Sample records for adelanto calif general

  1. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  2. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  3. EC02-0188-22

    NASA Image and Video Library

    2002-07-12

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft.

  4. EC02-0188-18

    NASA Image and Video Library

    2002-07-12

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations.

  5. EC02-0188-19

    NASA Image and Video Library

    2002-07-12

    Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif.

  6. EC02-0188-3

    NASA Image and Video Library

    2002-07-12

    Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairingatop the upper fuselage of the Altair unmanned aerial vehicle (UAV) at General Atomics Aeronautical Systems, Inc., facility at Adelanto, Calif.

  7. 33 CFR 110.120 - San Luis Obispo Bay, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Luis Obispo Bay, Calif. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.120 San Luis Obispo Bay, Calif. (a) Area A-1. Area A-1 is the water area bounded by the San Luis Obispo County wharf, the shoreline, a line drawn...

  8. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  9. 33 CFR 334.990 - Long Beach Harbor, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Long Beach Harbor, Calif.; naval... Harbor, Calif.; naval restricted area. (a) The area. All the waters between the Navy mole and Terminal... for use by naval vessels. Permission for any person or vessel to enter the area must be obtained from...

  10. 33 CFR 334.880 - San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false San Diego Harbor, Calif.; naval....880 San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma. (a) The area. That portion... Commander, Naval Base, San Diego, Calif. (3) The regulations in this section shall be enforced by the...

  11. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Calif.; naval restricted area. 334.890 Section 334.890 Navigation and Navigable Waters CORPS OF....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the... this section shall be enforced by the Commandant, Eleventh Naval District, San Diego, California, and...

  12. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Calif.; naval restricted area. 334.890 Section 334.890 Navigation and Navigable Waters CORPS OF....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the... this section shall be enforced by the Commandant, Eleventh Naval District, San Diego, California, and...

  13. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  14. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  15. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted area. All...

  16. 33 CFR 334.980 - Pacific Ocean, around San Nicholas Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, around San... REGULATIONS § 334.980 Pacific Ocean, around San Nicholas Island, Calif.; naval restricted area. (a) The area—(1) Perimeter (restricted). The waters of the Pacific Ocean around San Nicholas Island, Calif...

  17. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  18. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  19. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  20. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  1. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  2. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters... be enforced by the Commander, Naval Base, San Diego, and such agencies as he/she shall designate. [50...

  3. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters... be enforced by the Commander, Naval Base, San Diego, and such agencies as he/she shall designate. [50...

  4. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Miguel Island, Calif.; naval danger zone. 334.1140 Section 334.1140 Navigation and Navigable Waters CORPS OF....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around San...

  5. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Miguel Island, Calif.; naval danger zone. 334.1140 Section 334.1140 Navigation and Navigable Waters CORPS OF....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around San...

  6. Anaglyph, Metro Los Angeles, Calif.: Malibu to Mount Baldy

    NASA Image and Video Library

    2002-02-28

    Mount San Antonio more commonly known as Mount Baldy crowns the San Gabriel Mountains northeast of Los Angeles, Calif., in this anaglyph from NASA Shuttle Radar Topography Mission. 3D glasses are necessary to view this image.

  7. First-principles study of the structural, electronic and thermal properties of CaLiF3

    NASA Astrophysics Data System (ADS)

    Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.

    2013-09-01

    Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.

  8. 33 CFR 334.880 - San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false San Diego Harbor, Calif.; naval....880 San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma. (a) The area. That portion of San Diego Bay southerly of Ballast Point, exclusive of the southwesterly portion of the restricted...

  9. 33 CFR 334.880 - San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false San Diego Harbor, Calif.; naval....880 San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma. (a) The area. That portion of San Diego Bay southerly of Ballast Point, exclusive of the southwesterly portion of the restricted...

  10. 33 CFR 334.880 - San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false San Diego Harbor, Calif.; naval....880 San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma. (a) The area. That portion of San Diego Bay southerly of Ballast Point, exclusive of the southwesterly portion of the restricted...

  11. 33 CFR 334.880 - San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false San Diego Harbor, Calif.; naval....880 San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma. (a) The area. That portion of San Diego Bay southerly of Ballast Point, exclusive of the southwesterly portion of the restricted...

  12. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Calif.; naval danger zone off West Cove. 334.960 Section 334.960 Navigation and Navigable Waters... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The... operations officer, Naval Ordnance Test Station, Pasadena Annex, Pasadena, California, will announce firing...

  13. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  14. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  15. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  16. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  17. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false San Pablo Bay, Calif.; target... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a..., Mare Island Naval Shipyard, Vallejo, California, will conduct target practice in the area at intervals...

  18. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false San Pablo Bay, Calif.; target... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a..., Mare Island Naval Shipyard, Vallejo, California, will conduct target practice in the area at intervals...

  19. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  20. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  1. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  2. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  3. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  4. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  5. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false San Diego Harbor, Calif.; restricted area. 334.870 Section 334.870 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... introduction of external magnetic field sources within the area. (ii) Craft of any size shall not be excluded...

  6. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false San Diego Harbor, Calif.; restricted area. 334.870 Section 334.870 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... introduction of external magnetic field sources within the area. (ii) Craft of any size shall not be excluded...

  7. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false San Diego Harbor, Calif.; restricted area. 334.870 Section 334.870 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... introduction of external magnetic field sources within the area. (ii) Craft of any size shall not be excluded...

  8. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  9. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false San Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 San Diego Harbor... the Pacific Ocean in North San Diego Bay in an area extending from the western boundary of North...

  10. NASA MISR Instrument Captures View of Mountain Fire Near Idyllwild, Calif.

    NASA Image and Video Library

    2013-07-20

    NASA Terra spacecraft passed over the Mountain Fire near Idyllwild, Calif., on Jul. 17, 2013. Los Angeles and the Pacific Ocean can been seen to the left and the Salton Sea is the dark feature in the right center of the image.

  11. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of San Clemente Island, Calif.; naval restricted area. 334.920 Section 334.920 Navigation and... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval... vessels, other than Naval Ordnance Test Station craft, and those cleared for entry by the Naval Ordnance...

  12. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The area. All of the waters of Camp Pendleton Boat...

  13. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The area. All of the waters of Camp Pendleton Boat...

  14. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The area. All of the waters of Camp Pendleton Boat...

  15. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The area. All of the waters of Camp Pendleton Boat...

  16. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The area. All of the waters of Camp Pendleton Boat...

  17. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  18. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  19. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  20. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  1. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  2. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  3. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  4. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  5. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  6. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  7. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  8. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  9. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  10. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  11. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  12. Perspective View, SRTM / Landsat, Los Angeles, Calif

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Los Angeles, Calif., is one of the world's largest metropolitan areas with a population of about 15 million people. The urban areas mostly cover the coastal plains and lie within the inland valleys. The intervening and adjacent mountains are generally too rugged for much urban development. This in large part because the mountains are 'young', meaning they are still building (and eroding) in this seismically active (earthquake prone) region.

    Earthquake faults commonly lie between the mountains and the lowlands. The San Andreas fault, the largest fault in California, likewise divides the very rugged San Gabriel Mountains from the low-relief Mojave Desert, thus forming a straight topographic boundary between the top center and lower right corner of the image. We present two versions of this perspective image from NASA's Shuttle Radar Topography Mission (SRTM): one with and one without a graphic overlay that maps faults that have been active in Late Quaternary times (white lines). The fault database was provided by the U.S. Geological Survey.

    For the annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large image: 2 mB jpeg)

    The Landsat image used here was acquired on May 4, 2001, about seven weeks before the summer solstice, so natural terrain shading is not particularly strong. It is also not especially apparent given a view direction (northwest) nearly parallel to the sun illumination (shadows generally fall on the backsides of mountains). Consequently, topographic shading derived from the SRTM elevation model was added to the Landsat image, with a false sun illumination from the left (southwest). This synthetic shading enhances the appearance of the topography.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and

  13. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  14. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  15. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  16. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  17. 33 CFR 334.930 - Anaheim Bay Harbor, Calif.; Naval Weapons Station, Seal Beach.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Weapons Station, Seal Beach. 334.930 Section 334.930 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay Harbor, Calif.; Naval Weapons Station, Seal Beach. (a) The restricted area. The water of Anaheim Bay Harbor between the east and west jetties at the United States Naval Weapons Station, Seal Beach...

  18. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as follows...

  19. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as follows...

  20. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as follows...

  1. 33 CFR 334.860 - San Diego Bay, Calif., Naval Amphibious Base; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false San Diego Bay, Calif., Naval..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.860 San Diego... Middle San Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...

  2. 33 CFR 334.860 - San Diego Bay, Calif., Naval Amphibious Base; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false San Diego Bay, Calif., Naval..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.860 San Diego... Middle San Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...

  3. 33 CFR 334.860 - San Diego Bay, Calif.; Naval Amphibious Base; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false San Diego Bay, Calif.; Naval..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.860 San Diego... Middle San Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...

  4. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... practice area, Mare Island Naval Shipyard, Vallejo. 334.1160 Section 334.1160 Navigation and Navigable... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a) The danger zone. A sector in San Pablo Bay adjacent to the westerly shore of Mare Island with a radius...

  5. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... practice area, Mare Island Naval Shipyard, Vallejo. 334.1160 Section 334.1160 Navigation and Navigable... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a) The danger zone. A sector in San Pablo Bay adjacent to the westerly shore of Mare Island with a radius...

  6. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... practice area, Mare Island Naval Shipyard, Vallejo. 334.1160 Section 334.1160 Navigation and Navigable... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a) The danger zone. A sector in San Pablo Bay adjacent to the westerly shore of Mare Island with a radius...

  7. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...

  8. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...

  9. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...

  10. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...

  11. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...

  12. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of San...

  13. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of San...

  14. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of San...

  15. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of San...

  16. Technician Dave Brown installs a drilling template during construction of the all-composite left win

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  17. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  18. Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the upper fuselage of the Altair unmanned aerial vehicle (UAV) at General Atomics Aeronautical Systems, Inc., facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  19. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  20. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  1. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  2. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from the...

  3. 33 CFR 334.940 - Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...

  4. 33 CFR 334.940 - Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...

  5. 33 CFR 334.940 - Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...

  6. 33 CFR 334.940 - Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...

  7. 33 CFR 334.940 - Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...

  8. The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV) will be able to carry up

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV), shown here during final construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., will be able to carry up to 700 lbs. of sensors, imaging equipment and other instruments for Earth science missions. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  9. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  10. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  11. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  12. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  13. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  14. VANDENBERG AFB, CALIF. - The mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., rolls back from the Delta II rocket that will launch the Gravity Probe B experiment. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., rolls back from the Delta II rocket that will launch the Gravity Probe B experiment. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  15. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  16. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  17. VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  18. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  19. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  20. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  1. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  2. Perspective View with Landsat Overlay, Sacramento, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    California's state capitol, Sacramento, can be seen clustered along the American and Sacramento Rivers in this computer-generated perspective viewed from the west. Folsom Lake is in the center and the Sierra Nevada is above, with the edge of Lake Tahoe just visible at top center.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 38.6 deg. North lat., 121.3 deg. West lon. Orientation: looking east Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  3. A coccidioidomycosis outbreak following the Northridge, Calif, earthquake

    USGS Publications Warehouse

    Schneider, E.; Hajjeh, R.A.; Spiegel, R.A.; Jibson, R.W.; Harp, E.L.; Marshall, G.A.; Gunn, R.A.; McNeil, M.M.; Pinner, R.W.; Baron, R.C.; Burger, R.C.; Hutwagner, L.C.; Crump, C.; Kaufman, L.; Reef, S.E.; Feldman, G.M.; Pappagianis, D.; Werner, S.B.

    1997-01-01

    Objective. - To describe a coccidioidomycosis outbreak in Ventura County following the January 1994 earthquake, centered in Northridge, Calif, and to identify factors that increased the risk for acquiring acute coccidioidomycosis infection. Design. - Epidemic investigation, population- based skin test survey, and case-control study. Setting. - Ventura County, California. Results. - In Ventura County, between January 24 and March 15, 1994, 203 outbreak-associated coccidioidomycosis cases, including 3 fatalities, were identified (attack rate [AR], 30 cases per 100 000 population). The majority of cases (56%) and the highest AR (114 per 100 000 population) occurred in the town of Simi Valley, a community located at the base of a mountain range that experienced numerous landslides associated with the earthquake. Disease onset for cases peaked 2 weeks after the earthquake. The AR was 2.8 times greater for persons 40 years of age and older than for younger persons (relative risk, 2.8; 95% confidence interval [CI], 2.1-3.7; P<.001). Environmental data indicated that large dust clouds, generated by landslides following the earthquake and strong aftershocks in the Santa Susana Mountains north of Simi Valley, were dispersed into nearby valleys by northeast winds. Simi Valley case-control study data indicated that physically being in a dust cloud (odds ratio, 3.0; 95% CI, 1.6-5.4; P<.001) and time spent in a dust cloud (P<.001) significantly increased the risk for being diagnosed with acute coccidioidomycosis. Conclusions. - Both the location and timing of cases strongly suggest that the coccidioidomycosis outbreak in Ventura County was caused when arthrospores were spread in dust clouds generated by the earthquake. This is the first report of a coccidioidomycosis outbreak following an earthquake. Public and physician awareness, especially in endemic areas following similar dust cloud- generating events, may result in prevention and early recognition of acute

  4. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  5. VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  6. VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. Perspective View with Landsat Overlay, Mount Shasta, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At more than 4,300 meters (14,000 feet ), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. This computer-generated perspective viewed from the west also includes Shastina, a slightly smaller volcanic cone left of Shasta's summit and Black Butte, another volcano in the right foreground.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Size: scale varies in this perspective image Location: 41.4 deg. North lat., 122.3 deg. West lon. Orientation: looking east Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond

  8. Perspective View with Landsat Overlay, Palm Springs, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The city of Palm Springs nestles at the base of Mount San Jacinto in this computer-generated perspective viewed from the east. The many golf courses in the area show up as irregular green areas while the two prominent lines passing through the middle of the image are Interstate 10 and the adjacent railroad tracks. The San Andreas Fault passes through the middle of the sandy Indio Hills in the foreground.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Size: scale varies in this perspective image Location: 33.8 deg. North lat., 116.3 deg. West lon. Orientation: looking west Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond

  9. Perspective View with Landsat Overlay, San Diego, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The influence of topography on the growth of the city of San Diego is seen clearly in this computer-generated perspective viewed from the south. The Peninsular Ranges to the east of the city have channeled development of the cities of La Mesa and El Cajon, above the center. San Diego itself clusters around the bay enclosed by Point Loma and Coronado Island. In the mountains to the right, Lower Otay Lake and Sweetwater Reservoir are the dark patches.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 32.6 deg. North lat., 117.1 deg. West lon. Orientation: looking north Image Data: Landsat Bands 3, 2, 1 as red, green, blue

  10. Stratigraphic and structural characterization of the OU-1 area at the former George Air Force Base, Adelanto, Southern California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.

