheco-Aguilar, R; Castillo-Yañez, F J; Figueroa-Soto, C G; Ezquerra-Brauer, J M; Gollas-Galvan, T

    2008-09-01

    Adenosine monophosphate (AMP) deaminase was purified from jumbo squid mantle muscle by chromatography in cellulose phosphate, Q-Fast and 5'-AMP sepharose. Specific activity of 2.5U/mg protein, 4.5% recovery and 133.68 purification fold were obtained at the end of the experiment. SDS-PAGE showed a single band with 87kDa molecular mass, native PAGE proved a band of 178kDa, whereas gel filtration detected a 180kDa protein, suggesting the homodimeric nature of this enzyme, in which subunits are not linked by covalent forces. Isoelectric focusing of this enzyme showed a pI of 5.76, which agrees with pI values of AMP deaminase from other invertebrate organisms. AMP deaminase presented a kinetic sigmoidal plot with Vmax of 1.16μM/min/mg, Km of 13mM, Kcat of 3.48μM.s(-1) and a Kcat/Km of 267 (mol/L)(-1).s(-1). The apparent relative low catalytic activity of jumbo squid muscle AMP deaminase in the absence of positive effectors is similar to that reported for homologous enzymes in other invertebrate organisms. Copyright © 2008 Elsevier Ltd. All rights reserved.

  10. Bone scanning in the adductor insertion avulsion syndrome.

    PubMed

    Mahajan, Madhuri Shimpi

    2013-05-01

    A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity.

  11. Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty

    PubMed Central

    Koh, In Jun; Choi, Young Jun; Kim, Man Soo; Koh, Hyun Jung; Kang, Min Sung; In, Yong

    2017-01-01

    Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA. PMID:28545172

  12. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  13. Birch's Mantle

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Francis Birch's 1952 paper started the sciences of mineral physics and physics of the Earth's interior. Birch stressed the importance of pressure, compressive strain and volume in mantle physics. Although this may seem to be an obvious lesson many modern paradoxes in the internal constitution of the Earth and mantle dynamics can be traced to a lack of appreciation for the role of compression. The effect of pressure on thermal properties such as expansivity can gravitational stratify the Earth irreversibly during accretion and can keep it chemically stratified. The widespread use of the Boussinesq approximation in mantle geodynamics is the antithesis of Birchian physics. Birch pointed out that eclogite was likely to be an important component of the upper mantle. Plate tectonic recycling and the bouyancy of oceanic crust at midmantle depths gives credence to this suggestion. Although peridotite dominates the upper mantle, variations in eclogite-content may be responsible for melting- or fertility-spots. Birch called attention to the Repetti Discontinuity near 900 km depth as an important geodynamic boundary. This may be the chemical interface between the upper and lower mantles. Recent work in geodynamics and seismology has confirmed the importance of this region of the mantle as a possible barrier. Birch regarded the transition region (TR ; 400 to 1000 km ) as the key to many problems in Earth sciences. The TR contains two major discontinuities ( near 410 and 650 km ) and their depths are a good mantle thermometer which is now being exploited to suggest that much of plate tectonics is confined to the upper mantle ( in Birch's terminology, the mantle above 1000 km depth ). The lower mantle is homogeneous and different from the upper mantle. Density and seismic velocity are very insensitive to temperature there, consistent with tomography. A final key to the operation of the mantle is Birch's suggestion that radioactivities were stripped out of the deeper parts of

  14. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  15. Bone Scanning in the Adductor Insertion Avulsion Syndrome

    PubMed Central

    Mahajan, Madhuri Shimpi

    2013-01-01

    A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity. PMID:25126001

  16. Lymphaticovenous Anastomoses for Lymphedema Complicated by Severe Lymphorrhea Following Resection of Soft-Tissue Sarcomas of the Adductor Compartment: A Report of Two Cases.

    PubMed

    Kobayashi, Hiroshi; Iida, Takuya; Yamamoto, Takumi; Ikegami, Masachika; Shinoda, Yusuke; Tanaka, Sakae; Kawano, Hirotaka

    2017-01-01

    Lymphedema and lymphorrhea are major causes of wound complications after the resection of soft-tissue sarcomas in the adductor compartment of the thigh. We report 2 cases of successful treatment of lymphedema and lymphorrhea, which had been refractory to nonoperative treatment, with use of lymphaticovenous anastomosis (LVA) and intraoperative indocyanine green lymphography after the resection of a sarcoma in the adductor compartment. These 2 cases highlight that LVA can be a useful and minimally invasive alternative to myocutaneous flaps for the treatment of wound complications caused by lymphedema and lymphorrhea after surgery for soft-tissue sarcomas in the adductor compartment of the thigh.

  17. Acoustic Variations in Adductor Spasmodic Dysphonia as a Function of Speech Task.

    ERIC Educational Resources Information Center

    Sapienza, Christine M.; Walton, Suzanne; Murry, Thomas

    1999-01-01

    Acoustic phonatory events were identified in 14 women diagnosed with adductor spasmodic dysphonia (ADSD), a focal laryngeal dystonia that disturbs phonatory function, and compared with those of 14 age-matched women with no vocal dysfunction. Findings indicated ADSD subjects produced more aberrant acoustic events than controls during tasks of…

  18. A mini-invasive adductor magnus tendon transfer technique for medial patellofemoral ligament reconstruction: a technical note.

    PubMed

    Sillanpää, Petri J; Mäenpää, Heikki M; Mattila, Ville M; Visuri, Tuomo; Pihlajamäki, Harri

    2009-05-01

    Patellar dislocations are associated with injuries to the medial patellofemoral ligament (MPFL). Several techniques for MPFL reconstruction have been recently published with some disadvantages involved, including large skin incisions and donor site morbidity. Arthroscopic stabilizing techniques carry the potential of inadequate restoration of MPFL function. We present a minimally invasive technique for MPFL reconstruction using adductor magnus tendon autograft. This technique is easily performed, safe, and provides a stabilizing effect equal to current MPFL reconstructions. Skin incision of only 3-4 cm is located at the level of the proximal half of the patella. After identifying the distal insertion of the adductor magnus tendon, a tendon harvester is introduced to harvest the medial two-thirds of the tendon, while the distal insertion is left intact. The adductor magnus tendon is cut at 12-14 cm from its distal insertion and transferred into the patellar medial margin. Two suture anchors are inserted through the same incision at the superomedial aspect of the patella in the anatomic MPFL origin. The graft is tightened at 30 degrees knee flexion. Aftercare includes 4 weeks of brace treatment with restricted range of motion.

  19. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  20. The Effect of Adductor Canal Block on Knee Extensor Muscle Strength 6 Weeks After Total Knee Arthroplasty: A Randomized, Controlled Trial.

    PubMed

    Rousseau-Saine, Nicolas; Williams, Stephan R; Girard, François; Hébert, Luc J; Robin, Florian; Duchesne, Luc; Lavoie, Frédéric; Ruel, Monique

    2018-03-01

    Total knee arthroplasty (TKA) reduces knee extensor muscle strength (KES) in the operated limb for several months after the surgery. Immediately after TKA, compared to either inguinal femoral nerve block or placebo, adductor canal block (ACB) better preserves KES. Whether this short-term increase in KES is maintained several weeks after surgery remains unknown. We hypothesized that 48 hours of continuous ACB immediately after TKA would improve KES 6 weeks after TKA, compared to placebo. Patients scheduled for primary unilateral TKA were randomized to receive either a continuous ACB (group ACB) or a sham block (group SHAM) for 48 hours after surgery. Primary outcome was the difference in maximal KES 6 weeks postoperatively, measured with a dynamometer during maximum voluntary isometric contraction. Secondary outcomes included postoperative day 1 (POD1) and day 2 (POD2) KES, pain scores at rest and peak effort, and opioid consumption; variation at 6 weeks of Knee Osteoarthritis Outcome Score, patient satisfaction, and length of hospital stay. Sixty-three subjects were randomized and 58 completed the study. Patients in group ACB had less pain at rest during POD1 and during peak effort on POD1 and POD2, consumed less opioids on POD1 and POD2, and had higher median KES on POD1. There was no significant difference between groups for median KES on POD2, variation of Knee Osteoarthritis Outcome Score, patient satisfaction, and length of stay. There was no difference between groups in median KES 6 weeks after surgery (52 Nm [31-89 Nm] for group ACB vs 47 Nm [30-78 Nm] for group SHAM, P= .147). Continuous ACB provides better analgesia and KES for 24-48 hours after surgery, but does not affect KES 6 weeks after TKA. Further research could evaluate whether standardized and optimized rehabilitation over the long term would allow early KES improvements with ACB to be maintained over a period of weeks or months.

  1. Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle.

    PubMed

    Cairns, Simeon P; Inman, Luke A G; MacManus, Caroline P; van de Port, Ingrid G L; Ruell, Patricia A; Thom, Jeanette M; Thompson, Martin W

    2017-08-01

    To determine the roles of calcium (Ca 2+ ) handling by sarcoplasmic reticulum (SR) and central activation impairment (i.e., central fatigue) during fatigue with repeated maximal voluntary isometric contractions (MVC) in human muscles. Contractile performance was assessed during 3 min of repeated MVCs (7-s contraction, 3-s rest, n = 17). In ten participants, in vitro SR Ca 2+ -handling, metabolites, and fibre-type composition were quantified in biopsy samples from quadriceps muscle, along with plasma venous [K + ]. In 11 participants, central fatigue was compared using tetanic stimulation superimposed on MVC in quadriceps and adductor pollicis muscles. The decline of peak MVC force with fatigue was similar for both muscles. Fatigue resistance correlated directly with % type I fibre area in quadriceps (r = 0.77, P = 0.009). The maximal rate of ryanodine-induced Ca 2+ -release and Ca 2+ -uptake fell by 31 ± 26 and 28 ± 13%, respectively. The tetanic force depression was correlated with the combined reduction of ATP and PCr, and increase of lactate (r = 0.77, P = 0.009). Plasma venous [K + ] increased from 4.0 ± 0.3 to 5.4 ± 0.8 mM over 1-3-min exercise. Central fatigue occurred during the early contractions in the quadriceps in 7 out of 17 participants (central activation ratio fell from 0.98 ± 0.05 to 0.86 ± 0.11 at 1 min), but dwindled at exercise cessation. Central fatigue was seldom apparent in adductor pollicis. Fatigue with repeated MVC in human limb muscles mainly involves peripheral aspects which include impaired SR Ca 2+ -handling and we speculate that anaerobic metabolite changes are involved. A faster early force loss in quadriceps muscle with some participants is attributed to central fatigue.

  2. Overuse Injury Assessment Model

    DTIC Science & Technology

    2005-03-01

    superficialis Hip (Pelvis) Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus Extension Semitendinosus, semimembranosus...Plantar flexion Gastrocnemius, soleus, tibialis posterior, peroneous muscles, Foot flexor muscles Spine Flexion Rectus abdominis, oblique muscles Extension...digitorum superficialis Hip Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus, adductor magnus, adductor longus

  3. Muscle MRI in female carriers of dystrophinopathy.

    PubMed

    Tasca, G; Monforte, M; Iannaccone, E; Laschena, F; Ottaviani, P; Silvestri, G; Masciullo, M; Mirabella, M; Servidei, S; Ricci, E

    2012-09-01

    Duchenne muscular dystrophy carriers represent a rare condition that needs to be recognized because of the possible implications for prenatal diagnosis. Muscle biopsy is currently the diagnostic instrument of choice in sporadic patients. We wanted to verify whether muscle magnetic resonance imaging (MRI) could identify a pattern of involvement suggestive of this condition and whether it was similar to that reported in Duchenne and Becker muscular dystrophy. Evaluation of pelvic and lower limb MRI scans of 12 dystrophinopathy carriers was performed. We found a frequent involvement of the quadratus femoris, gluteus maximus and medius, biceps femoris long head, adductor magnus, vasti and paraspinal muscles, whilst the popliteus, iliopsoas, recti abdominis, sartorius, and gracilis were relatively spared. Asymmetry was a major feature on MRI; it could be detected significantly more often than with sole clinical examination and even in patients without weakness. The pattern we describe here is similar to that reported in Duchenne and Becker muscular dystrophy, although asymmetry represents a major distinctive feature. Muscle MRI was more sensitive than clinical examination for detecting single muscle involvement and asymmetry. Further studies are needed to verify the consistency of this pattern in larger cohorts and to assess whether muscle MRI can improve diagnostic accuracy in carriers with normal dystrophin staining on muscle biopsy. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  4. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  5. Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock

    NASA Astrophysics Data System (ADS)

    Li, Jiakai; Wu, Xiangwei; Tan, Jing; Zhao, Ruixiang; Deng, Lingwei; Liu, Xiande

    2015-07-01

    P. textile is an important aquaculture species in China and is mainly distributed in Fujian, Guangdong, and Guangxi Provinces. In this study, an HSP20 cDNA designated PtHSP20 was cloned from P. textile. The full-length cDNA of PtHSP20 is 1 090 bp long and contains a 5' untranslated region (UTR) of 93 bp, a 3' UTR of 475 bp, and an open reading frame (ORF) of 522 bp. The PtHSP20 cDNA encodes 173 amino acid residues and has a molecular mass of 20.22 kDa and an isoelectric point of 6.2. Its predicted amino acid sequence shows that PtHSP20 contains a typical α-crystallin domain (residues 77-171) and three polyadenylation signal-sequences at the C-terminus. According to an amino acid sequence alignment, PtHSP20 shows moderate homology to other mollusk sHSPs. PtHSP20 mRNA was present in all of the test tissues including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, with the highest concentration found in the gonad. Under the stress of high temperature, the expression of PtHSP20 mRNA was down-regulated in all of the tissues except the adductor muscle and gonad.

  6. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  7. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  8. Inferring the Diets of Extinct Giant Lemurs from Osteological Correlates of Muscle Dimensions.

    PubMed

    Perry, Jonathan M G

    2018-02-01

    The jaw adductor muscles of extinct mammals are often reconstructed to elucidate paleoecological relationships and to make broad comparisons among taxa. Muscle lever arms, bite load arms, muscle dimensions, and gape are often also reconstructed to better understand feeding. Several different approaches to these and related goals are discussed here. A protocol for reconstructing muscle dimensions and bite force using biomechanically informative skull measurements and osteological proxies of muscle dimensions is described and applied to a case study of subfossil Malagasy lemurs. The results of this case study show that most subfossil lemurs emphasized the masseter and medial pterygoid muscles over the temporalis. This supports the inference that these extinct lemurs depended heavily on tough food like leaves. Exceptions include signals of hard-object feeding in Archaeolemur that vary between A. majori and A. edwardsi. Reconstructions of soft-tissue and function are important for understanding past ecological relationships. Even those based on well-supported osteological proxies from extant analogues have limitations for making precise inferences. Anat Rec, 301:343-362, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Proximal Versus Distal Continuous Adductor Canal Blocks: Does Varying Perineural Catheter Location Influence Analgesia? A Randomized, Subject-Masked, Controlled Clinical Trial.

    PubMed

    Sztain, Jacklynn F; Khatibi, Bahareh; Monahan, Amanda M; Said, Engy T; Abramson, Wendy B; Gabriel, Rodney A; Finneran, John J; Bellars, Richard H; Nguyen, Patrick L; Ball, Scott T; Gonzales, Francis B; Ahmed, Sonya S; Donohue, Michael C; Padwal, Jennifer A; Ilfeld, Brian M

    2018-07-01

    A continuous adductor canal block provides analgesia after surgical procedures of the knee. Recent neuroanatomic descriptions of the thigh and knee led us to speculate that local anesthetic deposited in the distal thigh close to the adductor hiatus would provide superior analgesia compared to a more proximal catheter location. We therefore tested the hypothesis that during a continuous adductor canal nerve block, postoperative analgesia would be improved by placing the perineural catheter tip 2-3 cm cephalad to where the femoral artery descends posteriorly to the adductor hiatus (distal location) compared to a more proximal location at the midpoint between the anterior superior iliac spine and the superior border of the patella (proximal location). Preoperatively, subjects undergoing total knee arthroplasty received an ultrasound-guided perineural catheter inserted either in the proximal or distal location within the adductor canal in a randomized, subject-masked fashion. Subjects received a single injection of lidocaine 2% via the catheter preoperatively, followed by an infusion of ropivacaine 0.2% (8 mL/h basal, 4 mL bolus, 30 minutes lockout) for the study duration. After joint closure, the surgeon infiltrated the entire joint using 30 mL of ropivacaine (0.5%), ketorolac (30 mg), epinephrine (5 μg/mL), and tranexamic acid (2 g). The primary end point was the median level of pain as measured on a numeric rating scale (NRS) during the time period of 8:00 AM to 12:00 PM the day after surgery. For the primary end point, the NRS of subjects with a catheter inserted at the proximal location (n = 24) was a median (10th, 25th-75th, 90th quartiles) of 0.5 (0.0, 0.0-3.2, 5.0) vs 3.0 (0.0, 2.0-5.4, 7.8) for subjects with a catheter inserted in the distal location (n = 26; P = .011). Median and maximum NRSs were lower in the proximal group at all other time points, but these differences did not reach statistical significance. There were no clinically relevant or

  10. Control of muscle relaxation during anesthesia: a novel approach for clinical routine.

    PubMed

    Stadler, Konrad S; Schumacher, Peter M; Hirter, Sibylle; Leibundgut, Daniel; Bouillon, Thomas W; Glattfelder, Adolf H; Zbinden, Alex M

    2006-03-01

    During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

  11. Goniometric Assessment of Muscle Tone of Preterm Infants and Impact of Gestational Age on Its Maturation in Indian Setting.

    PubMed

    Farmania, Rajni; Sitaraman, S; Das, Rashmi Ranjan

    2017-08-01

    The normative data on muscle tone of preterm infants by goniometric assessment in Indian setting are scarce. The aim of this study it to provide a normative objective data of muscle tone of preterm infants by gestation using goniometer. This was a prospective, observational study including preterm infants admitted in a tertiary care hospital from North India. The objective dimension of muscle tone assessment of 204 healthy preterm infants was done; 61 infants completed follow-up till 40 weeks' postconceptional age (PCA) and were compared to term infants. SPSS (version 16.0) was used. The intergroup comparison was done through ANOVA, and the localization of differences between the groups was determined through multiple comparisons by post hoc test. Mean gestational age was 34.3 ± 1.7 weeks. Angles were as follows: adductor = 100.1 ± 8.7, popliteal = 118.9 ± 8.6, dorsiflexion = 39.0 ± 9.0, heel to ear = 121.90 ± 7.90, wrist flexion = 46.0 ± 10.2, and arm recoil = 122.2° ± 16.6°. The evolution of muscle tone as indicated by heel-to-ear angle shows progressive maturation from 32 weeks' gestation while adductor angle, popliteal angle, and arm recoil mature predominantly after 36 weeks' gestation. Comparison of preterm infants to term at 40 weeks' PCA demonstrated significantly less tone in all except posture and heel to ear. Goniometric assessment provides a objective normative data of muscle tone for preterm infants. Maturation of heel to ear and posture evolves from 32 weeks onwards and are the earliest neurologic marker to mature in preterm infants independent of the gestational age at birth.

  12. Investigating melting induced mantle heterogeneities in plate driven mantle convection models

    NASA Astrophysics Data System (ADS)

    Price, M.; Davies, H.; Panton, J.

    2017-12-01

    Observations from geochemistry and seismology continue to suggest a range of complex heterogeneity in Earth's mantle. In the deep mantle, two large low velocity provinces (LLVPs) have been regularly observed in seismic studies, with their longevity, composition and density compared to the surrounding mantle debated. The cause of these observed LLVPs is equally uncertain, with previous studies advocating either thermal or thermo-chemical causes. There is also evidence that these structures could provide chemically distinct reservoirs within the mantle, with recent studies also suggesting there may be additional reservoirs in the mantle, such as bridgmanite-enriched ancient mantle structures (BEAMS). One way to test these hypotheses is using computational models of the mantle, with models that capture the full 3D system being both complex and computationally expensive. Here we present results from our global mantle model TERRA. Using our model, we can track compositional variations in the convecting mantle that are generated by self-consistent, evolving melting zones. Alongside the melting, we track trace elements and other volatiles which can be partitioned during melting events, and expelled and recycled at the surface. Utilising plate reconstruction models as a boundary condition, the models generate the tectonic features observed at Earth's surface, while also organising the lower mantle into recognisable degree-two structures. This results in our models generating basaltic `oceanic' crusts which are then brought into the mantle at tectonic boundaries, providing additional chemical heterogeneity in the mantle volume. Finally, by utilising thermodynamic lookup tables to convert the final outputs from the model to seismic structures, together with resolution filters for global tomography models, we are able to make direct comparisons between our results and observations. By varying the parameters of the model, we investigate a range of current hypotheses for

  13. Pre-season adductor squeeze test and HAGOS function sport and recreation subscale scores predict groin injury in Gaelic football players.

    PubMed

    Delahunt, Eamonn; Fitzpatrick, Helen; Blake, Catherine

    2017-01-01

    To determine if pre-season adductor squeeze test and HAGOS function, sport and recreation subscale scores can identify Gaelic football players at risk of developing groin injury. Prospective study. Senior inter-county Gaelic football team. Fifty-five male elite Gaelic football players (age = 24.0 ± 2.8 years, body mass = 84.48 ± 7.67 kg, height = 1.85 ± 0.06 m, BMI = 24.70 ± 1.77 kg/m 2 ) from a single senior inter-county Gaelic football team. Occurrence of groin injury during the season. Ten time-loss groin injuries were registered representing 13% of all injuries. The odds ratio for sustaining a groin injury if pre-season adductor squeeze test score was below 225 mmHg, was 7.78. The odds ratio for sustaining a groin injury if pre-season HAGOS function, sport and recreation subscale score was < 87.5 was 8.94. Furthermore, for each additional point on the numerical rating scale pain rating during performance of the adductor squeeze test, the odds of groin injury increased by 2.16. This study provides preliminary evidence that pre-season adductor squeeze test and HAGOS function, sport and recreation subscale scores can be used to identify Gaelic football players at risk of developing groin injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cholinesterase activity in the tissues of bivalves Noah's ark shell (Arca noae) and warty venus (Venus verrucosa): characterisation and in vitro sensitivity to organophosphorous pesticide trichlorfon.

    PubMed

    Perić, Lorena; Ribarić, Luka; Nerlović, Vedrana

    2013-08-01

    Cholinesterase (ChE, EC 3.1.1.7) activity was investigated in gills and adductor muscle of two bivalve species: Arca noae and Venus verrucosa. The properties of ChEs were investigated using acetylcholine iodide (ASCh), butyrylcholine iodide (BSCh) and propionylcholine iodide (PrSCh) as substrates and eserine, BW254c51 and iso-OMPA as specific inhibitors. The highest level of ChE activity in crude tissue extracts was detected with PrSCh followed by ASCh, while values obtained with BSCh were apparently low, except in A. noae adductor muscle. The enzyme activity in A. noae gills and V. verrucosa gills and adductor muscle was significantly inhibited by BW254c51, but not with iso-OMPA. ChE activity in adductor muscle of A. noae was significantly reduced by both diagnostic inhibitors. The effect of organophosphorous pesticide trichlorfon on ChE activity was investigated in vitro in both species as well as in the gills of mussels Mytilus galloprovincialis. The highest sensitivity of ChE to trichlorfon was observed in A. noae gills and adductor muscle (IC50 1.6×10(-7)M and 1.1×10(-7)M, respectively), followed by M. galloprovincialis gills (IC50 1.0×10(-6)M) and V. verrucosa gills and adductor muscle (IC50 1.7×10(-5)M and 0.9×10(-5)M, respectively). The results of this study suggest the potential of ChE activity measurement in the tissues of A. noae as effective biomarker of OP exposure in marine environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  16. [Stimuli phrases of adductor spasmodic dysphonia phonatory break in mandarin Chinese].

    PubMed

    Ge, Pingjiang; Ren, Qingyi; Chen, Zhipeng; Cheng, Qiuhui; Sheng, Xiaoli; Wang, Ling; Chen, Shaohua; Zhang, Siyi

    2015-12-01

    To investigate the characteristics of adductor spasmodic dysphonia phonatory break in mandarin Chinese and select the stimuli phrases. Thirty-eight patients with adductor spasmodic dysphonia were involved in this study. Standard phrase " fù mŭ xīn" and a speech corpus in mandarin Chinese with 229 syllables covering all vowel and constant of mandarin Chinese were selected. Every patient read the phrases above twice in normal speed and comfortable voice. Two auditory perpetual speech pathologists marked phonatory break syllables respectively. The frequency of phonatory break syllables and their located phrases were calculated, rated and described. The phrases including the most phonatory break syllables were selected as stimuli phrases, the phonatory break frequency of which was also higher than that of standard phrase "fù mŭ xīn". Phonatory break happened in the reading of all patients. The average number of phonatory break syllables was 14 (3-33). Phonatroy break occurred when saying 177 (77.3%) syllables in the speech corpus. The syllables "guŏ, rén, zāng, diàn, chē, gè, guăn, a, bā, ne, de" broke in 23.1%-41.0% patients. These syllables belonged to the phrases "pĭng guŏ, huŏ chē, shì de, nĭ shì gè hăo rén, wŏ mén shì yŏu zŏng shì bă qĭn shì nong dé hĕn zāng, wŏ mén nà biān yŏu wăng qiú yùn dong chăng, cān gŭan, jiŭ bā hé yī gè miàn bāo dìan, tā shì duō me kāng kăi a,wŏ yīng gāi zài xìn lĭ xiĕ yī xiē shén mē ne?". Thirty-seven patients (97.3%) had phonatory break in above mentioned words. Ratios of these words phonatory break also were more than "fù mŭ xīn". Adductor spasmodic dysphonic patients exhibited different degrees of phonatory break in mandarine Chinese. The phrases" shì de, pĭng guŏ, huŏ chē, nĭ shì gè hăo rén, wŏ mén nà biān yŏu wăng qiú yùn dong chăng, cān gŭan, jiŭ bā hé yī gè miàn bāo dìan, tā shì duō me kāng kăi a" were recommended as stimuli

  17. Muscle MRI in neutral lipid storage disease with myopathy carrying mutation c.187+1G>A.

    PubMed

    Xu, Chunxiao; Zhao, Yawen; Liu, Jing; Zhang, Wei; Wang, Zhaoxia; Yuan, Yun

    2015-06-01

    We describe the clinical and muscle MRI changes in 2 siblings with neutral lipid storage disease with myopathy (NLSDM) carrying the mutation c.187+1G>A. Peripheral blood smears, genetic tests, and muscle biopsies were performed. Thigh MRI was performed to observe fatty replacement, muscle edema, and muscle bulk from axial sections. Both siblings had similar fatty infiltration and edema. T1-weighted images of the gluteus maximus, adductor magnus, semitendinosus, and semimembranosus revealed marked and diffuse fatty infiltration. There was asymmetric involvement in biceps femoris and quadriceps. There was extensive fatty infiltration in the quadriceps, except for the rectus femoris. Gracilis and sartorius were relatively spared. Thigh muscle volume was decreased, while the gracilis and sartorius appeared to show compensatory hypertrophy. Compared with previous reports in NLSDM, MRI changes in this myopathy tended to be more severe. Asymmetry and relatively selective fatty infiltration were characteristics. © 2014 Wiley Periodicals, Inc.

  18. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.

    PubMed

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2014-02-07

    The purpose of this study was to compare cortical inhibition in the hand region of the primary motor cortex between subjects with focal hand dystonia (FHD), adductor spasmodic dysphonia (AdSD), and healthy controls. Data from 28 subjects were analyzed (FHD n=11, 53.25 ± 8.74 y; AdSD: n=8, 56.38 ± 7.5 y; and healthy controls: n=941.67 ± 10.85 y). All subjects received single pulse TMS to the left motor cortex to measure cortical silent period (CSP) in the right first dorsal interosseus (FDI) muscle. Duration of the CSP was measured and compared across groups. A one-way ANCOVA with age as a covariate revealed a significant group effect (p<0.001). Post hoc analysis revealed significantly longer CSP duration in the healthy group vs. AdSD group (p<0.001) and FHD group (p<0.001). These results suggest impaired intracortical inhibition is a neurophysiologic characteristic of FHD and AdSD. In addition, the shortened CSP in AdSD provides evidence to support a widespread decrease in cortical inhibition in areas of the motor cortex that represent an asymptomatic region of the body. These findings may inform future investigations of differential diagnosis as well as alternative treatments for focal dystonias. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Side Differences of Thigh Muscle Cross-Sectional Areas and Maximal Isometric Muscle Force in Bilateral Knees with the Same Radiographic Disease Stage, but Unilateral Frequent Pain – Data from the Osteoarthritis Initiative

    PubMed Central

    Sattler, Martina; Dannhauer, Torben; Hudelmaier, Martin; Wirth, Wolfgang; Sänger, Alexandra M.; Kwoh, C. Kent; Hunter, David J.; Eckstein, Felix

    2012-01-01

    Objective To determine whether anatomical thigh muscle cross-sectional areas (MCSAs) and strength differ between osteoarthritis (OA) knees with frequent pain compared with contralateral knees without pain, and to examine the correlation between MCSAs and strength in painful versus painless knees. Methods 48 subjects (31 women; 17 men; age 45–78 years) were drawn from 4796 Osteoarthritis Initiative (OAI) participants, in whom both knees displayed the same radiographic stage (KLG2 or 3), one with frequent pain (most days of the month within the past 12 months) and the contralateral one without pain. Axial MR images were used to determine MCSAs of extensors, flexors and adductors at 35% femoral length (distal to proximal) and in two adjacent 5 mm images. Maximal isometric extensor and flexor forces were used as provided from the OAI data base. Results Painful knees showed 5.2% lower extensor MCSAs (p=0.00003; paired t-test), and 7.8% lower maximal extensor muscle forces (p=0.003) than contra-lateral painless knees. There were no significant differences in flexor forces, or flexor and adductor MCSAs (p>0.39). Correlations between force and MCSAs were similar in painful and painless OA knees (0.44muscles) compared with contra-lateral knees without knee pain with the same radiographic stage. Frequent pain does not appear to affect the correlations between MCSAs and strength in OA knees. The findings suggest that quadriceps strengthening exercise may be useful in treating symptomatic knee OA. PMID:22395037

  20. Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort

    PubMed Central

    Catteruccia, Michela; Fattori, Fabiana; Codemo, Valentina; Ruggiero, Lucia; Maggi, Lorenzo; Tasca, Giorgio; Fiorillo, Chiara; Pane, Marika; Berardinelli, Angela; Verardo, Margherita; Bragato, Cinzia; Mora, Marina; Morandi, Lucia; Bruno, Claudio; Santoro, Lucio; Pegoraro, Elena; Mercuri, Eugenio; Bertini, Enrico; D’Amico, Adele

    2013-01-01

    Mutations in dynamin 2 (DNM2) gene cause autosomal dominant centronuclear myopathy and occur in around 50% of patients with centronuclear myopathy. We report clinical, morphological, muscle imaging and genetic data of 10 unrelated Italian patients with centronuclear myopathy related to DNM2 mutations. Our results confirm the clinical heterogeneity of this disease, underlining some peculiar clinical features, such as severe pulmonary impairment and jaw contracture that should be considered in the clinical follow-up of these patients. Muscle MRI showed a distinct pattern of involvement, with predominant involvement of soleus and tibialis anterior in the lower leg muscles, followed by hamstring muscles and adductor magnus at thigh level and gluteus maximus. The detection of three novel DNM2 mutations and the first case of somatic mosaicism further expand the genetic spectrum of the disease. PMID:23394783

  1. Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity.

    PubMed

    Vibert, P; Edelstein, S M; Castellani, L; Elliott, B W

    1993-12-01

    Invertebrate mini-titins are members of a class of myosin-binding proteins belonging to the immunoglobulin superfamily that may have structural and/or regulatory properties. We have isolated mini-titins from three molluscan sources: the striated and smooth adductor muscles of the scallop, and the smooth catch muscles of the mussel. Electron microscopy reveals flexible rod-like molecules about 0.2 micron long and 30 A wide with a distinctive polarity. Antibodies to scallop mini-titin label the A-band and especially the A/I junction of scallop striated muscle myofibrils by indirect immunofluorescence and immuno-electron microscopy. This antibody crossreacts with mini-titins in scallop smooth and Mytilus catch muscles, as well as with proteins in striated muscles from Limulus, Lethocerus (asynchronous flight muscle), and crayfish. It labels the A/I junction (I-region in Lethocerus) in these striated muscles as well as in chicken skeletal muscle. Antibodies to the repetitive immunoglobulin-like regions and also to the kinase domain of nematode twitchin crossreact with scallop mini-titin and label the A-band of scallop myofibrils. Electron microscopy of single molecules shows that antibodies to twitchin kinase bind to scallop mini-titin near one end of the molecule, suggesting how the scallop structure might be aligned with the sequence of nematode twitchin.

  2. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  3. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles.

    PubMed

    McKenna, D R; Mies, P D; Baird, B E; Pfeiffer, K D; Ellebracht, J W; Savell, J W

    2005-08-01

    Steaks from muscles (n=19 from nine beef carcasses) were evaluated over the course of retail display (0-, 1-, 2-, 3-, 4- or 5-d) for objective measures of discoloration (metmyoglobin, oxymyoglobin, L*-, a*-, and b*-values), reducing ability (metmyoglobin reductase activity (MRA), resistance to induced metmyoglobin formation (RIMF), and nitric oxide metmyoglobin reducing ability (NORA)), oxygen consumption rate (OCR), oxygen penetration depth, myoglobin content, oxidative rancidity, and pH. Muscles were grouped according to objective color measures of discoloration. M. longissimus lumborum, M. longissimus thoracis, M. semitendinosus, and M. tensor fasciae latae were grouped as "high" color stability muscles, M. semimembranosus, M. rectus femoris, and M. vastus lateralis were grouped as "moderate" color stability muscles, M. trapezius, M. gluteus medius, and M. latissimus dorsi were grouped as "intermediate" color stability muscles, M. triceps brachi - long head, M. biceps femoris, M. pectoralis profundus, M. adductor, M. triceps brachi - lateral head, and M. serratus ventralis were grouped as "low" color stability muscles, and M. supraspinatus, M. infraspinatus, and M. psoas major were grouped as "very low" color stability muscles. Generally, muscles of high color stability had high RIMF, nitric oxide reducing ability, and oxygen penetration depth and possessed low OCRs, myoglobin content, and oxidative rancidity. In contrast, muscles of low color stability had high MRA, OCRs, myoglobin content, and oxidative rancidity and low RIMF, NORA, and oxygen penetration depth. Data indicate that discoloration differences between muscles are related to the amount of reducing activity relative to the OCR.

  4. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.

    PubMed

    Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio

    2018-06-01

    The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    PubMed

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a

  6. Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Gill, James B.; van Keken, Peter E.; Kawabata, Hiroshi; Skora, Susanne

    2017-02-01

    We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature (Tp) of 1650-1500°C during 3.5-1.5 Ga before decreasing gradually to ˜1300°C today. The source mantle composition changed from primitive (PM) to depleted as Tp decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a two-stage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high-Tp (3.5-1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the subcontinental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5-0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before ˜1.5 Ga to less vigorous afterward is suggested to explain the thermochemical mantle evolution.

  7. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  8. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    PubMed

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Rectus abdominis muscle injuries in elite handball players: management and rehabilitation

    PubMed Central

    Balius, Ramon; Pedret, Carles; Pacheco, Laura; Gutierrez, Josep Antoni; Vives, Joan; Escoda, Jaume

    2011-01-01

    Muscle injuries generally occur in two-joint muscles with a high percentage of type II fibers during the performance of eccentric activity. Some muscle injuries, such as those located in the adductor longus, a monoarticular muscle, as well as rectus abdominis do not fully comply with these requirements. This study examines five cases of elite handball players with ruptured rectus abdominals. Sonographically, lesions in rectus abdominis are shown as a disruption of the fibrillar pattern with a hematic suffusion that invades the entire lesion. In some of the cases, the ultrasound study was complemented with a MRI. A unified rehabilitation protocol was applied and the return to play time of each handball player ranged between 16 and 22 days, with an average of 18.2 days. Follow-up at 15 months showed no evidence of re-injury or residual discomfort and all of them are playing at their highest level. The aim of this study was to illustrate a feature of handball injury that, as in tennis and volleyball, is uncommon and so far has not been specifically reported. The phenomenon of contralateral abdominal hypertrophy in handball appears in the dominant arm as in tennis and volleyball. PMID:24198573

  10. Single-Dose Adductor Canal Block With Local Infiltrative Analgesia Compared With Local Infiltrate Analgesia After Total Knee Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Nader, Antoun; Kendall, Mark C; Manning, David W; Beal, Matthew; Rahangdale, Rohit; Dekker, Robert; De Oliveira, Gildasio S; Kamenetsky, Eric; McCarthy, Robert J

    A single-dose adductor canal block can provide postoperative analgesia for patients undergoing total knee arthroplasty (TKA). The purpose of this study was to assess postoperative opioid consumption after ultrasound-guided single-injection bupivacaine compared with saline adductor canal block for patients undergoing TKA. After institutional review board approval, written informed consent was obtained from patients (>18 years old) undergoing elective TKA. Subjects were randomized into 2 groups as follows: adductor canal blockade with 10 mL of bupivacaine 0.25% with epinephrine 1:300,000 or 10 mL of normal saline. All patients received a periarticular infiltration mixture intraoperatively with scheduled and patient requested oral and IV analgesics postoperatively for breakthrough pain. Personnel blinded to group allocation recorded pain scores and opioid consumption every 6 hours. Pain burden, area under the numeric rating score for pain, was calculated for 36 hours. The primary outcome was postoperative IV/IM morphine (mg morEq) consumption at 36 hours after surgery. Forty (28 women/12 men) subjects were studied. Postoperative opioid consumption was reduced in the bupivacaine 48 (39 to 61) mg morEq compared with saline 60 (49 to 85) mg morEq, difference -12 (-33 to -2) mg morEq (P = 0.03). Pain burden at rest was decreased in the bupivacaine 71 (37 to 120) score · hours compared with saline 131 (92 to 161) score · hours, difference -60 (-93 to -14) score · hours (P = 0.009). Adductor canal blockade with bupivacaine 0.25% with epinephrine 1:300,000 effectively reduces pain and opioid requirement in the postoperative period after TKA. Adductor canal blockade is an effective pain management adjunct for patients undergoing TKA.

  11. Muscle Contributions to Frontal Plane Angular Momentum during Walking

    PubMed Central

    Neptune, Richard R.; McGowan, Craig P.

    2016-01-01

    The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has the potential to help diagnose and treat balance disorders. The purpose of this study was to identify how individual muscles and gravity contribute to whole-body angular momentum in the frontal plane using a muscle-actuated forward dynamics simulation analysis. A three-dimensional simulation was developed that emulated the average walking mechanics of a group of young healthy adults (n=10). The results showed that a finite set of muscles are the primary contributors to frontal plane balance and that these contributions vary throughout the gait cycle. In early stance, the vasti, adductor magnus and gravity acted to rotate the body towards the contralateral leg while the gluteus medius acted to rotate the body towards the ipsilateral leg. In late stance, the gluteus medius continued to rotate the body towards the ipsilateral leg while the soleus and gastrocnemius acted to rotate the body towards the contralateral leg. These results highlight those muscles that are critical to maintaining dynamic balance in the frontal plane during walking and may provide targets for locomotor therapies aimed at treating balance disorders. PMID:27522538

  12. MRI findings in soccer players with long-standing adductor-related groin pain and asymptomatic controls.

    PubMed

    Branci, Sonia; Thorborg, Kristian; Bech, Birthe Højlund; Boesen, Mikael; Nielsen, Michael Bachmann; Hölmich, Per

    2015-05-01

    Soccer players are commonly affected by long-standing adductor-related groin pain (ARGP), but the clinical significance of MRI findings in these athletes is largely unknown. Our aims were (1) to evaluate whether MRI findings are associated with long-standing ARGP in soccer players, (2) to assess MRI findings in asymptomatic soccer players and non-soccer playing controls. This cross-sectional study included 28 male soccer players with long-standing ARGP, 17 male asymptomatic soccer players and 20 male asymptomatic non-soccer playing athletes of matching age and athletic exposure. Participants underwent identical standardised and reliable clinical examination, and MRI scans (3 T) of the pelvis performed by a blinded observer. Images were consensus rated by three blinded radiologists according to a standardised MRI evaluation protocol. The associations between clinical adductor-related findings and pathological MRI findings were investigated with χ(2) statistics and OR. Central disc protrusion (p=0.027) and higher grades of pubic bone marrow oedema (BMO; p=0.027) were significantly more present in symptomatic players than asymptomatic players. However, up to 71% of asymptomatic soccer players displayed different positive MRI findings, and asymptomatic soccer players had significantly higher odds (OR ranging from 6.3 to 13.3) for BMO, adductor tendinopathy and degenerative changes than non-soccer players. ARGP in soccer players was associated with central disc protrusion and higher grades of pubic BMO. Moreover, positive MRI findings were significantly more frequent in soccer players compared with non-soccer players irrespective of symptoms, suggesting that these MRI changes may be associated with soccer play itself rather than clinical symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern.

    PubMed

    Polavarapu, Kiran; Manjunath, Mahadevappa; Preethish-Kumar, Veeramani; Sekar, Deepha; Vengalil, Seena; Thomas, PriyaTreesa; Sathyaprabha, Talakad N; Bharath, Rose Dawn; Nalini, Atchayaram

    2016-11-01

    The purpose of this study was to describe the pattern of muscle involvement using MRI findings and correlate with functional as well as muscle strength measurements. Fifty genetically confirmed DMD children with a mean age of 7.6 ± 2.8 (4-15 years) underwent muscle MRI and qualitative assessment was done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. Detailed phenotypic characterisation was done with Manual muscle testing (modified MRC grading) and Muscular Dystrophy Functional Rating Scale (MDFRS). Mercuri scoring showed severe fibro-fatty changes in Gluteus medius, minimus and Adductor magnus followed by moderate to severe changes in Gluteus maximus and Quadriceps muscles. Total sparing of Gracilis, Sartorius and Semimembranosus muscles was observed. Superficial posterior and lateral leg muscles were preferentially involved with sparing of deep posterior and anterior leg muscles. Myoedema showed significant inverse correlation with fatty infiltration in thigh muscles. Similarly, significant inverse correlation was observed between Mercuri scores and MRC grading as well as MDFRS scores. A direct linear correlation was observed between duration of illness and fibro-fatty changes in piriformis, quadriceps and superficial posterior leg muscles. There was no correlation between MRI findings and genotypic characteristics. However, this specific pattern of muscle involvement in MRI could aid in proceeding for genetic testing when clinical suspicion is high, thus reducing the need for muscle biopsy. Fibro fatty infiltration as measured by Mercuri scoring can be a useful marker for assessing the disease severity and progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Proteomic Changes in Rat Thyroarytenoid Muscle Induced by Botulinum Neurotoxin Injection

    PubMed Central

    Welham, Nathan V.; Marriott, Gerard; Tateya, Ichiro; Bless, Diane M.