    2001-01-01

    The former George Air Force Base (GAFB), now known as the Southern California Logistics Airport (SCLA), is located in the town of Adelanto, approximately 100 km northeast of Los Angeles, California (Fig. 1). In this report, we present acquisition parameters, data, and interpretations of seismic images that were acquired in the OU-1 area of GAFB during July 1999 (Fig. 2). GAFB is scheduled for conversion to civilian use, however, during its years as an Air Force base, trichlorethylene (TCE) was apparently introduced into the subsurface as a result of spills during normal aircraft maintenance operations. To comply with congressional directives, TCE contaminant removal has been ongoing since the early-tomid 1990s. However, only a small percentage of the TCE believed to have been introduced into the subsurface has been recovered, due largely to difficulty in locating the TCE within the subsurface. Because TCE migrates within the subsurface by ground water movement, attempts to locate the TCE contaminants in the subsurface have employed an array of ground-water monitoring and extraction wells. These wells primarily sample within a shallow-depth (~40 m) aquifer system. Cores obtained from the monitoring and extraction wells indicate that the aquifer, which is composed of sand and gravel channels, is bounded by aquitards composed largely of clay and other fine-grained sediments. Based on well logs, the aquifer is about 3 to 5 m thick along the seismic profiles. A more thorough understanding of the lateral variations in the depth and thickness of the aquifer system may be a key to finding and removing the remaining TCE. However, due to its complex depositional and tectonic history, the structural and stratigraphic sequences are not easily characterized. An indication of the complex nature of the structure and stratigraphy is the appreciable variation in stratigraphic sequences observed in some monitoring wells that are only a few tens of meters apart. To better

  11. Perspective View with Landsat Overlay, Mount Shasta, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 41.4 degrees North latitude, 122.3 degrees West longitude Orientation: looking southeast Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet) Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  12. VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg Air Force Base, Calif., the Pegasus launch vehicle is moved toward its hangar. The Pegasus will carry the SciSat-1 spacecraft in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg Air Force Base, Calif., the Pegasus launch vehicle is moved toward its hangar. The Pegasus will carry the SciSat-1 spacecraft in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  13. VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg AFB, Calif., a solar array is installed on the SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-29

    VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg AFB, Calif., a solar array is installed on the SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  14. Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question

    NASA Image and Video Library

    2003-07-15

    Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.

  15. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 spacecraft is revealed at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 spacecraft is revealed at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  16. VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg AFB, Calif., a solar array is tested before installing on the SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-29

    VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg AFB, Calif., a solar array is tested before installing on the SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  17. VANDENBERG AIR FORCE BASE, CALIF.- The cover is being lifted off SciSat-1 spacecraft at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF.- The cover is being lifted off SciSat-1 spacecraft at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  18. Perspective View with Landsat Overlay, San Francisco Bay Area, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The defining landmarks of San Francisco, its bay and the San Andreas Fault are clearly seen in this computer-generated perspective viewed from the south. Running from the bottom of the scene diagonally up to the left, the trough of the San Andreas Fault is occupied by Crystal Springs Reservoir and San Andreas Lake. Interstate 280 winds along the side of the fault. San Francisco International Airport is the angular feature projecting into the bay just below San Bruno Mountain, the elongated ridge cutting across the peninsula. The hills of San Francisco can be seen beyond San Bruno Mountain and beyond the city, the Golden Gate.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D

  19. VANDENBERG AIR FORCE BASE, CALIF.- At Vandenberg Air Force Base, Calif., spacecraft functional testing is underway on the SciSat-1. The solar arrays are being attached and the communications systems are also being checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-12

    VANDENBERG AIR FORCE BASE, CALIF.- At Vandenberg Air Force Base, Calif., spacecraft functional testing is underway on the SciSat-1. The solar arrays are being attached and the communications systems are also being checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  20. VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg Air Force Base, Calif. a covered SciSat-1 spacecraft is lifted onto a rotation stand. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-29

    VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg Air Force Base, Calif. a covered SciSat-1 spacecraft is lifted onto a rotation stand. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  1. VANDENBERG AIR FORCE BASE, CALIF.- A covered SciSat-1 spacecraft sits on a test stand at Vandenberg Air Force Base, Calif. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-29

    VANDENBERG AIR FORCE BASE, CALIF.- A covered SciSat-1 spacecraft sits on a test stand at Vandenberg Air Force Base, Calif. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  2. Perspective View with Landsat Overlay, San Francisco Bay Area, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

    Size: scale varies in this perspective image Location: 37.5 deg. North lat., 122.3 deg. West lon. Orientation: looking west Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  3. VANDENBERG AIR FORCE BASE, CALIF.- The covered SciSat-1 spacecraft is lowered onto a test stand at Vandenberg Air Force Base, Calif., for functional testing. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-29

    VANDENBERG AIR FORCE BASE, CALIF.- The covered SciSat-1 spacecraft is lowered onto a test stand at Vandenberg Air Force Base, Calif., for functional testing. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  4. Rep. Ken Calvert, R-Calif., chairman of the House Subcommittee on Space and Aeronautics, was briefed by X-43A engineer Laurie Grindle during his tour of Dryden

    NASA Image and Video Library

    2005-06-02

    Rep. Ken Calvert, (R-Calif.), chairman of the House Subcommittee on Space and Aeronautics, received an update on the mission of NASA's Dryden Flight Research Center during a visit on June 2, 2005. Rep. Calvert, accompanied by several staff members, was briefed by center management on the Dryden's role as a flight research institution, and then reviewed some of the center's recent, current and upcoming flight research projects during a tour of the facility. During the afternoon, Rep. Calvert received similar briefings on a variety of projects at several aerospace development firms at the Civilian Flight Test Center in Mojave. Rep. Calvert's tour of NASA Dryden was the second in a series of visits to all 10 NASA field centers to better acquaint him with the roles and responsibilities of each center.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, P.L.

    As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at themore » Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)« less

  6. VANDENBERG AIR FORCE BASE, CALIF. - Outside the clean room at Vandenberg Air Force Base, Calif., the SciSat-1 spacecraft (background) has been removed from the shipping container mounting base (lower left) and placed on the handling fixture. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF. - Outside the clean room at Vandenberg Air Force Base, Calif., the SciSat-1 spacecraft (background) has been removed from the shipping container mounting base (lower left) and placed on the handling fixture. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  7. 1. Historic American Buildings Survey V. Covert Martin Collection, Stockton, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey V. Covert Martin Collection, Stockton, Calif. Original: 1925 Re- photo: April, 1940 GENERAL VIEW - Gravestones, North Branch Cemetery, Altaville, Calaveras County, CA

  8. VANDENBERG AFB, CALIF. - Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  9. Perspective View with Landsat Overlay, Metro Los Angeles, Calif.: Malibu to Mount Baldy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    , the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: View width 26 kilometers (16 miles), View distance 85 kilometers (53 miles) Location: 34.2 deg. North lat., 118.2 deg. West lon. Orientation: View east-northeast, 3 degrees below horizontal Image Data: Landsat Bands 3, 2+4, 1 as red, green, blue, respectively, sharpened with Band 8 panchromatic detail Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 30 meters color plus 15 meters sharpening (98 and 49 feet, respectively) Date Acquired: February 2000 (SRTM) 20 September 1999 (Landsat)

  10. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli

    DTIC Science & Technology

    1984-01-01

    Classical Enteropathogenic (Serotyped) Escherichia coli Strains of Proven Pathogenicity. Infect. Immun. 38:798-801, 1982. 8. Levine, M.M. Vacunas Contra...Microbiol., 18:808-815, 1983. 8 15. Levine, M.M., Lanata, C. Progresos en Vacunas Contra Diarrea Bacteriana. Adelantos Microbiol. Enferm. Inf., 2:67-117

  11. 27 CFR 9.197 - Clements Hills.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., photoinspected 1978; (2) Lockeford, Calif., 1968, photorevised 1979, minor revision 1993; (3) Clements, Calif., 1968, minor revision 1993; (4) Wallace, Calif., 1962; (5) Valley Springs SW., Calif., 1962, photoinspected 1973; and (6) Linden, Calif., 1968, minor revision 1993. (c) Boundary. The Clements Hills...

  12. NASA's B377SGT Super Guppy Turbine cargo aircraft touches down at Edwards Air Force Base, Calif. on

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's B377SGT Super Guppy Turbine cargo aircraft touches down at Edwards Air Force Base, Calif. on June 11, 2000 to deliver the latest version of the X-38 flight test vehicle to NASA's Dryden Flight Research Center. The B-377SGT Super Guppy Turbine evolved from the 1960s-vintage Pregnant Guppy, Mini Guppy and Super Guppy, used for transporting sections of the Saturn rocket used for the Apollo program moon launches and other outsized cargo. The various Guppies were modified from 1940's and 50's-vintage Boeing Model 377 and C-97 Stratocruiser airframes by Aero Spacelines, Inc., which operated the aircraft for NASA. NASA's Flight Research Center assisted in certification testing of the first Pregnant Guppy in 1962. One of the turboprop-powered Super Guppies, built up from a YC-97J airframe, last appeared at Dryden in May, 1976 when it was used to transport the HL-10 and X-24B lifting bodies from Dryden to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. NASA's present Super Guppy Turbine, the fourth and last example of the final version, first flew in its outsized form in 1980. It and its three sister ships were built in the 1970s for Europe's Airbus Industrie to ferry outsized structures for Airbus jetliners to the final assembly plant in Toulouse, France. It later was acquired by the European Space Agency, and then acquired by NASA in late 1997 for transport of large structures for the International Space Station to the launch site. It replaced the earlier-model Super Guppy, which has been retired and is used for spare parts. NASA's Super Guppy Turbine carries NASA registration number N941NA, and is based at Ellington Field near the Johnson Space Center. For more information on NASA's Super Guppy Turbine, log onto the Johnson Space Center Super Guppy web page at http://spaceflight.nasa.gov/station/assembly/superguppy/

  13. VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  14. Methemoglobin Levels in Generally Anesthetized Pediatric Dental Patients Receiving Prilocaine Versus Lidocaine

    PubMed Central

    Gutenberg, Lauren L.; Chen, Jung-Wei; Trapp, Larry

    2013-01-01

    The purpose of this study was to measure and compare peak methemoglobin levels and times to peak methemoglobin levels following the use of prilocaine and lidocaine in precooperative children undergoing comprehensive dental rehabilitation under general anesthesia. Ninety children, 3–6 years of age, undergoing dental rehabilitation under general anesthesia were enrolled and randomly assigned into 3 equal groups: group 1, 4% prilocaine plain, 5 mg/kg; group 2, 2% lidocaine with 1 : 100,000 epinephrine, 2.5 mg/kg; and group 3, no local anesthetic. Subjects in groups 1 and 2 were administered local anesthetic prior to restorative dental treatment. Methemoglobin levels (SpMET) were measured and recorded throughout the procedure using a Masimo Radical-7 Pulse Co-Oximeter (Masimo Corporation, Irvine, Calif, RDS-1 with SET software with methemoglobin interface). Data were analyzed using chi-square, one-way analysis of variance (ANOVA), and Pearson correlation (significance of P < .05). Group 1 had a significantly higher mean peak SpMET level at 3.55% than groups 2 and 3 at 1.63 and 1.60%, respectively. The mean time to peak SpMET was significantly shorter for group 3 at 29.50 minutes than that of group 1 at 62.73 and group 2 at 57.50 minutes. Prilocaine, at 5 mg/kg in pediatric dental patients, resulted in significantly higher peak SpMET levels than lidocaine and no local anesthetic. In comparison to no local anesthetic, the administration of prilocaine and lidocaine caused peak SpMET levels to occur significantly later in the procedure. PMID:24010987

  15. Numerical simulation of separated flows. Ph.D. Thesis - Stanford Univ., Calif.

    NASA Technical Reports Server (NTRS)

    Spalart, P. R.; Leonard, A.; Baganoff, D.

    1983-01-01

    A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced.

  16. VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  17. Annual Report of the Chief of Engineers, U.S. Army on Civil Works Activities 1955. Volume 1

    DTIC Science & Technology

    1956-01-10

    Perry Co)lllty Drainage and Levee Districts, Nos. 1, 2 and 3, Mo. Pine Flat Reservoir, Calif...279, 000 Folsom,, Calif ____ ---------------------------------- ___ ------- Pine Flat; Calif... Plymouth Harbor, Mass ______________ _ Pollock Rip Shoals, Nantucket .Souud, 215,336 1 28,207 Mass

  18. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  19. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  20. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  1. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  2. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  3. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  4. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  7. KSC-03PD-2879

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., rolls back from the Delta II rocket that will launch the Gravity Probe B experiment. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  8. KSC-03PD-2869

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  9. ED07-0138-04

    NASA Image and Video Library

    2007-06-23

    NASA's Ikhana unmanned science demonstration aircraft, a civil variant of General Atomics' Predator B, on the runway at Edwards Air Force Base after its ferry flight to NASA's Dryden Flight Research Center. NASA took possession of the new aircraft in November, 2006, and it arrived at the NASA center at Edwards Air Force Base, Calif., on June 23, 2007.

  10. KSC-03PD-2872

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  11. KSC-03PD-2874

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  12. KSC-03PD-2870

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  13. KSC-03PD-2871

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  14. KSC-03PD-2883

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  15. KSC-03PD-2878

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  16. KSC-03PD-2885

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  17. KSC-03PD-2884

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  18. KSC-03PD-2882

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  19. Guiberson Fire, Ventura County, Calif.

    NASA Image and Video Library

    2009-10-02

    The Guiberson Fire in Ventura County, west of Los Angeles, burned more than 16,000 acres 25 square miles before firefighters were able to contain the blaze on Sept. 28, 2009. This image was acquired by NASA Terra spacecraft.

  20. KSC-04pd0940

    NASA Image and Video Library

    2004-04-20

    KENNEDY SPACE CENTER, FLA. - The Gravity Probe B spacecraft, atop a Boeing Delta II vehicle, launches at 12:57:24 p.m. EDT from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. Gravity Probe B is the relativity gyroscope experiment being developed by NASA and Stanford University to test two extraordinary, unverified predictions of Albert Einstein's general theory of relativity.

  1. KSC-04PD-0940

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The Gravity Probe B spacecraft, atop a Boeing Delta II vehicle, launches at 12:57:24 p.m. EDT from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. Gravity Probe B is the relativity gyroscope experiment being developed by NASA and Stanford University to test two extraordinary, unverified predictions of Albert Einstein's general theory of relativity.

  2. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations, the danger zone will be open to fishing and general navigation. Bomb drops between designated... zone during a scheduled bomb drop period, other than those owned or operated by the U.S. Government, shall proceed across the zone by the most direct route and clear the area as soon as possible. When bomb...

  3. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  4. VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-10

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  7. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  8. KSC-03PD-2875

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  9. KSC-03PD-2873

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  10. KSC-03PD-2886

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  11. KSC-03PD-2887

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  12. KSC-03PD-2889

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rockets second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  13. KSC-03PD-2876

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  14. KSC-2013-4483

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – An Erickson Sky Crane helicopter lands in Morro Bay, Calif., in preparation for the test of the SpaceX Dragon test article. The test enables SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place at Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4484

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – An Erickson Sky Crane helicopter lands in Morro Bay, Calif., in preparation for the test of the SpaceX Dragon test article. The test enables SpaceX engineers to evaluate the spacecraft's parachute deploymentsystem as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place at Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  16. The Shock and Vibration Digest, Volume 4, Number 5, May 1972.

    DTIC Science & Technology

    1972-05-01

    capability to solve real-time on aircraft noise, its generation instrumentation problems found effects and control will be sur- In manufacturing plants...annoyance. Noise measurements indicate that the same manufacturing plantisto machine the the respondents, in general, properly identify modified... Manufacturing 1W San Diego, Calif. A. J. Favrata, SAE iiq. Meeting, SAE Internaional Conference on Noise Control Engineering, INCE 4-6 Wanington, D. C. Mi. .f

  17. Data Collection Methods. Semi-Structured Interviews and Focus Groups

    DTIC Science & Technology

    2009-01-01

    erence. For example, consider the dif- ferences between informants, subjects, respondents, and actors.3 Bernard (2000) notes that anthropology generally...Cohesion, and Morale, Santa Monica, Calif.: RAND Corporation, MR-896-OSD, 1997; and Margaret C. Harrell, Laura Werber Castaneda, Peter Schirmer, Bryan...not divulging “secrets” if the researcher already knows ( Bernard , 2002). There are a couple of potential problems with probes for which the

  18. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  19. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  20. 50 CFR 216.50 - Importation at designated ports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., designated ports of entry for the United States are: New York, N.Y. Miami, Fla. Chicago, Ill. San Francisco, Calif. Los Angeles, Calif. New Orleans, La. Seattle, Wash. Honolulu, Hi. (c) Additionally, marine...

  1. 27 CFR 9.107 - Lodi.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (Photorevised 1987); (3) Peters, CA 1952 (Photorevised 1968); (4) Stockton East, Calif. 1968 (Photorevised 1987... through the Peters, CA map, and ending on the Stockton East, Calif. map); (3) Then proceed north along...

  2. 27 CFR 9.150 - Cucamonga Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., photorevised 1981; (10) Corona North, Calif., 1967, photorevised 1981. (c) Boundary. The Cucamonga Valley... it ends at Limonite Avenue in the northeast corner of the Corona North, Calif., U.S.G.S. map; (14...

  3. 27 CFR 9.150 - Cucamonga Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., photorevised 1981; (10) Corona North, Calif., 1967, photorevised 1981. (c) Boundary. The Cucamonga Valley... it ends at Limonite Avenue in the northeast corner of the Corona North, Calif., U.S.G.S. map; (14...

  4. 27 CFR 9.150 - Cucamonga Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., photorevised 1981; (10) Corona North, Calif., 1967, photorevised 1981. (c) Boundary. The Cucamonga Valley... it ends at Limonite Avenue in the northeast corner of the Corona North, Calif., U.S.G.S. map; (14...

  5. 27 CFR 9.150 - Cucamonga Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., photorevised 1981; (10) Corona North, Calif., 1967, photorevised 1981. (c) Boundary. The Cucamonga Valley... it ends at Limonite Avenue in the northeast corner of the Corona North, Calif., U.S.G.S. map; (14...

  6. 27 CFR 9.150 - Cucamonga Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., photorevised 1981; (10) Corona North, Calif., 1967, photorevised 1981. (c) Boundary. The Cucamonga Valley... it ends at Limonite Avenue in the northeast corner of the Corona North, Calif., U.S.G.S. map; (14...

  7. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Brownsville, Tex., Hoboken, N.J., Honolulu, Hawaii, Jamaica, L.I., N.Y., Laredo, Tex., Miami, Fla., New Orleans, La., San Francisco, Calif., San Juan, P.R., San Pedro, Calif., or Seattle, Wash., as may be...

  8. A Generalization of Generalized Fibonacci and Generalized Pell Numbers

    ERIC Educational Resources Information Center

    Abd-Elhameed, W. M.; Zeyada, N. A.

    2017-01-01

    This paper is concerned with developing a new class of generalized numbers. The main advantage of this class is that it generalizes the two classes of generalized Fibonacci numbers and generalized Pell numbers. Some new identities involving these generalized numbers are obtained. In addition, the two well-known identities of Sury and Marques which…

  9. 27 CFR 9.184 - Trinity Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Provisional Edition 1986; (2) Whisky Bill Peak, Calif. Provisional Edition 1986; (3) Damnation Peak, Calif...) Proceed due east on township line T37N/T36N onto the Whisky Bill Peak, California quadrangle map to the...

  10. 27 CFR 9.184 - Trinity Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Provisional Edition 1986; (2) Whisky Bill Peak, Calif. Provisional Edition 1986; (3) Damnation Peak, Calif...) Proceed due east on township line T37N/T36N onto the Whisky Bill Peak, California quadrangle map to the...

  11. 27 CFR 9.200 - Mokelumne River.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved maps. The seven United States Geological Survey, 1:24,000 scale, topographic... South, Calif., 1968, photorevised 1976; (2) Terminous, Calif., 1978, minor revision 1993; (3) Thornton... Quadrangle); then (2) Proceed southeast (upstream) 5 miles along the meandering Mokelumne River to its...

  12. 27 CFR 9.200 - Mokelumne River.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significance. (b) Approved maps. The seven United States Geological Survey, 1:24,000 scale, topographic... South, Calif., 1968, photorevised 1976; (2) Terminous, Calif., 1978, minor revision 1993; (3) Thornton... Quadrangle); then (2) Proceed southeast (upstream) 5 miles along the meandering Mokelumne River to its...

  13. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descending from a flight over Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  14. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descends towards the Navy's Pacific Missile Range Facility, Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  15. KSC-2014-2734

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling ceremony. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  16. The Coast Artillery Journal. Volume 64, Number 2, February 1926

    DTIC Science & Technology

    1926-02-01

    San Franeisro. Calif . ................. ,11 , •••••••••••••• ,." ,1,.,111,.,1111111, ••••• 11•• ’ ••• 11,.,1,.,11, ••••• 11•••• ,11’ •• 11...Inspector General, Major General Jose F. Uriburu, is preparing plans for maneuvers on a large scale to take place in October in the Province of Cordoba ...in Cordoba . The maneuvers "Will take place between October 15 and November 15, the first ten days being devoted to the concentration of troops, and

  17. KSC-2014-2727

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - HAWTHORNE, Calif. - SpaceX CEO and founder Elon Musk unveils the Dragon V2 during a ceremony for the new spacecraft inside SpaceX headquarters in Hawthorne, Calif. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  18. Defense.gov - Special Report: Travels with Lynn

    Science.gov Websites

    social media. Story Simulation Center Provides Taste of Combat MARINE CORPS BASE CAMP PENDELTON, Calif Force's battle simulation center at Marine Corps Base Camp Pendleton, Calif. Story 'Adaptable' U.S. Troops Visits Vandenberg Air Force Base and Los Angeles Lynn Visits Navy and Marine Bases About This Site DoD

  19. Calif. Puts Spotlight on Long-Term ELLs

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2012-01-01

    California is poised to become the first state to unmask the extent to which English-language learners (ELLs) languish in public schools for years without ever reaching fluency. Under a measure that received broad, bipartisan support from the legislature, the state education department would be required to break out and report data annually on…

  20. Calif. Laws Shift Gears on Algebra, Textbooks

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2012-01-01

    New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…

  1. 33 CFR 110.91 - Mission Bay, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... San Diego Park and Recreation Department pursuant to local ordinances. (b) Area M-2. In Santa Barbara... the placing of temporary moorings in this area is exercised by the City of San Diego Park and... placing of temporary moorings in this area is exercised by the City of San Diego Park and Recreation...

  2. 33 CFR 110.91 - Mission Bay, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... San Diego Park and Recreation Department pursuant to local ordinances. (b) Area M-2. In Santa Barbara... the placing of temporary moorings in this area is exercised by the City of San Diego Park and... placing of temporary moorings in this area is exercised by the City of San Diego Park and Recreation...

  3. 33 CFR 110.91 - Mission Bay, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... San Diego Park and Recreation Department pursuant to local ordinances. (b) Area M-2. In Santa Barbara... the placing of temporary moorings in this area is exercised by the City of San Diego Park and... placing of temporary moorings in this area is exercised by the City of San Diego Park and Recreation...

  4. 33 CFR 110.91 - Mission Bay, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... San Diego Park and Recreation Department pursuant to local ordinances. (b) Area M-2. In Santa Barbara... the placing of temporary moorings in this area is exercised by the City of San Diego Park and... placing of temporary moorings in this area is exercised by the City of San Diego Park and Recreation...

  5. 33 CFR 110.91 - Mission Bay, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... San Diego Park and Recreation Department pursuant to local ordinances. (b) Area M-2. In Santa Barbara... the placing of temporary moorings in this area is exercised by the City of San Diego Park and... placing of temporary moorings in this area is exercised by the City of San Diego Park and Recreation...

  6. KSC-2013-4518

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – An Erickson Sky Crane helicopter refuels following splash down of SpaceX Dragon test article. The test enables SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place at Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-4506

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – The SpaceX Dragon test article awaits recovery from the Pacific Ocean, off the coast of Morro Bay, Calif following splash down. The test enabled SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett

  8. KSC-2013-4504

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – The SpaceX Dragon test article splashes down following a test over the Pacific Ocean, off the coast of Morro Bay, Calif. The test enabled SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett

  9. KSC-2013-4505

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – The SpaceX Dragon test article splashes down following a test over the Pacific Ocean, off the coast of Morro Bay, Calif. The test enabled SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-2946

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket blasts off from Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., at 1:24 p.m. PDT. The Delta II successfully carried the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. Photo by Carleton Bailie, United Launch Alliance.

  11. ANALYSIS OF STORY RETELLING AS A MEASURE OF THE EFFECTS OF ETHNIC CONTENT IN STORIES. FINAL REPORT.

    ERIC Educational Resources Information Center

    BERNEY, TOMI D.; JOHN, VERA P.

    THE PURPOSE OF THE STUDY WAS TO EXAMINE THE PSYCHOLOGICAL IMPACT OF STORIES AND STORY BOOKS ON 142 PRESCHOOL CHILDREN INCLUDING 46 NEGROES (N.Y. AND CALIF.), 22 PUERTO RICANS (N.Y.), 10 MEXICANS (CALIF.), 16 SIOUX (S. DAKOTA) AND 48 NAVAJO (ARIZ. - N. MEXICO) BY MEANS OF STANDARDIZED RETELLING OF STORIES. A FURTHER AIM WAS TO DISCOVER PATTERNS OF…

  12. Altus II aircraft flying over southern California desert

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The snow-capped peak of Mt. San Antonio in the San Gabriel range is visible as the the remotely piloted Altus II flies over Southern California's high desert. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  13. Altus II aircraft flying over southern California desert

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The San Gabriel range is visible as the the remotely piloted Altus II flies over Southern California's high desert. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  14. KSC-2013-4514

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A SpaceX Dragon test article is lifted under an Erickson Sky Crane helicopter before a test to evaluate the spacecraft's parachute deployment system as part of a milestone achievement under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4491

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A SpaceX Dragon test article is lifted under an Erickson Sky Crane helicopter before a test to evaluate the spacecraft's parachute deployment system as part of a milestone achievement under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  16. KSC-2013-4516

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A SpaceX Dragon test article is lifted under an Erickson Sky Crane helicopter before a test to evaluate the spacecraft's parachute deployment system as part of a milestone achievement under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  17. KSC-2013-4515

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A SpaceX Dragon test article is lifted under an Erickson Sky Crane helicopter before a test to evaluate the spacecraft's parachute deployment system as part of a milestone achievement under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  18. KSC-2013-4485

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A crew member preps an Erickson Sky Crane helicopter for a test of the SpaceX Dragon test article. The test enables SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place at Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  19. KSC-2013-4507

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – An Erickson Sky Crane helicopter recovers the SpaceX Dragon test article following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  20. KSC-2013-4517

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A SpaceX Dragon test article is lifted under an Erickson Sky Crane helicopter before a test to evaluate the spacecraft's parachute deployment system as part of a milestone achievement under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-4490

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – A SpaceX Dragon test article is lifted under an Erickson Sky Crane helicopter before a test to evaluate the spacecraft's parachute deployment system as part of a milestone achievement under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  2. KSC-2013-4508

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – An Erickson Sky Crane helicopter recovers the SpaceX Dragon test article following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place over the Pacific Ocean, off the coast of Morro Bay, Calif. Photo credit: NASA/Kim Shiflett

  3. Reconnaissance Report on Coastal Erosion at Fort Ord, California.

    DTIC Science & Technology

    1983-12-01

    Granite Construction Company Monterey, Calif. Dr. Asbury Sallenger, Jr. U. S . Geological Survey Menlo Park, Calif. Yuchuek Hsia County of Monterey...Coastal Engineering Research Center U. S . Army Engineer Waterways Experiment Station P. 0. Box 631, Vicksburg, Miss. 39180 December 1983 Final Report...mnd Subettlo) S . TYPE OF REPORT & PERIOD COVERED RECONNAISSANCE REPORT ON COASTAL EROSION AT FORT Final Report ORD, CALIFORNIA 6. PERFORMING ORG

  4. KSC-2009-1365

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, called NOAA-N Prime, arrived by C-5A military cargo aircraft at Vandenberg Air Force Base, Calif., in preparation for a Feb. 4 launch. NOAA-N Prime, built by Lockheed Martin, is similar to NOAA-N launched on May 20, 2005.

  5. The General Factor of Personality: A General Critique.

    PubMed

    Revelle, William; Wilt, Joshua

    2013-10-01

    Recently, it has been proposed that all non-cognitive measures of personality share a general factor of personality. A problem with many of these studies is a lack of clarity in defining a general factor. In this paper we address the multiple ways in which a general factor has been identified and argue that many of these approaches find factors that are not in fact general. Through the use of artificial examples, we show that a general factor is not: The first factor or component of a correlation or covariance matrix.The first factor resulting from a bifactor rotation or biquartimin transformationNecessarily the result of a confirmatory factor analysis forcing a bifactor solution We consider how the definition of what constitutes a general factor can lead to confusion, and we will demonstrate alternative ways of estimating the general factor saturation that are more appropriate.

  6. The General Factor of Personality: A General Critique

    PubMed Central

    Revelle, William; Wilt, Joshua

    2013-01-01

    Recently, it has been proposed that all non-cognitive measures of personality share a general factor of personality. A problem with many of these studies is a lack of clarity in defining a general factor. In this paper we address the multiple ways in which a general factor has been identified and argue that many of these approaches find factors that are not in fact general. Through the use of artificial examples, we show that a general factor is not: The first factor or component of a correlation or covariance matrix.The first factor resulting from a bifactor rotation or biquartimin transformationNecessarily the result of a confirmatory factor analysis forcing a bifactor solution We consider how the definition of what constitutes a general factor can lead to confusion, and we will demonstrate alternative ways of estimating the general factor saturation that are more appropriate. PMID:23956474

  7. KSC-02PD1056

    NASA Image and Video Library

    2002-06-24

    VANDENBERG AIR FORCE BASE, CALIF. -- The National Oceanic and Atmospheric Administration (NOAA) spacecraft (NOAA-M) streaks above a cloud layer after a successful launch at 2:23 p.m. EDT aboard a Titan II rocket from Vandenberg Air Force Base, Calif. NOAA-M is another in a series of polar-orbiting Earth environmental observation satellites that provide global data to NOAA's short- and long-range weather forecasting systems

  8. The Sound of Freedom. Naval Weapons Technology at Dahlgren, Virginia, 1918-2006

    DTIC Science & Technology

    2006-01-01

    the TRINITY device, before later succeeding J. Robert Oppenheimer as the director of Los Alamos National Laboratory. Other former Dahlgren...and the Computer (Cambridge, Mass.: The MIT Press, 1999); Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE...Minutes of Advisory Council. 3. Ibid. 4. Ibid.; Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE Computer

  9. KSC-2009-1367

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, called NOAA-N Prime, is offloaded from the C-5A military cargo aircraft at Vandenberg Air Force Base, Calif., in preparation for a Feb. 4 launch. NOAA-N Prime, built by Lockheed Martin, is similar to NOAA-N launched on May 20, 2005.

  10. KSC-2009-1366

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, called NOAA-N Prime, is being offloaded from the C-5A military cargo aircraft at Vandenberg Air Force Base, Calif., in preparation for a Feb. 4 launch. NOAA-N Prime, built by Lockheed Martin, is similar to NOAA-N launched on May 20, 2005.