    2009-01-01

    Botulinum neurotoxin (BoNT) injection into the thyroarytenoid (TA) muscle is a commonly performed medical intervention for adductor spasmodic dysphonia. The mechanism of action of BoNT at the neuromuscular junction is well understood, however, aside from reports focused on myosin heavy chain isoform abundance, there is a paucity of data addressing the effects of therapeutic BoNT injection on the TA muscle proteome. In this study, 12 adult Sprague Dawley rats underwent unilateral TA muscle BoNT serotype A injection followed by tissue harvest at 72 hrs, 7 days, 14 days, and 56 days post-injection. Three additional rats were reserved as controls. Proteomic analysis was performed using 2D SDS-PAGE followed by MALDI-MS. Vocal fold movement was significantly reduced by 72 hrs, with complete return of function by 56 days. Twenty-five protein spots demonstrated significant protein abundance changes following BoNT injection, and were associated with alterations in energy metabolism, muscle contractile function, cellular stress response, transcription, translation, and cell proliferation. A number of protein abundance changes persisted beyond the return of gross physiologic TA function. These findings represent the first report of BoNT induced changes in any skeletal muscle proteome, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and perturbed TA muscle function. PMID:18442174

  15. The source location of mantle plumes from 3D spherical models of mantle convection

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Zhong, Shijie

    2017-11-01

    Mantle plumes are thought to originate from thermal boundary layers such as Earth's core-mantle boundary (CMB), and may cause intraplate volcanism such as large igneous provinces (LIPs) on the Earth's surface. Previous studies showed that the original eruption sites of deep-sourced LIPs for the last 200 Myrs occur mostly above the margins of the seismically-observed large low shear velocity provinces (LLSVPs) in the lowermost mantle. However, the mechanism that leads to the distribution of the LIPs is not clear. The location of the LIPs is largely determined by the source location of mantle plumes, but the question is under what conditions mantle plumes form outside, at the edges, or above the middle of LLSVPs. Here, we perform 3D geodynamic calculations and theoretical analyses to study the plume source location in the lowermost mantle. We find that a factor of five decrease of thermal expansivity and a factor of two increase of thermal diffusivity from the surface to the CMB, which are consistent with mineral physics studies, significantly reduce the number of mantle plumes forming far outside of thermochemical piles (i.e., LLSVPs). An increase of mantle viscosity in the lowermost mantle also reduces number of plumes far outside of piles. In addition, we find that strong plumes preferentially form at/near the edges of piles and are generally hotter than that forming on top of piles, which may explain the observations that most LIPs occur above LLSVP margins. However, some plumes originated at pile edges can later appear above the middle of piles due to lateral movement of the plumes and piles and morphologic changes of the piles. ∼65-70% strong plumes are found within 10 degrees from pile edges in our models. Although plate motion exerts significant controls over the large-scale mantle convection in the lower mantle, mantle plume formation at the CMB remains largely controlled by thermal boundary layer instability which makes it difficult to predict geographic

  16. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience.

    PubMed

    Gaeta, Michele; Messina, Sonia; Mileto, Achille; Vita, Gian Luca; Ascenti, Giorgio; Vinci, Sergio; Bottari, Antonio; Vita, Giuseppe; Settineri, Nicola; Bruschetta, Daniele; Racchiusa, Sergio; Minutoli, Fabio

    2012-08-01

    To examine the usefulness of dual-echo dual-flip angle spoiled gradient recalled (SPGR) magnetic resonance imaging (MRI) technique in quantifying muscle fat fraction (MFF) of pelvic and thighs muscles as a marker of disease severity in boys with Duchenne muscular dystrophy (DMD), by correlating MFF calculation with clinical assessments. We also tried to identify characteristic patterns of disease distribution. Twenty consecutive boys (mean age, 8.6 years ± 2.3 [standard deviation, SD]; age range, 5-15 years; median age, 9 years;) with DMD were evaluated using a dual-echo dual-flip angle SPGR MRI technique, calculating muscle fat fraction (MFF) of eight muscles in the pelvic girdle and thigh (gluteus maximus, adductor magnus, rectus femoris, vastus lateralis, vastus medialis, biceps femoris, semitendinosus, and gracilis). Color-coded parametric maps of MFF were also obtained. A neurologist who was blinded to the MRI findings performed the clinical assessments (patient age, Medical Research Council score, timed Gower score, time to run 10 m). The relationships between mean MFF and clinical assessments were investigated using Spearman's rho coefficient. Positive and negative correlations were evaluated and considered significant if the P value was < 0.05. The highest mean MFF was found in the gluteus maximus (mean, 46.3 % ± 24.5 SD), whereas the lowest was found in the gracilis muscle (mean, 2.7 % ± 4.7 SD). Mean MFF of the gluteus maximus was significantly higher than that of the other muscles (P < 0.01), except for the adductor magnus and biceps muscles. A significant positive correlation was found between the mean MFF of all muscles and the patients age (20 patients; P < 0.005), Medical Research Council score (19 patients; P < 0.001), timed Gower score (17 patients; P < 0.03), and time to run 10 m (20 patients; P < 0.001). A positive correlation was also found between the mean MFF of the gluteus maximus muscle and the

  17. Endoscopic laser thyroarytenoid myoneurectomy in patients with adductor spasmodic dysphonia: a pilot study on long-term outcome on voice quality.

    PubMed

    Tsuji, Domingos Hiroshi; Takahashi, Marystella Tomoe; Imamura, Rui; Hachiya, Adriana; Sennes, Luiz Ubirajara

    2012-09-01

    Adductor spasmodic dysphonia (ADSD) is a focal laryngeal dystonia, which compromises greatly the quality of life of the patients involved. It is a severe vocal disorder characterized by spasms of laryngeal muscles during speech, producing phonatory breaks, forced, strained and strangled voice. Its symptoms result from involuntary and intermittent contractions of thyroarytenoid muscle during speech, which causes vocal fold to strain, pressing each vocal fold against the other and increasing glottic resistance. Botulinum toxin injection remains the gold-standard treatment. However, as injections should be repeated periodically leading to voice quality instability, a more definitive procedure would be desirable. In this pilot study we report the long-term vocal quality results of endoscopic laser thyroarytenoid myoneurectomy. Prospective study. Surgery was performed in 15 patients (11 females and four males), aged between 29 and 73 years, diagnosed with ADSD. Voice Handicap Index (VHI) was obtained before and after surgery (median 31 months postoperatively). A significant improvement in VHI was observed after surgery, as compared with baseline values (P=0.001). The median and interquartile range for preoperative VHI was 99 and 13, respectively and 24 and 42, for postoperative VHI. Subjective improvement of voice as assessed by the patients showed median improvement of 80%. Because long-term follow-up showed significant improvement of voice quality, this innovative surgical technique seems a satisfactory alternative treatment of ADSD patients who seek a definite improvement of their condition. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  18. Density Anomalies in the Mantle and the Gravitational Core-Mantle Interaction

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Liu, Lanbo

    2003-01-01

    Seismic studies suggest that the bulk of the mantle is heterogeneous, with density variations in depth as well as in horizontal directions (latitude and longitude). This density variation produces a three- dimensional gravity field throughout the Earth. On the other hand, the core density also varies in both time and space, due to convective core flow. Consequently, the fluid outer core and the solid mantle interact gravitationally due to the mass anomalies in both regions. This gravitational core-mantle interaction could play a significant role in exchange of angular momentum between the core and the mantle, and thus the change in Earth's rotation on time scales of decades and longer. Aiming at estimating the significance of the gravitational core-mantle interaction on Earth's rotation variation, we introduce in our MoSST core dynamics model a heterogeneous mantle, with a density distribution derived from seismic results. In this model, the core convection is driven by the buoyancy forces. And the density variation is determined dynamically with the convection. Numerical simulation is carried out with different parameter values, intending to extrapolate numerical results for geophysical implications.

  19. Groin injuries in sports medicine.

    PubMed

    Tyler, Timothy F; Silvers, Holly J; Gerhardt, Michael B; Nicholas, Stephen J

    2010-05-01

    An in-season groin injury may be debilitating for the athlete. Proper diagnosis and identification of the pathology are paramount in providing appropriate intervention. Furthermore, an adductor strain that is treated improperly can become chronic and career threatening. Any one of the 6 muscles of the adductor muscle group can be involved. The degree of injury can range from a minor strain (grade 1), where minimal playing time is lost, to a severe strain (grade 3), in which there is complete loss of muscle function. Persistent groin pain and muscle imbalance may lead to athletic pubalgia. Relevant studies were identified through a literature search of MEDLINE and the Cochrane database from 1990 to 2009, as well as a manual review of reference lists of identified sources. Ice hockey and soccer players seem particularly susceptible to adductor muscle strains. In professional ice hockey and soccer players throughout the world, approximately 10% to 11% of all injuries are groin strains. These injuries have been linked to hip muscle weakness, a previous injury to that area, preseason practice sessions, and level of experience. This injury may be prevented if these risk factors are addressed before each season. Despite the identification of risk factors and strengthening intervention for athletes, adductor strains continue to occur throughout sport. If groin pain persists, the possibility of athletic pubalgia needs to be explored, because of weakening or tears in the abdominal wall muscles. A diagnosis is confirmed by exclusion of other pathology.

  20. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  1. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    PubMed Central

    Nalini, Atchayaram; Govindaraju, C.; Kalra, Pramila; Kadukar, Prashanth

    2014-01-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  2. Upper mantle fluids evolution, diamond formation, and mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Huang, F.; Sverjensky, D. A.

    2017-12-01

    During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014

  3. Motor evoked responses from the thigh muscles to the stimulation of the upper limb nerves in patients with late poliomyelitis.

    PubMed

    Ertekin, Cumhur; On, Arzu Yagiz; Kirazli, Yeşim; Kurt, Tülay; Gürgör, Nevin

    2002-04-01

    To demonstrate a clear-cut M response recorded from the severely affected thigh muscles to the stimulation of the upper limb nerves in a serial of patients with late poliomyelitis. Fifteen patients with late poliomyelitis, 7 patients with spinal cord disorders and 11 control subjects were included. Evoked muscle responses were investigated in quadriceps femoris and/or thigh adductor muscles to the stimulation of the brachial plexus, median and ulnar nerves. Evoked muscle responses were obtained from the thigh muscles in all 12 late polio patients with proximal lower extremity involvement. The response could not be recorded from the thigh muscles neither in the 3 polio patients with upper extremity involvement nor in the healthy control subjects and in patients with other spinal cord disorders of anterior horn cell. It is proposed that the electrical stimulation of the arm nerves produce interlimb descending muscle responses in the severely affected atrophic thigh muscles of the patients with late polio. This finding suggests that there might be a focal and/or specific loss of inhibitory interneurons between injured and normal motor neurons and increased facilitatory synaptic action at the end of long propriospinal descending fibers in the case of late poliomyelitis.

  4. Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland

    USGS Publications Warehouse

    Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.

    2002-01-01

    Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Leg Muscle Involvement in Facioscapulohumeral Muscular Dystrophy: Comparison between Facioscapulohumeral Muscular Dystrophy Types 1 and 2.

    PubMed

    Mair, Dorothea; Huegens-Penzel, Monika; Kress, Wolfram; Roth, Christian; Ferbert, Andreas

    2017-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) presents with 2 genetically distinct types. We describe for the first time the MRI patterns of leg muscle involvement in type 2 and compare it with type 1. The intramuscular fat content was assessed on lower extremity axial T1-weighted MRI scans in 6 FSHD1 and 5 FSHD2 patients. Overall, the muscle involvement profile did not differ substantially between FSHD1 and FSHD2. In the thigh, the dorsomedial compartment including the semimembranosus, semitendinosus and adductor magnus was the most affected. The quadriceps was mostly spared, but isolated involvement of the rectus femoris was common. Fat infiltration in the distal soleus and the medial gastrocnemius with sparing of the lateral gastrocnemius was a common finding; involvement of the tibialis anterior was less frequent. A proximal-to-distal increase in fat content was frequently present in some muscles. Muscle involvement appears to be independent of type, confirming a similar pathophysiological pathway in FSHD1 and FSHD2. © 2016 S. Karger AG, Basel.

  6. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar; Berry, David A.

    2014-01-01

    The interactions of the intrinsic laryngeal muscles (ILMs) in controlling fundamental frequency (F0) and glottal posture remain unclear. In an in vivo canine model, three sets of intrinsic laryngeal muscles—the thyroarytenoid (TA), cricothyroid (CT), and lateral cricoarytenoid plus interarytenoid (LCA/IA) muscle complex—were independently and accurately stimulated in a graded manner using distal laryngeal nerve stimulation. Graded neuromuscular stimulation was used to independently activate these paired intrinsic laryngeal muscles over a range from threshold to maximal activation, to produce 320 distinct laryngeal phonatory postures. At phonation onset these activation conditions were evaluated in terms of their vocal fold strain, glottal width at the vocal processes, fundamental frequency (F0), subglottic pressure, and airflow. F0 ranged from 69 to 772 Hz and clustered into chest-like and falsetto-like groups. CT activation was always required to raise F0, but could also lower F0 at low TA and LCA/IA activation levels. Increasing TA activation first increased then decreased F0 in all CT and LCA/IA activation conditions. Increasing TA activation also facilitated production of high F0 at a lower onset pressure. Independent control of membranous (TA) and cartilaginous (LCA/IA) glottal closure enabled multiple pathways for F0 control via changes in glottal posture. PMID:25235003

  7. Clinical Muscle Testing Compared with Whole-Body Magnetic Resonance Imaging in Facio-scapulo-humeral Muscular Dystrophy.

    PubMed

    Regula, J U; Jestaedt, L; Jende, F; Bartsch, A; Meinck, H-M; Weber, M-A

    2016-12-01

    The objective of this study was to evaluate the clinical usefulness of whole-body magnetic resonance imaging (MRI) in facio-scapulo-humeral muscular dystrophy (FSHD). In 20 patients with genetically proven FSHD1, we prospectively assessed muscular involvement and correlated the results of semi-quantitative manual muscle testing and other parameters such as disease duration, creatine kinase (CK) levels and repeat length of the D4Z4 locus with whole-body MRI. Clinical muscle testing revealed the trapezius, pectoralis and infraspinatus as the most severely affected muscles in the shoulder, and the knee flexors and gluteus medius in the hip girdle. MRI revealed the trapezius and serratus anterior muscles in the shoulder, and the hamstrings and adductor muscles in the hip girdle, as the most severely affected muscle groups. Overall, degrees of fatty degeneration on MRI scans correlated significantly with clinical weakness. Moreover, we could detect clear affection of the trunk muscles. Corresponding to earlier reports, asymmetric involvement was frequent in both clinical examination and MRI scoring. Moreover, MRI revealed inhomogeneous muscle degeneration in a considerable proportion of both, muscles and patients. Both clinical and MRI scores significantly correlated to disease duration, but not to fragment size or CK levels. Fatty degeneration in whole-body MRI correlates well to clinical muscle testing of the extremities but gives more information on deeper or trunk muscles. It shows structural changes in muscular disorders and may become an excellent tool for assessment of muscle involvement and follow-up studies.

  8. Groin Injuries in Sports Medicine

    PubMed Central

    Tyler, Timothy F.; Silvers, Holly J.; Gerhardt, Michael B.; Nicholas, Stephen J.

    2010-01-01

    Context: An in-season groin injury may be debilitating for the athlete. Proper diagnosis and identification of the pathology are paramount in providing appropriate intervention. Furthermore, an adductor strain that is treated improperly can become chronic and career threatening. Any one of the 6 muscles of the adductor muscle group can be involved. The degree of injury can range from a minor strain (grade 1), where minimal playing time is lost, to a severe strain (grade 3), in which there is complete loss of muscle function. Persistent groin pain and muscle imbalance may lead to athletic pubalgia. Evidence Acquisition: Relevant studies were identified through a literature search of MEDLINE and the Cochrane database from 1990 to 2009, as well as a manual review of reference lists of identified sources. Results: Ice hockey and soccer players seem particularly susceptible to adductor muscle strains. In professional ice hockey and soccer players throughout the world, approximately 10% to 11% of all injuries are groin strains. These injuries have been linked to hip muscle weakness, a previous injury to that area, preseason practice sessions, and level of experience. This injury may be prevented if these risk factors are addressed before each season. Conclusion: Despite the identification of risk factors and strengthening intervention for athletes, adductor strains continue to occur throughout sport. If groin pain persists, the possibility of athletic pubalgia needs to be explored, because of weakening or tears in the abdominal wall muscles. A diagnosis is confirmed by exclusion of other pathology. PMID:23015943

  9. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study

    PubMed Central

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Objective Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman’s ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. Materials and methods This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Results Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. Conclusion In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the

  10. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study.

    PubMed

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman's ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the mechanism of continence.

  11. The effect of low back pain on trunk muscle size/function and hip strength in elite football (soccer) players.

    PubMed

    Hides, Julie A; Oostenbroek, Tim; Franettovich Smith, Melinda M; Mendis, M Dilani

    2016-12-01

    Low back pain (LBP) is a common problem in football (soccer) players. The effect of LBP on the trunk and hip muscles in this group is unknown. The relationship between LBP and trunk muscle size and function in football players across the preseason was examined. A secondary aim was to assess hip muscle strength. Twenty-five elite soccer players participated in the study, with assessments conducted on 23 players at both the start and end of the preseason. LBP was assessed with questionnaires and ultrasound imaging was used to assess size and function of trunk muscles at the start and end of preseason. Dynamometry was used to assess hip muscle strength at the start of the preseason. At the start of the preseason, 28% of players reported the presence of LBP and this was associated with reduced size of the multifidus, increased contraction of the transversus abdominis and multifidus muscles. LBP decreased across the preseason, and size of the multifidus muscle improved over the preseason. Ability to contract the abdominal and multifidus muscles did not alter across the preseason. Asymmetry in hip adductor and abductor muscle strength was found between players with and without LBP. Identifying modifiable factors in players with LBP may allow development of more targeted preseason rehabilitation programmes.

  12. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities

  13. The role of thermodynamics in mantle convection: is mantle-layering intermittent?

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Cagney, N.; Lithgow-Bertelloni, C. R.

    2016-12-01

    We examine the thermal evolution of the Earth using a 1D model in which mixing length theory is used to characterise the role of thermal convection. Unlike previous work, our model accounts for the complex role of thermodynamics and phase changes through the use of HeFESTo (Stixrude & Lithgow-Bertelloni, Geophys. J. Int. 184, 2011), a comprehensive thermodynamic model that enables self-consistent computation of phase equilibria, physical properties (e.g. density, thermal expansivity etc.) and mantle isentropes. Our model also accounts for the freezing of the inner core, radiogenic heating and Arrhenius rheology, and is validated by comparing our results to observations, including the present-day size of the inner core and the heat flux at the surface.If phase changes and the various thermodynamic effects on mantle properties are neglected, the results are weakly dependent on the initial conditions, as has been observed in several previous studies. However, when these effects are accounted for, the initial temperature profile has a strong influence on the thermal evolution of the mantle, because small changes in the temperature and phase-assemblage can lead to large changes in the local physical properties and the adiabatic gradient.The inclusion of thermodynamic effects leads to some new and interesting insights. We demonstrate that the Clapeyron slope and the thermal gradient at the transition zone both vary significantly with time; this causes the mantle to switch between a layered state, in which convection across the transition zone is weak or negligible, and an un-layered state, in which there is no resistance to mass transfer between the upper and lower mantles.Various plume models describe plumes either rising directly from the CMB to the lithosphere, or stalling at the transition zone before spawning new plumes in the upper mantle. The observance of switching behaviour indicates that both models may be applicable depending on the state of the mantle: plumes

  14. Test-Retest Reliability of Innovated Strength Tests for Hip Muscles

    PubMed Central

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  15. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    PubMed

    Charles, James P; Cappellari, Ornella; Spence, Andrew J; Hutchinson, John R; Wells, Dominic J

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  16. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  17. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

    PubMed Central

    MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki

    2015-01-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  18. Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories.

    PubMed

    Bunge, Hans-Peter; Richards, M A; Baumgardner, J R

    2002-11-15

    Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories

  19. Relative Contributions of Adductor Canal Block and Intrathecal Morphine to Analgesia and Functional Recovery After Total Knee Arthroplasty: A Randomized Controlled Trial.

    PubMed

    Biswas, Abhijit; Perlas, Anahi; Ghosh, Meela; Chin, KiJinn; Niazi, Ahtsham; Pandher, Barjind; Chan, Vincent

    2018-02-01

    Effective postoperative analgesia may enhance early rehabilitation after orthopedic surgery. This randomized double-blind trial investigates the relative contributions of adductor canal block and low-dose intrathecal morphine (ITM) to postoperative analgesia and functional recovery after total knee arthroplasty. Two-hundred one patients undergoing elective unilateral total knee arthroplasty under spinal anesthesia were randomized to 3 groups. All patients received standardized intraoperative local infiltration analgesia and postoperative oral analgesics. Patients in group 1 received a "sham" adductor canal block with 30 mL of normal saline. Patients in group 2 received an adductor canal block with 30 mL of ropivacaine 0.5% with 1:400,000 epinephrine, whereas patients in group 3 received the adductor canal block with the active drug and 100 μg of ITM. The primary outcome measure was the Timed Up and Go (TUG) test on the second postoperative day. Secondary outcomes included postoperative pain scores and opioid requirements, distance walked, time to hospital discharge, and self-reported functional outcomes at 3 months. All 3 groups had similar values of TUG test on postoperative day (POD) 2 (46 [36-62], 45 [33-61], and 52 [41-69]; P = 0.166) as well as other short-term and 3-month functional outcomes. Patients in group 3 showed a favorable analgesic profile as evidenced by 3 positive secondary outcomes. These positive outcomes were lower pain scores 12 hours postoperatively both at rest (4 [2-6.3], 4 [2.3-6], and 3 [1-4]; P = 0.007) and on movement (6 [4-8], 6 [3-8], and 4 [2-6]; P = 0.002), a lower incidence of "rescue" intravenous patient-controlled analgesia (42%, 34%, and 20%; P = 0.031), and the lowest cumulative opioid requirements for the first 48 hours postoperatively (86 ± 71, 68 ± 46, and 59 ± 39; P < 0.005, group 3 compared with group 1). Our data suggest that there is no difference in either the primary outcome of TUG test on POD 2, other immediate

  20. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    PubMed

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  1. Mantle dynamics following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  2. Water partitioning in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Inoue, Toru; Wada, Tomoyuki; Sasaki, Rumi; Yurimoto, Hisayoshi

    2010-11-01

    We have conducted H2O partitioning experiments between wadsleyite and ringwoodite and between ringwoodite and perovskite at 1673 K and 1873 K, respectively. These experiments were performed in order to constrain the relative distribution of H2O in the upper mantle, the mantle transition zone, and the lower mantle. We successfully synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and ringwoodite-perovskite that were large enough to measure the H2O contents by secondary ion mass spectrometry (SIMS). Combining our previous H2O partitioning data (Chen et al., 2002) with the present results, the determined water partitioning between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated conditions are 6:30:15:1, respectively. Because the maximum H2O storage capacity in wadsleyite is ∼3.3 wt% (e.g. Inoue et al., 1995), the possible maximum H2O storage capacity in the olivine high-pressure polymorphs are as follows: ∼0.7 wt% in olivine (upper mantle just above 410 km depth), ∼3.3 wt% in wadsleyite (410-520 km depth), ∼1.7 wt% in ringwoodite (520-660 km depth), and ∼0.1 wt% in perovskite (lower mantle). If we assume ∼0.2 wt% of the H2O content in wadsleyite in the mantle transition zone estimated by recent electrical conductivity measurements (e.g. Dai and Karato, 2009), the estimated H2O contents throughout the mantle are as follows; ∼0.04 wt% in olivine (upper mantle just above 410 km depth), ∼0.2 wt% in wadsleyite (410-520 km depth), ∼0.1 wt% in ringwoodite (520-660 km depth) and ∼0.007 wt% in perovskite (lower mantle). Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.

  3. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  4. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    NASA Astrophysics Data System (ADS)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra < 107, basaltic materials generated by the initial widespread magmatism accumulate in the deep mantle to form a layer; the basaltic layer is colder than the overlying shallow mantle. At Ra > 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  5. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. © 2015 Federation of European Neuroscience Societies and John

  6. The maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Yurimoto, H.

    2012-12-01

    Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the

  7. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L

    2016-03-01

    The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.

  8. Mantle plumes and hotspot geochemistry

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Becker, T. W.; Konter, J.

    2017-12-01

    Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot

  9. The survival of geochemical mantle heterogeneities

    NASA Astrophysics Data System (ADS)

    Albarede, F.

    2004-12-01

    The last decade witnessed major changes in our perception of the geochemical dynamics of the mantle. Data bases such as PETDB and GEOROC now provide highly constrained estimates of the geochemical properties of dominant rock types and of their statistics, while the new generation of ICP mass spectrometers triggered a quantum leap in the production of high-precision isotopic and elemental data. Such new advances offer a fresh view of mantle heterogeneities and their survival through convective mixing. A vivid example is provided by the new high-density coverage of the Mid-Atlantic ridge by nearly 500 Pb, Nd, and Hf isotopic data. This new data set demonstrates a rich harmonic structure which illustrates the continuing stretching and refolding of subducted plates by mantle convection. Just as for oceanic chemical variability, the survival of mantle geochemical heterogeneities though mantle circulation can be seen as a competition between stirring and renewal. The modern residence (renewal) times of the incompatible lithophile elements in the mantle calculated using data bases vary within a rather narrow range (4-9 Gy). The mantle is therefore not currently at geochemical steady-state and the effect of its primordial layering on modern mantle geochemistry is still strong. Up to 50 percent of incompatible lithophile elements may never have been extracted into the oceanic crust, which generalizes a conclusion reached previously for 40Ar. A balance between the buoyancy flux and viscous dissipation provides frame-independent estimates of the rates of mixing by mantle convection: primordial geochemical anomalies with initial length scales comparable to mantle depths of plate lengths are only marginally visible at the scale of mantle melting underneath mid-ocean ridges (≈~50~km). They may show up, however, in hot spot basalts and even more in melt inclusions. Up to 50 percent primordial material may be present in the mantle, but scattered throughout as small (<~10~km

  10. Mantle convection on modern supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter

    2015-04-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.

  11. Laryngeal reinnervation for bilateral vocal fold paralysis.

    PubMed

    Marina, Mat B; Marie, Jean-Paul; Birchall, Martin A

    2011-12-01

    Laryngeal reinnervation for bilateral vocal fold paralysis (BVFP) patients is a promising technique to achieve good airway, although preserving a good quality of voice. On the other hand, the procedure is not simple. This review explores the recent literature on surgical technique and factors that may contribute to the success. Research and literature in this area are limited due to variability and complexity of the nerve supply. The posterior cricoarytenoid (PCA) muscle also receives nerve supply from the interarytenoid branch. Transection of this nerve at the point between interarytenoid and PCA branch may prevent aberrant reinnervation of adductor nerve axons to the PCA muscle. A varying degree of regeneration of injured recurrent laryngeal nerves (RLN) in humans of more than 6 months confirms subclinical reinnervation, which may prevent denervation-induced atrophy. Several promising surgical techniques have been developed for bilateral selective reinnervation for BVFP patients. This involves reinnervation of the abductor and adductor laryngeal muscles. The surgical technique aims at reinnervating the PCA muscle to trigger abduction during the respiratory cycle and preservation of good voice by strengthening the adductor muscles as well as prevention of laryngeal synkinesis.

  12. Spin Transition in the Lower Mantle: Deep Learning and Pattern Recognition of Superplumes from the Mid-mantle and Mid-mantle Slab Stagnation

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Shahnas, M. H.; De Hoop, M. V.; Pysklywec, R.

    2016-12-01

    The broad, slow seismic anomalies under Africa and Pacific cannot be explained without ambiguity. There is no well-established theory to explain the fast structures prevalent globally in seismic tomographic images that are commonly accepted to be the remnants of fossil slabs at different depths in the mantle. The spin transition from high spin to low spin in iron in ferropericlase and perovskite, two major constituents of the lower mantle can significantly impact their physical properties. We employ high resolution 2D-axisymmetric and 3D-spherical control volume models to reconcile the influence of the spin transition-induced anomalies in density, thermal expansivity, and bulk modulus in ferropericlase and perovskite on mantle dynamics. The model results reveal that the spin transition effects increase the mixing in the lower regions of mantle. Depending on the changes of bulk modulus associated with the spin transition, these effects may also cause both stagnation of slabs and rising plumes at mid-mantle depths ( 1600 km). The stagnation may be followed by downward or upward penetration of cold or hot mantle material, respectively, through an avalanche process. The size of these mid-mantle plumes reaches 1500 km across with a radial velocity reaching 20 cm/yr near the seismic transition zone and plume heads exceeding 2500 km across. We will employ a deep-learning algorithm to formulate this challenge as a classification problem where modelling/computation aids in the learning stage for detecting the particular patterns.The parameters based on which the convection models are developed are poorly constrained. There are uncertainties in initial conditions, heterogeneities and boundary conditions in the simulations, which are nonlinear. Thus it is difficult to reconstruct the past configuration over long time scales. In order to extract information and better understand the parameters in mantle convection, we employ deep learning algorithm to search for different

  13. Musculoskeletal anatomy of the pelvic fin of Polypterus: implications for phylogenetic distribution and homology of pre- and postaxial pelvic appendicular muscles.

    PubMed

    Molnar, Julia L; Johnston, Peter S; Esteve-Altava, Borja; Diogo, Rui

    2017-04-01

    As a member of the most basal clade of extant ray-finned fishes (actinopterygians) and of one of the most basal clades of osteichthyans (bony fishes + tetrapods), Polypterus can provide insights into the ancestral anatomy of both ray-finned and lobe-finned fishes, including those that gave rise to tetrapods. The pectoral fin of Polypterus has been well described but, surprisingly, neither the bones nor the muscles of the pelvic fin are well known. We stained and dissected the pelvic fin of Polypterus senegalus and Polypterus delhezi to offer a detailed description of its musculoskeletal anatomy. In addition to the previously described adductor and abductor muscles, we found preaxial and postaxial muscles similar to those in the pectoral fin of members of this genus. The presence of pre- and postaxial muscles in both the pectoral and pelvic fins of Polypterus, combined with recent descriptions of similar muscles in the lobe-finned fishes Latimeria and Neoceratodus, suggests that they were present in the most recent common ancestor of bony fishes. These results have crucial implications for the evolution of appendicular muscles in both fish and tetrapods. © 2016 Anatomical Society.

  14. Magnetic resonance imaging phenotyping of Becker muscular dystrophy.

    PubMed

    Faridian-Aragh, Neda; Wagner, Kathryn R; Leung, Doris G; Carrino, John A

    2014-12-01

    There is little information on magnetic resonance imaging (MRI) phenotypes of Becker muscular dystrophy (BMD). This study presents the MRI phenotyping of the upper and lower extremities of a large cohort of BMD patients. In this retrospective study, MRI images of 33 BMD subjects were evaluated for severity, distribution, and symmetry of involvement. Teres major, triceps long head, biceps brachii long head, gluteus maximus, gluteus medius, vasti, adductor longus, adductor magnus, semitendinosus, semimembranosus, and biceps femoris muscles showed the highest severity and frequency of involvement. All analyzed muscles had a high frequency of symmetric involvement. There was significant variability of involvement between muscles within some muscle groups, most notably the arm abductors, posterior arm muscles, medial thigh muscles, and lateral hip rotators. This study showed a distinctive pattern of involvement of extremity muscles in BMD subjects. © 2014 Wiley Periodicals, Inc.

  15. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our

  16. Voice tuning with new instruments for type II thyroplasty in the treatment of adductor spasmodic dysphonia.

    PubMed

    Sanuki, Tetsuji; Yumoto, Eiji; Toya, Yutaka; Kumai, Yoshihiko

    2016-10-01

    Adductor spasmodic dysphonia is a rare voice disorder characterized by strained and strangled voice quality with intermittent phonatory breaks and adductory vocal fold spasms. Type II thyroplasty differs from previous treatments in that this surgery does not involve any surgical intervention into the laryngeal muscle, nerve or vocal folds. Type II thyroplasty intervenes in the thyroid cartilage, which is unrelated to the lesion. This procedure, conducted with the aim of achieving lateralization of the vocal folds, requires utmost surgical caution due to the extreme delicacy of the surgical site, critically sensitive adjustment, and difficult procedures to maintain the incised cartilages at a correct position. During surgery, the correct separation of the incised cartilage edges with voice monitoring is the most important factor determining surgical success and patient satisfaction. We designed new surgical instruments: a thyroid cartilage elevator for undermining the thyroid cartilage, and spacer devices to gauge width while performing voice monitoring. These devices were designed to prevent surgical complications, and to aid in selecting the optimal size of titanium bridges while temporally maintaining a separation during voice monitoring. We designed new surgical instruments, including a thyroid cartilage elevator and spacer devices. Precise surgical procedures and performing voice tuning during surgery with the optimal separation width of the thyroid cartilage are key points for surgical success. We introduce the technique of voice tuning using these surgical tools in order to achieve a better outcome with minimal surgical complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The potential of digital dental radiography in recording the adductor sesamoid and the MP3 stages.

    PubMed

    Abdel-Kader, H M

    1999-12-01

    The current study was undertaken to evaluate the reliability of using a recent advance in clinical radiographic technique, digital dental radiography, in recording two growth indicators: the adductor sesamoid and MP3 stages. With an exposure time five times less than that used in the conventional approach, this method shows greatest flexibility in providing a high quality digitized radiographic images of the two growth indicators under investigation. Refereed Paper

  18. Blood pressure and the contractility of a human leg muscle.

    PubMed

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  19. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  20. Mantle transition zone thinning beneath eastern Africa: Evidence for a whole-mantle superplume structure

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2013-07-01

    to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks reveal a mantle transition zone that is ~30-40 km thinner than the global average in a region ~200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya. The thinning of the transition zone indicates a ~190-300 K thermal anomaly in the same location where seismic tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. This finding provides compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume.

  1. Geodynamics: Hot mantle rising

    NASA Astrophysics Data System (ADS)

    Shorttle, Oliver

    2017-06-01

    The long-term cooling of Earth's mantle is recorded in the declining temperature and volume of its volcanic outpourings over time. However, analyses of 89-million-year-old lavas from Costa Rica suggest that extremely hot mantle still lurks below.

  2. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  3. Mantle dynamics and seismic tomography

    PubMed Central

    Tanimoto, Toshiro; Lay, Thorne

    2000-01-01

    Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784

  4. Neuromuscular Characteristics of Individuals Displaying Excessive Medial Knee Displacement

    PubMed Central

    Padua, Darin A.; Bell, David R.; Clark, Micheal A.

    2012-01-01

    Context Knee-valgus motion is a potential risk factor for certain lower extremity injuries, including anterior cruciate ligament injury and patellofemoral pain. Identifying neuromuscular characteristics associated with knee-valgus motion, such as hip and lower leg muscle activation, may improve our ability to prevent lower extremity injuries. Objective We hypothesized that hip and lower leg muscle-activation amplitude would differ among individuals displaying knee valgus (medial knee displacement) during a double-legged squat compared with those who did not display knee valgus. We further suggested that the use of a heel lift would alter lower leg muscle activation and frontal-plane knee motion in those demonstrating medial knee displacement. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 37 healthy participants were assigned to the control (n = 19) or medial-knee-displacement (n = 18) group based on their double-legged squat performance. Main Outcome Measure(s) Muscle-activation amplitude for the gluteus maximus, gluteus medius, adductor magnus, medial and lateral gastrocnemius, and tibialis anterior was measured during 2 double-legged squat tasks. The first task consisted of performing a double-legged squat without a heel lift; the second consisted of performing a double-legged squat task with a 2-in (5.08-cm) lift under the heels. Results Muscle-activation amplitude for the hip adductor, gastrocnemius, and tibialis anterior was greater in those who displayed knee valgus than in those who did not (P < .05). Also, use of heel lifts resulted in decreased activation of the gluteus maximus, hip adductor, gastrocnemius, and tibialis anterior muscles (P < .05). Use of heel lifts also eliminated medially directed frontal-plane knee motion in those displaying medial knee displacement. Conclusions Medial knee displacement during squatting tasks appears to be associated with increased hip-adductor activation and

  5. Facilitating atmosphere oxidation through mantle convection

    NASA Astrophysics Data System (ADS)

    Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.

    2017-12-01

    Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the

  6. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles

    NASA Technical Reports Server (NTRS)

    Vijayan, K.; Thompson, J. L.; Norenberg, K. M.; Fitts, R. H.; Riley, D. A.

    2001-01-01

    Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.

  7. Workshop on the Archean Mantle

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1989-01-01

    The Workshop on the Archaen mantle considers and discusses evidence for the nature of earth's Archaen mantle, including its composition, age and structure, influence on the origin and evolution of earth's crust, and relationship to mantle and crustal evolution of the other terrestrial planets. The summaries of presentations and discussions are based on recordings made during the workshop and on notes taken by those who agreed to serve as summarizers.

  8. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  9. Os and HSE of the hot upper mantle beneath southern Tibet: Indian mantle affinity?

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Dale, C. W.; Pearson, D. G.; Niu, Y.; Zhu, D.; Mo, X.

    2011-12-01

    The subduction of the Indian plate (including cratonic continental crust and/or upper mantle) beneath southern Tibet is widely accepted from both geological and geophysical studies. Mantle-derived xenoliths from this region provide a means of directly investigating the mantle underlying the southern part of the plateau. Studies of xenoliths hosted in the Sailipu ultrapotassic volcanic rocks, erupted at ~17 Ma, have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). Here we report comprehensive EPMA and LA-ICP-MS major and trace element data for the Sailipu xenoliths and also whole rock Os isotope and HSE data in order to constrain the depletion history of the mantle and to identify the presence of any potential Indian cratonic mantle. The xenoliths, ranging in size from 0.5cm to 1.5cm in diameter, are mostly peridotites. The calculated temperatures are 1010-1230°C at the given pressures of ~1.6-2.0 GPa (n=47). These P-T conditions are similar to rift-related upper mantle regimes (e.g. Kenya), indicating the influence of regional extension beneath southern Tibet in the Miocene. A series of compositional discriminations for minerals (Cpx, Opx, Ol, and Phl), e.g. Fo<90, suggest that the xenoliths are non-cratonic spinel-peridotite (cratonic peridotite olivine Fo> ~91), with a clear metasomatic signature We obtained Os isotope data and abundances of highly siderophile elements (HSE, including Os, Ir, Ru, Pt, Pd and Re) on a set of six olivine-dominated peridotite samples from Sailipu volcanics, less than 1 cm in dimension. They allow us to further constrain the nature and state of the upper mantle beneath the southern Tibet. Sailipu samples display low total HSE abundances (Os+Ir+Ru+Pt+Pd+Re) ranging from 8.7 to 25 ppb, with nearly constant Os, Ir , and Ru, but rather varied Pt (2-13), Pd (0.4-5.2), and Re (0.01-0.5). Chondrite-normalised Pd/Ir ratios range from

  10. Of Mantle Plumes, Their Existence, and Their Nature: Insights from Whole Mantle SEM-Based Seismic Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.; French, S. W.

    2014-12-01

    Many questions remain on the detailed morphology of mantle convection patterns. While high resolution P wave studies show a variety of subducted slab behaviors, some stagnating in the transition zone, others penetrating into the lower mantle (e.g. Fukao & Obayashi, 2013), low velocity structures - the upwelling part of flow - are more difficult to resolve at the same scale. Indeed, depth extent and morphology of the low velocity roots of hotspot volcanoes is still debated, along with the existence of "mantle plumes". Using spectral element waveform tomography, we previously constructed a global, radially anisotropic, upper mantle Vs model (SEMum2, French et al., 2013) and have now extended it to the whole mantle by adding shorter period waveform data (SEMUCB-WM1, French & Romanowicz, GJI, in revision). This model shows long wavelength structure in good agreement with other recent global Vs models derived under stronger approximations (Ritsema et al. 2011; Kustowski, et al. 2008), but exhibits better focused, finer scale structure throughout the mantle. SEMUCB-WM1 confirms the presence in all major ocean basins of the quasi-periodic, upper mantle low velocity anomalies, previously seen in SEMum2. At the same time, lower mantle low velocity structure is dominated by a small number (~15 globally) of quasi-vertical anomalies forming discrete "column"" rooted at the base of the mantle. Most columns are positioned near major hotspots, as defined by buoyancy flux, and are wider (~800-1000 km diameter) than expected from the thermal plume model - suggestive of thermo-chemical plumes, which may be stable for long times compared to purely thermal ones. Some columns reach the upper mantle, while others deflect horizontally near 1000 km - the same depth where many slabs appear to stagnate. As they reach the transition zone, the wide columnar structure can be lost, as these "plumes" appear to meander through the upper mantle, perhaps entrained by more vigorous, lower viscosity

  11. Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise - Pacific/Antarctic ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Chen, Li-Hui; Li, Shi-Zhen

    2013-12-01

    A large-scale mantle compositional discontinuity was identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition located at the EPR 23°S-32°S. Because of the EPR-Easter hotspot interactions in this area, the nature of this geochemical discontinuity remains unclear. IODP Sites U1367 and U1368 drilled into the ocean crust that was accreted at ∼33.5 Ma and ∼13.5 Ma, respectively, between 28°S and 30°S on the EPR. We use lavas from Sites U1367 and U1368 to track this mantle discontinuity away from the EPR. The mantle sources for basalts at Sites U1367 and U1368 represent, respectively, northern and southern Pacific mantle sub-domains in terms of Sr-Nd-Pb-Hf isotopes. The significant isotopic differences between the two IODP sites are consistent with addition of ancient subduction-processed ocean crust to the south Pacific mantle sub-domain. Our modeling result shows that a trace element pattern similar to that of U1368 E-MORB can be formed by melting a subduction-processed typical N-MORB. The trace element and isotope compositions for Site U1368 MORBs can be formed by mixing a HIMU mantle end-member with Site U1367 MORBs. Comparison of our data with those from the EPR-PAR shows a geochemical mantle boundary near the Easter microplate that separates the Pacific upper mantle into northern and southern sub-domains. On the basis of reconstruction of initial locations of the ocean crust at the two sites, we find that the mantle boundary has moved northward to the Easter microplate since before 33.5 Ma. A model, in which along-axis asthenospheric flow to where asthenosphere consumption is strongest, explains the movement of the apparent mantle boundary.

  12. Treatment efficacy of electromyography versus fiberscopy-guided botulinum toxin injection in adductor spasmodic dysphonia patients: a prospective comparative study.

    PubMed

    Kim, Jae Wook; Park, Jae Hong; Park, Ki Nam; Lee, Seung Won

    2014-01-01

    This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group) and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group). Thirty patients with adductor spasmodic dysphonia (ADSD), who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI) before injection and at 1, 3, and 6 months after injection. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P > 0.05). There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable.

  13. Treatment Efficacy of Electromyography versus Fiberscopy-Guided Botulinum Toxin Injection in Adductor Spasmodic Dysphonia Patients: A Prospective Comparative Study

    PubMed Central

    Kim, Jae Wook; Park, Jae Hong; Park, Ki Nam; Lee, Seung Won

    2014-01-01

    Introduction. This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group) and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group). Methods. Thirty patients with adductor spasmodic dysphonia (ADSD), who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI) before injection and at 1, 3, and 6 months after injection. Results. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P > 0.05). There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Conclusion. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable. PMID:25383369

  14. Mantle upwelling and trench-parallel mantle flow in the northern Cascade arc indicated by basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Mullen, E.; Weis, D.

    2013-12-01

    Cascadia offers a unique perspective on arc magma genesis as an end-member ';hot' subduction zone in which relatively little water may be available to promote mantle melting. The youngest and hottest subducting crust (~5 Myr at the trench) occurs in the Garibaldi Volcanic Belt, at the northern edge of the subducting Juan de Fuca plate [1]. Geochemical data from GVB primitive basalts provide insights on mantle melting where a slab edge coincides with high slab temperatures. In subduction zones worldwide, including the Cascades, basalts are typically calc-alkaline and produced from a depleted mantle wedge modified by slab input. However, basalts from volcanic centers overlying the northern slab edge (Salal Glacier and Bridge River Cones) are alkalic [2] and lack a trace element subduction signature [3]. The mantle source of the alkalic basalts is significantly more enriched in incompatible elements than the slab-modified depleted mantle wedge that produces calc-alkaline basalts in the southern GVB (Mt. Baker and Glacier Peak) [3]. The alkalic basalts are also generated at temperatures and pressures of up to 175°C and 1.5 GPa higher than those of the calc-alkaline basalts [3], consistent with decompression melting of fertile, hot mantle ascending through a gap in the Nootka fault, the boundary between the subducting Juan de Fuca plate and the nearly stagnant Explorer microplate. Mantle upwelling may be related to toroidal mantle flow around the slab edge, which has been identified in southern Cascadia [4]. In the GVB, the upwelling fertile mantle is not confined to the immediate area around the slab edge but has spread southward along the arc axis, its extent gradually diminishing as the slab-modified depleted mantle wedge becomes dominant. Between Salal Glacier/Bridge River and Glacier Peak ~350 km to the south, there are increases in isotopic ratios (ɛHf = 8.3 to13.0, ɛNd = 7.3 to 8.5, and 208Pb*/206*Pb* = 0.914 to 0.928) and trace element indicators of slab

  15. The Elephants' Graveyard: Constraints from Mantle Plumes on the Fate of Subducted Slabs and Implications for the Style of Mantle Convection

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2007-12-01

    The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source

  16. Long-Term Stability of Plate-Like Behavior Caused by Hydrous Mantle Convection and Water Absorption in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Iwamori, Hikaru

    2017-10-01

    We investigate the cycling of water (regassing, dehydration, and degassing) in mantle convection simulations as a function of the strength of the oceanic lithosphere and its influence on the evolution of mantle water content. We also consider pseudo-plastic yielding with a friction coefficient for simulating brittle behavior of the plates and the water-weakening effect of mantle materials. This model can generate long-term plate-like behavior as a consequence of the water-weakening effect of mantle minerals. This finding indicates that water cycling plays an essential role in generating tectonic plates. In vigorous plate motion, the mantle water content rapidly increases by up to approximately 4-5 ocean masses, which we define as the "burst" effect. A burst is related to the mantle temperature and water solubility in the mantle transition zone. When the mantle is efficiently cooled down, the mantle transition zone can store water transported by the subducted slabs that can pass through the "choke point" of water solubility. The onset of the burst effect is strongly dependent on the friction coefficient. The burst effect of the mantle water content could have significantly influenced the evolution of the surface water if the burst started early, in which case the Earth's surface cannot preserve the surface water over the age of the Earth.

  17. Considerations for initial dosing of botulinum toxin in treatment of adductor spasmodic dysphonia.

    PubMed

    Rosow, David E; Parikh, Punam; Vivero, Richard J; Casiano, Roy R; Lundy, Donna S

    2013-06-01

    To assess the effect on voice improvement and duration of breathiness based on initial dose of onabotulinum toxin A (BTX-A) in the management of adductor spasmodic dysphonia (SD) and to compare voice outcomes for initial bilaterally injected doses of 1.25 units (group A) vs 2.5 units (group B) of BTX-A. Case series with chart review of patients with adductor SD treated at a tertiary care facility from 1990 to 2011. Academic subspecialty laryngology practice. Demographic data (age and sex), voice rating, duration of voice improvement, and breathiness were evaluated and compared between groups A and B using the Student t test and χ(2) analysis. Of 478 patients identified, 305 (223 in group A, 82 in group B) patients met inclusion criteria. The average age was 56.2 years in group A and 57.4 years in group B (P = .5). The female to male ratio was 2.91 for group A vs 3.56 for group B (P = .61). Good voice outcomes (grade 3 or 4) were reported by 91% of group A patients vs 94% of group B (P = .75). The average duration of voice improvement was 99.7 days for group A and 108.3 days for group B (P = .54). The average duration of breathiness was 10.88 days for group A vs 15.42 days for group B (P = .02). Patients injected with 1.25 units bilaterally had a statistically significant shorter duration of breathiness without a statistically significant difference in clinical effectiveness or voice outcome. It is therefore recommended that a relatively low initial BTX-A dose be used with subsequent titration to achieve improved voice outcomes.

  18. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham

    2015-08-01

    The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with

  19. Towards driving mantle convection by mineral physics

    NASA Astrophysics Data System (ADS)

    Piazzoni, A. S.; Bunge, H.; Steinle-Neumann, G.

    2005-12-01

    Models of mantle convection have become increasingly sophisticated over the past decade, accounting, for example, for 3 D spherical geometry, and changes in mantle rheology due to variations in temperature and stress. In light of such advances it is surprising that growing constraints on mantle structure derived from mineral physics have not yet been fully brought to bear on mantle convection models. In fact, despite much progress in our understanding of mantle mineralogy a partial description of the equation of state is often used to relate density changes to pressure and temperature alone, without taking into account compositional and mineralogical models of the mantle. Similarly, for phase transitions an incomplete description of thermodynamic constraints is often used, resulting in significant uncertainties in model behavior. While a number of thermodynamic models (some with limited scope) have been constructed recently, some lack the rigor in thermodynamics - for example with respect to the treatment of solid solution - that is needed to make predictions about mantle structure. Here we have constructed a new thermodynamic database for the mantle and have coupled the resulting density dynamically with mantle convection models. The database is build on a self-consistent Gibb's free energy minimization of the system MgO-FeO-SiO2-CaO-Al2O3 that is appropriate for standard (dry) chemical models of the Earth's mantle for relevant high pressure and temperature phases. We have interfaced the database with a high-resolution 2-D convection code (2DTERRA), dynamically coupling the thermodynamic model (density) with the conservation equations of mantle flow. The coupled model is run for different parameterizations of viscosity, initial temperature conditions, and varying the internal vs. external heating. We compare the resulting flow and temperature fields to cases with the Boussinesq approximation and other classical descriptions of the equation of state in mantle

  20. Mantle-cell lymphoma.

    PubMed

    Barista, I; Romaguera, J E; Cabanillas, F

    2001-03-01

    During the past decade, mantle-cell lymphoma has been established as a new disease entity. The normal counterparts of the cells forming this malignant lymphoma are found in the mantle zone of the lymph node, a thin layer surrounding the germinal follicles. These cells have small to medium-sized nuclei, are commonly indented or cleaved, and stain positively with CD5, CD20, cyclin D1, and FMC7 antibodies. Because of its morphological appearance and a resemblance to other low-grade lymphomas, many of which grow slowly, this lymphoma was initially thought to be an indolent tumour, but its natural course was not thoroughly investigated until the 1990s, when the BCL1 oncogene was identified as a marker for this disease. Mantle-cell lymphoma is a discrete entity, unrelated to small lymphocytic or small-cleaved-cell lymphomas.

  1. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  2. Large-scale compositional heterogeneity in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Ballmer, M.

    2017-12-01

    Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.

  3. "Superior cleft sign" as a marker of rectus abdominus/adductor longus tear in patients with suspected sportsman's hernia.

    PubMed

    Murphy, Grainne; Foran, Paul; Murphy, Darra; Tobin, Oliver; Moynagh, Michael; Eustace, Stephen

    2013-06-01

    We describe a new imaging sign, the "superior cleft sign", identified at both symphysography and MRI, which should be used as a marker of rectus abdominis/adductor longus attachment tearing. A study population of 25 patients presenting with clinically suspected sportsman's hernia, who had undergone both symphysography and MRI of the groin were included for study. In each case, images were reviewed to determine the presence of a superior cleft, secondary cleft, and or both abnormalities. Images of all patients complaining of groin crease discomfort similar to sportsman's hernia revealed the presence of a superior cleft at the rectus abdominis/adductor longus attachment. This "superior cleft sign" correlated with the side of symptoms in each case, and, in contrast to the previously described secondary cleft along the inferior margin of the inferior pubic ramus, occurred parallel to the inferior margin of the superior pubic ramus. The presence of the "superior cleft sign" should be sought in addition to the previously described secondary cleft sign in sportspeople presenting with exercise-related groin pain or pubalgia. It should specifically be sought in patients referred with suspected sportsman's hernia.

  4. Blood pressure and the contractility of a human leg muscle

    PubMed Central

    Luu, Billy L; Fitzpatrick, Richard C

    2013-01-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946

  5. Teaching machines to find mantle composition

    NASA Astrophysics Data System (ADS)

    Atkins, Suzanne; Tackley, Paul; Trampert, Jeannot; Valentine, Andrew

    2017-04-01

    The composition of the mantle affects many geodynamical processes by altering factors such as the density, the location of phase changes, and melting temperature. The inferences we make about mantle composition also determine how we interpret the changes in velocity, reflections, attenuation and scattering seen by seismologists. However, the bulk composition of the mantle is very poorly constrained. Inferences are made from meteorite samples, rock samples from the Earth and inferences made from geophysical data. All of these approaches require significant assumptions and the inferences made are subject to large uncertainties. Here we present a new method for inferring mantle composition, based on pattern recognition machine learning, which uses large scale in situ observations of the mantle to make fully probabilistic inferences of composition for convection simulations. Our method has an advantage over other petrological approaches because we use large scale geophysical observations. This means that we average over much greater length scales and do not need to rely on extrapolating from localised samples of the mantle or planetary disk. Another major advantage of our method is that it is fully probabilistic. This allows us to include all of the uncertainties inherent in the inference process, giving us far more information about the reliability of the result than other methods. Finally our method includes the impact of composition on mantle convection. This allows us to make much more precise inferences from geophysical data than other geophysical approaches, which attempt to invert one observation with no consideration of the relationship between convection and composition. We use a sampling based inversion method, using hundreds of convection simulations run using StagYY with self consistent mineral physics properties calculated using the PerpleX package. The observations from these simulations are used to train a neural network to make a probabilistic inference

  6. Muscle activation in young men during a lower limb aquatic resistance exercise with different devices.

    PubMed

    Borreani, Sebastien; Colado, Juan Carlos; Furio, Josep; Martin, Fernando; Tella, Víctor

    2014-05-01

    Little research has been reported on the effects of using different devices with resistance exercises in a water environment. This study compared muscular activation of lower extremity and core muscles during leg adduction performed at maximum velocity with drag and floating devices of different sizes. A total of 24 young men (mean age 23.20 ± 1.18 years) performed 3 repetitions of leg adduction at maximum velocity using 4 different devices (ie, large/small and drag/floating). The maximum amplitude of the electromyographic root mean square of the adductor longus, rectus abdominis, external oblique on the dominant side, external oblique on the nondominant side, and erector lumbar spinae were recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Unexpectedly, no significant (P > 0.05) differences were found in the neuromuscular responses among the different devices used; the average activation of agonist muscle adequate for neuromuscular conditioning was 40.95% of MVIC. In addition, external oblique activation is greater on the contralateral side to stabilize the body (average, 151.74%; P < 0.05). Therefore, if maximum muscle activation is required, the kind of device is not relevant. Thus, the choice should be based on economic factors.

  7. The Role of Magnetic Resonance Imaging in Athletic Pubalgia and Core Muscle Injury.

    PubMed

    Coker, Dana J; Zoga, Adam C

    2015-08-01

    Magnetic resonance imaging (MRI) has become the standard of care imaging modality for a difficult, often misunderstood spectrum of musculoskeletal injury termed athletic pubalgia or core muscle injury. Armed with a dedicated noncontrast athletic pubalgia protocol and a late model phased array receiver coil, the musculoskeletal imager can play a great role in effective diagnosis and treatment planning for lesions, including osteitis pubis, midline pubic plate lesions, and rectus abdominis/adductor aponeurosis injury. Beyond these established patterns of MRI findings, there are many confounders and contributing pathologies about the pelvis in patients with activity related groin pain, including internal and periarticular derangements of the hip. The MRI is ideally suited to delineate the extent of expected injury and to identify the unexpected visceral and musculoskeletal lesions.

  8. Dynamical effects on the core-mantle boundary from depth-dependent thermodynamical properties of the lower mantle

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1988-01-01

    A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.

  9. Asymmetric three-dimensional topography over mantle plumes.

    PubMed

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  10. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    NASA Technical Reports Server (NTRS)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  11. Constant average olivine Mg# in cratonic mantle reflects Archaean mantle melting to the exhaustion of orthopyroxene

    NASA Astrophysics Data System (ADS)

    Bernstein, S.; Kelemen, P. B.; Hanghoj, K.

    2006-12-01

    Shallow (garnet-free) cratonic mantle, occurring as xenoliths in kimberlites and alkaline basaltic lavas, has high Mg# (100x Mg/(Mg+Fe)>92) and is poor in Al and Ca compared to off-cratonic mantle. Many xenoliths show rhenium-depletion age of > 3 Ga, and are thus representative of depleted mantle peridotite that form an integral part of the stable nuclei of Archaean (2.5-3.8 Ga) cratons. Accordingly, the depleted composition of the xenolith suites is linked to Archaean melt extraction events. We have compiled data for many suites of shallow cratonic mantle xenoliths worldwide, including samples from cratons of Kaapvaal, Tanzania, Siberia, Slave, North China and Greenland, and encompassing both the classic orthopyroxene-rich peridotites of Kaapvaal and orthopyroxene-poor peridotites from Greenland. The suites show a remarkably small range in average olivine Mg# of 92.8 +/- 0.2. Via comparison with data for experimental melting of mantle peridotite compositions, we explain consistent olivine Mg# in the shallow cratonic mantle as the result of mantle melting and melt extraction to the point of orthopyroxene exhaustion, leaving a nearly monomineralic olivine, or dunitic, residue. Experimental data for peridotite melting at pressures less than 4 GPa and data on natural rocks suggest that mantle olivine has a Mg# of about 92.8 at the point of orthopyroxene exhaustion. If the melt extraction was efficient, no further melting could take place without a considerable temperature increase or melt/fluid flux through the dunite residue at high temperatures. While the high Mg#, dunite-dominated xenolith suites from e.g. Greenland represent simple residues from mantle melting, the orthopyroxene-rich xenolith suites with identical Mg# as known from e. g. Kaapvaal must reflect some additional processes. We envisage their derivation from dunite protoliths via subsequent melt/rock reaction with silica-rich melts or, in some cases, possibly as residues at higher average melting

  12. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2014-03-01

    The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle

  13. Neuromuscular response of hip-spanning and low back muscles to medio-lateral foot center of pressure manipulation during gait.

    PubMed

    Solomonow-Avnon, Deborah; Levin, Daniel; Elboim-Gabyzon, Michal; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2016-06-01

    Footwear-generated medio-lateral foot center of pressure manipulation has been shown to have potential positive effects on gait parameters of hip osteoarthritis patients, ultimately reducing maximum joint reaction forces. The objective of this study was to investigate effects of medio-lateral foot center of pressure manipulation on muscle activity of hip-spanning and back muscles during gait in bilateral hip osteoarthritis patients. Foot center of pressure was shifted along the medio-lateral foot axis using a foot-worn biomechanical device allowing controlled center of pressure manipulation. Sixteen female bilateral hip osteoarthritis patients underwent electromyography analysis while walking in the device set to three parasagittal configurations: neutral (control), medial, and lateral. Seven hip-spanning muscles (Gluteus Medius, Gluteus Maximus, Tensor Fascia Latae, Rectus Femoris, Semitendinosis, Biceps Femoris, Adductor Magnus) and one back muscle (Erector Spinae) were analyzed. Magnitude and temporal parameters were calculated. The amplitude and temporal parameter varied significantly between foot center of pressure positions for 5 out of 8 muscles each for either the more or less symptomatic leg in at least one subphase of the gait cycle. Medio-lateral foot center of pressure manipulation significantly affects neuromuscular pattern of hip and back musculature during gait in female hip bilateral osteoarthritis patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of the muscles associated with the mandibular and hyoid arches in the Siberian sturgeon, Acipenser baerii (Acipenseriformes: Acipenseridae).

    PubMed

    Warth, Peter; Hilton, Eric J; Naumann, Benjamin; Olsson, Lennart; Konstantinidis, Peter

    2018-02-01

    The skeleton of the jaws and neurocranium of sturgeons (Acipenseridae) are connected only through the hyoid arch. This arrangement allows considerable protrusion and retraction of the jaws and is highly specialized among ray-finned fishes (Actinopterygii). To better understand the unique morphology and the evolution of the jaw apparatus in Acipenseridae, we investigated the development of the muscles of the mandibular and hyoid arches of the Siberian sturgeon, Acipenser baerii. We used a combination of antibody staining and formalin-induced fluorescence of tissues imaged with confocal microscopy and subsequent three-dimensional reconstruction. These data were analyzed to address the identity of previously controversial and newly discovered muscle portions. Our results indicate that the anlagen of the muscles in A. baerii develop similarly to those of other actinopterygians, although they differ by not differentiating into distinct muscles. This is exemplified by the subpartitioning of the m. adductor mandibulae as well as the massive m. protractor hyomandibulae, for which we found a previously undescribed portion in each. The importance of paedomorphosis for the evolution of Acipenseriformes has been discussed before and our results indicate that the muscles of the mandibular and the hyoid may be another example for heterochronic evolution. © 2017 Wiley Periodicals, Inc.

  15. The Fine Geochemical Structure of the Hawaiian Mantle Plume: Relation to the Earth's Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Weis, D.; Harrison, L.

    2017-12-01

    The Hawaiian mantle plume has been active for >80 Ma with the highest magmatic flux, also distinctly increasing with time. The identification of two clear geochemical trends (Loa-Kea) among Hawaiian volcanoes in all isotope systems has implications for the dynamics and internal structure of the plume conduit and source in the deep mantle. A compilation of modern isotopic data on Hawaiian shield volcanoes and from the Northwest Hawaiian Ridge (NWHR), focusing specifically on high-precision Pb isotopes integrated with Sr, Nd and Hf isotopes, indicates the presence of source differences for Loa- and Kea-trend volcanoes that are maintained throughout the 1 Ma activity of each volcano. These differences extend back in time on all the Hawaiian Islands ( 5 Ma), and as far back as 47 Ma on the NWHR. In all isotope systems, the Loa-trend basalts are more heterogeneous by a factor of 1.5 than the Kea-trend basalts. The Hawaiian mantle plume overlies the boundary between ambient Pacific lower mantle on the Kea side and the Pacific LLSVP on the Loa side. Geochemical differences between Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material, with additional contribution of ULVZ material sporadically on the Loa side. Plume movement up the gently sloping edge of the LLSVP resulted in entrainment of greater amounts of LLSVP-enriched material over time, and explains why the Hawaiian mantle plume dramatically strengthens over time, contrary to plume models. Similar indications of preferential sampling at the edges of the African LLSVP are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. The anomalous low-velocity zones at the core-mantle boundary store geochemical heterogeneities that are enriched in recycled material (EM-I type) with different compositions under the Pacific and under Africa, and that are sampled by strong mantle plumes such as Hawaii and Kerguelen.

  16. Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?

    NASA Astrophysics Data System (ADS)

    Čížková, Hana; Čadek, Ondřej; van den Berg, Arie P.; Vlaar, Nicolaas J.

    Below subduction zones, high resolution seismic tomographic models resolve fast anomalies that often extend into the deep lower mantle. These anomalies are generally interpreted as slabs penetrating through the 660-km seismic discontinuity, evidence in support of whole-mantle convection. However, thermal coupling between two flow systems separated by an impermeable interface might provide an alternative explanation of the tomographic results. We have tested this hypothesis within the context of an axisymmetric model of mantle convection in which an impermeable boundary is imposed at a depth of 660 km. When an increase in viscosity alone is imposed across the impermeable interface, our results demonstrate the dominant role of mechanical coupling between shells, producing lower mantle upwellings (downwellings) below upper mantle downwellings (upwellings). However, we find that the effect of mechanical coupling can be significantly weakened if a narrow low viscosity zone exists beneath the 660-km discontinuity. In such a case, both thermally induced ‘slabs’ in the lower mantle and thermally activated plumes that rise from the upper/lower mantle boundary are observed even though mass transfer between the shells does not exist.

  17. Postglacial rebound with a non-Newtonian upper mantle and a Newtonian lower mantle rheology

    NASA Technical Reports Server (NTRS)

    Gasperini, Paolo; Yuen, David A.; Sabadini, Roberto

    1992-01-01

    A composite rheology is employed consisting of both linear and nonlinear creep mechanisms which are connected by a 'transition' stress. Background stress due to geodynamical processes is included. For models with a non-Newtonian upper-mantle overlying a Newtonian lower-mantle, the temporal responses of the displacements can reproduce those of Newtonian models. The average effective viscosity profile under the ice-load at the end of deglaciation turns out to be the crucial factor governing mantle relaxation. This can explain why simple Newtonian rheology has been successful in fitting the uplift data over formerly glaciated regions.

  18. Chondritic xenon in the Earth’s mantle

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  19. Archean crust-mantle geochemical differentiation

    NASA Astrophysics Data System (ADS)

    Tilton, G. R.

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  20. Archean crust-mantle geochemical differentiation

    NASA Technical Reports Server (NTRS)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  1. Limit of Predictability in Mantle Convection

    NASA Astrophysics Data System (ADS)

    Bello, L.; Coltice, N.; Rolf, T.; Tackley, P. J.

    2013-12-01

    Linking mantle convection models with Earth's tectonic history has received considerable attention in recent years: modeling the evolution of supercontinent cycles, predicting present-day mantle structure or improving plate reconstructions. Predictions of future supercontinents are currently being made based on seismic tomography images, plate motion history and mantle convection models, and methods of data assimilation for mantle flow are developing. However, so far there are no studies of the limit of predictability these models are facing. Indeed, given the chaotic nature of mantle convection, we can expect forecasts and hindcasts to have a limited range of predictability. We propose here to use an approach similar to those used in dynamic meteorology, and more recently for the geodynamo, to evaluate the predictability limit of mantle dynamics forecasts. Following the pioneering works in weather forecast (Lorenz 1965), we study the time evolution of twin experiments, started from two very close initial temperature fields and monitor the error growth. We extract a characteristic time of the system, known as the e-folding timescale, which will be used to estimate the predictability limit. The final predictability time will depend on the imposed initial error and the error tolerance in our model. We compute 3D spherical convection solutions using StagYY (Tackley, 2008). We first evaluate the influence of the Rayleigh number on the limit of predictability of isoviscous convection. Then, we investigate the effects of various rheologies, from the simplest (isoviscous mantle) to more complex ones (plate-like behavior and floating continents). We show that the e-folding time increases with the wavelength of the flow and reaches 10Myrs with plate-like behavior and continents. Such an e-folding time together with the uncertainties in mantle temperature distribution suggests prediction of mantle structure from an initial given state is limited to <50 Myrs. References: 1

  2. Nd-isotopes in selected mantle-derived rocks and minerals and their implications for mantle evolution

    USGS Publications Warehouse

    Basu, A.R.; Tatsumoto, M.

    1980-01-01

    The Sm-Nd systematics in a variety of mantle-derived samples including kimberlites, alnoite, carbonatite, pyroxene and amphibole inclusions in alkali basalts and xenolithic eclogites, granulites and a pyroxene megacryst in kimberlites are reported. The additional data on kimberlites strengthen our earlier conclusion that kimberlites are derived from a relatively undifferentiated chondritic mantle source. This conclusion is based on the observation that the e{open}Nd values of most of the kimberlites are near zero. In contrast with the kimberlites, their garnet lherzolite inclusions show both time-averaged Nd enrichment and depletion with respect to Sm. Separated clinopyroxenes in eclogite xenoliths from the Roberts Victor kimberlite pipe show both positive and negative e{open}Nd values suggesting different genetic history. A whole rock lower crustal scapolite granulite xenolith from the Matsoku kimberlite pipe shows a negative e{open}Nd value of -4.2, possibly representative of the base of the crust in Lesotho. It appears that all inclusions, mafic and ultramafic, in kimberlites are unrelated to their kimberlite host. The above data and additional Sm-Nd data on xenoliths in alkali basalts, alpine peridotite and alnoite-carbonatites are used to construct a model for the upper 200 km of the earth's mantle - both oceanic and continental. The essential feature of this model is the increasing degree of fertility of the mantle with depth. The kimberlite's source at depths below 200 km in the subcontinental mantle is the most primitive in this model, and this primitive layer is also extended to the suboceanic mantle. However, it is clear from the Nd-isotopic data in the xenoliths of the continental kimberlites that above 200 km the continental mantle is distinctly different from their suboceanic counterpart. ?? 1980 Springer-Verlag.

  3. EMG activity of hip and trunk muscles during deep-water running.

    PubMed

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  4. Numerical simulations of the mantle lithosphere delamination

    NASA Astrophysics Data System (ADS)

    Morency, C.; Doin, M.-P.

    2004-03-01

    Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the

  5. Mantle Degassing and Atmosphere Evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2011-12-01

    Noble gas isotopes have provided much of our understanding of Earth's early history [1-3]. Various degassing models have been developed, including degassing of the whole mantle, degassing of all gases at similar relative rate [1], solubility-controlled degassing [2], and steady-state degassing models [4]. This report will evaluate various degassing models using recent data. For example, helium outgassing flux has been lowered by more than a factor of two based on sophisticated ocean general circulation models [5], which also impacts on the estimated degassing flux of carbon. Years of measurements and progress have allowed isotopic ratios of various mantle reservoirs being pieced together [6]. For example, 129Xe/130Xe in OIB mantle is found to be lower than that in MORB mantle [7]. Missing Xe has been found to be a non-issue [8]. Nucleogenic 21Ne production rate relative radiogenic 4He has been revised [9-10], which leads to an interesting neon paradox that nucleogenic 21Ne production in the whole silicate Earth is barely enough to supply nucleogenic 21Ne in air. 40Ar/36Ar ratio in BSE seems to be much lower than any OIB samples, another interesting paradox. Although non-nucleogenic mantle neon is solar, nonradiogenic mantle argon is atmospheric [11]. For Kr and Xe, the jury is still out. When mantle degassing models are evaluated using volatile data of the MORB and OIB, solubility-controlled degassing is able to reconcile more data than other degassing models. On the other hand, the vailable data seem to indicate that atmosphere evolution is more than mantle degassing; there may be significant contribution to the atmosphere from impact degassing and other sources. Furthermore, we are now suffering from too many data so that understanding the whole picture is elusive. [1] Allegre et al. (1986/87) EPSL 81, 127-150. [2] Zhang & Zindler (1989) J. Geophys. Res. 94, 13719-13737. [3] Zhang (1998) Geochim. Cosmochim. Acta 62, 3185-3189. [4] Pocelli & Wasserburg (1995

  6. Using the South Pole-Aitken (SPA) Impact Melt Composition to Infer Upper Mantle Mineralogy and Timing of Potential Mantle Overturn

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Needham, D. H.

    2018-05-01

    Observed melt composition within the SPA basin are consistent with an impact prior to mantle overturn, when the upper mantle contained clinopyroxene rather than olivine. Potentially, the impact triggered mantle overturn.

  7. Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas.

    PubMed

    Corbeil, Serge; Faury, Nicole; Segarra, Amélie; Renault, Tristan

    2015-01-01

    An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mantle flow influence on subduction evolution

    NASA Astrophysics Data System (ADS)

    Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard

    2018-05-01

    The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.

  9. Modeling Continental Rifts and Melting Under Precambrian Mantle Conditions: Effects of Mantle Potential Temperature and Rheology

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Moucha, R.; Rooney, T. O.; Stein, S.; Stein, C. A.

    2016-12-01

    The Mid-Continent Rift System (MCRS) is a 2000 kilometer-long failed rift which formed within the Precambrian continent of Laurentia ca. 1.1 Ga. The MCRS is part of the Keweenaw large igneous province (LIP), and is dominantly composed of flood basalts, with subordinate rhyolite. While continental rifts and LIPs are frequently spatially related, it is unusual for a rift to be filled with flood basalts. Existing work has suggested that the presence of large volumes of flood basalts within the MCRS is the result of the rift interacting with anomalously hot mantle material, possibly a mantle plume. However, ambient mantle conditions were much hotter during the late Proterozoic than in the modern mantle. This raises the question - could rifting alone generate the significant volume of decompressive melt from the ambient atmosphere without the need for a mantle plume? In this contribution, we utilize a 2D particle-in-cell thermomechanical visco-elasto-plastic code (e.g. Gerya, 2010; & references therein) to numerically explore the parameter space: specifically, the mantle potential temperature, plume excess temperature and volume, extension rates and rheology, and estimate the amount of melt produced in a Precambrian continental rift setting. *This submission is a result of Hansen's participation in GLADE, a nine week summer REU program directed by Dave Stegman (SIO/UCSD).

  10. Improved P-wave Tomography of the Lowermost Mantle and Consequences for Mantle and Core Dynamics

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Muir, J. B.

    2014-12-01

    The core mantle boundary (CMB) separates the liquid iron core from the slowly-convecting solid mantle. The ~300 km thick barrier above the boundary has proven to be far more than a simple dividing layer; rather it is a complex region with a range of proposed phenomena such as thermal and compositional heterogeneity, partial melting and anisotropy. Characterizing the heterogeneity in the lowermost mantle through seismic tomography will prove crucial to accurately understanding key geodynamical processes within our planet, not just in the mantle above, but also a possible "mapping" onto the inner core boundary (ICB) through a thermochemical convection in the outer core, which in turn might control the growth of the inner core (e.g. Aubert et al., 2008; Gubbins et al., 2011). Here we obtain high-resolution compressional wave (P-wave) velocity images and uncertainty estimates for the lowermost mantle using travel time data collected by waveform cross-correlation. Strikingly, independent datasets of seismic phases that "see" the lowermost mantle in a different way yield similar P-wave velocity distributions at lower harmonic degrees. We also consider the effect of CMB topography. The images obtained are void of explicit model parameterization and regularization (through transdimensional Bayesian tomography) and contain features on multiple spatial scales. Subsequent spectral analyses reveal a power of heterogeneity three times larger than previous estimates. The P-wave tomograms of the lowermost mantle contain the harmonic degree 2-structure, similar to tomographic images derived from S-wave data (e.g. Ritsema et al. 2011), but with additional higher harmonic degrees (notably, 3-7). In other words, the heterogeneity size is uniformly distributed between about 500 and 6000 km. Inter alia, the resulting heterogeneity spectrum provides a bridge between the long-wavelength features of most global models and the very short-scale dimensions of scatterers mapped in independent

  11. Intrinsic Foot Muscle Activation During Specific Exercises: A T2 Time Magnetic Resonance Imaging Study.

    PubMed

    Gooding, Thomas M; Feger, Mark A; Hart, Joseph M; Hertel, Jay

    2016-08-01

    The intrinsic foot muscles maintain the medial longitudinal arch and aid in force distribution and postural control during gait. Impaired intrinsic foot-muscle function has been linked to various foot conditions. Several rehabilitative exercises have been proposed to improve it; however, literature that identifies which individual muscles are activated during specific intrinsic foot-muscle exercises is lacking. To describe changes in activation of the intrinsic plantar foot muscles after 4 exercises as measured with T2 magnetic resonance imaging (MRI). Descriptive laboratory study. Research laboratory. Eight healthy National Collegiate Athletic Association Division I collegiate cross-country and track athletes (5 men and 3 women: age = 20 ± 0.93 years, height = 180.98 ± 10.84 cm, mass = 70.91 ± 7.82 kg). Participants underwent T2 MRI before and after each exercise. They completed 1 set of 40 repetitions of each exercise (short-foot exercise, toes spread out, first-toe extension, second- to fifth-toes extension). Percentage increases in muscle activation of the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, flexor digiti minimi, adductor hallucis oblique, flexor hallucis brevis, and interossei and lumbricals (analyzed together) after each exercise were assessed using T2 MRI. All muscles showed increased activation after all exercises. The mean percentage increase in activation ranged from 16.7% to 34.9% for the short-foot exercise, 17.3% to 35.2% for toes spread out, 13.1% to 18.1% for first-toe extension, and 8.9% to 22.5% for second- to fifth-toes extension. All increases in activation had associated 95% confidence intervals that did not cross zero. Each of the 4 exercises was associated with increased activation in all of the plantar intrinsic foot muscles evaluated. These results may have clinical implications for the prescription of specific exercises to target individual intrinsic foot muscles.

  12. Noble gas models of mantle structure and reservoir mass transfer

    NASA Astrophysics Data System (ADS)

    Harrison, Darrell; Ballentine, Chris J.

    Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble

  13. Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology

    NASA Astrophysics Data System (ADS)

    Brown, L. D.

    2013-12-01

    One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and

  14. Continental Basalts and Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Zartman, Robert E.

    In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.

  15. Dynamics of cratons in an evolving mantle

    NASA Astrophysics Data System (ADS)

    O'Neill, C. J.; Lenardic, A.; Griffin, W. L.; O'Reilly, Suzanne Y.

    2008-04-01

    The tectonic quiescence of cratons on a tectonically active planet has been attributed to their physical properties such as buoyancy, viscosity, and yield strength. Previous modelling has shown the conditions under which cratons may be stable for the present, but cast doubt on how they survived in a more energetic mantle of the past. Here we incorporate an endothermic phase change at 670 km, and a depth-dependent viscosity structure consistent with post-glacial rebound and geoid modelling, to simulate the dynamics of cratons in an "Earth-like" convecting system. We find that cratons are unconditionally stable in such systems for plausible ranges of viscosity ratios between the root and asthenosphere (50-150) and the root/oceanic lithosphere yield strength ratio (5-30). Realistic mantle viscosity structures have limited effect on the average background cratonic stress state, but do buffer cratons from extreme stress excursions. An endothermic phase change at 670 km introduces an additional time-dependence into the system, with slab breakthrough into the lower mantle associated with 2-3 fold stress increases at the surface. Under Precambrian mantle conditions, however, the dominant effect is not more violent mantle avalanches, or faster mantle/plate velocities, but rather the drastic viscosity drop which results from hotter mantle conditions in the past. This results in a large decrease in the cratonic stress field, and promotes craton survival under the evolving mantle conditions of the early Earth.

  16. Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments.

    PubMed

    Kim, Hee Kyung; Merrow, Arnold C; Shiraj, Sahar; Wong, Brenda L; Horn, Paul S; Laor, Tal

    2013-10-01

    Prior reports focus primarily on muscle fatty infiltration in Duchenne muscular dystrophy (DMD). However, the significance of muscle edema is uncertain. To evaluate the frequency and degree of muscle fat and edema, and correlate these with clinical function. Forty-two boys (ages 5-19 years) with DMD underwent pelvic MRI. Axial T1- and fat-suppressed T2-weighted images were evaluated to grade muscle fatty infiltration (0-4) and edema (0-3), respectively. Degree and frequency of disease involvement were compared to clinical evaluations. Gluteus maximus had the greatest mean fatty infiltration score, followed by adductor magnus and gluteus medius muscles, and had the most frequent and greatest degree of fatty infiltration. Gluteus maximus also had the greatest mean edema score, followed by vastus lateralis and gluteus medius muscles. These muscles had the most frequent edema, although the greatest degree of edema was seen in other muscles. There was correlation between cumulative scores of fatty infiltration and all clinical evaluations (P < 0.05). In DMD, the muscles with the most frequent fatty infiltration had the greatest degree of fatty infiltration and correlated with patient function. However, the muscles with the most frequent edema were different from those with the greatest degree of edema. Thus, edema may not predict patient functional status.

  17. Isotopic evidence for a large-scale plume-derived mantle domain between the Indian and Pacific mantles beneath the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Langmuir, C. H.; Scott, S. R.; Sims, K. W. W.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Choi, H.; Yang, Y. S.; Michael, P. J.

    2017-12-01

    Earth's upper mantle is characterized by Indian- and Pacific-type domains with distinctive isotope characteristics. The boundary between these two mantle regions has been hypothesized to be located at the Australian-Antarctic-Discordance (AAD), where regions west and east of the AAD are Indian- and Pacific-type, respectively. It was further posited that the Pacific mantle feeds into the Indian mantle as the boundary is moving westward. These scenarios have important implications for the dynamics of mantle convection in the area. In the present model, regions east of the AAD are assumed to be entirely Pacific-type mantle, but our recent recovery of basalts from a 2,000-km sampling gap along the Australian-Antarctic Ridge (AAR), located east of the AAD on the Pacific side, challenges this picture. Here we show that the Hf, Nd, Pb, and Sr isotopic compositions of AAR MORB are distinct from those of Pacific and Indian MORB. Rather, the AAR lavas show mixing relationships with volcanoes from the Hikurangi seamounts, the Balleney and Scott Islands, the West Antarctic Rift System, New Zealand, and east Australia. According to tectonic reconstruction models, these volcanoes are related to super-plume activity that caused Gondwana to break up at 90 Ma. These results imply that a large-scale plume-derived mantle domain exists between the Indian and Pacific mantle domains, and that mantle dynamics along the AAD should be reinterpreted in light of interaction with a super-plume.

  18. Upper Mantle Anisotropy Under Fast Spreading Mid-ocean Ridges: 2-D Whole Mantle Convection Model With Subduction

    NASA Astrophysics Data System (ADS)

    Lee, C.; Zhou, Y.; King, S. D.

    2008-12-01

    Analyses of seismic anisotropy caused by spatial alignments of anisotropic minerals (e.g., olivine) have been widely used to infer mantle flow directions in the upper mantle. Deep seismic anisotropy beneath fast spreading mid-ocean ridges (e.g., East Pacific Rise) has been recently observed at depths of 200-300 km and even down to the transition zone, with polarization changes in radial anisotropy from VSH < VSV (shallow) to VSH < VSV (deep). We investigate the origin of the observed deep seismic anisotropy and polarization changes beneath the EPR in 2-D Cartesian numerical models using both kinematically (prescribed velocity) and dynamically (negative buoyancy) driven ridge spreading. Because subduction is thought to be an important controlling factor in the style of ridge spreading and mantle convection, we consider a subduction zone developing at the prescribed weak zone. A whole mantle domain expressed by a one by four box (2890 by 11560 km) is used to minimize the boundary effects on the subducting slab. For the upper mantle rheology, we consider composite viscosity of diffusion and dislocation creep for dry olivine to evaluate the effects of lateral variation of mantle viscosity and the rheological changes from dislocation to diffusion creep under the mid-ocean ridge. For the lower mantle rheology, we use diffusion creep for dry olivine by increasing grain size to match relevant lower mantle viscosity. We also consider the 660 km phase transition with density and viscosity jump as well as Clapeyron slope. Anisotropy is evaluated using finite-strain ellipses based on the assumption that a-axes of olivine crystals are parallel to the major axes of the finite-strain ellipses. Our preliminary results show 1) in general, the development of VSH < VSV anisotropy is confined only in a narrow region under the ridge axis at depths of 200- 300 km; 2) strong VSH > VSV anisotropy can be found in the 'asthenosphere' beneath the entire spreading oceanic lithosphere; and 3

  19. Hydrous melt-rock reaction in the shallow mantle wedge

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Grove, T. L.

    2017-12-01

    In subduction zone magmatism, hotter, deeper hydrous mantle melts rise and interact with the shallower, cooler depleted mantle in the uppermost part of the mantle wedge. Here, we experimentally investigate these hydrous reactions using three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and calculated reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  20. Thermal and chemical convection in planetary mantles

    NASA Technical Reports Server (NTRS)

    Dupeyrat, L.; Sotin, C.; Parmentier, E. M.

    1995-01-01

    Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.

  1. Substructures of the mantle transition-zone discontinuities and compositional heterogeneities in the mid-mantle

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Shearer, P. M.

    2017-12-01

    The mantle transition-zone discontinuities are usually attributed to isochemical phase transformations of olivine and its high-pressure polymorphs. However, recent seismic observations have shown complexities in these discontinuities that cannot be explained by conventional models of thermal variations. Here we analyse SS precursor stacking results to investigate global mantle transition-zone properties. The precursor waveforms provide information on the seismic velocity and density profiles across and near the major mantle discontinuities. A sporadic low-velocity layer immediately above the 410-km discontinuity is observed worldwide, including East Asia, western North America, eastern South America, and 33-50% of the resolved Pacific Ocean. The 520-km discontinuity exhibits significant variations in its sharpness and depth, and occasionally appears to be split. Structures underlying the 660-km discontinuity show even larger complexities: a sub-discontinuity at 700-800 km depth is detected in some regions, of which some require a positive velocity gradient whereas others have a negative gradient. All of these lateral variations show no geographical correlation with discontinuity topography or tomographic models of seismic velocity, suggesting that they are not caused by regional thermal anomalies. Alternatively, our observations can be explained by compositional heterogeneities in the mid-mantle, including major minerals and volatile content, which may result in additional phase transformations and partial melting. These compositional heterogeneities should be taken into account in future geodynamic models of mantle convection and the deep water cycle.

  2. Formation and modification of chromitites in the mantle

    NASA Astrophysics Data System (ADS)

    Arai, Shoji; Miura, Makoto

    2016-11-01

    Podiform chromitites have long supplied us with unrivaled information on various mantle processes, including the peridotite-magma reaction, deep-seated magmatic evolution, and mantle dynamics. The recent discovery of ultrahigh-pressure (UHP) chromitites not only sheds light on a different aspect of podiform chromitites, but also changes our understanding of the whole picture of podiform chromitite genesis. In addition, new evidence was recently presented for hydrothermal modification/formation chromite/chromitite in the mantle, which is a classical but innovative issue. In this context, we present here an urgently needed comprehensive review of podiform chromitites in the upper mantle. Wall-rock control on podiform chromitite genesis demonstrates that the peridotite-magma reaction at the upper mantle condition is an indispensable process. We may need a large system in the mantle, far larger than the size of outcrops or mining areas, to fulfill the Cr budget requirement for podiform chromitite genesis. The peridotite-magma reaction over a large area may form a melt enriched with Na and other incompatible elements, which mixes with a less evolved magma supplied from the depth to create chromite-oversaturated magma. The incompatible-element-rich magma trapped by the chromite mainly precipitates pargasite and aspidolite (Na analogue of phlogopite), which are stable under upper mantle conditions. Moderately depleted harzburgites, which contain chromite with a moderate Cr# (0.4-0.6) and a small amount of clinopyroxene, are the best reactants for the chromitite-forming reaction, and are the best hosts for podiform chromitites. Arc-type chromitites are dominant in ophiolites, but some are of the mid-ocean ridge type; chromitites may be common beneath the ocean floor, although it has not yet been explored for chromitite. The low-pressure (upper mantle) igneous chromitites were conveyed through mantle convection or subduction down to the mantle transition zone to form

  3. Chemical and seismological constraints on mantle heterogeneity.

    PubMed

    Helffrich, George

    2002-11-15

    Recent seismological studies that use scattered waves to detect heterogeneities in the mantle reveal the presence of a small, distributed elastic heterogeneity in the lower mantle which does not appear to be thermal in nature. The characteristic size of these heterogeneities appears to be ca. 8 km, suggesting that they represent subducted recycled oceanic crust. With this stimulus, old ideas that the mantle is heterogeneous in structure, rather than stratified, are reinterpreted and a simple, end-member model for the heterogeneity structure is proposed. The volumetrically largest components in the model are recycled oceanic crust, which contains the heat-producing elements, and mantle depleted of these and other incompatible trace elements. About 10% of the mantle's mass is made up of recycled oceanic crust, which is associated with the observed small-scale seismic heterogeneity. The way this heterogeneity is distributed is in convectively stretched and thinned bodies ranging downwards in size from 8 km. With the present techniques to detect small bodies through scattering, only ca. 55% of the mantle's small-scale heterogeneities are detectable seismically.

  4. Carbonate stability in the reduced lower mantle

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; Prakapenka, Vitali B.; Cantoni, Marco; Gillet, Philippe

    2018-05-01

    Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth's deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg, Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3 component, producing a mixture of diamond, Fe7C3, and (Mg, Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.

  5. Carbonate stability in the reduced lower mantle

    DOE PAGES

    Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; ...

    2018-05-01

    Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth’s deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg,Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3more » component, producing a mixture of diamond, Fe7C3, and (Mg,Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.« less

  6. Sublithospheric flows in the mantle

    NASA Astrophysics Data System (ADS)

    Trifonov, V. G.; Sokolov, S. Yu.