  11. Capabilities for Joint Analysis in the Department of Defense: Rethinking Support for Strategic Analysis

    DTIC Science & Technology

    2016-01-01

    activity, completed ana- lytic baselines, current memoranda describing in-progress work , briefings sent to high officials, and published papers by...Is Enough, Santa Monica, Calif.: RAND Corporation , MR-400-RC, 1994. ———, “Report of Working Group: Overall Force Planning Concepts, in Lessons...RAND’s Work on Planning Under Uncertainty for National Security, Santa Monica, Calif.: RAND Corporation , TR-1249-OSD, 2012. As of July 22, 2016: http

  12. KSC-2013-4494

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – The SpaceX Dragon test article tumbles over the Pacific Ocean, off the coast of Morro Bay, Calif., following its release for an Erickson Sky Crane helicopter. SpaceX engineers induced the tumble to evaluate the spacecraft's parachute deployment system in an emergency abort scenario. The test is part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett

  13. KSC-2013-4492

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – An Erickson Sky Crane helicopter releases the SpaceX Dragon test article, inducing a tumble similar to what is expected in an emergency abort scenario, over the Pacific Ocean, off the coast of Morro Bay, Calif. The test allowed engineers to better evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett

  14. KSC-2013-4493

    NASA Image and Video Library

    2013-12-20

    MORRO BAY, Calif. – The SpaceX Dragon test article tumbles over the Pacific Ocean, off the coast of Morro Bay, Calif., following its release for an Erickson Sky Crane helicopter. SpaceX engineers induced the tumble to evaluate the spacecraft's parachute deployment system in an emergency abort scenario. The test is part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett

  15. Prime Contract Awards Over $25,000 by Major System, Contractor and State, FY83.

    DTIC Science & Technology

    1983-01-01

    SERVICES 3,074 VO R513 STUDIES/FEASIBILITY - NON- CONSTRUCTION 125 VO T013 TECHNICAL WRITING 1,347 VO 1560 AIRFRAME STRUCTURAL COMPONENTS 6,825 VO 1620...INC NCAR 1670 PARACHUTES RECOVERY SYS AND TIE DOWN EQ 49 ROCKWELL INTERNATIONAL CORP CALIF Y19 CONSTR: CONSTRUCTION /OTHER AIRFIELD STRUCTURES 28,480...INC NEW Y 1560 AIRFRAME STRUCTURAL COMPONENTS 36 GANAR INDUSTRIES I NC CALIF 1680 MISCL AIRCRAFT ACCESSORIES COMPONENTS 180 GARRETT CONSTRUCTION CO

  16. KSC-2009-1368

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, called NOAA-N Prime, is offloaded from the trailer at Vandenberg Air Force Base, Calif. The spacecraft will be moved into a NASA payload processing facility and prepared for a Feb. 4 launch. NOAA-N Prime, built by Lockheed Martin, is similar to NOAA-N launched on May 20, 2005.

  17. General paresis

    MedlinePlus

    General paresis of the insane; General paralysis of the insane; Paralytic dementia ... General paresis is one form of neurosyphilis . It usually occurs in people who have had untreated syphilis for many ...

  18. Conditioned Fear Acquisition and Generalization in Generalized Anxiety Disorder.

    PubMed

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Blasco, María Jesús; Farré, Magí; Torrubia, Rafael

    2015-09-01

    Abnormal fear conditioning processes (including fear acquisition and conditioned fear-generalization) have been implicated in the pathogenesis of anxiety disorders. Previous research has shown that individuals with panic disorder present enhanced conditioned fear-generalization in comparison to healthy controls. Enhanced conditioned fear-generalization could also characterize generalized anxiety disorder (GAD), but research so far is inconclusive. An important confounding factor in previous research is comorbidity. The present study examined conditioned fear-acquisition and fear-generalization in 28 patients with GAD and 30 healthy controls using a recently developed fear acquisition and generalization paradigm assessing fear-potentiated startle and online expectancies of the unconditioned stimulus. Analyses focused on GAD patients without comorbidity but included also patients with comorbid anxiety disorders. Patients and controls did not differ as regards fear acquisition. However, contrary to our hypothesis, both groups did not differ either in most indexes of conditioned fear-generalization. Moreover, dimensional measures of GAD symptoms were not correlated with conditioned fear-generalization indexes. Comorbidity did not have a significant impact on the results. Our data suggest that conditioned fear-generalization is not enhanced in GAD. Results are discussed with special attention to the possible effects of comorbidity on fear learning abnormalities. Copyright © 2014. Published by Elsevier Ltd.

  19. General dental practitioner's views on dental general anaesthesia services.

    PubMed

    Threlfall, A G; King, D; Milsom, K M; Blinkhom, A S; Tickle, M

    2007-06-01

    Policy has recently changed on provision of dental general anaesthetic services in England. The aim of this study was to investigate general dental practitioners' views about dental general anaesthetics, the reduction in its availability and the impact on care of children with toothache. Qualitative study using semi-structured interviews and clinical case scenarios. General dental practitioners providing NHS services in the North West of England. 93 general dental practitioners were interviewed and 91 answered a clinical case scenario about the care they would provide for a 7-year-old child with multiple decayed teeth presenting with toothache. Scenario responses showed variation; 8% would immediately refer for general anaesthesia, 25% would initially prescribe antibiotics, but the majority would attempt to either restore or extract the tooth causing pain. Interview responses also demonstrated variation in care, however most dentists agree general anaesthesia has a role for nervous children but only refer as a last resort. The responses indicated an increase in inequalities, and that access to services did not match population needs, leaving some children waiting in pain. Most general dental practitioners support moving dental general anaesthesia into hospitals but some believe that it has widened health inequalities and there is also a problem associated with variation in treatment provision. Additional general anaesthetic services in some areas with high levels of tooth decay are needed and evidence based guidelines about caring for children with toothache are required.

  20. 33 CFR 110.212 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grounds—(1) Temporary Anchorage C-1. Southeast of a line parallel to and 170 feet from the pierhead line at the east end of Lido Isle; north of a line parallel to and 250 feet north of a line bearing 268... line 120 feet in length bearing 203° from the point of the pierhead line off the west end of Harbor...

  1. 33 CFR 110.115 - Santa Barbara Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; excluding a fairway 225 feet wide, 100 feet from each side of and parallel to the Navy pier. Note: Fore and.... 2106 for yachts and small craft of such size and alignment as permitted by the harbor master. ...

  2. 33 CFR 110.115 - Santa Barbara Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; excluding a fairway 225 feet wide, 100 feet from each side of and parallel to the Navy pier. Note: Fore and.... 2106 for yachts and small craft of such size and alignment as permitted by the harbor master. ...

  3. 33 CFR 110.212 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grounds—(1) Temporary Anchorage C-1. Southeast of a line parallel to and 170 feet from the pierhead line at the east end of Lido Isle; north of a line parallel to and 250 feet north of a line bearing 268... line 120 feet in length bearing 203° from the point of the pierhead line off the west end of Harbor...

  4. 33 CFR 110.125 - Morro Bay Harbor, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beginning. (b) Area A-2. Beginning at a point 322° and 150 feet from the high water line on the most westerly part of Fairbanks Point; thence continuing on this bearing for a distance of 1,346 feet; thence 52... high water line to the point of beginning. Note: Moorings and boating activities will be allowed in...

  5. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  6. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (Newport Harbor Yacht Club). East of a line bearing 23° from the center of the north end of 8th Street... (Balboa Yacht Club). South of a line parallel to and 150 feet from the south pierhead line off Balboa... Newport Beach Harbor Ordinance No. 543 for pleasure boats and yachts of such sizes and alignments as...

  7. 33 CFR 110.90 - San Diego Harbor, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., longitude 117°13′07.6″ W. (e) Area A-2. In North San Diego Bay, the America's Cup Harbor Anchorage, the... off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at latitude 32°42′43.9″ N...) Area A-1c. The water area off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at...

  8. 33 CFR 110.90 - San Diego Harbor, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...., longitude 117°13′07.6″ W. (e) Area A-2. In North San Diego Bay, the America's Cup Harbor Anchorage, the... off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at latitude 32°42′43.9″ N...) Area A-1c. The water area off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at...

  9. 33 CFR 110.90 - San Diego Harbor, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., longitude 117°13′07.6″ W. (e) Area A-2. In North San Diego Bay, the America's Cup Harbor Anchorage, the... off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at latitude 32°42′43.9″ N...) Area A-1c. The water area off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at...

  10. 33 CFR 110.90 - San Diego Harbor, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., longitude 117°13′07.6″ W. (e) Area A-2. In North San Diego Bay, the America's Cup Harbor Anchorage, the... off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at latitude 32°42′43.9″ N...) Area A-1c. The water area off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at...

  11. 33 CFR 110.90 - San Diego Harbor, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...., longitude 117°13′07.6″ W. (e) Area A-2. In North San Diego Bay, the America's Cup Harbor Anchorage, the... off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at latitude 32°42′43.9″ N...) Area A-1c. The water area off Shelter Island's eastern shore, 210 feet shoreward of a line beginning at...

  12. KSC-2009-2935

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.

  13. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  14. General practice research: attitudes and involvement of Queensland general practitioners.

    PubMed

    Askew, Deborah A; Clavarino, Alexandra M; Glasziou, Paul P; Del Mar, Christopher B

    2002-07-15

    To determine general practitioners' (GPs') attitudes towards and involvement in general practice research. Postal survey and semi-structured interviews conducted from May to September 2001. 467 of 631 GPs in four Queensland Divisions of General Practice responded to the survey (74% response rate); 18 selected GPs were interviewed. Survey - attitudes to research; access to information resources; and involvement in research. Interviews - the need for general practice research; barriers against and factors enabling greater participation in research. 389/463 (84%) GPs, especially younger and more recent graduates, had positive attitudes to research, but only 29% wanted more involvement. 223/462 (48%) were aware they had access to MEDLINE, although presumably all those with Internet access (89%) would have free access via PubMed. Barriers included the general practice environment (especially fee-for-service funding), and the culture of general practice. Enabling factors included academic mentors; opportunities to participate in reputable, established research activities relevant to general practice; and access to information resources. Although Australian general practice has a weak research culture, about a third of GPs would like to increase their involvement in research. However, the research must be perceived as relevant, and structured to minimise the inherent barriers in the environment and culture of general practice.

  15. KSC-2011-7550

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Participants in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft prepare to address members of the news media gathered at Vandenberg Air Force Base, Calif. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  16. Fighting back against America's public health enemy number one.

    PubMed Central

    Spickard, W. A.; Dixon, G. L.; Sarver, F. W.

    1994-01-01

    Fighting Back is a comprehensive substance abuse program operating in 14 communities spread throughout the United States. The Robert Wood Johnson Foundation has committed more than $45 million over a 7-year period to plan and implement innovative, community-wide initiatives in Columbia, SC; Charlotte, NC; Kansas City, Mo; Little Rock, Ark; Northwest New Mexico; Milwaukee, Wis; New Haven, Conn; Newark, NJ; Oakland, Calif; San Antonio, Tex; Santa Barbara, Calif; Vallejo, Calif; Washington, DC; and Worcester, Mass. In this article the work in progress at the end of 18 months of a 5-year implementation program in each site is reported. A Fighting Back National Program Office operates from a base at Vanderbilt University Medical Center in Nashville, Tenn. The senior staff of this office highlights the process that has unfolded to date, describes some of the sources of encouragement, and discusses some of the critical issues and sources of concern. A "Call to Action" on the part of the federal government is included. PMID:8069272

  17. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  18. Generalized Cartan Calculus in general dimension

    DOE PAGES

    Wang, Yi -Nan

    2015-07-22

    We develop the generalized Cartan Calculus for the groups G = SL(2,R) × R +, SL(5,R) and SO(5,5). They are the underlying algebraic structures of d=9,7,6 exceptional field theory, respectively. These algebraic identities are needed for the "tensor hierarchy" structure in exceptional field theory. The validity of Poincar\\'e lemmas in this new differential geometry is also discussed. Lastly, we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.

  19. General Aviation Propulsion

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

  20. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    ERIC Educational Resources Information Center

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  1. General Base-General Acid Catalysis by Terpenoid Cyclases§

    PubMed Central

    Pemberton, Travis A.; Christianson, David W.

    2016-01-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains. PMID:27072285

  2. Merger of Science Agencies Proposed

    NASA Astrophysics Data System (ADS)

    1992-07-01

    A bill proposing the establishment of a cabinet-level Department of Science, Space, Energy and Technology was introduced in the House of Representatives on July 1 by Robert Walker (R-Pa.), George Brown (D-Calif.), Ron Packard (R-Calif.), and Joe Kolter (D-Pa.). The department would be a conglomerate of existing civilian science and technology agencies, including NASA, the Environmental Protection Agency, the National Oceanic and Atmospheric Administration, the National Institute of Standards and Technology, the National Telecommunications and Information Administration, the National Technical Information Service, and research functions at the Department of Energy.

  3. Military Base Realignments and Closures: Impact of Terminating, Relocating, or Outsourcing the Services of the Armed Forces Institute of Pathology

    DTIC Science & Technology

    2007-11-01

    sexes , all races/ethnicities, all ages, as well... Tenn . 2 Ala. 88 Fla. 820 Ga. 1,220 S.C. 291 N.C. 1,371 Va. 1,476 Ohio 467 N.H. 0 Mass. 6 R.I. 0Mich. 1 Calif. 1,974 Wash. 671 Wis. 13 N.Y. 1,614 Maine...809 Tenn . 205 Ala. 102 Fla. 1,109 Ga. 376 S.C. 396 N.C. 769 Va. 331 Ohio 731 N.H. 40 Mass. 97 R.I. 38Mich. 189 Calif. 801 Wash. 59 Wis. 68 N.Y.

  4. General Relativity

    NASA Astrophysics Data System (ADS)

    Hobson, M. P.; Efstathiou, G. P.; Lasenby, A. N.

    2006-02-01

    1. The spacetime of special relativity; 2. Manifolds and coordinates; 3. Vector calculus on manifolds; 4. Tensor calculus on manifolds; 5. Special relativity revisited; 6. Electromagnetism; 7. The equivalence principle and spacetime curvature; 8. The gravitational field equations; 9. The Schwarzschild geometry; 10. Experimental tests of general relativity; 11. Schwarzschild black holes; 12. Further spherically-symmetric geometries; 13. The Kerr geometry; 14. The Friedmann-Robertson-Walker geometry; 15. Cosmological models; 16. Inflationary cosmology; 17. Linearised general relativity; 18. Gravitational waves; 19. A variational approach to general relativity.

  5. Generalized Ince Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-08-01

    In this work we present a detailed analysis of the tree families of generalized Gaussian beams, which are the generalized Hermite, Laguerre, and Ince Gaussian beams. The generalized Gaussian beams are not the solution of a Hermitian operator at an arbitrary z plane. We derived the adjoint operator and the adjoint eigenfunctions. Each family of generalized Gaussian beams forms a complete biorthonormal set with their adjoint eigenfunctions, therefore, any paraxial field can be described as a superposition of a generalized family with the appropriate weighting and phase factors. Each family of generalized Gaussian beams includes the standard and elegant corresponding families as particular cases when the parameters of the generalized families are chosen properly. The generalized Hermite Gaussian and Laguerre Gaussian beams correspond to limiting cases of the generalized Ince Gaussian beams when the ellipticity parameter of the latter tends to infinity or to zero, respectively. The expansion formulas among the three generalized families and their Fourier transforms are also presented.

  6. Reframing General Education

    ERIC Educational Resources Information Center

    Zai, Robert, III.

    2015-01-01

    From the colonial colleges to the present-day flagship universities, the undergraduate general education curriculum has dramatically shifted from a single, faculty-prescribed, general program to a diverse array of elective, student-choice-driven, specialized programs of general studies. This transformation has also encouraged, if not established,…

  7. Noise Monitoring Titan III D Launch Vandenberg AFB, Calif

    DTIC Science & Technology

    1975-01-01

    ent weather conditions. d. Estimated Environmental Impact : (1) The impact of any single noise event is difficult to determine when one is concerned...from average atmospheric conditions should be considered when extrapolating these data. 2. No significant environmental impact is expected to result...AD-A012 748 NOISE MONITORING TITAN III D LAUNCH VANDENBERG AIR FORCE BASE, CALIFORNIA Ronald D. Burnett Environmental Health Laboratory McClellan Air

  8. Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.

    1976-01-01

    An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.