    2017-11-01

    The estimated rates of upper mantle sublithospheric flows in the Hawaii-Emperor Range and Ethiopia-Arabia-Caucasus systems are reported. In the Hawaii-Emperor Range system, calculation is based on motion of the asthenospheric flow and the plate moved by it over the branch of the Central Pacific plume. The travel rate has been determined based on the position of variably aged volcanoes (up to 76 Ma) with respect to the active Kilauea Volcano. As for the Ethiopia-Arabia-Caucasus system, the age of volcanic eruptions (55-2.8 Ma) has been used to estimate the asthenospheric flow from the Ethiopian-Afar superplume in the northern bearing lines. Both systems are characterized by variations in a rate of the upper mantle flows in different epochs from 4 to 12 cm/yr, about 8 cm/yr on average. Analysis of the global seismic tomographic data has made it possible to reveal rock volumes with higher seismic wave velocities under ancient cratons; rocks reach a depth of more than 2000 km and are interpreted as detached fragments of the thickened continental lithosphere. Such volumes on both sides of the Atlantic Ocean were submerged at an average velocity of 0.9-1.0 cm/yr along with its opening. The estimated rates of the mantle flows clarify the deformation properties of the mantle and regulate the numerical models of mantle convection.

  7. The mantle lithosphere and the Wilson Cycle

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2017-04-01

    In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.

  8. Mantle Metasomatism under Island Arcs, Magnetic Implications

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Ferre, E. C.; Arai, S.

    2013-12-01

    The wedge of upper mantle beneath oceanic and island arcs receives an abundant flux of fluids derived from dehydration of subducted slabs. These fluids may cause metasomatism, serpentinization or partial melting at increasing distance from the trench. Each one of these processes profoundly modifies the oxygen fugacity, mineral assemblage, rheology and seismic properties of mantle rocks. Mantle xenoliths in arcs are relatively rare compared to other tectonic settings yet, due to their rapid ascent, they provide the best record of mantle rocks at depth. Previous studies on the metasomatism of the arc mantle wedge focused on the geochemistry and mineralogy of these xenoliths. Here we present new rock magnetic and paleomagnetic results to track changes in the magnetic assemblage of mantle peridotites. Peridotites undergo a wide range of fluid-reactions that involve formation of magnetically remanent phases such as magnetite, maghemite, hematite or monosulfide solutions. Samples for this study originate from three localities displaying different degrees of metasomatism: a) Five samples from Ichinomegata crater, Megata volcano, in NE Japan are characteristically lherzolitic with metasomatic pargasite present; b) Six samples from Kurose, Hakata Bay, in SW Japan are mainly harzburgites that contain rare, late stage metasomatic sulfides; and c) Ten samples from the Iraya volcano, Batan Island, in the Philippines are lherzolites, harzburgites, and dunites that contain metasomatic olivine, orthopyroxene, clinopyroxene and pargasite. Both remanent and induced magnetizations of these mantle peridotites exhibit systematic variations as a function of the degrees of metasomatism. The contribution of these mantle peridotites to long wavelength magnetic anomalies might be significant.

  9. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles.

    PubMed

    Picard, Martin; Ritchie, Darmyn; Thomas, Melissa M; Wright, Kathryn J; Hepple, Russell T

    2011-12-01

    To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  10. The Stability of Tibetan Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory; England, Philip

    2017-04-01

    The large area of thickened crust beneath the Tibetan Plateau is a consequence of sustained continental convergence between India and the Eurasian land mass during the last 50 m.y. Although the Tibetan crust has thickened, there has been much debate about the consequences for its sub-crustal mantle lithosphere. The onset of crustal thinning in the late Miocene appears to require an increase in the gravitational potential energy of the plateau at that time. One explanation for that increase depended on the idea that the mantle lithosphere beneath Tibet had been replaced by asthenosphere, either by some form of convective thinning or by a delamination process akin to retreating subduction acting on the unstable lithospheric mantle layer. Such ideas seem consistent with the history of magmatism and volcanism on the plateau. However, the dispersion of surface waves crossing the plateau implies that a relatively cold and fast layer of mantle remains beneath the plateau to depths of at least 250 km. Because the surface wave data appear inconsistent with the idea that mantle lithosphere has been removed, we investigate an alternative explanation that could explain the apparent increase in gravitational potential energy of the Tibetan lithosphere. If that mantle lithosphere has remained largely in place due to an intrinsic compositional buoyancy but, on thickening, has become unstable to an internal convective overturn, then: (1) mantle material at near asthenospheric temperatures would be emplaced below the crust, and (2) colder mantle from beneath the Moho could become stranded above about 250 km depth. This mechanism is feasible if the Tibetan sub-continental mantle lithosphere is depleted and intrinsically less dense than the underlying asthenosphere. The mechanism is broadly consistent with the surface wave analyses (which cannot resolve the short horizontal wavelengths on which overturn is likely to occur), and it predicts the kind of short-wavelength variations that

  11. Seasonal variation of biochemical components in clam ( Saxidomus purpuratus Sowerby 1852) in relation to its reproductive cycle and the environmental condition of Sanggou Bay, China

    NASA Astrophysics Data System (ADS)

    Bi, Jinhong; Li, Qi; Zhang, Xinjun; Zhang, Zhixin; Tian, Jinling; Xu, Yushan; Liu, Wenguang

    2016-04-01

    Seasonal variation of biochemical components in clam ( Saxidomus purpuratus Sowerby 1852) was investigated from March 2012 to February 2013 in relation to environmental condition of Sanggou Bay and the reproductive cycle of clam. According to the histological analysis, the reproductive cycle of S. purpuratus includes two distinctive phases: a total spent and inactive stage from November to January, and a gametogenesis stage, including ripeness and spawning, during the rest of the year. Gametes were generated at a low temperature (2.1°C) in February. Spawning took place once a year from June to October. The massive spawning occurred in August when the highest water temperature and chlorophyll a level could be observed. The key biochemical components (glycogen, protein and lipid) in five tissues (gonad, foot, mantle, siphon and adductor muscle) were analyzed. The glycogen content was high before gametogenesis, and decreased significantly during the gonad development in the gonad, mantle and foot of both females and males, suggesting that glycogen was an important energy source for gonad development. The protein and lipid contents increased in the ovary during the gonad development, demonstrating that they are the major organic components of oocytes. The lipid and protein contents decreased in the testis, implying that they can provide energy and material for spermatogenesis. The results also showed that protein stored in the mantle and foot could support the reproduction after the glycogen was depleted.

  12. Enzalutamide in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma

    ClinicalTrials.gov

    2018-03-27

    Ann Arbor Stage I Mantle Cell Lymphoma; Ann Arbor Stage II Mantle Cell Lymphoma; Ann Arbor Stage III Mantle Cell Lymphoma; Ann Arbor Stage IV Mantle Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Mantle Cell Lymphoma

  13. Dynamics of Compressible Convection and Thermochemical Mantle Convection

    NASA Astrophysics Data System (ADS)

    Liu, Xi

    The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.

  14. Water circulation and global mantle dynamics: Insight from numerical modeling

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru

    2015-05-01

    We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.

  15. Mantle Plumes and Geologically Recent Volcanism on Mars

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2013-12-01

    Despite its small size, Mars has remained volcanically active until the geologically recent past. Crater retention ages on the volcanos Arsia Mon, Olympus Mons, and Pavonis Mons indicate significant volcanic activity in the last 100-200 million years. The radiometric ages of many shergottites, a type of igneous martian meteorite, indicate igneous activity at about 180 million years ago. These ages correspond to the most recent 2-4% of the age of the Solar System. The most likely explanation for this young martian volcanism is adiabatic decompression melting in upwelling mantle plumes. Multiple plumes may be active at any time, with each of the major volcanos in the Tharsis region being formed by a separate plume. Like at least some terrestrial mantle plumes, mantle plumes on Mars likely form via an instability of the thermal boundary layer at the base of the mantle. Because Mars operates in the stagnant lid convection regime, the temperature difference between mantle and core is lower than on Earth. This reduces the temperature contrast between mantle and core, resulting in mantle plumes on Mars that are about 100 K hotter than the average mantle. The chemical composition of the martian meteorites indicates that the martian mantle is enriched in both iron and sodium relative to Earth's mantle. This lowers the dry solidus on early Mars by 30-40 K relative to Earth. Migration of sodium to the crust over time decreases this difference in solidus temperature to about 15 K at present, but that is sufficient to increase the current plume magma production rate by a factor of about 2. Hydrous phases in the martian meteorites indicate the presence of a few hundred ppm water in the mantle source region, roughly the same as Earth. Finite element simulations of martian plumes using temperature-dependent viscosity and realistic Rayleigh numbers can reproduce the geologically recent magma production rate that is inferred from geologic mapping and the melt fraction inferred from

  16. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  17. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  18. Primordial helium entrained by the hottest mantle plumes

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Becker, T. W.

    2017-02-01

    Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.

  19. Magnetic resonance imaging of live freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Michael, Holliman F.; Davis, Denise; Bogan, Arthur E.; Kwak, Thomas J.; Cope, W. Gregory; Levine, Jay F.

    2008-01-01

    We examined the soft tissues of live freshwater mussels, Eastern elliptio Elliptio complanata, via magnetic resonance imaging (MRI), acquiring data with a widely available human whole-body MRI system. Anatomical features depicted in the profile images included the foot, stomach, intestine, anterior and posterior adductor muscles, and pericardial cavity. Noteworthy observations on soft tissue morphology included a concentration of lipids at the most posterior aspect of the foot, the presence of hemolymph-filled fissures in the posterior adductor muscle, the presence of a relatively large hemolymph-filled sinus adjacent to the posterior adductor muscle (at the ventral-anterior aspect), and segmentation of the intestine (a diagnostic description not reported previously in Unionidae). Relatively little is known about the basic biology and ecological physiology of freshwater mussels. Traditional approaches for studying anatomy and tissue processes, and for measuring sub-lethal physiological stress, are destructive or invasive. Our study, the first to evaluate freshwater mussel soft tissues by MRI, clarifies the body plan of unionid mussels and demonstrates the efficacy of this technology for in vivoevaluation of the structure, function, and integrity of mussel soft tissues.

  20. Structure and dynamics of Earth's lower mantle.

    PubMed

    Garnero, Edward J; McNamara, Allen K

    2008-05-02

    Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.

  1. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  2. Iron-carbonate interaction at Earth's core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.

    2015-12-01

    Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.

  3. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  4. Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection

    NASA Astrophysics Data System (ADS)

    Iwamori, Hikaru; Albaréde, Francis; Nakamura, Hitomi

    2010-11-01

    In order to further our understanding of the global geochemical structure and mantle dynamics, a global isotopic data set of oceanic basalts was analyzed by Independent Component Analysis (ICA), a relatively new method of multivariate analysis. The data set consists of 2773 mid-ocean ridge basalts (MORB) and 1515 ocean island basalts (OIB) with five isotopic ratios of Pb, Nd and Sr. The data set spatially covers the major oceans and enables us to compare the results with global geophysical observations. Three independent components (ICs) have been found, two of which are essentially identical to those previously found for basalts from the Atlantic and Indian Oceans. The two ICs (IC1 and IC2) span a compositional plane that accounts for 95.7% of the sample variance, while the third IC (IC3) accounts for 3.7%. Based on the geochemical nature of ICs and a forward model concerning trace elemental and isotopic compositions, the origin of the ICs is discussed. IC1 discriminates OIB from MORB, and may be related to elemental fractionation associated with melting and the subsequent radiogenic in growth with an average recycling time of 0.8 to 2.4 Ga. IC2 tracks the regional provenance of both MORB and OIB and may be related to aqueous fluid-rock interaction and the subsequent radiogenic ingrowth with an average recycling time of 0.3 to 0.9 Ga. IC3 fingerprints upper continental crustal material and its high value appears in limited geographical and tectonic settings. Variations in the melt component (IC1) and in the aqueous fluid component (IC2) inherited in the mantle most likely reflect mid-ocean ridge and subduction zone processes, respectively. Long-term accumulation of dense materials rich in the IC1 melt component at the base of the convective mantle accounts for its longer recycling time with respect to that for less dense materials rich in the aqueous fluid component (IC2). IC2 broadly correlates with the seismic velocity structures of the lowermost mantle and

  5. Numerical Mantle Convection Models With a Flexible Thermodynamic Interface

    NASA Astrophysics Data System (ADS)

    van den Berg, A. P.; Jacobs, M. H.; de Jong, B. H.

    2001-12-01

    Accurate material properties are needed for deep mantle (P,T) conditions in order to predict the longterm behavior of convection planetary mantles. Also the interpretation of seismological observations concerning the deep mantle in terms of mantle flow models calls for a consistent thermodynamical description of the basic physical parameters. We have interfaced a compressible convection code using the anelastic liquid approach based on finite element methods, to a database containing a full thermodynamic description of mantle silicates (Ita and King, J. Geophys. Res., 99, 15,939-15,940, 1994). The model is based on high resolution (P,T) tables of the relevant thermodynamic properties containing typically 50 million (P,T) table gridpoints to obtain resolution in (P,T) space of 1 K and an equivalent of 1 km. The resulting model is completely flexible such that numerical mantle convection experiments can be performed for any mantle composition for which the thermodynamic database is available. We present results of experiments for 2D cartesian models using a data base for magnesium-iron silicate in a pyrolitic composition (Stixrude and Bukowinski, Geoph.Monogr.Ser., 74, 131-142, 1993) and a recent thermodynamical model for magnesium silicate for the complete mantle (P,T) range, (Jacobs and Oonk, Phys. Chem. Mineral, 269, inpress 2001). Preliminary results of bulksound velocity distribution derived in a consistent way from the convection results and the thermodynamic database show a `realistic' mantle profile with bulkvelocity variations decreasing from several percent in the upper mantle to less than a percent in the deep lower mantle.

  6. The ruthenium isotopic composition of the oceanic mantle

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  7. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid

  8. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

    NASA Astrophysics Data System (ADS)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa

    2018-01-01

    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  9. Iron Isotopic Fractionation in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lin, J. F.; Hu, M. Y.; Bi, W.; Zhao, J.; Alp, E. E.; Roskosz, M.; Dauphas, N.; Okuchi, T.

    2017-12-01

    The Earth's bulk chemical composition is vital for deciphering the origin of this planet. Our estimation of the iron isotopic composition of the bulk Earth relies on the iron isotopic composition difference between the metallic core and silicate mantle. Previous studies1,2,3 on this fractionation scale have mostly focused on the alloying effects of light elements in the iron metal phases, while the pressure effects of the silicate mantle phases especially due to iron partitioning4 in the lower mantle minerals have not been fully addressed. For instance, Polyakov (2009) simply assumed equal iron distribution between ferropericlase and post-perovskite in his model. Shahar et al. (2016) only used bridgmanite as a proxy for the mantle while another lower mantle mineral ferropericlase was neglected. Here we have investigated the force constant of iron bonds in lower-mantle ferropericlase and bridgmanite crystals up to 104GPa using NRIXS(Nuclear Resonant Inelastic X-ray Scattering) and SMS(Synchrotron Mössbauer Spectroscopy) in a diamond anvil cell at sector-3 of the Advance Photon Source. These results are used to evaluate the pressure effects as well as the spin/valence states of iron5,6 on the force constant of iron bonds and the iron isotope distributions within the lower mantle and at the core-mantle boundary. We found that the liquid-solid iron isotopic fractionation during magma ocean crystallization was limited, however, the inter-mineral fractionation between ferropericlase and bridgmanite could be significant influenced by the spin/valence states at the lowermost mantle conditions. 1.Polyakov, V. B. Science 323, 912-914 (2009). 2.Shahar, A. et al. Science 352, 580-582 (2016). 3.Liu, J. et al. Nat. Commun. 8, 14377 (2017). 4.Irifune, T. et al. Science 327, 193-195 (2010). 5.Lin, J. F., Speziale, S., Mao, Z. & Marquardt, Rev. Geophys. 51, 244-275 (2013). 6.Mao, Z. et al. Am. Mineral. 102 (2017).

  10. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei

    2017-02-01

    The zinc (Zn) stable isotope system has great potential for tracing planetary formation and differentiation processes due to its chalcophile, lithophile and moderately volatile character. As an initial approach, the terrestrial mantle, and by inference, the bulk silicate Earth (BSE), have previously been suggested to have an average δ66Zn value of ∼+0.28‰ (relative to JMC 3-0749L) primarily based on oceanic basalts. Nevertheless, data for mantle peridotites are relatively scarce and it remains unclear whether Zn isotopes are fractionated during mantle melting. To address this issue, we report high-precision (±0.04‰; 2SD) Zn isotope data for well-characterized peridotites (n = 47) from cratonic and orogenic settings, as well as their mineral separates. Basalts including mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) were also measured to avoid inter-laboratory bias. The MORB analyzed have homogeneous δ66Zn values of +0.28 ± 0.03‰ (here and throughout the text, errors are given as 2SD), similar to those of OIB obtained in this study and in the literature (+0.31 ± 0.09‰). Excluding the metasomatized peridotites that exhibit a wide δ66Zn range of -0.44‰ to +0.42‰, the non-metasomatized peridotites have relatively uniform δ66Zn value of +0.18 ± 0.06‰, which is lighter than both MORB and OIB. This difference suggests a small but detectable Zn isotope fractionation (∼0.1‰) during mantle partial melting. The magnitude of inter-mineral fractionation between olivine and pyroxene is, on average, close to zero, but spinels are always isotopically heavier than coexisting olivines (Δ66ZnSpl-Ol = +0.12 ± 0.07‰) due to the stiffer Zn-O bonds in spinel than silicate minerals (Ol, Opx and Cpx). Zinc concentrations in spinels are 11-88 times higher than those in silicate minerals, and our modelling suggests that spinel consumption during mantle melting plays a key role in generating high Zn concentrations and heavy Zn isotopic

  11. Abundant carbon in the mantle beneath Hawai`i

    USGS Publications Warehouse

    Anderson, Kyle R.; Poland, Michael

    2017-01-01

    Estimates of carbon concentrations in Earth’s mantle vary over more than an order of magnitude, hindering our ability to understand mantle structure and mineralogy, partial melting, and the carbon cycle. CO2 concentrations in mantle-derived magmas supplying hotspot ocean island volcanoes yield our most direct constraints on mantle carbon, but are extensively modified by degassing during ascent. Here we show that undegassed magmatic and mantle carbon concentrations may be estimated in a Bayesian framework using diverse geologic information at an ocean island volcano. Our CO2 concentration estimates do not rely upon complex degassing models, geochemical tracer elements, assumed magma supply rates, or rare undegassed rock samples. Rather, we couple volcanic CO2 emission rates with probabilistic magma supply rates, which are obtained indirectly from magma storage and eruption rates. We estimate that the CO2content of mantle-derived magma supplying Hawai‘i’s active volcanoes is 0.97−0.19+0.25 wt%—roughly 40% higher than previously believed—and is supplied from a mantle source region with a carbon concentration of 263−62+81 ppm. Our results suggest that mantle plumes and ocean island basalts are carbon-rich. Our data also shed light on helium isotope abundances, CO2/Nb ratios, and may imply higher CO2 emission rates from ocean island volcanoes.

  12. Abundant carbon in the mantle beneath Hawai`i

    NASA Astrophysics Data System (ADS)

    Anderson, Kyle R.; Poland, Michael P.

    2017-09-01

    Estimates of carbon concentrations in Earth’s mantle vary over more than an order of magnitude, hindering our ability to understand mantle structure and mineralogy, partial melting, and the carbon cycle. CO2 concentrations in mantle-derived magmas supplying hotspot ocean island volcanoes yield our most direct constraints on mantle carbon, but are extensively modified by degassing during ascent. Here we show that undegassed magmatic and mantle carbon concentrations may be estimated in a Bayesian framework using diverse geologic information at an ocean island volcano. Our CO2 concentration estimates do not rely upon complex degassing models, geochemical tracer elements, assumed magma supply rates, or rare undegassed rock samples. Rather, we couple volcanic CO2 emission rates with probabilistic magma supply rates, which are obtained indirectly from magma storage and eruption rates. We estimate that the CO2 content of mantle-derived magma supplying Hawai`i’s active volcanoes is 0.97-0.19+0.25 wt%--roughly 40% higher than previously believed--and is supplied from a mantle source region with a carbon concentration of 263-62+81 ppm. Our results suggest that mantle plumes and ocean island basalts are carbon-rich. Our data also shed light on helium isotope abundances, CO2/Nb ratios, and may imply higher CO2 emission rates from ocean island volcanoes.

  13. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  14. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity

    NASA Astrophysics Data System (ADS)

    van der Meer, Douwe G.; van Hinsbergen, Douwe J. J.; Spakman, Wim

    2018-01-01

    Across the entire mantle we interpret 94 positive seismic wave-speed anomalies as subducted lithosphere and associate these slabs with their geological record. We document this as the Atlas of the Underworld, also accessible online at www.atlas-of-the-underworld.org, a compilation comprising subduction systems active in the past 300 Myr. Deeper slabs are correlated to older geological records, assuming no relative horizontal motions between adjacent slabs following break-off, using knowledge of global plate circuits, but without assuming a mantle reference frame. The longest actively subducting slabs identified reach the depth of 2500 km and some slabs have impinged on Large Low Shear Velocity Provinces in the deepest mantle. Anomously fast sinking of some slabs occurs in regions affected by long-term plume rising. We conclude that slab remnants eventually sink from the upper mantle to the core-mantle boundary. The range in subduction-age versus - depth in the lower mantle is largely inherited from the upper mantle history of subduction. We find a significant depth variation in average sinking speed of slabs. At the top of the lower mantle average slab sinking speeds are between 10 and 40 mm/yr, followed by a deceleration to 10-15 mm/yr down to depths around 1600-1700 km. In this interval, in situ time-stationary sinking rates suggest deceleration from 20 to 30 mm/yr to 4-8 mm/yr, increasing to 12-15 mm/yr below 2000 km. This corroborates the existence of a slab deceleration zone but we do not observe long-term (> 60 My) slab stagnation, excluding long-term stagnation due to compositional effects. Conversion of slab sinking profiles to viscosity profiles shows the general trend that mantle viscosity increases in the slab deceleration zone below which viscosity slowly decreases in the deep mantle. This is at variance with most published viscosity profiles that are derived from different observations, but agrees qualitatively with recent viscosity profiles suggested

  15. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-01

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8–10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  16. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.

    PubMed

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-17

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  17. Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles.

    PubMed

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    1997-08-01

    We conducted three experiments to determine the effects of the callipyge phenotype on the tenderness of several major lamb muscles and to determine the effect of method of cookery on the tenderness of callipyge lamb at 7 d postmortem. In Exp. 1, chops from normal (n = 23) and callipyge (n = 16) carcasses were open-hearth-broiled. Warner-Bratzler shear force values of longissimus, gluteus medius, semimembranosus, biceps femoris, semitendinosus, adductor, and quadriceps femoris were 123, 44, 28, 26, 19, 16, and 13% greater, respectively, for callipyge (P < .05). In Exp. 2, muscles from normal (n = 18) and callipyge (n = 18) carcasses were oven-roasted. Shear force of triceps brachii was 11% greater for callipyge (P < .001); however, phenotype did not affect shear force of supraspinatus (P = .87) or psoas major (P = .64). In Exp. 3, a trained sensory panel evaluated leg roasts and open-hearth-broiled leg chops from normal (n = 60) and callipyge lamb carcasses (n = 60). Callipyge chops were less tender than normal chops (P < .05). Regardless of callipyge phenotype, muscles were more (P < .05) tender when roasted; however, the effect of method of cookery on tenderness scores was greater for callipyge muscles than for normal muscles. Callipyge roasts and normal roasts had similar tenderness (P = .58), and callipyge roasts were more tender than normal chops (P < .05). Regardless of cooking method, callipyge samples were less juicy than normal samples (P < .05). These data demonstrate that the callipyge phenotype will likely reduce consumer satisfaction due to reduced tenderness and juiciness; however, reduced tenderness in callipyge leg muscles could be prevented by ovenroasting.

  18. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2016-04-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  19. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2015-10-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  20. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis. Copyright © 2013 Wiley Periodicals, Inc.

  1. The influence of water on mantle convection and plate tectonics

    NASA Astrophysics Data System (ADS)

    Brändli, S.; Tackley, P. J.

    2017-12-01

    Water has a significant influence to mantle rheology and therefore also to the convection of the mantle and the plate tectonics. The viscosity of the mantle can be decreased by up to two orders of magnitude when water is present in the mantle. Another effect of the water is the change in the solidus of the mantle and therefore the melting regime. This two effects of water in the mantle have a significant influence to mantle convection and plate tectonics. The influx of water to the mantle is driven by plate tectonics as wet oceanic lithosphere is subducted into the mantle and then brought back to the lithosphere and the surface by MOR-, arc- and hotspot volcanism. Studies show that the amount of water in the mantle is about three times bigger than the amount of water in the oceans. To model this water cycle multiple additions to StagYY are necessary. With the enhanced code we calculated multiple steady state models with a wide range of parameters to study the effect of water on the mantle rheology and the behavior of the lithosphere. The results will help us to understand the earths interior and its reaction and behavior under partially hydrated conditions.

  2. Deep mantle: Enriched carbon source detected

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.

    2017-09-01

    Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.

  3. Compositional mantle layering revealed by slab stagnation at ~1000-km depth

    PubMed Central

    Ballmer, Maxim D.; Schmerr, Nicholas C.; Nakagawa, Takashi; Ritsema, Jeroen

    2015-01-01

    Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection. PMID:26824060

  4. The North American upper mantle: density, composition, and evolution

    USGS Publications Warehouse

    Mooney, Walter D.; Kaban, Mikhail K.

    2010-01-01

    The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data

  5. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  6. Mantle-driven geodynamo features - accounting for non-thermal lower mantle features

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Amit, H.

    2011-12-01

    Lower mantle heterogeneity responsible for spatial variations of the CMB heat flux could control long term geodynamo properties such as deviations from axial symmetry in the magnetic field and the core flow, frequency of geomagnetic reversals and anisotropic growth of the inner core. In this context, a classical interpretation of tomographic mapping of the lowermost mantle is to correlate linearly seismic velocities to heat flux anomalies. This implicitly assumes that temperature alone controls the tomographic anomalies. In addition, the limited spatial resolution of tomographic images precludes modeling sharp CMB heat flux structures.. There has been growing evidence however that non-thermal origins are also be expected for seismic velocity anomalies: the three main additional control parameters are (i) compositional anomalies possibly associated to the existence of a deep denser layer, (ii) the phase transition in magnesium perovskite believed to occur in the lowermost mantle and (iii) the possible presence of partial melts. Numerical models of mantle dynamics have illustrated how the first two parameters could distort the linear relationship between shear wave velocity anomalies and CMB heat flux (Nakagawa and Tackley, 2008). In this presentation we will consider the effect of such alternative interpretations of seismic velocity anomalies in order to prescribe CMB heat flux as an outer boundary for dynamo simulations. We first focus on the influence of post-perovskite. Taking into account this complexity could result in an improved agreement between the long term average properties of simulated dynamos and geophysical observations, including the Atlantic/Pacific hemispherical dichotomy in core flow activity, the single intense paleomagnetic field structure in the southern hemisphere, and possibly degree 1 dominant mode of inner-core seismic heterogeneity. We then account for sharp anomalies that are not resolved by the global tomographic probe. For instance

  7. Long-Lived Mantle Plumes Sample Multiple Deep Mantle Geochemical Domains: The Example of the Hawaiian-Emperor Chain

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.

    2017-12-01

    Oceanic island basalts provide the opportunity for the geochemist to study the deep mantle source removed from continental sources of contamination and, for long-lived systems, the evolution of mantle sources with time. In the case of the Hawaiian-Emperor (HE) chain, formation by a long-lived (>81 Myr), deeply-sourced mantle plume allows for insight into plume dynamics and deep mantle geochemistry. The geochemical record of the entire chain is now complete with analysis of Pb-Hf-Nd-Sr isotopes and elemental compositions of the Northwest Hawaiian Ridge (NWHR), which consists of 51 volcanoes spanning 42 Ma between the bend in the chain and the Hawaiian Islands. This segment of the chain previously represented a significant data gap where Hawaiian plume geochemistry changed markedly, along with magmatic flux: only Kea compositions have been observed on Emperor seamounts (>50 Ma), whereas the Hawaiian Islands (<6 Ma) present both Kea and Loa compositions. A database of 700 Hawaiian Island shield basalts Pb-Hf-Nd-Sr isotopic compositions were compiled to construct a logistical regression model of Loa or Kea affinity that sorts data into a dichotomous category and provides insight into the relationship between independent variables. We use this model to predict whether newly analyzed NWHR samples are Loa or Kea composition based on their Pb-Sr-Nd-Hf isotopic compositions. The logistical regression model is significantly better at prediciting Loa or Kea affinity than the constant only model (χ2=263.3, df=4, p<0.0001), with Pb and Sr isotopes providing the most predicitive power. Daikakuji, West Nihoa, Nihoa, and Mokumanamana erupt Loa-type lavas, suggesting that the Loa source is sampled ephemerally during the NWHR and increases in presence and volume towards the younger section of the NWHR (younger than Midway 20-25 Ma). These results complete the picture of Hawaiian mantle plume geochemistry and geodynamics for 81 Myr, and show that the Hawaiian mantle plume has

  8. Mantle structure and tectonic history of SE Asia

    NASA Astrophysics Data System (ADS)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  9. Role of mantle flow in Nubia-Somalia plate divergence

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Iaffaldano, G.; Calais, E.

    2015-01-01

    Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.

  10. Horizontal mantle flow controls subduction dynamics.

    PubMed

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  11. Identifying mantle lithosphere inheritance in controlling intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-09-01

    Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.

  12. Magnesium stable isotope composition of Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Handler, Monica R.; Baker, Joel A.; Schiller, Martin; Bennett, Vickie C.; Yaxley, Gregory M.

    2009-05-01

    The mantle is Earth's largest reservoir of Mg containing > 99% of Earth's Mg inventory. However, no consensus exists on the stable Mg isotope composition of the Earth's mantle or how variable it is and, in particular, whether the mantle has the same stable Mg isotope composition as chondrite meteorites. We have determined the Mg isotope composition of olivine from 22 mantle peridotites from eastern Australia, west Antarctica, Jordan, Yemen and southwest Greenland by pseudo-high-resolution MC-ICP-MS on Mg purified to > 99%. The samples include fertile lherzolites, depleted harzburgites and dunites, cryptically metasomatised ('dry') peridotites and modally metasomatised apatite ± amphibole-bearing harzburgites and wehrlites. Olivine from these samples of early Archaean through to Permian lithospheric mantle have δ25Mg DSM-3 = - 0.22 to - 0.08‰. These data indicate the bulk upper mantle as represented by peridotite olivine is homogeneous within current analytical uncertainties (external reproducibility ≤ ± 0.07‰ [2 sd]). We find no systematic δ25Mg variations with location, lithospheric age, peridotite fertility, or degree or nature of mantle metasomatism. Although pyroxene may have slightly heavier δ25Mg than coexisting olivine, any fractionation between mantle pyroxene and olivine is also within current analytical uncertainties with a mean Δ25Mg pyr-ol = +0.06 ± 0.10‰ (2 sd; n = 5). Our average mantle olivine δ25Mg DSM-3 = - 0.14 ± 0.07‰ and δ26Mg DSM-3 = - 0.27 ± 0.14‰ (2 sd) are indistinguishable from the average of data previously reported for terrestrial basalts, confirming that basalts have stable Mg isotope compositions representative of the mantle. Olivine from five pallasite meteorites have δ25Mg DSM-3 = - 0.16 to - 0.11‰ that are identical to terrestrial olivine and indistinguishable from the average δ25Mg previously reported for chondrites. These data provide no evidence for measurable heterogeneity in the stable Mg isotope

  13. Free and forced convection in Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Hall, Paul S.

    Convective motion within Earth's upper mantle occurs as a combination of two primary modes: (1) buoyant upwelling due to the formation of gravitational instabilities at thermochemical boundary layers, and (2) passive flow associated with the divergence of lithospheric plates at mid-ocean ridges and their re-entry into the mantle at subduction zones. The first mode is driven by variations in density and is therefore classified as 'free' convection. Examples of free convection within the Earth include the diapiric flow of hydrous and/or partially molten mantle at subduction zones and mantle plumes. The second mode, while ultimately driven by density on a global scale, can be treated kinematically on the scale of the upper mantle. This type of flow is designated 'forced' convection. On the scale of individual buoyant upwellings in the upper mantle, the forced convection associated with plate tectonics acts to modify the morphology of the flow associated with free convection. Regions in which such interactions occur are typically associated with transfer of significant quantities of both mass and energy (i.e., heat) between the deep interior and the surface of the Earth and thus afford a window into the dynamics of the Earth's interior. The dynamics and the consequences of the interaction between these two modes of convection is the focus of this dissertation. I have employed both laboratory and numerical modeling techniques to investigate the interaction between free and forced convection in this study. Each of these approaches has its own inherent strengths and weaknesses. These approaches are therefore complementary, and their use in combination is particularly powerful. I have focused on two examples interaction between free and forced convection in the upper mantle in this study. Chapter I considers the interaction between ascending diapirs of hydrous and/or partially molten mantle and flow in the mantle wedge at subduction zones using laboratory models. Chapter

  14. Can mantle convection be self-regulated?

    PubMed Central

    Korenaga, Jun

    2016-01-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth. PMID:27551689

  15. Geochemical Diversity of the Mantle: 50 Years of Acronyms

    NASA Astrophysics Data System (ADS)

    Hart, S. R.

    2014-12-01

    50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both

  16. Tracing mantle processes with Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, S.; Ionov, D.

    2006-12-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched rocks) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. Pimitive peridotites (Mg# = 0.894) yield delta56Fe = 0.02 and are significantly lighter than the basalts (average delta56Fe = 0.11). Furthermore, the peridotites display a negative correlation of iron isotopes with Mg#. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt [1, 2]. A particularly good correlation of the Fe isotope composition and Mg# shown by poorly metasomatised spinel lherzolites of three localities (Horoman, Kamchatka and Lherz) was used to model Fe isotope fractionation during partial melting, resulting in alphamantle-melt = 1.0003. This value implies higher Fe isotope fractionation between residual mantle and mantle-derived melts (i.e. Delta56Femantle-melt = 0.2-0.3) than the observed difference between the peridotites and the basalts in this study. Our data on plagioclase lherzolites from Horoman and spinel lherzolites from other localities indicate that the difference in Fe isotope composition between mantle and basalts may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events. At two localities (Tok, Siberia and Tariat, Mongolia) Fe isotopes correlates with the Fe concentration of the peridotites, which was increased up to 14.5% FeO by melt percolation. Such processes can be accompanied by chromatographic effects and produce a range of Fe isotope compositions in the percolation columns, from extremely light to heavy (delta56Fe = -0.42 to +0.17). We propose that Fe isotopes can be

  17. Experimental pain in the groin may refer into the lower abdomen: Implications to clinical assessments.

    PubMed

    Drew, M K; Palsson, T S; Hirata, R P; Izumi, M; Lovell, G; Welvaert, M; Chiarelli, P; Osmotherly, P G; Graven-Nielsen, T

    2017-10-01

    To investigate the effects of experimental adductor pain on the pain referral pattern, mechanical sensitivity and muscle activity during common clinical tests. Repeated-measures design. In two separate sessions, 15 healthy males received a hypertonic (painful) and isotonic (control) saline injection to either the adductor longus (AL) tendon to produce experimental groin pain or into the rectus femoris (RF) tendon as a painful control. Pain intensity was recorded on a visual analogue scale (VAS) with pain distribution indicated on body maps. Pressure pain thresholds (PPT) were assessed bilaterally in the groin area. Electromyography (EMG) of relevant muscles was recorded during six provocation tests. PPT and EMG assessment were measured before, during and after experimental pain. Hypertonic saline induced higher VAS scores than isotonic saline (p<0.001), and a local pain distribution in 80% of participants. A proximal pain referral to the lower abdominal region in 33% (AL) and 7% (RF) of participants. Experimental pain (AL and RF) did not significantly alter PPT values or the EMG amplitude in groin or trunk muscles during provocation tests when forces were matched with baseline. This study demonstrates that AL tendon pain was distributed locally in the majority of participants but may refer to the lower abdomen. Experimental adductor pain did not significantly alter the mechanical sensitivity or muscle activity patterns. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Melting and Crystallization at Core Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams

  19. Three-dimensional spherical models of convection in the earth's mantle

    NASA Technical Reports Server (NTRS)

    Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.

    1989-01-01

    Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.

  20. European Lithospheric Mantle; geochemical, petrological and geophysical processes

    NASA Astrophysics Data System (ADS)

    Ntaflos, Th.; Puziewicz, J.; Downes, H.; Matusiak-Małek, M.

    2017-04-01

    The second European Mantle Workshop occurred at the end of August 2015, in Wroclaw, Poland, attended by leading scientists in the study the lithospheric mantle from around the world. It built upon the results of the first European Mantle Workshop (held in 2007, in Ferrara, Italy) published in the Geological Society of London Special Publication 293 (Coltorti & Gregoire, 2008).

  1. A mantle plume model for the Equatorial Highlands of Venus

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Hager, Bradford H.

    1991-01-01

    The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.

  2. Upper-mantle origin of the Yellowstone hotspot

    USGS Publications Warehouse

    Christiansen, R.L.; Foulger, G.R.; Evans, J.R.

    2002-01-01

    Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.

  3. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and themore » efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.« less

  4. Controls on the time-scales of mantle mixing

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Cagney, N.; Lithgow-Bertelloni, C. R.; Whitehead, J. A.

    2016-12-01

    Understanding the processes controlling the mantle mixing is crucial to our geochemical interpretation of basalts, and our understanding of the mantle heterogeneity. We investigate the influence of various mantle conditions on the time scales of mixing using numerical simulations. We examine the effects of Rayleigh number (Ra), depth- and temperature-dependent rheology and internal heating, as well as the role of Prandtl number (Pr), in order to assess how mixing in the early magma ocean and experiments (where Pr tends to be 103) differs from that in the present-day mantle (Pr 1025). We use the "coarse grained density" method to quantify the mixing state and determine the mixing time. The mixing time is found to be strongly affected by the Rayleigh number, scaling with Ra-0.65, in agreement with previous studies. In contrast, when Ra is held constant, the temperature-dependent rheology has a weak effect. The depth-dependent rheology also has a negligible effect on the mixing time, as material that is initially viscous is transported to the low viscosity near the surface where it undergoes fast mixing. The internal heating rate does not affect the mixing time, provided that it does not increase the fluid temperature above that of the boundary condition. In this case, the decrease in mixing time is shown to be a result of an increase in the effective Ra. Finally, we show that for moderate and low Pr, the mixing time increases with Pr0.45. However, for all Pr greater than about 100, the mixing time is the same at the infinite-Pr value. Our results have several implications for the mantle: (1) Ra is the controlling factor on mantle mixing. (2) The non-Newtonian rheology of the mantle has a very weak effect on mantle mixing and can be neglected. (3) A dramatic increase in viscosity in the deep mantle has been proposed at a cause of regions of unmixed `primitive' mantle. Our results show that this hypothesis is unlikely, as depth dependent rheology does not increase in

  5. The basal part of the Oman ophiolitic mantle: a fossil Mantle Wedge?

    NASA Astrophysics Data System (ADS)

    Prigent, Cécile; Guillot, Stéphane; Agard, Philippe; Godard, Marguerite; Chauvet, Alain; Dubacq, Benoit; Monié, Patrick; Yamato, Philippe

    2014-05-01

    Although the Oman ophiolite is classically regarded as being the direct analog of oceanic lithosphere created at fast spreading ridges, the geodynamic context of its formation is still highly debated. The other alternative end-member model suggests that this ophiolite entirely formed in a supra-subduction zone setting. Fluids involved in the hydration of the oceanic lithosphere and in the presence of a secondary boninitic and andesitic volcanism may provide a way to discriminate between these two interpretations: are they descending near-axis hydrothermal fluxes (first model) or ascending from a subducting slab (second model)? We herein focus on the base of the ophiolitic mantle in order to characterize the origin of fluids and decipher hydration processes. Samples were taken along hecto- to kilometre-long sections across the basal banded unit directly overlying the amphibolitic/granulitic metamorphic sole. We carried out a petrological, structural and geochemical study on these rocks and their constitutive minerals. Our results show that, unlike the generally refractory character of Oman harzburgites, all the basal mantle rocks display secondary crystallization of clinopyroxene and amphibole through metasomatic processes. The microstructures and the chronology of these secondary mineralizations (clinopyroxene, pargasitic amphibole, antigorite and then lizardite/chrysotile) suggest that these basal rocks have been affected by cooling from mantle temperatures (<1200°C) to low-T serpentinisation (<300°C). Furthermore, major elements required to crystallize these minerals and the observed fluid-mobile elements (FMEs) enrichments in the clinopyroxenes and in the amphiboles (B, Pb, Sr), as well as in the serpentines (B, Sr, Rb, Ba, As), are consistent with amphibolite-derived fluids (Ishikawa et al., 2005) and cannot be easily explained by other sources. Based on these observations, we propose a geodynamic model in which intense and continuous metasomatism of the