  9. How Can Students Generalize Examples? Focusing on the Generalizing Geometric Properties

    ERIC Educational Resources Information Center

    Park, JinHyeong; Kim, Dong-Won

    2017-01-01

    The purpose of this study is to determine the progression of exemplifying and example generalization by students. We investigated whether example generalization occurs by analyzing collected data by identifying whether students recognize, describe, and define general features of geometric examples. We also investigate how example generalization…

  10. VANDENBERG AIR FORCE BASE, CALIF. - Workers mate the Pegasus , with its cargo of the SciSat-1 payload to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - Workers mate the Pegasus , with its cargo of the SciSat-1 payload to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  11. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo underneath of the Pegasus launch vehicle and SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-12

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo underneath of the Pegasus launch vehicle and SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  12. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo of the Pegasus launch vehicle and SciSat-1 spacecraft underneath. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-12

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo of the Pegasus launch vehicle and SciSat-1 spacecraft underneath. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  13. VANDENBERG AIR FORCE BASE, CALIF. - With its cover removed, the SciSat-1 spacecraft is rotated. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-07-29

    VANDENBERG AIR FORCE BASE, CALIF. - With its cover removed, the SciSat-1 spacecraft is rotated. The solar arrays will be attached and the communications systems checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  14. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload and Pegasus launch vehicle are lifted and mated to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload and Pegasus launch vehicle are lifted and mated to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  15. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Eric Madaras (left), NASA-Langley Research Center, and Jim McGee, The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

    NASA Image and Video Library

    2003-10-27

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Eric Madaras (left), NASA-Langley Research Center, and Jim McGee, The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, and Jim McGee (right), The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

    NASA Image and Video Library

    2003-10-27

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, and Jim McGee (right), The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  17. KSC-2013-4434

    NASA Image and Video Library

    2013-12-19

    VANDENBERG AIR FORCE BASE, Calif. -- A solid rocket motor is firmly secured inside its delivery truck prior to offload at Vandenberg Air Force Base, Calif. The motor will be attached to the United Launch Alliance Delta II rocket slated to launch NASA's Orbiting Carbon Observatory-2, or OCO-2, spacecraft in July 2014. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. Photo credit: NASA/Randy Beaudoin

  18. Generalized EMV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  19. KSC-03PD-2746

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment enters the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  20. KSC-03PD-2745

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. A transporter carrying the Gravity Probe B experiment backs into the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  1. KSC-03PD-2747

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment is lifted from its transporter in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  2. KSC-03PD-2744

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. At Vandenberg AFB, the canister enclosing the Gravity Probe B (GP-B) spacecraft is removed from the transporter. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  3. Endeavour lands atop 747 after downtime at Palmdale, CA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Orbiter Endeavour arrives at KSCs Shuttle Landing Facility atop NASAs Boeing 747 Shuttle Carrier Aircraft (SCA) as it returns March 27, 1997 from Palmdale, Calif., after an eight-month Orbiter Maintenance Down Period (OMDP). Nearly 100 modifications were made to Endeavour during that time period, including some that were directly associated with work required to support International Space Station Operations. The most extensive of those was the installation of an external airlock to allow the orbiter to dock with the Station. Other modifications included upgrades to Endeavours power supply system, general purpose computers and thermal protection system, along with the installation of new light-weight commander and pilot seats and other weight-saving modifications.

  4. Nighttime Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    An angry looking sky is captured in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    The clip accelerates the motion. The images were take around 3 a.m. local solar time at the Phoenix site during Sol 95 (Aug. 30), the 95th Martian day since landing.

    The swirling clouds may be moving generally in a westward direction over the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. 28 CFR 30.4 - What are the Attorney General's general responsibilities under the Order?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false What are the Attorney General's general... REVIEW OF DEPARTMENT OF JUSTICE PROGRAMS AND ACTIVITIES § 30.4 What are the Attorney General's general responsibilities under the Order? (a) The Attorney General provides opportunities for consultation by elected...

  6. General Tricomi-Rassias problem and oblique derivative problem for generalized Chaplygin equations

    NASA Astrophysics Data System (ADS)

    Wen, Guochun; Chen, Dechang; Cheng, Xiuzhen

    2007-09-01

    Many authors have discussed the Tricomi problem for some second order equations of mixed type, which has important applications in gas dynamics. In particular, Bers proposed the Tricomi problem for Chaplygin equations in multiply connected domains [L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958]. And Rassias proposed the exterior Tricomi problem for mixed equations in a doubly connected domain and proved the uniqueness of solutions for the problem [J.M. Rassias, Lecture Notes on Mixed Type Partial Differential Equations, World Scientific, Singapore, 1990]. In the present paper, we discuss the general Tricomi-Rassias problem for generalized Chaplygin equations. This is one general oblique derivative problem that includes the exterior Tricomi problem as a special case. We first give the representation of solutions of the general Tricomi-Rassias problem, and then prove the uniqueness and existence of solutions for the problem by a new method. In this paper, we shall also discuss another general oblique derivative problem for generalized Chaplygin equations.

  7. Specialization in general practice *

    PubMed Central

    Hart, Julian Tudor

    1980-01-01

    Ideas about general practitioner specialism may have been hampered in the past because of the three models of general practitioner specialism — in the hospital service, the fee-earning specialoid or the general practitioner obstetrician — none of which is satisfactory. However, general practitioner specialism can be justified in guaranteeing standards by concentrating groups of patients, accepting responsibility, and planning care. Medico-political changes may be needed to achieve improvement in clinical standards. PMID:7411511

  8. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  9. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  10. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  11. KSC-2014-2723

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2014-2733

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling ceremony. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2014-2722

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., prior to its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2014-2725

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - SpaceX CEO and founder Elon Musk unveils the Dragon V2 inside SpaceX headquarters in Hawthorne, Calif. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2014-2724

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  16. Video-assisted feedback in general practice internships using German general practitioner's guidelines

    PubMed Central

    Bölter, Regine; Freund, Tobias; Ledig, Thomas; Boll, Bernhard; Szecsenyi, Joachim; Roos, Marco

    2012-01-01

    Introduction: The planned modification of the Medical Licenses Act in Germany will strengthen the specialty of general practice. Therefore, medical students should get to know the daily routine of general practitioners during their academic studies. At least 10% of students should get the possibility to spend one quarter of the internship, in the last year of their academic studies, in a practice of family medicine. The demonstrated teaching method aims at giving feedback to the student based on video recordings of patient consultations (student-patient) with the help of a checklist. Video-feedback is already successful used in medical teaching in Germany and abroad. This feasibility study aims at assessing the practicability of video-assisted feedback as a teaching method during internship in general practice. Teaching method: First of all, the general practice chooses a guideline as the learning objective. Secondly, a subsequent patient – student – consultation is recorded on video. Afterwards, a video-assisted formative feedback is given by the physician. A checklist with learning objectives (communication, medical examination, a structured case report according to the guideline) is used to structure the feedback content. Feasibility: The feasibility was assessed by a semi structured interview in order to gain insight into barriers and challenges for future implementation. The teaching method was performed in one general practice. Afterwards the teaching physician and the trainee intern were interviewed. The following four main categories were identified: feasibility, performance, implementation in daily routine, challenges of the teaching concept. The results of the feasibility study show general practicability of this approach. Installing a video camera in one examination room may solve technical problems. The trainee intern mentioned theoretical and practical benefits using the guideline. The teaching physician noted the challenge to reflect on his daily

  17. Video-assisted feedback in general practice internships using German general practitioner's guidelines.

    PubMed

    Bölter, Regine; Freund, Tobias; Ledig, Thomas; Boll, Bernhard; Szecsenyi, Joachim; Roos, Marco

    2012-01-01

    The planned modification of the Medical Licenses Act in Germany will strengthen the specialty of general practice. Therefore, medical students should get to know the daily routine of general practitioners during their academic studies. At least 10% of students should get the possibility to spend one quarter of the internship, in the last year of their academic studies, in a practice of family medicine. The demonstrated teaching method aims at giving feedback to the student based on video recordings of patient consultations (student-patient) with the help of a checklist. Video-feedback is already successful used in medical teaching in Germany and abroad. This feasibility study aims at assessing the practicability of video-assisted feedback as a teaching method during internship in general practice. First of all, the general practice chooses a guideline as the learning objective. Secondly, a subsequent patient - student - consultation is recorded on video. Afterwards, a video-assisted formative feedback is given by the physician. A checklist with learning objectives (communication, medical examination, a structured case report according to the guideline) is used to structure the feedback content. The feasibility was assessed by a semi structured interview in order to gain insight into barriers and challenges for future implementation. The teaching method was performed in one general practice. Afterwards the teaching physician and the trainee intern were interviewed. The Following four main categories were identified: feasibility, performance, implementation in daily routine, challenges of the teaching concept.The results of the feasibility study show general practicability of this approach. Installing a video camera in one examination room may solve technical problems. The trainee intern mentioned theoretical and practical benefits using the guideline. The teaching physician noted the challenge to reflect on his daily routines in the light of evidence

  18. 75 FR 67770 - General Motors Company, Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake... General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant. The Department...

  19. 76 FR 179 - General Motors Company, Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ..., Formerly Known as General Motors Corporation, Willow Run Transmission Plant, Including On-Site Leased... to workers of General Motors Company, formerly known as General Motors Corporation, Willow Run... location of General Motors Company, formerly known as General Motors Corporation, Willow Run Transmission...

  20. Role of Public Outreach in the University Science Mission: Publishing K-12 Curriculum, Organizing Tours, and Other Methods of Engagement

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.

    2015-12-01

    Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C

  1. Geographic List of Prime Contract Awards. Oct 1992-Sep 1993. FY 1993. (Adelanto, California-Yuba County, California). Part 2

    DTIC Science & Technology

    1994-03-01

    00cu mo (D cv 0 w0a000000-ý0a0w - 0 0 0 0 0 Ln 0 0 V) if 41 1 000-4 If ce (A a0oý -i ce 0000 ý-wmmmmooouuuuuo -10 0 (A Ln (n (n 0 ul -11( nowo - ll>-LI...o -C0 - 11 U I (o004 V 11 41 me) 4jI � q q W1wmmm-tvI 4-Ic’) 4-1C’) (1) 4-1 C 4 a-C’ 4.)1’m 11 to I co01t 1 347 ) : Y ) 7 )i 7 a)oo I a0 ) ) 0)c

  2. General Music Today Yearbook

    ERIC Educational Resources Information Center

    Rowman & Littlefield Education, 2005

    2005-01-01

    The collected 2004-2005 issues of General Music Today, the online journal of MENC's Society for General Music includes articles, research, reviews and resources of interest to general music teachers of all levels. Topics covered include working with special-needs students; emphasizing early childhood environment to enhance musical growth;…

  3. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  4. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  5. On the solution of the generalized wave and generalized sine-Gordon equations

    NASA Technical Reports Server (NTRS)

    Ablowitz, M. J.; Beals, R.; Tenenblat, K.

    1986-01-01

    The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.

  6. OASIS General Introduction.

    ERIC Educational Resources Information Center

    Stanford Univ., CA.

    Recognizing the need to balance generality and economy in system costs, the Project INFO team at Stanford University developing OASIS has sought to provide generalized and powerful computer support within the normal range of operating and analytical requirements associated with university administration. The specific design objectives of the OASIS…

  7. Generalized Hardy's Paradox

    NASA Astrophysics Data System (ADS)

    Jiang, Shu-Han; Xu, Zhen-Peng; Su, Hong-Yi; Pati, Arun Kumar; Chen, Jing-Ling

    2018-01-01

    Here, we present the most general framework for n -particle Hardy's paradoxes, which include Hardy's original one and Cereceda's extension as special cases. Remarkably, for any n ≥3 , we demonstrate that there always exist generalized paradoxes (with the success probability as high as 1 /2n -1) that are stronger than the previous ones in showing the conflict of quantum mechanics with local realism. An experimental proposal to observe the stronger paradox is also presented for the case of three qubits. Furthermore, from these paradoxes we can construct the most general Hardy's inequalities, which enable us to detect Bell's nonlocality for more quantum states.

  8. General pathologist-helper: The new medical app about general pathology.

    PubMed

    Fernández-Vega, Iván

    2015-01-01

    Smartphone applications (apps) have become increasingly prevalent in medicine. Due to most pathologists, pathology trainees, technicians, and medical students use smartphones; apps can be a different way for general pathology education. "General pathologist-helper (GP-HELPER)" is a novel app developed as a reference tool in general pathology and especially for general pathologists, developed for Android and iOS platforms. "GP-HELPER," was created using Mobincube website platform. This tool also integrates "FORUM GP-HELPER," an external website created using Miarroba website (http://forum-gp-helper.mboards.com) and "COMMUNITY GP-HELPER" a multichannel chat created using Chatango website platform. The application was released in July 2015, and it is been periodically updated since then. The app has permanent information (offline data) about different pathology protocols (TNM latest edition, protocols regarding management of tumors of unknown primary origin, and flowcharts for some of the most difficult tumors to diagnose) and a database with more than 5000 immunohistochemistry results from different tumors. Online data have links to more than 1100 reference pathology video lectures, 250 antibodies information, more than 70 pathology association websites, 46 pathology providers, and 78 outstanding pathology journal websites. Besides this information, the app has two interactive places such as "FORUM GP-HELPER" and "COMMUNITY GP-HELPER" that let users to stay in touch everywhere and every time. Expert consult section is also available. "GP-HELPER" pretends to integrate offline and online data about pathology with two interactive external places in order to represent a reference tool for general pathologists and associate members.

  9. 40 CFR 1.21 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other national and international governmental organizations; (c) The Office of Inspector General; (d... 40 Protection of Environment 1 2010-07-01 2010-07-01 false General. 1.21 Section 1.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL STATEMENT OF ORGANIZATION AND GENERAL...

  10. Response to emotional expressions in generalized social phobia and generalized anxiety disorder: evidence for separate disorders.

    PubMed

    Blair, Karina; Shaywitz, Jonathan; Smith, Bruce W; Rhodes, Rebecca; Geraci, Marilla; Jones, Matthew; McCaffrey, Daniel; Vythilingam, Meena; Finger, Elizabeth; Mondillo, Krystal; Jacobs, Madeline; Charney, Dennis S; Blair, R J R; Drevets, Wayne C; Pine, Daniel S

    2008-09-01

    Generalized social phobia involves fear/avoidance, specifically of social situations, whereas generalized anxiety disorder involves intrusive worry about diverse circumstances. It remains unclear the degree to which these two, often comorbid, conditions represent distinct disorders or alternative presentations of a single, core underlying pathology. Functional magnetic resonance imaging assessed the neural response to facial expressions in generalized social phobia and generalized anxiety disorder. Individuals matched on age, IQ, and gender with generalized social phobia without generalized anxiety disorder (N=17), generalized anxiety disorder (N=17), or no psychopathology (N=17) viewed neutral, fearful, and angry expressions while ostensibly making a simple gender judgment. The patients with generalized social phobia without generalized anxiety disorder showed increased activation to fearful relative to neutral expressions in several regions, including the amygdala, compared to healthy individuals. This increased amygdala response related to self-reported anxiety in patients with generalized social phobia without generalized anxiety disorder. In contrast, patients with generalized anxiety disorder showed significantly less activation to fearful relative to neutral faces compared to the healthy individuals. They did show significantly increased response to angry expressions relative to healthy individuals in a lateral region of the middle frontal gyrus. This increased lateral frontal response related to self-reported anxiety in patients with generalized anxiety disorder. These results suggest that neural circuitry dysfunctions differ in generalized social phobia and generalized anxiety disorder.

  11. 47 CFR 0.441 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information Public Information and Inspection of Records § 0.441 General. (a) Any person desiring to obtain information from the... information and general inquiries may be submitted by: (1) Internet at http://www.fcc.gov/cgb/fccinfo or http...

  12. KSC-03PD-2748

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment is lowered onto an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  13. KSC-03PD-2754

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  14. KSC-03PD-2749

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment rests on an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  15. KSC-03PD-2751

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  16. KSC-03PD-2752

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  17. KSC-03PD-2742

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives on Vandenberg Air Force Base, headed for the spacecraft processing facility. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  18. KSC-03PD-2750

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, battery charge/discharge cycles are underway as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  19. KSC-03PD-2753

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  20. KSC-03PD-2743

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives at the spacecraft processing facility on North Vandenberg Air Force Base . Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  1. KSC-03pd2743

    NASA Image and Video Library

    2003-07-11

    VANDENBERG AFB, CALIF. - Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives at the spacecraft processing facility on North Vandenberg Air Force Base . Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  2. Fukushima to receive Smith Medal

    NASA Astrophysics Data System (ADS)

    The 1990 Waldo E. Smith Medal for extraordinary service to geophysics will be given to Naoshi Fukushima, who earned an international reputation for his pioneering work in geomagnetic disturbance and ionospheric electric currents. Now retired from the University of Tokyo, Japan, Fukushima is being cited for his public service to international geophysics, and, in particular, his contributions to the International Association of Geomagnetism and Aeronomy, of which he was Secretary General from September 1975 to August 1983.The Smith Medal will be presented as part of the AGU Fall Meeting Honors Night festivities, Wednesday, December 5, in San Francisco, Calif. Three James B. Macelwane Medals, the John Adam Fleming Medal, and the Maurice Ewing Medal will also be presented (see Eos, February 20, 1990, p. 294).

  3. KSC-03PD-2881

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  4. KSC-03PD-2880

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  5. IFLA General Conference, 1986. Libraries Serving the General Public Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    This document includes papers on libraries serving the general public which were presented at the 1986 International Federation of Library Associations (IFLA) conference. The first paper, "Annual Reports of Sections and Round Tables of the Division of Libraries Serving the General Public" includes the following annual reports for fiscal year…

  6. 21 CFR 1000.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false General. 1000.1 Section 1000.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH GENERAL General Provisions § 1000.1 General. References in this subchapter J to regulatory sections of the...

  7. NASA Radar Captures Earth Deformation from 2010 Baja Calif. Quake

    NASA Image and Video Library

    2011-03-04

    This radar image from NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar UAVSAR shows the deformed Earth caused by a 7.2 earthquake in Mexico state of Baja California and parts of the American Southwest on April 4, 2010.

  8. SOFIA's primary mirror assembly is cradled on its dolly as technicians prepare to move it into a "clean room" at NASA Dryden's Aircraft Operations Facility

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  9. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  10. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  11. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  12. Technicians with ropes carefully guide the primary mirror assembly as a crane slowly moves it toward its transport cradle after removal from the SOFIA aircraft

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  13. KSC-2014-2726

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - Animation showing the Dragon V2 spacecraft re-entering Earth's atmosphere plays beside the space during an unveiling ceremony inside SpaceX headquarters in Hawthorne, Calif. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2014-2736

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - SpaceX CEO and founder Elon Musk discusses the Dragon V2 during an unveiling ceremony for the new spacecraft inside SpaceX headquarters in Hawthorne, Calif. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2014-2735

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., near a suspended cargo-carrying Dragon spacecraft that flew a previous mission. The new spacecraft, the Dragon V2, is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  16. General practitioners’ experiences using cognitive behavioural therapy in general practice: A qualitative study

    PubMed Central

    Aschim, Bente; Lundevall, Sverre; Martinsen, Egil W.; Frich, Jan C.

    2011-01-01

    Objective To explore GPs’ experiences using cognitive behavioural therapy (CBT), with a focus on factors that promote or limit the use of CBT in general practice. Design Qualitative study using data from written evaluation reports and focus-group interviews. Setting Norwegian general practice. Subjects GPs who participated in a longitudinal CBT course in the continuous medical education (CME) programme for GPs in Norway, of whom 19 filled in evaluation forms and 15 participated in focus-group interviews. Main outcome measures Experiences with the use of CBT in general practice. Results GPs used CBT mainly in the treatment of patients with anxiety disorders and depression. Factors that promoted the use of CBT in general practice were structured supervision and group counselling, receiving feedback on individual video-recorded consultations, and experiencing that one mastered the therapeutic techniques. Limiting factors were that it took some time before one mastered the techniques, lack of eligible patients, constraints related to attending group supervision during office hours, and the lack of financial incentives to use CBT in general practice. Conclusion Tailored training programmes in CBT for GPs may contribute to more frequent use of CBT in general practice. A formal recognition of CBT in the reimbursement scheme for GPs might counter limiting factors to an increased use of CBT in general practice. PMID:21861599

  17. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and...

  18. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and...

  19. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and...

  20. 77 FR 6587 - General Motors Vehicle Manufacturing, Formerly Known as General Motors Corporation, Shreveport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... Vehicle Manufacturing, formerly known as General Motors Corporation, Shreveport Assembly Plant, including..., formerly known as General Motors Corporation, Shreveport Assembly Plant. The Department has determined that...

  1. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, begins rollout to the hot pad and mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, begins rollout to the hot pad and mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  2. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  3. VANDENBERG AIR FORCE BASE, CALIF. - The Pegasus transporter, with its cargo of the SciSat-1 payload and Pegasus launch vehicle, moves under the L-1011 carrier aircraft for matting. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The Pegasus transporter, with its cargo of the SciSat-1 payload and Pegasus launch vehicle, moves under the L-1011 carrier aircraft for matting. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  4. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, arrives at the pad for mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, arrives at the pad for mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  5. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less

  6. General aviation and community development

    NASA Technical Reports Server (NTRS)

    Sincoff, M. Z. (Editor); Dajani, J. S. (Editor)

    1975-01-01

    The summer program is summarized. The reports presented concern (1) general aviation components, (2) general aviation environment, (3) community perspective, and (4) transportation and general aviation in Virginia.

  7. General Relativity Today

    NASA Astrophysics Data System (ADS)

    Blandford, Roger D.

    2016-01-01

    A hundred years after its birth, general relativity has become a highly successful theory in the sese that it has passed many experimental and observational tests and finds widespread application to diverse set of cosmic phenomena. It remains an accurate research field as more tests are deployed, epitomized by the exciting prospect of detecting gravitational radiation directly. General realtivity is the essential foundation of modern cosmology and underlies our detailed description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. The interface with physics on both the largest and the smallest scales continues to be very fertile. In this talk I will attempt to highlight some key steps along the way to general relativity today.

  8. 28 CFR 0.165 - Recommendations to the Deputy Attorney General or Associate Attorney General, as appropriate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... General or Associate Attorney General, as appropriate, that certain claims be closed. 0.165 Section 0.165... Recommendations to the Deputy Attorney General or Associate Attorney General, as appropriate, that certain claims... the authority delegated by §§ 0.160(a) and 0.164, the Assistant Attorney General concerned shall, when...

  9. Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.

    PubMed

    Soto, Fabian A; Gershman, Samuel J; Niv, Yael

    2014-07-01

    How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One prominent hypothesis is that different generalization principles apply depending on whether the stimuli in a compound are similar or dissimilar to each other. However, the results of many experiments cannot be explained by this hypothesis. Here, we propose a rational Bayesian theory of compound generalization that uses the notion of consequential regions, first developed in the context of rational theories of multidimensional generalization, to explain the effects of stimulus factors on compound generalization. The model explains a large number of results from the compound generalization literature, including the influence of stimulus modality and spatial contiguity on the summation effect, the lack of influence of stimulus factors on summation with a recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the asymmetrical generalization decrement in overshadowing and external inhibition, and the conditions leading to a reliable external inhibition effect. By integrating rational theories of compound and dimensional generalization, our model provides the first comprehensive computational account of the effects of stimulus factors on compound generalization, including spatial and temporal contiguity between components, which have posed long-standing problems for rational theories of associative and causal learning. (c) 2014 APA, all rights reserved.

  10. Explaining Compound Generalization in Associative and Causal Learning Through Rational Principles of Dimensional Generalization

    PubMed Central

    Soto, Fabian A.; Gershman, Samuel J.; Niv, Yael

    2014-01-01

    How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One prominent hypothesis is that different generalization principles apply depending on whether the stimuli in a compound are similar or dissimilar to each other. However, the results of many experiments cannot be explained by this hypothesis. Here we propose a rational Bayesian theory of compound generalization that uses the notion of consequential regions, first developed in the context of rational theories of multidimensional generalization, to explain the effects of stimulus factors on compound generalization. The model explains a large number of results from the compound generalization literature, including the influence of stimulus modality and spatial contiguity on the summation effect, the lack of influence of stimulus factors on summation with a recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the asymmetrical generalization decrement in overshadowing and external inhibition, and the conditions leading to a reliable external inhibition effect. By integrating rational theories of compound and dimensional generalization, our model provides the first comprehensive computational account of the effects of stimulus factors on compound generalization, including spatial and temporal contiguity between components, which have posed longstanding problems for rational theories of associative and causal learning. PMID:25090430

  11. General practice registrars' views on maternity care in general practice in New Zealand.

    PubMed

    Preston, Hanna; Jaye, Chrystal; Miller, Dawn L

    2015-12-01

    The number of general practitioners (GPs) providing maternity care in New Zealand has declined dramatically since legislative changes of the 1990s. The Ministry of Health wants GPs to provide maternity care again. To investigate New Zealand general practice registrars' perspectives on GPs' role in maternity care; specifically, whether maternity services should be provided by GPs, registrars' preparedness to provide such services, and training opportunities available or required to achieve this. An anonymous online questionnaire was distributed to all registrars enrolled in The Royal New Zealand College of General Practitioners' (RNZCGP's) General Practice Education Programme (GPEP) in 2012, via their online learning platform OWL. 165 of the 643 general practice registrars responded (25.7% response rate). Most (95%) believe that GPs interested and trained in maternity care should consider providing antenatal, postnatal or shared care with midwives, and 95% believe women should be able to access maternity care from their general practice. When practising as a GP, 90% would consider providing antenatal and postnatal care, 47.3% shared care, and 4.3% full pregnancy care. Professional factors including training and adequate funding were most important when considering providing maternity care as a GP. Ninety-five percent of general practice registrars who responded to our survey believe that GPs should provide some maternity services, and about 90% would consider providing maternity care in their future practice. Addressing professional issues of training, support and funding are essential if more GPs are to participate in maternity care in New Zealand.

  12. Brigadier General Marsena Patrick, Provost Marshal General for the Army of the Potomac

    DTIC Science & Technology

    2013-12-13

    According to historian John K. Mahon, “Patrick, the resettlement officer, good laissez faire devotee that he was, felt sure that this issue would sap the... leadership experiences prior to his appointment as provost marshal general. It went on to study Patrick’s performance as provost marshal general...background, training, and leadership experiences prior to his appointment as provost marshal general. It goes on to study Patrick’s performance as

  13. General aviation avionics equipment maintenance

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1978-01-01

    Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers, avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance.

  14. The generalized mean zone plate

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Cheng, Shubo; Tao, Shaohua

    2018-06-01

    In this paper a generalized mean zone plate is proposed, which generates twin foci located at the positions satisfying the expression of the generalized mean, which includes the m-golden mean, precious mean, and so on. The generalized mean zone plate can be designed to generate twin foci with various position ratios. The diffraction properties of the generalized mean zone plates have been investigated with simulations and experiments. The results show that the ratio of the positions of the twin foci for the generalized mean zone plate can be designed with the selected zone plate parameters.

  15. Generalized vector calculus on convex domain

    NASA Astrophysics Data System (ADS)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  16. Oral Health Care of Vietnamese Adolescents: A Qualitative Study of Perceptions and Practices.

    PubMed

    Pham, Kelly; Barker, Judith C; Lazar, Ann A; Walsh, Margaret

    2015-12-01

    To explore the oral health perceptions and practices of Vietnamese adolescents 13 to 17 years old in San Jose, Calif. A purposeful sample of 10 Vietnamese parents with adolescent children were recruited at a Temple in San Jose, Calif. After gaining parental consent and adolescent assent, Vietnamese adolescents participated in an audio-taped, 20 to 30 minute, individual, semi-structured interview in English to explore their perceptions about oral health. Interview data were transcribed verbatim. All statements related to each question were identified, and similar statements were grouped into categories. Ten adolescents participated in the study. All reported tooth appearance as the most important reason for oral care, and that oral health, diet and general health were related. All were concerned about dental pain. Of the respondents, 9 believed that having good teeth would give them more confidence, and help them find jobs and romantic partners, while 2 did not follow recommended oral hygiene routines or recognize early signs of disease. Seven participants favored U.S. dentists over Vietnamese dentists. Frequently reported barriers to seeking dental care were fear of dental treatment (n=7) and inability to pay for dental care (n=6). When educating Vietnamese adolescents, dental hygienists need to highlight availability of pain control, encourage better performance of personal oral hygiene and recommend dental clinics with sliding fee scales to low-income families. This approach to oral health education may enhance dental health and seeking of regular dental visits. Copyright © 2015 The American Dental Hygienists’ Association.

  17. General Medical Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on the General Medical Surveillance Program at LeRC is presented. The purpose of the General Medical Surveillance Program at LeRC is outlined, and the specifics of the program are discussed.

  18. Securing General Aviation

    DTIC Science & Technology

    2009-03-03

    ajor vulnerabilities still exist in ... general aviation security ,”3 the commission did not further elaborate on the nature of those vulnerabilities...commercial operations may make them an attractive alternative to terrorists seeking to identify and exploit vulnerabilities in aviation security . In this...3, 2003, p. A7. 2 See Report of the Aviation Security Advisory Committee Working Group on General Aviation Airport Security (October 1, 2003); and

  19. New Satellite Constellation Uses Radio Occultation to Monitor Space Weather

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-05-01

    A constellation of six satellites, expected to enhance space weather research, improve terrestrial meteorology forecasts, and monitor climate change, were launched 15 April from Vandenberg Air Force Base, Calif.

  20. General Permits for Ocean Dumping

    EPA Pesticide Factsheets

    General permits are issued by EPA for the ocean dumping of certain materials that will have a minimal adverse environmental impact and are generally disposed of in small quantities. Information includes examples and ocean disposal sites for general permits

  1. 48 CFR 43.201 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT CONTRACT MODIFICATIONS Change Orders 43.201 General. (a) Generally, Government contracts contain a changes clause that permits the contracting officer to make unilateral changes, in designated areas, within the general scope...

  2. 48 CFR 3401.601 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false General. 3401.601 Section 3401.601 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION GENERAL ED ACQUISITION REGULATION SYSTEM Contracting Authority and Responsibilities 3401.601 General...

  3. 48 CFR 43.201 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT CONTRACT MODIFICATIONS Change Orders 43.201 General. (a) Generally, Government contracts contain a changes clause that permits the contracting officer to make unilateral changes, in designated areas, within the general scope...

  4. General surgery in crisis--factors that impact on a career in general surgery.

    PubMed

    Kahn, D; Pillay, S; Veller, M G; Panieri, E; Westcott, M J R

    2006-08-01

    The Association of Surgeons of South Africa (ASSA), because of a concern about the decline in the number of applicants for registrar posts, undertook this study into the various factors that may influence the choice of surgery as career option. The study involved a combination of desk research and structured interviews with heads of departments, specialists, and registrars in general surgery. The reasons for choosing general surgery as a career included the immediately visible results of a surgeon's efforts and the practical and intellectual challenge of the specialty. General surgery continued to enjoy a high status in society. The greater focus on primary health care has affected facilities at tertiary and secondary institutions. General surgeons worked excessively long hours, which was associated with increased levels of stress and placed severe strains on family life. All respondents felt that their levels of remuneration were 'poor' in relation to other disciplines and professions. In this study we identified various factors that impacted either positively or negatively on the choice of general surgery as a career option.