  6. The origin of volatiles in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, Saswata; Hirschmann, Marc M.

    2017-08-01

    The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.Plain Language SummaryThe Earth's deep interior contains substantial amounts of volatile elements like C, H, and N. How these elements got sequestered in the Earth's interior has long been a topic of debate. It is generally assumed that most of these elements escaped the interior of the Earth during the first few hundred thousand years to create a primitive atmosphere, leaving the <span class="hlt">mantle</span> reservoir nearly empty. In this work, we show that the key to this paradox involves the very early stages of crystallization of the <span class="hlt">mantle</span> from a global</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53F..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53F..04A"><span>Thermal Evolution of Earth's <span class="hlt">Mantle</span> During the Accretion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arkani-Hamed, J.; Roberts, J. H.</p> <p>2017-12-01</p> <p>Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper <span class="hlt">mantle</span> of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the <span class="hlt">mantle</span> of the embryo mixes with the upper <span class="hlt">mantle</span> of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized <span class="hlt">mantle</span> dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's <span class="hlt">mantle</span> after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the <span class="hlt">mantle</span> and suppresses global <span class="hlt">mantle</span> dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower <span class="hlt">mantle</span>, the heating of the lower <span class="hlt">mantle</span> by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the <span class="hlt">mantle</span> of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V51A3056H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V51A3056H"><span>Magnesium Isotopic Composition of Kamchatka Sub-Arc <span class="hlt">Mantle</span> Peridotites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Y.; Teng, F. Z.; Ionov, D. A.</p> <p>2016-12-01</p> <p>Subduction of the oceanic slab may add a crustal isotopic signal to the <span class="hlt">mantle</span> wedge. The highly variable Mg isotopic compositions (δ26Mg) of the subducted oceanic crust input[1] and arc lava output[2] imply a distinctive Mg isotopic signature of the <span class="hlt">mantle</span> wedge. Magnesium isotopic data on samples from the sub-arc <span class="hlt">mantle</span> are still limited, however. To characterize the Mg isotopic composition of typical sub-arc <span class="hlt">mantle</span>, 17 large and fresh spinel harzburgite xenoliths from Avacha volcano were analyzed. The harzburgites were formed by 30% melt extraction at ≤ 1 2 GPa and fluid fluxing condition, and underwent possible fluid metasomatism as suggested by distinctively high orthopyroxene mode in some samples, the presence of accessory amphibole and highly variable Ba/La ratios[3]. However, their δ26Mg values display limited variation from -0.32 to -0.21, which are comparable to the <span class="hlt">mantle</span> average at -0.25 ± 0.07[4]. The overall <span class="hlt">mantle</span>-like and homogenous δ26Mg of Avacha sub-arc peridotites are consistent with their similar chemical compositions and high MgO contents (> 44 wt%) relative to likely crustal fluids. Furthermore, clinopyroxene (-0.24 ± 0.10, 2SD, n = 5), a late-stage mineral exsolved from high-temperature, Ca-rich residual orthopyroxene, is in broad Mg isotopic equilibrium with olivine (-0.27 ± 0.04, 2SD, n = 17) and orthopyroxene (-0.22 ± 0.06, 2SD, n = 17). Collectively, this study finds that the Kamchatka <span class="hlt">mantle</span> wedge, as represented by the Avacha peridotites, has a <span class="hlt">mantle</span>-like δ26Mg, and low-degree fluid-<span class="hlt">mantle</span> interaction does not cause significant Mg isotope fractionation in sub-arc <span class="hlt">mantle</span> peridotites. [1] Wang et al., EPSL, 2012 [2] Teng et al., PNAS, 2016 [3] Ionov, J. Petrol., 2010, [4] Teng et al., GCA, 2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP13A1115F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP13A1115F"><span>Eight good reasons why the uppermost <span class="hlt">mantle</span> could be magnetic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferre, E. C.; Friedman, S. A.; Martin Hernandez, F.; Till, J. L.; Ionov, D. A.; Conder, J. A.</p> <p>2012-12-01</p> <p>The launch of Magsat in 1979 prompted a broad magnetic investigation of <span class="hlt">mantle</span> xenoliths (Wasilewski et al., 1979). The study concluded that no magnetic remanence existed in the uppermost <span class="hlt">mantle</span> and that even if present, such sources would be at temperatures too high to contribute to long wavelength magnetic anomalies (LWMA). However, new collections of unaltered <span class="hlt">mantle</span> xenoliths from four different tectonic settings, along with updated views on the sources of LWMA and modern petrologic constraints on fO2 in the <span class="hlt">mantle</span> indicate that the uppermost <span class="hlt">mantle</span> could, in certain cases, contain ferromagnetic minerals. 1. The analysis of some LWMA over areas such as, for example, Bangui in the Central African Craton, the Cascadia subduction zone and serpentinized oceanic lithosphere suggest magnetic sources in the uppermost <span class="hlt">mantle</span>. 2. The most common ferromagnetic phase in the uppermost <span class="hlt">mantle</span> is pure magnetite, which has a pressure-corrected Curie temperature at 10 kbars of 600C instead of the generally used value of 580C. Assuming 30 km-thick continental crust, and crustal and <span class="hlt">mantle</span> geotherms of 15C/km and 5C/km, respectively, the 600C Curie temperature implies the existence of a 30 km-thick layer of <span class="hlt">mantle</span> rocks, whose remanent and induced magnetizations could contribute to LWMA. The thickness of this layer decreases to about 15 km for a 35 km-thick crust. 3. The uppermost <span class="hlt">mantle</span> is cooler than 600C in some tectonic settings, including Archean and Proterozoic shields (>350C), subduction zones (>300C) and old oceanic basins (>250C). 4. Recently investigated sets of unaltered <span class="hlt">mantle</span> xenoliths contain pure SD and PSD magnetite inclusions exsolved in olivine and pyroxene. The fact that these magnetite grains are not associated with any alteration phases, such as serpentine, and exhibit a subhedral shape, demonstrates that they formed in equilibrium with the host silicate. 5. The ascent of <span class="hlt">mantle</span> xenoliths in volcanic conduits through cratons and subduction zones occurs in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Metic..27Q.259M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Metic..27Q.259M"><span><span class="hlt">Mantle</span> Mineral/Silicate Melt Partitioning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McFarlane, E. A.; Drake, M. J.</p> <p>1992-07-01</p> <p>Introduction: The partitioning of elements among <span class="hlt">mantle</span> phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper <span class="hlt">mantle</span> of the Earth is a consequence of the flotation of olivine into the upper <span class="hlt">mantle</span> (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper <span class="hlt">mantle</span> peridotite. This model determines that upper <span class="hlt">mantle</span> peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper <span class="hlt">mantle</span>, and subtraction of 27.6% perovskite from the upper <span class="hlt">mantle</span> (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P51A2575H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P51A2575H"><span>Self-Organized <span class="hlt">Mantle</span> Layering After the Magma-Ocean Period</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, U.; Dude, S.</p> <p>2017-12-01</p> <p>The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's <span class="hlt">mantle</span>. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified <span class="hlt">mantle</span>, as resulting from fractional crystallization of the magma ocean. The early <span class="hlt">mantle</span> is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the <span class="hlt">mantle</span> dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account <span class="hlt">mantle</span> realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower <span class="hlt">mantle</span> from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the <span class="hlt">mantle</span> structure, ranging from multiple to single layer flow. Such an evolutionary path of <span class="hlt">mantle</span> convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of <span class="hlt">mantle</span> upwellings in a new framework.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23B0475A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23B0475A"><span>Quantifying Textures of Rapakivi Granites and <span class="hlt">Mantle</span> Formation Insights</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashauer, Z.; Currier, R. M.</p> <p>2017-12-01</p> <p>Rapakivi texture, the <span class="hlt">mantling</span> of plagioclase on alkali feldspar, is a common occurrence in granitoids derived from crustal melting. Presented here, are several textural analyses that quantify <span class="hlt">mantle</span> thickness and the overall distribution of crystal populations. Analyses were performed on outcrops and slabbed samples from the Wolf River Batholith, Wisconsin, USA and the Wiborg Batholith, Finland. Both localities are "classical" rapakivi granites of Proterozoic age associated with incipient rifting of the supercontinent Nuna/Columbia. <span class="hlt">Mantle</span> thickness analysis reveals a relationship between the characteristic size of the <span class="hlt">mantle</span> and the size of the core. The thickest <span class="hlt">mantles</span> tend to be on relatively small cores while relatively large cores display thin <span class="hlt">mantles</span>. This relationship is consistent with a replacement origin as a result of alkali feldspar dissolution with concomitant reprecipitation of plagioclase, due to disequilibrium between crystal and melt. If this is the case then crystal size distributions should be similar between unmantled and <span class="hlt">mantled</span> megacrysts. Preliminary results confirm this supposition: rapakivi <span class="hlt">mantle</span> formation in these classical systems appear to be the result of replacement. These textural analyses immediately call into question the viability of epitaxial growth models. A certain amount of disequilibrium is required to drive the replacement reaction. Two potential mechanisms are 1) mechanical transfer of crystals into a magma of more mafic composition (i.e., magma mixing), and 2) the production of a heterogeneous melt during rapid melting of granitic rock and reaction between unmelted crystals and partial melt. The classical rapakivi granites are associated with prolonged bimodal magmatism, and so there is clear potential to drive either of these <span class="hlt">mantling</span> mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23486061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23486061"><span>Water and hydrogen are immiscible in Earth's <span class="hlt">mantle</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bali, Enikő; Audétat, Andreas; Keppler, Hans</p> <p>2013-03-14</p> <p>In the deep, chemically reducing parts of Earth's <span class="hlt">mantle</span>, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's <span class="hlt">mantle</span> so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the <span class="hlt">mantle</span> that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper <span class="hlt">mantle</span> immediately following core formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8701X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8701X"><span>Magmatic plumbing system from lower <span class="hlt">mantle</span> of Hainan plume</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, Shaohong; Sun, Jinlong; Xu, Huilong; Huang, Haibo; Cao, Jinghe</p> <p>2017-04-01</p> <p>Intraplate volcanism during Late Cenozoic in the Leiqiong area of southernmost South China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. However, detailed features of Hainan plume, such as morphology of magmatic conduits, depth of magmatic pool in the upper <span class="hlt">mantle</span> and pattern of <span class="hlt">mantle</span> upwelling, are still enigmatic. Here we present seismic tomographic images of the upper 1100 km of the <span class="hlt">mantle</span> beneath the southern South China. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with diameter of about 200-300 km that tilts downward to lower <span class="hlt">mantle</span> beneath north of Hainan hotspot and a head that spreads laterally near the <span class="hlt">mantle</span> transition zone, indicating a magmatic pool in the upper <span class="hlt">mantle</span>. Further upward, this head is decomposed into small patches, but when encountering the base of the lithosphere, a pancake-like anomaly is shaped again to feed the Hainan volcanism. Our results challenge the classical model of a fixed thermal plume that rises vertically to the surface, and propose the new layering-style pattern of magmatic upwelling of Hainan plume. This work indicates the spatial complexities and differences of global <span class="hlt">mantle</span> plumes probably due to heterogeneous compositions and changefully thermochemical structures of deep <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950015385&hterms=recycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drecycling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950015385&hterms=recycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drecycling"><span>Subduction and volatile recycling in Earth's <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, S. D.; Ita, J. J.; Staudigel, H.</p> <p>1994-01-01</p> <p>The subduction of water and other volatiles into the <span class="hlt">mantle</span> from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the <span class="hlt">mantle</span>. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical <span class="hlt">mantle</span> flow calculations assume that the slab has no greater strength than the surrounding <span class="hlt">mantle</span>. Both of these views are inconsistent with laboratory work on the deformation of <span class="hlt">mantle</span> minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower <span class="hlt">mantle</span> (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.484..363M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.484..363M"><span>Water distribution in the lower <span class="hlt">mantle</span>: Implications for hydrolytic weakening</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muir, Joshua M. R.; Brodholt, John P.</p> <p>2018-02-01</p> <p>The presence of water in lower <span class="hlt">mantle</span> minerals is thought to have substantial effects on the rheological properties of the Earth's lower <span class="hlt">mantle</span> in what is generally known as "hydrolytic weakening". This weakening will have profound effects on global convection, but hydrolytic weakening in lower <span class="hlt">mantle</span> minerals has not been observed experimentally and thus the effect of water on global dynamics remains speculative. In order to constrain the likelihood of hydrolytic weakening being important in the lower <span class="hlt">mantle</span>, we use first principles methods to calculate the partitioning of water (strictly protons) between mineral phases of the lower <span class="hlt">mantle</span> under lower <span class="hlt">mantle</span> conditions. We show that throughout the lower <span class="hlt">mantle</span> water is primarily found either in the minor Ca-perovskite phase or in bridgmanite as an Al3+-H+ pair. Ferropericlase remains dry. However, neither of these methods of water absorption creates additional vacancies in bridgmanite and thus the effect of hydrolytic weakening is likely to be small. We find that water creates significant number of vacancies in bridgmanite only at the deepest part of the lower <span class="hlt">mantle</span> and only for very high water contents (>1000 ppm). We conclude that water is thus likely to have only a limited effect on the rheological properties of the lower <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GGG.....711013B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GGG.....711013B"><span><span class="hlt">Mantle</span> transition zone structure and upper <span class="hlt">mantle</span> S velocity variations beneath Ethiopia: Evidence for a broad, deep-seated thermal anomaly</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham</p> <p>2006-11-01</p> <p>Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the <span class="hlt">mantle</span>, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper <span class="hlt">mantle</span> beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper <span class="hlt">mantle</span> (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost <span class="hlt">mantle</span>, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper <span class="hlt">mantle</span> temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower <span class="hlt">mantle</span>. Such a broad thermal upwelling could be part of the African Superplume found in the lower <span class="hlt">mantle</span> beneath southern Africa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMDI21B1960Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMDI21B1960Z"><span>The Evolution of the Earth's <span class="hlt">Mantle</span> Structure and Surface and Core-<span class="hlt">mantle</span> Boundary Heat Flux since the Paleozoic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, N.; Zhong, S.</p> <p>2010-12-01</p> <p>The cause for and time evolution of the seismically observed African and Pacific slow anomalies (i.e., superplumes) are still unclear with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Ma and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma ago) and the <span class="hlt">mantle</span> in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree-1 structure before the Pangea formation). Here, we construct a plate motion history back to 450 Ma and use it as time-dependent surface boundary conditions in 3-dimensional spherical models of thermochemical <span class="hlt">mantle</span> convection to study the evolution of <span class="hlt">mantle</span> structure as well as the surface and core-<span class="hlt">mantle</span> boundary heat flux. Our results for the <span class="hlt">mantle</span> structures suggest that while the <span class="hlt">mantle</span> in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ~240 Ma (i.e., ~100 Ma after the assembly of Pangea). The evolution of <span class="hlt">mantle</span> structure has implications for heat flux at the surface and core-<span class="hlt">mantle</span> boundary (CMB). Our results show that while the plate motion controls the surface heat flux, the major cold downwellings control the core-<span class="hlt">mantle</span> boundary heat flux. A notable feature in surface heat flux from our models is that the surface heat flux peaks at ~100 Ma ago but decreases for the last 100 Ma due to the breakup of Pangea and its subsequent plate evolution. The CMB heat flux in the equatorial regions shows two minima during period 320-250 Ma and period 120-84 Ma. The first minimum clearly results from the disappearance of a major cold downwelling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23712421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23712421"><span>Laryngeal dystonia gravidarum: sudden onset of <span class="hlt">adductor</span> spasmodic dysphonia in pregnancy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ankola, Ashish; Sulica, Lucian; Murry, Thomas</p> <p>2013-12-01</p> <p>The purpose of this study was to identify the presence or absence of known factors related to onset of <span class="hlt">adductor</span> spasmodic dysphonia (ADSD) in a population with sudden onset during or after pregnancy. Retrospective review. A review of 350 patient records identified five patients with sudden onset of ADSD related to pregnancy. An age-matched group with sudden onset of ADSD not related to pregnancy served as controls. All subjects completed a 20-question survey of risk factors relevant to ADSD. The average age of onset in both groups was 31 years. Three had onset of ADSD in the postpartum period, the other two during pregnancy. Significantly increased avocational voice use was found in the pregnant group compared to the control group. There was a significant difference in the two groups regarding cumulative risk factors traditionally associated with ADSD. Sudden onset of ADSD can occur in pregnancy in women with clinical profiles that differ from traditional ADSD patients. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22707481','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22707481"><span>Bite force estimation and the fiber architecture of felid masticatory <span class="hlt">muscles</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartstone-Rose, Adam; Perry, Jonathan M G; Morrow, Caroline J</p> <p>2012-08-01</p> <p>Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory <span class="hlt">muscle</span> fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular <span class="hlt">adductors</span> of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory <span class="hlt">muscle</span> masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross-sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory <span class="hlt">muscle</span> fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.lymphoma.org/aboutlymphoma/nhl/mcl/','NIH-MEDLINEPLUS'); return false;" href="https://www.lymphoma.org/aboutlymphoma/nhl/mcl/"><span><span class="hlt">Mantle</span> Cell Lymphoma</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Cell Lymphoma <span class="hlt">Mantle</span> Cell lymphoma is typically an aggressive Lymphomas that are fast growing and generally need ... LDH suggest that the lymphoma may be more aggressive. and beta-2 microglobulin. Measuring these and other ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9229B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9229B"><span><span class="hlt">Mantle</span> xenoliths from Marosticano area (Northern Italy): a comparison with Veneto Volcanic Province lithospheric <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo</p> <p>2016-04-01</p> <p>The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the North-East of Italy, represents the most important volcanic distric of Adria Plate. It is composed by five volcanic bodies: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas and range in composition from nephelinites to tholeiites. Often VVP nephelinites and basanites carry <span class="hlt">mantle</span> xenoliths (mainly harzburgites and lherzolite). This study reports petrological comparison between Marosticano xenoliths (new outcrop) and xenoliths from the Lessinean and Val d'Adige areas already studied by many Authors (Siena & Coltorti 1989; Beccaluva et al., 2001, Gasperini et al., 2006). Mineral major elements analyses show that the Marosticano lherzolites and harzburgites reflect "more restitic" composition than the <span class="hlt">mantle</span> domain beneath the other VVP districts (Lessini Mts. and Val d'Adige). In fact, olivine and pyroxene of Marosticano xenoliths have the highest mg# values of the entire district (Marosticano→90-93; literature→86-92). At comparable mg# (45-85 wt%) Marosticano spinels tend to be higher in Cr2O3 (23-44 wt%) contents with respect to the other VVP sp (7-25 wt%). It is worth noting that, Ni contents of Marosticano olivines in both harzburgites and lherzolites are higher (2650-3620 ppm) than those of the Lessinean xenoliths (1500- 3450 ppm), and similar to that of Val d'Adige lherzolites (3000-3500 ppm), approaching the contents of Archean cratonic <span class="hlt">mantle</span> (Kelemen, 1998). In turn, Lessinean olivines properly fall in the Ni-mg# Phanerozoic field. At fixed pressure of 15 kbar, the equilibration temperature of Marosticano xenoliths are similar (Brey & Köhler: 920-1120°C) to those of Lessini (O'Neill & Wall: 990-1110°C; Beccaluva et al., 2007), but higher than those of Val d'Adige (Wells: 909-956°C; Gasperini et al., 2006). Finally, Marosticano <span class="hlt">mantle</span> fragment show similar relatively high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JAESc..37..229W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JAESc..37..229W"><span>Co-rich sulfides in <span class="hlt">mantle</span> peridotites from Penghu Islands, Taiwan: Footprints of Proterozoic <span class="hlt">mantle</span> plumes under the Cathaysia Block</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Kuo-Lung; O'Reilly, Suzanne Y.; Honda, Masahiko; Matsumoto, Takuya; Griffin, William L.; Pearson, Norman J.; Zhang, Ming</p> <p>2010-02-01</p> <p>Abundant primary sulfides occur as inclusions in silicates and as discrete grains in <span class="hlt">mantle</span>-derived spinel lherzolite xenoliths from Miocene intraplate basalts on the Penghu Islands, Taiwan, which is located at the southeastern margin of Cathaysia Block. These sulfides are dominantly mixtures of Fe-rich and Ni-rich monosulfide solid solutions (MSS), with minor pentlandite, millerite and chalcopyrite, and are considered to represent sulfide melts crystallized at high temperatures (>900 °C). Some sulfides from the Tungchiyu (TCY) islet (37 out of 118 grains) have remarkably high Co contents resulting in subchondritic Ni/Co ratios (<21; 5-20, median = 12), distinct from the superchondritic values (Ni/Co = 48-157, median = 83) typical of <span class="hlt">mantle</span> sulfides worldwide. The Co-rich nature of the TCY sulfides is considered to be a primary characteristic as no secondary processes can be identified to account for the feature. They are similar to Ni-Co-rich sulfides from Lac de Gras, Slave Craton ( Aulbach et al. (2004) Chemical Geology 208, 61-88) interpreted as being derived from the lower <span class="hlt">mantle</span>. Experimental studies suggest that the sulfide melt/silicate melt partition coefficient of Ni becomes lower than that of Co at pressures greater than 28 GPa, similar to recent estimates of the magma ocean conditions. Os model ages of the TCY Co-rich sulfides reveal four episodes of generation: 2.0, 1.7, 1.4 and 0.8 Ga; this is consistent with the age pattern of all Penghu sulfides, indicating significant lithosperic <span class="hlt">mantle</span> formation, melt extraction or metasomatic events at these time periods. These events closely correspond to the global 1.9-Ga superplume event related to the assembly of the Nena/Columbia supercontinent, a minor 1.7-Ga superplume event in SW Laurentia prior to breakup of Nena/Columbia, the 1468 Ma Moyie event in the Belt Basin region in western Laurentia and the ˜0.8 Ga breakup of Rodinia, with which the Cathaysia Block was associated at various stages during its</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26957762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26957762"><span>Comparison of lower limb <span class="hlt">muscle</span> activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Min-Ju; Kim, Joong-Hwi</p> <p>2016-01-01</p> <p>[Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], <span class="hlt">adductor</span> longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six <span class="hlt">muscles</span> for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb <span class="hlt">muscle</span> enhancement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PEPI..183....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PEPI..183....1S"><span>Preface: Deep Slab and <span class="hlt">Mantle</span> Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.</p> <p>2010-11-01</p> <p>We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and <span class="hlt">Mantle</span> Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and <span class="hlt">Mantle</span> Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep <span class="hlt">mantle</span> and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-<span class="hlt">mantle</span> boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of <span class="hlt">mantle</span> dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3932896','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3932896"><span>Multiple seismic reflectors in Earth’s lowermost <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert</p> <p>2014-01-01</p> <p>The modern view of Earth’s lowermost <span class="hlt">mantle</span> considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core–<span class="hlt">mantle</span> boundary and an interface some 150–300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth’s deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost <span class="hlt">mantle</span> from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth’s <span class="hlt">mantle</span>. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost <span class="hlt">mantle</span> is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CoMP..172...51U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CoMP..172...51U"><span>Fluorine and chlorine in <span class="hlt">mantle</span> minerals and the halogen budget of the Earth's <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urann, B. M.; Le Roux, V.; Hammond, K.; Marschall, H. R.; Lee, C.-T. A.; Monteleone, B. D.</p> <p>2017-07-01</p> <p>The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB <span class="hlt">mantle</span> (DMM). Yet, the F and Cl budget of the Earth's upper <span class="hlt">mantle</span> and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of <span class="hlt">mantle</span> minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The <span class="hlt">mantle</span> wedge is likely enriched in F compared to un-metasomatized <span class="hlt">mantle</span>, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite <span class="hlt">mantle</span> contains 1.4-31 µg/g F and 0.14-0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1-9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029340','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029340"><span>Subduction-zone magnetic anomalies and implications for hydrated forearc <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blakely, R.J.; Brocher, T.M.; Wells, R.E.</p> <p>2005-01-01</p> <p>Continental <span class="hlt">mantle</span> in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of <span class="hlt">mantle</span> hydration, and forearc <span class="hlt">mantle</span>, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated <span class="hlt">mantle</span> explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic <span class="hlt">mantle</span> may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated <span class="hlt">mantle</span> in convergent margins worldwide. ?? 2005 Geological Society of America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR52A..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR52A..04M"><span>The rheological effect of water on lower <span class="hlt">mantle</span> minerals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muir, J.; Brodholt, J. P.</p> <p>2017-12-01</p> <p>The presence of water in many upper <span class="hlt">mantle</span> minerals has been shown to have a large effect on their rheology in what is generally known as "hydrolytic weakening". A growing number of studies are finding that incorporating a water dependent rheology into global <span class="hlt">mantle</span> convection models has a strong effect on global dynamics. However, while there is an abundance of experimental evidence showing that upper <span class="hlt">mantle</span> minerals deformed under hydrous conditions are significantly weaker than when dry, there is no such experimental evidence for lower <span class="hlt">mantle</span> minerals. In this study we use DFT methods to calculate the partitioning of water between different sites in lower <span class="hlt">mantle</span> minerals (bridgmanite, cubic and tetragonal calcium perovskite, ferropericlase and phase H) which allows us to speculate on the effects of water on the rheology and phase stability of lower <span class="hlt">mantle</span> minerals under various conditions. The effect of water on lower <span class="hlt">mantle</span> minerals is found to depend strongly upon both water content and temperature. Under typical lower <span class="hlt">mantle</span> conditions and with reasonable water concentrations (<1000 ppm), water partitions preferentially into bridgmanite but with a mechanism that does not increase the concentration of Mg or Si vacancies in bridgmanite and thus is unlikely to affect its rheology. In cooler conditions, such as in a descending slab, water partitions into calcium perovskite or forms water rich aluminous phases. The presence of water in calcium perovskite has large effects on the preferred phase and can induce multiple phase transitions at varying depths of the <span class="hlt">mantle</span> depending upon both water content and slab temperature. These transitions are likely to be seismically anomalous and could cause large and characteristic seismic heterogeneity in descending slabs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V52A..07I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V52A..07I"><span>Osmium isotope variations in the Pacific <span class="hlt">mantle</span>: implications for the distribution of heterogeneity in the convecting <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishikawa, A.; Senda, R.; Suzuki, K.; Tani, K.; Ishii, T.</p> <p>2015-12-01</p> <p>Recent accumulation of Os isotope data obtained either from abyssal peridotites or from ocean island peridotite xenoliths has clearly demonstrated that the modern convecting <span class="hlt">mantle</span> is substantially heterogeneous in Os-isotope composition. Unlike other radiogenic isotope heterogeneities observed in oceanic basalts, largely controlled by incorporation of recycled crustal materials, it seems likely that the observed range of Os-isotope compositions in oceanic peridotites directly reflect varying degrees of ancient melt extraction from peridotitic <span class="hlt">mantle</span>. Hence, global variations of Os-isotope compositions in oceanic peridotites may provide an important piece of information in unraveling the geochemical and geodynamic evolution of the convecting <span class="hlt">mantle</span>. Here we present the Os-isotope variations in peridotite-serpentinite recovered from the Pacific area because the number of data available is yet scarce when compared with data from other oceans (Atlantic, Arctic and Indian Ocean). Our primary purpose is to test whether <span class="hlt">mantle</span> domains underlying four major oceans are distinct in terms of Os isotope variations, reflecting the pattern of <span class="hlt">mantle</span> convection or mixing efficiency. We examined 187Os/188Os ratios and highly siderophile element concentrations in serpentinized harzburgite recovered from Hess Deep in the East Pacific Rise, a <span class="hlt">mantle</span> section in the Taitao ophiolite, Chile (Schulte et al., 2009), serpentinized harzburgite bodies in the Izu-Ogasawara and Tonga forearc (Parkinson et al., 1998), peridotite xenoliths from the Pali-Kaau vent in O'ahu island, Hawaii (Bizimis et al., 2007), and low-temperature type peridotite xenoliths from Malaita, Solomon Islands (Ishikawa et al., 2011). The results demonstrate that samples from each area display very similar Os-isotope variations with a pronounced peak in 187Os/188Os = 0.125-0.128. Moreover, the relatively larger datasets obtained from Hess Deep, Taitao and Malaita clearly exhibit the presence of secondary peak in 187Os</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V41B2292H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V41B2292H"><span>Rhenium - osmium heterogeneity of enriched <span class="hlt">mantle</span> basalts explained by composition and behaviour of <span class="hlt">mantle</span>-derived sulfides</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.</p> <p>2010-12-01</p> <p>Analyses of enriched <span class="hlt">mantle</span> (EM) -basalts, using lithophile element-based isotope systems have long provided evidence for discrete, but variable <span class="hlt">mantle</span> reservoirs [1]. Upon partial melting, the isotopic fingerprint of each reservoir is imparted upon the partial melt produced. However, recent work involving the Re-Os isotope systematics of EM-basalts [2] suggests that it may not be so simple to delimit these previously well defined <span class="hlt">mantle</span> reservoirs; the “<span class="hlt">mantle</span> zoo” [3] may contain more reservoirs than previously envisaged. However, a simple model, with varying contributions from two populations of compositionally distinct <span class="hlt">mantle</span> sulfides can readily account for the observed heterogeneities in Re-Os isotope systematics of such basalts without additional <span class="hlt">mantle</span> reservoirs. Rhenium-osmium elemental and isotopic analyses of individual sulfide grains separated from spinel lherzolites from Kilbourne Hole, NM, USA demonstrate that two discrete populations of <span class="hlt">mantle</span> sulfide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os], low [Re] with unradiogenic, typically sub-chondritic, 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulfides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic, 187Os/188Os ([Os] typically ≤ 1-2 ppm, 187Os/188Os ≤ 0.3729; this study). This population is thought to represent metasomatic sulfide (e.g. [4,5]). Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulfide ([Os] ≤ 37 ppm, this study). During the early stages of partial melting, supra-chondritic interstitial sulfides are mobilized and incorporated into the melt, adding their radiogenic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI41A0328N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI41A0328N"><span>Monte Carlo Models to Constrain Temperature Variation in the Lowermost <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowacki, A.; Walker, A.; Davies, C. J.</p> <p>2017-12-01</p> <p>The three dimensional temperature variation in the lowermost <span class="hlt">mantle</span> is diagnostic of the pattern of <span class="hlt">mantle</span> convection and controls the extraction of heat from the outer core. Direct measurement of <span class="hlt">mantle</span> temperature is impossible and the temperature in the lowermost <span class="hlt">mantle</span> is poorly constrained. However, since temperature variations indirectly impact many geophysical observables, it is possible to isolate the thermal signal if <span class="hlt">mantle</span> composition and the physical properties of <span class="hlt">mantle</span> minerals are known. Here we describe a scheme that allows seismic, geodynamic, and thermal properties of the core and <span class="hlt">mantle</span> to be calculated given an assumed temperature (T) and mineralogical (X) distribution in the <span class="hlt">mantle</span> while making use of a self consistent parameterisation of the thermoelastic properties of <span class="hlt">mantle</span> minerals. For a given T and X, this scheme allows us to determine the misfit between our model and observations for the long-wavelength surface geoid, core-<span class="hlt">mantle</span> boundary topography, inner-core radius, total surface heat-flux and p- and s-wave tomography. The comparison is quick, taking much less than a second, and can accommodate uncertainty in the mineralogical parameterisation. This makes the scheme well-suited to use in a Monte Carlo approach to the determination of the long-wavelength temperature and composition of the lowermost <span class="hlt">mantle</span>. We present some initial results from our model, which include the robust generation of a thermal boundary layer in the one-dimensional thermal structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11834831','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11834831"><span>The <span class="hlt">mantle</span> flow field beneath western North America.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silver, P G; Holt, W E</p> <p>2002-02-08</p> <p>Although motions at the surface of tectonic plates are well determined, the accompanying horizontal <span class="hlt">mantle</span> flow is not. We have combined observations of surface deformation and upper <span class="hlt">mantle</span> seismic anisotropy to estimate this flow field for western North America. We find that the <span class="hlt">mantle</span> velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in <span class="hlt">mantle</span> density associated with the former Farallon oceanic plate beneath North America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812781P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812781P"><span><span class="hlt">Mantle</span> xenoliths from Central Vietnam: evidence for at least Meso-Proterozoic formation of the lithospheric <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Proßegger, Peter; Ntaflos, Theodoros; Ackerman, Lukáš; Hauzenberger, Christoph; Tran, Tuan Anh</p> <p>2016-04-01</p> <p>Intraplate Cenozoic basalts that are widely dispersed along the continental margin of East Asia belong to the Western Pacific "diffuse" igneous province. They consist mainly of alkali basalts, basanites,rarely nephelinites, which are <span class="hlt">mantle</span> xenolith-bearing, potassic rocks and quartz tholeiites. The volcanism in this area has been attributed to the continental extension caused by the collision of India with Asia and by the subduction of the Pacific Ocean below Asia. We studied a suite of 24 <span class="hlt">mantle</span> xenoliths from La Bang Lake, Dak Doa district and Bien Ho, Pleiku city in the Gia Province, Central Vietnam. They are predominantly spinel lherzolites (19) but spinel harburgites (3) and two garnet pyroxenites are present as well. The sizes of the xenoliths range from 5 to 40 cm in diameter with medium to coarse-grained protogranular textures. Whole rock major and trace element analyses display a wide range of compositions. The MgO concentration varies from 36.0 to 45.8 wt% whereas Al2O3 and CaO range from 0.63 to 4.36 wt% and from 0.52 to 4.21 wt% (with one sample having CaO of 6.63 wt%) respectively. Both CaO and Al2O3 positively correlate with MgO most likely indicating that the sampled rocks were derived from a common <span class="hlt">mantle</span> source experienced variable degrees of partial melting. Mineral analyses show that the rock forming minerals are chemically homogeneous. The Fo contents of olivine vary between 89.2 and 91.2 and the Mg# of orthopyroxene and clinopyroxene range from 89 to 92 and 89 to 94 respectively. The range of Cr# for spinel is 0.06-0.26. Model calculations in both whole rock and clinopyroxenes show that lithospheric <span class="hlt">mantle</span> underneath Central Vietnam experienced melt extractions that vary between 2-7, 12-15 and 20-30%. The majority of the primitive <span class="hlt">mantle</span>-normalized whole rock and clinopyroxene REE patterns are parallel to each other indicating that clinopyroxene is the main repository of the trace elements. Clinopyroxenes are divided into two groups: group A</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI33A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI33A..01L"><span>Preservation of Primordial <span class="hlt">Mantle</span> in the Aftermath of a Giant Impact</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.</p> <p>2016-12-01</p> <p>Terrestrial planets experience a number of giant impacts in the final stages of accretion. These highly energetic events force planets into hot, partially vaporized, and occasionally rapidly-rotating states. However, recent measurements of Xe and W isotopes in <span class="hlt">mantle</span> plume-derived basalts imply that the terrestrial <span class="hlt">mantle</span> was not homogenized during this violent stage of Earth's accretion. Understanding the physical structure of post-impact states is key for interpreting these primitive <span class="hlt">mantle</span> signatures. Post-impact states are highly thermally stratified: the lowermost <span class="hlt">mantle</span> has lower entropy than the rest of the <span class="hlt">mantle</span>. Usually, the lowermost <span class="hlt">mantle</span> is near the solidus or partially molten. The high-entropy portion of the <span class="hlt">mantle</span> is super-liquidus, smoothly grading to a silicate vapor atmosphere. Here, we consider the competing processes acting on these distinct layers as the <span class="hlt">mantle</span> establishes a single thermal gradient. If the whole <span class="hlt">mantle</span> chemically mixed during cooling, then any pre-impact chemical signature would be erased. Previous work has neglected the critical time period between the highly vaporized post-impact state and a fully-condensed silicate body, i.e., a separated magma ocean and atmosphere. The post-impact structure cools rapidly by radiation from the photosphere, causing contraction of the body and redistribution of mass and angular momentum. One consequence of contraction is that the pressure in the <span class="hlt">mantle</span> increases significantly (on the order of several to 10s GPa at the core <span class="hlt">mantle</span> boundary) over 10s-1000s years. The increased pressure causes part of the <span class="hlt">mantle</span> to solidify. Significantly, the timescale for pressure-induced freezing is shorter than the timescale for thermal equilibration between the low and high entropy <span class="hlt">mantle</span> layers and the timescale for melt percolation (both >100s yrs). Therefore, pressure-induced freezing in the aftermath of a giant impact may be an important factor in preserving primordial Xe and W signatures in the lower</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18288192','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18288192"><span>Evidence of lower-<span class="hlt">mantle</span> slab penetration phases in plate motions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goes, Saskia; Capitanio, Fabio A; Morra, Gabriele</p> <p>2008-02-21</p> <p>It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of <span class="hlt">mantle</span> convection. But whether and how subducting plates penetrate into the lower <span class="hlt">mantle</span> is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the <span class="hlt">mantle</span>. Here we identify lower-<span class="hlt">mantle</span> slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-<span class="hlt">mantle</span> phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower <span class="hlt">mantle</span>, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-<span class="hlt">mantle</span> penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower <span class="hlt">mantle</span>. Thus we identify a direct expression of time-dependent flow between the upper and lower <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9630028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9630028"><span>The relationship of strength and <span class="hlt">muscle</span> balance to shoulder pain and impingement syndrome in elite quadriplegic wheelchair rugby players.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miyahara, M; Sleivert, G G; Gerrard, D F</p> <p>1998-04-01</p> <p>Wheelchair athletes are susceptible to injuries related to overuse of the shoulder, in particular shoulder impingement syndrome. The present study examined the relationship of shoulder pain to demographic details, isokinetic strength and <span class="hlt">muscle</span> balance in 8 elite quadriplegic rugby players. Demographic data were collected using personal interviews and each subject was clinically examined for signs of impingement syndrome by a physician. In addition each subject underwent bilateral isokinetic strength testing of the shoulder at 60 and 180 deg/s for abduction/adduction and internal/external rotation. A series of step-wise multiple discriminant analysis successfully predicted clinical symptoms from demographic, muscular strength and balance data. In particular, there was a significant deficit in <span class="hlt">adductor</span> strength and this was related to shoulder pain and wasting of the scapular <span class="hlt">muscles</span>. This strength deficit may be due to the high level of spinal lesions in the quadriplegic population. The level of spinal lesion may contribute to the aetiology of shoulder pathology in quadriplegia, and differentiate it from that observed in able-bodied athletes who exhibit weak abductors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMDI13D2456M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMDI13D2456M"><span>Circulation of carbon dioxide in the <span class="hlt">mantle</span>: multiscale modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morra, G.; Yuen, D. A.; Lee, S.</p> <p>2012-12-01</p> <p>Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's <span class="hlt">mantle</span> mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower <span class="hlt">mantle</span> depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire <span class="hlt">mantle</span> by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here <span class="hlt">mantle</span> mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the <span class="hlt">mantle</span> rocks, at the large scale the fluid phases in the <span class="hlt">mantle</span> may control the creeping of <span class="hlt">mantle</span> rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the <span class="hlt">mantle</span> from the lowest scale up to the <span class="hlt">mantle</span> scale and in combination with the creeping flow of the convecting <span class="hlt">mantle</span>. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep <span class="hlt">Mantle</span> Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24670014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24670014"><span>The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh <span class="hlt">muscle</span> activation in a pain free population.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prior, Simon; Mitchell, Tim; Whiteley, Rod; O'Sullivan, Peter; Williams, Benjamin K; Racinais, Sebastien; Farooq, Abdulaziz</p> <p>2014-03-27</p> <p>Thigh <span class="hlt">muscle</span> injuries commonly occur during single leg loading tasks and patterns of <span class="hlt">muscle</span> activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh <span class="hlt">muscle</span> activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in <span class="hlt">muscle</span> activation. Hip and thigh <span class="hlt">muscle</span> activation patterns were compared in 22 asymptomatic, male subjects (20-45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh <span class="hlt">muscles</span> calculating Root Mean Square. EMG was normalized to an "upright standing" reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in <span class="hlt">muscle</span> activation between paired test postures. In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane <span class="hlt">muscles</span>, with a concurrent deactivation of anterior sagittal plane <span class="hlt">muscles</span> (p: 0.016 - <0.001). Lateral hip abductor <span class="hlt">muscles</span> increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, <span class="hlt">adductor</span> longus and vastus lateralis activity (p: 0.037 - <0.001). Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh <span class="hlt">muscle</span> activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on <span class="hlt">muscle</span> activation. Investigation of these activation patterns in clinical populations such as hip and thigh <span class="hlt">muscle</span> injuries may provide important insights into injury</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..748K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..748K"><span>Metasomatic processes in the <span class="hlt">mantle</span> beneath the Arkhangelsk province, Russia: evidence from garnet in <span class="hlt">mantle</span> peridotite xenoliths, Grib pipe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kargin, Alexei; Sazonova, Lyudmila; Nosova, Anna; Kovalchuk, Elena; Minevrina, Elena</p> <p>2015-04-01</p> <p>The Arkhangelsk province is located in the northern East European Craton and includes more than 80 bodies of kimberlite, alkaline picrite and other ultramafic and mafic rocks. They erupted through the Archean-Early Proterozoic basement into the Riphean-Paleozoic sedimentary cover. The Grib kimberlite pipe is located in the central part of the Arkhangelsk province in the Verkhotina (Chernoozerskoe) kimberlite field. The age of the Grib kimberlite is 376+-3 Ma (Rb-Sr by phlogopite). The Grib kimberlite pipe is the moderate-Ti kimberlites (TiO2 1-2 wt %) with strongly fractionated REE pattern , (La/Yb)n = 38-87. The Nd isotopic composition of the Grib pipe ranges epsilon Nd from -0.4 to + 1.0 and 87Sr/86Sr(t) from 0.7042 to 0.7069 (Kononova et al., 2006). Geochemical (Jeol JXA-8200 electron microprobe; SIMS; LA-ICP-MS) composition of clinopyroxene and garnet from <span class="hlt">mantle</span>-derived xenoliths of the Grib kimberlite pipe was studied to provide new insights into metasomatic processes in the <span class="hlt">mantle</span> beneath the Arkhangelsk province. Based on both major and trace element data, five geochemical groups of peridotitic garnet were distinguished. The partial melting of metasomatic peridotite with crystallization of a garnet-clinopyroxene association, and orthopyroxene assimilation by protokimberlitic melts was simulated and a model of garnet and clinopyroxene metasomatic origin was proposed. The model includes three stages: 1. <span class="hlt">Mantle</span> peridotite was fertilized by subduction-derived sediment partial melts/fluids at the lithosphere-asthenosphere boundary to yield a CO2-bearing <span class="hlt">mantle</span> peridotite (source I). 2. The partial melting of the carbonate-bearing <span class="hlt">mantle</span> source 1 produced carbonatite-like melts (a degree of partial melting was 1,5 %), which could form the carbonatite-kimberlite rocks of the Mela River (Arkhangelsk province, 50 km North-West of Grib kimberlite) and also produce the metasomatic reworking of (carbonate-bearing) <span class="hlt">mantle</span> peridotite (<span class="hlt">mantle</span> source II) and form type-1</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.282..326G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.282..326G"><span>Age and evolution of the lithospheric <span class="hlt">mantle</span> beneath the Khanka Massif: Geochemical and Re-Os isotopic evidence from Sviyagino <span class="hlt">mantle</span> xenoliths</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Peng; Xu, Wen-Liang; Wang, Chun-Guang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.; Wang, Zhi-Wei</p> <p>2017-06-01</p> <p>New geochemical and Re-Os isotopic data of <span class="hlt">mantle</span> xenoliths entrained in Cenozoic Sviyagino alkali basalts from the Russian Far East provide insights into the age and evolution of the sub-continental lithospheric <span class="hlt">mantle</span> (SCLM) beneath the Khanka Massif, within the Central Asian Orogenic Belt (CAOB). These <span class="hlt">mantle</span> xenoliths are predominantly spinel lherzolites with minor spinel harzburgite. The lherzolites contain high whole-rock concentrations of Al2O3 and CaO, with low forsterite content in olivine (Fo = 89.5-90.3%) and low Cr# in spinel (0.09-0.11). By contrast, the harzburgite is more refractory, containing lower whole rock Al2O3 and CaO contents, with higher Fo (91.3%) and spinel Cr# (0.28). Their whole rock and mineral compositions suggest that the lherzolites experienced low-degree (1-4%) batch melting and negligible metasomatism, whereas the harzburgite underwent a higher degree (10%) of fractional melting, and experienced minor post-melting silicate metasomatism. Two-pyroxene rare earth element (REE)-based thermometry (TREE) yields predominant equilibrium temperatures of 884-1043 °C, similar to values obtained from two-pyroxene major element-based thermometry (TBKN = 942-1054 °C). Two lherzolite samples yield high TREE relative to TBKN (TREE - TBKN ≥ 71 °C), suggesting that they cooled rapidly as a result of the upwelling of hot asthenospheric <span class="hlt">mantle</span> material that underplated a cold ancient lithosphere. The harzburgite with a low Re/Os value has an 187Os/188Os ratio of 0.11458, yielding an Os model age (TMA) relative to the primitive upper <span class="hlt">mantle</span> (PUM) of 2.09 Ga, and a Re depletion ages (TRD) of 1.91 Ga; both of which record ancient melt depletion during the Paleoproterozoic ( 2.0 Ga). The 187Os/188Os values of lherzolites (0.12411-0.12924) correlate well with bulk Al2O3 concentrations and record the physical mixing of ancient <span class="hlt">mantle</span> domains and PUM-like ambient <span class="hlt">mantle</span> material within the asthenosphere. This indicates that the SCLM beneath the Khanka</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004Litho..74....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004Litho..74....1G"><span>The thermal regimes of the upper <span class="hlt">mantle</span> beneath Precambrian and Phanerozoic structures up to the thermobarometry data of <span class="hlt">mantle</span> xenoliths</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.</p> <p>2004-05-01</p> <p>The thermal state of the upper <span class="hlt">mantle</span> beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the <span class="hlt">mantle</span> in various regions. Thus, it was established that (1) <span class="hlt">mantle</span> geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper <span class="hlt">mantle</span> were preserved within continental roots; (2) thermal regimes under continental <span class="hlt">mantle</span> between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental <span class="hlt">mantle</span> under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the <span class="hlt">mantle</span> under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI11A2339M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI11A2339M"><span>Recycling Seamounts: Implications for <span class="hlt">Mantle</span> Source Heterogeneities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madrigal, P.; Gazel, E.</p> <p>2016-12-01</p> <p>Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the <span class="hlt">mantle</span>. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper <span class="hlt">mantle</span> heterogeneity. Our evidence suggests that a highly enriched <span class="hlt">mantle</span> reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper <span class="hlt">mantle</span> in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU <span class="hlt">mantle</span> reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep <span class="hlt">mantle</span> plume upwellings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V23E0689A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V23E0689A"><span>Isotopic Evidence For Chaotic Imprint In The Upper <span class="hlt">Mantle</span> Heterogeneity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armienti, P.; Gasperini, D.</p> <p>2006-12-01</p> <p>Heterogeneities of the asthenospheric <span class="hlt">mantle</span> along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow <span class="hlt">mantle</span>, in a convective regime that involves mass transfer from the deep <span class="hlt">mantle</span>, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper <span class="hlt">mantle</span> heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper <span class="hlt">mantle</span> heterogeneities, then if the model of marble-cake <span class="hlt">mantle</span> (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic <span class="hlt">mantle</span> processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same <span class="hlt">mantle</span> process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common <span class="hlt">mantle</span> processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main <span class="hlt">mantle</span> process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003055"><span>Water Distribution in the Continental and Oceanic Upper <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peslier, Anne H.</p> <p>2015-01-01</p> <p>Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the <span class="hlt">mantle</span> derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from <span class="hlt">mantle</span> xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the <span class="hlt">mantle</span> root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic <span class="hlt">mantle</span>, and questions whether xenoliths are representative of the whole cratonic <span class="hlt">mantle</span>. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that <span class="hlt">mantle</span> lithosphere is not enriched in water when it interacts with melts from deep <span class="hlt">mantle</span> upwellings (plumes).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI11A2336R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI11A2336R"><span><span class="hlt">Mantle</span> mixing and thermal evolution during Pangaea assembly and breakup</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rudolph, M. L.; Li, M.; Zhong, S.; Manga, M.</p> <p>2016-12-01</p> <p>Continents insulate the underlying <span class="hlt">mantle</span>, and it has been suggested that the arrangement of the continents can have a significant effect on sub-continental <span class="hlt">mantle</span> temperatures. Additionally, the dispersal or agglomeration of continents may affect the efficacy of continental insulation, with some studies suggesting warming of 100K beneath supercontinents. During the most recent supercontinent cycle, Pangaea was encircled by subduction, potentially creating a `curtain' of subducted material that may have prevented mixing of the sub-Pangaea <span class="hlt">mantle</span> with the sub-Panthalassa <span class="hlt">mantle</span>. Using 3D spherical shell geometry <span class="hlt">mantle</span> convection simulations, we quantify the effect of insulation by continents and supercontinents. We explore the differences in model predictions for purely thermal vs. thermochemical convection, and we use tracers to quantify the exchange of material between the sub-oceanic to the sub-continental <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41A0588H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41A0588H"><span><span class="hlt">Mantle</span> Flow Induced by Subduction Beneath Taurides Mountains</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.</p> <p>2017-12-01</p> <p>GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the <span class="hlt">mantle</span>, we explore the <span class="hlt">mantle</span> strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the <span class="hlt">mantle</span>. In our numerical model, we observe a poloidal component of the <span class="hlt">mantle</span> flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of <span class="hlt">mantle</span> flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric <span class="hlt">mantle</span> below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This <span class="hlt">mantle</span> flow pattern may explain the shear-wave splitting directions in central Anatolia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4570G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4570G"><span>Reconstructing <span class="hlt">mantle</span> heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for <span class="hlt">mantle</span>-dynamic fitting of past plate motions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glišović, Petar; Forte, Alessandro</p> <p>2016-04-01</p> <p>The paleo-distribution of density variations throughout the <span class="hlt">mantle</span> is unknown. To address this question, we reconstruct 3-D <span class="hlt">mantle</span> structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating <span class="hlt">mantle</span> that employ 3-D <span class="hlt">mantle</span> structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed <span class="hlt">mantle</span> heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day <span class="hlt">mantle</span> heterogeneity in the upper <span class="hlt">mantle</span>. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the <span class="hlt">mantle</span> could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28930857','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28930857"><span><span class="hlt">Adductor</span> canal block with local infiltrative analgesia compared with local infiltrate analgesia for pain control after total knee arthroplasty: A meta-analysis of randomized controlled trials.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xing, Qiujuan; Dai, Weiwei; Zhao, Dongfeng; Wu, Ji; Huang, Chunshui; Zhao, Yun</p> <p>2017-09-01</p> <p>This meta-analysis aimed to evaluate the efficiency and safety of the combined <span class="hlt">adductor</span> canal block with peri-articular infiltration versus periarticular infiltration alone for pain control after total knee arthroplasty (TKA). PubMed, Medline, Embase, Web of Science, and the Cochrane Library were searched to identify articles comparing the combined <span class="hlt">adductor</span> canal block with peri-articular infiltration and periarticular infiltration alone for pain control after TKA. Main outcomes were numeric rating scale (NRS) at postoperative day (POD) 0-2 and opioid consumption. Meta-analysis was performed using Stata 11.0 software. Four randomized controlled trial (RCTs) including 297 patients met the inclusion criteria. The present meta-analysis indicated that there were significant differences between the groups regarding NRS score at POD 0 (weighted mean difference [WMD] = -0.849, 95% confidence interval [CI]: -1.345 to -0.353, P = .001), POD 1 (WMD = -0.960, 95% CI: -1.474 to -0.446, P = .000), and POD 2 (WMD = -0.672, 95% CI: -1.163 to -0.181, P = .007) after TKA. Significant differences were found in terms of opioid consumption at POD 0 (WMD = -3.761, 95% CI: -6.192 to -1.329, P = .002), POD 1 (WMD = -4.795, 95% CI: -8.181 to -1.409, P = .006), and POD 2 (WMD = -2.867, 95% CI: -4.907 to -0.827, P = .006). Combined <span class="hlt">adductor</span> canal block with peri-articular infiltration could significantly reduce NRS scores and opioid consumption in comparison with periarticular infiltration alone following TKA. Additionally, there is a lower incidence of nausea and vomiting in the combined groups.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890004472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890004472"><span>Driving forces: Slab subduction and <span class="hlt">mantle</span> convection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hager, Bradford H.</p> <p>1988-01-01</p> <p><span class="hlt">Mantle</span> convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting <span class="hlt">mantle</span>. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving <span class="hlt">mantle</span> convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of <span class="hlt">mantle</span> rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of <span class="hlt">mantle</span> convection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.737....1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.737....1P"><span>Petrology and geochemistry of the Tasse <span class="hlt">mantle</span> xenoliths of the Canadian Cordillera: A record of Archean to Quaternary <span class="hlt">mantle</span> growth, metasomatism, removal, and melting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Thorkelson, Derek J.; Friedman, Eyal</p> <p>2018-07-01</p> <p><span class="hlt">Mantle</span> xenoliths hosted by the Quaternary Tasse alkaline basalts in the Canadian Cordillera, southeastern British Columbia, are mostly spinel lherzolite originating from subcontinental lithospheric <span class="hlt">mantle</span>. The xenoliths contain abundant feldspar veins, melt pockets and spongy clinopyroxene, recording extensive alkaline metasomatism and partial melting. Feldspar occurs as veins and interstitial crystal in melt pockets. Melt pockets occur mainly at triple junctions, along grain boundaries, and consist mainly of olivine, cpx, opx and spinel surrounded by interstitial feldspar. The Nd, Sr and Pb isotopic compositions of the xenoliths indicate that their sources are characterized by variable mixtures of depleted MORB <span class="hlt">mantle</span> and EM1 and EM2 <span class="hlt">mantle</span> components. Large variations in εNd values (-8.2 to +9.6) and Nd depleted <span class="hlt">mantle</span> model ages (TDM = 66 to 3380 Ma) are consistent with multiple sources and melt extraction events, and long-term (>3300 Ma) isolation of some source regions from the convecting <span class="hlt">mantle</span>. Samples with Archean and Paleoproterozoic Nd model ages are interpreted as either have been derived from relict Laurentian <span class="hlt">mantle</span> pieces beneath the Cordillera or have been eroded from the root of the Laurentian craton to the east and transported to the base of the Cordilleran lithosphere by edge-driven convection currents. The oxygen isotope compositions of the xenoliths (average δ18O = +5.1 ± 0.5‰) are similar to those of depleted <span class="hlt">mantle</span>. The average δ18O values of olivine (+5.0 ± 0.2‰), opx (+5.9 ± 0.6‰), cpx (+6.0 ± 0.6‰) and spinel (+4.5 ± 0.2‰) are similar to <span class="hlt">mantle</span> values. Large fractionations for olivine-opx, olivine-cpx and opx-cpx pairs, however, reflect disequilibrium stemming from metasomatism and partial melting. Whole-rock trace element, Nd, Sr, Pb and O isotope compositions of the xenoliths and host alkaline basalts indicate different <span class="hlt">mantle</span> sources for these two suites of rocks. The xenoliths were derived from shallow lithospheric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010090463&hterms=earths+outer+core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dearths%2Bouter%2Bcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010090463&hterms=earths+outer+core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dearths%2Bouter%2Bcore"><span>Geodynamo Modeling of Core-<span class="hlt">Mantle</span> Interactions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)</p> <p>2001-01-01</p> <p>Angular momentum exchange between the Earth's <span class="hlt">mantle</span> and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-<span class="hlt">mantle</span> boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower <span class="hlt">mantle</span> and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-<span class="hlt">mantle</span> interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26996675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26996675"><span>Intraoperative <span class="hlt">Adductor</span> Canal Block for Augmentation of Periarticular Injection in Total Knee Arthroplasty: A Cadaveric Study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pepper, Andrew M; North, Trevor W; Sunderland, Adam M; Davis, Jason J</p> <p>2016-09-01</p> <p>Function is often sacrificed for pain control after total knee arthroplasty. Motor-sparing blocks, including <span class="hlt">adductor</span> canal block (ACB) and periarticular injection (PAI), have gained interest to address this compromise. Our study evaluates the anatomic feasibility, accuracy, and safety of intraoperative ACB as an adjunct to PAI by analyzing 3 different injection orientations and needle configurations. Eleven cadaveric knees underwent a standard medial parapatellar arthrotomy. Blunt dissection through the suprapatellar recess was performed. Using a 10-mL syringe, various colors of dyed liquid gelatin were injected toward the proximal and distal <span class="hlt">adductor</span> canal (AC) using 3 needle configurations. Medial dissection of the knee for each specimen was performed. The position of each needle and location of injected dye was identified and described relative to the AC. Accuracy of each injection orientation and/or needle configuration was different: 86% for a blunt needle in the distal AC, 57% for blunt needle in the proximal AC, and 14% for a spinal needle in the proximal AC. Puncture of the femoral artery was observed with the spinal needle 43% of the time and had the closest average proximity to the femoral artery with a distance of 5.9 mm. There were no vascular punctures using blunt needles, and the average distance from the femoral artery with proximal and distal orientation was 10.2 mm and 15.4 mm, respectively. Intraoperative ACB augmentation of PAI appears to be anatomically feasible and safe. There was decreased accuracy and increased risk of vascular puncture using a 3.5-inch spinal needle. A blunt 1.5-inch needle directed toward the distal AC had the highest accuracy while minimizing vascular injury. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..3820306B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..3820306B"><span>Vertical coherence in <span class="hlt">mantle</span> heterogeneity from global seismic data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boschi, L.; Becker, T. W.</p> <p>2011-10-01</p> <p>The vertical coherence of <span class="hlt">mantle</span> structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of <span class="hlt">mantle</span> heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all <span class="hlt">mantle</span> depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower <span class="hlt">mantle</span>, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower <span class="hlt">mantle</span> is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-<span class="hlt">mantle</span> layering.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5493751','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5493751"><span>Clustering of arc volcanoes caused by temperature perturbations in the back-arc <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Changyeol; Wada, Ikuko</p> <p>2017-01-01</p> <p>Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying <span class="hlt">mantle</span> where majority of arc magmas are generated. The sub-arc <span class="hlt">mantle</span> is brought in from the back-arc largely by slab-driven <span class="hlt">mantle</span> wedge flow. Dynamic processes in the back-arc, such as small-scale <span class="hlt">mantle</span> convection, are likely to cause lateral variations in the back-arc <span class="hlt">mantle</span> temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the <span class="hlt">mantle</span> wedge flow pattern and sub-arc <span class="hlt">mantle</span> temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter <span class="hlt">mantle</span> and subdued inflow of colder <span class="hlt">mantle</span> beneath the arc due to the temperature dependence of the <span class="hlt">mantle</span> viscosity. This causes a three-dimensional <span class="hlt">mantle</span> flow pattern that amplifies the along-arc variations in the sub-arc <span class="hlt">mantle</span> temperature, providing a simple mechanism for volcano clustering. PMID:28660880</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28660880','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28660880"><span>Clustering of arc volcanoes caused by temperature perturbations in the back-arc <span class="hlt">mantle</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Changyeol; Wada, Ikuko</p> <p>2017-06-29</p> <p>Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying <span class="hlt">mantle</span> where majority of arc magmas are generated. The sub-arc <span class="hlt">mantle</span> is brought in from the back-arc largely by slab-driven <span class="hlt">mantle</span> wedge flow. Dynamic processes in the back-arc, such as small-scale <span class="hlt">mantle</span> convection, are likely to cause lateral variations in the back-arc <span class="hlt">mantle</span> temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the <span class="hlt">mantle</span> wedge flow pattern and sub-arc <span class="hlt">mantle</span> temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter <span class="hlt">mantle</span> and subdued inflow of colder <span class="hlt">mantle</span> beneath the arc due to the temperature dependence of the <span class="hlt">mantle</span> viscosity. This causes a three-dimensional <span class="hlt">mantle</span> flow pattern that amplifies the along-arc variations in the sub-arc <span class="hlt">mantle</span> temperature, providing a simple mechanism for volcano clustering.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V53B4843S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V53B4843S"><span>Volatile element content of the heterogeneous upper <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.</p> <p>2014-12-01</p> <p>The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous <span class="hlt">mantle</span> composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper <span class="hlt">mantle</span>. Lavas from intra-transform faults and off-axis seamounts share a common <span class="hlt">mantle</span> source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper <span class="hlt">mantle</span>. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived <span class="hlt">mantle</span> heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) <span class="hlt">mantle</span> melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper <span class="hlt">mantle</span> is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28499928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28499928"><span>Detection of Ostreid herpesvirus-1 microvariants in healthy Crassostrea gigas following disease events and their possible role as reservoirs of infection.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Evans, Olivia; Hick, Paul; Whittington, Richard J</p> <p>2017-09-01</p> <p>Ostreid herpesvirus-1 microvariants (OsHV-1) cause severe mortalities in farmed Crassostrea gigas in Europe, New Zealand and Australia. Outbreaks are seasonal, recurring in the warmer months of the year in endemic estuaries. The reference genotype and microvariant genotypes of OsHV-1 have been previously detected in the tissues of apparently healthy adult oysters naturally exposed to OsHV-1 in the field. However, the role of such oysters as reservoirs of infection for subsequent mortality outbreaks remains unclear. The aims of this study were: (1) to identify the optimal sample type to use for the detection of OsHV-1 DNA in apparently healthy C. gigas; and (2) to assess whether live C. gigas maintained on-farm after an OsHV-1 related mortality event remain infected and could act as a reservoir host for subsequent outbreaks. OsHV-1 DNA was detected in the hemolymph, gill, <span class="hlt">mantle</span>, <span class="hlt">adductor</span> <span class="hlt">muscle</span>, gonad and digestive gland of apparently healthy adult oysters. The likelihood of detecting OsHV-1 DNA in hemolymph was equivalent to that in gill and <span class="hlt">mantle</span>, but the odds of detecting OsHV-1 DNA in hemolymph and gill were more than 8 times that of <span class="hlt">adductor</span> <span class="hlt">muscle</span>. Gill had the highest viral loads. Compared to testing whole gill homogenates, testing snippets of the gill improved the detection of OsHV-1 DNA by about four fold. The prevalence of OsHV-1 in gill and <span class="hlt">mantle</span> was highest after the first season of OsHV-1 exposure; it then declined to low or negligible levels in the same cohorts in subsequent seasons, despite repeated seasonal exposure in monitoring lasting up to 4years. The hemolymph of individually identified oysters was repeatedly sampled over 15months, and OsHV-1 prevalence declined over that time frame in the youngest cohort, which had been exposed to OsHV-1 for the first time at the start of that season. In contrast, the prevalence in two cohorts of older oysters, which had been exposed to OsHV-1 in prior seasons, was consistently low (<10%). Viral loads were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123..176H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123..176H"><span>Core-Exsolved SiO2 Dispersal in the Earth's <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helffrich, George; Ballmer, Maxim D.; Hirose, Kei</p> <p>2018-01-01</p> <p>SiO2 may have been expelled from the core directly following core formation in the early stages of Earth's accretion and onward through the present day. On account of SiO2's low density with respect to both the core and the lowermost <span class="hlt">mantle</span>, we examine the process of SiO2 accumulation at the core-<span class="hlt">mantle</span> boundary (CMB) and its incorporation into the <span class="hlt">mantle</span> by buoyant rise. Today, if SiO2 is 100-10,000 times more viscous than lower <span class="hlt">mantle</span> material, the dimensions of SiO2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the <span class="hlt">mantle</span> as inclusions of 100 m-10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs of ˜1 km diameter could have risen independently of <span class="hlt">mantle</span> flow to their level of neutral buoyancy in the <span class="hlt">mantle</span>, trapping them there due to a combination of intrinsically high viscosity and neutral buoyancy. We examine the SiO2 yield by assuming Si + O saturation at the conditions found at the base of a magma ocean and find that for a range of conditions, dispersed bodies could reach as high as 8.5 vol % in parts of the lower <span class="hlt">mantle</span>. At such low concentration, their effect on aggregate seismic wave speeds is within observational seismology uncertainty. However, their presence can account for small-scale scattering in the lower <span class="hlt">mantle</span> due to the bodies' large-velocity contrast. We conclude that the shallow lower <span class="hlt">mantle</span> (700-1,500 km depth) could harbor SiO2 released in early Earth times.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMDI53A1699I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMDI53A1699I"><span>Quantitative Restoration of the Evolution of <span class="hlt">Mantle</span> Structures Using Data Assimilation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ismail-Zadeh, A.; Schubert, G.; Tsepelev, I.</p> <p>2008-12-01</p> <p>Rapid progress in imaging deep Earth structures and in studies of physical and chemical properties of <span class="hlt">mantle</span> rocks facilitates research in assimilation of data related to <span class="hlt">mantle</span> dynamics. We present a quantitative approach to assimilation of geophysical and geodetic data, which allows for incorporating observations and unknown initial conditions for <span class="hlt">mantle</span> temperature and flow into a three-dimensional dynamic model in order to determine the initial conditions in the geological past. Once the conditions are determined the evolution of <span class="hlt">mantle</span> structures can be restore backward in time. We apply data assimilation techniques to model the evolution of <span class="hlt">mantle</span> plumes and lithospheric slabs. We show that the geometry of the <span class="hlt">mantle</span> structures changes with time diminishing the degree of surface curvature of the structures, because the heat conduction smoothes the complex thermal surfaces of <span class="hlt">mantle</span> bodies with time. Present seismic tomography images of <span class="hlt">mantle</span> structures do not allow definition of the sharp shapes of these structures. Assimilation of <span class="hlt">mantle</span> temperature and flow to the geological past instead provides a quantitative tool to restore thermal shapes of prominent structures in the past from their diffusive shapes at present.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017117','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017117"><span>A sharp and flat section of the core-<span class="hlt">mantle</span> boundary</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vidale, J.E.; Benz, H.M.</p> <p>1992-01-01</p> <p>THE transition zone between the Earth's core and <span class="hlt">mantle</span> plays an important role as a boundary layer for <span class="hlt">mantle</span> and core convection1. This zone conducts a large amount of heat from the core to the <span class="hlt">mantle</span>, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-<span class="hlt">mantle</span> boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-<span class="hlt">mantle</span> boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the <span class="hlt">mantle</span>-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-<span class="hlt">mantle</span> boundary argues against chemical heterogeneity at the base of the <span class="hlt">mantle</span> in this location.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI52A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI52A..01C"><span>Radial Anisotropy in the <span class="hlt">Mantle</span> Transition Zone and Its Implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, S. J.; Ferreira, A. M.</p> <p>2016-12-01</p> <p>Seismic anisotropy is a useful tool to investigate <span class="hlt">mantle</span> flow, <span class="hlt">mantle</span> convection, and the presence of melts in <span class="hlt">mantle</span>, since it provides information on the direction of <span class="hlt">mantle</span> flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost <span class="hlt">mantle</span> with strong anisotropy have been well studied, anisotropic properties of the <span class="hlt">mantle</span> transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the <span class="hlt">mantle</span> transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17731881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17731881"><span>Three-Dimensional Spherical Models of Convection in the Earth's <span class="hlt">Mantle</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bercovici, D; Schubert, G; Glatzmaier, G A</p> <p>1989-05-26</p> <p>Three-dimensional, spherical models of <span class="hlt">mantle</span> convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of <span class="hlt">mantle</span> circulation. Thus, subduction zones and descending sheetlike slabs in the <span class="hlt">mantle</span> are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding <span class="hlt">mantle</span>. Cylindrical <span class="hlt">mantle</span> plumes that cause hotspots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale <span class="hlt">mantle</span> circulation. Active sheetlike upwellings that could be associated with mid-ocean ridges did not develop in the model simulations, a result that is in agreement with evidence suggesting that ridges are passive phenomena resulting from the tearing of surface plates by the pull of descending slabs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.485...79B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.485...79B"><span>Pb evolution in the Martian <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.; Roszjar, J.</p> <p>2018-03-01</p> <p>The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian <span class="hlt">mantle</span> and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian <span class="hlt">mantle</span> that can be modeled based on recent results from the Sm-Nd system. The shergottites have been linked to a single <span class="hlt">mantle</span> differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4-4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage <span class="hlt">mantle</span> evolution range in observed <span class="hlt">mantle</span> μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian <span class="hlt">mantle</span> mixing-end members (depleted</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213...16C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213...16C"><span>Tectonic predictions with <span class="hlt">mantle</span> convection models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coltice, Nicolas; Shephard, Grace E.</p> <p>2018-04-01</p> <p>Over the past 15 yr, numerical models of convection in Earth's <span class="hlt">mantle</span> have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep <span class="hlt">mantle</span> circulation. These digital tools provide a new window into the intimate connections between plate tectonics and <span class="hlt">mantle</span> dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous <span class="hlt">mantle</span> flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-<span class="hlt">mantle</span> slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.8441M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.8441M"><span>Iron spin transitions in the lower <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCammon, C.; Dubrovinsky, L.; Potapkin, V.; Glazyrin, K.; Kantor, A.; Kupenko, I.; Prescher, C.; Sinmyo, R.; Smirnov, G.; Chumakov, A.; Rüffer, R.</p> <p>2012-04-01</p> <p>Iron has the ability to adopt different electronic configurations (spin states), which can significantly influence <span class="hlt">mantle</span> properties and dynamics. It is now generally accepted as a result of studies over the past decade that ferrous iron in (Mg,Fe)O undergoes a high-spin to low-spin transition in the mid-part of the lower <span class="hlt">mantle</span>; however results on (Mg,Fe)(Si,Al)O3 perovskite, the dominant phase of the lower <span class="hlt">mantle</span>, remain controversial. Identifying spin transitions in (Mg,Fe)(Si,Al)O3 perovskite presents a significant challenge. X-ray emission spectroscopy provides information on the bulk spin number, but cannot separate individual contributions. Nuclear forward scattering measures hyperfine interactions, but is not well suited to complex materials due to the non-uniqueness of fitting models. Energy-domain Mössbauer spectroscopy generally enables an unambiguous resolution of all hyperfine parameters which can be used to infer spin states; however high pressure measurements using conventional radioactive point sources require extremely long counting times. To solve this problem, we have developed an energy-domain synchrotron Mössbauer source that enables rapid measurement of spectra under extreme conditions (both high pressure and high temperature) with a quality generally sufficient to unambiguously deconvolute even highly complex spectra. We have used the newly developed method to measure high quality Mössbauer spectra of different compositions of (Mg,Fe)O and (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 122 GPa and temperatures up to 2400 K. Experiments were carried out at the European Synchrotron Radiation Facility on the nuclear resonance beamline ID18 equipped with a portable laser heating system for diamond anvil cells. Our results confirm previous observations for (Mg,Fe)O that show a broad spin crossover region at high pressures and high temperatures, and show unambiguously that ferric iron in (Mg,Fe)(Si,Al)O3 perovskite remains in the high-spin state</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMDI53A1698D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMDI53A1698D"><span>Thermally-Driven <span class="hlt">Mantle</span> Plumes Reconcile Hot-spot Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, D.; Davies, J.</p> <p>2008-12-01</p> <p>Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling <span class="hlt">mantle</span> plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's <span class="hlt">mantle</span>, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, <span class="hlt">mantle</span> convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the <span class="hlt">mantle</span> must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven <span class="hlt">mantle</span> plumes can explain the principal features of hot-spot volcanism on Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR43A0461S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR43A0461S"><span>Mineralogy of the Hydrous Lower <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shim, S. H.; Chen, H.; Leinenweber, K. D.; Kunz, M.; Prakapenka, V.; Bechtel, H.; Liu, Z.</p> <p>2017-12-01</p> <p>The hydrous ringwoodite inclusions found in diamonds suggest water storage in the <span class="hlt">mantle</span> transition zone. However, water storage in the lower <span class="hlt">mantle</span> remains unclear. Bridgmanite and magnesiowustite appear to have very little storage capacity for water. Here, we report experimental results indicating significant changes in the lower-<span class="hlt">mantle</span> mineralogy under the presence of water. We have synthesized Mg2SiO4 ringwoodite with 2 wt% water in multi-anvil press at 20 GPa and 1573 K at ASU. The hydrous ringwoodite sample was then loaded to diamond anvil cells with Ar or Ne as a pressure medium. We heated the pure hydrous ringwoodite samples at lower-<span class="hlt">mantle</span> pressure using a CO2 laser heating system at ASU. We measured X-ray diffraction patterns at the GSECARS sector of the Advanced Photon Source (APS) and 12.2.2 sector of the Advanced Light Source (ALS). For the separate Pt-mixed samples, we have conducted in situ heating at the beamlines using near IR laser heating systems. We measured the infrared spectra of the heated samples at high pressure and after pressure quench at 1.4.4 sector of ALS. In the in situ experiments with hydrous ringwoodite + Pt mixture as a starting material, we found formation of stishovite together with bridgmanite and periclase during heating with a near IR laser beams at 1300-2500 K and 35-66 GPa. However, some hydrous ringwoodite still remains even after a total of 45 min of heating. In contrast, the hydrous ringwoodite samples heated without Pt by CO2 laser beams are transformed completely to bridgmanite, periclase and stishovite at 31-55 GPa and 1600-1900 K. We have detected IR active OH mode of stishovite from the samples heated at lower-<span class="hlt">mantle</span> pressures. The unit-cell volume of stishovite measured after pressure quench is greater than that of dry stishovite by 0.3-0.6%, supporting 0.5-1 wt% of H2O in stishovite in these samples. Stishovite is a thermodynamically forbidden phase in the dry lower <span class="hlt">mantle</span> because of the existence of periclase and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17813909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17813909"><span><span class="hlt">Mantle</span> convection with plates and mobile, faulted plate margins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhong, S; Gurnis, M</p> <p>1995-02-10</p> <p>A finite-element formulation of faults has been incorporated into time-dependent models of <span class="hlt">mantle</span> convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and <span class="hlt">mantle</span> dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower <span class="hlt">mantle</span>, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower <span class="hlt">mantle</span> by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5065123-concentration-behavior-storage-sub-suboceanic-upper-mantle-implications-mantle-metasomatism','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5065123-concentration-behavior-storage-sub-suboceanic-upper-mantle-implications-mantle-metasomatism"><span>Concentration, behavior and storage of H/sub 2/O in the suboceanic upper <span class="hlt">mantle</span>: implications for <span class="hlt">mantle</span> metasomatism</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Michael, P.J.</p> <p>1988-02-01</p> <p>Mid-ocean ridge basalt glasses from the Pacific-Nazca Ridge and the northern Juan de Fuca Ridge were analyzed for H/sub 2/O by gas chromatography. Incompatible element enriched (IEE) glasses have higher H/sub 2/O contents than depleted (IED) glasses. H/sub 2/O increases systematically with decreasing Mg/Mg + Fe/sup 2 +/ within each group. Near-primary IED MORBs have an average of about 800 ppm H/sub 2/O, while near-primary IEE MORBs (with chondrite normalized Nb/Zr or La/Sm approx. 2) have about 2100 ppm H/sub 2/O. If these basalts formed by 10-20% partial melting then the IED <span class="hlt">mantle</span> source had 100-180 ppm H/sub 2/O, whilemore » the IEE source had 250-450 ppm H/sub 2/O. The ratio H/sub 2/O/(Ce + Nd) is fairly constant at 95 +/- 30 for all oceanic basalts from the Pacific. During trace element fractionation in the suboceanic upper <span class="hlt">mantle</span>, H/sub 2/O behaves more compatibly than K, Rb, Nb, and Cl, but less compatibly than Sm, Zr and Ti. H/sub 2/O is contained mostly in amphibole in the shallow upper <span class="hlt">mantle</span>. At pressures greater than the amphibole stability limit, it is likely that a significant proportion of H/sub 2/O is contained in a <span class="hlt">mantle</span> phase which is more refractory than phlogopite at these pressures. The role of H/sub 2/O in <span class="hlt">mantle</span> enrichment processes is examined by assuming that an enriched component was added. The modeled concentrations of K, Na, Ti and incompatible trace elements in this component are high relative to H/sub 2/O, indicating that suboceanic <span class="hlt">mantle</span> enrichment is caused by silicate melts such as basanites and not by aqueous fluids.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3250F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3250F"><span><span class="hlt">Mantle</span> dynamics in the Mediterranean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faccenna, Claudio; Becker, Thorsten W.</p> <p>2016-04-01</p> <p>The Mediterranean offers a unique avenue to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. Here, we review the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper <span class="hlt">mantle</span> heterogeneity imaged by structural seismology. We discuss a conceptual and quantitative framework for the causes of surface deformations. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of <span class="hlt">mantle</span> convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper <span class="hlt">mantle</span> convection cells. The down-wellings are found in the centre of the Mediterranean, and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated, driving return flow of the asthenosphere from the backarc regions. These currents can be found at large distance from the subduction zones, and are at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, the first-order Anatolia and Adria microplate kinematics, and the positive dynamic topography of Anatolia and Eastern Iberia. More generally, it is an illustration of upper <span class="hlt">mantle</span>, small-scale convection leading to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMDI41B1801Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMDI41B1801Y"><span>Whole-<span class="hlt">mantle</span> P-wave velocity structure and azimuthal anisotropy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Y.; Zhao, D.</p> <p>2009-12-01</p> <p>There are some hotspot volcanoes on Earth, such as Hawaii and Iceland. The <span class="hlt">mantle</span> plume hypothesis was proposed forty years ago to explain hotspot volcanoes (e.g., Wilson, 1963; Morgan, 1971). Seismic tomography is a powerful technique to detect <span class="hlt">mantle</span> plumes and determine their detailed structures. We determined a new whole-<span class="hlt">mantle</span> 3-D P-wave velocity model (Tohoku model) using a global tomography method (Zhao, 2004, 2009). A flexible-grid approach with a grid interval of ~200 km is adopted to conduct the tomographic inversion. Our model shows that low-velocity (low-V) anomalies with diameters of several hundreds of kilometers are visible from the core-<span class="hlt">mantle</span> boundary (CMB) to the surface under the major hotspot regions. Under South Pacific where several hotspots including Tahiti exist, there is a huge low-V anomaly from the CMB to the surface. This feature is consistent with the previous models. We conducted extensive resolution tests in order to understand whether this low-V anomaly shows a single superplume or a plume cluster. Unfortunately this problem is still not resolved because the ray path coverage in the <span class="hlt">mantle</span> under South Pacific is not good enough. A network of ocean bottom seismometers is necessary to solve this problem. To better understand the whole-<span class="hlt">mantle</span> structure and dynamics, we also conducted P-wave tomographic inversions for the 3-D velocity structure and azimuthal anisotropy. At each grid node there are three unknown parameters: one represents the isotropic velocity, the other two represent the azimuthal anisotropy. Our results show that in the shallow part of the <span class="hlt">mantle</span> (< ~200 km depth) the fast velocity direction (FVD) is almost the same as the plate motion direction. For example, the FVD in the western Pacific is NWW-SEE, which is normal to the Japan trench axis. In the Tonga subduction zone, the FVD is also perpendicular to the trench axis. Under the Tibetan region the FVD is NE-SW, which is parallel to the direction of the India</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612819C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612819C"><span>Understanding the nature of <span class="hlt">mantle</span> upwelling beneath East-Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham</p> <p>2014-05-01</p> <p>The concept of hot upwelling material - otherwise known as <span class="hlt">mantle</span> plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep <span class="hlt">mantle</span> source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep <span class="hlt">mantle</span> plumes on land is the East African Rift (EAR). We image seismic velocity structure of the <span class="hlt">mantle</span> below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower <span class="hlt">mantle</span> incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower <span class="hlt">mantle</span>. Our observations provide evidence that the shallow <span class="hlt">mantle</span> slow seismic velocities continue trough the transition zone and into the lower <span class="hlt">mantle</span>. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper <span class="hlt">mantle</span> only. These features in the lower <span class="hlt">mantle</span> are isolated with a diameter of about 400 km</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....99.2053H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....99.2053H"><span>Episodic large-scale overturn of two-layer <span class="hlt">mantles</span> in terrestrial planets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrick, D. L.; Parmentier, E. M.</p> <p>1994-01-01</p> <p>It is usually assumed that the upper and lower <span class="hlt">mantles</span> of a chemically stratified planet are arranged so that the upper <span class="hlt">mantle</span> is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two <span class="hlt">mantle</span> layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower <span class="hlt">mantle</span> more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper <span class="hlt">mantle</span> cools more efficiently than the lower <span class="hlt">mantle</span> and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer <span class="hlt">mantle</span> over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower <span class="hlt">mantle</span>, to which it is approximately proportional. Geologically interesting overturn periods on the order of 107 to 109 years result for lower <span class="hlt">mantle</span> viscosities of 1022 to 1024 Pa s for the Earth and Venus, and 1021 to 1023 Pa s for Mars. The <span class="hlt">mantles</span> of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale <span class="hlt">mantle</span> overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole <span class="hlt">mantle</span> thermal convection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T44C..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T44C..02S"><span>Lithology and temperature: How key <span class="hlt">mantle</span> variables control rift volcanism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.</p> <p>2015-12-01</p> <p>Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of <span class="hlt">mantle</span> plumes, upwellings of <span class="hlt">mantle</span> rock made buoyant by their high temperatures. However, there has been debate over the relative role of the <span class="hlt">mantle</span>'s temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the <span class="hlt">mantle</span> is inferred to be hot, this has been variously attributed to <span class="hlt">mantle</span> plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how <span class="hlt">mantle</span> composition and temperature contribute to melting beneath Iceland, the present day manifestation of the <span class="hlt">mantle</span> plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic <span class="hlt">mantle</span>. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional <span class="hlt">mantle</span> anomalies. Secondly, we have performed a global assessment of the <span class="hlt">mantle</span>'s post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013666','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013666"><span>The role of <span class="hlt">mantle</span> CO2 in volcanism</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnes, I.; Evans, William C.; White, L.D.</p> <p>1988-01-01</p> <p>Carbon dioxide is the propellant gas in volcanic eruptions and is also found in <span class="hlt">mantle</span> xenoliths. It is speculated that CO2 occurs as a free gas phase in the <span class="hlt">mantle</span> because there is no reason to expect CO2 to be so universally associated with volcanic rocks unless the CO2 comes from the same source as the volcanic rocks and their xenoliths. If correct, the presence of a free gas in the <span class="hlt">mantle</span> would lead to physical instability, with excess gas pressure providing the cause of both buoyancy of volcanic melts and seismicity in volcanic regions. Convection in the <span class="hlt">mantle</span> and episodic volcanic eruptions are likely necessary consequences. This suggestion has considerable implications for those responsible for providing warnings of impending disasters resulting from volcanic eruptions and earthquakes in volcanic regions. ?? 1988.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013140','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013140"><span>Constraining the Composition of the Subcontinental Lithospheric <span class="hlt">Mantle</span> Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite <span class="hlt">Mantle</span> Xenoliths</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.</p> <p>2014-01-01</p> <p>The East African Rift System was initiated by the impingement of the Afar <span class="hlt">mantle</span> plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric <span class="hlt">mantle</span> (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric <span class="hlt">mantle</span> affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in <span class="hlt">mantle</span> xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The <span class="hlt">mantle</span> xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven <span class="hlt">mantle</span> xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic <span class="hlt">mantle</span> except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6175A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6175A"><span>Iron speciation and redox state of <span class="hlt">mantle</span> eclogites: Implications for ancient volatile cycles during <span class="hlt">mantle</span> melting and oceanic crust subduction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus</p> <p>2017-04-01</p> <p>Kimberlite-borne <span class="hlt">mantle</span> eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting <span class="hlt">mantle</span> sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. <span class="hlt">Mantle</span> eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows <span class="hlt">mantle</span> eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean <span class="hlt">mantle</span> eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient <span class="hlt">mantle</span>, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic <span class="hlt">mantle</span> lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of <span class="hlt">mantle</span> eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from <span class="hlt">mantle</span> eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI44A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI44A..03H"><span>Core-exsolved SiO2 Dispersal in the Earth's <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helffrich, G. R.; Ballmer, M.; Hirose, K.</p> <p>2017-12-01</p> <p>SiO2 may have been expelled from the core following its formation in the early stages of Earth's accretion and onwards through the present day. On account of SiO2's low density with respect to both the core and the lowermost <span class="hlt">mantle</span>, we examine the process of SiO2 accumulation at the core-<span class="hlt">mantle</span> boundary (CMB) and its incorporation into the <span class="hlt">mantle</span> by buoyant rise. Today, the if SiO2 is 100-10000 times more viscous than lower <span class="hlt">mantle</span> material, the dimensions of SiO2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the <span class="hlt">mantle</span> as inclusions of 100 m - 10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs of 5-80 km diameter could have risen independently of <span class="hlt">mantle</span> flow to their level of neutral buoyancy in the <span class="hlt">mantle</span>, trapping them there due to a combination of high viscosity and neutral buoyancy. We examine the SiO2 yield by assuming Si+O saturation at the conditions found at the base of a magma ocean and find that for a range of conditions, dispersed bodies could reach as high as 2 volume percent in shallow parts of the lower <span class="hlt">mantle</span>, with their abundance decreasing with depth. At such low concentrations, their effect on aggregate seismic wavespeeds would be within the uncertainty of the radial Earth model PREM. However, their presence would be revealed by small-scale scattering in the lower <span class="hlt">mantle</span> due to the bodies' large velocity contrast. We conclude that the shallow lower <span class="hlt">mantle</span> (700-1500 km depth) could harbor SiO2 released in early Earth times.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI14A..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI14A..08L"><span>Flow in the Deep <span class="hlt">Mantle</span> from Seisimc Anisotropy: Progress and Prospects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, M. D.</p> <p>2017-12-01</p> <p>Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's <span class="hlt">mantle</span>. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper <span class="hlt">mantle</span> anisotropy has led to fundamental discoveries about the patterns of flow in the upper <span class="hlt">mantle</span> and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep <span class="hlt">mantle</span> (transition zone, uppermost lower <span class="hlt">mantle</span>, and lowermost <span class="hlt">mantle</span>), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-<span class="hlt">mantle</span> anisotropy (transition zone and uppermost lower <span class="hlt">mantle</span>), particularly in subduction systems, which may eventually lead to a better understanding of mid-<span class="hlt">mantle</span> deformation and the dynamics of slab interaction with the surrounding mid-<span class="hlt">mantle</span>. New approaches to the observation and modeling of lowermost <span class="hlt">mantle</span> anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different <span class="hlt">mantle</span> flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.482..135F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.482..135F"><span>Dynamical links between small- and large-scale <span class="hlt">mantle</span> heterogeneity: Seismological evidence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian</p> <p>2018-01-01</p> <p>We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the <span class="hlt">mantle</span>, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the <span class="hlt">mantle</span> to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-<span class="hlt">mantle</span> boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the <span class="hlt">mantle</span> and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the <span class="hlt">mantle</span>. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost <span class="hlt">mantle</span>, and a minimum in the mid-<span class="hlt">mantle</span>, resembling the radial distribution of tomographically derived whole-<span class="hlt">mantle</span> velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the <span class="hlt">mantle</span>, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the <span class="hlt">mantle</span> there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI11A0263O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI11A0263O"><span>Quantifying <span class="hlt">mantle</span> structure and dynamics using plume tracing in seismic tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.</p> <p>2017-12-01</p> <p>Directly linking deep <span class="hlt">mantle</span> processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of <span class="hlt">mantle</span> signatures, but the depth and source of the <span class="hlt">mantle</span> plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the <span class="hlt">mantle</span>. By analyzing the behavior of <span class="hlt">mantle</span> plumes we can constrain the vigor of <span class="hlt">mantle</span> convection, the net rotation of the <span class="hlt">mantle</span> and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale <span class="hlt">mantle</span> flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower <span class="hlt">mantle</span> and in the upper <span class="hlt">mantle</span> (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net <span class="hlt">mantle</span> rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the <span class="hlt">mantle</span> and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different <span class="hlt">mantle</span> adiabat</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29144451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29144451"><span>Tidal tomography constrains Earth's deep-<span class="hlt">mantle</span> buoyancy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lau, Harriet C P; Mitrovica, Jerry X; Davis, James L; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David</p> <p>2017-11-15</p> <p>Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the <span class="hlt">mantle</span> and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-<span class="hlt">mantle</span> buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average <span class="hlt">mantle</span> density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the <span class="hlt">mantle</span>. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the <span class="hlt">mantle</span> is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..449Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..449Z"><span>Anomalous <span class="hlt">mantle</span> transition zone beneath the Yellowstone hotspot track</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Ying</p> <p>2018-06-01</p> <p>The origin of the Yellowstone and Snake River Plain volcanism has been strongly debated. The <span class="hlt">mantle</span> plume model successfully explains the age-progressive volcanic track, but a deep plume structure has been absent in seismic imaging. Here I apply diffractional tomography to receiver functions recorded at USArray stations to map high-resolution topography of <span class="hlt">mantle</span> transition-zone discontinuities. The images reveal a trail of anomalies that closely follow the surface hotspot track and correlate well with a seismic wave-speed gap in the subducting Farallon slab. This observation contradicts the plume model, which requires anomalies in the mid <span class="hlt">mantle</span> to be confined in a narrow region directly beneath the present-day Yellowstone caldera. I propose an alternative interpretation of the Yellowstone volcanism. About 16 million years ago, a section of young slab that had broken off from a subducted spreading centre in the <span class="hlt">mantle</span> first penetrated the 660 km discontinuity beneath Oregon and Idaho, and pulled down older stagnant slab. Slab tearing occurred along pre-existing fracture zones and propagated northeastward. This reversed-polarity subduction generated passive upwellings from the lower <span class="hlt">mantle</span>, which ascended through a water-rich <span class="hlt">mantle</span> transition zone to produce melting and age-progressive volcanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U42A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U42A..02H"><span><span class="hlt">Mantle</span> structure: The message from scattered seismic waves (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helffrich, G. R.; Kaneshima, S.