  5. The Singapore-Cambridge General Certificate of Education Advanced-Level General Paper Examination

    ERIC Educational Resources Information Center

    Hassan, Nurul Huda; Shih, Chih-Min

    2013-01-01

    This article describes and reviews the Singapore-Cambridge General Certificate of Education Advanced Level General Paper (GP) examination. As a written test that is administered to preuniversity students, the GP examination is internationally recognised and accepted by universities and employers as proof of English competence. In this article, the…

  6. 48 CFR 4.801 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false General. 4.801 Section 4.801 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Government Contract Files 4.801 General. (a) The head of each office performing contracting...

  7. 48 CFR 4.801 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false General. 4.801 Section 4.801 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Government Contract Files 4.801 General. (a) The head of each office performing contracting...

  8. 48 CFR 4.801 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false General. 4.801 Section 4.801 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Government Contract Files 4.801 General. (a) The head of each office performing contracting...

  9. 48 CFR 4.801 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false General. 4.801 Section 4.801 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Government Contract Files 4.801 General. (a) The head of each office performing contracting...

  10. 48 CFR 4.801 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false General. 4.801 Section 4.801 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Government Contract Files 4.801 General. (a) The head of each office performing contracting...

  11. 48 CFR 304.602 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false General. 304.602 Section 304.602 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATIVE MATTERS Contract Reporting 304.602 General. HHS' Departmental Contracts Information System (DCIS) captures...

  12. 42 CFR 1000.10 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false General definitions. 1000.10 Section 1000.10 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS INTRODUCTION; GENERAL DEFINITIONS Definitions § 1000.10 General definitions. In this chapter, unless the context indicates otherwise— Act...

  13. 42 CFR 1000.10 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false General definitions. 1000.10 Section 1000.10 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS INTRODUCTION; GENERAL DEFINITIONS Definitions § 1000.10 General definitions. In this chapter, unless the context indicates otherwise— Act...

  14. 42 CFR 1000.10 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false General definitions. 1000.10 Section 1000.10 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS INTRODUCTION; GENERAL DEFINITIONS Definitions § 1000.10 General definitions. In this chapter, unless the context indicates otherwise— Act...

  15. 42 CFR 1000.10 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false General definitions. 1000.10 Section 1000.10 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS INTRODUCTION; GENERAL DEFINITIONS Definitions § 1000.10 General definitions. In this chapter, unless the context indicates otherwise— Act...

  16. 42 CFR 1000.10 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false General definitions. 1000.10 Section 1000.10 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS INTRODUCTION; GENERAL DEFINITIONS Definitions § 1000.10 General definitions. In this chapter, unless the context indicates otherwise— Act...

  17. Assessment of publication output in the field of general practice and family medicine and by general practitioners and general practice institutions.

    PubMed

    Jelercic, Stasa; Lingard, Heide; Spiegel, Wolfgang; Pichlhöfer, Otto; Maier, Manfred

    2010-10-01

    The discipline of family medicine (FM) lacks a comprehensive methodology, which can be applied as a standard for assessing overall research output in both the field of FM and by general practitioners (GPs)/general practice institutions. It was the aim of this study to develop a sensitive search strategy for assessing publication output in the field of FM independent of the author's profession or affiliation and by GPs/general practice institutions independent of their field of scientific interest. Literature searches limited to the year 2005 were conducted in PubMed and ISI Web of Sciences (ISI WoS). In PubMed, all relevant MeSH terms were used. Search terms possibly contained in the author's affiliations have been collected. In ISI WoS, the same entry terms including their abbreviations and plural forms were applied. The final queries were validated by manual review and matching results with selected FM journals. A comprehensive list of combined search terms could be defined. For the field of general practice/FM more publications could be retrieved in PubMed. Almost twice as many publications by GPs/general practice institutions could be retrieved in ISI WoS, where--in contrast to PubMed--the affiliation is documented for all authors. To quantitatively assess publication output in the field of FM, PubMed was identified as the preferable database. To assess publication output by GPs/general practice institutions, the ISI WoS is recommended as the preferable database. Apparently, the ISI WoS is more suitable to compare the research productivity of different countries, authors or institutions.

  18. 40 CFR 610.40 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General. 610.40 Section 610.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.40 General. Two...

  19. 40 CFR 610.40 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General. 610.40 Section 610.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.40 General. Two...

  20. 40 CFR 610.40 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General. 610.40 Section 610.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.40 General. Two...

  1. 40 CFR 610.40 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General. 610.40 Section 610.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.40 General. Two...

  2. 14 CFR 1203.300 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Classification Principles and Considerations § 1203.300 General. In general, the types of NASA-generated...

  3. 40 CFR 610.40 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General. 610.40 Section 610.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.40 General. Two...

  4. 48 CFR 1433.102 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false General. 1433.102 Section 1433.102 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Protests 1433.102 General. For protests filed with GAO, the SOL...

  5. 7 CFR 1900.52 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false General. 1900.52 Section 1900.52 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... GENERAL Adverse Decisions and Administrative Appeals § 1900.52 General. This subpart specifies procedures...

  6. 34 CFR 668.171 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false General. 668.171 Section 668.171 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STUDENT ASSISTANCE GENERAL PROVISIONS Financial Responsibility § 668.171 General. (a...

  7. 48 CFR 1404.402 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false General. 1404.402 Section 1404.402 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified Information Within Industry 1404.402 General. (a) The DOI has entered into...

  8. 48 CFR 3432.402 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false General. 3432.402 Section 3432.402 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments 3432.402 General. (a)-(d) [Reserved] (e) The HCA...

  9. 48 CFR 1404.402 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false General. 1404.402 Section 1404.402 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified Information Within Industry 1404.402 General. (a) The DOI has entered into...

  10. KSC-2013-1646

    NASA Image and Video Library

    2013-02-10

    VANDENBERG AFB, Calif. – A United Launch Alliance Atlas V rocket carrying the Landsat Data Continuity Mission spacecraft from Vandenberg Air Force Base in California. Photo credit: NASA/Ben Smegelsky

  11. Descent Stage of Mars Science Laboratory During Assembly

    NASA Image and Video Library

    2008-11-19

    This image from early October 2008 shows personnel working on the descent stage of NASA Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  12. A golden age of general relativity? Some remarks on the history of general relativity

    NASA Astrophysics Data System (ADS)

    Goenner, Hubert

    2017-03-01

    This article deals with the concepts "renaissance" and "low water mark between 1925 and 1955" of general relativity suggested in the literature. By empirical data, it is shown that no such period did exist. Research on general relativity continued continuously since the 1920s interrupted only by the second world war. On a broad scale, research on general relativity started only after 1945.

  13. Generalizing entanglement

    NASA Astrophysics Data System (ADS)

    Jia, Ding

    2017-12-01

    The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.

  14. 14 CFR 33.3 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 33.3 Section 33.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.3 General. Each applicant must show that the aircraft engine concerned meets...

  15. 14 CFR 33.3 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 33.3 Section 33.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.3 General. Each applicant must show that the aircraft engine concerned meets...

  16. 48 CFR 29.201 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false General. 29.201 Section 29.201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS TAXES Federal Excise Taxes 29.201 General. (a) Federal excise taxes are levied on the sale or use...

  17. 7 CFR 1900.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false General. 1900.1 Section 1900.1 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... GENERAL Delegations of Authority § 1900.1 General. The authorities contained in this subpart apply to all...

  18. 31 CFR 1010.911 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false General. 1010.911 Section 1010.911 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY GENERAL PROVISIONS Summons § 1010.911 General. For any...

  19. 31 CFR 1010.911 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false General. 1010.911 Section 1010.911 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY GENERAL PROVISIONS Summons § 1010.911 General. For any...

  20. 31 CFR 1010.911 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false General. 1010.911 Section 1010.911 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY GENERAL PROVISIONS Summons § 1010.911 General. For any...

  1. 31 CFR 1010.911 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false General. 1010.911 Section 1010.911 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY GENERAL PROVISIONS Summons § 1010.911 General. For any...

  2. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  3. Integrating counselling into general practice.

    PubMed

    Stone, L; Blashki, G

    2000-03-01

    General practice counselling has many significant differences to counselling in other settings. General practitioners have long term relationships with their patients involving physical as well as mental health care. General practitioners are often the first point of contact for distressed patients who may not perceive their problem to have a psychological basis. There are barriers to counselling including time management and cultural expectations of the consultation. To outline a practical biopsychosocial model for counselling in the general practice setting using the knowledge and skills unique to each GP. Theoretical and practical barriers to counselling commonly encountered in general practice are discussed. Assessing the problem in a biopsychosocial format highlights strengths and skills the patient already possesses and involves consideration of physical sensations, emotions, behaviours, key relationships, family, social roles and resources. Counselling in general practice requires flexibility and an ability to adapt available resources to address patient needs in an individually appropriate way.

  4. KSC-2014-2732

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2014-2728

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2014-2729

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2014-2731

    NASA Image and Video Library

    2014-05-29

    HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis

  8. Earthquake watch to be discussed

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The most intensive earthquake monitoring program ever mounted in this country is going on near Parkfield, Calif., about midway between Los Angeles and San Francisco on the San Andreas fault. Although no particularly large or destructive quake is feared in Parkfield, the regularity with which earthquakes have occurred there in the past makes the site unique. Since the next quake has been forecast for 1988 (±5 years), seismologists have decided to blanket the area with data-gathering equipment in hopes of having front-row seats for the expected seismic show. The studies in Parkfield will be the topic of an all-day session sponsored by the Seismology Section on Friday, December 13, at the AGU Fall Meeting in San Francisco, Calif.

  9. Regularized Generalized Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Tenenhaus, Arthur; Tenenhaus, Michel

    2011-01-01

    Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…

  10. 28 CFR 90.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false General. 90.1 Section 90.1 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) VIOLENCE AGAINST WOMEN General Provisions § 90.1 General. (a) This part implements certain provisions of the Violence Against Women Act (VAWA), which was enacted by...

  11. General Conformity

    EPA Pesticide Factsheets

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  12. 75 FR 54388 - General Motors Company Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... Formerly Known as General Motors Corporation, Orion Assembly Plant Including On-Site Leased Workers From... Motors Corporation, Orion Assembly Plant, Lake Orion, Michigan. The notice was published in the Federal..., Michigan location of General Motors Company, formerly known as General Motors Corporation, Orion Assembly...

  13. 47 CFR 7.15 - Generally.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Generally. 7.15 Section 7.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO VOICEMAIL AND INTERACTIVE MENU SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Enforcement § 7.15 Generally. (a) For purposes of §§ 7.15-7.23 of this...

  14. 33 CFR 183.507 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false General. 183.507 Section 183.507 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems General § 183.507 General. Each fuel system component on a boat...

  15. 28 CFR 31.1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... grants to State governments authorized by part B, subpart I, of the Juvenile Justice and Delinquency... 28 Judicial Administration 1 2012-07-01 2012-07-01 false General. 31.1 Section 31.1 Judicial Administration DEPARTMENT OF JUSTICE OJJDP GRANT PROGRAMS Formula Grants General Provisions § 31.1 General. This...

  16. 28 CFR 31.1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... grants to State governments authorized by part B, subpart I, of the Juvenile Justice and Delinquency... 28 Judicial Administration 1 2013-07-01 2013-07-01 false General. 31.1 Section 31.1 Judicial Administration DEPARTMENT OF JUSTICE OJJDP GRANT PROGRAMS Formula Grants General Provisions § 31.1 General. This...

  17. 28 CFR 31.1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grants to State governments authorized by part B, subpart I, of the Juvenile Justice and Delinquency... 28 Judicial Administration 1 2011-07-01 2011-07-01 false General. 31.1 Section 31.1 Judicial Administration DEPARTMENT OF JUSTICE OJJDP GRANT PROGRAMS Formula Grants General Provisions § 31.1 General. This...

  18. 28 CFR 31.1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... grants to State governments authorized by part B, subpart I, of the Juvenile Justice and Delinquency... 28 Judicial Administration 1 2014-07-01 2014-07-01 false General. 31.1 Section 31.1 Judicial Administration DEPARTMENT OF JUSTICE OJJDP GRANT PROGRAMS Formula Grants General Provisions § 31.1 General. This...

  19. General Aviation Pilot Education Program.

    ERIC Educational Resources Information Center

    Cole, Warren L.

    General Aviation Pilot Education (GAPE) was a safety program designed to improve the aeronautical education of the general aviation pilot in anticipation that the national aircraft accident rate might be improved. GAPE PROGRAM attempted to reach the average general aviation pilot with specific and factual information regarding the pitfalls of his…

  20. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  1. 47 CFR 7.15 - Generally.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Generally. 7.15 Section 7.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO VOICEMAIL AND INTERACTIVE MENU SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Enforcement § 7.15 Generally. (a) For purposes of §§ 7.15-7.23 of this...

  2. 47 CFR 7.15 - Generally.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Generally. 7.15 Section 7.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO VOICEMAIL AND INTERACTIVE MENU SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Enforcement § 7.15 Generally. (a) For purposes of §§ 7.15-7.23 of this...

  3. 47 CFR 7.15 - Generally.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Generally. 7.15 Section 7.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO VOICEMAIL AND INTERACTIVE MENU SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Enforcement § 7.15 Generally. (a) For purposes of §§ 7.15-7.23 of this...

  4. 47 CFR 7.15 - Generally.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Generally. 7.15 Section 7.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO VOICEMAIL AND INTERACTIVE MENU SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Enforcement § 7.15 Generally. (a) For purposes of §§ 7.15-7.23 of this...

  5. D-day Message from General Eisenhower to General Marshall. Teaching with Documents.

    ERIC Educational Resources Information Center

    Schamel, Wynell B.; Blondo, Richard A.

    1994-01-01

    Contends that the D-Day assault on Normandy's beaches in 1944 was critically important to the Allied war effort and ultimately to the security of all nations. Presents a lesson plan based on a message drafted in the early hours of D-Day by General Dwight D. Eisenhower and sent to his superior, General George C. Marshall. (CFR)

  6. General Education! Not Again?

    ERIC Educational Resources Information Center

    Marsee, Stuart

    After reviewing definitions of general education and statements regarding its importance found in the literature, this paper presents observations to be considered in updating or developing general education programs. It is observed that many disciplines have developed excessive departmentalization; that administrators tend to view general…

  7. 48 CFR 27.102 - General guidance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to its needs. (e) Generally, the Government requires that contractors obtain permission from... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS General 27.102 General guidance. (a) The Government encourages the maximum practical commercial use of inventions made under Government contracts. (b) Generally, the...

  8. 21 CFR 58.41 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false General. 58.41 Section 58.41 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.41 General. Each testing facility shall be of suitable size and...

  9. 48 CFR 45.103 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false General. 45.103 Section 45.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY General 45.103 General. (a) Agencies shall— (1) Allow and encourage contractors to use voluntary consensus standards (see FAR 11.101(b...

  10. 21 CFR 181.1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false General. 181.1 Section 181.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS General Provisions § 181.1 General. (a) An ingredient whose use in food or food packaging is...

  11. 22 CFR 4.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false General. 4.1 Section 4.1 Foreign Relations DEPARTMENT OF STATE GENERAL NOTIFICATION OF FOREIGN OFFICIAL STATUS § 4.1 General. In accordance with Article 10 of the Vienna Convention on Diplomatic Relations and Article 24 of the Vienna Convention on...

  12. 21 CFR 58.41 - General.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false General. 58.41 Section 58.41 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.41 General. Each testing facility shall be of suitable size and...