</p> <p>2009-12-01</p> <p>When Francis Birch named the Transition Zone, the deep <span class="hlt">mantle</span> became a dull place. It was homogeneous material simply becoming denser as pressure increased with depth. No more respect was accorded to it by geochemists than by geophysicists. For geochemists, the deep <span class="hlt">mantle</span> was simply a dark box in which chemical components were held until needed for delicate flavoring of various sorts of rock cocktails. It deserves more respect. Though it may be dregs, the part of the <span class="hlt">mantle</span> in contact with the core is rich in seismologically annoying structural detail. This might be written off as an observational quirk due to a mendacious Earth or investigative incompetence, except that more of the lower <span class="hlt">mantle</span> is grudgingly revealing structure as well. The structural details are fine-scale, at characteristic sizes of around one to one hundred kilometers. The details are emerging from studies of scattered seismic waves. These are unscheduled arrivals in the timetable following an earthquake. They don't arise in a uniform or even a layered Earth. Rather, they originate from the wave field's interactions with sub-wavelength roughness in Earth structure. A lot of data is needed to be sure those arrivals are real and repeatable, but networks of hundreds of seismometers such as the ones in existence in Asia, Europe and North America can provide or have provided the necessary redundancy for confident detection. The results of studies of S-to-P and P-to-P scattering to date show that some lower <span class="hlt">mantle</span> heterogeneity is associated with present subduction. Some is also found at sites of past subduction, but it is difficult to generalize to all heterogeneity. Scattering strength varies with depth: the shallowest lower <span class="hlt">mantle</span> is rougher than the deeper parts. The peak scattering strength is around 1600 km deep in the <span class="hlt">mantle</span>, followed by a slow decline. The roughness clusters, too, with individual groups separated by around 100 km. Individual clusters appear to have particular fabrics that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGeo..100...33K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGeo..100...33K"><span>Reconciling laboratory and observational models of <span class="hlt">mantle</span> rheology in geodynamic modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Scott D.</p> <p>2016-10-01</p> <p>Experimental and geophysical observations constraining <span class="hlt">mantle</span> rheology are reviewed with an emphasis on their impact on <span class="hlt">mantle</span> geodynamic modelling. For olivine, the most studied and best-constrained <span class="hlt">mantle</span> mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper <span class="hlt">mantle</span> rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper <span class="hlt">mantle</span> or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper <span class="hlt">mantle</span> could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower <span class="hlt">mantle</span> could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper <span class="hlt">mantle</span> or transition zone, and high viscosity in the lower <span class="hlt">mantle</span>, increasing through the upper half of the lower <span class="hlt">mantle</span> and decreasing in the bottom half of the lower <span class="hlt">mantle</span>, with a low viscosity above the core. Significant regions of the <span class="hlt">mantle</span>, including high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Tectp.650....3S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Tectp.650....3S"><span>Lithospheric <span class="hlt">mantle</span> evolution in the Afro-Arabian domain: Insights from Bir Ali <span class="hlt">mantle</span> xenoliths (Yemen)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sgualdo, P.; Aviado, K.; Beccaluva, L.; Bianchini, G.; Blichert-Toft, J.; Bryce, J. G.; Graham, D. W.; Natali, C.; Siena, F.</p> <p>2015-05-01</p> <p>Detailed petrological and geochemical investigations of an extensive sampling of <span class="hlt">mantle</span> xenoliths from the Neogene-Quaternary Bir Ali diatreme (southern Yemen) indicate that the underlying lithospheric <span class="hlt">mantle</span> consists predominantly of medium- to fine-grained (often foliated) spinel-peridotites (85-90%) and spinel-pyroxenites (10-15%) showing thermobarometric estimates in the P-T range of 0.9-2.0 GPa and 900-1150 °C. Peridotites, including lherzolites, harzburgites and dunites delineate continuous chemical, modal and mineralogical variations compatible with large extractions of basic melts occurring since the late Proterozoic (~ 2 Ga, according to Lu-Hf model ages). Pyroxenites may represent intrusions of subalkaline basic melts interacting and equilibrated with the host peridotite. Subsequent metasomatism has led to modal changes, with evidence of reaction patches and clinopyroxene and spinel destabilization, as well as formation of new phases (glass, amphibole and feldspar). These changes are accompanied by enrichment of the most incompatible elements and isotopic compositions. 143Nd/144Nd ranges from 0.51419 to 0.51209 (εNd from + 30.3 to - 10.5), 176Hf/177Hf from 0.28459 to 0.28239 (εHf from + 64.4 to - 13.6), and 208Pb/204Pb from 36.85 to 41.56, thus extending from the depleted <span class="hlt">mantle</span> (DM) towards the enriched OIB <span class="hlt">mantle</span> (EM and HIMU) components. 3He/4He (R/RA) ratios vary from 7.2 to 7.9 with He concentrations co-varying with the most incompatible element enrichment, in parallel with metasomatic effects. These metasomatic events, particularly effective in harzburgites and dunites, are attributable to the variable interaction with alkaline basic melts related to the general extensional and rifting regime affecting the East Africa-Arabian domain during the Cenozoic. In this respect, Bir Ali <span class="hlt">mantle</span> xenoliths resemble those occurring along the Arabian margins and the East Africa Rift system, similarly affected by alkaline metasomatism, whereas they are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PApGe.156...29T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PApGe.156...29T"><span>Scales of Heterogeneities in the Continental Crust and Upper <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.</p> <p>1999-09-01</p> <p>A seismological characterization of crust and upper <span class="hlt">mantle</span> can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper <span class="hlt">mantle</span> by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and <span class="hlt">mantle</span>. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper <span class="hlt">mantle</span>.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost <span class="hlt">mantle</span>, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the <span class="hlt">mantle</span> transition zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.207..719N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.207..719N"><span>Inference of <span class="hlt">mantle</span> viscosity for depth resolutions of GIA observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakada, Masao; Okuno, Jun'ichi</p> <p>2016-11-01</p> <p>Inference of the <span class="hlt">mantle</span> viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-<span class="hlt">mantle</span> viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-<span class="hlt">mantle</span> viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-<span class="hlt">mantle</span> rheological parameters for the two-layer lower-<span class="hlt">mantle</span> viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower <span class="hlt">mantle</span>, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower <span class="hlt">mantle</span>. However, the analyses for the J˙2 based on the two-layer lower-<span class="hlt">mantle</span> viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-<span class="hlt">mantle</span> boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-<span class="hlt">mantle</span> viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-<span class="hlt">mantle</span> viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep <span class="hlt">mantle</span>, and suggest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V13C2051A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V13C2051A"><span>Eutectic melting temperature of the lowermost Earth's <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.</p> <p>2009-12-01</p> <p>Partial melting of the Earth's deep <span class="hlt">mantle</span> probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-<span class="hlt">mantle</span> boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower <span class="hlt">mantle</span> region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-<span class="hlt">mantle</span> boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower <span class="hlt">mantle</span> in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower <span class="hlt">mantle</span> materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMDI12B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMDI12B..01G"><span>Multi-Scale Lower <span class="hlt">Mantle</span> Structure and Dynamics (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garnero, E. J.; McNamara, A. K.; Zhao, C.; Thorne, M. S.</p> <p>2010-12-01</p> <p>Seismically imaged heterogeneity in the lowermost <span class="hlt">mantle</span> ranges from large scale (1000+ km), exemplified by the two nearly antipodal large low shear velocity provinces (LLSVPs) illuminated by seismic tomography, to very short scales, such as isolated ultra-low velocity zones (ULVZs), 10’s of km thick or less. Intermediate scale phenomena include D″ reflectors attributed to the perovskite to post-perovskite phase transition and possibly a deeper back-transformation, lowermost <span class="hlt">mantle</span> anisotropy plausibly related to <span class="hlt">mantle</span> flow, and vertical extensions of the LLSVPs that have been explained as plume upwelling (both super and regular plumes). Well over a dozen studies document seismically sharp boundaries between LLSVP and surrounding <span class="hlt">mantle</span> material, which, combined with the inference of elevated LLSVP density, suggest LLSVPs are chemically distinct, and hence are sometimes called “piles”. Studies documenting LLSVP low velocities extending up into the lower <span class="hlt">mantle</span>, such as beneath Africa, refer to the low velocities as a superplume. While there is not necessarily consensus on whether or not LLSVP material is stable at the CMB versus periodically entrained in large plume upwellings, as well as primordial or not, the dynamical behavior of LLSVPs have important implications on a wide range of phenomena. For example, dense ULVZs (partially molten or not) migrate to LLSVP edges. If LLSVPs merge and bifurcate over time, as suggested in the Pacific, strong temporal variations in plume and ULVZ signatures should result (e.g., bigger plumes and ULVZs in a merging event), and be detectable. High-resolution seismology may shed light on important LLSVP and ULVZ morphological features, such as the geographical distribution and properties of ULVZs, the steepness of LLSVP sides, and the nature of the top of LLSVPs (e.g., sharpness), though these (and other) aspects of deep <span class="hlt">mantle</span> phenomena are not well-constrained at present, especially in a global context. Despite these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002APS..CCP.E1003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002APS..CCP.E1003B"><span><span class="hlt">Mantle</span> circulation models with variational data assimilation: Inferring past <span class="hlt">mantle</span> flow and structure from plate motion histories and seismic tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bunge, Hans-Peter</p> <p>2002-08-01</p> <p>Earth's <span class="hlt">mantle</span> overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state <span class="hlt">mantle</span> convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in <span class="hlt">mantle</span> dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct <span class="hlt">mantle</span> flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of <span class="hlt">mantle</span> circulation and conclude that it is feasible to reconstruct <span class="hlt">mantle</span> flow back in time for at least the past 100 myrs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51A0288M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51A0288M"><span>Interaction between Edge-Driven Convection and <span class="hlt">Mantle</span> Plumes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manjón-Cabeza Córdoba, A.; Ballmer, M.</p> <p>2017-12-01</p> <p>Intraplate volcanism can occur in a variety of geodynamic settings. Its characteristics can inform about the underlying <span class="hlt">mantle</span> dynamics. A non-negligible number of intraplate oceanic volcanoes are located close to continental shelves (e.g. Bermuda, Canary Islands, Cape Verde…). In these regions, any putative plumes would interact with Edge-Driven Convection (EDC), a mode of Small-Scale Convection that is triggered along steps of lithospheric thickness. We have systematically explored 2-D geodynamic models of EDC, varying e.g. the viscosity of the <span class="hlt">mantle</span>, geometry of the edge, potential temperature, etc. In addition, we study the influence of a <span class="hlt">mantle</span> plume with variable excess temperature and buoyancy flux at a given distance to the edge. The <span class="hlt">mantle</span>-convection code is coupled with a new melting parameterization that considers the depletion effect on productivity. We apply this parameterization not only to predict the extent of melting for a given lithology, but also the major-element composition of extracted melts for comparison with geochemical data. Results show that the first EDC upwellings are always localized in the oceanic domain at a distance from the continental margin that depends on <span class="hlt">mantle</span> viscosity. The initial geometry of the edge does not have a significant influence on the "steady-state" shape of EDC. Depending on the distance of the plume from the edge and plume vigor, the plume is either deflected or enhanced by EDC. The mix of materials that melts in the <span class="hlt">mantle</span>, as well as the amount of melting, is controlled by the interaction of the plume with EDC (e.g., with melting restricted to fertile heterogeneities in the end-member EDC case). Because several model parameters affect this interaction and related melting, a joint analysis of major-element and trace-element composition of hotspot lavas is required to constrain <span class="hlt">mantle</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.465..155W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.465..155W"><span>Seismic anisotropy and <span class="hlt">mantle</span> flow below subducting slabs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy</p> <p>2017-05-01</p> <p>Subduction is integral to <span class="hlt">mantle</span> convection and plate tectonics, yet the role of the subslab <span class="hlt">mantle</span> in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab <span class="hlt">mantle</span>, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of <span class="hlt">mantle</span> fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab <span class="hlt">mantle</span> is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower <span class="hlt">mantle</span> where splitting is found to be consistent with deformed bridgmanite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PEPI..237...40Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PEPI..237...40Z"><span>Tomography-based <span class="hlt">mantle</span> flow beneath Mongolia-Baikal area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Tao</p> <p>2014-12-01</p> <p>Recent progress in seismic tomography of Asia allows us to explore and understand more clearly the <span class="hlt">mantle</span> flow below the Mongolia-Baikal area. We present a tomography-based model of <span class="hlt">mantle</span> convection that provides a good match to the residual topography. The model provides predictions on the present-day <span class="hlt">mantle</span> flow and flow-induced asthenospheric deformation which give us new insights on the <span class="hlt">mantle</span> dynamics in the Mongolia-Baikal area. The predicted <span class="hlt">mantle</span> flow takes on a very similar pattern at the depths shallower or deeper than 400 km and almost opposite flow directions between the upper (shallower than 400 km) and lower (deeper than 400 km) parts. The flow pattern could be divided into the 'simple' eastern region and the 'complex' western region in the Mongolia. The upwelling originating from about 350 km depth beneath Baikal rift zone is an important possible drive force to the rifting. The seismic anisotropy cannot be simply related with asthenospheric flow and flow-induced deformation in the entire Mongolia-Baikal area, but they could be considered as an important contributor to the seismic anisotropy in the eastern region of Mongolia and around and in Sayan-Baikal orogenic belt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.292..320M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.292..320M"><span>Intraplate <span class="hlt">mantle</span> oxidation by volatile-rich silicic magmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio</p> <p>2017-11-01</p> <p>The upper subcontinental lithospheric <span class="hlt">mantle</span> below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in <span class="hlt">mantle</span> xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and <span class="hlt">mantle</span> oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365-286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N-S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W-E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric <span class="hlt">mantle</span> fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the <span class="hlt">mantle</span> in intraplate regions is underestimated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18826924','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18826924"><span>The redox state of the <span class="hlt">mantle</span> during and just after core formation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frost, D J; Mann, U; Asahara, Y; Rubie, D C</p> <p>2008-11-28</p> <p>Siderophile elements are depleted in the Earth's <span class="hlt">mantle</span>, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that <span class="hlt">mantle</span> depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current <span class="hlt">mantle</span> FeO content. This implies that the oxidation state (i.e. FeO content) of the <span class="hlt">mantle</span> increased with time as accretion proceeded. The oxygen fugacity of the present-day upper <span class="hlt">mantle</span> is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the <span class="hlt">mantle</span> that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused <span class="hlt">mantle</span> FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-<span class="hlt">mantle</span> equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the <span class="hlt">mantle</span> would have become gradually oxidized as a result of Si entering the core. However, the increase in <span class="hlt">mantle</span> FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the <span class="hlt">mantle</span>. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower <span class="hlt">mantle</span> mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper <span class="hlt">mantle</span> would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining <span class="hlt">mantle</span> in Fe2O3 and, if the entire <span class="hlt">mantle</span> was then homogenized, the oxygen fugacity of the upper <span class="hlt">mantle</span> would have been raised to its present-day level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920001511&hterms=constitution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconstitution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920001511&hterms=constitution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconstitution"><span>Processes of deep terrestrial <span class="hlt">mantles</span> and cores</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jeanloz, Raymond</p> <p>1991-01-01</p> <p>Ultrahigh pressure experiments are currently focused on revealing processes occurring deep inside planets. This is in addition to the traditional emphasis on the constitution of planetary interiors, such as the identification of the high pressure perovskite phase of (Mg,Fe)SiO3 as the predominant mineral inside the Earth, and probably Venus. For example, experiments show that the mechanism of geochemical differentiation, separation of partial melts, differs fundamentally in the lower <span class="hlt">mantles</span> of Earth and Venus than at near surface conditions. In addition to structural transformations, changes in chemical bonding caused by pressure can also be significant for planetary interiors. Measurements of AC and DC electrical conductivity can be obtained at ultrahigh pressures and temperatures, to greater than 80 GPa and 3000 K simultaneously, using the laser heated diamond cell. Anhydrous lower <span class="hlt">mantle</span> assemblages (perovskite + or - oxide phases) exhibit an electrical conductivity that depends strongly on Fe content. Contrary to traditional assumptions, temperature affects the conductivity of lower <span class="hlt">mantle</span> assemblages relatively little. The Earth's deep focus seismicity can be explained by the recycling of water into the <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33B0705R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33B0705R"><span>Water in geodynamical models of <span class="hlt">mantle</span> convection and plate tectonics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.</p> <p>2017-12-01</p> <p>The presence of water in the the <span class="hlt">mantle</span> has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the <span class="hlt">mantle</span> viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the <span class="hlt">mantle</span> can change the Clapeyron slope of <span class="hlt">mantle</span> materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the <span class="hlt">mantle</span> has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different <span class="hlt">mantle</span> regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global <span class="hlt">mantle</span> convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the <span class="hlt">mantle</span>. We have integrated recent experimental results of the water capacity of deep <span class="hlt">mantle</span> minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2670Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2670Y"><span><span class="hlt">Mantle</span> temperature under drifting deformable continents during the supercontinent cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshida, Masaki</p> <p>2013-04-01</p> <p>The thermal heterogeneity of the Earth's <span class="hlt">mantle</span> under the drifting continents during a supercontinent cycle is a controversial issue in earth science. Here, a series of numerical simulations of <span class="hlt">mantle</span> convection are performed in 3D spherical-shell geometry, incorporating drifting deformable continents and self-consistent plate tectonics, to evaluate the subcontinental <span class="hlt">mantle</span> temperature during a supercontinent cycle. Results show that the laterally averaged temperature anomaly of the subcontinental <span class="hlt">mantle</span> remains within several tens of degrees (±50 °C) throughout the simulation time. Even after the formation of the supercontinent and the development of subcontinental plumes due to the subduction of the oceanic plates, the laterally averaged temperature anomaly of the deep <span class="hlt">mantle</span> under the continent is within +10 °C. This implies that there is no substantial temperature difference between the subcontinental and suboceanic <span class="hlt">mantles</span> during a supercontinent cycle. The temperature anomaly immediately beneath the supercontinent is generally positive owing to the thermal insulation effect and the active upwelling plumes from the core-<span class="hlt">mantle</span> boundary. In the present simulation, the formation of a supercontinent causes the laterally averaged subcontinental temperature to increase by a maximum of 50 °C, which would produce sufficient tensional force to break up the supercontinent. The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of <span class="hlt">mantle</span> convection and plate tectonics. Supercontinent formation involves complex processes of introversion, extroversion or a combination of these in uniting dispersed continental fragments, as against the simple opening and closing of individual oceans envisaged in Wilson cycle. In the present study, I evaluate supercontinent processes in a realistic <span class="hlt">mantle</span> convection regime. Results show that the assembly of supercontinents is accompanied by a</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813558F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813558F"><span>Predicting lower <span class="hlt">mantle</span> heterogeneity from 4-D Earth models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.</p> <p>2016-04-01</p> <p>The Earth's lower <span class="hlt">mantle</span> is characterized by two large-low-shear velocity provinces (LLSVPs), approximately ˜15000 km in diameter and 500-1000 km high, located under Africa and the Pacific Ocean. The spatial stability and chemical nature of these LLSVPs are debated. Here, we compare the lower <span class="hlt">mantle</span> structure predicted by forward global <span class="hlt">mantle</span> flow models constrained by tectonic reconstructions (Bower et al., 2015) to an analysis of five global tomography models. In the dynamic models, spanning 230 million years, slabs subducting deep into the <span class="hlt">mantle</span> deform an initially uniform basal layer containing 2% of the volume of the <span class="hlt">mantle</span>. Basal density, convective vigour (Rayleigh number Ra), <span class="hlt">mantle</span> viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify a set of equally-spaced points (average separation ˜0.45°) on the Earth's surface into two groups of points with similar variations in present-day temperature between 1000-2800 km depth, for each model case. Below ˜2400 km depth, this procedure reveals a high-temperature cluster in which <span class="hlt">mantle</span> temperature is significantly larger than ambient and a low-temperature cluster in which <span class="hlt">mantle</span> temperature is lower than ambient. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the African and Pacific LLSVPs revealed by a similar cluster analysis of five tomography models (Lekic et al., 2012). Model success is quantified by computing the accuracy and sensitivity of the predicted temperature clusters in predicting the low-velocity cluster obtained from tomography (Lekic et al., 2012). In these cases, the accuracy varies between 0.61-0.80, where a value of 0.5 represents the random case, and the sensitivity ranges between 0.18-0.83. The largest accuracies and sensitivities are obtained for models with Ra ≈ 5 x 107, no asthenosphere (or an asthenosphere restricted to the oceanic domain), and a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031749&hterms=Two+planets+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTwo%2Bplanets%2Bmoon.','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031749&hterms=Two+planets+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTwo%2Bplanets%2Bmoon."><span>Episodic large-scale overturn of two-layer <span class="hlt">mantles</span> in terrestrial planets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herrick, David L.; Parmentier, E. M.</p> <p>1994-01-01</p> <p>It is usually assumed that the upper and lower <span class="hlt">mantles</span> of a chemically stratified planet are arranged so that the upper <span class="hlt">mantle</span> is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two <span class="hlt">mantle</span> layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower <span class="hlt">mantle</span> more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper <span class="hlt">mantle</span> cools more efficiently than the lower <span class="hlt">mantle</span> and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer <span class="hlt">mantle</span> over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower <span class="hlt">mantle</span>, to which it is approximately proportional. Geologically interesting overturn periods on the order of 10(exp 7) to 10(exp 9) years result for lower <span class="hlt">mantle</span> viscosities of 10(exp 22) to 10(exp 24) Pa s for the Earth and Venus, and 10(exp 21) to 10(exp 23) Pa s for Mars. The <span class="hlt">mantles</span> of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale <span class="hlt">mantle</span> overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole <span class="hlt">mantle</span> thermal convection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI14A..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI14A..08R"><span>Using the heterogeneity distribution in Earth's <span class="hlt">mantle</span> to study structure and flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rost, S.; Frost, D. A.; Bentham, H. L.</p> <p>2016-12-01</p> <p>The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's <span class="hlt">mantle</span> are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the <span class="hlt">mantle</span> that can be detected using seismology and geochemistry. Current models of <span class="hlt">mantle</span> convection show that the subducted crustal material can be long-lived and is transported passively throughout the <span class="hlt">mantle</span> by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the <span class="hlt">mantle</span> therefore allows imaging <span class="hlt">mantle</span> flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's <span class="hlt">mantle</span>. Using specific raypath configurations we are able to sample different depths throughout Earth's <span class="hlt">mantle</span> for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the <span class="hlt">mantle</span>. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in <span class="hlt">mantle</span> structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid <span class="hlt">mantle</span> partly changing the flow of subducted crustal material into the deep <span class="hlt">mantle</span>. Lateral changes in heterogeneity structure close to the core <span class="hlt">mantle</span> boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9267S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9267S"><span>Computing 3-D wavefields in <span class="hlt">mantle</span> circulations models to test hypotheses on the origin of lower <span class="hlt">mantle</span> heterogeneity under Africa directly against seismic observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust</p> <p>2015-04-01</p> <p>Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower <span class="hlt">mantle</span> structure under Africa on flow in the upper <span class="hlt">mantle</span> beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost <span class="hlt">mantle</span> with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal <span class="hlt">mantle</span> rock. This would imply negative buoyancy in the lowermost <span class="hlt">mantle</span> under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-<span class="hlt">mantle</span> boundary that might provide an alternative explanation for the lower <span class="hlt">mantle</span> anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D <span class="hlt">mantle</span> circulation model into seismic velocities using thermodynamic models of <span class="hlt">mantle</span> mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the <span class="hlt">mantle</span>. In an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P31A1239H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P31A1239H"><span>Towards high-resolution <span class="hlt">mantle</span> convection simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Höink, T.; Richards, M. A.; Lenardic, A.</p> <p>2009-12-01</p> <p>The motion of tectonic plates at the Earth’s surface, earthquakes, most forms of volcanism, the growth and evolution of continents, and the volatile fluxes that govern the composition and evolution of the oceans and atmosphere are all controlled by the process of solid-state thermal convection in the Earth’s rocky <span class="hlt">mantle</span>, with perhaps a minor contribution from convection in the iron core. Similar processes govern the evolution of other planetary objects such as Mars, Venus, Titan, and Europa, all of which might conceivably shed light on the origin and evolution of life on Earth. Modeling and understanding this complicated dynamical system is one of the true “grand challenges” of Earth and planetary science. In the past three decades much progress towards understanding the dynamics of <span class="hlt">mantle</span> convection has been made, with the increasing aid of computational modeling. Numerical sophistication has evolved significantly, and a small number of independent codes have been successfully employed. Computational power continues to increase dramatically, and with it the ability to resolve increasingly finer fluid mechanical structures. Yet, the perhaps most often cited limitation in numerical modeling based publications is still the limitation of computing power, because the ability to resolve thermal boundary layers within the convecting <span class="hlt">mantle</span> (e.g., lithospheric plates), requires a spatial resolution of ~ 10 km. At present, the largest supercomputing facilities still barely approach the power to resolve this length scale in <span class="hlt">mantle</span> convection simulations that include the physics necessary to model plate-like behavior. Our goal is to use supercomputing facilities to perform 3D spherical <span class="hlt">mantle</span> convection simulations that include the ingredients for plate-like behavior, i.e. strongly temperature- and stress-dependent viscosity, at Earth-like convective vigor with a global resolution of order 10 km. In order to qualify to use such facilities, it is also necessary to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920070043&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920070043&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA"><span>Coldspots and hotspots - Global tectonics and <span class="hlt">mantle</span> dynamics of Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.</p> <p>1992-01-01</p> <p>Based on geologic observations provided by Magellan's first cycle of data collection and recent models of <span class="hlt">mantle</span> convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global <span class="hlt">mantle</span> dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either <span class="hlt">mantle</span> plumes (hotspots) or <span class="hlt">mantle</span> downwellings (coldspots).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V23H..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V23H..08G"><span>Osmium Isotopic Evolution of the <span class="hlt">Mantle</span> Sources of Precambrian Ultramafic Rocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gangopadhyay, A.; Walker, R. J.</p> <p>2006-12-01</p> <p>The Os isotopic composition of the modern <span class="hlt">mantle</span>, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's <span class="hlt">mantle</span> developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial <span class="hlt">mantle</span> can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the <span class="hlt">mantle</span> sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the <span class="hlt">mantle</span> sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their <span class="hlt">mantle</span> sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the <span class="hlt">mantle</span> sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their <span class="hlt">mantle</span> sources. The relative importance of the two processes for some modern <span class="hlt">mantle</span>-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025949','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025949"><span>Seismic evidence for widespread serpentinized forearc upper <span class="hlt">mantle</span> along the Cascadia margin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brocher, T.M.; Parsons, T.; Trehu, A.M.; Snelson, C.M.; Fisher, M.A.</p> <p>2003-01-01</p> <p>Petrologic models suggest that dehydration and metamorphism of subducting slabs release water that serpentinizes the overlying forearc <span class="hlt">mantle</span>. To test these models, we use the results of controlled-source seismic surveys and earthquake tomography to map the upper <span class="hlt">mantle</span> along the Cascadia margin forearc. We find anomalously low upper-<span class="hlt">mantle</span> velocities and/or weak wide-angle reflections from the top of the upper <span class="hlt">mantle</span> in a narrow region along the margin, compatible with recent teleseismic studies and indicative of a serpentinized upper <span class="hlt">mantle</span>. The existence of a hydrated forearc upper-<span class="hlt">mantle</span> wedge in Cascadia has important geological and geophysical implications. For example, shearing within the upper <span class="hlt">mantle</span>, inferred from seismic reflectivity and consistent with its serpentinite rheology, may occur during aseismic slow slip events on the megathrust. In addition, progressive dehydration of the hydrated <span class="hlt">mantle</span> wedge south of the Mendocino triple junction may enhance the effects of a slap gap during the evolution of the California margin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011E%26PSL.302..448C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011E%26PSL.302..448C"><span><span class="hlt">Mantle</span> plumes and associated flow beneath Arabia and East Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Sung-Joon; Van der Lee, Suzan</p> <p>2011-02-01</p> <p>We investigate <span class="hlt">mantle</span> plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid <span class="hlt">mantle</span> depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower <span class="hlt">mantle</span> beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower <span class="hlt">mantle</span> and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of <span class="hlt">mantle</span> plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal <span class="hlt">mantle</span> flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward <span class="hlt">mantle</span> flow from Afar appears to be channeled beneath Arabia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR43C0478L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR43C0478L"><span>No Radiative Heat Transport Through Pyrolitic Lower <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.</p> <p>2017-12-01</p> <p>Transport properties of the lower <span class="hlt">mantle</span>, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-<span class="hlt">mantle</span> boundary (CMB) region. Radiative thermal conductivity (krad) of the <span class="hlt">mantle</span> is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of <span class="hlt">mantle</span> radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the <span class="hlt">mantle</span> as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower <span class="hlt">mantle</span> radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower <span class="hlt">mantle</span> we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T41G..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T41G..08R"><span><span class="hlt">Mantle</span> thermal history during supercontinent assembly and breakup</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rudolph, M. L.; Zhong, S.</p> <p>2013-12-01</p> <p>We use <span class="hlt">mantle</span> convection simulations driven by plate motion boundary conditions to investigate changes in <span class="hlt">mantle</span> temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of <span class="hlt">mantle</span> convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-<span class="hlt">mantle</span> temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper <span class="hlt">mantle</span> temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper <span class="hlt">mantle</span> temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper <span class="hlt">mantle</span> cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V11D..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V11D..02P"><span>Early Terrestrial <span class="hlt">Mantle</span> Differentiation Recorded in Paleoarchean Komatiites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puchtel, I. S.; Blichert-Toft, J.; Touboul, M.; Horan, M. F.; Walker, R. J.</p> <p>2016-12-01</p> <p>Geochmical signatures generated in the manle as a result of radioactive decay of short- and long-lived nuclides can be used to constrain the timing of formation and the nature of now mostly vanished early terrestrial reservoirs. The 3.55 Ga komatiites from the Schapenburg Greenstone Remnant (SGR) located in the Barberton Greenstone Belt in South Africa have a unique combination of trace element abundances and isotopic compositions that place strong constraints on the origin of these reservoirs. The SGR komatiites define a Re-Os isochron with an age of 3550±87 Ma and an initial γ187Os = +3.7±0.2 (2SD). The absolute HSE abundances in the <span class="hlt">mantle</span> source of the SGR komatiite system are estimated to be only 29±5% of those in the present-day bulk silicate Earth (BSE) estimates. The SGR komatiites show coupled depletion, relative to the modern <span class="hlt">mantle</span>, in 142Nd and 182W (μ142Nd = -5.0±2.8, μ182W = -8.4±4.5), the decay products of the short-lived 146Sm and 182Hf nuclides, respectively, indicating derivation from a <span class="hlt">mantle</span> domain that was enriched in incompatible elements 30 Ma after Solar System formation. Early Hadean contributors to this <span class="hlt">mantle</span> domain could include high-pressure fractionates from a primordial magma ocean. By contrast, the long-lived Sm-Nd and Lu-Hf isotope systems (ɛ143Nd = +2.4±0.1, ɛ176Hf = +5.7±0.3) indicate that the <span class="hlt">mantle</span> domain that the SGR komatiites were ultimately derived from underwent additional processing after the early Hadean, including melt depletion at lower pressures. The preservation of early-formed 182W and 142Nd anomalies in the <span class="hlt">mantle</span> until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective <span class="hlt">mantle</span> mixing during the Hadean. This study lends further support to the notion that variable late accretion, by itself, cannot account for all of the observed W isotope and absolute and relative HSE abundance variations in the Archean <span class="hlt">mantle</span> recorded by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8787303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8787303"><span>[Pubalgia in sportsmen].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zeitoun, F; Frot, B; Sterin, P; Tubiana, J M</p> <p>1995-01-01</p> <p>Pubalgia is a painful syndrome of the groin which particularly affects young athletes. Although soccer players are the athletes most often affected, they are not alone. Also included in this group are fencers, tennis players and rugbymen. This ailment is associated with varying degrees of lesions of the <span class="hlt">muscles</span> of the lower frontal abdomen, pubic symphysis and <span class="hlt">adductor</span> <span class="hlt">muscles</span>. The clinical diagnosis is confirmed by standard X-rays which can show radiological anomalies of the pubic symphysis in cases of microtraumatic pubic osteo-arthropathy or insertion tendinitis. Scintigraphic anomalies occur earlier than radiological anomalies and return to normal before them; thus allowing confirmation of healing even when the radiographs are still abnormal. Sonogram and MRI can be advantageous in the detection of a lesion of the abdominal <span class="hlt">muscles</span> or <span class="hlt">adductor</span> <span class="hlt">muscles</span>. MRI can also detect a lesion of the pubic symphysis. The principal differential diagnosis is pubic osteitis. Treatment is medical and combines rest, analgesics and anti-inflammatories. Surgery, namely Nesovic's operation, is reserved for those forms resistant to medical treatment, and must be bilateral.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3292611','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3292611"><span>Neuromuscular control of fundamental frequency and glottal posture at phonation onset</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chhetri, Dinesh K.; Neubauer, Juergen; Berry, David A.</p> <p>2012-01-01</p> <p>The laryngeal neuromuscular mechanisms for modulating glottal posture and fundamental frequency are of interest in understanding normal laryngeal physiology and treating vocal pathology. The intrinsic laryngeal <span class="hlt">muscles</span> in an in vivo canine model were electrically activated in a graded fashion to investigate their effects on onset frequency, phonation onset pressure, vocal fold strain, and glottal distance at the vocal processes. <span class="hlt">Muscle</span> activation plots for these laryngeal parameters were evaluated for the interaction of following pairs of <span class="hlt">muscle</span> activation conditions: (1) cricothyroid (CT) versus all laryngeal <span class="hlt">adductors</span> (TA/LCA/IA), (2) CT versus LCA/IA, (3) CT versus thyroarytenoid (TA) and, (4) TA versus LCA/IA (LCA: lateral cricoarytenoid <span class="hlt">muscle</span>, IA: interarytenoid). Increases in onset frequency and strain were primarily affected by CT activation. Onset pressure correlated with activation of all <span class="hlt">adductors</span> in activation condition 1, but primarily with CT activation in conditions 2 and 3. TA and CT were antagonistic for strain. LCA/IA activation primarily closed the cartilaginous glottis while TA activation closed the mid-membranous glottis. PMID:22352513</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.199..196G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.199..196G"><span>Nickel isotopic composition of the <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.</p> <p>2017-02-01</p> <p>This paper presents a detailed high-precision study of Ni isotope variations in <span class="hlt">mantle</span> peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that <span class="hlt">mantle</span> melts will display variable δ60 Ni values due to variations in residual <span class="hlt">mantle</span> and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper <span class="hlt">mantle</span> has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the <span class="hlt">mantle</span>, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950015361&hterms=rare+earth+elements&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Drare%2Bearth%2Belements','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950015361&hterms=rare+earth+elements&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Drare%2Bearth%2Belements"><span>Rare gases systematics and <span class="hlt">mantle</span> structure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allegre, C. J.; Staudacher, T.</p> <p>1994-01-01</p> <p>The following points are emphasized: one of the most important ones is certainly the first set of experimental data on the solubility of noble gases in metal phases at intermediate pressures, since the core was certainly not formed at ultra high pressures, as emphasized by Ahrens and confirmed by trace elements systematics Wanke. The experimental data clearly show that the core can not be a major reservoir for terrestrial rare gases; the second point is a more elaborate reconsideration of the (40)K-(40)Ar budget of the Earth. This shows that (40)Ar contained in continental crust plus upper <span class="hlt">mantle</span> plus atmosphere is at maximum half of the (40)Ar inventory of the whole earth. This implies the existence of a two layered <span class="hlt">mantle</span>; the third point is the discovery by the Australian noble gases group of the existence of high (20)Ne/(22)Ne and low (21)Ne/(22)Ne isotopic ratios in Loihi seamount samples. This results which are different to the MORB ratios confirm the idea of a two layered model, but suggest the existence of a primordial solar type Ne reservoir. Several possibilities about the origin of this (20)Ne excess in the <span class="hlt">mantle</span> will be discussed; The high (40)Ar/(36)Ar, (129)Xe/(130)Xe and (134) Xe/(130)Xe, (136)Xe/(130)Xe are confirmed by new data. The corresponding ratios for the lower <span class="hlt">mantle</span> will be discussed. (40)Ar/(36)Ar ratios up to 6000 can be accepted and will not modify the general model of the <span class="hlt">mantle</span>. They confirm the atmosphere chronology, about 85 percent of the atmosphere was formed in the first 50 My and 15 percent later on.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5189M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5189M"><span>Albanian ophiolites as probes of a <span class="hlt">mantle</span> heterogeneity study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meisel, Thomas; Ginley, Stephen; Koller, Friedrich; Walker, Richard J.</p> <p>2013-04-01</p> <p>Most ophiolites are believed to be tectonically obducted slivers of oceanic lithosphere. As such they can provide information not only about the history of crust formation, but also about the composition of the chemical composition of the recent and ancient <span class="hlt">mantle</span> composition. The occurrence of the well preserved Albanian Ophiolite Complex covers the length of Albania (ca. 150 km) is an ideal object not only for the study of the history of Jurassic tectonic event, but also for the study of the heterogeneity of the upper oceanic <span class="hlt">mantle</span> from a millimeter to a 100 km scale. The occurrence of two almost parallel ophiolite chains, which have been described to be of different petrography presenting different parts of the upper <span class="hlt">mantle</span> (MOR vs. SSZ type), allows the investigation of additional aspects of <span class="hlt">mantle</span> heterogeneity. In this study we want to take advantage of the geochemical characteristics of platinum group elements (PGE) and of lithophile elements to estimate the extant of <span class="hlt">mantle</span> melting, metasomatic and mixing events of a large portion of <span class="hlt">mantle</span> obducted contemporaneously. In a first step only peridotites from the <span class="hlt">mantle</span> sections of the ophiolite complexes are studied for the PGE content and the osmium isotopic composition. Together with major and trace element compositional data, following tasks will be addressed: development of a strategy for field and lab sampling, identification of processes that happened before and after obduction such as melt depletion, metasomatism, serpentinisation etc. and the determination of the size of modified and "pristine" domains. Samples from the western Albanian Ophiolite belt have been studied so far. Although the locations spread over the entire belt a remarkable similarity of PGE abundances is observed. In detail deviations from a correlation of Lu and TiO2 concentration data are also reflected in aberrant <span class="hlt">mantle</span> normalized PGE patterns. Interestingly enough, this behavior is not manifested in a trend in the 187Os/188Os</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR24A..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR24A..04L"><span>Elasticity of the Earth's Lower <span class="hlt">Mantle</span> Minerals at High Pressures: Implications to Understanding Seismic Observations of the Deep <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, J. F.; Yang, J.; Fu, S.</p> <p>2017-12-01</p> <p>Elasticity of the candidate lower-<span class="hlt">mantle</span> minerals at relevant P-T conditions of the region provides critical information in understanding seismic profiles, compositional and mineralogical models, and geodynamic processes of the Earth's interior. Here we will discuss recent major research advances in the investigation of the elasticity of major lower-<span class="hlt">mantle</span> minerals in a high-pressure diamond anvil cell coupled with Brillouin Light Scattering, Impulsive Stimulated Scattering (ISS), and X-ray diffraction. These have permitted direct and reliable measurements of both Vp and Vs to derive full elastic constants of single-crystal ferropericlase and (Fe, Al)-bearing bridgmanite as well as velocity profiles of polycrystalline silicate post-perovskite at relevant lower-<span class="hlt">mantle</span> pressures. The effects of the spin transition on the single-crystal elasticity of ferropericlase are now well understood experimentally and theoretically1,2: the spin transition causes drastic softening in elastic constants involving the compressive stress component (C11 and C12) due to the additional Gibbs free energy term arising from the mixing of the high-spin and low-spin states, while the elastic constant(s) related to the shear stress component (C44) is not affected. This leads to significant reduction in VP/VS ratio within the spin transition of ferropericlase in the mid-lower <span class="hlt">mantle</span>. The derived single-crystal Cij of bridgmanite at lower <span class="hlt">mantle</span> pressures display relatively small elastic Vp and Vs anisotropies as compared to the ferropericlase counterpart. Using thermoelastic modelling, we will discuss the application of the elasticity of ferropericlase, bridgmanite, and silicate post-perovskite at relevant conditions of the Earth's lower <span class="hlt">mantle</span> to differentiate the role of the thermal vs. chemical perturbations as well as the spin transition and iron partitioning effects in the reported seismic lateral heterogeneity in lower <span class="hlt">mantle</span> as well as the D″ zone region3,4. We will address how recent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMDI21A4262E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMDI21A4262E"><span>Constraining the Composition of the Subcontinental Lithospheric <span class="hlt">Mantle</span> Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite <span class="hlt">Mantle</span> Xenoliths</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erickson, S. G.; Nelson, W. R.; Peslier, A. H.; Snow, J. E.</p> <p>2014-12-01</p> <p>The East African Rift System was initiated by the impingement of the Afar <span class="hlt">mantle</span> plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 km3 [1] of continental flood basalts ~30 Ma ago. The contribution of the subcontinental lithospheric <span class="hlt">mantle</span> (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric <span class="hlt">mantle</span> affects its stability [e.g. 2, 3]. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in <span class="hlt">mantle</span> xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The <span class="hlt">mantle</span> xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven <span class="hlt">mantle</span> xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic <span class="hlt">mantle</span> [2] except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper <span class="hlt">mantle</span>. [1] Hoffman et al., 1997 Nature 389, 838-841. [2] Peslier et al., 2010 Nature 467, 78-81. [3] Lee et al., 2011 AREPS 39, 59-90.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI41B..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI41B..02Z"><span>Investigating Different Patterns of Slab Deformation in the Lower <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, J.; McNamara, A. K.</p> <p>2017-12-01</p> <p>The geometry of slabs within the upper <span class="hlt">mantle</span> have been relatively well-imaged by tomography and regional seismic studies; however, the style of slab deformation in the lower <span class="hlt">mantle</span> remains poorly understood. Although tomography models reveal that the lower <span class="hlt">mantle</span> beneath paleo-subduction regions are faster-than-average, the resolution is not high enough to resolve how slabs are actually deforming there. Slabs have long been hypothesized as viscous, tabular sheets that subduct at the surface, descend through the <span class="hlt">mantle</span>, and impinge on the core-<span class="hlt">mantle</span> boundary (CMB). Geodynamical studies have shown a wide range of possible deformational behaviors, ranging from stiff, buckling slabs to more-ductile masses of accumulating slab material undergoing pure shear. Of particular interest is how rheology and 3D spherical geometry control the shape and deformational style of slabs as they descend deeper into the <span class="hlt">mantle</span>. We performed high resolution 3D spherical calculations to explore slab deformation in deep <span class="hlt">mantle</span> as a function of slab strength. In our model, kinematic velocity boundary conditions are imposed on the surface to simulate a moving plate which guides the formation of a subducting slab. In addition, a viscosity jump at the transition zone is applied. We find that although a slab subducts as a large tabular sheet from the surface, it doesn't always maintain such geometry. Instead, it typically breaks apart into a few smaller and narrower sheets which can even turn into cylindrical-shaped downwelling after subducting into deep <span class="hlt">mantle</span>. Since seismic anisotropy is hypothesized to originate from crystal preferred orientation (CPO) in a slab when it impinges on the CMB and is predicted with significant help of time-dependent deformation information from the geodynamic models, our findings on lower <span class="hlt">mantle</span> slab deformation patterns may enhance the understanding towards the cause of characteristic patterns of predicted seismic anisotropy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI31A0381N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI31A0381N"><span>Seismic Evidence for Lower <span class="hlt">Mantle</span> Plume Under the Yellowstone Hotspot</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, P.; Grand, S.</p> <p>2017-12-01</p> <p>The <span class="hlt">mantle</span> plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core <span class="hlt">mantle</span> boundary (CMB) rise through the <span class="hlt">mantle</span> and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower <span class="hlt">mantle</span> (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower <span class="hlt">mantle</span> using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the <span class="hlt">mantle</span> beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower <span class="hlt">mantle</span>. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most <span class="hlt">mantle</span> which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower <span class="hlt">mantle</span> plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI14A..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI14A..03J"><span>A New Global Model Of Plates Motion Over The <span class="hlt">Mantle</span> For The Last 300MA: Link Between <span class="hlt">Mantle</span> Structures, Volcanism and Plate Tectonics.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jean, B.; Sophie, V. D. G.; Greff-Lefftz, M.; Frizon de Lamotte, D.; Lescanne, M.; Leparmentier, F.</p> <p>2017-12-01</p> <p>We compare several models of hot spot reference frames published in the litterature retracing the kinematics of the lithosphere over the <span class="hlt">mantle</span> for the last 120Ma. We then propose a new model between 130 and 300Ma, based on the comparison of various surface indicators (geological, thermal data from boreholes and compilation of global surface volcanism), a reassessment of hot spots classification and paleomagnetic data. We discuss the implication of our model on the location and timing of several types of surface volcanism (subductions, intracontinental volcanism, rifting and LIPS, kimberlites) that we link to deep structures interpreted from tomographic images. A clear degree two permanent organization of <span class="hlt">mantle</span> convection during this period of time is obvious, and the subduction rate appears to be episodic. We finally deduce from our model <span class="hlt">mantle</span> TPW (True Polar Wander), the shifting of the entire <span class="hlt">mantle</span> relative to the earth's spin axis over the last 300 million years. The inferred global motion of the <span class="hlt">mantle</span> deduced occurs around a Euler pole which axis is close to the earth equator but varies significantly in longitude with respect to time showing complex tridimensional mass reorganizations in the <span class="hlt">mantle</span>, probably linked to both LLSVPs and slabs effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044073&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dearth%2Bmagnetic%2Bfield','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044073&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dearth%2Bmagnetic%2Bfield"><span>Steady state toroidal magnetic field at earth's core-<span class="hlt">mantle</span> boundary</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levy, Eugene H.; Pearce, Steven J.</p> <p>1991-01-01</p> <p>Measurements of the dc electrical potential near the top of earth's <span class="hlt">mantle</span> have been extrapolated into the deep <span class="hlt">mantle</span> in order to estimate the strength of the toroidal magnetic field component at the core-<span class="hlt">mantle</span> interface. Recent measurements have been interpreted as indicating that at the core-<span class="hlt">mantle</span> interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-<span class="hlt">mantle</span> boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-<span class="hlt">mantle</span> boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P42A..05N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P42A..05N"><span>On evolutionary climate tracks in deep <span class="hlt">mantle</span> volatile cycle computed from numerical <span class="hlt">mantle</span> convection simulations and its impact on the habitability of the Earth-like planets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakagawa, T.; Tajika, E.; Kadoya, S.</p> <p>2017-12-01</p> <p>Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the <span class="hlt">mantle</span> volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the <span class="hlt">mantle</span> degassing occurs not only in the mid-oceanic ridges but also in the wedge <span class="hlt">mantle</span> (island arc volcanism) and hotspots, to incorporate more accurate estimate of <span class="hlt">mantle</span> degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical <span class="hlt">mantle</span> convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified <span class="hlt">mantle</span> degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on <span class="hlt">mantle</span> degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep <span class="hlt">mantle</span> dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23302797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23302797"><span>Nickel and helium evidence for melt above the core-<span class="hlt">mantle</span> boundary.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis</p> <p>2013-01-17</p> <p>High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-<span class="hlt">mantle</span> source. This helium source may have been isolated at the core-<span class="hlt">mantle</span> boundary region since Earth's accretion. Alternatively, it may have taken part in whole-<span class="hlt">mantle</span> convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-<span class="hlt">mantle</span> boundary or is distributed throughout the lower <span class="hlt">mantle</span>. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-<span class="hlt">mantle</span> interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by <span class="hlt">mantle</span> plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-<span class="hlt">mantle</span> boundary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3734S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3734S"><span><span class="hlt">Mantle</span> hydrous-fluid interaction with Archaean granite.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.-L.; Moyen, J.-F.; Jayananda, M.</p> <p>2012-04-01</p> <p>Water content/species in alkali feldspars from late Archaean Closepet igneous bodies as well as growth and re-growth textures, trace element and oxygen isotope composition have been studied (Słaby et al., 2011). Both processes growth and re-growth are deterministic, however they differ showing increasing persistency in element behaviour during interaction with fluids. The re-growth process fertilized domains and didn't change their oxygen-isotope signature. Water speciation showed persistent behaviour during heating at least up to 600oC. Carbonate crystals with <span class="hlt">mantle</span> isotope signature are associated with the recrystallized feldspar domains. Fluid-affected domains in apatite provide evidence of halide exchange. The data testify that the observed recrystallization was a high-temperature reaction with fertilized, halide-rich H2O-CO2 <span class="hlt">mantle</span>-derived fluids of high water activity. A wet <span class="hlt">mantle</span> being able to generate hydrous plumes, which appear to be hotter during the Archean in comparison to the present time is supposed by Shimizu et al. (2001). Usually hot fluids, which can be strongly carbonic, precede asthenospheric <span class="hlt">mantle</span> upwelling. They are supposed to be parental to most recognized compositions, which can be derived by their immiscible separation into saline aqueous-silicic and carbonatitic members (Klein-BenDavid et al., 2007). The aqueous fractions are halogen-rich with a significant proportion of CO2. Both admixed fractions are supposed to be fertile. The Closepet granite emplaced in a major shear zone that delimitates two different terrains. Generally such shear zones, at many places, are supposed to be rooted deep into the <span class="hlt">mantle</span>. The drain, that favoured and controlled magma ascent and emplacement, seemed to remain efficient after granite crystallization. In the southern part of the Closepet batholiths an evidence of intensive interaction of a lower crust fluid (of high CO2 activity) is provided by the extensive charnockitization of amphibolite facies (St</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016P%26SS..134...29V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016P%26SS..134...29V"><span>Laboratory-based electrical conductivity at Martian <span class="hlt">mantle</span> conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verhoeven, Olivier; Vacher, Pierre</p> <p>2016-12-01</p> <p>Information on temperature and composition of planetary <span class="hlt">mantles</span> can be obtained from electrical conductivity profiles derived from induced magnetic field analysis. This requires a modeling of the conductivity for each mineral phase at conditions relevant to planetary interiors. Interpretation of iron-rich Martian <span class="hlt">mantle</span> conductivity profile therefore requires a careful modeling of the conductivity of iron-bearing minerals. In this paper, we show that conduction mechanism called small polaron is the dominant conduction mechanism at temperature, water and iron content conditions relevant to Mars <span class="hlt">mantle</span>. We then review the different measurements performed on mineral phases with various iron content. We show that, for all measurements of mineral conductivity reported so far, the effect of iron content on the activation energy governing the exponential decrease in the Arrhenius law can be modeled as the cubic square root of the iron content. We recast all laboratory results on a common generalized Arrhenius law for iron-bearing minerals, anchored on Earth's <span class="hlt">mantle</span> values. We then use this modeling to compute a new synthetic profile of Martian <span class="hlt">mantle</span> electrical conductivity. This new profile matches perfectly, in the depth range [100,1000] km, the electrical conductivity profile recently derived from the study of Mars Global Surveyor magnetic field measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1410109-intraplate-mantle-oxidation-volatile-rich-silicic-magmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1410109-intraplate-mantle-oxidation-volatile-rich-silicic-magmas"><span>Intraplate <span class="hlt">mantle</span> oxidation by volatile-rich silicic magmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martin, Audrey M.; Médard, Etienne; Righter, Kevin</p> <p></p> <p>The upper subcontinental lithospheric <span class="hlt">mantle</span> below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in <span class="hlt">mantle</span> xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and <span class="hlt">mantle</span> oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2)more » < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric <span class="hlt">mantle</span> fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the <span class="hlt">mantle</span> in intraplate regions is underestimated.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010068810','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010068810"><span>Gravitational Core-<span class="hlt">Mantle</span> Coupling and the Acceleration of the Earth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, David Parry; Smith, David E. (Technical Monitor)</p> <p>2001-01-01</p> <p>Gravitational core-<span class="hlt">mantle</span> coupling may be the cause of the observed variable acceleration of the Earth's rotation on the 1000 year timescale. The idea is that density inhomogeneities which randomly come and go in the liquid outer core gravitationally attract density inhomogeneities in the <span class="hlt">mantle</span> and crust, torquing the <span class="hlt">mantle</span> and changing its rotation state. The corresponding torque by the <span class="hlt">mantle</span> on the core may also explain the westward drift of the magnetic field of 0.2 deg per year. Gravitational core-<span class="hlt">mantle</span> coupling would stochastically affect the rate of change of the Earth's obliquity by just a few per cent. Its contribution to polar wander would only be about 0.5% the presently observed rate. Tidal friction is slowing down the rotation of the Earth, overwhelming a smaller positive acceleration from postglacial rebound. Coupling between the liquid outer core of the Earth and the <span class="hlt">mantle</span> has long been a suspected reason for changes in the length-of-day. The present investigation focuses on the gravitational coupling between the density anomalies in the convecting liquid outer core and those in the <span class="hlt">mantle</span> and crust as a possible cause for the observed nonsecular acceleration on the millenial timescale. The basic idea is as follows. There are density inhomogeneities caused by blobs circulating in the outer core like the blobs in a lava lamp; thus the outer core's gravitational field is not featureless. Moreover, these blobs will form and dissipate somewhat randomly. Thus there will be a time variability to the fields. These density inhomogeneities will gravitationally attract the density anomalies in the <span class="hlt">mantle</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.190..785G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.190..785G"><span>Time-dependent convection models of <span class="hlt">mantle</span> thermal structure constrained by seismic tomography and geodynamics: implications for <span class="hlt">mantle</span> plume dynamics and CMB heat flux</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glišović, P.; Forte, A. M.; Moucha, R.</p> <p>2012-08-01</p> <p>One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's <span class="hlt">mantle</span>, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the <span class="hlt">mantle</span> thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D <span class="hlt">mantle</span> convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on <span class="hlt">mantle</span> structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-<span class="hlt">mantle</span> formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the <span class="hlt">mantle</span>. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the <span class="hlt">mantle</span> evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RvGeo..52..283F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RvGeo..52..283F"><span><span class="hlt">Mantle</span> dynamics in the Mediterranean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faccenna, Claudio; Becker, Thorsten W.; Auer, Ludwig; Billi, Andrea; Boschi, Lapo; Brun, Jean Pierre; Capitanio, Fabio A.; Funiciello, Francesca; Horvåth, Ferenc; Jolivet, Laurent; Piromallo, Claudia; Royden, Leigh; Rossetti, Federico; Serpelloni, Enrico</p> <p>2014-09-01</p> <p>The Mediterranean offers a unique opportunity to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. This paper reviews the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper <span class="hlt">mantle</span> heterogeneity imaged by structural seismology. We proceed to discuss a conceptual and quantitative framework for the causes of surface deformation. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of <span class="hlt">mantle</span> convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper <span class="hlt">mantle</span> convection cells. The downwellings are found in the center of the Mediterranean and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated backward with respect to the Eurasian upper plate, inducing a return flow of the asthenosphere from the back-arc regions toward the subduction zones. This flow can be found at large distance from the subduction zones and is at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, first-order Anatolia, and Adria microplate kinematics and may contribute to the high elevation of scarcely deformed areas such as Anatolia and eastern Iberia. More generally, the Mediterranean is an illustration of how upper <span class="hlt">mantle</span>, small-scale convection leads to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI31B2583M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI31B2583M"><span>The Temperature of the Icelandic <span class="hlt">Mantle</span> Plume from Aluminium-in-Olivine Thermometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, S.; Shorttle, O.; Maclennan, J.</p> <p>2015-12-01</p> <p>Temperature is a key control on the physical properties of the <span class="hlt">mantle</span>, in particular the extent of melting during upwelling. It is not, however, a unique control on many of the parameters used to estimate <span class="hlt">mantle</span> temperature. For example igneous crustal thickness which has often been used as a first-order proxy for <span class="hlt">mantle</span> temperature, is also affected by <span class="hlt">mantle</span> lithology and plume flux. Alternatives to geophysical indicators of <span class="hlt">mantle</span> temperature are petrological thermometers. However, these record crystallisation temperatures, therefore a series of assumptions about the coupled melt- solid <span class="hlt">mantle</span> thermal history must be made when calculating back to <span class="hlt">mantle</span> potential temperature. In this study we investigate how these assumptions may affect <span class="hlt">mantle</span> temperature estimates and how crystallisation temperatures may offer insights into the melting and melt transport processes, focussing on a new set of crystallisation temperature estimates we have made on primitive Icelandic basalts.We used the aluminium-in-olivine thermometer of Coogan et al. (2014) to estimate crystallisation temperatures of olivine phenocrysts in a suite of samples from the Northern Volcanic Zone (NVZ) of Iceland. The data suggest that within a single volcanic system crystallisation temperature depends strongly on the olivine forsterite content, thus the history of melt evolution, and how the eruption samples this, must be considered when extrapolating to <span class="hlt">mantle</span> temperature. To assess the influence of the assumptions required to obtain <span class="hlt">mantle</span> temperature we constructed a simple thermal model incorporating varying proportions of lherzolite, pyroxenite and harzburgite undergoing decompression melting. A trade off between increasing <span class="hlt">mantle</span> temperature and decreasing pyroxenite (or increasing harzburgite) in the source is observed. Using this dataset and our model, calculations reveal a potential temperature of 1470±130 °C for Iceland, and a temperature excess of 150±40 °C relative to ambient <span class="hlt">mantle</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411382V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411382V"><span>Shallow <span class="hlt">Mantle</span> Anisotropy Beneath the Juan de Fuca Plate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>VanderBeek, Brandon P.; Toomey, Douglas R.</p> <p>2017-11-01</p> <p>The anisotropic fabric of the oceanic <span class="hlt">mantle</span> lithosphere is often assumed to parallel paleo-relative plate motion (RPM). However, we find evidence that this assumption is invalid beneath the Juan de Fuca (JdF) plate. Using travel times of seismic energy propagating through the topmost <span class="hlt">mantle</span>, we find that the fast direction of P wave propagation is rotated 18° ± 3° counterclockwise to the paleo-spreading direction and strikes between Pacific-JdF relative and JdF absolute plate motion (APM). The mean <span class="hlt">mantle</span> velocity is 7.85 ± 0.02 km/s with 4.6% ± 0.4% anisotropy. Synthesis of the plate-averaged Pn anisotropy signal with measurements of Pn anisotropy beneath the JdF Ridge and SKS splits across the JdF plate suggests that the anisotropic structure of the topmost <span class="hlt">mantle</span> continues to evolve away from the spreading center to more closely align with APM. We infer that the oceanic <span class="hlt">mantle</span> lithosphere may record the influence of both paleo-RPM and paleo-APM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI11A0256M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI11A0256M"><span>Constraints on <span class="hlt">mantle</span> viscosity from convection models with plate motion history</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, W.; Zhong, S.</p> <p>2017-12-01</p> <p>The Earth's long-wavelength geoid and dynamic topography are mainly controlled by the <span class="hlt">mantle</span> buoyancy and viscosity structure. Previous dynamical models for the geoid provide constraints on the 1-D <span class="hlt">mantle</span> viscosity, using <span class="hlt">mantle</span> buoyancy derived from seismic topography models. However, it is a challenge in these studies on how to convert seismic velocity to density anomalies and <span class="hlt">mantle</span> buoyancy. Furthermore, these studies provide constraints only on relative viscosity variations but not on absolute magnitude of viscosity. In this study, we formulate time-dependent 3-D spherical <span class="hlt">mantle</span> convection models with imposed plate motion history and seek constraints on <span class="hlt">mantle</span> viscosity structure for both its radial relative variations and its absolute magnitude (i.e., Rayleigh number), using the geoid from the convection models. We found that the geoid at intermediate wavelengths of degrees 4-9 is mainly controlled by the subducted slabs in the upper <span class="hlt">mantle</span> and the upper part of lower <span class="hlt">mantle</span> that result from subduction from the last 50 Myr or the Cenozoic. To fit the degrees 4-9 geoid, we need viscosity contrast β defined as the ratio of the lower <span class="hlt">mantle</span> viscosity and the asthenospheric viscosity to be larger than 2000 and Ra to be 1e8 (defined by the Earth's radius). The best fit model leads to 57% variance reduction and 76% correlation between the model and the observations. However, the long-wavelength geoid at degrees 2-3 is controlled by the lower <span class="hlt">mantle</span> structure which requires much longer time scale to develop, as seen from our modeling. The preferred viscosity structure and Rayleigh number as constrained by the Cenozoic plate motion and the degrees 4-9 geoid no longer provide adequate fit to the geoid in models with the plate motion history for the last 450 Myr. The degrees 4-9 geoid amplitude is smaller for the models with longer plate motion history and a smaller Ra is required to fit the observation. In order to satisfy the relative amplitude between degrees 2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.V42A..01Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.V42A..01Z"><span>Constraints on Thermochemical Convection of the <span class="hlt">Mantle</span> from Plume-related Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhong, S.</p> <p>2005-05-01</p> <p>Although geochemical observations have long suggested a layered <span class="hlt">mantle</span> with more enriched <span class="hlt">mantle</span> material in the bottom layer to provide a significant amount of heat to the top layer, the nature of such a layering remains unclear. An important observation that has been used to argue against the conventional layered <span class="hlt">mantle</span> model (i.e., the layering at the 670 km depth) was the plume heat flux [Davies, 1999]. Plume heat flux is estimated as ~ 3.5 TW, or 10% of the surface heat flux [Davies, 1988; Sleep, 1990]. In this study, we demonstrate with 3-D spherical models of <span class="hlt">mantle</span> convection with depth- and temperature-dependent viscosity that observed plume heat flux, plume excess temperature (<350°C), and upper <span class="hlt">mantle</span> temperature (~ 1300°C) can pose important constraints on the layered <span class="hlt">mantle</span> convection. We show that for a purely thermal convection model (i.e., a whole <span class="hlt">mantle</span> convection), the observations of plume heat flux, plume excess temperature, and upper <span class="hlt">mantle</span> temperature can be simultaneously explained only when internal heating rate is about 65%. For smaller internal heating rate, plume heat flux and plume excess temperature would be too large, and upper <span class="hlt">mantle</span> temperature would be too small, compared with the observed. This suggests that for a whole <span class="hlt">mantle</span> convection the CMB heat flux needs to be > 10 TW. For a core with no significant heat producing elements, such large CMB heat flux may lead to too rapid cooling of the core or a too young inner core. A layered <span class="hlt">mantle</span> convection may help reduce the CMB heat flux. For layered convection models, we found that the top layer needs to be ~70% internally heated to explain the upper <span class="hlt">mantle</span> temperature and plume-related observations, and this required internal heating ratio is insensitive to the layer thickness for the bottom layer (we used ~600 km and 1100 km thicknesses). This result suggests that heat generation rate for the bottom layer cannot be significantly larger (< a factor of 2) than that for the top layer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910058405&hterms=Honda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DHonda','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910058405&hterms=Honda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DHonda"><span>Development of diapiric structures in the upper <span class="hlt">mantle</span> due to phase transitions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.</p> <p>1991-01-01</p> <p>Solid-state phase transition in time-dependent <span class="hlt">mantle</span> convection can induce diapiric flows in the upper <span class="hlt">mantle</span>. When a deep <span class="hlt">mantle</span> plume rises toward phase boundaries in the upper <span class="hlt">mantle</span>, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower <span class="hlt">mantle</span> may control the fate of deep <span class="hlt">mantle</span> plumes, allowing hot plumes to go through and retarding the tepid ones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12460476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12460476"><span><span class="hlt">Mantle</span> shear-wave tomography and the fate of subducted slabs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grand, Steven P</p> <p>2002-11-15</p> <p>A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's <span class="hlt">mantle</span> is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the <span class="hlt">mantle</span>, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower <span class="hlt">mantle</span>, whereas in other regions tabular high-velocity structures seem to extend to the deepest <span class="hlt">mantle</span>. The base of the <span class="hlt">mantle</span> shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of <span class="hlt">mantle</span> flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest <span class="hlt">mantle</span>, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T13A0424C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T13A0424C"><span>Magnetic Properties of <span class="hlt">Mantle</span> Xenoliths and Evidence of Localized Modification of the <span class="hlt">Mantle</span> Beneath the Rio Puerco Volcanic Field, New Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Callahan, C. N.; Geissman, J. W.; Selverstone, J.; Brearley, A. J.</p> <p>2005-12-01</p> <p>Little is known about the magnetic petrology and processes that affect the magnetization of the upper <span class="hlt">mantle</span>. Petrologic and geochemical studies of a suite of xenoliths from the Rio Puerco volcanic necks (RPVN), west-central New Mexico, show that pyroxenites (PYX) have a metasomatic origin, as a result of interaction between spinel lherzolites (SL) and basaltic and carbonatitic melt or fluid. This study demonstrates that magnetic properties of these <span class="hlt">mantle</span> xenoliths can characterize localized <span class="hlt">mantle</span> modification events and heterogeneity in <span class="hlt">mantle</span> oxidation states. In situ, oriented PYXs carry a well-defined post-emplacement, cooling-related remanence (typical NRM of 0.23 A/m) defined by progressive thermal and AF demagnetization. Thermal demagnetization of SL and PYX remove >90% of the magnetization by 580°C and IRM acquisition curves reach saturation by 0.3T, indicating a dominance by magnetite in both rock types. SL and PYX have relatively small concentrations (~0.01%) of magnetite (bulk susceptibility of 10-4 to 10-5 SI vol). SLs generally contain multi-domain magnetite (mean destructive fields of NRM between 20 to 40 mT), whereas PYXs are dominated by single domain magnetite (MDFs between 20 to 70 mT). The magnetic properties of SLs and PYXs are a reflection of phases formed in the <span class="hlt">mantle</span> and not from basalt-xenolith interaction en route to the surface. In addition, the differences in magnetic properties give insight into how melt infiltration modifies the magnetization of <span class="hlt">mantle</span> xenoliths. In comparison to other SLs, red-colored SLs found only at Cerro de Santa Rosa, one of the RPVN, contain hematite and relatively low-coercivity magnetite. Complete thermal unblocking of a high coercivity phase occurs at 680°C and a medium to low-coercivity fraction at 580°C. Textural evidence suggests that alteration involved oxidation in the <span class="hlt">mantle</span>, prior to transport of these xenoliths to the surface in the host basalt. TEM analyses reveal micron-sized needles of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI13A0278T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI13A0278T"><span>The role of upper <span class="hlt">mantle</span> mineral phase transitions on the current structure of large-scale Earth's <span class="hlt">mantle</span> convection.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thoraval, C.</p> <p>2017-12-01</p> <p>Describing the large-scale structures of <span class="hlt">mantle</span> convection and quantifying the mass transfer between upper and lower <span class="hlt">mantle</span> request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth <span class="hlt">mantle</span> from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of <span class="hlt">mantle</span> flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower <span class="hlt">mantle</span> are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T11B2625C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T11B2625C"><span>Structure of the Upper <span class="hlt">Mantle</span> and <span class="hlt">Mantle</span> Transition Zone in Central Mongolia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Z.; Meltzer, A.; Stachnik, J.; Fischer, K. M.; Russo, R. M.; Munkhuu, U.; Baasanbat, T.</p> <p>2016-12-01</p> <p>Located between two major Archean cratons, the Siberian Craton to the north and the Tarim and Sino-Korean Cratons to the south, the lithosphere of Central Mongolia was constructed over an extended period of orogenesis associated with the Central Asian Orogenic Belt. Archean to Early Proterozoic basement was modified by accreted subduction complexes during the Paleozoic and early Mesozoic and basalt magmatism in the Cenozoic. Central and western Mongolia constitute a significant portion of the greater Mongolian plateau, an approximately 2.6 million km2area of Central Asia with an average elevation of 1500 meters. The high topography of the Mongolian Plateau has been attributed to far-field effects of India-Asia convergence, Pacific plate subduction, <span class="hlt">mantle</span> plume activity, convective <span class="hlt">mantle</span> flow, and magmatic underplating. The origin and persistence of continental plateaus through time provides insight into the evolution of continents and interactions between <span class="hlt">mantle</span> dynamics and surface processes. As part of a larger interdisciplinary project to understand the origin of high topography in continental interiors we deployed 112 seismic broadband stations in central Mongolia as three separate subarrays in two separate mobilizations over a four year period (2012-2016). The stations extend from the Hovsgol rift in northern Mongolia, through the Hangay Dome, and into the Gobi Altai in southern Mongolia. We use S wave Receiver functions (SRF) to examine the lithosphere asthenosphere boundary and P wave Receiver functions (PRF) to investigate the <span class="hlt">mantle</span> transition zone (MTZ). Preliminary SRF results from the subarray in the Hangay show lithospheric thinning and E-W variation. The LAB beneath the Hangay is 100km. It gradually thins to 90 km at the western end of the central Hangay and thins more abruptly to 80km at the eastern end of the central Hangay. These results are in agreement with results from joint inversion of receiver functions and surface waves and teleseismic</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7738W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7738W"><span>Seismic Constraints on the <span class="hlt">Mantle</span> Viscosity Structure beneath Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry</p> <p>2015-04-01</p> <p>Lateral variations in upper <span class="hlt">mantle</span> viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, <span class="hlt">mantle</span> seismic velocities can provide important constraints on <span class="hlt">mantle</span> viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic <span class="hlt">mantle</span>, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper <span class="hlt">mantle</span>. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic <span class="hlt">mantle</span>. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper <span class="hlt">mantle</span> in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........11S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........11S"><span>Properties of the Plasma <span class="hlt">Mantle</span> in the Earth's Magnetotail</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shodhan-Shah, Sheela</p> <p>1998-04-01</p> <p>The plasma <span class="hlt">mantle</span> is the site where the solar wind enters the Earth's magnetosphere. As yet, the <span class="hlt">mantle</span> in the magnetotail (downstream part of the magnetosphere) has remained an enigma, for this region is remote and inaccessible. However, new results from the GEOTAIL spacecraft have yielded data on the <span class="hlt">mantle</span>, making its study possible. The research reported in this dissertation uses the measurements made by the GEOTAIL spacecraft when it was beyond 100 Re (1 Re = Earth radius) in the magnetotail to determine the global geometrical and dynamical properties of the <span class="hlt">mantle</span>. The model and the data together provide a cross-sectional picture of the <span class="hlt">mantle</span>, as well as its extent into the tail and along the circumference of the tail. The model assesses the mass and momentum flux flowing through the <span class="hlt">mantle</span> and merging with the plasma sheet (a relatively dense region that separates the oppositely directed fields of the tail lobes). In this way, the thesis examines the importance of the <span class="hlt">mantle</span> as a source that replenishes and moves the plasma sheet. Moreover, it addresses the relative importance of the global dynamical modes of the tail. The analysis finds that the tail's 'breathing' mode, of shape change, occurs on a timescale of tens of minutes while a windsock-type motion, responding to changes in the solar wind direction, occurs on a scale of hours. The <span class="hlt">mantle</span> extends about 140o around the circumference of the tail rather than 90o as previously thought and is about 20 ± 9 Re thick. It is capable of feeding the plasma sheet with sufficient particles to make up for those lost and can drag it away with a force that compares with the Earthward force on it. The rate at which the energy flows through the tail at 100 Re is about 10% of that in the solar wind and is a factor of 10 higher than the energy dissipated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4756008','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4756008"><span>Comparison of lower limb <span class="hlt">muscle</span> activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Min-Ju; Kim, Joong-Hwi</p> <p>2016-01-01</p> <p>[Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], <span class="hlt">adductor</span> longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six <span class="hlt">muscles</span> for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb <span class="hlt">muscle</span> enhancement. PMID:26957762</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53E..03T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53E..03T"><span>Tracing subducted crustal materials in the <span class="hlt">mantle</span> by using magnesium isotopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teng, F. Z.</p> <p>2016-12-01</p> <p>Recent studies show that some continental basalt, <span class="hlt">mantle</span>-metasomatised peridotite and cratonic eclogite have heterogeneous Mg isotopic compositions. These isotopically distinct Mg isotopic compositions have been explained by the incorporation of subducted materials in their <span class="hlt">mantle</span> sources though the detailed mechanisms are still not well understood. In particular, how Mg-poor crustal materials can modify Mg isotopic systematics of Mg-rich <span class="hlt">mantle</span> is unknown. Subduction zones are the most efficient sites for crust and <span class="hlt">mantle</span> interactions, hence should be where the most prominent Mg isotopic variation occurs. However, to date, little is known on Mg isotope systematics in the subduction factory. Here I first review and report new Mg isotopic data for arc lava, subarc peridotite and the subducted slab (marine sediment, altered basalt and abyssal peridotite), then use them to constrain the origins of <span class="hlt">mantle</span> Mg isotopic heterogeneity and lay the foundation for using Mg isotopes as new tools for tracing crust-<span class="hlt">mantle</span> interactions. The main conclusions are 1) fluid-rock interactions can modify Mg isotopic systematics of abyssal peridotites; 2) island arc lavas have non-MORB Mg isotopic compositions, reflecting distinct surbarc <span class="hlt">mantle</span> Mg isotopic signature; 3) continental arcs have non-MORB Mg isotopic compositions, likely resulting from crustal contamination and 4) the isotopically heterogeneous continental basalts are mainly produced by mixing of isotopically distinct magmas instead of being partial melting products of metasomatised <span class="hlt">mantle</span> peridotites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Natur.553..491J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Natur.553..491J"><span>Early episodes of high-pressure core formation preserved in plume <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei</p> <p>2018-01-01</p> <p>The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the <span class="hlt">mantle</span> that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the <span class="hlt">mantle</span>. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of <span class="hlt">mantle</span> that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of <span class="hlt">mantle</span> could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of <span class="hlt">mantle</span> involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient <span class="hlt">mantle</span>. This would aid the long-term preservation of these <span class="hlt">mantle</span> portions, and potentially points to their modern manifestation within seismically slow, deep <span class="hlt">mantle</span> reservoirs with high 3He/4He ratios.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12413081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12413081"><span>Mapping intramuscular tenderness variation in four major <span class="hlt">muscles</span> of the beef round.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reuter, B J; Wulf, D M; Maddock, R J</p> <p>2002-10-01</p> <p>The objective of this study was to quantify intramuscular tenderness variation within four <span class="hlt">muscles</span> from the beef round: biceps femoris (BF), semitendinosus (ST), semimembranosus (SM), and <span class="hlt">adductor</span> (AD). At 48 h postmortem, the BF, ST, SM, and AD were dissected from either the left or right side of ten carcasses, vacuum packaged, and aged for an additional 8 d. Each <span class="hlt">muscle</span> was then frozen and cut into 2.54-cm-thick steaks perpendicular to the long axis of the <span class="hlt">muscle</span>. Steaks were broiled on electric broilers to an internal temperature of 71 degrees C. Location-specific cores were obtained from each cooked steak, and Warner-Bratzler shear force was evaluated. Definable intramuscular shear force variation (SD = 0.56 kg) was almost twice as large as between-animal shear force variation (SD = 0.29 kg) and 2.8 times as large as between-<span class="hlt">muscle</span> variation (SD = 0.20 kg). The ranking of <span class="hlt">muscles</span> from greatest to least definable intramuscular shear force variation was BF, SM, ST, and AD (SD = 1.09, 0.72, 0.29, and 0.15 kg, respectively). The BF had its lowest shear force values at the origin (sirloin end), intermediate shear force values at the insertion, and its highest shear force values in a middle region 7 to 10 cm posterior to the sirloin-round break point (P < 0.05). The BF had lower shear force values toward the ST side than toward the vastus lateralis side (P < 0.05). The ST had its lowest shear force values in a 10-cm region in the middle, and its highest shear force values toward each end (P < 0.05). The SM had its lowest shear force values in the first 10-cm from the ischial end (origin), and its highest shear force values in a 13-cm region at the insertion end (P < 0.05). Generally, shear force was lower toward the superficial (medial) side than toward the deep side of the SM (P < 0.05). There were no intramuscular differences in shear force values within the AD (P > 0.05). These data indicate that definable intramuscular tenderness variation is substantial and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.U41A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.U41A..03H"><span>Geochemical Constraints on Core-<span class="hlt">Mantle</span> Interaction from Fe/Mn Ratios</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humayun, M.; Qin, L.</p> <p>2003-12-01</p> <p>The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the <span class="hlt">mantle</span>. There are no a priori reasons, however, why the Earth's <span class="hlt">mantle</span> should be chemically isolated from the core. Osmium isotopic variations in <span class="hlt">mantle</span> plumes have been interpreted in terms of interaction between outer core and the source regions of deep <span class="hlt">mantle</span> plumes. If chemical transport occurs across the core-<span class="hlt">mantle</span> boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the <span class="hlt">mantle</span>, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of <span class="hlt">mantle</span> differentiation by partial melting. Two processes may perturb the ambient <span class="hlt">mantle</span> Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern <span class="hlt">mantle</span> plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...355..613G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...355..613G"><span>On the deep-<span class="hlt">mantle</span> origin of the Deccan Traps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glišović, Petar; Forte, Alessandro M.</p> <p>2017-02-01</p> <p>The Deccan Traps in west-central India constitute one of Earth’s largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown <span class="hlt">mantle</span> structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep <span class="hlt">mantle</span> origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day <span class="hlt">mantle</span> heterogeneity to reconstruct <span class="hlt">mantle</span> structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870025920&hterms=constitution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconstitution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870025920&hterms=constitution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconstitution"><span>Temperature distribution in the crust and <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jeanloz, R.; Morris, S.</p> <p>1986-01-01</p> <p>In an attempt to understand the temperature distribution in the earth, experimental constraints on the geotherm in the crust and <span class="hlt">mantle</span> are considered. The basic form of the geotherm is interpreted on the basis of two dominant mechanisms by which heat is transported in the earth: (1) conduction through the rock, and (2) advection by thermal flow. Data reveal that: (1) the temperature distributions through continental lithosphere and through oceanic lithosphere more than 60 million years old are practically indistinguishable, (2) crustal uplift is instrumental in modifying continental geotherms, and (3) the average temperature through the Archean crust and <span class="hlt">mantle</span> was similar to that at present. It is noted that current limitations in understanding the constitution of the lower <span class="hlt">mantle</span> can lead to significant uncertainties in the thermal response time of the planetary interior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..280N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..280N"><span>Lower-<span class="hlt">mantle</span> plume beneath the Yellowstone hotspot revealed by core waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, Peter L.; Grand, Stephen P.</p> <p>2018-04-01</p> <p>The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep <span class="hlt">mantle</span> plume sourced at the base of the <span class="hlt">mantle</span> supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep <span class="hlt">mantle</span> beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-<span class="hlt">mantle</span> plume. The anomaly is tilted to the northeast and extends from the core-<span class="hlt">mantle</span> boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest <span class="hlt">mantle</span> towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal <span class="hlt">mantle</span> plumes that are currently beyond the resolution of global tomography models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12037564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12037564"><span>An inverted continental Moho and serpentinization of the forearc <span class="hlt">mantle</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M</p> <p>2002-05-30</p> <p>Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying <span class="hlt">mantle</span> wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc <span class="hlt">mantle</span> (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the <span class="hlt">mantle</span> wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc <span class="hlt">mantle</span> indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc <span class="hlt">mantle</span> wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the <span class="hlt">mantle</span> wedge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21669788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21669788"><span>Congruence between <span class="hlt">muscle</span> activity and kinematics in a convergently derived prey-processing behavior.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Konow, Nicolai; Camp, Ariel L; Sanford, Christopher P J</p> <p>2008-08-01</p> <p>Quantification of anatomical and physiological characteristics of the function of a musculoskeletal system may yield a detailed understanding of how the organizational levels of morphology, biomechanics, kinematics, and <span class="hlt">muscle</span> activity patterns (MAPs) influence behavioral diversity. Using separate analyses of these organizational levels in representative study taxa, we sought patterns of congruence in how organizational levels drive behavioral modulation in a novel raking prey-processing behavior found in teleosts belonging to two evolutionarily distinct lineages. Biomechanically divergent prey (elusive, robust goldfish and sedentary, malleable earthworms) were fed to knifefish, Chitala ornata (Osteoglossomorpha) and brook trout, Salvelinus fontinalis (Salmoniformes). Electromyography recorded MAPs from the hyoid protractor, jaw <span class="hlt">adductor</span>, sternohyoideus, epaxialis, and hypaxialis musculature, while sonomicrometry sampled deep basihyal kinesis and contractile length dynamics in the basihyal protractor and retractor <span class="hlt">muscles</span>. Syntheses of our results with recent analyses of cranial morphology and raking kinematics showed that raking in Salvelinus relies on an elongated cranial out lever, extensive cranial elevation and a curved cleithrobranchial ligament (CBL), and that both raking MAPs and kinematics remain entirely unmodulated-a highly unusual trait, particularly among feeding generalists. Chitala had a shorter CBL and a raking power stroke involving increased retraction of the elongated pectoral girdle during raking on goldfish. The raking MAP was also modulated in Chitala, involving an extensive overlap between <span class="hlt">muscle</span> activity of the preparatory and power stroke phases, driven by shifts in hypaxial timing and recruitment of the hyoid protractor <span class="hlt">muscle</span>. Sonomicrometry revealed that the protractor hyoideus <span class="hlt">muscle</span> stored energy from retraction of the pectoral girdle for ca. 5-20 ms after onset of the power stroke and then hyper-extended. This mechanism of elastic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815198B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815198B"><span>Subduction History and the Evolution of Earth's Lower <span class="hlt">Mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bull, Abigail; Shephard, Grace; Torsvik, Trond</p> <p>2016-04-01</p> <p>Understanding the complex structure, dynamics and evolution of the deep <span class="hlt">mantle</span> is a fundamental goal in solid Earth geophysics. Close to the core-<span class="hlt">mantle</span> boundary, seismic images reveal a <span class="hlt">mantle</span> characterised by (1) higher than average shear wave speeds beneath Asia and encircling the Pacific, consistent with sub ducting lithosphere beneath regions of ancient subduction, and (2) large regions of anomalously low seismic wavespeeds beneath Africa and the Central Pacific. The anomalously slow areas are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. The origin, composition and long-term evolution of the LLSVPs remain enigmatic. Geochemical inferences of multiple chemical reservoirs at depth, strong seismic contrasts, increased density, and an anticorrelation of shear wave velocity to bulk sound velocity in the anomalous regions imply that heterogeneities in both temperature and composition may be required to explain the seismic observations. Consequently, heterogeneous <span class="hlt">mantle</span> models place the anomalies into the context of thermochemical piles, characterised by an anomalous component whose intrinsic density is a few percent higher relative to that of the surrounding <span class="hlt">mantle</span>. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale <span class="hlt">mantle</span> convection. One end member scenario suggests that the LLSVPs are relatively mobile features over short timescales and thus are strongly affected by supercontinent cycles and Earth's plate motion history. In this scenario, the African LLSVP formed as a result of return flow in the <span class="hlt">mantle</span> due to circum-Pangean subduction (~240 Ma), contrasting a much older Pacific LLSVP, which may be linked to the Rodinia supercontinent and is implied to have remained largely unchanged since Rodinian breakup (~750-700 Ma). This propounds that Earth's plate motion history plays a controlling role in LLSVP development, suggesting that the location</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9200V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9200V"><span>Tectonic evolution and <span class="hlt">mantle</span> structure of the Caribbean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus</p> <p>2013-04-01</p> <p>In the broad context of investigating the relationship between deep structure & processes and surface expressions, we study the Caribbean plate and underlying <span class="hlt">mantle</span>. We investigate whether predictions of <span class="hlt">mantle</span> structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P-wave velocity structure under the Caribbean region. In the upper <span class="hlt">mantle</span>, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser-Antilles slab consists of a northern and southern anomaly, separated by a low velocity anomaly across most of the upper <span class="hlt">mantle</span>, which we interpret as the subducted North-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northern boundary. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper <span class="hlt">mantle</span>, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower <span class="hlt">mantle</span> two large anomaly patterns are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930045548&hterms=Honda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DHonda','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930045548&hterms=Honda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DHonda"><span>Three-dimensional instabilities of <span class="hlt">mantle</span> convection with multiple phase transitions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Honda, S.; Yuen, D. A.; Balachandar, S.; Reuteler, D.</p> <p>1993-01-01</p> <p>The effects of multiple phase transitions on <span class="hlt">mantle</span> convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of <span class="hlt">mantle</span> material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower <span class="hlt">mantle</span>. This process promotes a massive exchange between the lower and upper <span class="hlt">mantles</span> and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1410120-radiative-conductivity-abundance-post-perovskite-lowermost-mantle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1410120-radiative-conductivity-abundance-post-perovskite-lowermost-mantle"><span>Radiative conductivity and abundance of post-perovskite in the lowermost <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu</p> <p></p> <p>Thermal conductivity of the lowermost <span class="hlt">mantle</span> governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure–temperature conditions of Earth's core–<span class="hlt">mantle</span> boundary. Here we determine the radiative conductivity of post-perovskite at near core–<span class="hlt">mantle</span> boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (~1.1 W/m/K) is almost two times smaller than that of bridgmanite (~2.0 W/m/K) at the base of the <span class="hlt">mantle</span>. By combining this result with the present-day core–<span class="hlt">mantle</span> heat flow and availablemore » estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost <span class="hlt">mantle</span> which has profound implications for the dynamics of the deep Earth.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4421820','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4421820"><span>Low-buoyancy thermochemical plumes resolve controversy of classical <span class="hlt">mantle</span> plume concept</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dannberg, Juliane; Sobolev, Stephan V.</p> <p>2015-01-01</p> <p>The Earth's biggest magmatic events are believed to originate from massive melting when hot <span class="hlt">mantle</span> plumes rising from the lowermost <span class="hlt">mantle</span> reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the <span class="hlt">mantle</span> after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major <span class="hlt">mantle</span> plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole <span class="hlt">mantle</span> causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper <span class="hlt">mantle</span> for 100 millions of years. PMID:25907970</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.479...43L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.479...43L"><span>Radiative conductivity and abundance of post-perovskite in the lowermost <span class="hlt">mantle</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu; Goncharov, Alexander F.</p> <p>2017-12-01</p> <p>Thermal conductivity of the lowermost <span class="hlt">mantle</span> governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-<span class="hlt">mantle</span> boundary. Here we determine the radiative conductivity of post-perovskite at near core-<span class="hlt">mantle</span> boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (∼1.1 W/m/K) is almost two times smaller than that of bridgmanite (∼2.0 W/m/K) at the base of the <span class="hlt">mantle</span>. By combining this result with the present-day core-<span class="hlt">mantle</span> heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost <span class="hlt">mantle</span> which has profound implications for the dynamics of the deep Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCo...6E6960D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCo...6E6960D"><span>Low-buoyancy thermochemical plumes resolve controversy of classical <span class="hlt">mantle</span> plume concept</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dannberg, Juliane; Sobolev, Stephan V.</p> <p>2015-04-01</p> <p>The Earth's biggest magmatic events are believed to originate from massive melting when hot <span class="hlt">mantle</span> plumes rising from the lowermost <span class="hlt">mantle</span> reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the <span class="hlt">mantle</span> after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major <span class="hlt">mantle</span> plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole <span class="hlt">mantle</span> causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper <span class="hlt">mantle</span> for 100 millions of years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21921159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21921159"><span>Deep <span class="hlt">mantle</span> cycling of oceanic crust: evidence from diamonds and their mineral inclusions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B</p> <p>2011-10-07</p> <p>A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the <span class="hlt">mantle</span>. Seismological studies extend this process to the lower <span class="hlt">mantle</span>, and geochemical observations indicate return of oceanic crust to the upper <span class="hlt">mantle</span> in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower <span class="hlt">mantle</span>. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-<span class="hlt">mantle</span> conditions. The inclusion mineralogies require exhumation from the lower to upper <span class="hlt">mantle</span>. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower <span class="hlt">mantle</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>