  13. Influence on general practitioners of teaching undergraduates: qualitative study of London general practitioner teachers

    PubMed Central

    Hartley, Sarah; Macfarlane, Fraser; Gantley, Madeleine; Murray, Elizabeth

    1999-01-01

    Objective To examine the perceived effect of teaching clinical skills and associated teacher training programmes on general practitioners' morale and clinical practice. Design Qualitative semistructured interview study. Setting General practices throughout north London. Subjects 30 general practitioners who taught clinical skills were asked about the effect of teaching and teacher training on their morale, confidence in clinical and teaching skills, and clinical practice. Results The main theme was a positive effect on morale. Within teacher training this was attributed to developing peer and professional support; improved teaching skills; and revision of clinical knowledge and skills. Within teaching this was attributed to a broadening of horizons; contact with enthusiastic students; increased time with patients; improved clinical practice; improved teaching skills; and an improved image of the practice. Problems with teaching were due to external factors such as lack of time and space and anxieties about adequacy of clinical cover while teaching. Conclusions Teaching clinical skills can have a positive effect on the morale of general practitioner teachers as a result of contact with students and peers, as long as logistic and funding issues are adequately dealt with. Key messagesThe increase in community based teaching of clinical skills requires an increase in the number of general practitioner teachersLittle evidence is available about the effect of teaching of clinical skills and teacher training on general practitioner teachers and practicesGeneral practitioner teachers reported an increase in morale, improvements in clinical skills, and changes in clinical practice and in practice infrastructure as a result of teaching and trainingGeneral practitioner teachers reported problems because of pressure on time, lack of space, problems recruiting patients, and unsupportive practice partnersPositive effects on morale and clinical practice may be important for

  14. Generalizing Atoms in Constraint Logic

    NASA Technical Reports Server (NTRS)

    Page, C. David, Jr.; Frisch, Alan M.

    1991-01-01

    This paper studies the generalization of atomic formulas, or atoms, that are augmented with constraints on or among their terms. The atoms may also be viewed as definite clauses whose antecedents express the constraints. Atoms are generalized relative to a body of background information about the constraints. This paper first examines generalization of atoms with only monadic constraints. The paper develops an algorithm for the generalization task and discusses algorithm complexity. It then extends the algorithm to apply to atoms with constraints of arbitrary arity. The paper also presents semantic properties of the generalizations computed by the algorithms, making the algorithms applicable to such problems as abduction, induction, and knowledge base verification. The paper emphasizes the application to induction and presents a pac-learning result for constrained atoms.

  15. General Dentist

    MedlinePlus

    ... information you need from the Academy of General Dentistry Friday, June 29, 2018 About | Contact InfoBites Quick ... Instead of specializing in just one area of dentistry, they can provide plenty of different services for ...

  16. General purpose force doctrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltman, J.J.

    In contemporary American strategic parlance, the general purpose forces have come to mean those forces intended for conflict situations other than nuclear war with the Soviet Union. As with all military forces, the general purpose forces are powerfully determined by prevailing conceptions of the problems they must meet and by institutional biases as to the proper way to deal with those problems. This paper deals with the strategic problems these forces are intended to meet, the various and often conflicting doctrines and organizational structures which have been generated in order to meet those problems, and the factors which will influencemore » general purpose doctrine and structure in the future. This paper does not attempt to prescribe technological solutions to the needs of the general purpose forces. Rather, it attempts to display the doctrinal and institutional context within which new technologies must operate, and which will largely determine whether these technologies are accepted into the force structure or not.« less

  17. 47 CFR 32.13 - Accounts-general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Accounts-general. 32.13 Section 32.13 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES General Instructions § 32.13 Accounts—general. (a) As a general rule...

  18. 47 CFR 32.13 - Accounts-general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Accounts-general. 32.13 Section 32.13 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES General Instructions § 32.13 Accounts—general. (a) As a general rule...

  19. 47 CFR 32.13 - Accounts-general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Accounts-general. 32.13 Section 32.13 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES General Instructions § 32.13 Accounts—general. (a) As a general rule...

  20. 21 CFR 1.1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false General. 1.1 Section 1.1 Food and Drugs FOOD AND... General Provisions § 1.1 General. (a) The provisions of regulations promulgated under the Federal Food... terms when used in regulations promulgated under that act. (c) The definition of package in § 1.20 and...

  1. Genomics of Climate Resilience (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bermingham, Eldredge

    2013-03-27

    Eldredge Bermingham of the Smithsonian Tropical Research Institute-Panama on "Genomics of climate resilience" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  2. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    ScienceCinema

    Gilbert, Tom

    2018-02-06

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  3. 7 CFR 351.2 - Location of inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Hoboken, N.J., Honolulu, Hawaii, Houston, Tex., Jacksonville, Fla., Jamaica, L.I., N.Y., Key West, Fla..., Calif., Savannah, Ga., Seattle, Wash., Tampa, Fla., Toledo, Ohio, Washington, DC, West Palm Beach, Fla...

  4. 7 CFR 351.2 - Location of inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Hoboken, N.J., Honolulu, Hawaii, Houston, Tex., Jacksonville, Fla., Jamaica, L.I., N.Y., Key West, Fla..., Calif., Savannah, Ga., Seattle, Wash., Tampa, Fla., Toledo, Ohio, Washington, DC, West Palm Beach, Fla...

  5. 7 CFR 351.2 - Location of inspectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Hoboken, N.J., Honolulu, Hawaii, Houston, Tex., Jacksonville, Fla., Jamaica, L.I., N.Y., Key West, Fla..., Calif., Savannah, Ga., Seattle, Wash., Tampa, Fla., Toledo, Ohio, Washington, DC, West Palm Beach, Fla...

  6. 7 CFR 351.2 - Location of inspectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Hoboken, N.J., Honolulu, Hawaii, Houston, Tex., Jacksonville, Fla., Jamaica, L.I., N.Y., Key West, Fla..., Calif., Savannah, Ga., Seattle, Wash., Tampa, Fla., Toledo, Ohio, Washington, DC, West Palm Beach, Fla...

  7. Genomics of Climate Resilience (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    ScienceCinema

    Bermingham, Eldredge

    2018-02-13

    Eldredge Bermingham of the Smithsonian Tropical Research Institute-Panama on "Genomics of climate resilience" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  8. NASA Spacecraft Sees Dispersion of Smoke and Ash Across LA Basin from Colby Fire

    NASA Image and Video Library

    2014-01-18

    On Jan. 16, 2014, NASA Terra satellite passed over Glendora, Calif., where a large wildfire has claimed several homes, causing mandatory evacuations and prompting an air quality alert by public health officials.

  9. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Tom

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  10. Regulation of Flowering in Brachypodium distachyon (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amasino, Rick

    2013-03-01

    Rick Amasino of the University of Wisconsin on "Regulation of Flowering in Brachypodium distachyon" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  11. Fires Burning near Big Sur, California

    NASA Image and Video Library

    2008-06-30

    Fires near Big Sur, Calif., continued to burn unchecked when the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument on NASA Terra satellite captured this image on Sunday, June 29, 2008.

  12. Mars Science Laboratory Rover and Descent Stage

    NASA Image and Video Library

    2008-11-19

    In this February 17, 2009, image, NASA Mars Science Laboratory rover is attached to the spacecraft descent stage. The image was taken inside the Spacecraft Assembly Facility at NASA JPL, Pasadena, Calif.

  13. NRC evaluates groundwater programs

    NASA Astrophysics Data System (ADS)

    A recent report by the National Research Council (NRC) noted that about half the people of the United States depend on wells for their drinking water, but recent tests reveal widespread contamination.Responsibility for monitoring and protecting groundwater supplies lies largely with state governments. Federal funding of model projects under the Clean Water Act expired in 1983. However, the U.S. Environmental Protection Agency (EPA) has asked the NRC to identify and evaluate ten state and local groundwater protection programs and to recommend features that may be applied in other areas. A committee, organized by the Water Science and Technology Board and chaired by Jerome B. Gilbert, general manager of the East Bay Municipal Utility District of Oakland, Calif., has undertaken the study. The report is expected to be completed in March 1986.

  14. KSC-03PD-2868

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  15. Technical highlights in general aviation

    NASA Technical Reports Server (NTRS)

    Stickle, J. W.

    1977-01-01

    Improvements in performance, safety, efficiency, and emissions control in general aviation craft are reviewed. While change is slow, the U.S. industries still account for the bulk (90%) of the world's general aviation fleet. Advances in general aviation aerodynamics, structures and materials, acoustics, avionics, and propulsion are described. Supercritical airfoils, drag reduction design, stall/spin studies, crashworthiness and passenger safety, fiberglass materials, flight noise abatement, interior noise and vibration reduction, navigation systems, quieter and cleaner (reciprocating, turboprop, turbofan) engines, and possible benefits of the Global Position Satellite System to general aviation navigation are covered in the discussion. Some of the developments are illustrated.

  16. 42 CFR 1002.2 - General authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false General authority. 1002.2 Section 1002.2 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES PROGRAM INTEGRITY-STATE-INITIATED EXCLUSIONS FROM MEDICAID General Provisions § 1002.2 General authority...

  17. 46 CFR 110.30-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General. 110.30-1 Section 110.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection § 110.30-1 General. (a) This section supplements the general requirements for testing and inspecting...

  18. 46 CFR 111.01-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General. 111.01-1 Section 111.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services...

  19. 46 CFR 110.30-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General. 110.30-1 Section 110.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection § 110.30-1 General. (a) This section supplements the general requirements for testing and inspecting...

  20. 46 CFR 111.01-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General. 111.01-1 Section 111.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services...

  1. 32 CFR 720.5 - Authority of the Judge Advocate General and the General Counsel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Officer, Naval Publication and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. (c) Points of... referring matters to the appropriate office of the Judge Advocate General or General Counsel. (d...

  2. 32 CFR 720.5 - Authority of the Judge Advocate General and the General Counsel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Officer, Naval Publication and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. (c) Points of... referring matters to the appropriate office of the Judge Advocate General or General Counsel. (d...

  3. 32 CFR 720.5 - Authority of the Judge Advocate General and the General Counsel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Officer, Naval Publication and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. (c) Points of... referring matters to the appropriate office of the Judge Advocate General or General Counsel. (d...

  4. 32 CFR 720.5 - Authority of the Judge Advocate General and the General Counsel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Officer, Naval Publication and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. (c) Points of... referring matters to the appropriate office of the Judge Advocate General or General Counsel. (d...

  5. 32 CFR 720.5 - Authority of the Judge Advocate General and the General Counsel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Officer, Naval Publication and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. (c) Points of... referring matters to the appropriate office of the Judge Advocate General or General Counsel. (d...

  6. Generalized Kustaanheimo-Stiefel transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komarov, L.I.; Van Hoang, L.

    1994-10-01

    A theory is given for the construction of generalized Kustaanheimo-Stiefel (KS) transformations for dimensions q+1 (q=2{sup h}, h=0, 1, 2,...) of the Kepler problem, and the following proposition is proved: A connection between the Kepler problem in a real space of dimension q+1 and the problem of an isotropic harmonic oscillator in a real space dimension N exists and can be established by means of generalized KS transformations in the cases in which N=2q and q=2{sup h} (h=0, 1, 2,...). A simple graphical prescription for constructing generalized KS transformations that realize this connection is proposed.

  7. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    PubMed

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  8. 7 CFR 1735.1 - General statement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GENERAL POLICIES, TYPES OF LOANS, LOAN REQUIREMENTS-TELECOMMUNICATIONS PROGRAM General § 1735.1 General statement. (a) Subparts A through E of this part set forth the general policies, types of loans and loan... consolidate with another system. This part supersedes all RUS Bulletins that are in conflict with it. (c...

  9. 1 CFR 304.1 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true General provisions. 304.1 Section 304.1 General Provisions ADMINISTRATIVE CONFERENCE OF THE UNITED STATES DISCLOSURE OF RECORDS OR INFORMATION Procedures for Disclosure of Records Under the Freedom of Information Act § 304.1 General provisions. (a) This subpart...

  10. 1 CFR 304.1 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false General provisions. 304.1 Section 304.1 General Provisions ADMINISTRATIVE CONFERENCE OF THE UNITED STATES DISCLOSURE OF RECORDS OR INFORMATION Procedures for Disclosure of Records Under the Freedom of Information Act § 304.1 General provisions. (a) This subpart...

  11. 1 CFR 304.1 - General provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true General provisions. 304.1 Section 304.1 General Provisions ADMINISTRATIVE CONFERENCE OF THE UNITED STATES DISCLOSURE OF RECORDS OR INFORMATION Procedures for Disclosure of Records Under the Freedom of Information Act § 304.1 General provisions. (a) This subpart...

  12. 21 CFR 1.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false General. 1.1 Section 1.1 Food and Drugs FOOD AND... General Provisions § 1.1 General. (a) The provisions of regulations promulgated under the Federal Food... promulgated under that act. (c) The definition of package in § 1.20 and of principal display panel in §§ 101.1...

  13. 21 CFR 1.1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false General. 1.1 Section 1.1 Food and Drugs FOOD AND... General Provisions § 1.1 General. (a) The provisions of regulations promulgated under the Federal Food... in §§ 101.1, 201.60, 501.1, 701.10 and 801.60 of this chapter; and the requirements pertaining to...

  14. Opportunities to Create New General Surgery Residency Programs to Alleviate the Shortage of General Surgeons.

    PubMed

    Meagher, Ashley D; Beadles, Christopher A; Sheldon, George F; Charles, Anthony G

    2016-06-01

    To estimate the capacity for supporting new general surgery residency programs among U.S. hospitals that currently do not have such programs. The authors compiled 2011 American Hospital Association data regarding the characteristics of hospitals with and without a general surgery residency program and 2012 Accreditation Council for Graduate Medical Education data regarding existing general surgery residencies. They performed an ordinary least squares regression to model the number of residents who could be trained at existing programs on the basis of residency program-level variables. They identified candidate hospitals on the basis of a priori defined criteria for new general surgery residency programs and an out-of-sample prediction of resident capacity among the candidate hospitals. The authors found that 153 hospitals in 39 states could support a general surgery residency program. The characteristics of these hospitals closely resembled the characteristics of hospitals with existing programs. They identified 435 new residency positions: 40 hospitals could support 2 residents per year, 99 hospitals could support 3 residents, 12 hospitals could support 4 residents, and 2 hospitals could support 5 residents. Accounting for progressive specialization, new residency programs could add 287 additional general surgeons to the workforce annually (after an initial five- to seven-year lead time). By creating new general surgery residency programs, hospitals could increase the number of general surgeons entering the workforce each year by 25%. A challenge to achieving this growth remains finding new funding mechanisms within and outside Medicare. Such changes are needed to mitigate projected workforce shortages.

  15. 46 CFR 111.53-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General. 111.53-1 Section 111.53-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fuses § 111.53-1 General. (a) Each fuse must— (1) Meet the general provisions of Article 240 of NFPA NEC...

  16. 46 CFR 111.53-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false General. 111.53-1 Section 111.53-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fuses § 111.53-1 General. (a) Each fuse must— (1) Meet the general provisions of Article 240 of NFPA NEC...

  17. 46 CFR 111.53-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false General. 111.53-1 Section 111.53-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fuses § 111.53-1 General. (a) Each fuse must— (1) Meet the general provisions of Article 240 of NFPA NEC...

  18. 46 CFR 111.53-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false General. 111.53-1 Section 111.53-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fuses § 111.53-1 General. (a) Each fuse must— (1) Meet the general provisions of Article 240 of NFPA NEC...

  19. 46 CFR 111.53-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General. 111.53-1 Section 111.53-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fuses § 111.53-1 General. (a) Each fuse must— (1) Meet the general provisions of Article 240 of NFPA NEC...

  20. 28 CFR 0.5 - Attorney General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Attorney General. 0.5 Section 0.5... Attorney General § 0.5 Attorney General. The Attorney General shall: (a) Supervise and direct the administration and operation of the Department of Justice, including the offices of U.S. Attorneys and U.S...